Office de la Propriete Canadian CA 2481569 A1 2003/10/30

Intellectuelle Intellectual Property
du Canada Office (21) 2 481 569
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2003/04/16 (51) CLInt.”/Int.CI.” HO4L 9/00, GOBF 12/14

(87) Date publication PCT/PCT Publication Date: 2003/10/30 | (71) Demandeur/Applicant:
: : - _ INTERNATIONAL BUSINESS MACHINES
(85) Entree phase nationale/National Entry: 2004/10/06 CORPORATION. US
(86) N° demande PCT/PCT Application No.: US 2003/011907
(72) Inventeurs/Inventors:
(87) N publication PCT/PCT Publication No.: 2003/090402 FOSTER, ERIC M.. US:

(30) Priorité/Priority: 2002/04/18 (10/125 803) US HALL, WILLIAM E., US;
ROSU. MARCEL-CATALIN, US

(74) Agent: HOICKA, LEONORA

(54) Titre : OPERATION SECURISEE D'INITIALISATION, DE MAINTIEN, DE MISE A JOUR ET DE RECUPERATION
DANS UN SYSTEME INTEGRE UTILISANT UNE FONCTION DE CONTROLE D'ACCES AUX DONNEES

(54) Title: INITIALIZING, MAINTAINING, UPDATING AND RECOVERING SECURE OPERATION WITHIN AN
INTEGRATED SYSTEM EMPLOYING A DATA ACCESS CONTROL FUNCTION

e SECURE MEMORY SUBSYSTEM <00
ACCESS CONTROL NON=VOLATILE
MASTER #1 ' ' | MEMORY
(PROCESSOR) SECURITY EXTERNAL 260
STATE 240} " gys | —
210, MACHINE CONTROLLER SECURE
f <4< -. (SLAVE #1) =
FPERSISTENT m
BUS INTEGRITY . '
- -2-@3 CONTROL CHECK
(OPTIONAL) 220 282 264

<45

MASTER #3 na
230 VOLATILE
210z ACCESS TABLE <70 MEMORY
I 248 280
MASTER #n |
210,

(57) Abréegée/Abstract:

Techniques are provided for Initializing, maintaining, updating and recovering secure operation within an integrated system (200).
"he technigues, which employ a data access control function (240) within the integrated system (200), include authenticating by a
current level of software a next level of software within an integrated system. The authenticating occurs before control is passed to
the next level of software. Further, an abllity of the next level of f software to modify an operational characteristic of the integrated
system can be selectively limited via the data access control function (240). Technigues are also provided for Initializing secure
operation of the integrated system (200), for migrating data encrypted using a first key set to data encrypted using a second key
set, for updating software and keys within the integrated system (200), and for recovering integrated system (200) functionality
following a trigger event.

ENCRYPTION
DECRYPTION

MEMORY
CONTROLLER SECURE
(SLAVE #2)

249

282 284

"ﬁk' """
T e g
R -:::: .- "y

I*I . . P, 2 A e
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC S g ammw
B N R ANT

OPIC - CIPO 191 R R

CA 02481569 2004-10-06

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

30 October 2003 (30.10.2003)

(51) International Patent Classification”:
GO6F 12/14

(21) International Application Number:
(22) International Filing Date:

PCT

H04L 9/00,

PCT/US03/11907
16 April 2003 (16.04.2003)

(10) International Publication Number

WO 03/090402 Al

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

(25) Filing Language: English SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
(26) Publication Language: English VN, XU, 2A, ZM, ZW.
(30) Priority Data: 84) Designated States (regional): ARIPO patent (GH, GM,
P
10/125,303 18 April 2002 (18.04.2002) US KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(71) Applicant: INTERNATIONAL BUSINESS MA- E“mia“ peieni (Ag[f ‘;‘%’ %é KC?I %hé]; %‘é’ ’IT)JI;T%%
CHINES CORPORATION [US/US]; New Orchard E‘gmglea;ﬁagg (GR= D o vy
Road, Armonk, NJ 10504 (US). P T ’ P S S
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
(72) Inventors: FOSTER, Eric, M.; 41 Front Street, Owego, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
NY 13827 (US). HALL, William, E.; 8 White Oak Drive,
Clinton, CT 06413 (US) ROSU, Marcel-cataliﬂ; Build- Published:
ing 1, Apt. &, Briarcliff Drive South, Ossining, NY 10562 with international search report
(US).
(74) Agent: SCHNURMANN, Daniel, H.; International Busi- For two-letter codes and other abbreviations, refer to the "Guid-

ness Machines Corporation, Dept.

18G/Bldg. 300-482,
2070 Route 52, Hopewell Junction, NY 12533 (US).

ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: INITIALIZING, MAINTAINING, UPDATING AND RECOVERING SECURE OPERATION WITHIN AN INTE-
GRATED SYSTEM EMPLOYING A DATA ACCESS CONTROL FUNCTION

090402 Al

INTEGRATED SECURE MEMORY SUBSYSTEM ~—200
== CCESS CONTROL | NON-VOLATILE
MASTER #1 A MEMORY
(PROCESSOR) ||| s%%%tgv EXTgL'ngL 260
<2104 M MACHINE CONTROLLER SECURE
242 (SLAVE §1)
B PERSISTENT
MASTER #2 STORAGE 250
. 431 —_
1 BUS INTEGRITY
210z CONTROL CHECK
| (OPTIONAL) 220 262 264
MASTER #3 230 245 T
2105 ‘] = e 270 il
. 248 | 280
: ' coﬁ?&%ﬁm SECURE
- ENCRYPTION
MASTER #n DECRYPTION (SLAVE #2) .
> <43 OPEN
210, -
282 284

(57) Abstract: Techniques are provided for initializing, maintaining, updating and recovering secure operation within an integrated
system (200). The techniques, which employ a data access control function (240) within the integrated system (200), include authen-

. ticating by a current level of software a next level of software within an integrated system. The authenticating occurs before control

is passed to the next level of software. Further, an ability of the next level of f software to modify an operational characteristic of the
integrated system can be selectively limited via the data access control function (240). Techniques are also provided for initializing
secure operation of the integrated system (200), for migrating data encrypted using a first key set to data encrypted using a second
key set, for updating software and keys within the integrated system (200), and for recovering integrated system (200) functionality
following a trigger event.

O
=

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

INITIALIZING, MAINTAINING, UPDATING AND RECOVERING
SECURE OPERATION WITHIN AN INTEGRATED SYSTEM
EMPLOYING A DATA ACCESS CONTROL FUNCTION

Cross-Reference to Related Applications

- This application contains subject matter which is related to the subject matter of
the following applications, each of which is assigned to the same assignee as this application

and filed on the same day as this application. Each of the below listed applications is hereby

incorporated herein by reference in its entirety:

— “Control Function Employing a Requesting Master ID and a Data Address to

Qualify Data Access Within an Integrated System”, by Evans et al., U.S. Senal
No. 10/125,803, filed 18 Apr 2002.

—~ “Control Function with Multiple Security States for Facilitating Secure Operation

of an Integrated System”, by Foster et al., U.S. Serial No. 10/125,115, filed 18
Apr 2002. |

- “Control Function Implementing Selective Transparent Data Authentication

Within an Integrated System”, by Foster et al., U.S. Serial No. 10/125,708, filed
18 Apr 2002.

Technical Field

This invention relates generally to data request handling and transfer of data
within an integrated system, and more particularly, to techniques, implemented at least
partially via a data access control function of an integrated system, for initializing, maintaining,

updating and recovering secure operation of the integrated system.

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

Background Art

Multiple master functions are today being commonly integrated onto a single
system chip. When initially defining an architecture for the integration of multiple discrete
components onto a single chip, access to external devices can be an issue. For example, an
MPEG video decoder system often employs external memory for various data areas, or buffers

such as frame buffers. This external memory is conventionally implemented using either
DRAM or SDRAM technology.

