Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of Industry Canada

CA 2565630 A1 2005/11/17

(21) 2 565 630

(13) **A1**

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(86) Date de dépôt PCT/PCT Filing Date: 2005/04/29

(87) Date publication PCT/PCT Publication Date: 2005/11/17

(85) Entrée phase nationale/National Entry: 2006/11/03

(86) N° demande PCT/PCT Application No.: EP 2005/051968

(87) N° publication PCT/PCT Publication No.: 2005/108360

(30) Priorité/Priority: 2004/05/07 (EP04101991.0)

(51) Cl.Int./Int.Cl. *CO7D 207/26* (2006.01), *A61K 31/4015* (2006.01), *A61K 31/45* (2006.01), *A61P 3/04* (2006.01), *A61P 3/10* (2006.01), *A61P 9/00* (2006.01), *C07D 211/76* (2006.01)

(71) Demandeur/Applicant:
JANSSEN PHARMACEUTICA N.V., BE

NIKIFOROV, THEO TEOFANOV, BG

(72) Inventeurs/Inventors:

JAROSKOVA, LIBUSE, BE;

LINDERS, JOANNES THEODORUS MARIA, BE;

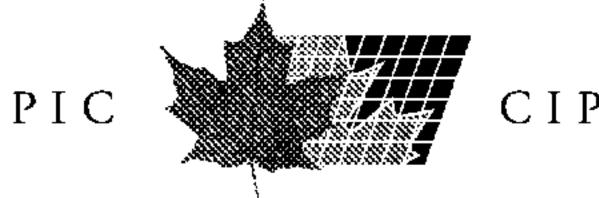
BUYCK, CHRISTOPHE FRANCIS ROBERT NESTOR,

BE;

VAN DER VEKEN, LOUIS JOZEF ELISABETH, BE;

DIMITROV, VLADIMIR DIMTCHEV, BG;

(54) Titre : UTILISATION DE DERIVES DE PYRROLIDIN-2-ONE ET DE PIPERIDIN-2-ONE COMME INHIBITEURS DE LA 11-BETA-HYDROXYSTEROIDE DESHYDROGENASE


(54) Title: PYRROLIDIN-2-ONE AND PIPERIDIN-2-ONE DERIVATIVES AS 11-BETA HYDROXYSTEROID DEHYDROGENASE INHIBITORS

$$\begin{array}{c|c}
 & O \\
 & P^{5} \\
 & M \\
 & P^{4} \\
 & R^{2}
\end{array}$$
(I)

(57) Abrégé/Abstract:

Formula (I), the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein n is 1 or 2; L represents a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl, hydroxy, C_{1-3} alkyloxy- or phenyl- C_{1-4} alkyl; M represents a direct bond or a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from hydroxy, C_{1-4} alkyl or C_{1-4} alkyloxy; R^1 and R^2 each independently represent hydrogen, halo, cyano, hydroxy, C_{1-4} alkyl optionally substituted with halo, C_{1-4} alkyloxy- optionally substituted with one or where possible two or three substituents selected from hydroxy, Ar^1 and halo; or R^1 and R^2 taken together with the phenyl ring to which they are attached form naphtyl or 1,3-benzodioxolyl, wherein said naphtyl or 1,3-benzodioxolyl are optionally substituted with halo; R^3 represents hydrogen, halo, C_{1-4} alkyl, C_{1-4} alkyloxy-, cyano or hydroxy; R^4 represents hydrogen, halo, C_{1-4} alkyl, C_{1-4} alkyloxy-, cyano or hydroxy; R^5 represents hydrogen, C_{1-4} alkyl or C_{1-4} alkyl or C_{1-4} alkyl, C_{1-4} alkyloxy-, or phenyl- C_{1-4} alkyl, or phenyl- C_{1-4} alkyl, C_{1-4} a

(21) 2 565 630

(13) **A1**

(74) **Agent**: GOWLING LAFLEUR HENDERSON LLP

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 17 November 2005 (17.11.2005)

PCT

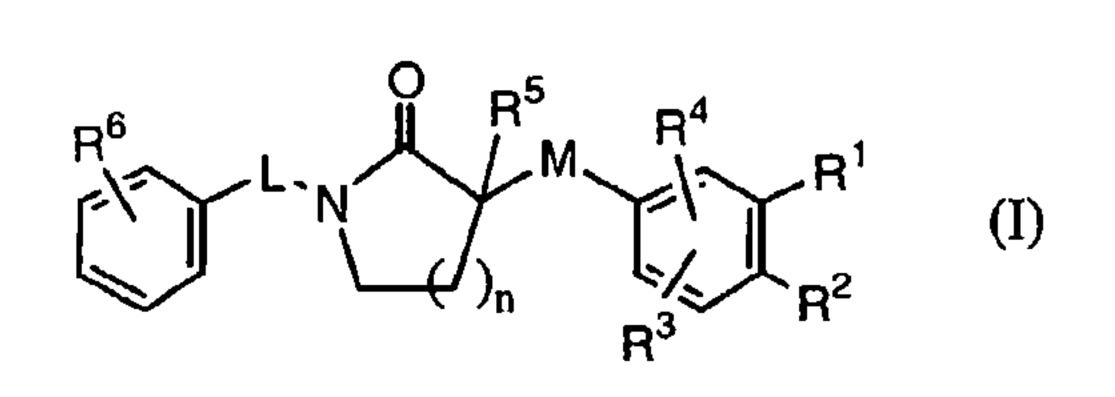
(10) International Publication Number WO 2005/108360 A1

- (51) International Patent Classification⁷: C07D 207/26, 211/76, A61K 31/45, 31/4015, A61P 3/04, 3/10, 9/00
- (21) International Application Number:

PCT/EP2005/051968

- (22) International Filing Date: 29 April 2005 (29.04.2005)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 04101991.0 7 May 2004 (07.05.2004) EP
- (71) Applicant (for all designated States except US): JANSSEN PHARMACEUTICA N.V. [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE).
- (72) Inventors; and

- (75) Inventors/Applicants (for US only): JAROSKOVA, **Libuse** [CZ/BE]; Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse (BE). LINDERS, Joannes, Theodorus, Maria [NL/NL]; Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse (BE). BUYCK, Christophe, Francis, Robert, Nestor [BE/BE]; Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse (BE). VAN DER VEKEN, Louis Jozef Elisabeth [BE/BE]; Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse (BE). DIMITROV, Vladimir, Dimtchev [BG/BG]; Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street Building 9, 1113 Sofia (BG). NIKIFOROV, Theo, Teofanov [US/US]; Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street Building 9, 1113 Sofia (BG).
- (74) Common Representative: JANSSEN PHARMACEU-TICA N.V.; Turnhoutseweg 30, B-2340 Beerse (BE).


- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

[Continued on next page]

(54) Title: PYRROLIDIN-2-ONE AND PIPERIDIN-2-ONE DERIVATIVES AS 11-BETA HYDROXYSTEROID DEHYDROGENASE INHIBITORS

(57) **Abstract:** Formula (I), the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein n is 1 or 2; L represents a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl, hydroxy, C_{1-3} alkyloxy-or phenyl- C_{1-4} alkyl; M represents a direct bond or a C_{1-3} alkyl linker optionally substituted with one or two substituents selected

from hydroxy, C_{1-4} alkyl or C_{1-4} alkyloxy; R^1 and R^2 each independently represent hydrogen, halo, cyano, hydroxy, C_{1-4} alkyl optionally substituted with one or where possible two or three substituents selected from hydroxy, Ar^1 and halo; or R^1 and R^2 taken together with the phenyl ring to which they are attached form naphtyl or 1,3-benzodioxolyl, wherein said naphtyl or 1,3-benzodioxolyl are optionally substituted with halo; R^3 represents hydrogen, halo, C_{1-4} alkyl, C_{1-4} alkyloxy-, cyano or hydroxy; R^4 represents hydrogen, halo, C_{1-4} alkyl, C_{1-4} alkyloxy-, cyano or hydroxy; R^5 represents hydrogen, C_{1-4} alkyl or C_{1-4} alkyl or C_{1-4} alkyl or C_{1-4} alkyl or C_{1-4} alkyl, C_{1

WO 2005/108360 A1

- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- of inventorship (Rule 4.17(iv)) for US only

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— with international search report

WO 2005/108360 PCT/EP2005/051968

-1-

PYRROLIDIN-2-ONE AND PIPERIDIN-2-ONE DERIVATIVES AS 11-BETA HYDROXYSTEROID DEHYDROGENASE INHIBITORS

- The metabolic syndrome is a disease with increasing prevalence not only in the Western world but also in Asia and developing countries. It is characterised by obesity in particular central or visceral obesity, type 2 diabetes, hyperlipidemia, hypertension, arteriosclerosis, coronary heart diseases and eventually chronic renal failure (C.T. Montague et al. (2000), Diabetes, 49, 883-888).
- Glucocorticoids and 11β-HSD1 are known to be important factors in differentiation of adipose stromal cells into mature adipocytes. In the visceral stromal cells of obese patients, 11β-HSD1 mRNA level is increased compared with subcutaneous tissue. Further, adipose tissue over-expression of 11β-HSD1 in transgenic mice is associated with increased corticosterone levels in the adipose tissue, visceral obesity, insulin sensitivity, Type 2 diabetes, hyperlipidemia and hyperphagia (H. Masuzaki et al (2001), Science, 294, 2166-2170). Therefore, 11β-HSD1 is most likely be involved in the development of visceral obesity and the metabolic syndrome.
- Inhibition of 11β-HSD1 results in a decrease in differentiation and an increase in proliferation of adipose stromal cells. Moreover, glucocorticoid deficiency (adrenalectomy) enhances the ability of insulin and leptin to promote anorexia and weight loss, and this effect is reversed by glucocorticoid administration (P.M. Stewart et al (2002), Trends Endocrin. Metabol, 13, 94-96). These data suggest that enhanced reactivation of cortisone by 11β-HSD1 may exacerbate obesity and it may be beneficial to inhibit this enzyme in adipose tissue of obese patients.

 Obesity is also linked to cardiovascular risks. There is a significant relationship between cortisol excretion rate and HDL cholesterol in both men and women, suggesting that glucocorticoids regulate key components of cardiovascular risk. In analogy, aortic stiffness is also associated with visceral adiposity in older adults.

30

35

Glucocorticoids and glaucoma

Glucocorticoids increase the risk of glaucoma by raising the intraocular pressure when administered exogenously and in certain conditions of increased production like in Cushing's syndrome. Corticosteroid-induced elevation of intra ocular pressure is caused by increased resistance to aqueous outflow due to glucocorticoid induced changes in the trabecular meshwork and its intracellular matrix. Zhou et al. (Int J Mol

Med (1998) 1, 339-346) also reported that corticosteroids increase the amounts of fibronectin as well as collagen type I and type IV in the trabecular meshwork of organ-cultured bovine anterior segments.

11β-HSD1 is expressed in the basal cells of the corneal epithelium and the nonpigmented epithelial cells. Glucocorticoid receptor mRNA was only detected in the trabecular meshwork, whereas in the non-pigmented epithelial cells mRNA for the glucocorticoid-, mineralocorticoid receptor and 11β-HSD1 was present. Carbenoxolone administration to patients resulted in a significant decrease in intra-ocular pressure (S. Rauz et al. (2001), Invest. Ophtalmol. Vis. Science, 42, 2037-2042), suggesting a role for HSD1-inhibitors in treating glaucoma.

Accordingly, the underlying problem to be solved by the present invention was to identify potent 11β-HSD inhibitors, with a high selectivity for 11β-HSD1, and the use thereof in treating pathologies associated with excess cortisol formation such as obesity, diabetes, obesity related cardiovascular diseases, and glaucoma. As shown hereinbelow, the 3-substituted 2-pyrrolidinone derivatives of formula (I) were found to be useful as a medicine, in particular in the manufacture of a medicament for the treatment of pathologies associated with excess cortisol formation.

Blommaert A. et al. (Heterocycles (2001), 55(12), 2273-2278) provides the preparation of piperidine- and pyrrolidinone-like polymer supported (R)-phenylglycinol-derived scaffolds and in particular discloses 2-Pyrrolidinone, 1-[(1R)-2-hydroxy-1-phenylethyl]-3-methyl-3-(phenylmethyl)- and 2-Pyrrolidinone, 1-[(1R)-2-hydroxy-1-phenylethyl]-3-(phenylmethyl)-, (3R).

25

15

Bausanne I. et al. (Tetrahedron: Assymetry (1998), 9(5), 797-804) provides the preparation of 3-substituted pyrrolidinones via α-alkylation of a chiral non-racemic γ-lacton and in particular discloses 1-(2-hydroxy-1-phenylethyl)-3-benzylpyrrolidin-2-one.

