Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 7713. Отображено 200.
27-09-2015 дата публикации

ЗАЩИТНОЕ ПОКРЫТИЕ

Номер: RU2564300C2

Изобретение относится к области электротехники и предназначено для использования в разрядных источниках излучения. Защитное покрытие на внутренней поверхности разрядных оболочек источников излучения содержит оксид алюминия, оксид иттрия, оксид магния, оксид циркония и оксид тория. Изобретение позволяет повысить инертность материала горелки на внутренней поверхности разрядной оболочки по отношению к парам агрессивных металлов при высоких температурах и давлениях, а также в несколько раз увеличить физический срок службы ртутно-цезиевых ламп при незначительном снижении излучения в процессе работы, в пределах этих значений срока службы. 2 табл.

Подробнее
20-07-2007 дата публикации

МЕТАЛЛОТЕРМИЧЕСКОЕ ВОССТАНОВЛЕНИЕ ОКИСЛОВ ТУГОПЛАВКИХ МЕТАЛЛОВ

Номер: RU2302928C2
Принадлежит: Х.Ц. ШТАРК, ИНК. (US)

Изобретение относится к получению порошков высокочистых тугоплавких металлов, клапанных субоксидов тугоплавких металлов и клапанных металлов или их сплавов, пригодных для изготовления целого ряда электрических, оптических и прокатных изделий/деталей, получаемых из соответствующих их окислов при металлотермическом восстановлении в твердой или жидкой форме этих окислов, используя восстанавливающий агент, который поддерживает после воспламенения высокоэкзотермическую реакцию, предпочтительно осуществляемую при непрерывной или периодической подаче окисла, например при перемещении под действием силы тяжести. Полученный металл собирают в приемном устройстве, а окисел восстанавливающего металла удаляют в виде газа или в другой удобной форме, тогда как непрореагировавшие производные восстанавливающего агента удаляют выщелачиванием или подобными процессами, обеспечивается высокопроизводительный, непрерывный, управляемый способ получения порошков тугоплавких металлов, обладающих улучшенной морфологией ...

Подробнее
20-01-2013 дата публикации

НАПОЛНИТЕЛИ И КОМПОЗИТНЫЕ МАТЕРИАЛЫ С НАНОЧАСТИЦАМИ ДИОКСИДА ЦИРКОНИЯ И КРЕМНЕЗЕМА

Номер: RU2472708C2

Изобретение относится к наполнителям из наночастиц для применения в композитных материалах, включая стоматологические композитные материалы. Наполнители содержат кластеры наночастиц кремнезема и диоксида циркония. Наполнители могут быть получены путем смешивания золя наночастиц кремнезема с золем предварительно сформированных кристаллических частиц нанооксида циркония. Наполнители обеспечивают желательные оптические свойства, такие как опалесценция, и являются полезными в стоматологических композициях. 3 н. и 22 з.п. ф-лы, 4 табл., 2 ил.

Подробнее
27-12-2010 дата публикации

СОСТАВ НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ И ОКСИДА ЦЕРИЯ С ПОВЫШЕННОЙ ВОССТАНОВИТЕЛЬНОЙ СПОСОБНОСТЬЮ И СТАБИЛЬНОЙ УДЕЛЬНОЙ ПОВЕРХНОСТЬЮ, СПОСОБ ПОЛУЧЕНИЯ И ИСПОЛЬЗОВАНИЕ ДЛЯ ОБРАБОТКИ ВЫХЛОПНЫХ ГАЗОВ

Номер: RU2407584C2
Принадлежит: РОДИА ОПЕРАСЬОН (FR)

Изобретение может быть использовано при дожигании выхлопных газов двигателей внутреннего сгорания автомобилей. Получают водную смесь, содержащую соединения циркония и церия и одного из лантанидов, отличных от церия и иттрия. Смесь нагревают до 100°C с получением осадка в виде суспензии в реакционной среде, которую доводят до уровня щелочного рН. Сначала добавляют присадку, выбранную из анионных поверхностно-активных веществ, неионных поверхностно-активных веществ, полиэтиленгликолей, карбоновых кислот и их солей и поверхностно-активных веществ типа карбоксиметилированных этоксилатов жирных спиртов, в полученную среду и после этого отделяют осадок. По другому варианту сначала выделяют осадок из реакционной среды и после этого к осадку добавляют упомянутую присадку. Осадок обжигают в атмосфере инертного газа или в вакууме при 900°C, а затем в окислительной атмосфере при 600°C. Полученный состав содержит оксид церия не более 50 мас.%, степень восстановления после обжига в атмосфере воздуха ...

Подробнее
23-11-2018 дата публикации

КОМПОЗИЦИЯ НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ, ЦЕРИЯ, НИОБИЯ И ОЛОВА, СПОСОБЫ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ ДЛЯ КАТАЛИЗА

Номер: RU2673295C2
Принадлежит: РОДИА ОПЕРАСЬОН (FR)

Изобретение относится к каталитической композиции для обработки выхлопных газов. Композиция представляет собой композицию на основе оксидов циркония, церия, ниобия и олова с массовым содержанием оксида церия 5-50%, оксида ниобия - 5-20%, оксида олова – 1-10% и с содержанием оксида циркония, составляющим остальное количество. Обеспечивается получение катализаторов, являющихся более эффективными для катализа SCR и обладающих улучшенными восстановительной способностью и/или кислотностью. 6 н. и 14 з.п. ф-лы, 1 ил., 4 табл., 7 пр.

Подробнее
27-11-2010 дата публикации

СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ТОНКОЙ ПЛЕНКИ НА ОСНОВЕ СИСТЕМЫ ДВОЙНЫХ ОКСИДОВ ЦИРКОНИЯ И ТИТАНА

Номер: RU2404923C1

Изобретение может быть использовано в электронной технике, светотехнической и строительной промышленности. Состав получают приготовлением пленкообразующего раствора на основе 96 мас.% этилового спирта, 6,68-10,02 мас.% кристаллогидрата оксохлорида циркония и 3,34-5,01 мас.% тетраэтоксититана. Полученный раствор наносят на подложку и подвергают термообработке. Изобретение позволяет получать тонкие пленки цирконата титана стабильной структуры с высоким значением показателя преломления. 1 табл.

Подробнее
22-07-2022 дата публикации

Способ получения циркона

Номер: RU2776575C1

Изобретение относится к получению порошка на основе циркона для использования в качестве добавок при получении жаропрочных изделий, при изготовлении матричных материалов жаростойких пигментов, при изготовлении материала адсорбентов для очистки водных растворов, при использовании в качестве источника циркония и кремния при получении электрохимическим методом порошков карбида и силицида циркония. Способ включает получение золя с использованием в качестве цирконийсодержащего соединения карбоната циркония, а в качестве кремнийсодержащего соединения – тетраэтоксисилана, и последующее получение геля, содержащего кремний и цирконий, сушку геля для получения смеси порошков аморфных соединений ZrO2 и SiO2, их прессование и последующее спекание при температуре 900°С. При этом к смеси порошков аморфных соединений ZrO2 и SiO2 добавляют спекающую добавку на основе оксида двухвалентной меди в количестве не более 1 % по массе. По данным рентгеновской дифракции обеспечивается стопроцентный выход циркона ...

Подробнее
13-10-2017 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ОКСИДОВ МЕТАЛЛОВ

Номер: RU2633582C1

Изобретение может быть использовано в неорганической химии. Способ получения нанодисперсных оксидов металлов включает формирование реакционной смеси путем внесения нитратов металлов и карбамида в водную среду в стехиометрическом соотношении. На реакционную среду воздействуют микроволновым излучением. Реакционную смесь формируют непосредственно в реакционном объеме при следующем соотношении компонентов, мас. %: смесь нитрата и карбамида 10-20, вода - остальное. Воздействие микроволновым излучением осуществляют при открытом доступе к реакционной среде в реакционном объеме. Промежуточный продукт реакций подвергают сушке при температуре не менее 200°С. Высушенный продукт измельчают до размеров частиц не более 20 нм. В ходе измельчения высушенного продукта параллельно осуществляют гидрофобизационную обработку гидрофобизирующей смесью, состоящей из силанов и силиконовых олигомеров, взятых в соотношении, мас. %: силан 17-33, силиконовый олигомер 67-83. Изобретение позволяет обеспечить полную конверсию ...

Подробнее
10-01-2009 дата публикации

СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ТОНКОЙ ПЛЕНКИ НА ОСНОВЕ СИСТЕМЫ ДВОЙНЫХ ОКСИДОВ ЦИРКОНИЯ И ГЕРМАНИЯ

Номер: RU2343118C1

Изобретение относится к технологии тонкопленочных материалов на основе системы двойных оксидов и может быть использовано при получении коррозионностойких, декоративных, фильтрующих и перераспределяющих излучение покрытий. Состав для получения тонкой пленки на основе системы двойных оксидов циркония и германия включает следующие компоненты, мас.%: кристаллогидрат оксохлорида циркония ZrOCl2·8H2O - 3,8-9,0; тетрахлорид германия - 3,0-7,1; 96%-ный этиловый спирт - остальное. Изобретение позволяет получить тонкие пленки с образованием цирконата германия, обеспечивающие стабильность структуры и физико-химических свойств в широком диапазоне концентраций и высокий показатель преломления. 1 табл.

Подробнее
27-06-1999 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ОКРАШЕННЫХ МОНОКРИСТАЛЛОВ (ЕГО ВАРИАНТЫ)

Номер: RU2132416C1

Использование: изобретение относится к области выращивания синтетических монокристаллов и промышленно применимы при изготовлении ювелирных изделий. Технический результат - получение синтетических монокристаллов благородного красного цвета. В контейнер с охлаждаемыми стенками загружают шихту 8 следующего состава, вес.%: Y2О3 - 10-40 Nd2О - 3-8 CeO2 - 2-4 ZrO2 - Остальное Шихту 8 нагревают с образованием расплава в слое гарнисажа. Направленную кристаллизацию расплава осуществляют путем перемещения контейнера относительно зоны нагрева. Затем контейнер выводят из зоны нагревы, а монокристаллы охлаждают. После этого монокристаллы отжигают в инертной или разреженной атмосфере при давлении 10-4 - 10-3 мм рт. ст. и температуре 500 - 1600oC в течение времени 1,0 - 2,0 ч, после чего температуру снижают со скоростью 400 - 1000oC в час. В альтернативном варианте в контейнер с охлаждаемыми стенками загружают шихту 8 следующего состава, вес.%: Y2О3 - 10-40 Nd2О3 - 1-4 Pr2O3 - 2-8 ZrO2 - Остальное Для ...

Подробнее
09-11-2017 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПОРИСТОГО ДИОКСИДА ЦИРКОНИЯ

Номер: RU2635161C1

Изобретение относится к способам изготовления высокопористых керамических изделий и может быть использовано в машиностроении, химической промышленности и медицине для получения носителей катализаторов, фильтрующих элементов, биоимплантатов. Способ изготовления высокопористого диоксида циркония включает нанесение водной суспензии порошка на полимерную матрицу, сушку заготовки и спекание. Для приготовления суспензии используют нанопорошок диоксида циркония, который подвергают механической обработке в водном растворе полимера до образования агломератов частиц размером 1-10 мкм. После сушки заготовку выдерживают в течение не менее 24 ч в холодильной камере при температуре ниже 0°С. Спекание осуществляют при температуре 1300-1400°С. Обеспечивается получение высокопористого материала на основе диоксида циркония с пониженной температурой спекания без добавок активаторов спекания. 1 ил., 2 пр.

Подробнее
10-11-2023 дата публикации

КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ И КОМБИНИРОВАННАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ОКСИДА ЦИРКОНИЯ И МЕТИЛХЛОРСИЛАНА И/ИЛИ ПОЛИКРЕМНИЯ

Номер: RU2807187C1

Изобретение относится к получению оксида циркония и силиконовых мономеров. Предложен комбинированный способ получения оксида циркония и метилхлорсилана, включающий: получение оксида циркония с использованием цирконового песка, углерода, газообразного хлора, кремния и хлороводорода в качестве сырьевых материалов, причем продукты, отделенные во время получения оксида циркония, включают газофазные продукты и жидкофазные продукты, при этом метилхлорсилан получают из газофазных продуктов, отделенных во время получения оксида циркония. Предложен также комбинированный способ получения, позволяющий получить дополнительно к оксиду циркония и метилхлорсилану поликристаллический кремний с использованием жидкофазных продуктов в качестве сырьевых материалов, и соответствующие установки. Использование монооксида углерода, хлороводорода и других образовавшихся при получении оксида циркония отходящих газов в качестве сырья для получения метилхлорсилана, а образовавшегося в качестве побочного продукта тетрахлорида ...

Подробнее
07-04-2023 дата публикации

Способ получения нанокристаллического порошка на основе диоксида циркония

Номер: RU2793893C1

Изобретение относится к химической промышленности и может быть использовано при изготовлении керамики, протонообменных мембран, зубных протезов и топливных элементов. Сначала готовят исходные водные растворы оксинитрата циркония, нитрата иттрия и осадителя - аммиака. Полученные растворы смешивают в микрореакторе со встречными закрученными потоками, задавая их расходы так, чтобы обеспечить стехиометрическое соотношение компонентов в конечном продукте -нанокристаллическом порошке на основе диоксида циркония, стабилизированного оксидом иттрия. При этом отличие расходов растворов может быть не более чем в 4-5 раз. Смесь исходных водных растворов оксинитрата циркония и нитрата иттрия подают в один или несколько тангенциальных патрубков 1, расположенных в камере 2 закрутки. Водный раствор аммиака подают в один или несколько тангенциальных патрубков 4, расположенных в камере 5 закрутки. Указанные растворы подают в патрубки 1 и 4 со скоростями 1-3 м/с. Таким образом обеспечивается встречное вращательное ...

Подробнее
27-04-2012 дата публикации

КОМПОЗИЦИЯ НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ, ОКСИДА ТИТАНА ИЛИ СМЕШАННОГО ОКСИДА ЦИРКОНИЯ И ТИТАНА, НАНЕСЕННАЯ НА НОСИТЕЛЬ ИЗ ОКСИДА КРЕМНИЯ, СПОСОБЫ ЕЕ ПОЛУЧЕНИЯ И ЕЕ ПРИМЕНЕНИЕ В КАЧЕСТВЕ КАТАЛИЗАТОРА

Номер: RU2448908C1
Принадлежит: РОДИА ОПЕРАСЬОН (FR)

Изобретение может быть использовано в неорганической химии. Каталитическая композиция содержит по меньшей мере один оксид на носителе, полученный на основе оксида циркония, оксида титана или смешанного оксида циркония и титана, нанесенный на носитель на основе оксида кремния. После обжига при 900°С в течение 4 часов оксид на носителе имеет форму частиц, нанесенных на носитель, и их размер составляет не более 5 нм, если оксид на носителе получен на основе оксида циркония, не более 10 нм, если оксид на носителе получен на основе оксида титана, и не более 8 нм, если оксид на носителе получен на основе смешанного оксида циркония и титана. После обжига при 1000°С в течение 4 часов размер частиц составляет не более 7 нм, если оксид на носителе получен на основе оксида циркония, не более 19 нм, если оксид на носителе получен на основе оксида титана, не более 10 нм, если оксид на носителе получен на основе смешанного оксида циркония и титана. Изобретение позволяет уменьшить агрегацию частиц, их ...

Подробнее
08-11-2021 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НАНОТРУБОК ДИОКСИДА ЦИРКОНИЯ С КВАНТОВЫМИ ПРОВОДНИКАМИ

Номер: RU2758998C1

Изобретение относится к электрохимической технологии получения нанотрубок диоксида циркония ZrO2c последующим формированием квантовых проводников. Получение стабильных при комнатной температуре квантовых проводников из вакансий кислорода в нанотрубках ZrO2является техническим результатом изобретения. Нанотрубки ZrO2синтезируют методом анодирования Zr-подложки в электролите на основе этиленгликоля с содержанием 5±1 мас.% H2O и 1.0±0.3 мас.% NH4F при постоянном напряжении в диапазоне 20±5 В и термостатировании анода при температуре 10±5°C. Затем на нанотубулярный слой ZrO2наносят Me-электрод из золота или платины. Квантовые проводники формируют во внешнем электрическом поле напряженностью менее 25 кВ/см путем заземления Zr-подложки и подачи положительного напряжения на Me-электрод. После чего количество квантовых проводников контролируют электрическим полем напряженностью менее 6 кВ/см путем заземления Zr-подложки и подачи положительного напряжения на Me-электрод. 4 ил., 5 пр.

Подробнее
10-09-2005 дата публикации

ВОЛОКНА НА ОСНОВЕ ОКСИДА ЦИРКОНИЯ/ОКСИДА МЕТАЛЛА

Номер: RU2004111000A
Принадлежит:

... 1. Способ получения волокна на основе циркония/оксида металла, включающий i) смешивание раствора соли металла или коллоидной дисперсии оксида металла, где упомянутый металл выбирают из группы, состоящей по меньшей мере из одного из металлов Группы IIA, переходного металла, металлов Группы IIIA и металлов Группы IIIB, с коллоидной дисперсией аморфного цирконийсодержащего полимера согласно формуле (I) [Zr4(OH)12(X)2(H2O)4]n (X)2n· 2nH2O, где Х представляет анион, совместимый с цирконийсодержащим полимером; n представляет целое число от 1 до менее 200, для создания смешанной коллоидной дисперсии; формование смешанной коллоидной дисперсии в волокно на основе циркония/металла. 2. Способ по п.1, в котором Х выбирают из группы, состоящей из NO3-, Cl- и ClCH2COO-. 3. Способ по п.2, дополнительно отличающийся тем, что упомянутая коллоидная дисперсия цирконийсодержащего полимера имеет соотношение Х к цирконию в диапазоне от около 1,0-0,98 до около 1,0-1,3 для поддержания упомянутой коллоидной дисперсии ...

Подробнее
27-09-1998 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ЦИРКОНИЯ

Номер: RU96113581A
Принадлежит:

Способ получения диоксида циркония из оксихлоридных растворов путем электрохимической и термической обработки, отличающийся тем, что раствор оксихлорида циркония подвергают электрохимической обработке в катодной камере трехкамерного электролизера, в котором средняя камера отделена от катодной анионобменной, а от анодной - катионообменной мембранами, при плотности тока 0,5 - 10,0 А/дм2 и рН католита = 2,0 - 2,8, при этом среднюю камеру первоначально заполняют дистиллированной водой, а анодную - 1 - 5% раствором кислородсодержащей кислоты.

Подробнее
27-08-2006 дата публикации

ЭЛЕМЕНТ ТУРБИНЫ С ТЕПЛОЗАЩИТНЫМ ПОКРЫТИЕМ

Номер: RU2005107462A
Принадлежит:

... 1. Элемент турбины, отличающийся тем, что он содержит подложку, образованную из керамического материала, выбранного из группы, состоящей из монолитного керамического материала и композиционного керамического материала, и теплозащитное покрытие, связанное с указанной подложкой. 2. Элемент турбины по п.1, отличающийся тем, что указанный керамический материал выбран из группы, состоящей из нитрида кремния и самоупрочненного нитрида кремния. 3. Элемент турбины по п.1, отличающийся тем, что указанный керамический материал выбран из группы, состоящей из композиционного материала на основе карбидокремниевого волокна и карбидокремниевой матрицы и композиционного материала на основе углеродного волокна и карбонизированной матрицы. 4. Элемент турбины по п.1, отличающийся тем, что указанное теплозащитное покрытие содержит по меньшей мере 15 мол.% по меньшей мере одного полуторного оксида лантанида, а остальное составляет первый оксид, выбранный из группы, состоящей из диоксида циркония, оксида церия ...

Подробнее
27-02-2005 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА ЦИРКОНИЯ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА ЦИРКОНИЯ

Номер: RU2003123701A
Принадлежит:

... 1. Способ получения порошка диоксида циркония, включающий осаждение гидроксида циркония и его смесей с гидроксидами стабилизирующих элементов из водных растворов нитратов и хлоридов этих элементов раствором аммиака, отделение осадка от маточного раствора, его промывку и обезвоживание, отличающийся тем, что осаждение гидроксида циркония и его смесей ведут при рН не ниже 8, а пульпу после осаждения обрабатывают в автоклаве при температурах 105-200°С. 2. Способ по п.1, отличающийся тем, что пульпу обрабатывают в автоклаве 1-3 ч.

Подробнее
21-08-2024 дата публикации

ПОЛУЧЕНИЕ НАНОСТРУКТУРИРОВАННЫХ СМЕШАННЫХ ОКСИДОВ ЛИТИЯ И ЦИРКОНИЯ ПОСРЕДСТВОМ СПРЕЙ-ПИРОЛИЗА

Номер: RU2825204C1

Изобретение может быть использовано при изготовлении покрытий или легирующих материалов для электродов литиевых аккумуляторных батарей, а также добавок к жидким, гелеобразным или твердотельным электролитам литий-ионных аккумуляторных батарей. Смешанный оксид лития и циркония получают спрей-пиролизом в пламени, используя по меньшей мере один раствор предшественников металлов, включающий карбоксилаты лития и циркония, содержащие 5-20 атомов углерода, и растворитель, содержащий менее 5 масс. % воды и выбранный из спирта, простого эфира, сложного эфира, карбоновых кислот, необязательно галогенированного углеводорода и их смесей. Раствор предшественников металлов может также содержать хелатирующее средство, выбранное из диаминов и 1,3-дикарбонильных соединений. По меньшей мере один раствор указанных предшественников металлов распыляют посредством распыляющего газа. Полученный аэрозоль вводят в реакционное пространство реактора, где он реагирует с пламенем, полученным воспламенением смеси горючего ...

Подробнее
10-05-2010 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ДИОКСИДА ЦИРКОНИЯ

Номер: RU2008144044A
Принадлежит:

Способ получения нанопорошка диоксида циркония, включающий осаждение гидроксида циркония, его СВЧ-сушку и прокаливание, отличающийся тем, что стадии сушки и прокаливания проводят одновременно под действием СВЧ-излучения в частотном диапазоне 500-20000 МГц с непрерывной мощностью 3,0-50,0 кВт в течение 5-60 мин.

Подробнее
20-11-2015 дата публикации

АЭРОГЕЛИ, КАЛЬЦИНИРОВАННЫЕ ИЗДЕЛИЯ, ИЗДЕЛИЯ С КРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Номер: RU2014112777A
Принадлежит:

... 1. Монолитный аэрогель, содержащий органический материал и частицы кристаллического оксида металла, при этом количество частиц кристаллического оксида металла находится в диапазоне от 3 до 20 объемных процентов, исходя из общего объема монолитного аэрогеля, причем, по меньшей мере, 70 мольных процентов кристаллического оксида металла представляют собой ZrO.2. Монолитный аэрогель по п. 1, отличающийся тем, что частицы кристаллического оксида металла содержат в диапазоне от 1 до 15 мольных процентов кристаллического оксида металла, представляющего собой YO.3. Монолитный аэрогель по п. 1, отличающийся тем, что частицы кристаллического оксида металла содержат первое множество частиц, и второе, отличное от него, множество частиц.4. Способ получения не содержащего трещин кальцинированного изделия из оксида металла, имеющего x, y и z размеры, по меньшей мере, 5 мм, плотность в диапазоне от 30 до 95 процентов от теоретической плотности, и средний размер соединенных пор в диапазоне от 10 нм до 100 ...

Подробнее
27-01-2013 дата публикации

ДИСПЕРСИЯ ОКСИДА ЦИРКОНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Номер: RU2011130824A
Принадлежит:

... 1. Способ получения водной дисперсии оксида циркония, в котором осуществляют взаимодействие соли циркония со щелочью в воде с получением суспензии частиц оксида циркония; фильтруют, промывают и репульпируют суспензию; добавляют органическую кислоту к полученной суспензии в количестве одна мольная часть или больше на мольную часть циркония в суспензии; выполняют гидротермическую отработку полученной смеси при температуре 170°С или выше; и промывают полученную водную дисперсию частиц оксида циркония.2. Способ получения водной дисперсии оксида циркония, в котором осуществляют взаимодействие соли циркония и соли, по меньшей мере, одного стабилизирующего элемента, выбранного из алюминия, магния, титана и редкоземельных элементов, со щелочью в воде с получением суспензии, содержащей частицы совместного осадка оксида циркония и, по меньшей мере, одного стабилизирующего элемента; фильтруют, промывают и репульпируют суспензию; добавляют органическую кислоту к полученной суспензии в количестве одна ...

Подробнее
09-02-1995 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНЫХ ПОРОШКОВ ДИОКСИДА ЦИРКОНИЯ

Номер: SU1805641A1
Принадлежит:

Использование: технология получения тонкодисперсных порошков диоксида циркония для керамических изделий. Сущность изобретения: соль оксинитрата циркония в количестве 30,0 г обработали раствором карбамида с концентрацией 30 г/л и нагрели до 90 - 100°С. Полученный раствор, содержащий 206,0 г/л циркония, обработали в плазменной струе плазмотрона. Затраты электроэнергии на получение 1 кг диоксида циркония составили 9,5 кВт ч/кг. 2 з.п. ф-лы, 3 табл.