Two approaches are typical in the art for accessing off-chip devices. In a first
approach, each on- chip functional unit is given access to the needed external device(s)
through a data bus dedicated to that particular unit. Although locally efficient for accessing
the external device, globally within the integrated system this approach is less than optimal.
For example, although each function will have complete access to its own external memory
area, there 1s no shared access between functions of the integrated system. Thus, transferring
data from one memory area to another memory area of the system is often needed. This
obviously increases data transfers and can degrade performance of the overall system, i.e.,

compared with a shared memory system.

Another approach is to employ a single common bus within the integrated system
which allows one or more functional units of the system to communicate to external devices
through a single port. Although allowing the sharing of devices, one difficulty with this
approach concerns controlling access to content or other sensitive data in the integrated
system. For example, when using a large common memory pool in an integrated design, it
becomes difficult to prevent unauthorized access to protected memory spaces, such as
compressed data supplied by a transport demultiplexer to a decoder of a set-top box. This is
especially true for a system where the programming interface is open and outside development
1s encouraged. Each of the functional masters should be able to access the memory space and

it 1s not possible to differentiate whether an access is from a trusted master or an outside

request, e.g., coming through an untrusted or open master.

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

In addition, when working with a system-on-chip design with multiple functional
masters using shared memory, it is desirable to provide a mechanism for protecting the data
from unauthorized access, particularly when the data comprises the device’s system
programming code. More particularly, facilitating initialization of a secure operating
environment begins by ensuring that the system code is secure and performs the functions
intended. In order to guarantee a secure operating environment, therefore, the integrated

system should be activated or booted in a secure mode.

In view of the above, various needs exist in the art for enhanced data access
control approaches for an integrated system. More particularly, needs exist for techniques to

initialize, maintain, update and recover secure operation of an integrated system.

Disclosure of Invention

The shortcomings of the prior art are overcome and additional advantages are
provided through the provision of a method for facilitating secure operation of an integrated
device having multiple levels of software. The method includes: authenticating by a current
level of software, a next level of software of the multiple levels of software before passing
control of the integrated system to the next level of software; and limiting ability of the next
level of software to modify an operational characteristic of the integrated system, wherein the

limiting is implemented via a data access control function of the integrated system.

In another aspect, a method of imitializing secure operation of an integrated system
s provided. This method includes: generating at least one key for the integrated system;
loading initial code into the integrated system, the loading including using the at least one key
to encrypt the initial code via a data access control function of the integrated system; and

reinitializing the integrated system using the encrypted initial code.

In still another aspect, a method is provided for migrating data encrypted using a

first key set to data encrypted using a second key set. This method includes: decrypting data

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

encrypted using the first key set; and re- encrypting, by a data access control function within

the integrated system, the data using a second key set. Advantageously, by re-encrypting

using the data access control function, the encryption of the data is unique to the integrated

system.

In a further aspect, a method of recovering integrated system functionality
following a trigger event is provided. This method includes automatically establishing a
reduced level of functionality within the integrated system following a tamper detection trigger
event, and allowing for full functional recovery of the integrated system through a user

selectively employing a trusted recovery procedure.

Systems and computer program products corresponding to the above-summarized

methods are also disclosed herein.

Advantageously, the secure operation techniques disclosed herein can be used to
intialize, maintain, update and/or recover a secure operating environment within an integrated
system. More particularly, the techniques presented provide an ability to limit updates to
operational characteristics maintained by a data access control function. The operational
characteristics may include one or more of a key set, an access table, an access level, and
access parameters employed by difterent levels of software within the integrated system. This

ability to limit updates provides the different levels of software with hierarchical security

privileges.

The techniques presented herein further provide an ability to make updates in the
field in a secure manner, including the use of version numbers to prevent replay of an older
version of software or other data. Also presented is an ability to migrate encrypted data from
a first key set to a second key set as part of a key management process, and/or for importing
protected data from other systems. Further, an ability to provide functionality is described,
notwithstanding that the integrated system has entered a tamper triggered state. Specifically,
limited functionality with no access to secret data and applications can be automatically

provided, as well as a mechanism for recovering full functionality with limited service facility

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

dependency.

Additional features and advantages are realized through the techniques of the
present invention. Other embodiments and aspects of the invention are described in detail

herein and are considered a part of the claimed invention.

Brief Description of Drawings

The subject matter which is regarded as the invention is particularly pointed out
and distinctly claimed in the claims at the conclusion of the specification. The foregoing and
other objects, features, and advantages of the invention are apparent from the following

detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 depicts one example of a typical integrated device employing common

memory access through a memory subsystem;

FIG. 2 depicts one embodiment of an access control function implemented within

a secure memory subsystem of an integrated device, in accordance with an aspect of the

present invention;

FIG. 3 illustrates a problem recognized and addressed by the secure operating

techniques described herein, in accordance with an aspect of the present invention;

FIG. 4 depicts one embodiment of a technique for facilitating secure operation of

an integrated device having multiple levels of software, in accordance with an aspect of the

present invention;

FIG. 5 depicts one embodiment of a process applying the techniques of FIG. 4 to
an access table associated with a data access control function of an integrated system, in

accordance with an aspect of the present invention;

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

FIG. 6 depicts one embodiment of a process for loading code into an integrated

system, 1n accordance with an aspect of the present invention;

FIG. 7A depicts one example of a process for initially storing encrypted boot code

In an integrated system, in accordance with an aspect of the present invention;

FIG. 7B depicts one example of a process for copying the encrypted code stored

by the process of FIG. 7A from volatile memory to non-volatile memory, in accordance with

an aspect of the present invention;

FIG. 8 depicts one embodiment of a process for authenticating levels of software
and passing control between levels of software, as well as for updating boot code when a boot

code update 1s available, in accordance with an aspect of the present invention;

FIG. 9 depicts one embodiment of initialization signals passing between

components of an integrated system with an access control function in a secured state, in

accordance with an aspect of the present invention;

FIG. 10 depicts one embodiment of a process for securely updating a level of
software within an integrated system having multiple levels of software, in accordance with an

aspect of the present invention;

FIG. 11 depicts one embodiment of a process for managing and updating a key set
employed by a data access control function of an integrated systems, in accordance with an

aspect of the present invention;

FI1G. 12A depicts one embodiment of a process for receiving encrypted data for

storage within an integrated system, in accordance with an aspect of the present invention;

FIG. 12B depicts one embodiment of a process for retrieving the stored encrypted

data of FIG. 12A and decrypting the data in software using secure code, in accordance with an

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

aspect of the present invention;

FIG. 12C depicts one embodiment of a process for re-encrypting the decrypted
data using access control hardware for storage in secure memory, in accordance with an aspect

of the present invention; and

FIG. 13 depicts one embodiment of a process for recovering integrated circuit
functionality following a tamper trigger event occurring within a computing environment of

the integrated system, in accordance with an aspect of the present invention.

Best Mode for Carrying Out the invention

FIG. 1 depicts a conventional integrated device, generally denoted 100, having
multiple internal functional masters 110,, 110,, 110, ... 110_. Master 110, is shown as a
processor, having a processor core 112 and a memory management unit 114. Internal masters
110,, 110,, 1105 ... 110, connect in this example to a memory subsystem 120, which includes
bus control logic 130 of a shared bus. Those skilled in the art will understand that although

shown within the memory subsystem, bus control 130 could alternatively reside outside of

subsystem 120.

Bus control umt 130 coordinates and consolidates requests to slaves in the
integrated device. For example, a first slave might comprise an external bus controller 140
which 1s connected to an external non-volatile memory 150, such as flash memory, having an
open memory portion 155. A second slave, memory controller 160 connects to external
volatile memory 170, such as SDRAM or DRAM. Memory 170 includes an open memory
portion 175. In general, functions share a common memory pool in this integrated design in
order to minimize memory costs, and to facilitate transfer of data between functions. As such,

all internal masters have equal access to both non-volatile and volatile memory, and both

storage spaces are labeled open, meaning that there are no limits on data access.

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

Typically, non-volatile memory is used for persistent storage, wherein data should

be retained even when power is removed. This memory may contain the boot code, operating
code, such as the operating system and drivers, and any persistent data structures. Volatile

memory 1s used for session oriented storage, and generally contains application data as well as
data structures of other masters. Since volatile memory is faster than non- volatile memory, it

1S common to move operating code to volatile memory and execute instructions from there

when the integrated device is operational.