30

35

US 2001/034343; US 6,211,199; US 6,194,406; WO 97/22604 and WO 97/19074 are a number of patent applications filed by Aventis Pharmaceuticals Inc. providing 4-(1H-benzimidazol-2-yl)[1,4]diazepanes useful for the treatment of allergic diseases. In these applications the 3-substituted pyrrolidinones of the present invention are disclosed as intermediates in the synthesis of said 4-(1H-benzimidazol-2-yl)[1,4]diazepanes. These applications in particular disclose; 2-Pyrrolidinone, 3-[(4-fluorophenyl)methyl]-1-[(1S)-1-phenylethyl]- and 2-Pyrrolidinone, 3-[(4-fluorophenyl)methyl]-1-[(1R)-1-phenylethyl]-.

-3-

The general synthesis and absolute configuration of diastereomeric 3-substituted 1-[1'-(S)-phenylethyl]-2-pyrrolidinones is provided by Nikiforov T. T. and Simeonov E. E. in Doklady Bolgarskoi Academii Nauk (1986), 39(3), 73-76. It exemplifies the synthesis of 2-Pyrrolidinone, 3-methyl-3-[(4-methylphenyl)methyl]-1-(1-phenylethyl)-, [S-(R*, R*)]; 2-Pyrrolidinone, 3-methyl-3-[(4-methylphenyl)methyl]-1-(1-phenylethyl)-, [S-(R*, S*)]; 2-Pyrrolidinone, 3-[(4-methylphenyl)methyl]-1-(1-phenylethyl)-, [S-(R*, R*)] and 2-Pyrrolidinone, 3-[(4-methylphenyl)methyl]-1-(1-phenylethyl)-, [S-(R*, S*)].

10

However, in none of the cited documents the therapeutic application of the 3-substituted 2-pyrrolidinone derivatives of the present invention has been disclosed. Accordingly, in a first aspect this invention concerns compounds of formula (I)

$$R^6$$
 $L N$
 R^5
 R^4
 R^1
 R^2
 R^3
 R^2
 R^3

15

25

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

20 n is 1 or 2;

L represents a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl, hydroxy, C_{1-3} alkyloxy- or phenyl- C_{1-4} alkyl;

M represents a direct bond or a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from hydroxy, C_{1-4} alkyl or C_{1-4} alkyloxy;

 R^1 and R^2 each independently represent hydrogen, halo, cyano, hydroxy, C_{1-4} alkyl optionally substituted with halo,

 C_{1-4} alkyloxy- optionally substituted with one or where possible two or three substituents selected from hydroxy, Ar^1 and halo;

or R¹ and R² taken together with the phenyl ring to which they are attached form naphtyl or 1,3-benzodioxolyl, wherein said naphtyl or 1,3-benzodioxolyl are optionally substituted with halo;

R³ represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy-, cyano or hydroxy;

R⁴ represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy-, cyano or hydroxy;

R⁵ represents hydrogen, C₁₋₄alkyl or Ar²-C₁₋₄alky-;

WO 2005/108360 PCT/EP2005/051968

4_

R⁶ represents hydrogen, halo, C₁₋₄alkyl or C₁₋₄alkyoxy-;

 Ar^1 and Ar^2 each independently represent phenyl or naphtyl wherein said phenyl and naphtyl are optionally substituted with $C_{1.4}$ alkyl, $C_{1.4}$ alkyloxy-, or phenyl- $C_{1.4}$ alkyl; for use as a medicine.

5

10

As used in the foregoing definitions and hereinafter, halo is generic to fluoro, chloro, bromo and iodo; C_{1.3}alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, 1-methylethyl and the like; C_{1.4}alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, 1-methylethyl, 2-methylpropyl, 2,2-dimethylethyl and the like; C_{1.4}alkyloxy defines straight or branched saturated hydrocarbon radicalshaving form 1 to 3 carbon atoms such as methoxy, ethoxy, propyloxy, 1-methylethyloxy and the like; C_{1.4}alkyloxy defines straight or branched saturated hydrocarbon radicals having form 1

to 4 carbon atoms such as methoxy, ethoxy, propyloxy, butyloxy, 1-methylethyloxy, 2-methylpropyloxy and the like.

The pharmaceutically acceptable addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid addition salt forms, which the compounds of formula (I), are able to form. The latter can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.

30

25

The pharmaceutically acceptable addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic base addition salt forms which the compounds of formula (I), are able to form. Examples of such base addition salt forms are, for example, the sodium, potassium, calcium salts, and also the salts with pharmaceutically acceptable amines such as, for example, ammonia, alkylamines, benzathine, N-methyl-D-glucamine, hydrabamine, amino acids, e.g. arginine, lysine.

35

Conversely said salt forms can be converted by treatment with an appropriate base or acid into the free acid or base form.

-5-

The term addition salt as used hereinabove also comprises the solvates which the compounds of formula (I), as well as the salts thereof, are able to form. Such solvates are for example hydrates, alcoholates and the like.

The term stereochemically isomeric forms as used hereinbefore defines the possible different isomeric as well as conformational forms which the compounds of formula (I), may possess. Unless otherwise mentioned or indicated, the chemical designation of compounds denotes the mixture of all possible stereochemically and conformationally isomeric forms, said mixtures containing all diastereomers, enantiomers and/or conformers of the basic molecular structure. All stereochemically isomeric forms of the compounds of formula (I), both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.

The N-oxide forms of the compounds of formula (I), are meant to comprise those compounds of formula (I) wherein one or several nitrogen atoms are oxidized to the so-called N-oxide.

An interesting group of compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

(i) n is 1 or 2; in particular n is 1

15

25

30

35

- L represents a C₁₋₃alkyl linker optionally substituted with one or two substituents selected from C₁₋₄alkyl, C₁₋₃alkyloxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl, hydroxy, C₁₋₃alkyloxy- or phenyl-C₁₋₄alkyl; in particular L represents a C₁-linker optionally substituted with C₁₋₄alkyl; preferably L represents a C₁-linker substituted with C₁₋₄alkyl, more preferably a C₁-linker substituted with methyl;
- (iii) M represents a direct bond or a C₁₋₂alkyl optionally substituted with one or two substituents selected from hydroxy, C₁₋₄alkyl or C₁₋₄alkyloxy-; in particular M represents a C₁₋₂alkyl optionally substituted with one or two substituents selected from hydroxy, C₁₋₄alkyl or C₁₋₄alkyloxy-; preferably M represents a C₁-linker optionally substituted with C₁₋₄alkyl;
- (iv) R^1 represents hydrogen, hydroxy, halo, C_{1-4} alkyl, C_{1-4} alkyloxy, or C_{1-4} alkyloxy substituted with halo;
- (v) \mathbb{R}^2 represents hydrogen, halo, \mathbb{C}_{1-4} alkyl, \mathbb{C}_{1-4} alkyloxy- or \mathbb{A}^1 - \mathbb{C}_{1-4} alkyloxy-;
- (vi) R³ represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy- or cyano;
 - (vii) R^4 represents hydrogen, halo, C_{1-4} alkyl or C_{1-4} alkylox y-;
 - (viii) R⁵ represents hydrogen, C₁₋₄alkyl or Ar²-C₁₋₄alkyl; in particular hydrogen;

-6-

- (ix) R⁶ represents hydrogen, halo, or C₁₋₄alkyloxy; in particular hydrogen, chloro, fluoro, bromo or methoxy;
- (x) Ar¹ represents phenyl;
- (xi) Ar² represents phenyl or naphtyl;

5

Another group of compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

- (i) n is 1;
- (ii) L represents a C₂₋₃alkyl linker optionally substituted with one or two substituents selected from C₁₋₄alkyl, C₁₋₃alkyloxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl, hydroxy, C₁₋₃alkyloxy- or phenyl-C₁₋₄alkyl;
 - (iii) M represents a C₂₋₃alkyl linker optionally substituted with one or two substituents selected from hydroxy, C₁₋₄alkyl or C₁₋₄alkyloxy;
 - (iv) R⁵ represents Ar²-C₁₋₄alkyl;
 - (v) R⁶ represents halo, C_{1.4}alkyl or C_{1.4}alkyloxy-.

Another group of interesting compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

(i) n is 1;

20

15

- (ii) L represents a C₁₋₃alkyl linker optionally substituted with ethyl or methyl, in particular L represents a C₁-linker substituted with ethyl or methyl;
- (iii) M represents a C₁-linker optionally substituted methyl;
- (iv) R¹ and R² represent C₁₋₄alkyloxy, in particular methoxy or R¹ and R² taken together with the phenyl ring to which they are attached form 1,3-benzodioxolyl substituted with halo;
- (v) R³ represents chloro, fluoro, methyl or hydrogen;
- (vi) R⁴ represents chloro, fluoro or methyl;
- (vii) R⁵ represents hydrogen;
- 30

25

(viii) R⁶ represents hydrogen.

A further group of compounds according to the present invention are those compounds wherein R^6 is at the para position, L represents a C_2 -alkyl linker and M represents a C_1 -linker.

35

Another interesting group of compounds are those compounds of formula (I) wherein L represents a C_1 -linker substituted with a C_1 -alkyl, C_1 -alkyloxy C_1 -alkyl-,

-7-

hydroxy C_{1-4} alkyl- or phenyl C_{1-4} alkyl- wherein said C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl- or phenyl C_{1-4} alkyl-is in the S-configuration

In a preferred embodiment the compounds of formula (I) are selected from the group consisting of;

- 3-[(2,6-Dichlorophenyl)methyl]-1-(1-phenylpropyl)-2-pyrrolidinone;
- 3-[(2,6-Difluorophenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;
- 3-[(2,6-Dimethylphenyl)methyl]-1-(1-phenylethyl)-2-piperidinone;
- 3-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;
- 3-[1-(2-Methylphenyl)ethyl]-1-(1-phenylethyl)-2-pyrrolidinone;
 - 3-[(2-Chloro-3,4-dimethoxyphenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;
 - 3-[(2,6-Dichlorophenyl)methyl]-1-(2-phenylethyl)-2-pyrrolidinone;
 - 3-[(2,6-Dimethylphenyl)methyl]-1-(1-phenylethyl)-2-piperidinone, or
 - 3-[(2-Methylphenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone.
- the N-oxides, pharmaceutically acceptable addition salts or a stereochemically isomeric forms thereof.

In a more preferred embodiment the compounds of formula (I) are selected from the group consisting of;

- 3-[(2,6-Dichlorophenyl)methyl]-1-(1-phenylpropyl)-2-pyrrolidinone;
 - 3-[(2,6-Difluorophenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;
 - 3-[(2,6-Dimethylphenyl)methyl]-1-(1-phenylethyl)-2-piperidinone;
 - 3-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;
 - 3-[1-(2-Methylphenyl)ethyl]-1-(1-phenylethyl)-2-pyrrolidinone;
- 3-[(2,6-Dichlorophenyl)methyl]-1-(2-phenylethyl)-2-pyrrolidinone;
 - 3-[(2-Methylphenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone.
 - the N-oxides, pharmaceutically acceptable addition salts or a stereochemically isomeric forms thereof.
- In a further aspect the present invention provides any of the aforementioned group of compounds for use as a medicine. In particular in the treatment or prevention of parthologies associated with excess cortisol formation such as obesity, diabetes, obesity related cardiovascular diseases and glaucoma.
- The 1,3-pyrrolidinine derivatives of the present invention are generally prepared by alkylation of the appropriate lactam (II) with an appropriate alkyl halide (III) in the presence of a base such as for example (disopropylamino)lithium (LDA) or secbutyllithium, optionally in the present of a co-solvent such as for example N,N',N"-

-8-

Hexamethylphosphoramide (HMPA) or a salt such as for example LiBr (Scheme 1). This reaction is usually performed in an inert solvent such as for example diisopropylether, tetrahydrofuran or methylene chloride. The reaction temperature and the reaction time may be altered depending on the starting material or reagents but is usually performed within a couple of hours at low temperatures (-50°C - -90°C). In some cases the coupling reaction is slow and the mixture has to be kept until completion. In these cases the temperature could be enhanced up to (-10°C - -30°C).

Scheme 1

10

15

The appropriate lactam of formula (II) hereinbefore, is generally prepared by reacting the known amines of formula (IV) with either 4-chlorobutanoyl chloride or 5-chloropentanoyl chloride in the presence of a base, such as for example sodium hydroxide, potassium hydroxide, sodiumcarbonate or sodium hydrogen carbonate, in an appropriate solvent such as for example dichloromethane, diisopropylether, tetrahydrofuran or methylene chloride (Scheme 2). The reaction is typically performed in two steps, wherein, in a first step the 4-chlorobutanoyl chloride or 5-chloropentanoyl chloride is added to the amine of formula (IV) under basic conditions, using for example triethylamine in dichloromethane, to form the amide of formula (V). In the

-9-

second step, upon addition of a strong base such as sodium hydroxide, an internal nucleophilic addition reaction provides the lactam of formula (II).