Подробнее
20-01-2006 дата публикации

ЭКСТРУДАТЫ ДИОКСИДА ЦИРКОНИЯ

Номер: RU2005126440A
Принадлежит:

... 1. Способ получения прокаленного экструдата диоксида циркония, содержащего цирконий и один или более других элементов, выбранных из групп IB, IIB, IIIB, IVB, VB, VIB, VIIB и VIII периодической системы элементов или лантанидов и актинидов, включающий следующие стадии: а. получение формующейся пасты путем смешения и пластицирования мелкодисперсного диоксида циркония и источника одного или более других элементов, выбранных из групп IB, IIB, IIIB, IVB, VB, VIB, VIIB и VIII периодической системы элементов или лантанидов и актинидов, с растворителем с получением смеси, имеющей содержание твердых веществ от 50 до 85 мас.%; b. экструдирования формующейся пасты с образованием экструдата диоксида циркония, содержащего цирконий и один или более других элементов, выбранных из групп IB, IIB, IIIB, IVB, VB, VIB, VIIB и VIII периодической системы элементов или лантанидов и актинидов; и с. сушки и прокаливания экструдата диоксида циркония, образованного на стадии b, отличающийся тем, что мелкодисперсный ...

Подробнее
10-01-2008 дата публикации

СПОСОБ ОЧИСТКИ БАДДЕЛЕИТОВОГО КОНЦЕНТРАТА

Номер: RU2006122348A
Принадлежит:

... 1. Способ очистки бадделеитового концентрата, включающий смешивание бадделеитового концентрата с концентрированной серной кислотой, его сульфатизацию при повышенных температурах, образование пульпы обработкой продукта сульфатизации жидким реагентом, выделение бадделеита из пульпы, отличающийся тем, что перед сульфатизацией смесь бадделеитового концентрата и серной кислоты прессуют в брикеты или подвергают экструдированию с последующим разделением продукта экструдирования на брикеты. 2. Способ очистки по п.1, отличающийся тем, что смешивание бадделеитового концентрата и серной кислоты осуществляют при массовом соотношении концентрата и кислоты соответственно 1:(0,165÷0,195) и концентрации серной кислоты не менее 81 массовых процентов, а прессование или экструдирование смеси осуществляют при давлении 49·105÷7843·104 Н/м2. 3. Способ очистки по п.1 или 2, отличающийся тем, что сульфатизацию осуществляют при температурах 180÷200°С.

Подробнее
10-08-1973 дата публикации

Способ получения кристаллической двуокиси циркония

Номер: SU393612A1
Принадлежит:

Подробнее
07-06-1993 дата публикации

METHOD OF ZIRCONIUM DIOXIDE HYDROSOL MAKING

Номер: RU1819858C
Автор:
Принадлежит:

Подробнее
01-01-1938 дата публикации

Способ получения окиси циркония

Номер: SU53758A1
Автор: Юзько С.Л.
Принадлежит:

Подробнее
15-05-1992 дата публикации

Способ получения двуокиси циркония

Номер: SU1733384A1
Принадлежит:

Изобретение относится к способу получения двуокиси циркония и позволяет повысить чистоту и выход конечного продукта и интенсифицировать процесс. К раствору хлорокиси циркония, нагретому до 55-70°С, приливают 34%-ную соляную кислоту со скоростью 0,62-0,89 моль НС1/моль ZrOCl2 8H20 в 1 ч и массовом соотношении компонентов ZrOCl2 8H20:H20:HCI, равном 1:0,8-1,0:0,9-1,1. Образовавшиеся кристаллы хлорокиси циркония фильтруют и прокаливают . Получают двуокись циркония, содержащую менее мас.% примесей железа, марганца и хрома, с выходом 90%. Осуществление изобретения позволяет более чем на порядок повысить чистоту конечного продукта, на 10% увеличить его выход, а также сократить длительность процесса за счет уменьшения времени высаливания с 20 до 3-5 ч. 1 табл., 1 ил.

Подробнее
30-01-1988 дата публикации

Способ получения моноклинного диоксида циркония

Номер: SU1370079A1
Принадлежит:

Изобретение относится к способам получения диоксида циркония моноклинной модификации, который может быть использован как адсорбент или катализатор в химической и нефтехимической промышленности и обеспечивает повышение величины удельной поверхности, а также возможность регулирования в широких пределах пористой структуры. Это достигается путем термопаровой обработки диоксида циркония , полученного взаимодействием азотнокислого раствора циркония с аммиаком в течение 2-10 ч при 150 - 175 С и давлении водяного пара 6 - 10 ата. 1 табл.

Подробнее
01-01-1962 дата публикации

Номер: SU145892A1
Автор:
Принадлежит:

Подробнее
16-02-2006 дата публикации

ZIRKONIUMDIOXIDSOL UND VERFAHREN ZU SEINER HERSTELLUNG

Номер: DE0060023023D1
Автор: KOLB U, CHIEN T, KOLB, U., CHIEN, T.

Подробнее
13-10-1994 дата публикации

Stabilisiertes Zirkoniumoxid.

Номер: DE0068913853T2

Подробнее
06-11-2014 дата публикации

Verfahren zur Herstellung von Partikeln

Номер: DE112011101392B4

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Partikeln, wie Mikro- oder Nanopartikeln, durch eine Fällungsreaktion, wobei auf die gebildeten Partikelsysteme parallel zur Fällungsreaktion eine Beanspruchung zur Zerkleinerung über frei beweglich Mahlkörper ausgeübt wird.

Подробнее
31-10-1991 дата публикации

Номер: DE0003705038C2

Подробнее
26-11-1992 дата публикации

DARSTELLUNG VON HYDROLISIERTEN ZIRKONSALZ-VORLAEUFERN UND VON HOCHREINEM ZIRKONOXID.

Номер: DE0003782322D1
Автор: HOUCHIN RICHARD
Принадлежит: COMMW SCIENT IND RES ORG

Подробнее
02-01-1969 дата публикации

Verfahren und Vorrichtung zur Herstellung von Oxyden

Номер: DE0001285987B

Подробнее
22-10-1970 дата публикации

Verfahren zur Aufarbeitung von Baddeleyit

Номер: DE0001592423A1
Принадлежит:

Подробнее
16-09-1971 дата публикации

VERFAHREN ZUR AUFARBEITUNG VON BADDELEYIT

Номер: DE0001592423B2
Автор:
Принадлежит:

Подробнее
04-03-1971 дата публикации

Zirkoniumverbindung

Номер: DE0001592549A1
Принадлежит:

Подробнее
11-05-1983 дата публикации

VERFAHREN ZUR HERSTELLUNG VON BASISCHEM ZIRKONIUMKARBONAT

Номер: DE0003143921A1
Принадлежит:

Подробнее
16-12-2010 дата публикации

VERFAHREN ZUR SOL-GEL-VERARBEITUNG

Номер: DE602006018067D1
Принадлежит: PROTOTECH AS, PROTOTECH A/S

Подробнее
22-04-1965 дата публикации

Finely-divided zirconia-silica materials

Номер: GB0000989623A
Принадлежит:

Zirconia-silica composites having a particle diameter less than 0.1m and containing at least 1% by weight of silica, are produced by reacting in an inert fluidized bed of particulate material at a temperature of 800-1200 DEG C., an oxygenating gas and a vapourous mixture of zirconium and silicon tetrahalides, the proportion of silicon tetrahalide being at least 1.5% by weight. The term tetrahalides excludes tetrafluorides, and an oxygenating gas is a gas which will oxidize the tetrahalides to the corresponding oxides. The tetrahalide gases may be mixed before passing to the reaction chamber or passed in separately, the oxygenating gas may be added separately or in admixture with one or both of the tetrahalide gases. Oxygen, air or water-vapour are preferably used as oxygenating gases, the proportion of oxygem in the gas being at least stoichiometric relative to the tetrahalide, preferably 1 : 1-5 : 1. Less than 2% of other white oxides, e.g. aluminium, boron, tin, antimony, zinc and phosphorus ...

Подробнее
21-07-1965 дата публикации

Aquasols and processes for their preparation

Номер: GB0000999083A
Автор:
Принадлежит:

A zirconium or hafnium oxide aquasol having amorphous particles 3-7 millimicrons in diameter is heated at 100-200 DEG C. until particle growth and crystallization occurs. A product aquasol containing monoclinic, or a mixture of monoclinic and tetragonal crystals is claimed per se. The precursor aquasol may be that obtained by electrodialysis of a 0.01 to 1 molar solution of a basic zirconium or hafnium salt, or by passing such a solution through an anion exchange resin, and may be heated for 1 to 40 hours, suitably by autoclaving for 2 to 24 hours at 120-180 DEG C. The product may be concentrated to at least 30% solids by vacuum evaporation at e.g. 40 DEG C. and de-ionized by means of a weak anion exchange resin. Concentration and de-ionization may also be effected by centrifuging, decanting and resuspending the particles in a smaller volume of water. Specification 905,920 is referred to.

Подробнее
02-11-1955 дата публикации

Process for the concentration of zirconia

Номер: GB0000739887A
Автор:
Принадлежит:

... 739,887. Concentration of zirconia. NORTON GRINDING WHEEL CO., Ltd. May 24, 1954 [May 27, 1953], No. 15258/54. Class 82 (1). [Also in Group XII] Zirconia ores containing substantial quantities of silica are treated to reduce the silica content by feeding a mixture of ore and coke substantially continuously right under the electrodes of a carbon or graphite electrode arc furnace operating at an E.M.F. of 80-160 volts, feeding of the mixture being so retarded that a molten pool of zirconia is maintained under each electrode, the carbon content of the coke in the mixture being 45-90 per cent of that required stoichiometrically to reduce the silica to silicon. The product is a pig of concentrated zirconia which is associated with and easily separable from a partially concentrated material which is employed as an ingredient in a mixture for a subsequent run of the process. The process may be carried out in a furnace shown in Fig. 12, which comprises a metal shell 20 oval in section cooled externally ...

Подробнее
18-06-1986 дата публикации

PRODUCTION OF COMPLEX METAL HYDROXIDE POWDERS

Номер: GB0002168334A
Принадлежит:

The invention provides a method for the production of complex metal hydroxide and/or hydrous oxide particles, such as those of titanium and zirconium, useful for obtaining the oxide powders thereof, for use in ceramics. The production of spherical monosized particles is promoted and the method involves mixing a solution (12) of an alkoxide of the metal in question in a solvent such as an alcohol with a solution (14) of water in a similar solvent under turbulent conditions (16), quickly to form a homogeneous mixture to cause hydrolysis of the alkoxide. As soon as the mixture has been formed, the mixture is caused or permitted to assume a state of relatively gentle motion (18), to promote condensation polymerization of the hydrolysis product, to form the complex metal hydroxide and/or hydrous oxide product. ...

Подробнее
15-02-1995 дата публикации

Extraction of zirconium values from zircon

Номер: GB0002280897A
Принадлежит:

Zircon is reacted with sodium hydroxide at elevated temperature in the presence of metallic zinc and the cooled reaction product is lixiviated with water, filtered and washed to separate solid hydrated zirconium oxide. Optionally, magnetic separation is applied to remove oxidic iron particles. Optionally, the wash liquid is an aqueous alkaline solution.

Подробнее
21-02-2007 дата публикации

Deposition of dielectric material in surface trench of silicon/silica substrate

Номер: GB0002429202A
Принадлежит:

A process of depositing dielectric material on the inside surface of a trench in a silicon or silica substrate comprising providing a precursor solution, forming the solution into droplets and contacting the droplets with the substrate such that the precursor is deposited in the trench. The droplets may have a diameter of not more than 4 žm, the thickness of dielectric material deposited may be not more than 160 nm, the solvent used may be non-aqueous such as octane or toluene, the deposition may take place at below atmospheric pressure and at ambient temperature. The dielectric material may be barium titanate, lead zirconate titanate, strontium bismuth tantalate, antimony sulfide iodide, barium strontium titanate, titanium dioxide and strontium titanate. The substrate may be UV irradiated during deposition. The deposited material may be heat annealed. The process can be used in the production of a silicon or silica microelectronic device, preferably a silicon or silica random access memory ...

Подробнее
09-07-1980 дата публикации

Process for the manufacture of zirconium oxide from technical-grade calcium zirconate

Номер: GB0002037267A
Автор: Brugger, Wilhelm
Принадлежит:

A method for economically producing high purity zirconium oxide by dissolving calcium zirconate in hydrochloric acid and adjusting the fluorine content of the solution and then mixing this solution with sulfuric acid and heating the mixed solution to a temperature of more than about 80 DEG C. for at least 10 minutes. The resulting suspension is diluted with water and allowed to stand and the precipitate is then filtered, washed and mixed with ammonium carbonate. Carbon dioxide is then passed into the solution, the resulting precipitate is filtered, washed, dried and finally calcined. The zirconium oxide obtained is of sufficiently high purity to be used in the manufacture of electro-ceramics.

Подробнее
20-10-1982 дата публикации

PROCESS FOR THE MANUFACTURE OF ZIRCONIUM OXIDE FROM TECHNICAL GRADE CALCIUM ZIRCONATE

Номер: GB0002037267B
Автор:
Принадлежит: GOLDSCHMIDT AG TH, GOLDSCHMIDT AG T

Подробнее
28-05-1987 дата публикации

STABILISED METALLIC OXIDES

Номер: GB0008709515D0
Автор:
Принадлежит:

Подробнее
21-06-1967 дата публикации

The production of metal oxides

Номер: GB0001072590A
Автор:
Принадлежит:

... In a process for the production of metal oxides (including SiO2) from metal halides involving the use of an electric corona discharge, a mixture of halide and a gas containing free oxygen or steam is introduced into annular chamber 2 and is ignited by auxiliary gases issuing from annular channels 4 and 5 which are burning at the mouths of these channels. A corona discharge is produced at the top of reactor 10 by maintaining a direct or alternate voltage (e.g. 3000 V) between electrodes 8 and 9, and is maintained by the burning auxiliary gases. Alkali metals or their halides may be added to increase the conductivity of the gases. Oxides of Ca, Mg, Al, Si, Sn, Ti, Zr, Cr and Fe may be formed. Halogens (e.g. Cl2) or hydrogen halides are formed as by-products.

Подробнее
12-09-1962 дата публикации

Process for the production of zirconium oxide

Номер: GB0000905696A
Автор:
Принадлежит:

Zirconium dioxide of high bulk density is prepared by heating a slurry of a zirconyl nitrate, of formula ZrO(NO3)x where x is 2-10, for at least 10 hours at a temperature of 120 DEG F. at least, thereby forming a thixotropic mixture containing 15 to 70% solids which is then calcined to the oxide. Hafnium may be present and converted to the oxide with the zirconium. In continuous operation, a pool of the zirconyl nitrate is initially formed and heated to form a slurry. Further nitrate is continuously added and removed, the retention time being at least 10 hours. The slurry removed is filtered and the thixotropic filtercake is dried before being calcined at 1100 to 1500 DEG F. The bulk density of the oxide produced is generally 90 to 150 lbs./cu. ft. according to an example, zirconyl nitrate produced by dissolving the hydroxide in nitric acid and containing 22% free acid, was evaporated by indirect superheated steam to produce a slurry containing 20% solids by volume after which continuous ...

Подробнее
15-07-2010 дата публикации

ZIRCONIUM HYDROXIDE

Номер: AT0000472512T
Принадлежит:

Подробнее
15-04-2010 дата публикации

NANO-STRUCTURED PARTICLE WITH HIGH THERMAL STABILITY

Номер: AT0000460983T
Принадлежит:

Подробнее
15-06-2009 дата публикации

COUNTER CURRENT MIXTURE REACTOR AND ON IT REFERRED PROCESS

Номер: AT0000432761T
Принадлежит:

Подробнее
15-01-2012 дата публикации

HERSTELLUNG GLEICHFÖRMIGER NANOPARTIKEL AUS ULTRAHOCHREINEN METALLOXIDEN, MISCHMETALLOXIDEN, METALLEN UND METALLLEGIERUNGEN

Номер: AT538888T
Автор:
Принадлежит:

Подробнее
15-04-2011 дата публикации

PROCEDURE FOR THE PRODUCTION OF ULTRAFEINER POWDERS

Номер: AT0000505435T
Принадлежит:

Подробнее
15-10-1995 дата публикации

CERAMIC POWDER AND PROCEDURE FOR THE PRODUCTION.

Номер: AT0000128698T
Принадлежит:

Подробнее
15-03-1993 дата публикации

TRANSPARENT NOT GLASSLIKE ONES, CERAMIC PARTICLES.

Номер: AT0000085788T
Принадлежит:

Подробнее
15-05-1992 дата публикации

PROCEDURE FOR THE PRODUCTION OF GLASSY ONES OF METALLIC OXIDES.

Номер: AT0000075708T
Принадлежит:

Подробнее
15-10-1992 дата публикации

ACTIVE DERIVATIVE OF ZIRCONIUM AND ITS PRODUCTION.

Номер: AT0000081104T
Принадлежит:

Подробнее
15-06-1985 дата публикации

PROCEDURE FOR THE PRODUCTION OF BASIC ZIRCONIUM CARBONATE.

Номер: AT0000013755T
Принадлежит:

Подробнее
15-09-1999 дата публикации

PROCEDURE FOR THE PRODUCTION OF ZIRCONIUM - CEZ OF MIXTURE OXIDES CONTAINING COMPOSITION

Номер: AT0000183725T
Принадлежит:

Подробнее
15-03-1999 дата публикации

VERFAHREN ZUR HERSTELLUNG FEINTEILIGER METALL- UND KERAMIKPULVER

Номер: ATA83493A
Автор:
Принадлежит:

Подробнее
15-05-1997 дата публикации

PRODUCTION OF GEFÖRMTEN ZIRCONIUM OXIDE PARTICLES

Номер: AT0000152432T
Принадлежит:

Подробнее
15-05-2003 дата публикации

SOL-GEL PROCEDURE USING POROUS FORMS

Номер: AT0000238236T
Принадлежит:

Подробнее
12-07-1971 дата публикации

Tetragonal zirconium oxide fiber or - textilie

Номер: AT0000291424B
Автор:
Принадлежит:

Подробнее
02-02-2012 дата публикации

Vapor deposition of metal oxides, silicates and phosphates, and silicon dioxide

Номер: US20120028478A1
Принадлежит: Harvard College

Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage.

Подробнее
19-07-2012 дата публикации

Particle synthesis by means of the thermohydrolysis of mineral precursors

Номер: US20120183470A1

The present invention relates to a method for continuously preparing mineral particles by means of the thermolysis of mineral precursors in an aqueous medium, comprising contacting: a reactive flow, including mineral precursors at a temperature lower than the conversion temperature thereof; and a coolant flow that is countercurrent to said reactive flow and contains water at a temperature that is sufficient to bring the precursors to a temperature higher than the conversion temperature thereof, the mixture flow that results from said reactive flow and said coolant flow then being conveyed into a tubular reactor, inside of which particles are formed by gradually converting the precursors, and where the reactive flow and the coolant flow are placed in contact with each other inside a mixing chamber, inside of which the reactive flow and the coolant flow are fed by supply pipes having outlet cross-sections that are smaller than the maximum cross-section of said mixing chamber. The invention also relates to a device for implementing said method.

Подробнее
01-11-2012 дата публикации

Synthesis of Nanoparticles by Means of Ionic Liquids

Номер: US20120275991A1

A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.

Подробнее
28-02-2013 дата публикации

Composition containing oxides of zirconium, cerium and another rare earth having reduced maximum reducibility temperature, a process for preparation and use thereof in the field of catalysis

Номер: US20130052108A1
Принадлежит: Rhodia Operations SAS

A composition is described that includes oxides of zirconium, cerium and another rare earth different from cerium, having a cerium oxide content not exceeding 50 wt % and, after calcination at 1000° C. for 6 hours, a maximal reducibility temperature not exceeding 500° C. and a specific surface of at least 45 m 2 /g. The composition can be prepared according to a method that includes continuously reacting a mixture that includes compounds of zirconium, cerium and another rare earth having a basic compound for a residence time not exceeding 100 milliseconds, wherein the precipitate is heated and contacted with a surfactant before calcination.

Подробнее
11-04-2013 дата публикации

NANOFIBERS OF METAL OXIDE AND PRODUCTION METHOD THEREFOR

Номер: US20130089485A1
Принадлежит:

The invention discloses a production method for nanofibers of metal oxide, wherein the metal oxide is a metal oxide of at least one metal selected from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Zr, Sr, Ba, Mn, Fe, Co, Mg and Ga, comprising: 1. A production method for nanofibers of metal oxide , wherein the metal oxide is a metal oxide of at least one metal selected from Sc , Y , La , Ce , Pr , Nd , Sm , Gd , Dy , Ho , Yb , Zr , Sr , Ba , Mn , Fe , Co , Mg and Ga , comprising:a) spinning a precursor containing a salt of the metal, to produce nanofibers of the precursor containing the salt of the metal; andb) calcining the nanofibers of the precursor containing the salt of the metal at a temperature ranging from 550° C. to 650° C. for 2 to 4 h, to obtain nanofibers of metal oxide containing the at least one metal element.2. The production method according to claim 1 , wherein the metal oxide is a metal oxide of at least one metal selected from Sc claim 1 , Y claim 1 , La claim 1 , Ce claim 1 , Pr claim 1 , Nd claim 1 , Sm claim 1 , and Gd.3. The production method according to claim 1 , wherein the precursor contains a macromolecular compound.4. The production method according to claim 1 , wherein the nanofibers of the precursor containing the salt of the metal are prepared by electrospinning or liquid phase spinning method.5. Nanofibers of metal oxide claim 1 , where the metal oxide is a metal oxide containing at least one metal element selected from Sc claim 1 , Y claim 1 , La claim 1 , Ce claim 1 , Pr claim 1 , Nd claim 1 , Sm claim 1 , Gd claim 1 , Dy claim 1 , Ho claim 1 , Yb claim 1 , Zr claim 1 , Sr claim 1 , Ba claim 1 , Mn claim 1 , Fe claim 1 , Co claim 1 , Mg and Ga claim 1 , wherein the average diameter of the nanofibers ranges from 20 to 1000 nm claim 1 , and the average grain size of the crystals in the nanofibers ranges from 2 to 20 nm.6. A solid electrolyte material claim 5 , which contains the nanofibers of metal oxide according to .7. A fuel cell ...

Подробнее
25-04-2013 дата публикации

METHOD OF MANUFACTURING METAL OXIDE FILM, METAL OXIDE FILM, ELEMENT USING THE METAL OXIDE FILM, SUBSTRATE WITH METAL OXIDE FILM, AND DEVICE USING THE SUBSTRATE WITH METAL OXIDE FILM

Номер: US20130101867A1
Принадлежит: SUMITOMO METAL MINING CO., LTD.

Provided is a method of manufacturing a metal oxide film to be formed through the following processes: a coating process of forming a coating film on a substrate by using a coating liquid for forming metal oxide film containing any of various organometallic compounds; a drying process of making the coating film into a dried coating film; and a heating process of forming an inorganic film from the dried coating film under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than −10° C. 1. A method of manufacturing a metal oxide film to be formed through the following processes: a coating process of coating a substrate with a coating liquid for forming metal oxide film containing an organometallic compound as a main component to form a coating film; a drying process of drying the coating film to form a dried coating film; and a heating process of mineralizing the dried coating film to form an inorganic film having an inorganic component , which is a metal oxide , as a main component , whereinthe heating process is a process of performing a heating treatment to elevate a temperature of the dried coating film, which has the organometallic compound as a main component and has been formed in the drying process, up to a temperature or higher at which at least mineralization of the organometallic compound components occurs, under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than −10° C., and then removing an organic component contained in the dried coating film by thermal decomposition, burning, or thermal decomposition and burning, thereby forming a metal oxide fine-particle layer densely packed with metal oxide fine particles having a metal oxide as a main component, andthe organometallic compound is formed of any one or more types of an organic aluminum compound, an organic silicon compound, an organic scandium compound, an organic titanium compound, an organic vanadium compound, an organic chromium ...