Note that in a typical system such as presented in FIG. 1, there are several security

risks. Namely,

1. The behavior of the processor can be controlled by modifying the operating code

or data structures, and internal data or operation can be compromised.

2. In certain cases, such as a communication controller, etc., an internal master can

be controlled by an external source, and can be used to compromise internal code

or data since memory 1s shared.

3. Debug and development tools that are used in software development can be used

to modify or monitor the processor’s behavior.

4 A given master can unintentionally corrupt or compromise the operation of

another internal master since memory is shared.

The solution presented herein to the above-noted security risks involves providing
an access control function disposed within the data path between the bus control and the slave
devices. This access control function can use (in one embodiment) characteristics of the
internal bus that connects the functional masters to the slave devices to allow each request for
access to be further qualified based on a set of secure control information, and if desired, to be
prevented. Advantageously, this access control function provides the ability to differentiate

accesses by which master is making the data request, as well as where the data is stored, and

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

then to either grant or limit access accordingly, or to otherwise qualify the access. Additional
access control functionality is also described herein in accordance with other aspects of the

present invention.

FIG. 2 illustrates one embodiment of a system, generally denoted 200, which
includes an access control function 240 in accordance with an aspect of the present invention.
System 200 again includes multiple functional masters 210, ... 210, which communicate via a
bus control 230 with one or more slaves 250 & 270. In this case, access control function 240
intercedes in the data path between bus control 230 and slaves 250 & 270. As an alternate
embodiment, bus control unit 230 could reside outside of the secure memory subsystem unit.
As shown, a first slave device comprises an external bus controller 250, and a second slave
device comprises a memory controller 270. In this context, the combination of the bus control
unit, access control unit and external controllers form the secure memory subsystem 220. As a
result, the external address space defined as non-volatile memory 260 and volatile memory 280
can be further divided into open area 262 and secure area 264, as well as open area 282 and
secure area 284, respectively. In this use, “secure” imphes that masters 210, ... 210, can only

access a space as defined in the access control unit 240. Note that the access control function

controls all accesses to both open and secure areas.

A detailed description of the access control function of unit 240 is included in the
above-incorporated application entitled “Control Function Employing A Requesting Master ID
And A Data Address To Qualify Data Access Within An Integrated System”. Further, the
above- incorporated application describes in detail the use of an access table 248 and an
encryption/decryption function 249 in qualifying requests for data based on an access level of

the functional master requesting the data and the address of the data requested.

Briefly described, a request from a master granted control by the bus control unit
1S sent to the access control unit, along with the requested address and associated controls
(e.g., read or write, etc.). The access table is used by the access control function to compare
the requested address, master id, and read or write indicator to a definition of allowed access

capability for that master. The given request can either be blocked (terminated), allowed in

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

the clear, or allowed with encryption/decryption. If the requested transfer is allowable, then
the bus signals are propagated to the slaves, and access parameters associated with the request
based on the access table are sent to the encryption/decryption engine, i.e., if
encryption/decryption is applicable. The encryption/decryption engine can be used to encrypt
write data as the data is transferred to a given slave, or decrypt read data as the data is

returned from a given slave using the associated access parameters.

In addition to the functions of qualifying data access based on the requesting
master 1d and the address of the request, the concept of adding a security state machine 242 to
the access control function to, for example, control operation of the access table 248 and
encryption/decryption function 249 is described in the above-incorporated application entitled
“Control Function With Multiple Security States For Facilitating Secure Operation Of An
Integrated System”. On-chip storage 243 is also used in conjunction with the security state
machine 242 to hold a substitute boot address 245 and a master key set 246. This storage is
persistent in that values are retained even when general power is removed. As a result, once

initialized, these values can be used from sesston to session until specifically reset or erased

with a change in security state as described hereinbelow.

The security state machine of the data access control function can be one state of
multiple possible security states, including a null state and a secured state. In the secured
state, the control function replaces a standard boot code address associated with the request

for boot code with a substitute boot code address. The substitute boot code address addresses

an encrypted version of boot code, which is then decrypted by the control function employing

a master key set held in the persistent storage. When in the null state, the master key set is

erased.

As a turther enhancement of the above-described data access control function, the
concept of adding a control capability to selectively authenticate requested data is described in
the above-incorporated application entitled “Control Function Implementing Selective
Transparent Data Authentication Within An Integrated System”. This selective authentication

can be transparent to the functional master of the integrated device initiating the data request.

10

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

The requested data can either comprise code or data that is stored in encrypted form in
external memory. (Note that “data” is generically used herein in places, including the claims,
to refer to code or data.) While the encryption capabilities of the above-described data access
control function prevent direct observation and modification of data, the integrity check
function adds the ability to further verify that the encrypted value is the same value that was

written to memory originally.

In one embodiment, an integrity check function in accordance with an aspect of
the present invention works in conjunction with the access table and access parameters
described in the above-incorporated applications. Address ranges that are to be associated
with authenticated data can be indicated by an additional parameter in the access table. The
integrity check function 245 determines the location of integrity values in memory based on
the requested data transfer, and also calculates and compares the integrity values as described

below.

Briefly summarized, the processes can be divided into pre-storage and

post-storage steps, for example:

Pre-Storage

Generate a first integrity check value which is a mathematically condensed version

of the data to be secured and authenticated.

Encrypt the data and encrypt the first integrity check value.

Store the encrypted integrity value and store the encrypted data in memory.

Post-Storage

Retrieve and decrypt the integnity value, and retrieve and decrypt the encrypted

data from memory.

11

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

Generate a second integrity check value using the same function as employed in

generating the first integrity check value.

Compare the first and second integnty check values. If they match, the data is

authenticated. Otherwise, the data has been corrupted and corrective action

should be taken.

The integrity check function 245 may optionally be employed in combination with the

enhanced, secure operation concepts for an integrated system described hereinbelow.

FIG. 3 1s a representation of the levels of software used in a typical integrated
device. As shown, the hardware 300 of the device is the base on which the software levels
operate. Boot code 310 runs when the device is first turned on and performs initialization
functions using initialization data 312. The kernel 320, abstracted as level 1, is called by the
boot code after initialization. Kernel 320 provides operating system services and resources,
including general system settings 322 and registrations 324. One or more levels of software
are then called in succession including middleware and service functions 330 such as network
services, file management, media handling, etc. that work with software access controls or
passwords 332 and keys 334. Application software 340 resides atop the middleware and

service software level 330, and works with user data such as personal information 342 and

other content 344

FIG. 3 illustrates one challenge in providing security for an integrated device or
system. As a general rule, the closer the software level is to the underlying hardware, the
more secure or trusted the software 1s. However, in contrast, the closer the software level is

to a user, such as an application, the more valuable the data is. This leads to the least secure

software protecting the most valuable data.

F1G. 4 depicts an approach to providing security in an integrated system. Starting

with the hardware 400, each level of software is authenticated by the underlying level. In the

case of boot code 410, it is authenticated through the use of decryption and a master key set in

12

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

the hardware, as defined in the above-incorporated applications, where boot code (or
initialization code) is stored in encrypted form in external memory. Also, after authentication
and prior to passing control to the next level of software 420, 430, 440, etc., each preceding
level may limit the ability of the next level to control or modify the system. Therefore, as each

level 1s loaded, each level is verified and the ability to effect the security of the system may be

further restricted.

FIG. S illustrates an implementation of the approach shown in FIG. 4 in the
context of an integrated system such as described in FIG. 2. More particularly, this
implementation is through the use of the access control function described above, and in the
above-incorporated applications. The boot code 400 is authenticated by the hardware as
descrnibed above, and so i1s considered the most trusted level of sofiware. The boot code is
able to tully configure the access control function, including the key sets used in decryption,
the address table that defines how addresses are translated, the access level that specifies the
allowed transactions based on master 1d and address range, and also the access parameters that
define how the request is processed. Again, all of this information is maintained by the access

control function described above.