Scheme 2

The amines of formula (IV) are generally prepared using art known techniques, see for instance in; "Introduction to organic chemistry" Streitweiser and Heathcock – Macmillan Publishing Co., Inc. – second edition - New York – Section 24.6 p 742-753, and comprise synthesis through indirect alkylation of the appropriate (hetero)aryl halides in particular by the Gabriel synthesis, through reduction of the corresponding

nitro or nitrille compounds, through reductive amination using for example the Eschweiler-Clarke reaction and in particular fore those compounds of formula (I) wherein L represents an optionally substituted C₁-alkyl, through the reduction of oximes (VI) which may be prepared from aldehydes or ketones (VII) by reaction with hydroxylamine (scheme 3). In this latter case the oximes are reduced by lithium aluminium hydride or catalytic hydrogenation using an appropriate catalysator such as Raney Nickel, said reduction being performed in an inert anhydrous solvent such as

15

ether or tetrahydrofuran (THF).

WO 2005/108360 PCT/EP2005/051968

Scheme 3

Scheme 3

$$R^6 \longrightarrow R'$$
 H_2NOH
 $R^6 \longrightarrow R'$
 $VII)$
 $R^6 \longrightarrow R'$
 $R^6 \longrightarrow R'$

Wherein R' represents a C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl, hydroxy- C_{1-4} alkyl, C_{1-3} alkyloxy- or phenyl- C_{1-4} alkyl- and R^6 is defined as for the compounds of formula (I).

Further examples for the synthesis of compounds of formula (I) using anyone of the above mentioned synthesis methods, are provided in the experimental part hereinafter.

Where necessary or desired, any one or more of the following further steps in any order may be performed:

(i) removing any remaining protecting group(s);

10

15

20

- (ii) converting a compound of formula (I) or a protected form thereof into a further compound of formula (I) or a protected form thereof;
- (iii) converting a compound of formula (I) or a protected form thereof into a N-oxide, a salt, a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof;

.5.

- (iv) converting a N-oxide, a salt, a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof into a compound of formula (I) or a protected form thereof;
 - (v) converting a N-oxide, a salt, a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof into another N-oxide, a pharmaceutically acceptable addition salt a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof;
 - (vi) where the compound of formula (I) is obtained as a mixture of (R) and (S) enantiomers resolving the mixture to obtain the desired enantiomer;

It will be appreciated by those skilled in the art that in the processes described above the functional groups of intermediate compounds may need to be blocked by protecting groups.

10

Functional groups which it is desirable to protect include hydroxy, amino and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl groups (e.g. <u>tert</u>-butyldimethylsilyl, <u>tert</u>-butyldiphenylsilyl or trimethylsilyl), benzyl and tetrahydropyranyl. Suitable protecting groups for amino include <u>tert</u>-butyloxycarbonyl or benzyloxycarbonyl. Suitable protecting groups for carboxylic acid include $C_{(1-6)}$ alkyl or benzyl esters.

The protection and deprotection of functional groups may take place before or after a reaction step.

The use of protecting groups is fully described in 'Protective Groups in Organic Synthesis' 2nd edition, T W Greene & P G M Wutz, Wiley Interscience (1991).

Additionally, the N-atoms in compounds of formula (I) can be methylated by artknown methods using CH₃-I in a suitable solvent such as, for example 2-propanone, tetrahydrofuran or dimethylformamide.

The compounds of formula (I), can also be converted into each other following artknown procedures of functional group transformation of which some examples are mentioned hereinabove.

The compounds of formula (I), may also be converted to the corresponding N-oxide forms following art-known procedures for converting a trivalent nitrogen into its N-oxide form. Said N-oxidation reaction may generally be carried out by reacting the 25 starting material of formula (I) with 3-phenyl-2-(phenylsulfonyl)oxaziridine or with an appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted 30 benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboperoxoic acid, peroxoalkanoic acids, e.g. peroxoacetic acid, alkylhydroperoxides, e.g. t-butyl hydroperoxide. Suitable solvents are, for example, water, lower alkanols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents. 35

Pure stereochemically isomeric forms of the compounds of formula (I), may be obtained by the application of art-known procedures. Diastereomers may be separated

-12-

by physical methods such as selective crystallization and chromatographic techniques, e.g. counter-current distribution, liquid chromatography and the like.

Some of the compounds of formula (I), and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, liquid chromatography and the like methods. Enantiomers can be obtained from racemic mixtures by first converting said racemic mixtures with suitable 10 resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said mixtures of diastereomeric salts or compounds by, for example, selective crystallization or chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur stereospecifically.

An alternative manner of separating the enantiomeric forms of the compounds of 20 formula (I) and intermediates involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase.

15

30

35

Some of the intermediates and starting materials as used in the reaction procedures mentioned hereinabove are known compounds and may be commercially available or 25 may be prepared according to art-known procedures.

The compounds of the present invention are useful because they possess pharmacological properties. They can therefore be used as medicines, in particular to treat pathologies associated with excess cortisol formation such as for example, obesity, diabetes, obesity related cardiovascular diseases, and glaucoma.

As described in the experimental part hereinafter, the inhibitory effect of the present compounds on the 11\beta-HSD1-reductase activity (conversion of cortison into cortisol) has been demonstrated in vitro, in an enzymatic assay using the recombinant 11b-HSD1 enzyme, by measuring the conversion of cortison into cortisol using HPLC purification and quantification methods. 11β-HSD1-reductase inhibition was also demonstrated in vitro, in a cell based assay comprising contacting the cells, expressing -13-

11β-HSD1 with the compounds to be tested and assessing the effect of said compounds on the formation of cortisol in the cellular medium of these cells. The cells preferably used in an assay of the present invention are selected from the group consisting of mouse fibroblast 3T3-L1 cells, HepG2 cells, pig kidney cell, in particular LCC-PK1 cells and rat hepatocytes.

Accordingly, the present invention provides the compounds of formula (I) and their pharmaceutically acceptable N-oxides, addition salts, quaternary amines and stereochemically isomeric forms for use in therapy. More particular in the treatment or prevention of parthologies associated with excess cortisol formation such as obesity, diabetes, obesity related cardiovascular diseases and glaucoma. The compounds of formula (I) and their pharmaceutically acceptable N-oxides, addition salts, quaternary amines and the stereochemically isomeric forms may hereinafter be referred to as compounds according to the invention.

15

10

5

In view of the utility of the compounds according to the invention, there is provided a method for the treatment of an animal, for example, a mammal including humans, suffering from a pathology associated with excess cortisol formation, which comprises administering an effective amount of a compound according to the present invention. Said method comprising the systemic or topical administration of an effective amount of a compound according to the invention, to warm-blooded animals, including humans.

25

It is thus an object of the present invention to provide a compound according to the present invention for use as a medicine. In particular to use the compound according to the present invention in the manufacture of a medicament for treating pathologies associated with excess cortisol formation such as for example, obesity, diabetes, obesity related cardiovascular diseases, and glaucoma.

30

35

The amount of a compound according to the present invention, also referred to here as the active ingredient, which is required to achieve a therapeutical effect will be, of course, vary with the particular compound, the route of administration, the age and condition of the recipient, and the particular disorder or disease being treated. A suitable daily dose would be from 0.001 mg/kg to 500 mg/kg body weight, in particular from 0.005 mg/kg to 100 mg/kg body weight. A method of treatment may also include administering the active ingredient on a regimen of between one and four intakes per day.

-14-

While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical composition. Accordingly, the present invention further provides a pharmaceutical composition comprising a compound according to the present invention, together with a pharmaceutically acceptable carrier or diluent. The carrier or diluent must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients thereof.

10

15

25

30

35

The pharmaceutical compositions of this invention may be prepared by any methods well known in the art of pharmacy, for example, using methods such as those described in Gennaro et al. Remington's Pharmaceutical Sciences (18th ed., Mack Publishing Company, 1990, see especially Part 8: Pharmaceutical preparations and their Manufacture). A therapeutically effective amount of the particular compound, in base form or addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for systemic administration such as oral, percutaneous, or parenteral administration; or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, shampoo or the like. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions: or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wettable agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause any significant deleterious effects on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on or as an ointment. As appropriate compositions for topical application

-15-

there may be cited all compositions usually employed for topically administering drugs e.g. creams, gellies, dressings, shampoos, tinctures, pastes, ointments, salves, powders and the like. Application of said compositions may be by aerosol, e.g. with a propellant such as nitrogen, carbon dioxide, a freon, or without a propellant such as a pump spray, drops, lotions, or a semisolid such as a thickened composition which can be applied by a swab. In particular, semisolid compositions such as salves, creams, gellies, ointments and the like will conveniently be used.

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

In order to enhance the solubility and/or the stability of the compounds of formula (I) in pharmaceutical compositions, it can be advantageous to employ α -, β - or γ -cyclodextrins or their derivatives. Also co-solvents such as alcohols may improve the solubility and/or the stability of the compounds of formula (I) in pharmaceutical compositions. In the preparation of aqueous compositions, addition salts of the subject compounds are obviously more suitable due to their increased water solubility.

25

20

5

10

15

Experimental part

Hereinafter, the term 'RT' means room temperature, 'THF' means tetrahydrofuran, 'Et₂O' means diethylether, 'DCM means dichloromethane, 'LDA' means (diisopropylamino)lithium.

30

A. Preparation of the intermediates

Example A1

Preparation of

intermediate 1

S configuration

-16-

To a stirred solution of alfa-(S)-methyl benzylamine (0.05 mol) and triethylamine (Et₃N) (0.055 mol) in DCM (200 ml) was added dropwise a solution of 4-chlorobutanoyl chloride (0.055 mol) in DCM (100 ml) at -10°C. After the addition, the reaction mixture was stirred at room temperature until total conversion (TLC monitoring). The reaction mixture was washed twice with 1N HCl. To the organic phase were added 100 ml of 50% sodium hydroxide solution together with benzyltriethyl ammonium chloride (0.05 mol). The mixture was stirred vigorously at room temperature overnight. The thus obtained reaction mixture was washed with 1N HCl, 5% NaHCO₃ solution, water and brine. The organic phase was separated, dried over magnesium sulphate and concentrated to give 9.5g of intermediate 1 as colourless oil.

Alternatively intermediate 1 is prepared according to the following reaction scheme;

To a stirred solution of 7 ml Et₃N in 300 ml CH₂Cl₂ was introduced dropwise within 0.5 hour a solution of 6.00 g (0.0495 mol) 1 in 100 ml CH₂Cl₂. The mixture was stirred at RT until no starting amine 1 was monitored by TLC (eluted with Et₂O; the formation of the intermediate 2 could be monitored R_f =0.5). The mixture was washed with 2N HCl (to remove the Et₃N still present). To the reaction mixture were introduced TEBA (benzyltriethylammonium chloride) 1.13 g (0.00495 mol) and NaOH(aq.) (50 g in 60 ml H₂O). The mixture was stirred overnight, organic layer was separated and acidified with 2N HCl. It was washed with NaHCO₃ (5%), H₂O and dried (NaSO₄). After evaporation of the solvent 10.10 g crude product were isolated. It was chromatographed (column h = 260 mm, \emptyset = 46 mm, 195 g silicagel 230-400 mesh, eluent Et₂O) to give 1.43 g of intermediate 3 and 7.28 g of 4 (78%).

NMR data for 4: CDCl3, 1.52 (d, 3H, CH₃); 1.93 (m, 2H, CH₂); 2.42 (m, 2H, CH₂); 2.99 and 3.31 (2x m, H^A and H^B, NCH₂); 5.50 (quart, 1H, NCH); 7.32-7.48 (m, 5H-aromatic).

Example A2

20

25

30

10

A mixture of α -methyl- α -(2-oxoethyl)-benzeneacetonitrile (0.0086 mol) and (S)- α -methyl-benzenemethanamine (0.009 mol) in methanol (50 ml) was hydrogenated overnight with palladium on activated carbon (0.5 g) as a catalyst in the presence of a thiophene solution (1 ml). After uptake of hydrogen (1 equiv.), the catalyst was filtered off and the filtrate was evaporated, yielding 2.2 g of intermediate 5.

A mixture of intermediate 5 (0.007 mol) in sulfuric acid (25 ml) was stirred at room temperature over the weekend. The reaction mixture was poured out into ice, then neutralised with a NaOH solution. (50 %) and extracted with dichloromethane. The organic layer was separated, washed, dried, filtered and the solvent was evaporated, yielding 1.8 g (85.7 %) of intermediate 6.

A mixture of intermediate 6 (0.0057 mol) in hydrobromic acid (48%) (50 ml) was stirred and refluxed for 1 hour, then for 3 hours. The reaction mixture was cooled and filtered, yielding 1.4 g of intermediate (7).