Подробнее
25-07-2013 дата публикации

SINTERED ZIRCONIA, AND COMPOSITION FOR SINTERING AND CALCINED BODY THEREFOR

Номер: US20130190164A1
Автор: ITO Yoshihisa, KATO Shinji
Принадлежит: NORITAKE CO LIMITED

A sintering composition and calcined object which are precursors for a sintered zirconia. The burned surface of the sintered zirconia gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.4 or more, and a region located at a depth of 100 μm or more from the burned surface gives an X-ray diffraction pattern in which the ratio of the height of the peak present around the location where a [200] peak assigned to the cubic system is to appear to the height of the peak present around the location where a [200] peak assigned to the tetragonal system is to appear is 0.3 or less. 1. A zirconia sintered body ,wherein, when a burned surface or an exposed surface is ground so that a surface, in which a first peak ratio is 0.3 or less, is exposed and then burned again, in an X-ray diffraction pattern, the first peak ratio being a ratio of a height of a peak existing near a position where a cubic [200] peak appears to a height of a peak existing near a position where a tetragonal [200] peak appears,in an X-ray diffraction pattern of a re-burned surface, a second peak ratio is 0.4 or more, the second peak ratio being the ratio of the height of the peak existing near the position where the cubic [200] peak appears to the height of the peak existing near the position where the tetragonal [200] peak appears.2. A zirconia sintered body according to claim 1 , comprising:partially-stabilized zirconia as a matrix phase;wherein the zirconia sintered body includes 0.001 mass % to 1 mass % of element phosphorus (P) to a mass(weight) of the zirconia sintered body; and{'sup': −4', '−1, 'the zirconia sintered body includes 3×10mass % to 3×10mass % of element boron (B) to a mass(weight) of the zirconia sintered body.'}3. The zirconia sintered body according ...

Подробнее
29-08-2013 дата публикации

Re-Dispersible Metal Oxide Nanoparticles and Method of Making Same

Номер: US20130220178A1
Принадлежит: Justus Liebig Universitaet Giessen

The current invention relates to a method of making metal oxide nanoparticles comprising the reaction of—at least one metal oxide precursor (P) containing at least one metal (M) with—at least one monofunctional alcohol (A) wherein the hydroxy group is bound to a secondary, tertiary or alpha-unsaturated carbon atom—in the presence of at least one aliphatic compound (F) according to the formula Y 1 —R 1 —X—R 2 —Y 2 , wherein—R 1 and R 2 each are the same or different and independently selected from aliphatic groups with from 1 to 20 carbon atoms, —Y 1 and Y 2 each are the same or different and independently selected from OH, NH 2 and SH, and —X is selected from the group consisting of chemical bond, —O—, —S—, —NR 3 —, and CR 4 R 5 , wherein R 3 , R 4 and R 5 each are the same or different and represent a hydrogen atom or an aliphatic group with from 1 to 20 carbon atoms which optionally carries functional groups selected from OH, NH 2 and SH. This invention also relates to metal oxide nanoparticles, to a method of making dispersions of said nanoparticles and to dispersions containing them.

Подробнее
29-08-2013 дата публикации

Synthesis, capping and dispersion of nanocrystals

Номер: US20130221279A1
Принадлежит: PIXELLIGENT TECHNOLOGIES LLC

Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.

Подробнее
29-08-2013 дата публикации

PROCESS FOR NANOMATERIAL SYNTHESIS FROM THE PREPARATION AND DETONATION OF AN EMULSION, PRODUCTS AND EMULSIONS THEREOF

Номер: US20130224488A1
Принадлежит: INNOVNANO - MATERIAIS AVANCADOS, S.A.

The present invention refers to a nanomaterial synthesis process from the decomposition and subsequent reaction among common and economical insoluble precursors, or precursors which hydrolyze in contact with water, which are incorporated in the internal phase of an emulsion. These insoluble precursors are introduced in the internal phase of an emulsion, then being subject to decomposition and subsequent reaction in the solid state, under shockwave effect during the detonation of the emulsion, the nanomaterial with the intended structure being in the end obtained. The process of the present invention therefore allows obtaining a wide range of nanomaterial as composites or binary, ternary structures or higher structures, with small-sized homogenous primary particles, applicable to several technological fields. 1. A process for nanomaterial synthesis from the detonation of at least one emulsion which comprise the following steps:a) preparation of a synthesis emulsion based on internal and external phases and resulting emulsification of both phases,b) sensitization andc) detonation ignition,wherein the said internal phase represents between 70%-98% of the emulsion composition and were previously fed with water-insoluble solid precursors or precursors which hydrolyze in contact with water.2. A process according to claim 1 , wherein the water-insoluble solid precursor of the internal phase is a carbonate claim 1 , a hydroxide or an oxide.3. A process according to claim 1 , wherein the precursor which hydrolyzes in contact with water of the internal phase is an alkoxide or a metal carboxylate.4. A process according to claim 1 , wherein the sensitization phase comprise hollow silica claim 1 , polymer or gasification spheres.5. A process according to claim 1 , wherein the detonation ignition runs at a speed between 4000-6000 m/s and causes pressures in the range of 50000 to 115000 bar.6. A process according to claim 1 , wherein the said synthesis emulsion is:a water in oil ...

Подробнее
13-02-2014 дата публикации

Synthesis, capping and dispersion of nanocrystals

Номер: US20140045323A1
Принадлежит: Individual

Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.

Подробнее
27-02-2014 дата публикации

Zirconia-based material doped with yttrium and lanthanum

Номер: US20140057774A1
Принадлежит: 3M Innovative Properties Co

Sintered bodies containing zirconia-based ceramic materials and partially sintered bodies that are intermediates in the preparation of the sintered bodies are described. The zirconia-based ceramic material is doped with lanthanum and yttrium. The grain size of the zirconia-based ceramic material can be controlled by the addition of lanthanum. The crystalline phase of the zirconia-based ceramic material can be influenced by the addition of yttrium.

Подробнее
06-03-2014 дата публикации

CATALYST FOR PRODUCING AN OLEFIN FROM AN ALCOHOL, METHOD FOR PRODUCING OLEFIN, POLYOLEFIN, AND OLEFIN OXIDE

Номер: US20140065059A1
Принадлежит:

Disclosed are a catalyst for producing, from an alcohol, an olefin whose number of carbon atoms is at least one more than the number of carbon atoms of the alcohol, wherein at least the surface of the catalyst is substantially composed of zirconium oxide; a method for producing an olefin using the same; and so on. 1. A solid catalyst for producing , from an alcohol , an olefin whose number of carbon atoms is at least one more than the number of carbon atoms of the alcohol , whereinat least the surface of the catalyst is substantially composed of zirconium oxide.2. The catalyst according to claim 1 , wherein the whole of the catalyst is substantially composed of zirconium oxide.3. The catalyst according to claim 1 , wherein the alcohol is ethanol claim 1 , and the olefin is propylene.4. The catalyst according to claim 1 , wherein the zirconium oxide has a structure of either a tetragonal crystal or a cubic crystal.5. A method for producing an olefin including an olefin formation step of forming claim 1 , from an alcohol claim 1 , an olefin whose number of carbon atoms is at least one more than the number of carbon atoms of the alcohol claim 1 , wherein{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'in the olefin formation step, the alcohol is brought into contact with the catalyst according to at a temperature of from 300° C. to 700° C.'}6. The method for producing an olefin according to claim 5 , wherein the alcohol contains water in an amount of not more than 7 molar times the molar number of the alcohol.7. The method for producing an olefin according to claim 5 , wherein the alcohol is brought into contact with the catalyst at a gauge pressure of 50 kPa or more.8. The method for producing an olefin according to claim 5 , wherein the alcohol is ethanol claim 5 , and the olefin is propylene.9. A polyolefin produced using claim 5 , as a raw material claim 5 , an olefin produced by the method according to .10. An olefin oxide produced using claim 5 , as a raw ...

Подробнее
12-01-2017 дата публикации

DISPERSION CONTAINING METAL OXIDE PARTICLES

Номер: US20170009062A1
Принадлежит: NIPPON SHOKUBAI CO., LTD.

The present invention provides a material that has a good compatibility with monomers and can be used as dispersing agent even after a period of not shorter than one week since the preparation of the dispersion. The dispersion of the present invention comprising metal oxide particles with an average primary particle diameter of not more than 50 nm; an organic acid; a dispersion medium; and an organophosphorus compound represented by formula (1) or an organosulfur compound represented by formula (2). 2. The dispersion according to claim 1 , wherein the metal oxide particles are coated with at least a part of the organic acid.3. The dispersion according to claim 1 , wherein the metal of the metal oxide particles is at least one selected from Ti claim 1 , Al claim 1 , Zr claim 1 , Zn claim 1 , Sn claim 1 , and Ce.4. The dispersion according to claim 1 , wherein the organic acid is an organic acid selected from (meth)acrylic acids claim 1 , or carboxylic acids with one or more substituents selected from the group consisting of an ester group claim 1 , an ether group claim 1 , an amido group claim 1 , a thioester group claim 1 , a thioether group claim 1 , a carbonate group claim 1 , a urethane group claim 1 , and a urea group.5. The dispersion according to claim 1 , wherein the organic acid is a half ester of a Caliphatic dicarboxylic acid with a (meth)acryloyloxy Calkyl alcohol.6. The dispersion according to claim 1 , wherein the metal oxide particles have been subjected to surface treatment with a silane coupling agent.7. An article produced by molding or curing the dispersion according to . The present invention relates to a dispersion in which metal oxide particles are dispersed in a dispersion medium.Metal oxide particles have possibilities that they can impart functions to optical materials, materials for electronic components, and others, and attract attension in the field of various functional materials. However, metal oxides alone, have insufficient ...

Подробнее
25-01-2018 дата публикации

Totally-mesoporous zirconia nanoparticles, use and method for producing thereof

Номер: US20180022615A1
Принадлежит: Brenta Srl

The present invention relates to novel totally-mesoporous zirconium oxide nanoparticles as well as a sol-gel synthesis process thereof which include an innovative nanoparticles purification step. Said nanoparticles are characterized by a totally-mesoporous structure i.e. a distribution of pores within the so-called the mesoporous range uniformly distributed throughout the entire nanoparticle volume. Furthermore, said nanoparticles are non-cytotoxic and present a high surface area, which make particularly suitable in both biomedical and industrial applications (e.g. drug delivery, heavy metals ion sequestration). The manufacturing method is simple and advantageously allows for high control over the shape and diameter of the nanoparticles as well as over the nanoparticles pores.

Подробнее
24-01-2019 дата публикации

PREPARATION OF A METASTABLE TETRAGONAL ZIRCONIA AEROGEL

Номер: US20190023581A1
Принадлежит: Aproxi APS

The present application discloses a process for the preparation of metastable tetragonal zirconia in the form of an aerogel material, said material being capable of undergoing martensitic phase transformation to monoclinic zirconia. The application also discloses composite materials, such as dental filling materials, having included therein an aerogel material. 1. A process for the preparation of metastable tetragonal zirconia in the form of an aerogel material , said process comprising the sequential steps of:{'sub': 1', '4, '(a) allowing zirconium(IV) alkoxide to polycondensate in the presence of one or more C-Ccarboxylic acids so as to obtain an amorphous zirconia aerogel;'}(b) optionally washing said amorphous zirconia aerogel;(c) treating said amorphous zirconia aerogel with formic acid;{'sub': '2', '(d) flushing said amorphous zirconia aerogel with liquid or supercritical CO;'}(e) optionally grinding the amorphous zirconia aerogel to obtain a particulate amorphous zirconia aerogel;(f) heating said optionally particulate amorphous zirconia aerogel under a dry atmosphere at a temperature of in the range of 400-750° C. so as to obtain an optionally particulate metastable tetragonal zirconia aerogel.2. The process according to claim 1 , said process comprising the sequential steps of:{'sub': 2', '1', '4, '(a1) allowing zirconium(IV) alkoxide dissolved in liquid or supercritical COto polycondensate in the presence of one or more C-Ccarboxylic acids in a pressurized reaction vessel so as to obtain an amorphous zirconia aerogel;'}{'sub': '2', '(b1) optionally washing said amorphous zirconia aerogel with liquid or supercritical CO;'}{'sub': '2', '(c1) treating said amorphous zirconia aerogel with formic acid in liquid or supercritical CO;'}{'sub': '2', '(d1) flushing said amorphous zirconia aerogel with liquid or supercritical CO;'}(e) optionally grinding the amorphous zirconia aerogel to obtain a particulate amorphous zirconia aerogel;(f) heating said optionally ...

Подробнее
28-01-2021 дата публикации

CATALYST ARTICLE AND THE USE THEREOF FOR FILTERING FINE PARTICLES

Номер: US20210023543A1
Принадлежит:

A catalyst article and its use in an exhaust system for internal combustion engines is disclosed. The catalyst article comprises a substrate which is a wall-flow filter, a first catalyst composition, and a second catalyst composition. The first and second catalyst compositions each independently comprise an oxygen storage component (OSC) derived from a CeZr mixed oxide sol having a D90 of less than 1.3 micron and a particulate inorganic oxide having a D90 of from 1 to 20 microns. 1. A catalyst article for treating an exhaust gas from a positive-ignition internal-combustion engine , the article comprising:a substrate which is a wall-flow filter having an inlet end and an outlet end and an axial length L therebetween, a plurality of inlet channels extending from the inlet end and a plurality of outlet channels extending from the outlet end,wherein the plurality of inlet channels comprise a first catalyst composition extending from the inlet or outlet end for at least 50% of L and the plurality of outlet channels comprise a second catalyst composition extending from the outlet or inlet end for at least 50% of L, wherein the first and second catalyst compositions overlap by at most 80% of L,wherein the first and second catalyst compositions each independently comprise an oxygen storage component (OSC) derived from a CeZr mixed oxide sol having a D90 of less than 1.3 micron and a particulate inorganic oxide having a D90 of from 1 to 20 microns.2. The catalyst article of claim 1 , wherein the CeZr mixed oxide sol has a D90 of less than 1.0 micron.3. The catalyst article of claim 1 , wherein the CeZr mixed oxide sol has a Z-average particle size of between 230 and 310 nm.4. The catalyst article of claim 1 , wherein the first and second catalyst compositions overlap by at most 20% of L.5. The catalyst article of claim 1 , wherein the first and second catalyst compositions overlap by at most 10% of L.6. The catalyst article of claim 1 , wherein the CeZr mixed oxide sol has a ...

Подробнее
29-01-2015 дата публикации

Isothermal synthesis of fuels with reactive oxides

Номер: US20150030529A1

A method for converting thermal energy to chemical energy by reducing a reactive oxide substrate at a constant temperature under a first atmosphere with a lower oxygen partial pressure, and then contacting the reduced oxide at the same temperature with a second atmosphere with a higher oxygen partial pressure, during which oxygen is driven into the reduced oxide by the oxygen chemical potential difference between the two atmospheres, thereby leaving fuel behind, i.e. producing fuel. A method for preparing the reactive oxide substrate by using liquid media as a binder and pore former and heating the mixture of the reactive oxide and the liquid media, thereby forming the reactive oxide substrate.

Подробнее
01-02-2018 дата публикации

THERMALLY STABLE MONOLITH CATALYST FOR REFORMING REACTION

Номер: US20180030357A1

The present invention relates to a monolith catalyst for reforming reaction, and more particularly, to a thermally stable (i.e. thermal resistance-improved) monolith catalyst for reforming reaction having a novel construction such that any one of Group 1A to Group 5A metals are used as a barrier component in the existing catalyst particles to inhibit carbon deposition occurring during the reforming reaction in a process for formation of a reforming monolith catalyst while improving thermal durability as well as non-activation of the catalyst due to a degradation. 1. A thermally stable monolith catalyst for reforming reaction , comprising: {'br': None, 'a(X)-b(Y) \u2003\u2003Formula 1'}, 'an active ingredient and Group 1A to 5A metal of barrier components represented by Formula 1 below on a monolith catalyst support, wherein the active ingredient of Formula 1 has 0.5 to 10 parts by weight based on 100 parts by weight of a monolith catalyst,'}wherein X is a catalytic active ingredient selected from Co, Ni, Ru, Rh and a mixture thereof, Y is a mixture of Zr as a promotor and Group 1A to 5A metals as a barrier component in a mixing ratio by weight of 1:0.1 to 1:10, and ‘a’ and ‘b’ denote the ratios by weight of X and Yin order, wherein ‘a’ is 1 and ‘b’ ranges from 0.2 to 1.5.2. The thermally stable monolith catalyst according to claim 1 , wherein Y is a barrier component including Zr and the Group 1A to 5A metals mixed in a ratio by weight of 1:0.3 to 1:5.0.3. The thermally stable monolith catalyst according to claim 1 , wherein the Group 1A to 5A metal barrier particles include at least one component selected from Li claim 1 , Ca claim 1 , Mg claim 1 , Ba claim 1 , Y claim 1 , La claim 1 , Er claim 1 , Pr claim 1 , Ce claim 1 , Nd claim 1 , Sn claim 1 , B claim 1 , Al claim 1 , Ga claim 1 , In claim 1 , Si claim 1 , Sb claim 1 , Bi claim 1 , Fe claim 1 , W and Re.4. The thermally stable monolith catalyst according to claim 1 , wherein the Group 1A to 5A metals are ...

Подробнее
30-01-2020 дата публикации

Surface-modified metal compound particles, and method for producing surface-modified metal compound particles

Номер: US20200030878A1
Автор: Fumiyuki TAKASAKI
Принадлежит: Daiichi Kigenso Kagaku Kogyo Co Ltd

Provided are surface-modified metal compound particles comprising metal compound particles which are surface-modified with one or more types of carboxylic acid selected from a methacrylic acid, an acrylic acid, and a propionic acid, and a 12-hydroxystearic acid, wherein a portion or all of the one or more types of carboxylic acid selected from a methacrylic acid, an acrylic acid, and a propionic acid is a carboxylic acid (protonated) type.

Подробнее
01-02-2018 дата публикации

SYNTHESIZED, SURFACE-FUNCTIONALIZED, ACIDIFIED METAL OXIDE MATERIALS FOR ENERGY STORAGE, CATALYTIC, PHOTOVOLTAIC AND SENSOR APPLICATIONS

Номер: US20180034049A1
Принадлежит:

An acidified metal oxide (“AMO”) material, preferably in monodisperse nanoparticulate form 20 nm or less in size, having a pH<7 when suspended in a 5 wt % aqueous solution and a Hammett function H>−12, at least on its surface. The AMO material is useful in applications such as a battery electrode, catalyst, or photovoltaic component. 1. A battery electrode nanomaterial comprising:{'sub': '0', 'a non-soluble solid metal oxide having a particle dimension no greater than 20 nm and having, at least on its surface, a pH<5.5 and a Hammet function H>−12;'}the non-soluble solid metal oxide being in a dried form after synthesis, the pH being measured when the dried form is re-suspended in water at 5 wt %.2. A battery electrode nanomaterial according to claim 1 , the non-soluble solid metal oxide being tin oxide.3. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity of at least 1400 mAh/g.4. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity of at least 1300 mAh/g.5. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity of at least 1200 mAh/g.6. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity of at least 1100 mAh/g.7. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity of at least 1000 mAh/g.8. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity of at least 900 mAh/g.9. A battery electrode nanomaterial according to claim 2 , the tin oxide having a lithiation capacity>800 mAh/g.10. A battery electrode nanomaterial according to claim 1 , the non-soluble solid metal oxide being surface functionalized with at least one electron-withdrawing group claim 1 , the at least one electron-withdrawing group having a molecular weight less than 200.11. A battery electrode nanomaterial according to claim 1 , the ...

Подробнее
07-02-2019 дата публикации

Shape Memory Ceramic Particles and Structures Formed Thereof

Номер: US20190039959A1
Принадлежит:

There is provided a shape memory ceramic structure including an aggregate population of crystalline particles. Each crystalline particle in the population, of crystalline particles comprises a shape memory ceramic particle material. Each crystalline particle in the population of crystalline particles has a crystalline particle extent that is between about 0.5 microns and about fifty microns. At least a portion of the population of crystalline particles has a crystalline structure that is either oligocrystalline or monocrystalline. 1. A shape memory ceramic structure comprising:an aggregate population of crystalline particles;each crystalline particle in the population of crystalline particles comprising as shape memory ceramic particle material and having a crystalline particle extent between about 0.5 microns and about fifty microns; andat least a portion of the population of crystalline particles having a crystalline structure selected from the group consisting of oligocrystalline and monocrystalline.2. The shape memory ceramic structure of wherein the shape memory ceramic material comprises an element selected from the group consisting of zirconium claim 1 , cerium claim 1 , and oxygen.3. The shape memory ceramic structure of wherein the shape memory ceramic material comprises ZrO.4. The shape memory ceramic structure of wherein the shape memory ceramic material comprises ZROdoped with at least one dopant selected from the group consisting of Ce claim 1 , Y claim 1 , Ca claim 1 , Mg claim 1 , Ti claim 1 , Ge claim 1 , La claim 1 , Pb claim 1 , Nb claim 1 , Ta claim 1 , Mn.56. The shape memory ceramic structure of wherein the shape memory ceramic material comprises a shape memory ceramic material selected from the group consisting a AlSiO claim 1 , CaSiO claim 1 , MgSiO claim 1 , MgSiO. cm . The shape memory ceramic structure of wherein each crystalline particle in the population of crystalline particles has a particle geometry selected from the group consisting ...

Подробнее
15-02-2018 дата публикации

NANOPARTICLES FOR THE USE AS PINNING CENTERS IN SUPERCONDUCTORS

Номер: US20180044197A1
Принадлежит: BASF SE

The present invention is in the field of nanoparticles, their preparation and their use as pinning centers in superconductors. In particular the present invention relates to nanoparticles comprising an oxide of Sr, Ba, Y, La, Ti, Zr, Hf, Nb, or Ta, wherein the nanoparticles have a weight average diameter of 1 to 30 nm and wherein an organic compound of general formula (I), (II) or (III) or an organic compound containing at least two carboxylic acid groups on the surface of the nanoparticles (I) (II) (III) wherein a is 0 to 5, b and c are independent of each other 1 to 14, n is 1 to 5, f is 0 to 5, p and q are independent of each other 1 to 14, and e and f are independent of each other 0 to 12. 2. The nanoparticles according to claim 1 , wherein the nanoparticles comprise ZrO claim 1 , HfOor TaO.4. The nanoparticles according to claim 1 , wherein a trialkyl phosphorous oxide or a fatty acid is additionally on the surface of the nanoparticles.5. The nanoparticles according to claim 1 , wherein the nanoparticles are crystalline.6. The nanoparticles according to claim 1 , wherein the nanoparticles have a dispersity of particle size distribution D/Dmeasured by dynamic light scattering of 1.2 or less.7. A process for producing the nanoparticles of claim 1 , the process comprising:(i) precipitating nanoparticles comprising the oxide of Sr, Ba, Y, La, Ti, Zr, Hf, Nb, or Ta from a suspension comprising a non-polar solvent, wherein the nanoparticles have a weight average diameter of 1 to 30 nm; and(ii) adding an alcohol and the organic compound of general formula (I), (II) or (III) or the organic compound containing at least two carboxylic acid groups to the precipitated nanoparticles to precipitated nanoparticles, to obtain the nanoparticles.8. The process according to claim 7 , wherein the suspension comprising a non-polar solvent and nanoparticles is produced by a condensation or esterification reaction comprising a soluble precursor in the presence of a surfactant.9. An ...

Подробнее
24-02-2022 дата публикации

Synthesized, Surface-Functionalized, Acidified Metal Oxide Materials for Energy Storage, Catalytic, Photovoltaic and Sensor Applications

Номер: US20220059828A1
Принадлежит:

An acidified metal oxide (“AMO”) material, preferably in monodisperse nanoparticulate form 20 nm or less in size, having a pH<7 when suspended in a 5 wt % aqueous solution and a Hammett function H>−12, at least on its surface. The AMO material is useful in applications such as a battery electrode, catalyst, or photovoltaic component. 1. A battery electrode comprising at least one solid metal oxide material including a surface that is acidic but not superacidic , having a pH<7 when suspended in an aqueous solution at 5 wt % and a Hammet function H>−12.2. A battery electrode according to claim 1 , the solid metal oxide material including at least one particle dimension <100 nm in size.3. A battery electrode according to claim 1 , the solid metal oxide material including at least one particle dimension <20 nm in size.4. A battery electrode according to claim 1 , the solid metal oxide material including at least one particle dimension <10 nm in size.5. A battery electrode according to claim 1 , the solid metal oxide material includes a substantially monodisperse nanoparticulate form.6. A battery electrode according to claim 1 , the pH<6.7. A battery electrode according to claim 1 , the pH<5.8. A battery electrode according to claim 1 , the pH<4.9. A battery electrode according to claim 1 , the pH<3.10. A material according to further comprising the solid metal oxide material being tin oxide.11. A battery electrode according to further comprising a non-acidified solid metal oxide material.12. A battery electrode according to further comprising a binder material.13. A battery electrode according to further comprising a conductive aid.14. A solid metal oxide nanomaterial being in a form MO/G claim 1 , where Mis a metal claim 1 , Ois total oxygen claim 1 , MOis a metal oxide claim 1 , G is at least one electron-withdrawing surface group claim 1 , and “I” makes a distinction between the metal oxide and the electron-withdrawing surface group claim 1 , the solid metal oxide ...