Prior to passing control to the next level of software, i1.e., level one 410, the boot
code, in this example, hides the key values so they are not directly visible to software and also
locks the address table and the access level entries (both contained within the access table) so
that they cannot be modified by the next level of software. However, in this example, the
access parameters can still be updated at this next level. Note that hiding can be accomplished
in hardware by preventing read access, and locking can be accomplished in hardware by
preventing write access. Those skilled in the art will understand that there are multiple ways
of controlling (or locking) access to the registers of the access control unit, such as enforcing
the use of privileged instructions, connecting the registers to on-chip private busses only,

memory-mapping the registers and limiting the access to the registers using existing settings in

the access control unit, etc.

As shown, prior to passing control to a least trusted software level 440, the last

13

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

operational characteristics depicted of the access control function, i.e., the access parameters,

are locked so that they cannot be modified.

FIG. 6 depicts one embodiment of a process for initializing a secure operating
environment for an integrated device that has been assembled into a computing system. As
shown, the integrated device is assembled into a larger system 605, and power is applied 610.
The entire system or computing environment 1s moved to a physically secure environment 600
associated with the system manufacturer where the integrated device undergoes configuration
for secure operation. In particular, the security mode is advanced 612, secret keys are
generated 615, and the keys and substitute boot address are loaded in persistent storage 620
associated with the data access control function of the device. Note that the secret keys can
either be provided by the manufacturer or generated by the integrated device itself. In the

latter case, the keys may be optimally held in escrow.

The access table 1s next configured 625 so that data written to volatile memory
will be encrypted with the master key set and use the non-volatile memory address for
whitening, as described below in connection with FIGS. 7A & 7B. Data read from volatile
memory will not be cryptographically processed and will remain unchanged. The access table

s also configured so that data written to non- volatile memory will be unchanged.

The boot code is then loaded through a debug interface (see FIGS. 7A & 7B) and
encrypted by the data access control function using the master key set as the data is written to
volatile memory 630. The code is then copied from volatile memory to non-volatile memory
without decryption thereof 635, as explained further below. Lastly, the integrated device is
configured for secured mode 640, as described in the above-incorporated applications. Note

that the result of this processing is that the encryption is unique to the particular integrated

system.

At this point, the computing system can be removed from the physically secure
location 600. The system is then re-booted using the loaded secure boot code 645, which can

then be used to load additional code if desired in a secure manner through the use of

14

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

encryption with self-generated key values 650. The final step in the process of FIG. 6 is to
test and ship the computing system 655.

FIG. 7A further depicts processing 630 of FIG. 6. (Note that FIG. 7A and certain
subsequent figures are a simplified depiction of the integrated system of FIG. 2, wherein the
bus control and slave elements are omitted for clarity.) As shown, a debug interface or
Integrated development environment (IDE) can be used to load unencrypted boot code into
the integrated device, which has been configured for secure operation. Integrated device 200
encrypts the boot code 249 using the internal master key, stored in persistent storage 243 of
access control function 240, and writes the encrypted boot code 700 to a defined location in
volatile memory 280. Note that the encrypted boot code is first written to volatile memory
because non- volatile memory, such as flash memory, requires multiple operations to write a
given data value and so could not be implemented as a block operation. Since the encrypted
boot code 700 is to be later copied to another location in external memory, the access table
248 entry associated with the encryption operation is configured to use the ultimate address

location in non-volatile memory as the value for whitening. Whitening is described further in

one or more of the above-incorporated applications.

FIG. 7B 1illustrates process 635 for copying, for example, by processor 210,, the
encrypted boot code from volatile memory to non-volatile memory 260. Since the boot code
1s already encrypted with the master key set and the non-volatile memory address for
whitening, the boot code does not require any cryptographic transformation and is copied

directly into the non-volatile memory without undergoing decryption.

FIG. 8 depicts a flowchart of one initialization process in accordance with an
aspect of the present invention. Beginning with the boot procedure 800, the integrated device
turns on 805 and i1ssues a boot request which is redirected by the data access control function
using the substitute boot address 810. The encrypted code fetched from memory is decrypted
by the data access control function using the master key set 815. Among the first instructions
executed, a check 1s made to see if an updated boot code image is available 820. This check

should be done during the boot procedure itself since no other level of software may be

15

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

authorized to make changes to the boot code.

If there is no update, the boot code generates the runtime keys to be used for the
given session that is starting 825. Note that if there are data structures from previous sessions
that must be used, the boot code can also retrieve encrypted key values that had been stored
by the previous session. The boot code then authenticates the next level of software using
established techniques to mathematically process the software image in memory to arrive at a
unique digest or hash value and then compare the result to an expected value 830. This can be
accomplished in software using the secure boot code. In addition to authorization, the boot
code can also limit the ability of the next level of software to modify or even observe the
security settings and the operational characteristics associated with the access control function.
With both authentication and locking of security functions complete, control is passed to the
next level of software 835. If this is a final level 840, then the process of loading software is
complete and secure operation of the device can begin 845. If there are additional levels, the
task of authenticating the next level and optionally locking security functions is performed

again, and the loop continues until all levels are loaded.

If there 1s an update for the boot code, then from inquiry 820 the boot update
procedure 850 1s followed. First, the current boot code (i.e., the code which was running
when the device was first turned on) is used to authenticate and decrypt the new boot code
image 855. Note that the new image may have been transmitted to the system in an encrypted
form that 1s different than that used by the integrated device internally. In such a case, the
boot code performs a decryption step in software. The running boot code then writes the new
boot code to memory using the access control function to encrypt the new code with the
master key set of the integrated device in the same manner as when the system was first
assembled 860. However, the new boot code image is written to a separate location than the
running boot code so that if the system is unexpectedly interrupted during the procedure, the
running boot code is complete and operational in memory. Once the new boot code image is
completely authenticated and written to non- volatile memory, the running boot code updates

the substitute boot address to point to the new boot code image 865. Once the update is

completed, the system is restarted 870 and goes back to the beginning of the boot procedure

16

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

800. In an extension of this process, one or more levels of code other than the boot or
initialization code may be added as required by a level of software having a higher security

privilege. For example, the boot code could be used to update the kernel.

As an extension to the boot update procedure 850, a new version number can be
assoctated with the new boot code image 860. This requires that a version number parameter
be added to the values that are stored in on-chip persistent memory associated with the data
access control function, as described in one or more of the above- incorporated applications.
Again, the verston number is used to perform the whitening procedure as part of the
decryption of the first instructions. The advantage of including a version number for the boot
code image 1s that it prevents an attacker from reusing an older boot code image by merely

making a copy and then replaying it.

FIG. 9 depicts processing within an integrated system which is started using the
boot processing of FIG. 8. When the main power for the integrated device is turned on, a first
action 1s for processor 210, to request data (boot code) from a predefined address. This
external data request is passed to the data access control function 240, which identifies the
request as a boot code request based on the address, and replaces all or part of the address
with a substitute boot address contained in the control function’s persistent storage 243. The
modified request then continues to external memory 260. The substitute boot address is
defined to point to a section of memory that contains code that has been previously encrypted
using the master key set. This encrypted code 710 resides in a secure region of non- volatile
memory 260. The encrypted code is returned to the access control unit which has been
configured, based on the substitute boot address, to decrypt the returned data using the master
key set. The decrypted (and secure) boot code is then returned to the processor for execution.

The above steps are repeated as the processor executes the boot code sequence.

FIG. 10 depicts a process for accepting code updates while the integrated system

1s running. This update check procedure 1000 starts with the system running in secure
operation mode 1005. Based on a conditional event, such as an internal periodic time trigger

or external notification, etc., the system checks 1010 to see if an update is available 1015. If

17

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

“no”, then the integrated system returns to the previous secure operation state and continues.
If an update 1s available, then the update can be downloaded using secure network protocols
1020 as established in the industry. Alternatively, the update could be read from fixed media.
The current level of software then determines whether it is authorized to make the update

requested 1025. As described above, a given level of software can only be authenticated by

software of equal or higher level of authority.

If the current level of software is not authorized to make the update, then the
software marks that an update is available and stores the update for use by the correct level of
software when that level 1s next in control of the integrated device. Note that this generally

requires storage in non-volatile memory so that the update is available for the next session.