WO 2005/108360 PCT/EP2005/051968

-18-

B. Preparation of the compounds

Example B1

To a stirred solution of 0.60 g (3.17 mmol) of intermediate 1 in 15 ml THF, cooled to – 80°C, were added 1.2 equivalents of LDA (2M solution in THF/heptane/ethylbenzene) and the mixture was stirred for 30 – 45 minutes at –80°C. The corresponding benzylhalogenide, i.e. 1-methyl-2-chloromethylbenzene (1.05 equivalents) was added at –80°C and the reaction mixture was stirred 1hour at this temperature and for one additional hour at –60°C. The reaction was monitored by TLC and kept at –60°C until completion. The thus obtained reaction mixture was hydrolized with 2N HCl, extracted with Et₂O, washed with 5% aq. NaHCO₃ and dried over Na₂SO₄. The purification of the diastereoisomers occurred by column chromatography on silica gel (230-400 mesh) with petroleum ether/Et₂O (from 2:1 to 4:1 depending on the corresponding compound), yielding compounds 1 and 2.

15

20

25

10

Example B2

and of

In a flame dried Schlenk-flask 0.80 g (4.23 mmol) of intermediate 1 were dissolved in 5 ml THF and cooled to -80°C. LDA (1.3 equivalent, 2.7 ml, ca. 2M commercial solution in THF /heptane / ethylbenzene) was introduced via syringe and the mixture was stirred for 30 minutes at -80°C. 2,6-Dichlorobenzyl bromide (1.42 g, 5.92 mmol) was introduced in solid form and the reaction mixture was stirred for 30 minutes at -80°C until completion of the reaction (proved by TLC). The mixture was quenched with 2N HCl, then extracted with Et₂O and the organic layer washed with NaHCO₃ (5% aq.), H₂O, and dried with Na₂SO₄. After evaporation of the solvent 1.81 g of the

crude product were isolated. It was chromatographed (column h = 580 mm, $\emptyset = 32$ mm, 180 g silicagel 230-400 mesh, eluent petroleum ether/Et₂O = 5:1) to give 0.61 g Compound 14 () (colourless crystals m.p. 75-76°C) and 0.75 g Compound 13 () (colourless crystals m.p. 98-99°C), corresponds to 93% total yield.

5

Table 1 lists the compounds that were prepared according to the above Examples.

Table 1

Co. No. 3 Co. No. 85 Co. No. 86 Co. No. 86 Co. No. 87 Co. No. 87 Co. No. 88 Co. No. 88		I'
Co. No. 4 Co. No. 86 Co. No. 87 Co. No. 6 Co. No. 88 Co. No. 88		C C C F
Co. No. 4 Co. No. 86 Co. No. 87 Co. No. 87 Co. No. 88 Co. No. 88 Co. No. 88	Co. No. 3	Co. No. 85
Co. No. 4 Co. No. 86 Co. No. 87 Co. No. 87 Co. No. 88 Co. No. 88 Co. No. 88		
Co. No. 5 Co. No. 87 Co. No. 88 Co. No. 88 Co. No. 89		
Co. No. 6 Co. No. 88 Co. No. 89		
Co. No. 6 Co. No. 88 Co. No. 89	CO. 190. 3	CO. NO. 67
Co. No. 7 Co. No. 89		
Co. No. 7 Co. No. 89	Co. No. 6	Co. No. 88
Co. No. 8 Co. No. 90		
Co. No. 91		OH NOH
Co. No. 10 Co. No. 92	Co. No.10	

= 0 C1	
Co. No. 11	Co. No. 93
Co. No. 12	Co. No. 94
Co. No. 13	Co. No. 95
Co. No. 14	Co. No. 96
Co. No. 15	Co. No. 97
Co. No. 16	Co. No. 98
CCI	
Co. No. 17	Co. No. 99
Co. No. 18	Co. No. 100
	CI N
Co. No. 19	Co. No. 101
Co. No. 20	Co. No. 102

	
Co. No. 21	Co. No. 103
	HO CI
Co. No. 22	Co. No. 104
	HO N CI
Co. No. 23	Co. No. 105
	HO CI
Co. No. 24	Co. No. 106
	HO CI
Co. No. 25	Co. No. 107
Co. No. 26	Co. No. 108
Co. No. 27	Co. No. 109
Co. No. 28	Co. No. 110
Co. No. 29	Co. No. 111
Co. No.30	Co. No. 112

Q CI	Ω I
CI	
Co. No. 31	Co. No. 113
C1 N	
CI CI	
Co. No. 32	Co. No. 114
Co. No. 33	Co. No. 115
Co. No. 34	Co. No. 116
	DO OH
Co. No. 35	Co. No. 117
Co. No. 36	Co. No. 118
Co. No. 37	Co. No. 119
Co. No. 38	Co. No. 120
Co. No. 39	Co. No. 121
CC	
Co. No. 40	Co. No. 122

C	
Co. No. 41	Co. No. 123
C N To 40	
Co. No. 42	Co. No.124
Co. No. 43	Co. No. 125
N CI	
Co. No. 44	Co. No. 126
Co. No. 45	Co. No. 127
CI N	
Co. No. 46	Co. No. 128
CI	•
Co. No. 47	Co. No. 129
Co. No. 48	Co. No. 130
Co. No. 49	Co. No. 131
Co. No. 50	Co. No. 132

	
CI	
Co. No. 51	Co. No. 133
	·
Co. No. 52	Co. No. 134
HOLL MANAGEMENT OF THE PROPERTY OF THE PROPERT	
Co. No. 53	Co. No. 135
Co. No. 54	Co. No. 136
Co. No. 55	Co. No. 137
Co. No. 56	Co. No. 138
Co. No. 57	Co. No. 139
Co. No. 58	Co. No. 140
Co. No. 59	Co. No. 141
Co. No. 60	Co. No. 142
Co. No. 61	Co. No. 143

Co. No. 62	Co. No. 144
Co. No. 63	Co. No. 145
Co. No. 64	Co. No. 146
Co. No. 65	Co. No. 147
Co. No. 66	Co. No. 148
Co. No. 67	Co. No. 149
Co. No. 68	Co. No. 150
₩ OH N OH	Co. No. 151
Co. No. 70	Co. No. 152
Co. No. 71	Co. No. 153
Co. No. 72	Co. No. 154

,≠■・

	₹ 9
Co. No. 73	Co. No. 155
Co. No. 74	Co. No. 156
Co. No. 75	Co. No. 157
Co. No. 76	Co. No. 158
Co. No. 77	Co. No. 159
Co. No. 78	Co. No. 160
Co. No. 79	Co. No. 161
	N N N
Co. No. 80	Co. No. 162
Co. No. 81	Co. No. 163
Br C C C C C C C C C C C C C C C C C C C	
Co. No. 82	Co. No. 164

Co. No. 83	Co. No. 165
Co. No. 84	

Example B3

10

Preparation of

compound 166

A mixture of intermediate 7 (0.00033 mol) in thionyl chloride (2 ml) was stirred and refluxed for 2 hours, then stirred and refluxed over the weekend at room temperature. The solvent was evaporated and the residue was dissolved in dichloromethane, washed with water and filtered through Extrelut, then evaporated. The residue was purified by flash column chromatography on Triconex flash tubes (eluent: CH₂Cl₂/EtOAc 95/5). The product fractions were collected and the solvent was evaporated, yielding 0.0588 g (62.5 %) of compound 166.

in a similar way was prepared

compound 167

Co.	NMR data	melting
No.		point (°C)
1	CDCl ₃ ; 1.52 (d, CH ₃); 1.45-1.67 (m, H ^A -CH ₂); 1,91-2.09 (m, H ^B -	
	CH ₂); 2.33 (s, CH ₃); 2.47-2.60 (m, H ^A -CH ₂); 2.68-2.83 (m, CH);	
	2.83-2.97 (dt, H ^A -CH ₂); 3.10-3.25 (m, H ^B -CH ₂); 3.32-3.43 (dd,	
	H ^B -CH ₂); 5.52 (q, CH); 7.03-7.18 (m, 4H-aromatic); 7.20-7.39 (m,	
	5H-aromatic)	
2	CDCl ₃ ; 1.41 (d, CH ₃); 1.46-1.62 (m, H ^A -CH ₂); 1.72-1.89 (m, H ^B -	
	CH ₂); 2.23 (s, CH ₃); 2.40-2.62 (m, CH, H ^A -CH ₂); 2.62-2.75 (m,	
	H ^A -CH ₂); 3.00-3.12 (dt, H ^B -CH ₂); 3.19-3.30 (dd, H ^B -CH ₂); 5.43	
	(q, CH); 6.93-7.07 (m, 4H-aromatic); 7.08-7.25 (m, 5H-aromatic)	
3	CDCl ₃ ; 1.38 (d, CH ₃); 1.51-1.69 (m, H ^A -CH ₂); 1.79-1.95 (m, H ^B -	
	CH ₂); 2.25 (s, CH ₃); 2.53-2.78 (m, CH, 2x H ^A -CH ₂); 2.90-3.03 (dt,	
	H ^B -CH ₂); 3.04-3.19 (m, H ^B -CH ₂); 5.44 (q, CH); 7.03 (s, 4H-	
	aromatic); 7.12-7.30 (m, 5H-aromatic)	
4	CDCl ₃ ; 1.53 (d, CH ₃); 1.51-1.70 (m, H ^A -CH ₂); 1.92-2.08 (m, H ^B -	
	CH ₂); 2.33 (s, CH ₃); 2.61-2.88 (m, CH, 2x H ^A -CH ₂); 3.11-3.27 (m,	
	2x H ^B -CH ₂); 5.52 (q, CH); 7.09 (s, 4H-aromatic); 7.18-7.38 (m,	
	5H-aromatic)	
5	CDCl ₃ ; 1.45 (d, CH ₃); 1.59-1.80 (m, H ^A -CH ₂); 1.82-2.02 (m, H ^B -	
	CH ₂); 2.62-2.88 (m, CH, 2x H ^A -CH ₂); 2.91-3.10 (m, H ^B -CH ₂);	
	3.13-3.31 (m, H ^B -CH ₂); 5.52 (q, CH); 7.09-7.42 (m, 10H-aromatic)	
6	CDCl ₃ ; 1.50 (d, CH ₃); 1.48-1.67 (m, H ^A -CH ₂); 1.88-2.04 (m, H ^B -	
	CH ₂); 2.60-2.87 (m, CH, $2x H^A$ -CH ₂); 3.08-3.28 (m, $2x H^B$ -CH ₂);	
<u> </u>	5.49 (q, CH); 7.10-7.36 (m, 10H-aromatic)	
7	CDCl ₃ ; 1.50 (d, CH ₃); 1.50-1.65 (m, H ^A -CH ₂); 1,82-1.98 (m, H ^B -	
	CH ₂); 2.50-2.63 (m, H ^A -CH ₂); 2.75-2.92 (m, CH, H ^A -CH ₂); 3.07-	
	3.20 (m, H^B -CH ₂); 3.30-3.42 (dd, H^B -CH ₂); 3.79 (s, CH ₃); 5.51 (q,	•
	CH); 6.78-6.90 (m, 2H-aromatic); 7.10-7.19 (m, 2H-aromatic);	
	7.19-7.37 (m, 5H-aromatic)	
8	CDCl ₃ ; 1.42 (d, CH ₃); 1.51-1.70 (m, H ^A -CH ₂); 1.70-1.86 (m, H ^B -	
	CH_2); 2.47-2.61 (m, H^A - CH_2); 2.63-2.80 (m, CH_1 , H^A - CH_2); 2.98-	
	3.12 (dt, H^B -CH ₂); 3.20-3.32 (dd, H^B -CH ₂); 3.73 (s, CH ₃); 5.45 (q, CH), 6.71 6.85 (m, 2H) are metically 7.02.7.30 (m, 7H) are metically	
	CH); 6.71-6.85 (m, 2H-aromatic); 7.03-7.30 (m, 7H-aromatic) CDCl ₃ ; 1.51 (d, CH ₃); 1.58-1.81 (m, H ^A -CH ₂); 1,83-2.00 (m, H ^B -	
9	CDC ₁₃ ; 1.51 (d, CH ₃), 1.56-1.61 (m, H -CH ₂), 1,65-2.00 (m, H - CH ₂); 2.71-2.90 (m, CH, 2x H ^A -CH ₂); 3.10-3.22 (dt, H ^B -CH ₂);	
	3.33-3.49 (m, H ^B -CH ₂); 5.53 (q, CH); $7.09-7.38$ (m, 9H-aromatic)	
10	CDCl ₃ ; 1.51 (d, CH ₃); 1.52-1.68 (m, H ^A -CH ₂); 1,90-2.07 (m, H ^B -	<u>. </u>
10	CH_{2} ; 1.31 (d, CH_{3}); 1.32-1.68 (m, H_{2}); 1.30-2.67 (m, H_{3}); CH_{2}); 2.70-2.97 (m, CH_{3}); CH_{2}); 3.12-3.25 (m, H^{B} - CH_{2});	
	$(3.37-3.49)$ (dd, H^B -CH ₂); 5.50 (q, CH); 7.09-7.39 (m, 9H-aromatic)	
11	CDCl ₃ ; 1.46 (d, CH ₃); 1.50-1.73 (m, H ^A -CH ₂); 1.78-1.97 (m, H ^B -	 _
1 1	CH_{2} ; 2.67-2.86 (m, CH, 2x H ^A -CH ₂); 3.03-3.18 (dt, H ^B -CH ₂);	
	3.30-3.48 (m, H ^B -CH ₂); 5.46 (q, CH); $7.00-7.32$ (m, 8H-aromatic)	
12	CDCl ₃ ; 1.51 (d, CH ₃); 1.50-1.67 (m, H ^A -CH ₂); 1.90-2.07 (m, H ^B -	
	CH ₂); 2.75-2.96 (m, CH, 2x H ^A -CH ₂); 3.10-3.25 (m, H ^B -CH ₂);	
	3.40-3.51 (dd, H ^B -CH ₂); 5.50 (q, CH); 7.02-7.37 (m, 8H-aromatic)	
13	CDCl ₃ ; 1.56 (d, CH ₃); 1.78-1.92 (m, CH ₂); 2.76-2.88 (m, H ^A -CH ₂);	
1	2.88-3.00 (m, CH); 3.01-3.16 (m, H^A -CH ₂); 3.28-3.38 (m, H^B -	
		<u>l </u>