Подробнее
16-02-2017 дата публикации

SYNTHESIS, CAPPING AND DISPERSION OF NANOCRYSTALS

Номер: US20170044687A1
Принадлежит:

Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films. 1. A zirconia nanocrystal dispersion comprising a dispersion solvent , said dispersion having a minimum transmittance of larger than 20% when measured in a cuvette with a 10 mm path length in the wavelength region from 400 nm to 750 nm when the dispersion contains 10% by weight nanocrystals in the dispersion solvent ,said zirconia nanocrystals of the dispersion comprising at least one capping agent, and wherein the dispersion has a free capping agent concentration below 8,000 micrograms/ml as measured by GC.2. The dispersion of wherein the minimum transmittance is larger than 25% when measured in a cuvette with a 10 mm path length in the wavelength region from 400 nm to 750 nm when the dispersion contains 10% by weight nanocrystals in the dispersion solvent3. The dispersion of wherein the minimum transmittance is larger than 30% when measured in a cuvette with a 10 mm path length in the wavelength region from 400 nm to 750 nm when the dispersion contains 10% by weight nanocrystals in the dispersion solvent4. The dispersion of wherein the minimum transmittance is larger than 40% when measured in a cuvette with a 10 mm path length in the wavelength region from 400 nm to 750 nm when the dispersion contains 10% by weight nanocrystals in the dispersion solvent5. The dispersion of wherein the minimum transmittance is larger than 50% when measured in a cuvette with a 10 mm path length in the wavelength region from 400 nm to 750 nm when the dispersion contains 10% by ...

Подробнее
26-02-2015 дата публикации

METHOD FOR PRODUCING INORGANIC OXIDE PARTICLES

Номер: US20150056119A1
Принадлежит: TOKUYAMA CORPORATION

The present invention relates to a method for producing inorganic oxide particles, comprising at least the following steps of: 1. A method for producing inorganic oxide particles , comprising at least the following steps of:coagulating a dispersion obtained by carrying out the hydrolysis reaction and the polycondensation reaction of a metal alkoxide in the presence of a basic catalyst by using of a mixture of water and an alcohol as a solvent;filtering the dispersion to obtain particles; anddrying the particles, whereinthe step of coagulating the dispersion is carried out by adding a coagulant comprising at least one compound selected from the group consisting of carbon dioxide, ammonium carbonate, ammonium hydrogen carbonate and ammonium carbamate to the dispersion.2. The method for producing inorganic oxide particles according to claim 1 , wherein the step of coagulating the dispersion is carried out after the step of adding at least one surface treating agent selected from the group consisting of a silicone oil claim 1 , a silane coupling agent and a silazane to the dispersion; and the inorganic oxide particles to be produced are surface treated inorganic oxide particles.3. The method for producing inorganic oxide particles according to claim 2 , wherein the surface treatment of the inorganic oxide particles is carried out by further adding at least one surface treating agent selected from the group consisting of a silicone oil claim 2 , a silane coupling agent and a silazane to the dried inorganic oxide particles after the drying step.4. The method for producing inorganic oxide particles according to claim 1 , wherein the surface treatment of the inorganic oxide particles is carried out by adding at least one surface treating agent selected from the group consisting of a silicone oil claim 1 , a silane coupling agent and a silazane to the dried oxide particles after the drying step; and the inorganic oxide particles to be produced are surface treated inorganic ...

Подробнее
05-03-2015 дата публикации

Cerium oxide containing nanoparticles

Номер: US20150059236A1
Принадлежит: Cerion LLC

A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to cerous ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles CeO 2-δ , wherein δ has a value of about 0.0 to about 0.5. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.

Подробнее
21-02-2019 дата публикации

PHOTO-IMAGEABLE THIN FILMS WITH HIGH DIELECTRIC CONSTANTS

Номер: US20190056665A1
Принадлежит:

A formulation for preparing a photo-imageable film; said formulation comprising: (a) a positive photoresist comprising a cresol novolac resin and a diazonaphthoquinone inhibitor; and (b) functionalized zirconium oxide nanoparticles. 1. A formulation for preparing a photo-imageable film; said formulation comprising: (a) a positive photoresist comprising a cresol novolac resin and a diazonaphthoquinone inhibitor; and (b) functionalized zirconium oxide nanoparticles.2. The formulation of in which the functionalized zirconium oxide nanoparticles have an average diameter from 0.3 nm to 50 nm.3. The formulation of in which the functionalized zirconium oxide nanoparticles comprise ligands which have carboxylic acid claim 2 , alcohol claim 2 , trichlorosilane claim 2 , trialkoxysilane or mixed chloro/alkoxy silane functionality.4. The formulation of in which the ligands have from one to twenty non-hydrogen atoms.5. The formulation of in which the cresol novolac resin has epoxy functionality from 2 to 10.6. The formulation of in which the amount of functionalized nanoparticles in the formulation claim 5 , calculated on a solids basis for the entire formulation claim 5 , is from 50 to 95 wt %.7. The formulation of in which the cresol novolac resin comprises polymerized units of cresols claim 6 , formaldehyde and epichlorohydrin. The present invention relates to a photo-imageable thin film with a high dielectric constant.High dielectric constant thin films are of high interest for applications such as embedded capacitors, TFT passivation layers and gate dielectrics, in order to further miniaturize microelectronic components. One approach for obtaining a photo-imageable high dielectric constant thin film is to incorporate high dielectric constant nanoparticles in a photoresist. U.S. Pat. No. 7,630,043 discloses composite thin films based on a positive photoresist containing an acrylic polymer having alkali soluble units such as a carboxylic acid, and fine particles having a ...

Подробнее
04-03-2021 дата публикации

COMPOSITION AND METHOD FOR CONDUCTING A MATERIAL REMOVING OPERATION

Номер: US20210062042A1
Принадлежит:

A composition suitable for chemical mechanical polishing a substrate can comprise abrasive particles, a multi-valent metal borate, at least one oxidizer and a solvent. The composition can polish a substrate with a high material removal rate and a very smooth surface finish. 1. A composition comprising: abrasive particles; a multi-valent metal borate; at least one oxidizing agent; and a solvent.2. The composition of claim 1 , wherein the multi-valent metal borate includes iron(III)borate claim 1 , copper(II)borate claim 1 , cobalt(II)borate claim 1 , bismuth(III)borate claim 1 , aluminum(III)borate claim 1 , cerium(III)borate claim 1 , chromium(III)borate claim 1 , ruthenium(III)borate claim 1 , titanium(III)borate claim 1 , lead(II)borate claim 1 , or any combination thereof.3. The composition of claim 2 , wherein the multi-valent metal borate consists essentially of iron(III)borate.4. The composition of claim 1 , wherein the at least one oxidizing agent includes a permanganate claim 1 , a peroxydisulfate claim 1 , a peroxide claim 1 , a chlorite claim 1 , a perchlorate claim 1 , a hypochlorite claim 1 , a nitrite claim 1 , a hyponitrite claim 1 , an iodate claim 1 , a periodate claim 1 , a chromate claim 1 , manganese oxide claim 1 , or any combination thereof.5. The composition of claim 4 , wherein the at least one oxidizing agent consists essentially of a permanganate.6. The composition of claim 1 , wherein an amount of the multi-valent metal borate is at least 0.01 wt % and not greater than 20 wt % based on the total weight of the composition.7. The composition of claim 1 , wherein an amount of the at least one oxidizing agent is at least 0.01 wt % and not greater than 20 wt based on the total weight of the composition.8. The composition of claim 1 , wherein the abrasive particles include zirconia or alumina.9. The composition of claim 1 , wherein an amount of the abrasive particles is at least 0.1 wt % and not greater than 10 wt % based on the total weight of ...

Подробнее
24-03-2022 дата публикации

POROUS ZIRCONIA PARTICLES, AND AGGREGATE FOR IMMOBILIZING PROTEIN

Номер: US20220089453A1
Принадлежит:

Porous zirconia particles exhibit high specificity to a protein to be immobilized thereto and are used in immobilization of the protein. The porous zirconia particles have a pore diameter D50, at which a ratio of a cumulative pore volume to a total pore volume is 50%, the pore diameter D50 being in a range of 3.20 nm or more and 6.50 nm or less; and a pore diameter D90, at which a ratio of a cumulative pore volume to a total pore volume is 90%, the pore diameter D90 being in a range of 10.50 nm or more and 100.00 nm or less. The total pore volume of the particles is greater than 0.10 cm/g. D50, D90, and the total pore volume are determined based on a pore diameter distribution measured through a BET method. 1. Porous zirconia particles used for immobilization of a protein , characterized in that the particles have:a pore diameter D50, at which a ratio of a cumulative pore volume to a total pore volume is 50%, the pore diameter D50 being in a range of 3.20 nm or more and 6.50 nm or less; anda pore diameter D90, at which a ratio of a cumulative pore volume to the total pore volume is 90%, the pore diameter D90 being in a range of 10.50 nm or more and 100.00 nm or less, wherein{'sup': '3', 'the total pore volume is greater than 0.10 cm/g, and'}D50, D90, and the total pore volume are determined based on a pore diameter distribution measured through a BET method.2. The porous zirconia particles according to claim 1 , wherein the protein is immunoglobulin.3. The porous zirconia particles according to claim 2 , wherein the immunoglobulin is at least one species selected from the group consisting of IgG claim 2 , IgE claim 2 , and IgD.4. The porous zirconia particles according to claim 1 , wherein the porous zirconia particles have surfaces onto which a chelating agent is bound.5. An aggregate for immobilizing a protein claim 1 , wherein the porous zirconia particles according to are aggregated. This application is a U.S. National Phase Application under 35 U.S.C. § 371 of ...

Подробнее
24-03-2022 дата публикации

METAL OXIDE NANOPARTICLES AS FILLABLE HARDMASK MATERIALS

Номер: US20220093399A1
Принадлежит:

A dielectric composition including a metal oxide particle including a diameter of 5 nanometers or less capped with an organic ligand at at least a 1:1 ratio. A method including synthesizing metal oxide particles including a diameter of 5 nanometers or less; and capping the metal oxide particles with an organic ligand at at least a 1:1 ratio. A method including forming an interconnect layer on a semiconductor substrate; forming a first hardmask material and a different second hardmask material on the interconnect layer, wherein at least one of the first hardmask material and the second hardmask material is formed over an area of interconnect layer target for a via landing and at least one of the first hardmask material and the second hardmask material include metal oxide nanoparticles; and forming an opening to the interconnect layer selectively through one of the first hardmask material and the second hardmask material. 1. A method comprising:synthesizing metal oxide particles comprising a diameter of 5 nanometers or less; andcapping the metal oxide particles with an organic ligand at at least a 1:1 ratio.2. The method of claim 1 , wherein synthesizing comprises a sol gel synthesis.3. The method of claim 1 , wherein synthesizing comprises reducing a metal halide.4. The method of claim 1 , wherein the metal oxide particles comprise a metal selected from hafnium claim 1 , zirconium claim 1 , titanium claim 1 , aluminum and tin.5. The method of claim 1 , wherein the organic ligand comprises a carbonyl group claim 1 , C(O).6. The method of claim 5 , wherein the organic ligand comprises the formula claim 5 , —C(O)R claim 5 , wherein R is C1-C5.7. The method of claim 1 , further comprising dispersing the capped metal oxide particles in a casting solvent.8. The method of claim 8 , further comprising depositing the dispersed capped metal oxide particles on a semiconductor substrate and thermally curing to a metal oxide film on the semiconductor substrate.9. A method ...

Подробнее
05-05-2022 дата публикации

MULTIAMINE LIGANDS FOR NANOPARTICLE SOLUBILIZATION AND INK COMPOSITIONS CONTAINING NANOPARTICLES CAPPED WITH THE LIGANDS

Номер: US20220135822A1
Принадлежит: KATEEVA, INC.

Ligand-capped scattering nanoparticles, curable ink compositions containing the ligand-capped scattering nanoparticles, and methods of forming films from the ink compositions are provided. Also provided are cured films formed by curing the ink compositions and photonic devices incorporating the films. The ligands bound to the inorganic scattering nanoparticles include a head group and a tail group. The head group includes a polyamine chain and binds the ligands to the nanoparticle surface. The tail group includes a polyalkylene oxide chain.

Подробнее
07-04-2016 дата публикации

Metal Oxide Nanoparticle Material

Номер: US20160096738A1
Принадлежит: National Central University

A zirconia nanoparticle material includes a zirconia nanoparticle and a carbonate coordinated on a surface of the zirconia nanoparticle. The carbonate is 1 to 10 parts by weight of the zirconia nanoparticle.

Подробнее
19-04-2018 дата публикации

FRICTION MATERIAL COMPOSITION, AND FRICTION MATERIAL AND FRICTION MEMBER USING THE SAME

Номер: US20180106321A1
Автор: MATSUBA Kazuaki
Принадлежит: HITACHI CHEMICAL COMPANY, LTD.

A friction material composition imparts superior friction coefficient, abrasion resistance, aggressiveness against an opposite member, and brake noise preventive characteristics in high speed and high load braking to a friction material, although containing no copper, which can pollute rivers, lakes, the ocean, or other environments, or containing copper in an amount of at most 0.5 mass. Moreover, a friction material and a friction member each uses the friction material composition. The friction material composition includes a binder, an organic filler, an inorganic filler, and a fibrous base material, and the friction material composition contains copper in an amount of at most 0.5 mass % as an element or contains no copper. The binder contains silicone-rubber dispersed phenolic resin in an amount of 5 to 10 mass %. The inorganic filler contains zirconium oxide in an amount of 20 to 33 mass %. 1. A friction material composition comprising a binder , an organic filler , an inorganic filler , and a fibrous base material ,wherein the friction material composition contains copper in an amount of at most 0.5 mass % as an element or contains no copper,the binder contains silicone-rubber dispersed phenolic resin in an amount of 5 to 10 mass %, andthe inorganic filler contains zirconium oxide in an amount of 20 to 33 mass %.2. The friction material composition according to claim 1 , wherein the inorganic filler contains titanate in an amount of 10 to 30 mass %.3. The friction material composition according to claim 1 , wherein the inorganic filler contains magnesium oxide in an amount of 3 to 10 mass %.4. The friction material composition according to claim 1 , wherein the inorganic filler contains metal sulfide in an amount of 3 to 8 mass %.5. A friction material molded by the friction material composition according to .6. A friction member molded by using a friction material claim 1 , which is molded by the friction material composition according to claim 1 , and a back ...

Подробнее
30-04-2015 дата публикации

Vapor Deposition of Metal Oxides, Silicates and Phosphates, and Silicon Dioxide

Номер: US20150118395A1
Принадлежит:

Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido)hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage. 1. A process for forming materials comprising silicon , oxygen and one or more metals or metalloids , comprising:reacting the vapor of one of an alkoxysilanol and an alkoxysilanediol together with a vapor of one or more of a metal compound and a metalloid compound.2. A process for forming materials comprising silicon , oxygen and one or more metals or metalloids , comprising:exposing a substrate alternately to the vapor of one or an alkoxysilanol and an alkoxysilanediol and the vapor of one or more of a metal compound or a metalloid compound to form a film on the substrate.3. The process of claim 1 , wherein compound is deposited as a film on a substrate.5. The process of claim 4 , wherein the groups Rcontain between one and four carbons and are the same or different.6. The process of claim 5 , wherein the groups Rare all methyl groups.8. The process of or claim 5 , wherein a metal or metalloid compound contains metal-nitrogen or metalloid-nitrogen bonds.9. The process of claim 8 , wherein a metal or metalloid compound is selected from Table 1.10. The process of or claim 8 , wherein a metal compound is selected from Table 2.11. The process of or claim 8 , wherein a metal or metalloid compound is selected from Table 3.12. A process for forming ...

Подробнее
09-06-2022 дата публикации

DISPERSION LIQUID, COMPOSITION, SEALING MEMBER, LIGHT-EMITTING DEVICE, ILLUMINATION TOOL, DISPLAY DEVICE, AND METHOD FOR PRODUCING DISPERSION LIQUID

Номер: US20220177709A1
Принадлежит: Sumitomo Osaka Cement Co., Ltd.

A dispersion liquid according to the present invention is a dispersion liquid containing metal oxide particles which have been surface-modified with a silane compound and a silicone compound, in which, when the dispersion liquid is dried by vacuum drying to separate the metal oxide particles, and a transmission spectrum of the separated metal oxide particles is measured in a wavenumber range from 800 cmto 3800 cmwith a Fourier transform infrared spectrophotometer, Formula (1) below: IA/IB≤3.5 is satisfied (in the formula, “IA” represents a spectrum value at 3500 cmand “IB” represents a spectrum value at 1100 cm). 1. A dispersion liquid comprising:metal oxide particles which have been surface-modified with a silane compound and a silicone compound,{'sup': −1', '−1, 'wherein, when the dispersion liquid is dried by vacuum drying to separate the metal oxide particles, a transmission spectrum of the separated metal oxide particles is measured in a wavenumber range from 800 cmto 3800 cmwith a Fourier transform infrared spectrophotometer, and spectrum values measured in the range are standardized such that a maximum value of the spectrum values is set to 100 and a minimum value of the spectrum values is set to 0,'} {'br': None, 'i': 'IA/IB≤', '3.5\u2003\u2003(1)'}, 'Formula (1) below is satisfied{'sup': −1', '−1, '(in the formula, “IA” represents a spectrum value at 3500 cmand “IB” represents a spectrum value at 1100 cm).'}2. A composition which is obtained by mixing the dispersion liquid according to and a resin component.3. A sealing member which is a cured substance of the composition according to .4. A light-emitting device comprising:{'claim-ref': {'@idref': 'CLM-00003', 'claim 3'}, 'the sealing member according to ; and'}a light-emitting element sealed by the sealing member.5. An illumination tool or a display device comprising:{'claim-ref': {'@idref': 'CLM-00004', 'claim 4'}, 'the light-emitting device according to .'}6. A method for producing a dispersion liquid ...

Подробнее
13-05-2021 дата публикации

METHOD FOR PRODUCING POROUS METAL OXIDE

Номер: US20210139342A1
Принадлежит: FUJIMI INCORPORATED

Provided is a method for producing a porous metal oxide. The method includes: preparing a slurry by mixing a metal source, a pore forming agent and an aqueous solvent; drying the slurry to obtain a metal oxide precursor; and sintering the metal oxide precursor to generate a porous metal oxide. The metal source is an organometallic compound or hydrolyzate thereof containing a metal that makes up the porous metal oxide; the pore forming agent is an inorganic compound that generates a gas by decomposing at a temperature equal to or lower than a temperature at which the metal oxide precursor is sintered; and the slurry is prepared using 50 parts by weight or more of the pore forming agent with respect to 100 parts by weight of the metal source. 1. A method for producing a porous metal oxide , the method comprising:preparing a slurry by mixing a metal source, a pore forming agent and an aqueous solvent;drying the slurry to obtain a metal oxide precursor; andsintering the metal oxide precursor to generate a porous metal oxide, whereinthe metal source is an organometallic compound or hydrolyzate thereof containing a metal that makes up the porous metal oxide;the pore forming agent is an inorganic compound that generates a gas by decomposing at a temperature equal to or lower than the temperature at which the metal oxide precursor is sintered; andthe slurry is prepared using 50 parts by weight or more of the pore forming agent with respect to 100 parts by weight of the metal source.2. The method according to claim 1 , wherein the organometallic compound is a metal alkoxide.3. The method according to claim 2 , wherein the metal alkoxide includes at least one alkoxide selected from the group consisting of aluminum alkoxides claim 2 , zirconium alkoxides and titanium alkoxides.4. The method according to claim 1 , wherein the pore forming agent includes at least one compound selected from the group consisting of ammonium salts claim 1 , carbonate salts and bicarbonate salts.5. ...

Подробнее
13-05-2021 дата публикации

Method and catalyst for producing alcohol

Номер: US20210139398A1
Принадлежит: Mitsubishi Chemical Corp

An alcohol production method in which an alcohol is produced from a carbonyl compound, the method including producing an alcohol by using a catalyst, the catalyst including a metal component including rhenium having an average valence of 4 or less and a carrier supporting the metal component, the carrier including zirconium oxide. A catalyst for producing an alcohol by hydrogenation of a carbonyl compound, the catalyst including a carrier including zirconium oxide and a metal component supported on the carrier, the metal component including rhenium having an average valence of 4 or less.

Подробнее
09-04-2020 дата публикации

POLYMER TEMPLATED NANOWIRE CATALYSTS

Номер: US20200109094A1
Принадлежит:

Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are prepared by polymer templated methods and are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to ethane and/or ethylene. Related methods for use and manufacture of the same are also disclosed. 133.-. (canceled)34. A process for the preparation of ethylene from methane comprising contacting a mixture comprising oxygen and methane with a catalytic material comprising nanowires comprising a plurality of metal oxides (MO) , metal oxy-hydroxides (MOOH) , metal oxycarbonates (MO(CO)) or metal carbonates (M(CO)) or combinations thereof , the nanowires prepared by a method comprising:a) providing a solution comprising a polymer template; and{'sub': m', 'n', 'p, '(b) introducing at least one metal ion and at least one anion to the solution under conditions and for a time sufficient to allow for nucleation and growth of nanowires comprising a plurality of metal salts (MXZ) on the polymer template,'}wherein:M is, at each occurrence, independently a metal element from any of Groups 1 through 7, lanthanides or actinides;X is, at each occurrence, independently hydroxide, carbonate, bicarbonate, phosphate, hydrogenphosphate, dihydrogenphosphate, sulfate, nitrate or oxalate;Z is O;n, m, x and y are each independently a number from 1 to 100; andp is a number from 0 to 100.35. The process of claim 34 , wherein the polymer template is functionalized with at least one of amine claim 34 , carboxylic acid claim 34 , sulfate claim 34 , alcohol or thiol groups.36. The process of claim 35 , wherein the polymer template comprises a hydrocarbon polymer.37. The process of claim 36 , wherein the polymer template comprises polystyrene.38. The process of claim 34 , wherein the method further comprises converting the nanowires comprising the plurality of metal salts (MXZ) to the nanowires comprising the plurality of metal oxides (MO) claim 34 , metal oxy-hydroxides (MOOH) ...

Подробнее
13-05-2021 дата публикации

THIN FILM STRUCTURE INCLUDING DIELECTRIC MATERIAL LAYER, AND METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC DEVICE EMPLOYING THE SAME

Номер: US20210140049A1
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A thin film structure including a dielectric material layer, a method of manufacturing the same, and an electronic device employing the same are disclosed. The disclosed thin film structure includes a first conductive layer; a first dielectric material layer on the first conductive layer, the first dielectric material layer having a crystal phase and including a metal oxide; an InO-based seed material layer formed on the first dielectric material layer and having a thickness less than a thickness of the first dielectric material layer; and a second conductive layer formed on the seed material layer. 1. A thin film structure comprising:a first conductive layer;a first dielectric material layer on the first conductive layer, the first dielectric material layer having a crystal phase and including a metal oxide;{'sub': x', 'y, 'an InO-based seed material layer on the first dielectric material layer, the seed material layer having a thickness less than a thickness of the first dielectric material layer; and'}a second conductive layer formed on the seed material layer.2. The thin film structure of claim 1 , wherein the first dielectric material layer comprises at least one of HfO claim 1 , ZrO claim 1 , and AlO.3. The thin film structure of claim 1 , wherein the thickness of the first dielectric material layer is than or equal to approximately 5 nm.4. The thin film structure of claim 1 , wherein the crystal phase comprises a tetragonal crystal phase.5. The thin film structure of claim 1 , wherein the first dielectric material layer has paraelectric characteristics.6. The thin film structure of claim 1 , further comprising a second dielectric material layer including a metal oxide including a component different from a component of the first dielectric material layer claim 1 , the second dielectric material layer between the first conductive layer and the first dielectric material layer and configured to promote crystallization of the first dielectric material layer.7. ...

Подробнее
05-05-2016 дата публикации

A SOL-GEL PROCESS FOR SYNTHESIS OF NANOCRYSTALLINE OXIDES

Номер: US20160122195A1

A Continuous flow synthesis of nanocrystalline metal oxides by rapid sol-gel process is disclosed. The process disclosed uses an impinging microjet micromixer device to obtain the nano crystalline metal oxides. A method of fabricating and assembling the impinging microjet micromixer is also disclosed herewith. 112634576. An impinging jet micromixer comprising inlets for reactant () and () being connected to metallic blocks having microscopic bore () , being connected to support plates () using support tension springs () and screw for adjusting angle of the impinging sections () , wherein mixing zone () is formed by the impinging jets coming out of said bores () wherein the angle between the impinging jets is in the range of 70-120 degrees and the aspect ratio is in the range of 0.6-1.2.2. A sol-gel process for continuous flow synthesis of nanocrystalline metal oxides using the impinging jet micromixer as claimed in claim 1 , comprising the steps of:{'b': 1', '2, 'i. pumping of water and metal alkoxide solution in a solvent continuously through inlets () and () followed by mixing, in a mixing zoneii. synthesizing wet gel samples at flow rates in the range of 10 to 20 ml Jmin for the jet diameter in the range of 100-1000 micron and at angles between jets in the range of 70-140 degree to obtain a gel;iii. ageing the gel as obtained in step (ii), vacuum drying at temperature in the range of 70 to 90° C. for a period in the range of 8 to 12 hours, followed by calcination at a temperature in the range of 350-600° C.; andiv. drying the gel as obtained in step (iii) at a temperature in the range of 80-90° C. to yield nanocrystalline Metal Oxide having BET surface area in the range of 220-520 m2 /g and average crystallite size is in the range of 4.5-6.0 pm.3. The process according to claim 2 , wherein the solvent used is methanol and toluene such that the toluene to methanol volume ratio becomes 1.60 upon the addition of equal amounts of both the reactants.4. The process ...