If the current level of software is authorized, then update procedure 1050 is
followed. This procedure includes authenticating and decrypting the update using the
processes described above for updating boot code. However, it is not required to encrypt the
update with the master key set. Rather, a runtime key can be employed instead. Also, the
version number for the update does not need to be stored in on-chip persistent memory, but
could be encrypted and stored in external secure memory since it will be loaded by the boot

code 1060. Next, the authentication values are updated for use in verifying the updated code

before loading during system initialization.

FIG. 11 depicts a process for managing keys and updating keys as required. In
general, this process employs the data access control function as a means of migrating from

one encryption form to another.

Excessive usage of a secret key on a unique data block adds to the number of
samples potentially available for cryptoanalysis. To protect a secret key, therefore, the number
of samples employing the key should be limited. The limit depends upon the type of analysis
an attacker may use and on the strength of the encryption algorithm, keys, and physical

shielding employed. In today’s technology, it is impractical to count accurately the number of

times a secret key is used on unique data blocks. A close approximation to this counting,

18

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

which would require the amount of storage per key set, would be to use a counter to record
the number of write operations per key set, with the count being greater or equal to the
number of unique samples created. As a less effective approximation, read and write

operations could both be counted, but this would not mean that the count threshold could be

Increased.

As shown for the key management procedure 1100, runtime keys are generated
(as described above in connection with the boot procedure) for use during a single session or
across sessions 1105. At the same time, a key usage counter is initialized with a given
threshold. This counter can be implemented in software, but is more advantageously
implemented in hardware as part of the access control function since the information needed to
drive the counter is available. Further, the counter can be associated with the on-chip
persistent storage so that the count is maintained between sessions, or software can be used to
capture the result, encrypt it, and store the result when the system is turned off, and then

reload the count when the system is started again.

Control 1s optionally passed to the next level of software 1110. Note that the
current level of software could alternatively continue and use the key directly. The key usage
counter 1s incremented for each time the key is used to write encrypted data 1120. It could

optionally be used to monitor read events but only in addition to write events, not in place of

them.

At some point, the key usage counter will exceed the threshold 1125. When this
occurs, if the same level of software is operating as initially generated the key, then the key
update procedure 1150 is called 1130. If the current level of software is different, then the
system returns to the level of software that originally generated the key and from there calls

the key update procedure 1135.

The key update procedure 1150 employs the access control function to facilitate
migrating from one key set to another. The access table of the access control function is first

modified so that the current location of the data to be migrated is defined for decryption using

19

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

the old key set, and the new location of the data is defined for encryption with the new key set

1155. Note that since the access table can be used to do address translation, the internal
masters of the integrated system can see the current and new data locations as separate
address ranges in memory, while the external requests after address translation could define

both locations to be the same address range. This allows a given block to be read from its

existing location, and then written back to the same location.

Using the new access table definitions, the data is then read from its current
location and written to its new location, effectively re-encrypting the data with the new key set
1160. The access table 1s then again modified so that the new location is defined for

encryption and decryption with the new key set 1165, and all references to the old key set and

associated data locations are deleted 1170.

FIGS. 12A-12C illustrate a related technique for migrating data provided by an
outside source from one encryption form to another. In this case, the outside encryption form
could be a different algorithm and key set than the internal encryption approach. As shown in
FIG. 12A, data 1s recetved, in this case through communication port 1200, from an outside
source encrypted with an outside algorithm. The access control function 240 is defined to
store this outside data directly in external memory 280 with no modifications. As shown in
FIG. 12B, processor 210, then reads the outside data into its cache in blocks, and decrypts a
given block using software for the decryption. Once decrypted, the clear block is then written
to external memory 280 as shown in FIG. 12C. However, the access control function is
configured to encrypt the data using the internal algorithm and key set. The result of this
process is that all data received from the outside is converted to an encrypted form that is
unique and controlled by this one integrated device. This provides the advantage of preserving

the security of encrypted data, while taking advantage of the hardware acceleration of the

access control function.

FIG. 13 depicts one embodiment of a process used to recover secure operation of
an integrated system, after the integrated system is in use in the field and a tamper event has

triggered the system to transition from secured state to a null state as described in one or more

20

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

of the above-incorporated applications. As shown, by the boot procedure after being triggered
1300, the integrated system 1s turned on 1305 after the tamper event and the boot request is
no longer redirected 1310. Unencrypted code is run from the standard boot address to
initialize the system 1315. The initialized system operates with a reduced level of functionality
such that access 1s no longer provided to secure data or applications 1325. Alternatively, an

attempt to recover original integrated system functionality could be made 1320.

If an integrated system owner chooses to attempt a full recovery, then the
integrated system is taken to an authorized service center which comprises a secured physical
location 1350. The service center uses debug tools (see FIG. 7A) to load unencrypted

initialization code, which includes restoration boot code and also the manufacturer’s public
key 1355. -

The integrated system is then restarted to execute the initialization code, which
will first generate a new master key set and then write the master key set into on- chip
persistent storage associated with the data access control function 1360. The access control
function 1s then configured to encrypt the restoration boot code using the master key set as
described above in connection with FIG. 7A. The location of the new boot code is written
into the substitute boot address field. The boot code then generates internally a public/private
key pair, and securely stores the private key in non-volatile memory. The generated public key
1s encrypted using the manufacturer’s public key (previously supplied with the initialization
code), and returned to the service center, which then forwards it to the manufacturer 1365. At

this point, the integrated system can be removed from the secured physical location 1350.

The system is restarted and the restoration boot code is executed 1370. The
initialized system will establish a secure network connection to the manufacturer 1375, and
then using known techniques, the data and code needed to reestablish the original functionality

of the system can be downloaded and installed on the integrated system 1380.

To summarize, methods, systems and computer program products for initializing,

maintaining, updating and recovering secure operation within an integrated system are

21

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

described herein. These techniques employ a data access control function within the
integrated system. The systems and computer program products may be broadly summarized

as set forth below.

Provided herein in one aspect is a system for facilitating secure operation of an
integrated system having multiple levels of software. This system includes means for
authenticating, by a current level of software, a next level of software of the multiple levels of
software before passing control of the integrated system to the next level of software. A data
access controller 1s also provided which includes means for limiting the ability of the next level

of software to modify an operational characteristic of the integrated system.

A system for initializing secure operation of an integrated system is also provided
in another aspect. This system includes means for generating at least one key for the
integrated system, and a data access control function within the integrated system. The data
access control function receives initial code into the integrated system and encrypts the initial
code using the at least one key. The initializing system further includes means for reinitializing

the integrated system using the encrypted initial code.

A system for migrating data encrypted using a first key set to data encrypted using
a second key set 1s additionally provided. This system includes means for decrypting within
the integrated system data encrypted using a first key set; and a data access control function

within the integrated system, which includes means for re- encrypting the data using a second

key set.

In another aspect, a system for recovering integrated system functionality
following a trigger event is described herein. This system includes means for automatically
establishing a reduced level of functionality within the integrated system, as well as means for

allowing full functional recovery of the integrated system through selective use of a designated

recovery procedure.

In another aspect, at least one program storage device readable by a machine,

22

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

tangibly embodying at least one program of instructions executable by the machine to perform

a method of facilitating secure operation of an integrated system having multiple levels of
software 1s provided. This method includes authenticating, by a current level of software, a
next level of software of the multiple levels of software before passing control of the
integrated system to the next level of software; and limiting ability of the next level of software
to modify an operational characteristic of the integrated system, the limiting being

implemented by a data access control function of the integrated system.

In still another aspect, at least one program storage device readable by a machine,
tangibly embodying at least one program of instructions executable by the machine is provided
to perform a method of initializing secure operation of an integrated system. The method
includes generating at least one key for the integrated system; loading initial code into the
integrated system, the loading including using the at least one key to encrypt the initial code
via a data access control function of the integrated system; and reinitializing the integrated

system using the encrypted initial code.

In yet another aspect, at least one program storage device readable by a machine,
tangibly embodying at least one program of instructions executable by the machine is provided
to perform a method of migrating data encrypted using a first key set to data encrypted using a
second key set. The method includes: decrypting data encrypted using a first key set; and

re-encrypting, by a data access control function within an integrated system, the data using a

second key set.