Co.	NMR data	melting
No.		point (°C)
	CH ₂); 3.43-3.57 (dd, H ^B -CH ₂); 5.53 (q, CH); 7.0,1-7.12 (m, 1H-	
	aromatic); 7.18-7.38 (m, 7H-aromatic)	
14	CDCl ₃ ; 1.52 (d, CH ₃); 1.68-1.88 (m, H ^A -CH ₂); 1,83-1.99 (m, H ^B -	
	CH ₂); 2.88-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.24 (m, H ^B -CH ₂);	
	3.48-3.60 (dd, H ^B -CH ₂); 5.51 (q, CH); 7.02-7.13 (m, 1H-aromatic);	
	7.22-7.42 (m, 7H-aromatic)	
15	CDCl ₃ ; 1.46 (d, CH ₃); 1.60-1.77 (m, H ^A -CH ₂); 1.87-2.02 (m, H ^B -	
	CH_2); 2.32 (s, CH_3); 2.61-2.83 (m, CH_3); 2.87-3.09 (dt,	
	H ^B -CH ₂); 3.11-3.27 (m, H ^B -CH ₂); 5.52 (q, CH); 6.95-7.07 (m, 3H-	
	aromatic); 7.11-7.37 (m, 6H-aromatic)	
16	CDCl ₃ ; 1.51 (d, CH ₃); 1.51-1.63 (m, H ^A -CH ₂); 1.90-2.07 (m, H ^B -	
	CH ₂); 2.31 (s, CH ₃); 2.58-2.70 (m, H ^A -CH ₂); 2.70-2.89 (m, CH,	
	H^A -CH ₂); 3.09-3.28 (m, 2x H^B -CH ₂); 5.50 (q, CH); 6.93-7.06 (m,	
	3H-aromatic); 7.09-7.37 (m, 6H-aromatic)	<u> </u>
17	CDCl ₃ ; 1.46 (d, CH ₃); 1.57-1.73 (m, H ^A -CH ₂); 1.88-2.02 (m, H ^B -CH ₂); 1.88-2.02 (m, H ^B -CH ₂); 1.88-2.03 (m, H ^B -CH	
	CH_2); 2.63-2.83 (m, CH, 2x H^A - CH_2); 2.97-3.09 (dt, H^B - CH_2);	
1.0	3.10-3.25 (m, H ^B -CH ₂); 5.51 (q, CH); 7.04-7.37 (m, 9H-aromatic)	
18	CDCl ₃ ; 1.50 (d, CH ₃); 1.46-1.62 (m, H ^A -CH ₂); 1.90-2.07 (m, H ^B -CH ₂); 2.62-2.87 (m, CH, 2x H ^A -CH ₂); 3.09-3.23 (m, 2x H ^B -CH ₂);	
19	5.49 (q, CH); 7.00-7.36 (m, 9H-aromatic) CDCl ₃ ; 1.47 (d, CH ₃); 1.60-1.78 (m, H ^A -CH ₂); 1,87-2.03 (m, H ^B -	
19	CH_{2} ; 1.47 (d, CH_{3}); 1.60-1.78 (H, H - CH_{2}); 1.67-2.03 (H, H - CH_{2}); 2.61-2.87 (m, CH_{1}); 3.00-3.13 (dt, H^{B} - CH_{2});	
	3.16-3.27 (m, H ^B -CH ₂); 3.79 (s, CH ₃); 5.51 (q, CH); 7.71-7.85 (m,	
	3H-aromatic); 7.16-7.85 (m, 6H-aromatic)	
20	CDCl ₃ ; 1.51 (d, CH ₃); 1.51-1.69 (m, H ^A -CH ₂); 1.92-2.07 (m, H ^B -	
	CH ₂); 2.58-2.90 (m, CH, 2x H ^A -CH ₂); 3.10-3.28 (m, 2x H ^B -CH ₂);	
,	3.77 (s, CH ₃); 5.50 (q, CH); 6.70-6.80 (m, 3H-aromatic); 7.11-7.37	_
 - -	(m, 6H-aromatic)	
21	CDCl ₃ ; 1.44 (d, CH ₃); 1.60-1.77 (m, H ^A -CH ₂); 1,87-2.01 (m, H ^B -	
	CH ₂); 2.61-2.82 (m, CH, 2x H ^A -CH ₂); 2.96-3.08 (dt, H ^B -CH ₂);	
	3.08-3.19 (m, H ^B -CH ₂); 3.77 (s, CH ₃); 5.50 (q, CH); 6.78-6.86 (m,	
	2H-aromatic); 7.08-7.18 (m, 2H-aromatic); 7.20-7.37 (m, 5H-	
:	aromatic)	
22	CDCl ₃ ; 1.49 (d, CH ₃); 1.50-1.68 (m, H ^A -CH ₂); 1.89-2.05 (m, H ^B -	
	CH ₂); 2.60-2.82 (m, CH, 2x H ^A -CH ₂); 3.05-3.21 (m, 2x H ^B -CH ₂);	}
	3.76 (s, CH ₃); 5.48 (q, CH); 6.71-6.80 (m, 2H-aromatic); 7.01-7.13	
<u> </u>	(m, 2H-aromatic); 7.14-7.33 (m, 5H-aromatic)	
23	CDCl ₃ ; 1.60-1.78 (m, H ^A -CH ₂); 1,93-2.09 (m, H ^B -CH ₂); 2.68-2.88	
	(m, CH, CH ₂); 2.90-3.21 (m, 2x H ^A -CH ₂ , H ^B -CH ₂); 3.27-3.38 (dd,	,
<u> </u>	H ^B -CH ₂); 3.42-3.65 (m, CH ₂); 7.12-7.67 (m, 9H-aromatic)	<u> </u>
24	CDCl ₃ ; 1.47-1.72 (m, H ^A -CH ₂); 1.89-2.04 (m, H ^B -CH ₂); 2.50-2.75	
	(m, CH, H ^A -CH ₂); 2.76-2.88 (t, CH ₂); 2.93-3.12 (m, CH ₂); 3.12-	
	3.21 (dd, H ^B -CH ₂); 3.40-3.63 (m, CH ₂); 3.79 (s, CH ₃); 6.71-6.80	
	(m, 3H-aromatic); 7.12-7.33 (m, 6H-aromatic)	<u> </u>
25	CDCl ₃ ; 1.61-1.79 (m, H ^A -CH ₂); 1,93-2.08 (m, H ^B -CH ₂); 2.32 (s,	
[] [CH ₃); 2.62-2.84 (m, CH, H ^A -CH ₂); 2.96-3.25 (m, H ^A -CH ₂ , 2x H ^B -	
	CH ₂); 4.44 (dd, CH ₂); 7.05-7.34 (m, 9H-aromatic)	<u> </u>

Co.	NMR data	melting
No.		point (°C)
26	CDCl ₃ ; 1.45 (d, CH ₃); 1.58-1.73 (m, H ^A -CH ₂); 1.81-1.99 (m, H ^B -	
	CH ₂); 2.31 (s, CH ₃); 2.61-2.82 (m, CH, 2x H ^A -CH ₂); 2.75-3.08 (dt,	
	H ^B -CH ₂); 3.09-3.23 (m, H ^B -CH ₂); 5.52 (q, CH); 7.02-7.14 (m, 4H-	
	aromatic); 7.18-7.37 (m, 5H-aromatic)	
27	CDCl ₃ ; 1.42 (d, CH ₃); 1.40-1.60 (m, H ^A -CH ₂); 1,81-1.99 (m, H ^B -	
	CH ₂); 2.23 (s, CH ₃); 2.50-2.78 (m, CH, 2x H ^A -CH ₂); 3.00-3.18 (m,	
	2x H ^B -CH ₂); 5.41 (q, CH); 6.92-7.07 (m, 4H-aromatic); 7.10-7.32	
	(m, 5H-aromatic)	
28	CDCl ₃ ; 1.53-1.71 (m, H ^A -CH ₂); 1,89-2.05 (m, H ^B -CH ₂); 2.23 (s,	
	CH ₃); 2.41-2.55 (m, H ^A -CH ₂); 2.59-2.75 (m, CH); 2.80-2.90 (t,	
	CH ₂); 3.03-3.20 (m, CH ₂); 3.23-3.35 (dd, H ^B -CH ₂); 3.44-3.68 (m,	
	CH2); 7.07-7.34 (m, 9H-aromatic)	
29	CDCl ₃ ; 1.57-1.73 (m, H ^A -CH ₂); 1.89-2.04 (m, H ^B -CH ₂); 2.32 (s,	
	CH ₃); 2.50-2.75 (m, CH, H ^A -CH ₂); 2.76-2.88 (t, CH ₂); 2.91-3.21	
	(m, CH ₂ , H ^B -CH ₂); 3.41-3.65 (m, CH ₂); 6.94-7.08 (m, 3H-	
	aromatic); 7.12-7.33 (m, 6H-aromatic)	
30	CDCl ₃ ; 1.60-1.76 (m, H ^A -CH ₂); 1,88-2.01 (m, H ^B -CH ₂); 2.68-2.90	
	(m, CH, CH ₂ , H ^A -CH ₂); 3.00-3.19 (m, CH ₂); 3.27-3.42 (m, H ^B -	
	CH ₂); 3.43-3.67 (m, CH ₂); 7.10-7.37 (m, 9H-aromatic)	
31	CDCl ₃ ; 1.53-1.72 (m, H ^A -CH ₂); 1,88-2.03 (m, H ^B -CH ₂); 2.69-2.90	
	(m, CH, CH ₂ , H ^A -CH ₂); 3.01-3.20 (m, CH ₂); 3.31-3.46 (m, H ^B -	
	CH ₂); 3.46-3.67 (m, CH ₂); 7.07-7.38 (m, 8H-aromatic)	
32	CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.80-2.91 (t, CH ₂); 2.91-3.27 (m, CH,	
	2x H ^A -CH ₂ , H ^B -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.68 (m,	
	CH ₂); 7.03-7.35 (m, 8H-aromatic)	
33	CDCl ₃ ; 1.56-1.72 (m, H ^A -CH ₂); 1,80-1.97 (m, H ^B -CH ₂); 2.47-2.60	
	(m, H ^A -CH ₂); 2.68-2.80 (m, CH); 2.78-2.88 (t, CH ₂); 2.99-3.17 (m,	
	CH_2); 3.23-3.35 (dd, H^B - CH_2); 3.42-3.64 (m, CH_2); 3.81 (s, CH_3);	
2.4	6.80-6.92 (m, 2H-aromatic); 7.10-7.35 (m, 7H-aromatic)	
34	CDCl ₃ ; 1.55-1.71 (m, H ^A -CH ₂); 1.77-2.02 (m, H ^B -CH ₂); 2.53-2.76 (m, CH ₂); 2.77-2.85 (t, CH ₂); 2.00-3.02 (dt, H ^A -CH ₂);	
	(m, CH, H ^A -CH ₂); 2.77-2.85 (t, CH ₂); 2.90-3.02 (dt, H ^A -CH ₂); 3.02-3.14 (m, H ^B -CH ₂); 3.14-3.23 (dd, H ^B -CH ₂); 3.40-3.62 (m,	
	5.02-5.14 (m, H -CH ₂); $5.14-5.25$ (dd, H -CH ₂); $5.40-5.02$ (m, CH ₂); $7.12-7.33$ (m, 10H-aromatic)	
35	CDCl ₃ ; 1.56-1.72 (m, H ^A -CH ₂); 1,88-2.02 (m, H ^B -CH ₂); 2.32 (s,	
رر	CDC13, 1.30-1.72 (m, H -CH ₂), 1,88-2.02 (m, H -CH ₂), 2.32 (8, CH ₃); 2.51-2.73 (m, CH, H ^A -CH ₂); 2.76-2.87 (t, CH ₂); 2.90-3.18	
	(m, CH2, HB-CH2); 3.40-3.63 (m, CH2); 7.03-7.33 (m, 9H-	
	aromatic)	
36	CDCl ₃ ; 1.38 (d, CH ₃); 1.52-1.70 (m, H ^A -CH ₂); 1.79-1.96 (m, H ^B -	
	CH ₂); 2.58-2.77 (m, CH, 2x H ^A -CH ₂); 2.90-3.01 (dt, H ^B -CH ₂);	
	3.07-3.22 (m, H ^B -CH ₂); 5.44 (q, CH); 7.08-7.29 (m, 10H-aromatic)	
37	CDCl ₃ ; 1.38 (d, CH ₃); 1.40-1.58 (m, H ^A -CH ₂); 1.77-1.92 (m, H ^B -	
	CH ₂); 2.50-2.75 (m, CH, 2x H ^A -CH ₂); 2.94-3.18 (m, 2x H ^B -CH ₂);	
	5.39 (q, CH); 7.01-7.28 (m, 10H-aromatic)	
38	CDCl ₃ ; 1.42 (d, CH ₃); 1.52-1.70 (m, H ^A -CH ₂); 1.70-1.87 (m, H ^B -	
	CH ₂); 2.47-2.61 (m, H ^A -CH ₂); 2.64-2.80 (m, CH, H ^A -CH ₂); 3.00-	
]	$3.12 \text{ (dt, H}^{B}\text{-CH}_{2}); 3.20-3.32 \text{ (dd, H}^{B}\text{-CH}_{2}); 3.74 \text{ (s, CH}_{3}); 5.45 \text{ (q, })$	
	CH); 6.72-6.84 (m, 2H-aromatic); 7.03-7.28 (m, 7H-aromatic)	
		<u></u>