Подробнее
03-05-2018 дата публикации

NANOWIRE CATALYSTS AND METHODS FOR THEIR USE AND PREPARATION

Номер: US20180118637A1
Принадлежит:

Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons. Related methods for use and manufacture of the same are also disclosed. 141-. (canceled)42. A method for the preparation of ethane , ethylene or combinations thereof , the method comprising contacting a catalytic material with a gas comprising methane , wherein the catalytic material comprises a plurality of catalytic nanowires and a diluent or support , the diluent or support comprising an alkaline earth metal compound.43. The method of claim 42 , wherein the catalytic material is in the form of a pressed pellet claim 42 , extrudate or monolith.44. The method of claim 42 , wherein the catalytic material is in the form of a pressed pellet.45. The method of claim 42 , wherein the catalytic material is in the form of an extrudate.46. The method of claim 42 , wherein the catalytic material is in the form of a monolith.47. The method of claim 42 , wherein the catalytic nanowires comprise one or more doping elements.48. The method of claim 42 , wherein the catalytic material is in the form of a pressure treated claim 42 , pressed pellet and comprises substantially no binder material.49. The method of claim 42 , wherein the catalytic material is in the form of a pressed pellet or extrudate and comprises pores greater than 20 nm in diameter.50. The method of claim 42 , wherein the alkaline earth metal compound is an alkaline earth metal oxide claim 42 , alkaline earth metal carbonate claim 42 , alkaline earth metal sulfate or alkaline earth metal phosphate.51. The method of claim 42 , wherein the alkaline earth metal compound is an alkaline earth metal carbonate claim 42 , alkaline earth metal sulfate or alkaline earth metal phosphate.52. The method of claim 42 , wherein the diluent or support comprises MgO claim 42 , MgCO claim 42 , MgSO claim 42 , Mg(PO) claim 42 , MgAlO claim ...

Подробнее
04-05-2017 дата публикации

NEW POWDER METAL PROCESS FOR PRODUCTION OF COMPONENTS FOR HIGH TEMPERATURE USEAGE

Номер: US20170120339A1
Автор: ASLUND Christer
Принадлежит: Metalvalue SAS

There is provided a method for the manufacture of a metal part from powder comprising the steps: a) providing a spherical metal powder, b) mixing the powder with a hydrocolloid in water to obtain an agglomerated metal powder, c) compacting the agglomerated metal powder to obtain a part of compacted agglomerated metal powder, wherein the structure of the part is open, d) debinding the part to remove the hydrocolloid, e) compacting the part using high velocity compaction (HVC) preferably to a density of more than 95% of the full theoretical density, f) further compacting the part using hot isostatic pressing (HIP) preferably to more than 99% of the full theoretical density to obtain a finished metal part, wherein at least one oxide is added to the metal powder before step c), which oxide has a melting point higher than the melting point of the metal powder. 1. A method for the manufacture of a metal part from spherical metal powder comprising the steps:a. providing a spherical metal powder,b. mixing the spherical powder with a hydrocolloid in water to obtain an agglomerated spherical metal powder,c. compacting the agglomerated spherical metal to obtain a part of compacted agglomerated metal powder, wherein the structure of the part is open,d. debinding the part to remove the hydrocolloid,e. compacting the part using high velocity compaction (HVC) preferably to a density of more than 95% of the full theoretical density,f. further compacting the part using HIP, preferably to more than 99% of the full theoretical density, to obtain a finished metal part,wherein at least one oxide is added to the metal powder before step c), which oxide has a melting point higher than the melting point of the metal powder.2. The method according to claim 1 , wherein the oxide has a melting point at least 100° C. higher than the metal powder claim 1 , wherein the oxide is stable at the melting point of the metal powder claim 1 , and wherein the oxide does not react with the metal powder at ...

Подробнее
25-04-2019 дата публикации

COMPOSITION FOR FORMING A HARD COATING LAYER HAVING EXCELLENT ANTI-FOULING PROPERTY

Номер: US20190119506A1
Автор: KIM Chang Kyun
Принадлежит:

Provided is a composition for forming a hard coating layer including about 0.1 wt % to about 15 wt % of a polysilazane, about 55 wt % to about 94.6 wt % of a reactive solvent containing hydroxyl group, about 5 wt % to about 20 wt % of a titanium dioxide (TiO), and about 0.3 wt % to about 10 wt % of a zirconia (ZrO). The composition provides a hard coating film which has excellent anti-fouling and superhydrophilicity, scratch resistance, abrasion resistance, antimicrobial property, weatherability, and a method for manufacturing the same which allow non-vacuum wet coating, thereby shortening fabrication time and providing excellent processability. 1. A composition for forming a hard coating layer , comprising:about 0.1 wt % to about 15 wt % of a polysilazane;about 55 wt % to about 94.6 wt % of a reactive solvent containing hydroxyl group;{'sub': '2', 'about 5 wt % to about 20 wt % of a titanium dioxide (TiO); and'}{'sub': '2', 'about 0.3 wt % to about 10 wt % of a zirconia (ZrO).'}3. The composition for forming a hard coating layer according to claim 1 ,wherein the reactive solvent containing hydroxyl group is an alcohol-based solvent, a silanol-based solvent, an alkoxysilane-based solvent, or a combination thereof.4. The composition for forming a hard coating layer according to claim 3 ,wherein the reactive group-containing reactive solvent comprises ethanol and tetraethoxysilane (TEOS), andwherein the weight ratio of ethanol to tetraethoxysilane (TEOS) is about 1:0.001 to about 1:0.5.5. The composition for forming a hard coating layer according to claim 1 ,{'sub': '2', 'the titanium dioxide (TiO) has an average particle diameter (D50) of about 8 nm to 15 nm, and'}{'sub': '2', 'the zirconia (ZrO) has an average particle diameter (D50) of about 10 nm to 25 nm.'}6. A hard coating film comprising:a substrate; and a hard coating layer formed on the substrate,{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'wherein the hard coating layer is formed from the composition ...

Подробнее
02-05-2019 дата публикации

ELECTROCHEMICAL CELL STACK

Номер: US20190131649A1
Автор: Ohmori Makoto
Принадлежит:

An electrochemical cell stack includes a first separator, a second separator, and an electrochemical cell disposed between the first separator and the second separator. The electrochemical cell includes an anode, a cathode and a solid electrolyte layer. The solid electrolyte layer is disposed between the anode and the cathode and contains zirconia-based material as a main component. The solid electrolyte layer has an upstream part and a downstream part. The upstream part is positioned on the upstream side in the flow direction of fuel gas that flows in the fuel flow passage between the anode and the first separator. The downstream part is positioned on the downstream side in the flow direction. The upstream part includes a first region within 3 μm from the anode side surface, and a second region provided on the first region. An intensity ratio of tetragonal zirconia to cubic zirconia in a Raman spectrum of the first region is greater than an intensity ratio of tetragonal zirconia to cubic zirconia in a Raman spectrum of the second region. 1. An electrochemical cell stack comprisinga first separator;a second separator; andan electrochemical cell disposed between the first separator and the second separator,the electrochemical cell including an anode, a cathode and a solid electrolyte layer, the solid electrolyte layer disposed between the anode and the cathode and containing a zirconia-based material as a main component,the solid electrolyte layer having an upstream part and a downstream part, the upstream part positioned on an upstream side in a flow direction of fuel gas which flows in a fuel flow passage between the anode and the first separator, the downstream part positioned on a downstream side in the flow direction,the upstream part including a first region within 3 μm from an anode side surface, and a second region provided between the first region and the cathode, andan intensity ratio of tetragonal zirconia to cubic zirconia in a Raman spectrum of the first ...

Подробнее
17-05-2018 дата публикации

POROUS CERAMIC PARTICLES

Номер: US20180134574A1
Принадлежит: NGK Insulators, Ltd.

A porous ceramic particle has a porosity of 20% to 99%, and one principal surface of the porous ceramic particle is a mirror surface, and an aspect ratio thereof is greater than or equal to 3. 1. A porous ceramic particle having a porosity of 20% to 99% , wherein one principal surface of the porous ceramic particle is a mirror surface , and an aspect ratio thereof is greater than or equal to 3.2. The porous ceramic particle according to claim 1 , wherein another principal surface that faces toward the one principal surface is also a mirror surface.3. The porous ceramic particle according to claim 1 , wherein the porous ceramic particle has a plurality of side surfaces claim 1 , and the side surfaces are rough surfaces.4. The porous ceramic particle according to claim 1 , wherein a minimum length of an outer shape of the porous ceramic particle is 50 to 500 μm.5. The porous ceramic particle according to claim 1 , wherein an average pore diameter of the porous ceramic particle is less than or equal to 500 nm.6. The porous ceramic particle according to claim 1 , wherein a thermal conductivity of the porous ceramic particle is less than or equal to 1 W/mK.7. The porous ceramic particle according to claim 1 , wherein the porous ceramic particle has a structure in which fine grains are connected in three dimensions claim 1 , and a grain diameter of the fine grains is 1 nm to 5 μm.8. The porous ceramic particle according to claim 1 , wherein an inter-particle distance is less than or equal to 10 μm.9. The porous ceramic particle according to claim 1 , wherein the porous ceramic particle is disposed on a sheet. This application is a Continuation of International Application No. PCT/JP2016/066504 filed on Jun. 2, 2016, which is based upon and claims the benefit of priority from Japanese Patent Applications No. 2015-141895 filed on Jul. 16, 2015 and No. 2015-235494 filed on Dec. 2, 2015, the contents all of which are incorporated herein by reference.The present invention ...

Подробнее
08-09-2022 дата публикации

METAL OXIDE FILM-FORMING COMPOSITION, AND METHOD FOR PRODUCING METAL OXIDE FILM USING THE SAME

Номер: US20220282100A1
Принадлежит:

A metal oxide film-forming composition containing an organooxy group-containing aromatic hydrocarbon ring-modified fluorene compound represented by formula (1), a metal compound represented by formula L(R)(O), and a solvent. In the formulas, ring Zrepresents an aromatic hydrocarbon ring, Rand Reach represents a halogen atom, a cyano group, or an alkyl group, Rand Reach represents an alkyl group, Rand Reach represents a tertiary alkyloxycarbonyl group, k1 and k2 each represent an integer between 0 and 4 inclusive, m1 and m2 each represent an integer between 0 and 6 inclusive, Rrepresents OR, Rrepresents an organic group having 1 to 30 carbon atoms, n1 and n2 each represent an integer of 0 or larger, n1+2×n2 is a valence depending on the type of L, and L represents Al, Ga, Y, Ti, Zr, Hf, Bi, Sn, V, or Ta 2. The metal oxide film-forming composition according to claim 1 , wherein the aromatic hydrocarbon ring is a naphthalene ring or a benzene ring.3. The metal oxide film-forming composition according to claim 1 , wherein Rand Rare both a group represented by the formula (3).4. The metal oxide film-forming composition according to claim 1 , wherein R claim 1 , Rand Rare each a methyl group.5. A method for producing a metal oxide film claim 1 , comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'forming a coating film composed of the metal oxide film-forming composition according to ; and'}heating the coating film. This application claims priority to Japanese Patent Application No. 2021-030462, filed Feb. 26, 2021, the entire content of which is incorporated herein by reference.The present invention relates to a metal oxide film-forming composition, and a method for producing a metal oxide film using the composition.High refractive index materials are used in formation of optical components. As the high refractive index material, for example, materials obtained by dispersing metal oxide particles such as titanium oxide and zirconium oxide in an organic ...

Подробнее
02-06-2016 дата публикации

MESOPOROUS MATERIALS AND PROCESSES FOR PREPARATION THEREOF

Номер: US20160151767A1
Принадлежит:

A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride and metalloid oxide, sulfide, selenide or telluride. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous material. Mesoporous materials and a method of tuning structural properties of mesoporous materials. 1383-. (canceled)384. A process for preparing a mesoporous material , said process comprising:preparing an acidic mixture by mixing one or more metal precursors, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant;aging the acidic mixture at a temperature and for a period of time sufficient to form a powder, film or gel; andheating the powder, film or gel at a temperature and for a period of time sufficient to form the mesoporous material.385. The process of wherein the mesoporous material comprises an oxide claim 384 , a sulfide claim 384 , a selenide or a telluride of the following:a transition metal selected from the group consisting of Cr, Zr, Nb, Hf and Ta; a Lanthanide selected from the group consisting of Nd, Sm, Ce and Gd; a post-transition metal comprising Sn; or a mixed metal or a solid acid selected from the group ...

Подробнее
02-06-2016 дата публикации

MESOPOROUS MATERIALS AND PROCESSES FOR PREPARATION THEREOF

Номер: US20160151768A1
Принадлежит:

A process for preparing a mesoporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride, and metalloid oxide, sulfide, selenide or telluride. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous material. A mesoporous material prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous materials. Mesoporous materials and a method of tuning structural properties of mesoporous materials. 1556-. (canceled)557. A process for preparing a mesoporous material , said process comprising:providing a micellar solution comprising one or more metal precursors, one or more surfactants, one or more interface modifiers, one or more hydrotropic or lyotropic ion precursors, and optionally one or more organic and/or inorganic additives; wherein said micellar solution comprises a dispersion of micelles in which at least a portion of said one or more metal precursors are solubilized in the micelles; andheating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous material.558. The process of which is a sol-gel micelle based process.559. The process of in which micellization and inter-micellar interaction are controlled by said one or more metal precursors claim 557 , one or more surfactants claim 557 , ...

Подробнее
25-05-2017 дата публикации

MULTI-LAYERED FILM AND METHOD OF MANUFACTURING THE SAME

Номер: US20170148975A1
Принадлежит:

A multi-layered film includes an electroconductive layer made of platinum (Pt), a seed layer including lanthanum (La), nickel (Ni), and oxygen (O), and a dielectric layer being preferentially oriented in a c-axis direction, which are at least sequentially disposed on a main surface of a substrate made of silicon. 1. A multi-layered film comprising an electroconductive layer made of platinum (Pt) , a seed layer including lanthanum (La) , nickel (Ni) , and oxygen (O) , and a dielectric layer being preferentially oriented in a c-axis direction , which are at least sequentially disposed on a main surface of a substrate made of silicon.2. The multi-layered film according to claim 1 , wherein the dielectric layer includes lead (Pb) claim 1 , zirconia (Zr) claim 1 , titanium (Ti) claim 1 , and oxygen (O).3. The multi-layered film according to claim 1 , wherein the dielectric layer is made of Pb (ZrTi)O claim 1 , and 0.2≦x≦0.52.4. The multi-layered film according to claim 1 , wherein a thickness of the dielectric layer is 0.1 to 5 μm.5. A method of manufacturing a multi-layered film claim 1 , comprising:forming an electroconductive layer;forming a seed layer so as to coat the electroconductive layer;forming a dielectric layer so as to coat the seed layer; andcontrolling a temperature so as to apply a compression stress to the dielectric layer in a cooling process after the dielectric layer is formed. The present invention relates to a multi-layered film that exhibits excellent piezoelectric characteristics and a method of manufacturing the multi-layered film.This application claims priority from Japanese Patent Application No. 2014-127467 filed on Jun. 20, 2014, the contents of which are incorporated herein by reference in their entirety.Currently, a piezo element using a ferroelectric material such as lead zirconate titanate (Pb (Zr, Ti)O: PZT) is applied to an MEMS (Micro Electro Mechanical Systems) technique such as an inkjet head an acceleration sensor.Particularly, a ...

Подробнее
31-05-2018 дата публикации

ZIRCONIUM OXIDE MODULE CONDITIONING

Номер: US20180147558A1
Принадлежит:

The invention relates to devices, systems, and methods for conditioning a zirconium oxide sorbent module for use in dialysis after recharging. The devices, systems, and methods can provide for conditioning and recharging of zirconium oxide in a single system, or in separate systems. 1. A method of conditioning zirconium oxide , comprising the steps of:pumping a conditioning solution through a zirconium oxide sorbent module in a flow path; andconditioning the zirconium oxide sorbent module using the conditioning solution comprising sodium bicarbonate at a desired zirconium oxide effluent pH.2. The method of claim 1 , further comprising the step of pumping a base solution through the zirconium oxide sorbent module to recharge zirconium oxide in the zirconium oxide sorbent module prior to conditioning the zirconium oxide sorbent module.3. The method of claim 1 , further comprising the step of pumping the conditioning solution through a zirconium phosphate sorbent module prior to pumping the conditioning solution through the zirconium oxide sorbent module.4. The method of claim 3 , wherein the flow path is a dialysate flow path comprising the zirconium phosphate sorbent module and zirconium oxide sorbent module.5. The method of claim 3 , wherein the flow path is a recharging flow path comprising the zirconium phosphate sorbent module and zirconium oxide sorbent module.6. The method of claim 1 , wherein the desired zirconium oxide effluent pH is between 5 and 7.5.7. The method of claim 1 , further comprising the step of generating the conditioning solution in the flow path.8. The method of claim 7 , wherein the step of generating the conditioning solution comprises mixing a sodium bicarbonate solution with acid.9. The method of claim 7 , wherein the step of generating the conditioning solution comprises mixing a sodium bicarbonate solution with carbon dioxide.10. The method of claim 1 , wherein the conditioning solution is pumped through the zirconium oxide sorbent ...

Подробнее
17-06-2021 дата публикации

GARNET-TYPE COMPOSITE METAL OXIDE PARTICLE AND METHOD FOR PRODUCING SAME, AND COMPRESSION-MOLDED PRODUCT OF GARNET-TYPE COMPOSITE METAL OXIDE

Номер: US20210179441A1
Принадлежит:

The present disclosure is directed to a composite metal oxide particle, and method of producing the same, having an excellent lithium ion conductivity that may be produced at low cost. The present disclosure relates to a garnet-type composite metal oxide particle, containing Li, La, Zr and O; Ga and/or Al; and a halogen element, where a part of a Li site is substituted with the Ga and/or the Al, and at least a part of a particle surface is covered with a melt-solidified material. A ratio of an area covered with the melt-solidified material to a total area of the particle is preferably 10% or more, and the halogen element is preferably Cl. 1. A garnet-type composite metal oxide particle comprising:Li, La, Zr and O;Ga and/or Al; anda halogen element,wherein a part of an Li site is substituted with the Ga and/or the Al, andwherein at least a part of a particle surface is covered with a melt-solidified material.2. The garnet-type composite metal oxide particle according to claim 1 , wherein a ratio of an area covered with the melt-solidified material to a total area of the particle is 10% or more.3. The garnet-type composite metal oxide particle according to claim 1 , wherein the halogen element is Cl.4. The garnet-type composite metal oxide particle according to claim 1 , wherein the melt-solidified material is at least one of a halide and an oxyhalide.5. A garnet-type composite metal oxide particle comprising:Li, La, Zr and O;Ga and/or Al; anda halogen element,wherein at least one of Li, La, Zr, Ga and Al forms an oxyhalide and/or the Li forms a halide.6. The garnet-type composite metal oxide particle according to claim 1 ,{'sub': 1', '7', '3', '2', '12', '1', '2', '2, 'wherein a ratio of a maximum peak area (A) of LiLaZrOsubstituted with the Ga and/or the Al is 20% or more and less than 100% relative to a total of the area Aand an area A, wherein Ais a maximum peak area of a diffraction peak area of a compound comprising La, and'}{'sub': 7', '3', '2', '12, 'wherein ...

Подробнее
07-06-2018 дата публикации

ZIRCONIUM OXIDE BASED SPUTTERING TARGET

Номер: US20180155820A1
Принадлежит:

The present invention relates to a sputtering target, which comprises a zirconium oxide as a sputtering material, wherein the zirconium oxide 1. A sputtering target , which comprises a zirconium oxide as a sputtering material , wherein the zirconium oxidehas an oxygen deficiency, compared to the oxygen content of its fully oxidized form, of at least 0.40 wt %,has a total amount of metal elements other than zirconium of less than 3.0 wt %, based on the total amounts of metal elements including zirconium, andhas an X-ray powder diffraction pattern having a peak P1 at 28.2°+/−0.2° 2-theta, a peak P2 at 31.4°+/−0.2° 2-theta, and a peak P3 at 30.2°+/−0.2° 2-theta.2. The sputtering target according to claim 1 , wherein the peak P1 is the peak of highest intensity claim 1 , and the peak P2 is the peak of second-highest intensity in the X-ray diffraction pattern of the zirconium oxide claim 1 , and the intensity ratio P3/P2 is at least 0.06.3. The sputtering target according claim 2 , wherein the X-ray diffraction pattern of the zirconium oxide shows further peaks at 24.2°+/−0.2° 2-theta claim 2 , 34.3°+/−0.2° 2-theta claim 2 , and 50.2°+/−0.2° 2-theta.4. The sputtering target according to claim 3 , wherein the zirconium oxide has an average crystallite size claim 3 , determined by applying the Scherrer equation to the most intensive diffraction peak claim 3 , of less than 63 nm.5. The sputtering target according to claim 2 , wherein the zirconium oxide does not comprise pores which have a diameter of more than 70 μm.6. The sputtering target according to claim 2 , wherein the zirconium oxide has a relative density of at least 85%.7. The sputtering target according to claim 1 , wherein the zirconium oxide has an average crystallite size claim 1 , determined by applying the Scherrer equation to the most intensive diffraction peak claim 1 , of less than 63 nm.8. The sputtering target according claim 1 , wherein the X-ray diffraction pattern of the zirconium oxide shows further ...

Подробнее
01-07-2021 дата публикации

PROCESS FOR PREPARING DOPED LITHIUM LANTHANUM ZIRCONIUM OXIDE

Номер: US20210198117A1
Принадлежит:

A process for preparing doped-lithium lanthanum zirconium oxide (doped-LLZO) is described herein. The method involves dry doping of a co-precipitated lanthanum zirconium oxide (LZO) precursor. Dry doping is a process in which a dry powdered dopant is ground and mixed with a pre-prepared co-precipitated LZO precursor and a lithium salt to provide a LLZO precursor composition, which is subsequently calcined to form a doped-LLZO. The process described herein comprises calcining a dry, powdered (e.g., micron, sub-micron or nano-powdered) mixture of a co-precipitated LZO precursor, a dopant salt or oxide, and a lithium salt under an oxygen-containing atmosphere at a temperature in the range of about 500 to about 1100° C., and recovering the doped-LLZO after calcining. 1. A process for preparing a doped lithium lanthanum zirconium oxide (doped-LLZO) comprising the sequential steps of:(a) calcining a dry, powdered mixture of a co-precipitated lanthanum zirconium oxide (LZO) precursor, a dopant, and a lithium salt in an oxygen-containing atmosphere at a temperature in the range of about 500 to about 1100° C.; and(b) recovering the doped-LLZO;{'sub': 7', '3', '2', '12', '7', '3', '2', '12, 'wherein the co-precipitated LZO precursor comprises a mixture of lanthanum oxide and/or lanthanum hydroxide in combination with zirconium oxide and/or zirconium hydroxide, in which the La and Zr are present in a La:Zr elemental ratio of about 3:2, and the La and Zr are uniformly mixed at the atomic level; the dopant is a salt or oxide of a dopant ion, X, wherein X is not a Li, La Zr, or O ion, X cations replace a portion of Li, La, and/or Zr in the formula LiLaZrO, and X anions replace a portion of O anion in the formula LiLaZrO; and the lithium salt and the dopant are mixed with the LZO precursor in amounts selected to achieve a target Li:La:Zr:X ratio in the doped-LLZO.'}2. The process of claim 1 , wherein X comprises at least one ion selected from the group consisting of an alkaline ...