In a further aspect, at least one program storage device readable by a machine,
tangibly embodying at least one program of instructions executable by the machine is provided
to perform a method of recovering integrated system functionality following a trigger event.
This method includes: automatically establishing a reduced level of functionality within the

integrated system; and allowing for full functional recovery of the integrated system by

employing a selective recovery procedure.

Those skilled in the art will note from the above discussion that the present

23

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

invention can be included in an article of manufacture (e.g., one or more computer program
products) having, for instance, computer usable media. The media has embodied therein, for
instance, computer readable program code means for providing and facilitating the capabilities
of the present invention. The article of manufacture can be included as a part of a computer

system or sold separately.

Additionally, at least one program storage device readable by a machine, tangibly

embodying at least one program of instructions executable by the machine to perform the

capabilities of the present invention can be provided.

The flow diagrams depicted herein are just examples. There may be many
variations to these diagrams or the steps (or operations) described therein without departing
from the spirit of the invention. For instance, the steps may be performed in a differing order,
or steps may be added, deleted or modified. All of these variations are considered a part of the

claimed invention.

Although preterred embodiments have been depicted and described in detail
herein, 1t will be apparent to those skilled in the relevant art that various modifications,
additions, substitutions and the like can be made without departing from the spirit of the

invention and these are therefore considered to be within the scope of the invention as defined

in the following claims.

Industrial Applicability

The present invention finds wide applicability in secure integrated systems

handling sensitive data that needs to be encrypted prior to being handled and migrated.

24

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

What 1s claimed is:

1. A method of facilitating secure operation of an integrated system having multiple

levels of software, said method comprising;

authenticating, by a current level of software, a next level of software of the

multiple levels of software before passing control of the integrated system to the next level of

software; and

limiting ability of the next level of software to modify an operational characteristic

of the integrated system, said limiting being implemented at a data access control function of

the integrated system.

2. The method of claim 1, wherein the limiting comprises limiting ability of the next
level of software to modify at least one of a key set(s), an access table(s), an access level(s)

and an access parameter(s) maintained by the data access control function.

3. The method of claim 2, wherein said controlling comprises at least one of hiding

the key set(s) or locking access to the access table(s), the access level(s) or the access

parameter(s) maintained by the data access control function.

4. The method of claim 1, further comprising authenticating initialization code to be

employed in initializing secure operation of the integrated system, said authentication of the
initialization code being performed by said data access control function of the integrated

system.

5. The method of claim 1, in combination with a method for updating a level of

software, said method for updating the level of software comprising:

determining a software level update is available;

determining the current level of software is authorized to authenticate the updated

235

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

level of software, and if so, proceeding to accept the software level update into the integrated

system employing the data access control function.

6. The method of claim 5, wherein the updated level of software comprises an

initialization code update, and wherein the method further includes:

authenticating and decrypting the initialization code update;

\

encrypting the decrypted initialization code update with a master key set

maintained by the data access control function and a new version number; and

updating an initialization re-direction address maintained by the data access

control function to a new, updated initialization location address.

7. The method of claim 5, wherein if the current level of software is unable to

authenticate the software level update, then the software level update is held at the integrated

system until an appropriate level of software is running and able to authenticate the software

level update.

8. The method of claim 5, wherein the proceeding to accept the software level
update into the integrated system comprises encrypting for storage the software level update,

the encrypting comprising employing a new version number when encrypting the software

level update.

9. A method of initializing secure operation of an integrated system, said method

comprising;

generating at least one key for the integrated system;

loading initial code into the integrated system, the loading including using the at

least one key to encrypt the initial code via a data access control function of the integrated

system; and

26

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

reinitializing the integrated system using the encrypted initial code.

10. The method of claim 9, wherein the generating comprises generating within the

integrated system the at least one key.

11. The method of claim 9, wherein the data access control function comprises a

hardware component of the integrated system.

12. The method of claim 9, further comprising loading additional code into the

integrated system using the encrypted initial code.

13. The method of claim 12, wherein the loading of additional code includes utilizing
the encrypted initial code to implement random key generation within the integrated system for

use in encrypting the additional code by the data access control function.

14. The method of claim 9, wherein the loading further includes encrypting the initial

code using the at least one key and a memory address for whitening.

15. A method of migrating data encrypted using a first key set to data encrypted using

a second key set, said method comprising:

decrypting data encrypted using a first key set; and

re-encrypting, by a data access control function within an integrated system, the

data using a second key set.

16. The method of claim 15, wherein the data access control function comprises a

hardware component of the integrated system.

17. The method of claim 15, wherein the decrypting is also performed by the data

access control function of the integrated circuit.

27

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

18. The method of claim 15, further comprising retrieving for decryption, from

storage associated with the integrated system, the data encrypted using the first key set.

19. The method of claim 15, further comprising modifying at least one operational
characteristic associated with the data access control function, said at least one operational
characteristic residing in an access table employed by the data access control function, and
wherein the modifying includes modifying the access table to indicate that encrypted data in a

current location is to be decrypted using the first key set, and is to be re-encrypted using the

second key set when undergoing storage to a new data location.

20. The method of claim 15, wherein the decrypting and re-encrypting are responsive
to the first key set having been used a predetermined count for at least one of encrypting and
decrypting data, and wherein the method further comprises counting a number of times the

first key set 1s employed in the at least one of encrypting and decrypting of data.

21. The method of claim 20, wherein the counting comprises employing a key usage

counter maintained by the data access control function of the integrated system.

22. The method of claim 15, wherein the data encrypted using the first key set 1s

received from a source external to the integrated system.

23. The method of claim 22, wherein the decrypting is performed in software within

the integrated system, and wherein the re-encrypting, by the data access control function, is

performed in hardware of the integrated system.

24 The method of claim 23, wherein the second key set is unique to the integrated
system.
25. A method of recovering integrated system functionality following a trigger event,

said method comprising:

28

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

automatically establishing a reduced level of functionality within the integrated

system; and

allowing for full functional recovery of the integrated system by employing a

selective recovery procedure.

26. The method of claim 25, wherein the recovery procedure includes loading

initialization code into the integrated system at a secure physical location.

27. The method of claim 26, wherein the loading of initialization code further
comprises loading unencrypted initialization code into the integrated system, including

restoration 1nitialization code, and wherein the method further comprises:

executing the restoration initialization code to obtain a master key and a substitute

initialization address:

encrypting the restoration initialization code with the master key and storing the

encrypted initialization code at the substitute initialization address; and

reinitializing the integrated system using the stored encrypted initialization code at

the substitute initialization address.

28. The method of claim 27, further comprising storing the master key and the
substitute initialization address in persistent storage associated with a data access control

function of the integrated system.

29. The method of claim 27, wherein the initialization code further comprises a

manufacturer’s public key, and wherein the method further comprises:
generating at the integrated system a public/private key pair;

securely storing the integrated system’s private key; and

29

CA 02481569 2004-10-06
WO 03/090402 PCT/US03/11907

encrypting the integrated system’s public key using the manufacturers public key.

30. The method of claim 29, further comprising establishing a secure network
connection between the integrated system and manufacturer, the establishing employing the
generated public/private key pair, and downloading across the secure network connection

required code and data to reestablish full functionality of the integrated system.
31. The method of claim 25, wherein the automatically establishing the reduced level

of functionality within the integrated system includes limiting access to secure code and data

within the integrated system.

30

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

1/16

(L¥V ¥OINd)

L by

AYONW3N
3 ULYTOA

04}
00!

AJONINW
JULVYTOA—NON

061
Oc't

(Z# 3AVIS)
Y371708LINOD

AHONIN

091

(L# 3AVIS)

¥3TI0YLNOD
SNg

TYNS3LX3

7]

N3LSASENS

T04LNOD
sng

os!