Co.	NMR data	melting
No.		point (°C)
39	CDCl ₃ ; 1.44 (d, CH ₃); 1.42-1.59 (m, H ^A -CH ₂); 1.77-1.91 (m, H ^B -	
	CH ₂); 2.42-2.54 (m, H ^A -CH ₂); 2.70-2.87 (m, CH, H ^A -CH ₂); 3.00-	
	3.13 (m, H ^B -CH ₂); 3.22-3.35 (dd, H ^B -CH ₂); 3.72 (s, CH ₃); 5.44 (q,	
	CH); 6.71-6.82 (m, 2H-aromatic); 7.02-7.30 (m, 7H-aromatic)	<u> </u>
40	CDCl ₃ ; 1.38 (d, CH ₃); 1.49-1.67 (m, H ^A -CH ₂); 1,69-1.87 (m, H ^B -	
	CH ₂); 2.60-2.77 (m, CH, 2x H ^A -CH ₂); 2.97-3.10 (dt, H ^B -CH ₂);	
	3.23-3.38 (m, H ^B -CH ₂); 5.41 (q, CH); 6.95-7.26 (m, 9H-aromatic)	<u> </u>
41	CDCl ₃ ; 1.43 (d, CH ₃); 1.38-1.59 (m, H ^A -CH ₂); 1,80-1.99 (m, H ^B -	
	CH ₂); 2.62-2.87 (m, CH, 2x H ^A -CH ₂); 3.01-3.15 (m, H ^B -CH ₂);	
	3.30-3.41 (dd, H ^B -CH ₂); 5.41 (q, CH); 6.95-7.11 (m, 2H-aromatic);	
	7.12-7.29 (m, 7H-aromatic)	
42	CDCl ₃ ; 1.48 (d, CH ₃); 1.54-1.73 (m, H ^A -CH ₂); 1.79-1.97 (m, H ^B -	
	CH_2); 2.68-2.87 (m, CH, 2x H^A -CH ₂); 3.08-3.22 (m, H^B -CH ₂);	
- 40	3.35-3.52 (m, H ^B -CH ₂); 5.49 (q, CH); 7.02-7.23 (m, 8H-aromatic)	<u> </u>
43	CDCl ₃ ; 1.39 (d, CH ₃); 1.32-1.53 (m, H ^A -CH ₂); 1.79-1.96 (m; H ^B -CH ₂); 2.60-2.83 (m, CH, 2x H ^A -CH ₂); 3.00-3.13 (m, H ^B -CH ₂);	
	3.28-3.42 (m, H ^B -CH ₂); 5.38 (q, CH); 6.91-7.27 (m, 8H-aromatic)	<u> </u>
44	CDCl ₃ ; 1.45 (d, CH ₃); 1.67-1.80 (m, CH ₂); 2.64-2.78 (m, H ^A -CH ₂); 2.76-2.89 (m, CH); 2.90-3.03 (m, H ^A -CH ₂); 3.13-3.26 (m, H ^B -	
	CH_2); 3.37-3.47 (dd, H^B - CH_2); 5.43 (q, CH); 6.90-7.00 (m, $1H$ -	
	aromatic); 7.08-7.26 (m, 7H-aromatic)	
45	CDCl ₃ ; 1.41 (d, CH ₃); 1.57-1.73 (m, H ^A -CH ₂); 1,72-1.88 (m, H ^B -	
47	CH ₂); 2.78-3.12 (m, CH, 2x H ^A -CH ₂ , H ^B -CH ₂); 3.38-3.48 (dd, H ^B -	
:	CH ₂); 5.40 (q, CH); 6.90-7.01 (m, 1H-aromatic); 7.10-7.30 (m,	
	7H-aromatic)	
46	CDCl ₃ ; 1.39 (d, CH ₃); 1.50-1.68 (m, H ^A -CH ₂); 1.80-1.97 (m, H ^B -	
	CH ₂); 2.56-2.78 (m, CH, 2x H ^A -CH ₂); 2.89-3.03 (dt, H ^B -CH ₂);	
	3.03-3.18 (m, H ^B -CH ₂); 5.43 (q, CH); 6.97-7.30 (m, 9H-aromatic)	
47	CDCl ₃ ; 1.39 (d, CH ₃); 1.33-1.52 (m, H ^A -CH ₂); 1.79-1.95 (m, H ^B -	
	CH ₂); 2.52-2.77 (m, CH, 2x H ^A -CH ₂); 2.97-3.14 (m, 2x H ^B -CH ₂);	
	5.38 (q, CH); 6.89-7.27 (m, 9H-aromatic)	
48	CDCl ₃ ; 1.61-1.79 (m, H ^A -CH ₂); 1.93-2.08 (m, H ^B -CH ₂); 2.61-2.87	
	(m, CH, H ^A -CH ₂); 2.98-3.18 (m, CH ₂); 3.19-3.29 (dd, H ^B -CH ₂);	
	3.78 (s, CH ₃); 4.45 (q, CH ₂); 6.72-6.83 (m, 3H-aromatic); 7.13-	
	7.37 (m, 6H-aromatic)	
49	CDCl ₃ ; 1.43 (d, CH ₃); 1.58-1.77 (m, H ^A -CH ₂); 1,85-2.00 (m, H ^B -	
	CH ₂); 2.65-2.82 (m, CH, H ^A -CH ₂); 2.90-3.03 (m, H ^A -CH ₂); 3.05-	
	3.18 (dt, H ^B -CH ₂); 3.28-3.40 (dd, H ^B -CH ₂); 5.43 (q, CH); 7.12-	
	7.30 (m, 6H-aromatic); 7.33-7.58 (m, 3H-aromatic)	<u> </u>
50	CDCl ₃ ; 1.37 (d, CH ₃); 1.52-1.68 (m, H ^A -CH ₂); 1.78-1.93 (m, H ^B -CH	
	CH_2); 2.55-2.77 (m, CH_1); CH_2); 2.89-3.12 (m, $2x H^B$ - CH_2);	
	3.71 (s, CH ₃); 5.43 (q, CH); 6.75 (m, 2H-aromatic); 7.05 (m, 2H-	
<u> </u>	aromatic); 7.12-7.29 (m, 5H-aromatic)	
51	CDCl ₃ ; 1.41-1.60 (m, H ^A -CH ₂); 1.77-1.94 (m, H ^B -CH ₂); 2.51-2.71	
	(m, CH, H ^A -CH ₂); 2.81-3.14 (m, CH ₂ , H ^B -CH ₂); 4.31 (q, CH ₂);	
52	6.90-7.23 (m, 9H-aromatic) CDCl ₃ ; 1.46 (d, CH ₃); 1.60-1.78 (m, H ^A -CH ₂); 1.88-2.03 (m, H ^B -	
52	CDC13, 1.40 (u, Cl13), 1.00-1.70 (III, II -Cl12), 1.00-2.03 (III, II -	<u> </u>

Co.	NMR data	melting
No.		point (°C)
	CH_2); 2.61-2.85 (m, CH, 2x H ^A -CH ₂); 3.00-3.13 (dt, H ^B -CH ₂);	<u> </u>
	3.14-3.28 (m, H ^B -CH ₂); 3.79 (s, CH ₃); 5.51 (q, CH); 6.71-6.83 (m,	
	3H-aromatic); 7.13-7.38 (m, 6H-aromatic)	
53	CDCl ₃ : 1.60-1.79 (m, H ^A -CH ₂): 1.87-2.05 (m, H ^B -CH ₂); 2.60-2.89	
	(m, CH, H ^A -CH ₂); 2.89-3.17 (m, CH ₂ , H ^B -CH ₂); 4.42 (q, CH ₂);	
	6.60-6.90 (m, 3H-aromatic); 7.01-7.36 (m, 6H-aromatic); 8.32 (s,	
	OH)	
54	CDCl ₃ ; 1.63-1.85 (m, H ^A -CH ₂); 1.95-2.16 (m, H ^B -CH ₂); 2.75-2.96	
	(m, CH); 2.98-3.23 (m, CH ₂ , H ^A -CH ₂); 3.32-3.53 (dd, H ^B -CH ₂);	
	4.46 (s, CH ₂); 7.07-7.68 (m, 9H-aromatic)	
55	CDCl ₃ ; 1.60-1.77 (m, H ^A -CH ₂); 1.95-2.10 (m, H ^B -CH ₂); 2.35 (s,	
	CH ₃); 2.52-2.68 (m, H ^A -CH ₂); 2.68-2.77 (m,CH); 3.09-3.19 (m,	
	CH ₂); 3.36-3.44 (dd, H ^B -CH ₂); 4.49 (s, CH ₂); 7.08-7.20 (m, 4H-	
	aromatic); 7.20-7.38 (m, 5H-aromatic)	. <u> </u>
56	CDCl ₃ ; 1.60-1.78 (m, H ^A -CH ₂); 1.92-2.07 (m, H ^B -CH ₂); 2.32 (m,	
	CH ₃); 2.61-2.86 (m, CH, H ^A -CH ₂); 2.97-3.27 (m, CH ₂ , H ^B -CH ₂);	
	4.44 (q, CH ₂); 6.95-7.08 (m, 3H-aromatic); 7.11-7.36 (m, 6H-	
57	aromatic)	
57	CDCl ₃ ; 1.52-1.70 (m, H ^A -CH ₂); 1,79-1.97 (m, H ^B -CH ₂); 2.64-2.86 (m, CH, H ^A -CH ₂); 2.95-3.07 (m, H ^A -CH ₂ , H ^B -CH ₂); 3.28-3.42 (m,	
	H^{B} -CH ₂); 4.37 (s, CH ₂); 6.99-7.30 (m, 9H-aromatic)	
58	CDCl ₃ ; 1.60-1.79 (m, H ^A -CH ₂); 1.93-2.09 (m, H ^B -CH ₂); 2.79-2.97	
56	$(m, CH, H^A-CH_2); 3.07-3.19 (m, CH_2); 3.41-3.56 (m, H^B-CH_2);$	
	4.47 (s, CH ₂); 7.07-7.37 (m, 8H-aromatic)	
59	CDCl ₃ ; 1.77-1.88 (m, CH ₂); 2.81-3.20 (m, 2x CH ₂ , H ^A -CH ₂); 3.32-	
	3.50 (m, H ^B -CH ₂); 4.40 (q, CH ₂); 6.95-7.04 (m, 1H-aromatic);	
	7.12-7.30 (7H-aromatic) ⁴	
60	CDCl ₃ ; 1.62-1.79 (m, H ^A -CH ₂); 1.86-2.02 (m, H ^B -CH ₂); 2.57-2.68	
	(m, H ^A -CH ₂); 2.79-2.94 (m, CH); 3.03-3.13 (m, CH ₂); 3.32-3.42	
	(dd, H ^B -CH ₂); 3.81 (s, CH ₃); 4.46 (s, CH ₂); 6.80-6.92 (m, 2H-	
	aromatic); 7.11-7.37 (m, 7H-aromatic)	
61	CDCl ₃ ; 1.50-1.68 (m, H ^A -CH ₂); 1.82-1.97 (m, H ^B -CH ₂); 2.56-2.77	
	(m, CH, H ^A -CH ₂); 2.83-3.07 (m, CH ₂); 3.08-3.22 (m, H ^B -CH ₂);	
	4.34 (q, CH ₂); 7.03-7.26 (m, 10H-aromatic)	<u> </u>
62	CDCl ₃ ; 1.46 (d, CH ₃); 1.52-1.69 (m, H ^A -CH ₂); 1.80-1.97 (m, H ^B -	
:	CH ₂); 2.28 (s, CH ₃); 2.44-2.58 (m, H ^A -CH ₂); 2.58-2.69 (m, CH);	
	$2.69-2.82 \text{ (m, H}^{A}-\text{CH}_{2}); 3.08-3.19 \text{ (dt, H}^{B}-\text{CH}_{2}); 3.24-3.35 \text{ (dd, H}^{B}-\text{CH}_{2}); 3.24-3.35 $	
	H ^B -CH ₂); 5.47 (q, CH); 7.00-7.12 (m, 4H-aromatic); 7.14-7.32 (m,	
62	5H-aromatic)	<u> </u>
63	CDCl ₃ ; 1.39 (d, CH ₃); 1.52-1.70 (m, H ^A -CH ₂); 1.79-1.95 (m, H ^B -CH ₂); 2.25 (s, CH ₃); 2.53-2.77 (m, CH, 2x H ^A -CH ₂); 2.90-3.01 (dt,	
	(H_2) ; 2.25 (8, CH_3); 2.55-2.77 (m, CH , 2x H - CH_2); 2.90-5.01 (dt, H^B - CH_2); 3.05-3.20 (m, H^B - CH_2); 5.45 (q, CH); 6.89-6.98 (m, 3H-	
	aromatic); $7.05-3.20$ (m, $6H$ -aromatic)	
64	CDCl ₃ ; 1.44 (d, CH ₃); 1.45-1.63 (m, H ^A -CH ₂); 1.91-2.08 (m, H ^B -	
04	CDC ₁₃ , 1.44 (d, CH ₃), 1.45-1.05 (m, H -CH ₂), 1.91-2.06 (m, H - CH ₂); 2.71-2.87 (m, CH, H ^A -CH ₂); 2.90-3.03 (m, H ^A -CH ₂); 3.04-	
	3.19 (m, H ^B -CH ₂); 3.27-3.39 (dd, H ^B -CH ₂); 5.41 (q, CH); 7.10-	
	7.29 (m, 6H-aromatic); 7.31-7.46 (m, 2H-aromatic); 7.49-7.57 (m,	
<u></u>		<u></u>