Подробнее
21-06-2018 дата публикации

AEROGELS, CALCINED AND CRYSTALLINE ARTICLES AND METHODS OF MAKING THE SAME

Номер: US20180168937A1
Принадлежит:

Aerogel, calcined articles, and crystalline articles comprising ZrO. Exemplary uses of the crystalline metal oxide articles include dental articles (e.g., restoratives, replacements, inlays, onlays, veneers, full and partial crowns, bridges, implants, implant abutments, copings, anterior fillings, posterior fillings, and cavity liner, and bridge frameworks) and orthodontic appliances (e.g., brackets, buccal tubes, cleats, and buttons). 1. A crack-free , calcined metal oxide article having x , y , and z dimensions of at least 5 mm , a density in a range from 30 to 95 percent of theoretical density , and an average connected pore size in a range from 10 nm to 100 nm , wherein at least 70 mole percent of the metal oxide is crystalline ZrO , and wherein the crystalline ZrOhas an average grain size less than 100 nm.2. The crack-free claim 1 , calcined metal oxide of claim 1 , wherein the crack-free claim 1 , calcined metal oxide article has x claim 1 , y claim 1 , and z dimensions of at least 10 mm.3. The crack-free claim 1 , calcined metal oxide of claim 1 , wherein at least 75 mole percent of the crystalline metal oxide present in the crack-free claim 1 , calcined metal oxide article is crystalline ZrO.4. The crack-free claim 1 , calcined metal oxide of claim 1 , wherein the crystalline metal oxide comprises in a range from 1 to 15 (in some embodiments claim 1 , 1 to 9 claim 1 , 1 to 5 claim 1 , 6 to 9 3.5 to 4.5 claim 1 , or even 7 to 8) mole percent of the crystalline metal oxide is YO.5. The crack-free claim 1 , calcined metal oxide of claim 1 , wherein the crystalline metal oxide further comprises at least one of YOor LaO.6. The crack-free claim 1 , calcined metal oxide of claim 1 , wherein the crystalline metal oxide further comprises at least one of CeO claim 1 , PrO claim 1 , NdO claim 1 , PmO claim 1 , SmO claim 1 , EuO claim 1 , GdO claim 1 , TbO claim 1 , DyO claim 1 , HoO claim 1 , ErO claim 1 , TmO claim 1 , YbO claim 1 , FeO claim 1 , MnO claim 1 , CoO ...

Подробнее
29-09-2022 дата публикации

Battery with Novel Components

Номер: US20220310993A1
Принадлежит:

A battery cell having an anode or cathode comprising an acidified metal oxide (“AMO”) material, preferably in monodisperse nanoparticulate form 20 nm or less in size, having a pH<7 when suspended in a 5 wt % aqueous solution and a Hammett function H>−12, at least on its surface. 1. A battery cell comprising an anode , an electrolyte , and a cathode , wherein one of the anode or cathode comprises at least one solid metal oxide nanomaterial including a surface that is acidic but not superacidic , the surface having a pH<5 when re-suspended , after drying , in water at 5 wt % and a Hammet function H>−12.2. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial has at least one particle dimension <100 nm in size.3. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial has at least one particle dimension <20 nm in size.4. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial has at least one particle dimension <10 nm in size.5. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial includes a substantially monodispersed nanoparticulate form.6. The battery cell of claim 1 , wherein the surface has a pH<4 when re-suspended claim 1 , after drying claim 1 , in water at 5 wt % and a Hammet function H>−12.7. The battery cell of claim 1 , wherein the surface has a pH<3 when re-suspended claim 1 , after drying claim 1 , in water at 5 wt % and a Hammet function H>−12.8. A battery cell having an electrode comprising at least one solid metal oxide material claim 1 , wherein the metal oxide is surface functionalized with a material that is substantially monodispersed and provides acidic electron withdrawing groups having a molecular weight of less than 200.9. The battery cell of claim 8 , wherein the material that surface functionalizes the surface of the metal oxide is acidic but not superacidic claim 8 , having a pH<7 when suspended in an aqueous solution at 5 wt % and a Hammet function H>−12.10. The battery ...

Подробнее
25-06-2015 дата публикации

Bi-Functional Catalysts for Oxygen Reduction and Oxygen Evolution

Номер: US20150180046A1
Принадлежит: STC.UNM

A porous metal-oxide composite particle suitable for use as a oxygen reduction reaction or oxygen evolution reaction catalyst and sacrificial support based methods for making the same. 1. A method for forming a porous metal oxide material comprising:providing sacrificial template particles;reacting one or more metal precursors and an oxide precursor onto the sacrificial template particles to produce coated template particles;heat treating the coated template particles; andremoving the sacrificial template particles to produce a highly dispersed, self-supported, high surface area electrocatalytic material.2. The method of wherein the metal is a transition metal.3. The method of wherein at least one of the metal precursors is a metal citrate or metal nitrate.4. The method of wherein the step of reacting one or more metal precursors and an oxide precursor onto the sacrificial template particles comprises mixing a colloidal suspension of template particles with a solution containing a transition metal citrate or nitrate and sodium nitrate.5. The method of wherein the step of heat treating the coated template particles comprises calcination.6. The method of wherein the step of reacting one or more metal precursors and an oxide precursor onto the sacrificial template particles comprises mixing a colloidal suspension of template particles claim 1 , sucrose and urea with a solution containing transition metal precursors.7. The method of wherein the step of heat treating the coated template particles comprises pyrolyzation claim 1 , followed by calcination.8. The method of wherein the step of removing the sacrificial template particles comprises chemical etching.9. The method of wherein the chemical etchant is HF.10. The method of wherein the metal precursor is selected from the group consisting of cobalt nitrate claim 1 , zirconium oxynitrate hydrate claim 1 , indium chloride tetrahydrate claim 1 , venadyl sulfate hydrate claim 1 , praseodymium nitrate hexahydrate claim 1 , ...

Подробнее
06-06-2019 дата публикации

METHOD FOR PRODUCING INORGANIC OXIDE IN FORM OF THIN FILM

Номер: US20190169040A1
Автор: ODA Tsuyoshi, ONISHI Ryo
Принадлежит: KAO CORPORATION

Provided is a method for producing an inorganic oxide in the form of a thin film, the method including a step of bringing a first liquid and a second liquid with each other, the first liquid containing an inorganic oxide precursor and the second liquid containing a substance reacting with the inorganic oxide precursor of the first liquid to form an inorganic oxide derived from the inorganic oxide precursor. The step is performed by continuous operation. At least one of the first liquid and the second liquid includes an ionic liquid. 1. A method for producing an inorganic oxide in a form of a thin film , the method comprisingbringing a first liquid and a second liquid into contact with each other, the first liquid containing an inorganic oxide precursor and the second liquid containing a substance reacting with the inorganic oxide precursor of the first liquid to form an inorganic oxide derived from the inorganic oxide precursor, whereinthe bringing of the first liquid into contact with the second liquid is performed by continuous operation, and at least one of the first liquid and the second liquid includes an ionic liquid.2. The method of claim 1 , whereinthe inorganic oxide in the form of the thin film has an average thickness of 0.01 μm or larger and 1.5 μm or smaller.3. The method of claim 1 , whereinthe inorganic oxide in the form of the thin film includes a titanium oxide in a form of a thin film.4. The method of claim 1 , whereinthe first liquid and the second liquid phase-separate from each other.5. The method of claim 1 , whereinthe ionic liquid includes an ionic liquid having 1-alkyl-3-methylimidazolium cations.6. The method of claim 1 , whereinthe inorganic oxide precursor includes a metal alkoxide.7. The method of claim 1 , whereinthe second liquid is a solution in which the substance to form the inorganic oxide is dissolved in the ionic liquid.8. The method of claim 1 , whereinthe first liquid is a solution in which the inorganic oxide precursor is ...

Подробнее
28-06-2018 дата публикации

REGENERATION CATALYST FOR HYDROTREATING HEAVY OIL OR RESIDUE AND PREPARATION METHOD THEREOF

Номер: US20180178209A1
Автор: Park Hea Kyung

The present disclosure relates to a regenerated catalyst for hydrotreating heavy oil or residue oil and a preparation method thereof. More particularly, the present disclosure relates to the regenerated catalyst having excellent mechanical properties and desulfurization performance with minimal loss of active components and the method for preparing the regenerated catalyst. The regenerated catalyst can be used in place of the fresh catalyst, is excellent in economy and can reduce the environmental burden by reusing the spent catalyst to be disposed or buried. 1. A regenerated catalyst for a heavy oil or residue oil hydrogenation process prepared by regenerating a spent catalyst comprising: an active component supported by a catalyst support , wherein the regenerated catalyst has a vanadium oxide content of 1.0% by weight or less , as measured by fluorescent X-ray analysis , and a compressive strength of 97% or more as compared to those of a fresh catalyst.2. The regenerated catalyst for the heavy oil or residue oil hydrogenation process according to claim 1 , wherein the regenerated catalyst has a desulfurization performance of 98% or more as compared to the fresh catalyst.3. The regenerated catalyst for the heavy oil or residue oil hydrogenation process according to claim 1 , wherein the active component is at least one selected from the group consisting of molybdenum claim 1 , tungsten claim 1 , cobalt claim 1 , and nickel; metal oxides thereof and a mixture thereof.4. The regenerated catalyst for the heavy oil or residue oil hydrogenation process according to claim 1 , wherein the catalyst support includes at least one selected from the group consisting of activated carbon claim 1 , zeolite claim 1 , AlO claim 1 , SiOand ZrO.5. A method of preparing a regenerated catalyst for a heavy oil or residue oil hydrogenation process claim 1 , which comprises ofa low temperature heat treatment process of first heat-treating a spent catalyst at a low temperature;an acid ...

Подробнее
28-06-2018 дата публикации

NEW METHOD FOR TRANSFORMING SUGARS AND SUGAR ALCOHOLS INTO MONO- AND POLY-OXIDIZED COMPOUNDS IN THE PRESENCE OF A HETEROGENEOUS CATALYST

Номер: US20180179131A1
Принадлежит: IFP ENERGIES NOUVELLES

The invention concerns a method for converting a feedstock selected from sugars or sugar alcohols, alone or in a mixture, into mono- or polyoxygenated compounds, wherein the feedstock is contacted with at least one heterogeneous catalyst comprising a support selected from perovskites of formula ABO, in which A is selected from the elements Mg, Ca, Sr and Ba and B is selected from the elements Fe, Mn, Ti and Zr, and the oxides of elements selected from lanthanum, neodymium, yttrium and cerium, alone or in a mixture, which oxides can be doped with at least one element selected from alkali metals, alkaline earths and rare earths, in a reducing atmosphere, at a temperature of 100° C. to 300° C. and at a pressure of 0.1 MPa to 50 MPa. 1. Method for transforming a feedstock that is selected from among sugars and sugar alcohols , by themselves or in a mixture , into mono- or poly-oxidized compounds , in which said feedstock is brought into contact with at least one heterogeneous catalyst , in the same reaction chamber , in the presence of at least one solvent , with said solvent being water , an alcohol , a diol , or another solvent , by itself or in a mixture , under a reducing atmosphere , and at a temperature of between 100° C. and 300° C. , and at a pressure of between 0.1 MPa and 50 MPa , and in which said heterogeneous catalyst(s) comprise(s) at least one metal that is selected from among the metals of groups 8 to 11 of the periodic table and a substrate that is selected from among the perovskites of formula ABOin which A is selected from among the elements Mg , Ca , Sr and Ba , and B is selected from among the elements Fe , Mn , Ti and Zr , and the oxides of elements that are selected from among lanthanum , neodymium , yttrium , cerium , by themselves or in a mixture , with said oxides able to be doped by at least one element that is selected from among the alkaline metals , the alkaline-earths , and the rare earths , by themselves or in a mixture , with said method ...

Подробнее
09-07-2015 дата публикации

PRECURSORS AND METHODS FOR ATOMIC LAYER DEPOSITION OF TRANSITION METAL OXIDES

Номер: US20150191817A1
Принадлежит:

Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications. 1. A method for forming a zirconium oxide thin film on a substrate comprising:alternately and sequentially contacting the substrate with a vapor phase first zirconium reactant and a vapor phase second oxygen reactant until a thin zirconium oxide film of a desired thickness and composition is obtained,wherein the first zirconium reactant comprises at least one ligand comprising a C7 ring structure.2. The method of claim 1 , wherein the first zirconium reactant is an organometallic reactant.3. The method of claim 1 , wherein the first zirconium reactant comprises at least one cycloheptatrienyl (CHT) ligand.4. The method of claim 3 , wherein the first zirconium reactant comprises two ligands claim 3 , one of which is the CHT ligand.5. The method of claim 4 , wherein the first zirconium reactant comprises two CHT ligands.6. The method of claim 3 , wherein the first zirconium reactant comprises one CHT ligand and one cycloheptadienyl (CHD) ligand.7. The method of claim 3 , wherein the first zirconium reactant comprises (CHT)ZrNR claim 3 , where R is Me claim 3 , MeEt or Et.8. The method of claim 1 , wherein the first zirconium reactant is (CH)Zr(CH).9. The method of claim 1 , wherein the first zirconium reactant is (CH)Zr(CH).10. The method of claim 1 , wherein the substrate temperature when contacted with the first and second reactants is above about 350° C.11. The method of claim 1 , wherein the first ...

Подробнее
05-07-2018 дата публикации

ABRASIVE PARTICLES WITH VITRIFIED BOND AND FILLER

Номер: US20180187058A1
Автор: LIANG Shuqiong, Nie Pinxu
Принадлежит:

An abrasive particle having a body and a coating overlying the body, the coating including an amorphous material and at least one filler contained within the amorphous material. The abrasive particle may be included in a fixed abrasive article. 1. An abrasive particle comprising:a body, anda coating overlying the body; an amorphous material, and', 'at least one filler contained within the amorphous material., 'wherein the coating comprises'}2. The abrasive particle of claim 1 , wherein the at least one filler comprises at least one phase distinct from the amorphous material.3. The abrasive particle of claim 1 , wherein the body comprises alumina and zirconia.4. The abrasive particle of claim 1 , wherein the body consists essentially of alumina and zirconia.5. The abrasive particle of claim 1 , wherein the body consists essentially of alumina.6. The abrasive particle of claim 1 , wherein the body comprises at least 35 wt. % alumina and not greater than 75 wt. % alumina for the total weight of the body.7. The abrasive particle of claim 1 , wherein the body comprises at least 20 wt. % zirconia and not greater than 60 wt. % zirconia for a total weight of the body.8. The abrasive particle of claim 1 , the body is substantially free of nitrides claim 1 , borides claim 1 , or any combination thereof.9. The abrasive particle of claim 1 , wherein the body is substantially free of metals claim 1 , metal alloys claim 1 , or any combination thereof.10. The abrasive particle of claim 1 , wherein the body comprises a median particle size (D50) of at least 5 microns and not greater than 40000 microns.11. The abrasive particle of claim 1 , wherein the coating covers at least 1% and not greater than 99% of the outer surface of the body.12. The abrasive particle of claim 1 , wherein the weight of the coating is at least 0.1 wt. % and not greater than 10 wt. % of the total weight of the abrasive particle including the body and the coating.13. The abrasive particle of claim 1 , wherein ...

Подробнее
22-07-2021 дата публикации

HIGH REFRACTIVE INDEX IMPRINT COMPOSITIONS AND MATERIALS AND PROCESSES FOR MAKING THE SAME

Номер: US20210223686A1
Принадлежит:

Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, an imprint composition contains one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates. 1. An imprint composition , comprising:nanoparticles;one or more solvents;a surface ligand;an additive; andan acrylate.2. The imprint composition of claim 1 , wherein the imprint composition comprises:about 1 weight percent (wt %) to about 25 wt % of the nanoparticles;about 60 wt % to about 85 wt % of the solvent;about 6 wt % to about 35 wt % of the surface ligand;about 0.05 wt % to about 3 wt % of the additive; andabout 0.3 wt % to about 8 wt % of the acrylate.3. The imprint composition of claim 1 , wherein the nanoparticles comprise niobium oxide or a diamond material claim 1 , and wherein the nanoparticle has a diameter of about 5 nm to about 200 nm.4. The imprint composition of claim 1 , wherein each nanoparticle comprises a core and a shell.5. The imprint composition of claim 4 , wherein the core comprises titanium oxide claim 4 , niobium oxide claim 4 , or zirconium oxide claim 4 , wherein the shell comprises silicon oxide claim 4 , zirconium oxide claim 4 , niobium oxide claim 4 , or any combination thereof claim 4 , and wherein the core and the shell comprise different materials.6. The imprint composition of claim 4 , wherein the core has a diameter of about 2 nm to about 500 nm and the shell has a thickness of about 0.1 nm to about 100 nm.7. The imprint composition of claim 1 , wherein the surface ligand comprises oleic acid claim 1 , stearic acid claim 1 , propionic acid claim 1 , benzoic acid claim 1 , palmitic acid claim 1 , myristic acid claim 1 , methylamine claim 1 , oleylamine claim 1 , butylamine claim 1 , benzyl alcohol claim 1 , oleyl alcohol claim 1 , butanol claim 1 , octanol claim 1 , dodecanol ...

Подробнее
21-07-2016 дата публикации

Zirconia-based porous body and method for producing same

Номер: US20160207027A1
Автор: Hiroshi Kodama
Принадлежит: Daiichi Kigenso Kagaku Kogyo Co Ltd

This invention provides a zirconia-based porous body having a pore diameter suitable for supporting catalytic active species, such as precious metals, small variability in pore diameter, and a sufficient specific surface area even after 12-hour heating at 1000° C. Specifically, the invention provides a zirconia-based porous body in particle form having (1) a pore diameter peak at 20 to 100 nm in the pore distribution by BJH method, a P/W ratio of 0.05 or more wherein W represents half width of the peak and P represents height of the peak in the measured pore distribution curve, and a total pore volume of 0.5 cm 3 /g or more; and (2) a pore diameter peak at 20 to 100 nm, the P/W ratio of 0.03 or more, a specific surface area of at least 40 m 2 /g, and a total pore volume of 0.3 cm 3 /g or more, after heat treatment at 1000° C. for 12 hours.

Подробнее
27-07-2017 дата публикации

SYSTEM, PROCESS AND RELATED SINTERED ARTICLE

Номер: US20170210634A1
Принадлежит:

A system, process and related sintered article are provided. The process includes supporting a piece of inorganic material with a pressurized gas and sintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article. The inorganic material is not in contact with a solid support during sintering. The sintered article, such as a ceramic article, is thin, has high surface quality, and/or has large surface areas. 1. A process of forming a sintered article , comprising:supporting a piece of inorganic material with a pressurized gas; andsintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article, wherein at least a portion of the inorganic material being sintered is not in contact with a solid support during sintering.2. The process of claim 1 , wherein the pressurized gas is provided by a gas bearing including first and second opposing bearing surfaces defining a channel between the first and second bearing surfaces claim 1 , wherein the gas bearing delivers gas to the channel through the first and second bearing surfaces claim 1 , wherein supporting the piece of inorganic material comprises positioning the piece of inorganic material within the channel such that opposing first and second major surfaces of the piece of inorganic material are both supported by the pressurized gas.3. The process of claim 2 , wherein the gas bearing applies pressure to both of the first and second major surface of the piece of inorganic material during sintering such that deformation of the first and second surfaces is resisted ...

Подробнее
26-07-2018 дата публикации

METHOD OF PRODUCING INORGANIC OXIDE MOLDED BODY

Номер: US20180208473A1
Принадлежит: NIPPON KODOSHI CORPORATION

It is difficult to obtain a glassy, monolithic molded body of an inorganic oxide with a high melting point and softening point. Although molding by sintering is possible, it is hard to obtain a molded body which is transparent and has high barrier properties. Further, producing molded bodies with the sol-gel process is costly, and it is difficult to produce a molded bodies of large size. In this invention, a molded body principally composed of inorganic oxides is produced with a method that involves a step in which an inorganic-organic hybrid compound, formed by an organic polymer having a hydroxyl group chemically bonding with an inorganic oxide or a derivative thereof, is heated in an atmosphere in which oxygen is present, and the organic polymer component of the inorganic-organic hybrid compound is oxidized and removed. 1. A method of producing an inorganic oxide molded body comprising a step of heating an inorganic-organic hybrid compound , which is formed by chemically bonding an inorganic oxide or its derivative to a hydroxyl group-containing organic polymer , in an atmosphere containing oxygen to oxidize and remove an organic polymer component of the inorganic-organic hybrid compound , thereby obtaining a molded body composed mainly of the inorganic oxide.2. The method of producing an inorganic oxide molded body according to claim 1 , characterized in that the inorganic oxide molded body is a glassy claim 1 , monolithic body.3. The method of producing an inorganic oxide molded body according to claim 1 , wherein the heating in an atmosphere containing oxygen is performed at a temperature of 600° C. or lower.4. The method of producing an inorganic oxide molded body according to claim 1 , wherein the inorganic oxide is an inorganic oxide having a melting point of 2 claim 1 ,000° C. or higher in the normal state.5. The method of producing an inorganic oxide molded body according to claim 1 , wherein the inorganic oxide or its derivative contains at least one ...

Подробнее
04-07-2019 дата публикации

FLUORESCENT PLATE

Номер: US20190203057A1
Автор: Kitamura Seiji
Принадлежит: USHIO DENKI KABUSHIKI KAISHA

Disclosed is a fluorescent plate in which a high reflectance of a reflective layer can be maintained over a long period of time, and occurrence of peeling of the reflective layer can be suppressed. 1. A fluorescent plate including a fluorescent material layer containing a fluorescent material , an oxide layer disposed below the fluorescent material layer , and a reflective layer which is disposed below the oxide layer and is formed of silver , the fluorescent plate comprising:an oxidation-preventive protective layer which is disposed between the oxide layer and the reflective layer and is formed of a translucent material; anda translucent adhesion layer interposed between the oxidation-preventive protective layer and the reflective layer.2. The fluorescent plate according to claim 1 , wherein the translucent material constituting the oxidation-preventive protective layer is formed of any of a fluoride and a nitride.3. The fluorescent plate according to claim 1 , wherein the translucent adhesion layer is formed of at least one of hafnium oxide and zirconium oxide.4. The fluorescent plate according to claim 2 , wherein the translucent adhesion layer is formed of at least one of hafnium oxide and zirconium oxide.5. The fluorescent plate according to claim 1 , wherein the translucent adhesion layer has a thickness of 5 to 10 nm.6. The fluorescent plate according to claim 2 , wherein the translucent adhesion layer has a thickness of 5 to 10 nm.7. The fluorescent plate according to claim 3 , wherein the translucent adhesion layer has a thickness of 5 to 10 nm.8. The fluorescent plate according to claim 1 , wherein the oxide layer is composed of at least any one of an oxide monolayer film formed of alumina and an oxide multilayer film composed of a first constitution layer formed of silicon dioxide and a second constitution layer formed of titania.9. The fluorescent plate according to claim 2 , wherein the oxide layer is composed of at least any one of an oxide monolayer ...

Подробнее
03-08-2017 дата публикации

AEROGELS, CALCINED AND CRYSTALLINE ARTICLES AND METHODS OF MAKING THE SAME

Номер: US20170216153A1
Принадлежит:

Aerogel, calcined articles, and crystalline articles comprising ZrO. Exemplary uses of the crystalline metal oxide articles include dental articles (e.g., restoratives, replacements, inlays, onlays, veneers, full and partial crowns, bridges, implants, implant abutments, copings, anterior fillings, posterior fillings, and cavity liner, and bridge frameworks) and orthodontic appliances (e.g., brackets, buccal tubes, cleats, and buttons). 120.-. (canceled)21. A monolithic aerogel comprising organic material and crystalline metal oxide particles , wherein the crystalline metal oxide particles are in a range from 3 to 20 volume percent , based on the total volume of the monolithic aerogel , wherein at least 70 mole percent of the crystalline metal oxide is ZrO.22. The monolithic aerogel of claim 21 , wherein the crystalline metal oxide particles are in a range from 1 to 15 mole percent of the crystalline metal oxide is YO.23. The monolithic aerogel of claim 21 , wherein the crystalline metal oxide particles have an average primary particle size in a range of 2 nanometers to 50 nanometers.24. The monolithic aerogel of claim 21 , wherein the crystalline material further comprises at least one of YOor LaO.25. The monolithic aerogel of claim 21 , wherein the ZrOis all tetragonal or cubic.26. The aerogel of claim 21 , wherein the organic content in a range of 3 to 30 percent by weight claim 21 , based on the total weight of the aerogel.27. The aerogel of claim 21 , wherein the aerogel has a surface area in a range of 100 m/gram to 300 m/gram.28. The aerogel of claim 21 , wherein an average connected pore size is in a range of 10 nanometers to 20 nanometers.29. The aerogel of claim 21 , wherein the aerogel is crack-free.30. The aerogel of claim 21 , wherein the organic material content is in a range of 3 to 30 weight percent claim 21 , based on a total weight of the aerogel.31. The aerogel of claim 21 , wherein the crystalline metal oxide particles further comprise at least ...