AHOWIN

Yol
uf# ¥ILISYN

Eo1L
cf ¥3ILSYWN

{11

botLr
Z# H3LSVYN g Gt

3402

ININJOVNYIA
AJONWIN

¥0SS3704d

(4OSS3008d) L# ¥ILSYN

3OIA30 Q3LVIO3LINI

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

2 /16

(Z¥# 3AVIS)
E 4311081NOD
— ANONIN
08¢ |
AYOW3N vy
JULYIOA 0ic
42 A 292 II.IQ 5%

s ||| | =
. (L# 3AVIS)
3HND3S 5.:%%%_8
092 TYNY3LX3
AMOWIN
3ULVIOA-NON
002

Orc

652

NOILJAYD3Q
NOILJAYON3

8bc
J18V1L SS3J0v

Sre
(TYNOILJO)

AD3HD
ALINOILNI

JOVHOLS
IN31SIS¥3d

INIHOVIA
JIV1S
ALIRK¥ND3S

| T04INOD SS320V |
., | | N3LSASENS AYOWNIN 3¥ND3IS =

“otz

uf Y¥3LSVYA

9] ¥4
CH# Y3ILSYW

0L

&EPc
Z# Y3ILSYN

cbre

botz

(¥0SS320¥d)
L# Y3ILSVYIN

JOIA 30
Q41VHO3LNI

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

3/16

»

NOILONN
ONISY 34ONI

218
228
»28

268
pEE

Zre

P

1445

g B

JUYMQYVH Gog

3000 3¥ND3S LSOW

0LE
| 3300 1008
SONILL3S 02¢
AdLSIOZY SN

STJOMSSYd 088

3OIAY3S ANV
JIVYM3TCAIN

vivQ
NOILVZITVILINI

SA3N

04Nl TYNOS¥HId

0r&
SNOILYDINddY

LN3LINOD
viva 318vNIvA LSON

1008

Il 13A3T
¢ 13A37
U 13A371
. 1snil
ONISVIHONI

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

4 /16

TOY1NOD
INISSYd
340438

JLVOILN3HLNY

b B

JIVMAYYH

30090 1008

I 13A3T

U 13A37

W3ILSAS AJICOW
dO 104.INOD
Ol ALY LIAIN

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

5 /16

SY¥313INVYYd

SS300V

N3dO

SH3ILINVYHVYd

SS300V

N3dO

| Sy3L3NVHVd

SS300V

Q35010

13A37
SS3JOOV

N31dO

13A3T

SS300V

a3isoio

a3soio

e 1S

3718V 1
SS3INAGY S13S AdM

N3dO N3dO

AJ01

31gv.1
SSINAGY S13S A3M

g3sS010 13y¥03S

A0

318V
SS33aQv S13S A3

a3asoo 1 3Y03S

g31SNyL- LSON
4300 1008

I: T3AIT

-

Q31SNyL LON
U 3A3

NOILNO3X3 40 d3Q40

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

6/16

0r9-—=21 300N ALINND3S 3ONVAQY

(ONILDAYD3Q LNOHLIM) ANOW3IN JULYIOA
~NON Ol 3000 1008 Q3LdAYINI AdOD

$&3

(A3X Y3ILSVN HLIM ONILJAYON3)

089 AYOW3N 3ULYIOA NI 3009 1008 avO1

_ JLEM/AVY3Y ¥VY3TD ANOWIN JULYI0OA-NON
ONIN3LIHM 804 SS33AAY ANOWIN u.__k<._o>nzow_ 3SN

L3S A3 Y3LSVYN HLIM LdANON3 :AYOW3WN 3LYIOA
318V1 SS30V 3¥NOIINOD

SS33ddv 1008 31NLiLSnS

0c'9 ‘135S A3M Y3ILSYIN ILIgMm 5¢3
c19 S13Y93S ILVHINIO
ch 505

S

0

9 b1f

dIHS GNV LS3L

$9

59 INOILVH3INIO A3M WOONVYY

JOd 300D 1008 ONISN
330D ONINIVAIY QvO7

Jd00 1008 3¥NJ23S ONISN 1008

Sr9

0I9

JdIMOd ATddY

W3LSAS OLNI 318N3SSY

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

/7 /16

004

300D
1008

U31dAYON3

082

ASON 3N
JULYI0A

09¢

AJON 3N
JULVIOA—=NON

13S A3X Y3LSVN
HLIM J31LdAYON3
3A00 1008

Orc

. 62
NOILJA¥D3A
NOILJAYON3

8rc
318Y1 SS300V

Sre
(IYNOILJO)

AO03HO
ALIJOILNI

JOVYOL1S
LN31SISd3d

ANIHOVYN
3LV1S
ALI¥ND3S

104INOD SS300v

el

o

&EPS

4 44

ASON3N 3LV I0A

Ol 3000 1008
dV310 JLlidm

JIIA3C
J31LVIO3ILNI

toig

JOSS300dd

JOV 443 LN
ongaad

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

8 /16

qs buf

004

300D 802

1008

NOILJAYO 30
J31dAYON3

NOILJAYOIN3

(ONILJAYO3Q LNOHLIM)

— AHOW3IN 144
08¢ u.__wm._mm,mozoz 318V1 SS3NIV
ANOW3N
IO Q3LdA¥INT AdOD

Sre
(TYNOILJO)

ADJHD
ALIYOILNI

JOVHO1S
INJLSISd3d

Ot
4302

&b

1008
Q41dAHONS

INHOYN | 1€7¢

— Oore 31lV1S '
092 ALIKNO3S |
; T0HLINOD SS3J0V .

ANOWIN | e e o o o o e -

311V IOA—NON

00c

torez
H¥0SS3003d

3OIA 3G
Q31V3O41N

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

9 /16

- TTsemmmmmTTmEEEEEES ST o ST EE S

NOILVOOT
3000 1008 M3N
Ol NOILO3¥Id3y
1008 31vddn

JI8ANN
NOISHIA M3N ONV
13S A3M Y3LSYW
HLIM LdAYON3

3002 1008 M3N
1dA8030 ONVY
J1LVIILNIHLINY.

J¥NAQ300¥d
JlvQadn 1008

*
.
|
P
r
| 3

0S8

04L&
$98&

098

$G8&

0r8

NOILVY3dO 33NO3S
N

é
3000 40 ST3A3T
JYON

30030 T3A37 LX3N OL TO¥LNOD SSvd

318Vl SS300V Ol S31vadn 1IN
3000 1M3A37 LX3N JLVOILN3HLINY

JI8YL SS300V 3IZITVILINI (S)A3IM IWILNNY IJLVYHINIO

¢
318VIVAY 31vQddn 3009

1008

(Ss3yaav 1008 31N1ILS8NS) LS3ND3Y 1008 1D3ya3Y

NO 33MOd

Sre

ceg

088

$c8

t
t

| 018
J8NQ3004d 1008

e m em e G e e em e W R e e me e Mm s an e Em e e e J

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

10/16

300D .

Q31dA¥ON3 ' | NOILJAYD3a | |

' | NOILJAYONI :

|]

— o 72t
0LZ PP 318v1 SS320V | ¢
R g "
-=~" §S33QqQV —— :
Q31dA¥ON3 | | :1008 31NLILSSNS Src !
1S3N03y (1¥NOILdO) | ¢

— MOIHD :
092 _
R ALIIOINI ||

J LV IOA—NON JOVH0ILS

LNJ1SISy3d

INIHOVIA
J1V1S

Ore ALI¥NO3S

,f_?
—
-
o<
’—
=
Q)
O
2.
w
L)
)
O
<L

3302
38N 3S
N¥N13Y
IR 006
TS ea JHOVD

SS3YAQY NOILONYLSNI
1008 QYVANYLS

1S3ND3N
Ebe 4OSSID0Nd

y 4

o 0L

00¢c

JOIA30 Q31LVYO3LNI

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

11/16

3¥NA300¥4d ;31vAdN

dNLYTIOA
CCO!
0G0

oL b1

S3NTVA NOILVOIILN3IHLINY
J1vQadn

J3IBANN NOISY3IA M3N
ANV 13S A3XM LO3¥Y0D
HLIM 1dAY8ON3 AYOW3N
—NON Ol 3LlIbdMm

1dAY¥I30 ONY
JLVIILNIHLAY

G904

090!