Co.	NMR data	melting
No.		point (°C)
	1H-aromatic)	
65	CDCl ₃ ; 1.43 (d, CH ₃); 1.47-1.62 (m, H ^A -CH ₂); 1,83-1.98 (m, H ^B -	
- -	CH ₂); 2.53-2.77 (m, CH, 2x H ^A -CH ₂); 3.01-3.15 (m, 2x H ^B -CH ₂);	
	3.71 (s, CH ₃); 5.41 (q, CH); 6.67-6.75 (m, 2H-aromatic); 6.98-7.07	
	(m, 2H-aromatic); 7.09-7.28 (m, 5H-aromatic)	
66	CDCl ₃ ; 1.51 (d, CH ₃); 1.50-1.67 (m, H ^A -CH ₂); 1.91-2.07 (m, H ^B -	
	CH ₂); 2.58-2.90 (m, CH, 2x H ^A -CH ₂); 3.10-3.27 (m, 2x H ^B -CH ₂);	
	3.77 (s, CH ₃); 5.49 (q, CH); 6.69-6.80 (m, 3H-aromatic); 7.10-7.34	
	(m, 6H-aromatic)	
67	CDCl ₃ ; 1.53 (d, CH ₃); 1.49-1.68 (m, H ^A -CH ₂); 1,93-2.10 (m, H ^B -	
	CH ₂); 2.35 (s, CH ₃); 2.50-2.62 (m, H ^A -CH ₂); 2.70-2.85 (m, CH);	
	2.87-2.98 (dt, H ^A -CH ₂); 3.13-3.27 (m, H ^B -CH ₂); 3.34-3.45 (dd,	
	H ^B -CH ₂); 5.53 (q, CH); 7.05-7.20 (m, 4H-aromatic); 7.22-7.40 (m,	
	5H-aromatic)	
68	CDCl ₃ ; 1.44 (d, CH ₃); 1.53-1.65 (m, H ^A -CH ₂); 1.83-1.99 (m, H ^B -	
	CH_2); 2.23 (s, CH_3); 2.49-2.81 (m, CH_3); 3.03-3.20 (m,	
	2x H ^B -CH ₂); 5.43 (q, CH); 6.88-6.98 (m, 3H-aromatic); 7.02-7.29	
	(m, 6H-aromatic)	
69	CDCl ₃ ; 1.37-1.58 (m, H ^A -CH ₂); 1.56 (d, CH ₃); 1.61-1.77 (m, H ^B -	
	CH ₂); 2.27 (s, CH ₃); 2.38 (s, CH ₃); 2.73-2.93 (m, CH, H ^A -CH ₂);	
	3.12-3.27 (dt, H ^B -CH ₂); 4.97 (d, CH); 5.51 (q, CH); 6.90-7.04 (m,	
	2H-aromatic); 7.20-7.38 (m, 6H-aromatic)	50.60
70	CDCl ₃ ; 1.45 (d, CH ₃);1.53-1.72 (m, H ^A -CH ₂); 1.77-1.91 (m, H ^B -CH ₂	58-60
	CH ₂); 2.58-2.79 (m, CH, 2x H ^A -CH ₂); 3.08-3.30 (m, 2x H ^B -CH ₂);	
	5.45 (q, CH); 6.69-6.82 (m, 2H-aromatic); 7.00-7.29 (m, 6H-	
71 4	aromatic)	
71 *	CDCl ₃ ; 1.43 (d, CH ₃);1.57-1.63 (m, H ^A -CH ₂); 1.80-1.97 (m, H ^B -CH ₂); 2.52-2.90 (m, CH, 2x H ^A -CH ₂); 3.01-3.17 (m, H ^B -CH ₂);	
	3.19-3.28 (m, H ^B -CH ₂); 5.42 (q, CH); $6.68-6.82$ (m, 2H-aromatic);	
	6.98-7.13 (m, 1H-chi ₂), 5.42 (q, chi ₁), 6.66-6.62 (m, 2H-aromatic), 6.98-7.13 (m, 1H-aromatic); 7.16-7.32 (m, 5H-aromatic)	
72	CDCl ₃ ; 1.43 (d, CH ₃); 1.52-1.68 (m, CH ₂); 1.94-2.09 (m, H ^A -CH ₂);	
12	2.09-2.25 (m, CH); 2.25-2.38 (m, H ^B -CH ₂); 2.52-2.76 (m, CH ₂);	
	2.74-2.81 (m, H ^A -CH ₂); 3.10-3.22 (dt, H ^B -CH ₂); 5.43 (q, CH);	
	7.01-7.28 (m, 10H-aromatic)	
73	CDCl ₃ ; 1.42 (d, CH ₃); 1.40-1.66 (m, CH ₂); 1.98-2.26 (m, CH, H ^A -	
. –	CH ₂); 2.27-2.44 (m, H ^B -CH ₂); 2.49-2.74 (m, CH ₂); 2.78-2.90 (dt,	
	H ^A -CH ₂); 3.04-3.19 (m, H ^B -CH ₂); 5.41 (q, CH); 7.02-7.30 (m,	
	10H-aromatic)	
74	CDCl ₃ ; 1.44 (d, CH ₃); 1.51-1.70 (m, H ^A -CH ₂); 1.70-1.88 (m, H ^B -	
	CH ₂); 1.97-2.13 (m, H ^A -CH ₂); 2.17-2.32 (m, CH); 2.34-2.50 (m,	
	H ^B -CH ₂); 2.70-2.85 (q, H ^A -CH ₂); 3.04-3.25 (m, CH ₂ , H ^B -CH ₂);	
	5.45 (q, CH); 7.08-7.31 (m, 7H-aromatic); 7.31-7.48 (m, 2H-	
	aromatic); 7.62 (m, 1H-aromatic); 7.75 (m, 1H-aromatic); 8.02 (m,	
	1H-aromatic)	
75	CDCl ₃ : 1.44 (d, CH ₃): 1.48-1.66 (m, H ^A -CH ₂): 1.67-1.83 (m, H ^B -	
	CH ₂); 2.02-2.20 (m, H ^A -CH ₂); 2.20-2.32 (m, CH); 2.40-2.57 (m,	
	H ^B -CH ₂); 2.80-2.93 (dt, H ^A -CH ₂); 3.02-3.22 (m, CH ₂ , H ^B -CH ₂);	
· · · · · · · · · · · · · · · · · · ·		