Подробнее
09-08-2018 дата публикации

RED ZIRCONIA SINTERED BODY AND METHOD FOR MANUFACTURING THE SAME

Номер: US20180222799A1
Принадлежит: TOSOH CORPORATION

Provided is a zirconia sintered body that uses coloring of cerium oxide, the zirconia sintered body exhibiting a bright red color. The zirconia sintered body includes an oxide of cerium is an amount of 0.5% by mole or more and less than 4% by mole in terms of CeO, yttria in an amount of 2% by mole or more and less than 6% by mole, an oxide of aluminum in an amount of 0.1% by weight or more and less than 2% by weight, and the balance being zirconia. The oxide of cerium contains trivalent cerium, and the zirconia has a crystal structure including a tetragonal phase. 1. A zirconia sintered body comprising an oxide of cerium in an amount of 0.5% by mole or more and less than 4% by mole in terms of CeO; yttria in an amount of 2% by mole or more and less than 6% by mole; an oxide of aluminum in an amount of 0.1% by weight or more and less than 2% by weight; and the balance being zirconia , wherein the oxide of cerium contains trivalent cerium , and the zirconia has a crystal structure including a tetragonal crystal.2. The zirconia sintered body according to claim 1 , wherein the oxide of aluminum comprises at least one selected from the group consisting of spinel (MgAlO) claim 1 , lanthanum aluminate (LaAlO) claim 1 , and aluminum oxide.3. The zirconia sintered body according to claim 1 , wherein crystal grains of zirconia have an average crystal grain size of 2 μm or less.4. The zirconia sintered body according to claim 1 , wherein a lightness L* is 20 or more claim 1 , a hue a* is 30 or more claim 1 , and a ratio of the hue a* to a hue b* satisfies 0.9≤a*/b* claim 1 , in an L*a*b* color system.5. A method for manufacturing the zirconia sintered body according to claim 1 , the method comprising sintering claim 1 , in a reducing atmosphere claim 1 , a compact containing yttria in an amount of 2% by mole or more and less than 6% by mole claim 1 , an oxide of cerium in an amount of 0.5% by mole or more and less than 4% by mole in terms of CeO claim 1 , an oxide of aluminum ...

Подробнее
19-08-2021 дата публикации

RAPID PYROLYSIS TO FORM SUPER IONIC CONDUCTING LITHIUM GARNETS

Номер: US20210253440A1
Принадлежит:

A method of preparing a lithium-ion conducting garnet via low-temperature solid-state synthesis is disclosed. The lithium-ion conducting garnet comprises a substantially phase pure aluminum-doped cubic lithium lanthanum zirconate (LiLaZrO). The method includes preparing nanoparticles comprising lanthanum zirconate (LaZrO-np) via pyrolysis-mediated reaction of lanthanum nitrate (La(NO)) and zirconium nitrate (Zr(NO)). The method also includes pyrolyzing a solid-state mixture comprising the LaZrO-np, lithium nitrate (LiNO), and aluminum nitrate (Al(NO)) to give the LiLaZrOand thereby prepare the lithium-ion conducting garnet. A lithium-ion conducting garnet prepared via the method is also disclosed. 1. A method of preparing a lithium-ion conducting garnet , said method comprising:{'sub': 2', '2', '7, 'preparing nanoparticles comprising lanthanum zirconate (LaZrO-np);'}{'sub': 2', '2', '7', '3', '3', '3, 'forming a solid-state mixture comprising the LaZrO-np, lithium nitrate (LiNO), and aluminum nitrate (Al(NO)); and'}{'sub': 7', '3', '2', '14, 'pyrolyzing the solid-state mixture to yield a cubic phase lithium lanthanum zirconate (LiLaZrO), thereby preparing the lithium-ion conducting garnet.'}2. The method of claim 1 , wherein preparing the LaZrO-np comprises reacting lanthanum nitrate (La(NO)) claim 1 , zirconium nitrate (Zr(NO)) claim 1 , and a combustion fuel selected from glycine and carbohydrazide via combustion reaction.3. The method of claim 2 , wherein reacting La(NO) claim 2 , Zr(NO) claim 2 , and the combustion fuel comprises:{'sub': 3', '3', '3', '4, 'combining La(NO), Zr(NO), and the combustion fuel to give a La/Zr nitrate mixture;'}dehydrating the La/Zr nitrate mixture to give a combustible solid-state La/Zr nitrate mixture; and{'sub': 2', '2', '7, 'pyrolyzing the solid-state La/Zr nitrate mixture to give the LaZrO-np.'}4. The method of claim 3 , wherein: (i) dehydrating the La/Zr nitrate is carried out at a temperature of 180° C.; (ii) pyrolyzing the ...

Подробнее
16-08-2018 дата публикации

METHODS FOR PROCESSING FUMED METALLIC OXIDES

Номер: US20180230015A1
Принадлежит: Saudi Arabian Oil Company

Novel methods for processing fumed metallic oxides into globular metallic oxide agglomerates are provided. The methodology may allow for fumed metallic oxide particles, such as fumed silica and fumed alumina particles, to be processed into a globular morphology to improve handling while retaining a desirable surface area. The processes may include providing fumed metallic oxide particles, combining the particles with a liquid carrier to form a suspension, atomizing the solution of suspended particles, and subjecting the atomized droplets to a temperature range sufficient to remove the liquid carrier from the droplets, to produce metallic oxide-containing agglomerations. 1. A method of producing metal oxide agglomerates , the method comprising:{'sup': '2', 'atomizing a solution comprising fumed metal oxide particles and a carrier liquid, the fumed metal oxide particles having a BET surface area of greater than or equal to 50 meters squared per gram (m/g), where atomizing the solution produces a plurality of droplets containing the fumed metal oxide particles;'}removing at least a portion of the carrier liquid from the droplets to produce a plurality of metal oxide agglomerates comprising a plurality of the fumed metal oxide particles agglomerated together, where the metal oxide agglomerates have a BET surface area that is at least 75% of the BET surface area of the fumed metal oxide particles prior to atomization.2. The method of claim 1 , in which the fumed metal oxide particles comprise fumed silica claim 1 , fumed alumina claim 1 , or combinations of these.3. The method of claim 1 , in which the fumed metal oxide particles have a dominant branched morphology comprising from 5 nm to 50 nm primary particles.4. The method of claim 1 , in which the fumed metal oxide particles have an average particle size of from 5 nm to 50 nm.5. The method of claim 1 , in which the fumed metal oxide particles have an average bulk density of less than 64 kilograms per cubic meter (kg/ ...

Подробнее
06-11-2014 дата публикации

Zirconia sintered body, zirconia composition and zirconia calcined body, and dental prosthesis

Номер: US20140328746A1
Принадлежит: Kuraray Noritake Dental Inc

Zirconia sintered body having similar appearance to natural tooth. On straight line extending in first direction from one end to the other end of zirconia sintered body, when chromaticity (L*, a*, b*) by a L*a*b* colorimetric system of first point positioned in section from the one end to 25% of the whole length is (L1, a1, b1) and chromaticity (L*, a*, b*) by L*a*b* colorimetric system of second point positioned in section from the other end to 25% of whole length is (L2, a2, b2), L1 ranges from 58.0 to 76.0, a1 ranges from −1.6 to 7.6, b1 ranges from 5.5 to 26.3, L2 ranges from 71.8 to 84.2, a2 ranges from −2.1 to 1.8, b2 ranges from 1.9 to 16.0, L1<L2, a1>a2, b1>b2, and tendency to increase or decrease chromaticity by the L*a*b* colorimetric system from first point to second point does not change.

Подробнее
01-08-2019 дата публикации

ZIRCONIA SOL AND METHOD FOR MANUFACTURING SAME

Номер: US20190233300A1
Принадлежит:

Provided are a zirconia sol having a transmittance of 45% or more at a wavelength of 400 nm, having a transmittance of 75% or more at a wavelength of 550 nm, and containing zirconia particles in an amount of 20 wt % or more, and a method for manufacturing the zirconia sol. 1. A zirconia sol ,wherein the zirconia sol has a transmittance of 45% or more at a wavelength of 400 nm, has a transmittance of 75% or more at a wavelength of 550 nm, and contains zirconia particles in an amount of 20 wt % or more.2. The zirconia sol according to claim 1 ,wherein the zirconia sol has a transmittance of 50% or more at a wavelength of 400 nm, and has a transmittance of 80% or more at a wavelength of 550 nm.3. The zirconia sol according to claim 1 ,wherein the zirconia sol contains an alkali metal oxide (M2O, M indicates an alkali metal) with respect to zirconia in an M2O/ZrO2 mole ratio of 0.02×10-2 or more and 0.4×10-2 or less.4. The zirconia sol according to claim 3 ,wherein the alkali metal M is Na.5. The zirconia sol according to claim 3 ,wherein the alkali metal M is Li.6. The zirconia sol according to claim 1 ,wherein the zirconia sol has a haze value of 12% or less.7. The zirconia sol according to claim 1 ,wherein the zirconia sol has an average particle size of 10 nm or less.8. The zirconia sol according to claim 1 ,wherein the zirconia sol includes a monoclinic phase and a tetragonal phase as a crystal phase of zirconia.9. The zirconia sol according to claim 1 ,wherein a dispersion medium contains aliphatic alcohols, polyhydric alcohols, aliphatic ketones, or a mixture of two or more of aliphatic alcohols, polyhydric alcohols, and aliphatic ketones.10. A method for manufacturing the zirconia sol according to claim 1 , comprising:a first step of heating an alkali metal solution to 60° C. or more;a second step of adding ⅓ to ⅔ of a defined addition amount of a zirconium salt solution to the solution obtained in the first step;a third step of aging the solution obtained in ...

Подробнее
01-08-2019 дата публикации

METHOD TO SELECTIVELY PATTERN A SURFACE FOR PLASMA RESISTANT COAT APPLICATIONS

Номер: US20190233658A1
Принадлежит:

A method for providing a part with a plasma resistant ceramic coating for use in a plasma processing chamber is provided. A patterned mask is placed on the part. A film is deposited over the part. The patterned mask is removed. A plasma resistant ceramic coating is applied on the part. 1. A method for providing a part with a plasma resistant ceramic coating for use in a plasma processing chamber , comprising:placing a patterned mask on the part;depositing a film over the part;removing the patterned mask; andapplying a plasma resistant ceramic coating on the part.2. The method claim 1 , as recited in claim 1 , further comprising removing the film after applying the plasma resistant ceramic coating on the part.3. The method claim 2 , as recited in claim 2 , wherein the removing the film removes part of the plasma resistant ceramic coating that is applied over the film.4. The method claim 1 , as recited in claim 1 , further comprising removing one or more parts of the plasma resistant ceramic coating that is deposited over the film.5. The method claim 1 , as recited in claim 1 , wherein the film is a molecular monolayer.6. The method claim 1 , as recited in claim 1 , wherein the film is a molecular monolayer or multilayer film formed from a precursor comprising a silane containing component or alternative thermally stable UV curable commercial blends.7. The method claim 6 , as recited in claim 6 , wherein the silane containing component further comprises a polymer containing component.8. The method claim 1 , as recited in claim 1 , wherein the film is a monolayer formed from a chemical precursor agent of at least one of a group comprising of hexamethyldisilazane (HMDS) claim 1 , alkoxysilanes and alkysilanes.9. The method claim 1 , as recited in claim 1 , wherein the film is a layer of inorganic material of at least one of a group of polysilicon claim 1 , silicon oxide claim 1 , or Ag.10. The method claim 1 , as recited in claim 1 , wherein the film has a thickness of ...

Подробнее
06-09-2018 дата публикации

Polycrystalline Oxide Having Improved Grain Boundary Proton Conductivity

Номер: US20180251381A1

Provided is a polycrystalline oxide having a chemical formula such as the following A 1−x B 1−y M y O 3 and having an improved grain boundary proton conductivity as an oxide having a perovskite structure. Through the present invention, the conductivity and chemical stability of proton conducting oxide may be improved.

Подробнее
07-09-2017 дата публикации

PRECURSORS AND METHODS FOR ATOMIC LAYER DEPOSITION OF TRANSITION METAL OXIDES

Номер: US20170253966A1
Принадлежит:

Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications. 1. A method for synthesizing a Zr or Hf compound , comprising:combining a catalyst and cycloheptatriene in a container comprising magnesium to form a reaction mixture in a solution;adding a transition metal precursor comprising Zr or Hf to the reaction mixture,wherein the Zr or Hf compound comprises one or more substituted Cp- or CHT-ligands.2. The method of claim 1 , wherein the transition metal precursor is a transition metal halide.3. The method of claim 1 , wherein the transition metal precursor is a transition metal halide THF adduct.4. The method of claim 1 , wherein the transition metal precursor is in solution with THF.5. The method of claim 1 , wherein the transition metal precursor is added to the reaction mixture over a one hour period.6. The method of claim 1 , wherein tetrahydrofuran (THF) is combined with the catalyst and cycloheptatriene in forming the reaction mixture.7. The method of claim 1 , wherein the catalyst is ferric chloride.8. The method of claim 1 , wherein the magnesium is in the form of magnesium chips or turnings.9. The method of claim 1 , wherein the Zr or Hf compound has the formula RCp-M-CHT claim 1 , where RCp represents substituted cyclopentadienyl claim 1 , CHT is cycloheptatrienyl and M is Zr or Hf.10. The method of claim 9 , wherein the compound is (MeCp)ZrCHT.11. The method of claim 1 , wherein the Zr or Hf compound has the formula (RRRRRRR)CHT-M-Cp(RRRRR) claim 1 ...

Подробнее
08-08-2019 дата публикации

METHOD OF RECOVERING METAL COMPOUNDS FROM SOLID OXIDE FUEL CELL SCRAP

Номер: US20190245216A1
Принадлежит:

A method of recovering metal compounds from solid oxide fuel cell scrap includes processing the solid oxide fuel cell scrap to form a powder, digesting the processed scrap, extracting lanthanum oxide and cerium oxide from a solution containing the digested processed scrap, extracting a zirconium compound from the solution after extracting the lanthanum oxide and cerium oxide, and extracting scandium compound from the solution extracting the zirconium compound from the solution. 1. A method of recovering metal compounds from solid oxide fuel cell scrap , the method comprising:processing the solid oxide fuel cell scrap to form a powder of processed scrap;digesting the processed scrap;extracting lanthanum oxide and cerium oxide from a solution containing the digested processed scrap;extracting a zirconium compound from the solution after extracting the lanthanum oxide and cerium oxide; andextracting scandium compound from the solution extracting the zirconium compound from the solution.2. The method of claim 1 , wherein:the fuel cell scrap comprises ceramic flakes;processing the solid oxide fuel cell scrap comprises milling or crushing the ceramic flakes to form the powder of the processed scrap;the powder of the processed scrap has an average particle size of less than about 100 μm; andthe digesting comprises mixing the processed scrap with an acid, while heating the processed scrap.3. The method of claim 2 , further comprising mixing the digested scrap with water to form the solution containing the digested processed scrap.4. The method of claim 1 , wherein extracting lanthanum oxide and cerium oxide comprises:adding a salt to the solution to form a precipitate comprising Ce and La;filtering the solution to separate the precipitate from a filtrate; and{'sub': 2', '3', '2, 'drying the precipitate to form a cake comprising LaOand CeO.'}5. The method of claim 4 , where the cake comprises claim 4 , based on the total weight of the cake:{'sub': '2', 'from about 5 wt % to ...

Подробнее
20-09-2018 дата публикации

ZIRCONIUM OXIDE NANOPARTICLES

Номер: US20180265372A1
Принадлежит: NIPPON SHOKUBAI CO., LTD.

An object of the present invention is to easily obtain zirconium oxide particles that contain a metallic element such as a rare earth oxide (preferably stabilized with a metallic element) and exhibit good dispersibility in organic media, without using an aqueous sulfate solution such as an aqueous solution of MgSO, or using a reduced amount of the aqueous sulfate solution. The present invention is a zirconium oxide nanoparticle coated with a first carboxylic acid that is at least one of primary carboxylic acids and secondary carboxylic acids and has 3 or more carbon atoms, wherein the zirconium oxide nanoparticle comprises at least one selected from the group M consisting of rare earth elements, Al, Fe, Co, Sn, Zn, In, Bi, Mn, Ni, and Cu. 1. A zirconium oxide nanoparticle coated with a first carboxylic acid that is at least one of primary carboxylic acids and secondary carboxylic acids and has 3 or more carbon atoms , whereinthe zirconium oxide nanoparticle comprises at least one selected from the group M consisting of rare earth elements, Al, Fe, Co, Sn, Zn, In, Bi, Mn, Ni, and Cu.2. The zirconium oxide nanoparticle according to claim 1 , wherein the first carboxylic acid is at least one selected from the group consisting of secondary carboxylic acids claim 1 , carboxylic acids in which at least one carbon atom other than one at α-position is branched claim 1 , and linear carboxylic acids having 4 to 20 carbon atoms.3. The zirconium oxide nanoparticle according to claim 1 , comprising at least one selected from the group consisting of Y claim 1 , Al claim 1 , La claim 1 , Ce and In claim 1 , among the elements belonging to the group M.4. The zirconium oxide nanoparticle according to claim 1 , comprising Y claim 1 , and further comprising at least one selected from the group consisting of Fe claim 1 , Co claim 1 , Mn claim 1 , Ni and Cu claim 1 , among the elements belonging to the group M.5. The zirconium oxide nanoparticle according to claim 1 , comprising at ...

Подробнее
22-09-2016 дата публикации

ELECTROCATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL

Номер: US20160276675A1
Принадлежит: SHOWA DENKO K.K.

Electrocatalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the electrocatalyst layers are also disclosed. 1. A process for production of an electrocatalyst layer comprising an electrocatalyst , the electrocatalyst comprising a metal oxide , and the process comprising a step of thermally decomposing a metal organic compound to give the metal oxide ,wherein the metal element forming the metal organic compound is one selected from the group consisting of niobium, titanium, tantalum and zirconium;wherein the metal organic compound is one selected from the group consisting of metal alkoxides, metal carboxylates, metal amides and metal/β-diketone complexes; andwherein the thermally decomposing is performed at a temperature in the range of 500 to 1000° C. for 1 to 10 hours.2. The process according to claim 1 , wherein the metal element forming the metal organic compound is niobium or titanium.3. The process according to claim 1 , wherein the electrocatalyst is obtained by crushing the metal oxide. This application is a continuation of application Ser. No. 12/675,711 filed Apr. 7, 2010, which is the national stage of PCT Application No. PCT/JP2008/064983, filed Aug. 22, 2008 and based upon and claims benefit of priority from Japanese Patent Application No. 2007-222436, filed Aug. 29, 2007, the entire contents of all of which are incorporated herein by reference.The present invention relates to electrocatalyst layers, membrane electrode assemblies and fuel cells.In fuel cells, a layer containing a catalyst for electrode (hereinafter, also the electrocatalyst) is usually provided on the surface of a cathode (air electrode) or an anode (fuel electrode). (Such layers are also referred to as the electrocatalyst layers hereinafter.)Typical electrocatalysts are platinum catalysts that are stable at high potential and have high catalytic performance. However, since platinum is ...

Подробнее
21-09-2017 дата публикации

DIELECTRIC COMPOSITION AND MULTILAYER CERAMIC CAPACITOR CONTAINING THE SAME

Номер: US20170271082A1
Принадлежит:

A multilayer ceramic capacitor includes a ceramic body including dielectric layers and first and second internal electrodes disposed to face each other with respective dielectric layers interposed therebetween; and first and second external electrodes disposed on outer surfaces of the ceramic body, wherein the dielectric layer contains zirconium (Zr), a Zr content is 2×Zr/(Ba+Ca+Ti+Zr) based on an atomic ratio, a first crystal grain is composed of a core part having a Zr content of 3.0 at % or less and a shell part having a Zr content of 4.0 to 15.0 at %, and a number fraction of the first crystal grain to all crystal grains in the dielectric layer is 4% or more.

Подробнее
28-09-2017 дата публикации

POWDER FOR SINTERING AND SINTERED BODY

Номер: US20170274452A1
Принадлежит:

The present invention relates to a powder for sintering containing a mixture of a metal powder and metal oxide particles having an average particle diameter of 5 nm or more and 200 nm or less, and to a sintered body. 1. A powder for sintering comprising a mixture comprising:a metal powder andmetal oxide particles having an average particle diameter of 5 nm or more and 200 nm or less.2. The powder for sintering according to claim 1 ,{'sub': 2', '3', '2', '2', '3', '2', '2, 'wherein the metal oxide particles comprise at least one metal oxide selected from the group consisting of AlO, MgO, ZrO, YO, CaO, SiO, and TiO, as a main component.'}3. The powder for sintering according to claim 1 ,wherein the metal oxide particles is added in an amount of 0.03% by mass or more and 0.7% by mass or less in the powder for sintering.4. The powder for sintering according to claim 1 ,wherein the metal oxide particles is made of a single metal oxide having a purity of 90% by mass or higher.5. A sintered body obtained by sintering a compact of the powder for sintering as described in . The present invention relates to a powder for sintering and a sintered body and more specifically relates to a powder for sintering containing a metal powder as a main component and used for producing a sintered body, and a sintered body produced by using such a powder for sintering.A sintered body obtained by molding a metal powder into a predetermined shape and then sintering the powder is used as a material for producing a metal part such as a machine part. In this case, in order to process the sintered body into a metal part having a predetermined shape, machining such as cutting is performed.The composition of a powder for sintering as a raw material has been studied in view of enhancing the machinability of the sintered body. For example, Patent Document 1 discloses a free-cutting sintered material obtained by adding a non-metal powder of glass, boron nitride, talc, or the like to a metal powder, ...

Подробнее
29-09-2016 дата публикации

METHOD OF LASER TREATING A ZIRCONIA SURFACE

Номер: US20160280560A1
Принадлежит:

A method of laser treating a zirconia surface can include surface texturing zirconia using a combination of ablation and melting. The method includes forming a carbon film on the zirconia surface and laser treating the carbon-coated zirconia surface. The carbon film can include titanium carbide (TiC) and boron carbide (BC), for example. The carbon film can include titanium carbide (TiC) and boron carbide (BC) in equal proportions. The carbon-coated surface can then be scanned with a nitrogen gas-assisted COlaser beam to form a laser-treated surface. The laser-treated surface can include ZrN compounds. The present method can enhance the surface properties of zirconia and improve the structural integrity of zirconia. 1. A method of laser treating a zirconia surface , comprising the steps of:providing a phenolic resin and hard particle mixture, the phenolic resin and hard particle mixture including a phenolic resin and a mixture of at least two chemically different hard particles;applying the phenolic resin and hard particle mixture to the zirconia surface to form a resin-coated zirconia surface;heating the resin-coated zirconia surface to form a carbon-coated zirconia surface, the carbon-coated zirconia surface including a carbon film; and{'sub': '2', 'scanning the carbon-coated zirconia surface with a nitrogen gas-assisted COlaser beam to provide a laser-treated surface, the laser-treated surface including ZrN.'}2. The method of laser treating a zirconia surface as recited in claim 1 , wherein the at least two chemically different hard particles include titanium carbide (TiC) and boron carbide (BC).3. The method of laser treating a zirconia surface as recited in claim 1 , wherein the hard particle mixture includes titanium carbide (TiC) and boron carbide (BC) in a ratio of about 3 wt % of TiC and 3 wt % of BC.4. The method of laser treating a zirconia surface as recited in claim 1 , wherein the carbon film has a thickness of about 40 μm.5. The method of laser ...

Подробнее
28-09-2017 дата публикации

METHOD FOR PRODUCING METAL OXIDES BY MEANS OF SPRAY PYROLYSIS

Номер: US20170275166A1
Принадлежит: EVONIK DEGUSSA GmbH

A process for producing a metal oxide powder proceeds by spray pyrolysis, in which a mixture comprising ammonia and an aerosol which is obtained by atomizing a solution containing a metal compound by means of an atomization gas is introduced into a high-temperature zone of a reaction space and reacted in an oxygen-containing atmosphere therein and the solids are subsequently separated off. 1. A process for producing a metal oxide powder by spray pyrolysis , said process comprising:introducing a mixture comprising ammonia and an aerosol which is obtained by atomizing a solution containing a metal compound by an atomization gasinto a high-temperature zone of a reaction space,reacting said mixture in an oxygen-containing atmosphere in said reaction space, andsubsequently separating the solids off.2. The process according to claim 1 , wherein{'sub': '3', 'the concentration of ammonia is 0.5-5.0 kg NH/kg of the metal used.'}3. The process according to claim 1 , wherein the high-temperature zone into which the mixture is introduced is a flame which is formed by the reaction of an oxygen-containing gas and a combustion gas.4. The process according to claim 3 , whereinthe flame and the mixture are at least partly spatially separated from one another within the reaction space.5. The process according to claim 4 , wherein{'sub': flame', 'mixture, 'the following applies to the ratio of mean velocity of the flame to mean velocity of the mixture: 2≦v/v≦10.'}6. The process according to claim 1 , wherein at least one metal compound is a nitrate.7. The process according to claim 1 , whereinthe metal component of the metal compounds is selected from the group consisting of Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Ga, Ge, Hf, In, Li, Mg, Mn, Mo, Nb, Ni, Pd, Rh, Ru, Sc, Si, Sn, Sr, Ta, Ti, V, Y and Zn. The invention relates to a process for producing metal oxides by means of spray pyrolysis.Spray pyrolysis and flame spray pyrolysis are established processes for producing metal oxides. ...