------—-------~---------~--J

3009 13A31 1034800 Y04 390LS |
ANV 318VUVAY 3LVAdA SNVA

w
3LVIIINIHLNY Ol
3ZINOHLNY _

GcOf

~ S1000108d HYOML3N
J4NJ3S ONISN AVOINMOQ

A 020!

<
J18VIIVAY 31vadn
S10!

(*>1@ ‘301LON ‘3NWIL NO @3svs)
S3LVAdN 304 MOIHD

010!
$00!

NOILYY3dO 39ND3S

umDQuoomn_ AD4HO 31vddNn

!
!
!
!
!
)
|
i
|
i
'
!
)
I
]
|
!
!
|
|
|
{
|
!
!
|
|
1
!
|
|
{
I
!
!
J
|
!
!
!
l
!
}
|
|
!
!
I
-

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

12 /16

(S)A3X Q10 3SVY3
0LLL

 (S)A3N M3IN HLIM
13A¥D30 ONV L1dANON3
1 -‘NOILVOO1 vivag M3N

ANINS V1IVQA Q10 3ISvH3
318v.L SS300V AJIQOW

i
coll “

Amvﬁx M3N HLIM ONILJAYONS
‘NOILYOOT VY.1vQ M3N Ol
vivVQ 3JLIHM N3HL ‘NOILYOO01
Viv3d LNIYHIND NOH4 av3y

09!}

(S)A3M MIN HLIM LdANON3I
NOILVYOO1T vivad MSN

(S)A3N Q10 HIIM LdA¥D3Q
'NOILYO01 Y.1VQ LN3¥¥ND
318VYL SS3J0V AJIQON

GG “
I¥NA3IN0Nd ILVadN A3 1 |
mTTmmemmmmems .r.N =
WA 0GlLl _
1 brf oon—2..

3000 T3A37 1038800 O1 NiNL3Y

¢
G3LVYINID (S)A3M N3HM SY 300D
13A37 ANVYS

O& 't

¢ Q3IHOVIY QIOHSIYHL
0Z Ll

SNOILYY3dO 31I¥M NO Q3Sv8
HILNNOD ININWIYUONI ‘(S)AIM 3ISN

M Olll

(TYNOILJO) 3002 13A37 1X3N OL J0¥INOD SSvd

4IINNOD 39VSN YOS GIOHSIYHL WYHO0Hd "(S)AIN ILVYINIO

'

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

- 13 /16

WHLI¥OOTV
3AIS1NO
HLIM
J3LdAYON3

V1iVv(Q

ree

JdNO3S

08¢
ASOW3N
3 ILVIOA

Oict

NOILVIIJIQON
1NOHLIM

33¥01S
SI V1VQ
J3LdAYON3

62

NOILdAYO3d
NOILJAYON3

o pr—— |

8rc
318Vl SS300vV

006

JHOVD
NOILONYLSNI

-7 <41

(1¥YNOILdO)

A0 3HO
ALIJOILNI

botz

T0¥1NOD SS300V o0z —
orz—S - 002 30IA30 G3LVEOILNI

._.m_muvwm_m ._.w HOSS300¥d
“ 232 zm:“mom.z
|
. INIHOVYIA Zm WL_. ._._%
N 3lVIS Q3 LdANIN3 180d
| ALIEINO3S Q3A1393Y NOLLYIINNWNOD
: Sl YivQ@

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

14/16

NHLINOO TV
3QIS1NO
HLIM
Q3LdAYINS

VivQ

r82

JJND3S

08¢

ASOWIN
JULYT10A

NOILVOIIIQON
LNOHLIM
Qv3y SI V1VQ
. 031dAYON3S
- 3QISLNO

Erc

444

NOILdAdO30
NOILJAYONS .

e 1

8rc
J18v1 SS30JV

773

(I¥YNOILJO)

NI 3HO
ALIGOILNI

JOVHOLS
IN31SISy3d

INIHOVIA

JLVIS
ALI—INO3S

T0YLNOD SS300V

ovmrhwlx‘ |

|
——

4000 3¥N03S
ONISN 3¥VML30S
NI 1l S1dA¥030d

006

| JHOVO
ONVY Y.iVQ
03LdAYIN3 NOILONY LSNI
SAav 3y .
30SS300dd

00c'}

- 1d0d

NOLLY JINAWNOD

002 30IA3A Q3LVYOILNI

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

- 15 /16

c8¢c

N3dO

AHON3N
0ccl /" 34N23S NI
V.ivQ J3¥01lS ANV

Q31dA¥ONS NOILJAYONI
TO¥LNOD - TT0YLNOD
SS300V SS300V

—— ONISN
p82 . G3LdAYON3
I¥ND3S - SI Vv1vd

082

AJONIN
ULV I0A

N L4

cbc

NOILJAHO 30
NOILJAYON3 wmmw_w_\m‘
Ol V1vd
4V 310 S3Lli¥M
JOSS300dd

J18YL SS300V

- 006
IHOVD
NOILONY LSNI

"

1

\

|

i

!

!

|

|
(TvNOILdO) | !
AJ3HD i
ALIYOILINI ||
"

:

i

m

"

|

|

|

JOVHOLS tommwoom&

LN3LSIS¥3d
INHOVI 00c't

J1lV1S
ALREIND AS

130d
NOILYIINNWWNOD

002 331A30°qaLvyo3aIN

CA 02481569 2004-10-06

PCT/US03/11907

WO 03/090402

ALITYNOILONNG HSIN8Y1S3—-3Y4 Ol V1vdQ
ANV 3000 Q33IND3y 11V AVYOINMOQ

JIHNLIOVINNYA OL NOILO3INNOD
AJOMI3N 34ND3S HSII8V1S3

AN JIN8Nd S.HFUNLIV INNVYIN
HLIM A3X JIN8Nd LdAYON3

A3 3LVAING 3H0LS A13YND3S
diVd A3 J1IVAING/21N8Nd 31VYH3INIO

SS3¥AAVY 1008 31NLILSENnS
ONVY L3S A3M ¥31SVA JLiMNM

A3M Y3ALSYA HLIM 3002 1008
NOILVYOLS3Y LdANONI

13S A3X ¥3LISVN 31VY3N3D
-3000 NOILVZITVILINI 31NDO3X3

09¢&1

A3 J118Nd SHIYNLIVANNYN ‘3000 1008

NOILYYOLS3Y ONIJNTONI 3000 NOILYZITVILINI
Qm._.n;mozuZD_ SAVO1 ¥31N3D 3JIAN3S

4

-
oan e b A Sy A G Ery By Ee b oF &Y GE G EE EaS A EE - v G s T Su b b Eb o S = =-.

D I SIS UNy TEE EE ik b e B N En o ok Gn b e b I ek A G O BN U ¢ T M) EF Th 4O T8 a8
-
-

¥3ILN3D 3DIAY3S
Q3ZIYOHLNY OL 09

SNOILVII'lddY 0
VivQ 33N03S Ol SS300V ON
-ALITVYNOILONNSG Q30NA3Y

Gc&}

¢
AYIA0D3Y LdNILLV
0c¢&l

JJ00 Q3dNO3SNN NNY
GiE! |

(SS34aav 1008 1¥VANVLS)
Q310341038 1ON
1LS3N03Y 1008

015} M
cop—s— NO ¥3M0d

oumuoo_m_. ONI38 d31Jv 3¥NQ3204dd 1008

00¢&'!

ap e G Ow IS e G G F WE G u BB @F M) Py o T G - NS

INTEGRATED
DEVICE

MASTER #1
(PROCESSOR)

210
MASTER #2
<102
MASTER #3
2104

MASTER #n |
210,

SECURE MEMORY SUBSYSTEM
ACCESS CONTROL |

SECURITY EXTERNAL
STATE 240 BUS
242 MACHINE CONTROLLER
| (SLAVE #1)
PERSISTENT
STORAGE 250
2483 = ———
INTEGRITY
CHECK
(OPTIONAL) 220
245
ACCESS TABLE <70
248

MEMORY

CONTROLLER
(SLAVE #2)

ENCRYPTION
DECRYPTION

249

200

NON-VOLATILE
MEMORY

260

SECURE

262 264

VOLATILE
MEMORY

280

SECURE

282 284

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