Подробнее
12-09-2019 дата публикации

COMPOSITE STRUCTURE, SEMICONDUCTOR MANUFACTURING APPARATUS AND DISPLAY MANUFACTURING APPARATUS PROVIDED WITH COMPOSITE STRUCTURE

Номер: US20190276368A1
Принадлежит:

Disclosed is provision of a ceramic coat having an excellent low-particle generation as well as a method for assessing the low-particle generation of the ceramic coat. A composite structure including a substrate and a structure which is formed on the substrate and has a surface, wherein the structure includes a polycrystalline ceramic and the composite structure has luminance Sa satisfying a specific value calculated from a TEM image analysis thereof, can be suitably used as an inner member of a semiconductor manufacturing apparatus required to have a low-particle generation. 1. A composite structure comprising a substrate and a structure provided on the substrate and having a surface;wherein the structure provided on the substrate comprises [{'sup': 21', '3, 'a hydrogen atom number per unit volume of the structure at a measurement depth of either 500 nm or 2 μm is 7×10atoms/cmor less, wherein the hydrogen atom number is measured by a dynamic-secondary ion mass spectrometry, or'}, 'a hydrogen atom concentration of the structure is 7 atom % or less, wherein the hydrogen atom concentration is measured by a hydrogen forward scattering spectrometry—a Rutherford backscattering spectrometry and a proton-hydrogen forward scattering spectrometry method., 'a polycrystalline ceramic; and either'}2. The composite structure according to claim 1 , wherein the hydrogen atom number per unit volume of the structure at a measurement depth of either 500 nm or 2 μm is 7×10atoms/cmor less claim 1 , wherein the hydrogen atom number is measured by a dynamic-secondary ion mass spectrometry and the hydrogen atom number per unit volume of the structure is 5×10atoms/cmor less.3. (canceled)4. A composite structure comprising a substrate and a structure provided on the substrate and having a surface; whereinthe structure comprises a polycrystalline ceramic; and eithera luminance Sa is 19 or less, whereinthe luminance Sa is calculated by a method comprising the steps of:(i) preparing a ...

Подробнее
11-10-2018 дата публикации

Battery with Novel Components

Номер: US20180294479A1
Принадлежит:

A battery cell having an anode or cathode comprising an acidified metal oxide (“AMO”) material, preferably in monodisperse nanoparticulate form 20 nm or less in size, having a pH<7 when suspended in a 5 wt % aqueous solution and a Hammett function H>−12, at least on its surface. 1. A battery cell comprising an anode , an electrolyte , and a cathode , wherein one of the anode or cathode comprises at least one solid metal oxide nanomaterial including a surface that is acidic but not superacidic , the surface having a pH<5 when re-suspended , after drying , in water at 5 wt % and a Hammet function H>−12.2. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial has at least one particle dimension <100 nm in size.3. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial has at least one particle dimension <20 nm in size.4. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial has at least one particle dimension <10 nm in size.5. The battery cell of claim 1 , wherein the solid metal oxide nanomaterial includes a substantially monodispersed nanoparticulate form.6. The battery cell of claim 1 , wherein the surface has a pH<4 when re-suspended claim 1 , after drying claim 1 , in water at 5 wt % and a Hammet function H>−12.7. The battery cell of claim 1 , wherein the surface has a pH<3 when re-suspended claim 1 , after drying claim 1 , in water at 5 wt % and a Hammet function H>−12.8. A battery cell having an electrode comprising at least one solid metal oxide material claim 1 , wherein the metal oxide is surface functionalized with a material that is substantially monodispersed and provides acidic electron withdrawing groups having a molecular weight of less than 200.9. The battery cell of claim 8 , wherein the material that surface functionalizes the surface of the metal oxide is acidic but not superacidic claim 8 , having a pH<7 when suspended in an aqueous solution at 5 wt % and a Hammet function H>−12.10. The battery ...

Подробнее
26-09-2019 дата публикации

ACIDIC ZIRCONIUM HYDROXIDE

Номер: US20190292066A1
Принадлежит:

This invention relates to azirconium hydroxideor zirconium oxide comprising, on an oxide basis, up to 30 wt % of a dopant comprising one or more of silicon, sulphate, phosphate, tungsten, niobium, aluminium, molybdenum, titanium or tin, and having acid sites, wherein the majority of the acid sites are Lewis acid sites. In addition, the invention relates to a catalyst, catalyst support or precursor, binder, functional binder, coating or sorbent comprising the zirconium hydroxide or zirconium oxide. The invention also relates to a process for preparing zirconium hydroxide, the process comprising the steps of:(a) dissolving a zirconium salt in an aqueous acid, (b) addingone or more complexing agents to the resulting solution or sol, the one or more complexing agents being an organic compound comprising at least one of the following functional groups: an amine, an organosulphate, a sulphonate, a hydroxyl, an ether or a carboxylic acid group, (c) heating the solution or sol formed in step (b), (d) adding a sulphating agent, and (e) adding a base to form a zirconium hydroxide, and (f) optionally adding a dopant. 1. A zirconium hydroxide or zirconium oxide comprising , on an oxide basis , up to 30 wt % of a dopant comprising one or more of silicon , sulphate , phosphate , tungsten , niobium , aluminium , molybdenum , titanium or tin , and having acid sites , wherein the majority of the acid sites are Lewis acid sites.2. The zirconium hydroxide or zirconium oxide as claimed in having more Lewis acid sites than Bronsted acid sites.3. The zirconium hydroxide as claimed in comprising claim 1 , on an oxide basis claim 1 , less than 0.1 wt % of a dopant comprising one or more of silicon claim 1 , sulphate claim 1 , phosphate claim 1 , tungsten claim 1 , niobium claim 1 , aluminium claim 1 , molybdenum claim 1 , titanium or tin claim 1 , wherein the zirconium hydroxide is porous and claim 1 , in relation to the pores having a pore diameter of up to 155 nm claim 1 , at least 70% ...

Подробнее
12-11-2015 дата публикации

ATOMICALLY THIN CRYSTALS AND FILMS AND PROCESS FOR MAKING SAME

Номер: US20150321916A1
Принадлежит:

The invention provides a process for exfoliating a 3-dimensional layered material to produce a 2-dimensional material, said process comprising the steps of mixing the layered material in a solvent to provide a mixture; applying energy, for example ultrasound, to said mixture, and removing the energy applied to the mixture, such that sedimentation of the 2-dimensional material out of solution as a weakly re-aggregated, exfoliated 2-dimensional material is produced. The invention provides a fast, simple and high yielding process for separating 3-dimensional layered materials into individual 2-dimensional layers or flakes, which do not strongly re-aggregate, without utilising hazardous solvents. 1. A process for exfoliating a 3-dimensional layered material to produce a 2-dimensional material said process comprising the steps of:mixing the layered material in water to provide a mixture;applying energy, for example ultrasound, to said mixture to exfoliate the 3-dimensional layered material and produce dispersed exfoliated 2-dimensional material; andremoving the energy applied to the mixture, such that sedimentation of the 2-dimensional material out of solution as a weakly re-aggregated, exfoliated 2-dimensional material is produced.2. A process according to claim 1 , further comprising the step of removing the water from the re-aggregated exfoliated 2-dimensional material to form a solid of re-aggregated exfoliated 2-dimensional material.3. A process according to claim 1 , further comprising the step of removing the water from the re-aggregated exfoliated 2-dimensional material to form a solid of re-aggregated exfoliated 2-dimensional material claim 1 , wherein the step of removing the water is by decantation claim 1 , vacuum filtration or accelerated evaporation.41. A process according to claim 1 , further comprising the step of removing the water from the re-aggregated exfoliated 2-dimensional material to form a solid of re-aggregated exfoliated 2-dimensional material ...

Подробнее
19-11-2015 дата публикации

Metal Oxide Nanoparticle Material

Номер: US20150329373A1
Принадлежит:

A zirconia nanoparticle material includes a zirconia nanoparticle and a carbonate coordinated on a surface of the zirconia nanoparticle. The carbonate is 1 to 10 parts by weight of the zirconia nanoparticle.

Подробнее
08-11-2018 дата публикации

STRUCTURED ZIRCONIUM SOLUTIONS

Номер: US20180319671A1
Принадлежит:

This invention relates to azirconium solution or sol comprising: (a) zirconium, (b) nitrate, acetate and/or chloride ions, and (c) one or more complexing agents being an organic compound comprising at least one of the following functional groups: an amine, an organosulphate, a sulphonate, a hydroxyl, an ether or a carboxylic acid group, wherein the molar ratio of components (a):(b) is 1:0.7 to 1:4.0, the molar ratio of components (a):(c) is 1:0.0005 to 1:0.1, and the pH of the zirconium solution or sol is less than 5. The invention also relates to a process for preparing a zirconium solution or sol, the process comprising the steps of: (a) dissolving a zirconium salt in nitric, acetic and/or hydrochloric acid, and (b) adding one or more complexing agents to the resulting solution, the one or more complexing agents being an organic compound comprising at least one of the following functional groups: an amine, an organosulphate, a sulphonate, a hydroxyl, an ether or a carboxylic acid group, and (c) heating the solution or sol to a temperature of at least 75° C. In addition, the invention relates to products formed from the zirconium solution or sol or obtainable by the process. 2. A zirconium solution or sol as claimed in wherein when the solution or sol comprises nitrate ions as component (b) claim 1 , the molar ratio of components (a):(b) is 1:0.8 to 1:2.0; when the solution or sol comprises acetate ions as component (b) claim 1 , the molar ratio of components (a):(b) is 1:1.5 to 1:4.0; and when the solution or sol comprises chloride ions as component (b) claim 1 , the molar ratio of components (a):(b) is 1:0.7 to 1:2.2.3. A zirconium solution or sol as claimed in claim 1 , comprising nitrate ions as component (b).4. A zirconium solution or sol as claimed in having a refractive index of at least 1.34.5. A zirconium solution or sol as claimed in claim 1 , wherein the conductivity in mS/cm is at least 10% higher after being heated to a temperature of 94° C. at a ...

Подробнее
16-11-2017 дата публикации

Methods of making metal-oxides and uses thereof for water treatment and energy applications

Номер: US20170327389A1
Принадлежит: UNIVERSITY OF CALIFORNIA

The disclosure provides relates to compositions and methods for water treatment. It also addresses a method for synthesizing TiO 2 (and other metal oxides) with or without dopants. This method enables control over size, phase, morphology and porosity and specific surface area of these materials. The disclosure also provides metal oxide composites that can be used in photocatalysts, photovoltaics, and solar hydrogen applications.

Подробнее
24-10-2019 дата публикации

KNIFE

Номер: US20190321992A1
Автор: NISHIHARA Takanori
Принадлежит:

A knife may include a blade having a first side face and a second side face. The blade may include zirconia as a main component, and include a cutting region including at least a ridge portion between the first side face and the second side face. When a portion including the cutting region in the first side face is referred to as a first cutting face, and a portion including the cutting region in the second side face is referred to as a second cutting face, the proportion of cubic crystals of zirconia in the first cutting face may be larger than the proportion of cubic crystals of zirconia in the second cutting face. 1. A knife comprising:a blade having a first side face and a second side face, the blade comprises zirconia as a main component, and has a cutting region comprising at least a ridge portion between the first side face and the second side face, and', 'when a portion comprising the cutting region in the first side face is referred to as a first cutting face, and a portion comprising the cutting region in the second side face is referred to as a second cutting face, a proportion of cubic crystals of zirconia in the first cutting face is larger than a proportion of cubic crystals of zirconia in the second cutting face., 'wherein'}2. The knife according to claim 1 , whereina proportion of cubic crystals of zirconia in the first side face is greater than a proportion of cubic crystals of zirconia in the second side face.3. The knife according to claim 1 , whereinthe first cutting face has a higher hardness than a hardness of the second cutting face.4. The knife according to claim 1 , whereinthe first side face has a higher hardness than a hardness of the second side face.5. The knife according to claim 1 , whereinthe blade has a layered first portion comprising the first side face and a second portion including the second side face.6. The knife according to claim 1 , whereinthe first side face is black and the second side face is white. This application is a ...

Подробнее
15-10-2020 дата публикации

HIERARCHICAL POROUS ZRO2 MATERIAL, METHOD OF PREPARING THE SAME, AND APPLICATION THEREOF

Номер: US20200325035A1

A method for preparing a hierarchical porous ZrOincludes the following steps: S, dissolving a triblock copolymer in an organic solvent to obtain a solution A, dissolving a tannin extract in distilled water to obtain a solution B, mixing the solution A and the solution B and stirring to obtain a mixed solution; S, adding a zirconium salt to the mixed solution obtained in step S and stirring; S, heating the mixed solution obtained in step S in an oven to obtain ZrO, promoting the conversion of the crystal form of ZrO; S, calcining ZrOat a high temperature to obtain the hierarchical porous ZrO. 1. A method for preparing a hierarchical porous ZrOcomprising the following steps:{'b': '1', 'S, dissolving a triblock copolymer in an organic solvent to obtain a solution A, dissolving a tannin extract in distilled water to obtain a solution B, mixing the solution A and the solution B and stirring to obtain a mixed solution;'}{'b': 2', '1, 'S, adding a zirconium salt to the mixed solution obtained in step S and stirring;'}{'b': 3', '2, 'sub': 2', '2, 'S, heating the mixed solution obtained in step S in an oven to obtain ZrO, promoting the conversion of the crystal form of ZrO; and'}{'b': '4', 'sub': 2', '2, 'S, calcining ZrOat a high temperature to obtain the hierarchical porous ZrO.'}2. The method of claim 1 , wherein the triblock copolymer is Pluronic P123 claim 1 , Pluronic F127 or Pluronic F108.3Acacia mangim. The method of claim 1 , wherein the tannin extract is a sulfonated tannin extract.4. The method of claim 1 , wherein the zirconium salt is zirconium chloride claim 1 , zirconium sulfate claim 1 , zirconium nitrate claim 1 , zirconium phosphate claim 1 , or zirconium oxalate.5. The method of claim 1 , wherein the organic solvent is methanol claim 1 , ethanol claim 1 , ethylene glycol claim 1 , or glycerin.6. The method of claim 1 , wherein a molar ratio of the triblock copolymer:the tannin extract:the zirconium salt is 0.015-0.05:0.01-0.05:0.1-1.0.7234. The method of ...

Подробнее
31-10-2019 дата публикации

COLD CRUCIBLE COMPRISING METAL OXIDE BARRIER AND METHOD FOR MANUFACTURING SAME

Номер: US20190331422A1
Принадлежит:

A metal oxide barrier and a connecting method for solving the problems in which sectors of an existing cold crucible are connected by means of a mica plate and the mica plate is damaged due to arcing and the like and in which the sectors are strongly connected by means of the mica plate and thus are difficult to replace and maintain. A cold crucible, comprising a metal oxide barrier, according to the present invention can prevent arcing, enables reduction of damage on the edge part of a water cooling sector due to a molten material and thus enhances durability. Moreover, the metal oxide barrier can easily be replaced compared to an existing mica plate and thus enables easy maintenance and repair.

Подробнее
13-12-2018 дата публикации

POLISHING COMPOSITION, METHOD FOR PRODUCING SAME, AND POLISHING METHOD

Номер: US20180355212A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

The present invention is a polishing composition, containing zirconium oxide as abrasive grains, the polishing composition having pH of 11.0 or more and less than 12.5, the zirconium oxide having element concentrations of sodium, magnesium, aluminum, potassium, calcium, titanium, chromium, iron, manganese, nickel, copper, zinc, lead, and cobalt of less than 1 ppm each. There can be provided a polishing composition that enables semiconductor substrates having high flatness not only in the inner circumferential portion but also in the outer circumferential portion with little contamination due to metal impurities to be obtained at high productivity. 1. A polishing composition , comprising zirconium oxide as abrasive grains ,the polishing composition having pH of 11.0 or more and less than 12.5, the zirconium oxide having element concentrations of sodium, magnesium, aluminum, potassium, calcium, titanium, chromium, iron, manganese, nickel, copper, zinc, lead, and cobalt of less than 1 ppm each.2. The polishing composition according to claim 1 , wherein the content of the zirconium oxide is 0.1 to 10 mass % with respect to the whole polishing composition.3. The polishing composition according to claim 1 , further comprising either or both of a nonionic surfactant and an anionic surfactant as a water-soluble polymer.412-. (canceled)13. The polishing composition according to claim 2 , further comprising either or both of a nonionic surfactant and an anionic surfactant as a water-soluble polymer.14. The polishing composition according to claim 3 , wherein the polishing composition comprises one or more compounds selected from the group consisting of polyvinyl pyrrolidone claim 3 , polyvinyl alcohol claim 3 , polyacrylamide claim 3 , polyethylene glycol claim 3 , polyoxyethylene alkyl ether claim 3 , and polyether as the nonionic surfactant.15. The polishing composition according to claim 13 , wherein the polishing composition comprises one or more compounds selected from ...

Подробнее
31-12-2015 дата публикации

SEMICONDUCTOR DEVICE AND DIELECTRIC FILM

Номер: US20150380641A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

A semiconductor device according to an embodiment includes a first conductive layer, a second conductive layer, and a dielectric film provided between the first and the second conductive layers. The dielectric film including a fluorite-type crystal and a positive ion site includes Hf and/or Zr, and a negative ion site includes O. In the dielectric film, parameters a, b, c, p, x, y, z, u, v and w satisfy a predetermined relation. The axis length of the a-axis, b-axis and c-axis of the original unit cell is a, b, and c, respectively. An axis in a direction with no reversal symmetry is c-axis, a stacking direction of atomic planes of two kinds formed by negative ions disposed at different positions is a-axis, the remainder is b-axis. The parameters x, y, z, u, v and w are values represented using the parameter p. 1. A semiconductor device comprising:a first conductive layer;a second conductive layer; anda dielectric film provided between the first conductive layer and the second conductive layer, the dielectric film including a fluorite-type crystal, whereina positive ion site of the fluorite-type crystal includes at least one of Hf (hafnium) and Zr (zirconium), and a negative ion site of the fluorite-type crystal includes O (oxygen), and [{'br': None, 'i': x=', 'p×p−', 'p+, '0.0000077293×0.00091484×0.50556\u2003\u2003(1)'}, {'br': None, 'i': y=', 'p×p−', 'p+, '0.0000089659×0.00082246×0.52512\u2003\u2003(2)'}, {'br': None, 'i': z=−', 'p×p−', 'p+, '0.000012625×0.00045149×0.50696\u2003\u2003(3)'}, {'br': None, 'i': u=−', 'p×p+', 'p+, '0.000042665×0.00097971×1.0028\u2003\u2003(4)'}, {'br': None, 'i': v=−', 'p+, '0.00032701×0.96306\u2003\u2003(5)'}, {'br': None, 'i': w=−', 'p×p+', 'p+, '0.000042194×0.00068404×0.96543\u2003\u2003(6)'}, {'br': None, 'i': 'x−a≦', '−0.0074≦0.026\u2003\u2003(7)'}, {'br': None, 'i': 'y−b≦', '−0.0075≦0.026\u2003\u2003(8)'}, {'br': None, 'i': 'z−c≦', '−0.0056≦0.006\u2003\u2003(9)'}, {'br': None, 'i': 'u−c÷a≦', '−0.063≦0.0055\u2003\u2003(10)'}, {' ...

Подробнее
28-12-2017 дата публикации

HYBRID ORGANIC-INORGANIC NANO-PARTICLES

Номер: US20170368525A1
Принадлежит:

The invention relates to a method of making hybrid organic-inorganic core-shell nano-particles, comprising the steps of a) providing colloidal organic particles comprising a synthetic polyampholyte as a template; b) adding at least one inorganic oxide precursor; and c) forming a shell layer from the precursor on the template to result in core-shell nano-particles. With this method it is possible to make colloidal organic template particles having an average particle size in the range of 10 to 300 nm; which size can be controlled by the comonomer composition of the polyampholyte, and/or by selecting dispersion conditions. 1. Hybrid organic-inorganic core-shell nano-particles obtained by a method comprising the steps of:a) forming colloidal organic particles as a template;b) adding at least one inorganic oxide precursor; andc) forming an inorganic shell layer from the precursor on the template to result in core-shell nano-particles.2. The core-shell nano-particles according to claim 1 , wherein the colloidal organic particles formed according to step a) are based on an organic synthetic polyampholyte and have an average particle size of 5-500 nm as measured by Dynamic Light Scattering (DLS) by copolymerizing monomers comprised of:(i) 8-20 mole % of at least one monomer M1 selected from the group consisting of amino-functional (meth)acrylates and (meth)acrylamides;(ii) 1-4 mole % of at least one monomer M2 selected from (meth)acrylic monomers with a carboxylic acid group; and(iii) 76-91 mole % of at least one monomer M3 selected from C1-C18 alkyl (meth)acrylates.3. The core-shell nano-particles according to further comprising a functional compound.4. A coating composition for making an anti-reflective layer on a substrate claim 1 , wherein the coating composition comprises the core-shell nano-particles according to claim 1 , at least one solvent and optionally at least one binder.5. The coating composition according to claim 4 , wherein the binder is at least one ...

Подробнее
19-11-2020 дата публикации

Surface-modified metal compound particles, and method for producing surface-modified metal compound particles

Номер: US20200362175A1
Автор: Fumiyuki TAKASAKI
Принадлежит: Daiichi Kigenso Kagaku Kogyo Co Ltd

These surface-modified metal compound particles have metal compound particles the surfaces of which are modified by: at least one first carboxylic acid selected from the group consisting of a methacrylic acid, an acrylic acid, and a propionic acid; and at least one second carboxylic acid selected from the group consisting of a C6-C16 fatty acid and a C7-C32 monovalent carboxylic acid having at least one benzene ring, wherein at least a portion of the first carboxylic acid is a carboxylic acid type in which a hydrogen atom of the carboxy group is not dissociated as an ion.

Подробнее
05-12-2019 дата публикации

METHOD FOR PRODUCING INORGANIC OXIDE IN FORM OF THIN FILM

Номер: US20190367363A1
Автор: ODA Tsuyoshi, ONISHI Ryo
Принадлежит: KAO CORPORATION

Provided is a method for producing an inorganic oxide in the form of a thin film, the method including a step of bringing a first liquid and a second liquid into contact with each other, the first liquid having an inorganic oxide precursor dissolved therein, the second liquid phase-separating from the first liquid and having a substance dissolved therein, the substance reacting with the inorganic oxide precursor of the first liquid to form an inorganic oxide derived from the inorganic oxide precursor. The segment size of the first liquid at the time of contact between the first and second liquids is 500 μm or smaller. 1. A method for producing an inorganic oxide in a form of a thin film , the method comprisingbringing a first liquid and a second liquid into contact with each other, the first liquid having an inorganic oxide precursor dissolved therein, the second liquid phase-separating from the first liquid and having a substance dissolved therein, and the substance reacting with the inorganic oxide precursor of the first liquid to form an inorganic oxide derived from the inorganic oxide precursor,wherein a segment size of the first liquid at a time of contact between the first and second liquids is 500 μm or smaller.2. The method of claim 1 , whereinthe bringing the first liquid and the second liquid into contact with each other is performed by continuous operation.3. The method of claim 2 , whereina mode of contact between the first and second liquids includes a mode of supplying moving one of the first and second liquids with another to bring the first and second liquids into contact with each other.4. The method of claim 3 , whereinthe mode of contact between the first and second liquids includes a mode of supplying transported one of the first and second liquids with another to bring the first and second liquids into contact with each other.5. The method of claim 3 , whereinthe mode of contact between the first and second liquids includes a mode of supplying ...

Подробнее
19-12-2019 дата публикации

Precursors and methods for atomic layer deposition of transition metal oxides

Номер: US20190382887A1
Принадлежит: ASM International NV

Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.

Подробнее
15-09-2005 дата публикации

Amphiphilic nanoparticles

Номер: DE102004009287A1

Die vorliegende Erfindung beschreibt amphiphile, nonoskalige Teilchen, die auf der Oberfläche hydrolysierbare Gruppen aufweisen, die lipophil sind, Verfahren zur Herstellung amphiphiler, nanoskaliger Teilchen und Zusammensetzungen, die diese amphiphile, nanoskalige Teilchen enthalten. The present invention describes amphiphilic, non-ocular particles having on the surface hydrolyzable groups which are lipophilic, methods of making amphiphilic nanoscale particles, and compositions containing these amphiphilic nanoscale particles.

Подробнее