Co.	NMR data	melting
No.	1 11711 WULU	point (°C)
140.	5.43 (q, CH); 7.08-7.31 (m, 7H-aromatic); 7.32-7.49 (m, 2H-	point (C)
	aromatic); 7.63 (m, 1H-aromatic); 7.77 (m, 1H-aromatic); 8.01 (m,	
	1H-aromatic)	,
76		
76	CDCl ₃ ; 1.39-1.83 (m, 2x CH ₂); 1.53 (d, CH ₃); 2.38 (s, 2x CH ₃); 2.50-2.67 (m, CH); 2.69-2.88 (m, 2x H ^A -CH ₂); 3.05-3.19 (m, H ^B -	
	2.50-2.67 (m, CH); $2.69-2.88$ (m, $2XH - CH2$); $3.03-3.19$ (m, H - CT), $3.66-3.19$ (m, H -	
	CH ₂); 2.55-2.67 (dd, H ^B -CH ₂); 6.18 (q, CH); 7.00 (s, 3H-	
	aromatic); 7.17-7.34 (m, 5H-aromatic)	100 104
77	CDCl ₃ ; 1.51 (d, CH ₃);1.38-1.84 (m, 2x CH ₂); 2.38 (s, 2xCH ₃);	100-104
	2.50-2.67 (m, CH); 2.70-2.87 (m, 2x H ^A -CH ₂); 3.03-3.16 (m, H ^B -	
	CH ₂); 3.51-3.62 (dd, H ^B -CH ₂); 6.17 (q, CH); 7.01 (s, 3H-	
· 	aromatic); 7.22-7.40 (m, 5H-aromatic)	
78	CDCl ₃ ; 1.53 (d, CH ₃);1.37-1.88 (m, 2x CH ₂); 2.77-2.99 (m, CH,	
	H ^A -CH ₂); 3.06-3.20 (m, H ^A -CH ₂ , H ^B -CH ₂); 3.72-3.85 (dd, H ^B -	
	CH ₂); 6.17 (q, CH); 7.01-7.13 (m, 1H-aromatic); 7.18-7.40 (m,	
	7H-aromatic)	
79	CDCl ₃ ; 1.45 (d, CH ₃);1.39-1.79 (m, 2x CH ₂); 2.63-2.92 (m, CH,	121-125
	H ^A -CH ₂); 2.96-3.14 (m, H ^A -CH ₂ , H ^B -CH ₂); 3.62-3.78 (dd, H ^B -	
	CH ₂); 6.08 (q, CH); 6.98-7.07 (m, 1H-aromatic); 7.14-7.33 (m,	
	7H-aromatic)	
80	CDCl ₃ ; 1.73-1.97 (m, CH ₂); 2.78-3.06 (m, CH, CH ₂ , H ^A -CH ₂);	
	3.07-3.28 (m, CH ₂); 3.37-3.67 (m, CH ₂ , H ^B -CH ₂); 6.90-7.32 (m,	
	7H-aromatic)	
81	CDCl ₃ ; 1.73-1.98 (m, CH ₂); 2.77-3.27 (m, CH, 2x CH ₂ , H ^A -CH ₂);	
-	3.37-3.67 (m, CH ₂ , H ^B -CH ₂); 7.02-7.38 (m, 7H-aromatic)	
82	CDCl ₃ ; 1.70-1.99 (m, CH ₂); 2.73-3.25 (m, CH, 2x CH ₂ , H ^A -CH ₂);	
	3.34-3.63 (m, CH ₂ , H ^B -CH ₂); 7.08 (m, 2H-aromatic); 7.27 (m, 2H-	
	aromatic); 7.40 (m, 2H-aromatic)	
83	CDCl ₃ ; 1.48-1.63 (m, H ^A -CH ₂); 1.76-1.92 (m, H ^B -CH ₂); 2.24 (s,	
	2x CH ₃); 2.43-2.60 (m, CH, H ^A -CH ₂); 2.78 (t, CH ₂); 2.95-3.25 (m,	
	CH ₂ , H ^B -CH ₂); 3.37-3.61 (m, CH ₂); 6.92 (s, 3H-aromatic); 7.08-	
	7.27 (m, 5H-aromatic)	
84	CDCl ₃ ; 1.57-1.75 (m, H ^A -CH ₂); 1.83-2.00 (m, H ^B -CH ₂); 2.55-2.90	
'	(m, CH, CH ₂ , H ^A -CH ₂); $3.08-3.29$ (m, CH ₂ , H ^B -CH ₂); $3.38-3.67$	
	(m, CH ₂); 6.77-6.91 (m, 2H-aromatic); 7.08-7.34 (m, 6H-	
	aromatic)	
85	CDCl ₃ ; 1.52-1.70 (m, H ^A -CH ₂); 1.95-2.01 (m, H ^B -CH ₂); 2.63-2.78	70-71
U .	(m, CH, H ^A -CH ₂); 2.83 (t, CH ₂); 2.99-3.19 (m, CH ₂); 3.20-3.34	
	(m, H^B -CH ₂); 3.41-3.65 (m, H^B -CH ₂); 6.83-6.93 (dt, H^B -aromatic);	
	7.08 (dd, 1H-aromatic); 7.13-7.32 (m, 6H-aromatic)	
86	CDCl ₃ ; 1.48-1.63 (m, H ^A -CH ₂); 1.79-1.96 (m, H ^B -CH ₂); 2.53-2.67	
00	(m, CH, H ^A -CH ₂); 2.70-2.81 (t, CH ₂); 2.92-3.20 (m, CH ₂ , H ^B -	
	CH ₂); 3.34-3.58 (m, CH ₂); 5.85 (s, CH ₂); 6.66 (s, 1H-aromatic);	
07	6.73 (s, 1H-aromatic); 7.07-7.25 (m, 5H-aromatic)	<u> </u>
87	CDCl ₃ ; 1.25-1.77 (m, 2x CH ₂); 2.29 (s, CH ₃); 2.33-2.50 (m, CH, H ^A -CH ₂); 2.81 (dt, CH ₂); 2.95-3.12 (m, CH ₂); 3.40-3.57 (m, CH ₂ ,	
	H -CH ₂); 2.81 (at, CH ₂); 2.93-3.12 (m, CH ₂); 3.40-3.37 (m, CH ₂ ,	
	H ^B -CH ₂); 6.98-7.27 (m, 9H-aromatic)	104 107
88	CDCl ₃ ; 1.22-1.78 (m, 2x CH ₂); 2.43-2.59 (m, CH); 2.60-2.74 (m,	104-105

Co. No. H^A-CH ₂); 2.74-2.88 (t, CH ₂); 2.93-3.09 (m, CH ₂); 3.37-3.55 (m, CH ₂ , H ^B -CH ₂); 6.82 (dt, 1H-aromatic); 7.00 (dd, 1H-aromatic); 7.08-7.27 (m, 6H-aromatic); 1.70 (m, H ^A -CH ₂); 1.88-2.02 (m, H ^B -CH ₂); 2.49-2.68 (m, CH, H ^A -CH ₂); 2.80 (t, CH ₂); 2.91-3.13 (m, CH ₂ , H ^B -CH ₂); 3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) (mixture of 2 diastereoisomers 91 CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.69-2.87 (m, CH ₃ , H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 2.36-3.62 (m, CH ₂); 2.75-3.26 (m, CH ₂ , 2.75-3.26 (m, CH ₂ - CH ₂); 2.33-9.362 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 2.89 (m, CH, H ^A -CH ₂); 2.99 (m, CH ₂ , 1I ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.49 (dd, H ^B -CH ₂); 3.19 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 3.19 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.10 (m, H ^B -CH ₂); 3.20 (m, H ^A -CH ₂); 3.20 (m, H ^A -CH ₂); 3.30 (m, H ^A -CH ₂); 3.30 (m, H	lting
CH ₂ H ^B -CH ₂); 6.82 (dt, 1H-aromatic); 7.00 (dd, 1H-aromatic); 7.08-7.27 (m, 6H-aromatic) 89 CDCl ₃ ; 1.53-1.70 (m, H ^A -CH ₂); 1.88-2.02 (m, H ^B -CH ₂); 2.49-2.68 (m, CH, H ^A -CH ₂); 2.80 (t, CH ₂); 2.91-3.13 (m, CH ₂ H ^B -CH ₂); 3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) 90 mixture of 2 diastereoisomers 91 CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 3.228 (s, 2x CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH ₁); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic); 7.43 (d, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic); 7.43 (d, 1H-aromatic); 7.19-7.38 (m, CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 92 CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.89-3.60 (m, CH ₂ , T.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 93 CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 96 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 3.40 (s, CH ₃); 3.54 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, TH-aromatic) 97 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH ₂);	int (°C)
CH ₂ H ^B -CH ₂); 6.82 (dt, 1H-aromatic); 7.00 (dd, 1H-aromatic); 7.08-7.27 (m, 6H-aromatic) 89 CDCl ₃ ; 1.53-1.70 (m, H ^A -CH ₂); 1.88-2.02 (m, H ^B -CH ₂); 2.49-2.68 (m, CH, H ^A -CH ₂); 2.80 (t, CH ₂); 2.91-3.13 (m, CH ₂ H ^B -CH ₂); 3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) 90 mixture of 2 diastereoisomers 91 CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 3.228 (s, 2x CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH ₁); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 92 CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.94 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 3.90-3.18 (m, H ^A -CH ₂); 3.90-3.19 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, H ^A -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, TH-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, C	
7.08-7.27 (m, 6H-aromatic) CDCl ₃ ; 1.53-1.70 (m, H ^A -CH ₂); 1.88-2.02 (m, H ^B -CH ₂); 2.49-2.68 (m, CH, H ^A -CH ₂); 2.80 (t, CH ₂); 2.91-3.13 (m, CH ₂ H ^B -CH ₂); 3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) mixture of 2 diastereoisomers CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, IH-aromatic); 6.99 (d, IH-aromatic); 7.19-7.38 (m, 5H-aromatic) 7.43 (d, IH-aromatic) CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-2.86 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂); 1.333-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 1.69-2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 2.69-2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.08-3.11 (m, H ^B -CH ₂); 3.17 (q, CH); 7.00 (t, IH-aromatic); 7.12-7.27 (m, 7H-aromatic) CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 3.99-3.11 (m, H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.18 (m, CH, 2x	
(m, CH, H ^A -CH ₂); 2.80 (t, CH ₂); 2.91-3.13 (m, CH ₂ H ^B -CH ₂); 3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) 90 mixture of 2 diastereoisomers 91 CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic) 7.43 (d, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.28-2.86 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 93 CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.19 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH ₂); 2.4 (dd, H ^B -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 (CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.2	
(m, CH, H ^A -CH ₂); 2.80 (t, CH ₂); 2.91-3.13 (m, CH ₂ , H ^B -CH ₂); 3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) mixture of 2 diastereoisomers 91	5-89.5
3.39-3.62 (m, CH ₂); 5.90 (s, CH ₂); 6.58-6.73 (m, 3H-aromatic); 7.12-7.32 (m, 5H-aromatic) mixture of 2 diastereoisomers CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic); 7.43 (d, 1H-aromatic); 7.19-7.38 (m, CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic); 7.08-7.19 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , If ^A -CH ₂); 3.49 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH ₂); 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 3.93-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.34 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.20-7.38 (m, 7H-aromatic); 7.20 (m, 7H-aromatic);	
7.12-7.32 (m, 5H-aromatic) mixture of 2 diasteroisomers 91	
91 CDCl ₃ ; 1.52 (d, CH ₃); 2.45-2.66 (m, H ^A -CH ₂); 2.00-2.21 (m, H ^B -CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic) 7.43 (d, 1H-aromatic) 92 CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂); 3.78 (s, CH ₃); 6.84 (m, 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 93 CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , 1I ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 2.69-2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 3.99-3.11 (m, H ^B -CH ₂); 3.340 (s, CH ₃); 3.74-3.87 (m, H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.36-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂);	
CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic) 7.43 (d, 1H-aromatic) 92 CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 93 CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , If ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 2.69-2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 7.10 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂); 8.9-3.34 (m, CH, CH ₂); 1.40 (m, H ^B -CH ₂); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.46 (s, CH ₃); 3.77-3.88 (m, H	
CH ₂); 2.28 (s, 2x CH ₃); 2.67-2.87 (m, CH, H ^A -CH ₂); 3.19-3.31 (dt, H ^B -CH ₂); 3.46-3.62 (m, CH); 5.51 (q, CH); 5.57 (s, OH); 6.92 (s, 1H-aromatic); 6.99 (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic) 7.43 (d, 1H-aromatic) 92 CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 93 CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , If ^A -CH ₂); 3.49 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 7.10 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂); 3.89-3.40 (m, H ^B -CH ₂); 3.40 (s, CH ₃); 3.74-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.39-4.01 (m, H ^B -CH ₂); 3.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
1H-aromatic); 6.99' (d, 1H-aromatic); 7.19-7.38 (m, 5H-aromatic) 7.43 (d, 1H-aromatic) 2	
7.43 (d, 1H-aromatic) 7.43 (d, 1H-aromatic) CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂); 2.92-3.34 (m, CH, CH ₂); H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.39-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
92 CDCl ₃ ; 1.72-1.97 (m, CH ₂); 2.75-3.26 (m, CH, 2x CH ₂ , H ^A -CH ₂); 3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) 2.88-7.19 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 4.89 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 4.99 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 4.99 (m, CH ₂); 1.66-1.99 (m, CH ₂); 1.70 (m, H ^B -CH ₂); 2.69-2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 5.28 (m, CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 5.27-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 5.17 (m, CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 5.50 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 5.50 (q, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39 (do) (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39 (do) (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39 (do) (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39 (do	
3.39-3.62 (m, CH ₂ , H ^B -CH ₂); 3.78 (s, CH ₃); 6.84 (m. 2H-aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 3.49 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.30-3.57 (m, 2x H ^B -CH ₂); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.390-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
aromatic); 7.08-7.19 (m, 3H-aromatic); 7.28 (d, 2H-aromatic) CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48- 3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , II ^A -CH ₂ , H ^B -CH ₂); 2.69- 2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
93 CDCl ₃ ; 1.72-1.90 (m, CH ₂); 2.30 (s, CH ₃); 2.75-2.88 (t, CH ₂); 2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.39-4.00 (m, H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
2.88-3.27 (m, CH, CH ₂ , H ^A -CH ₂); 3.38-3.48 (dd, H ^B -CH ₂); 3.48-3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94	
3.60 (m, CH ₂); 7.00-7.16 (m, 5H-aromatic); 7.25 (d, 2H-aromatic) 94	
94 CDCl ₃ ; 0.89 (t, CH ₃); 1.66-1.99 (m, CH ₂ , H ^A -CH ₂); 2.69-2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.39-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
2.89 (m, CH, H ^A -CH ₂); 2.99 (m, H ^A -CH ₂); 3.19 (m, H ^B -CH ₂); 3.43 (dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95	
(dd, H ^B -CH ₂); 5.15 (t, CH); 6.98 (t, 1H-aromatic); 7.22 (7H-aromatic) 95	
aromatic) 95	
95 CDCl ₃ ; 0.94 (t, CH ₃); 1.64-2.11 (m, 2x CH ₂); 2.90-3.08 (m, CH, 2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
2x H ^A -CH ₂); 3.08-3.21 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 5.23 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	····-
(q, CH); 7.07 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 96	
96 CDCl ₃ ; 0.91 (t, CH ₃); 1.70-1.82 (m, CH ₂); 1.82-2.01 (m, CH ₂); 2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ ; 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
2.71-2.92 (m, CH, H ^A -CH ₂); 2.94-3.08 (m, H ^A -CH ₂); 3.16-3.28 (m, H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
H ^B -CH ₂); 3.40-3.50 (dd, H ^B -CH ₂); 5.17 (q, CH); 7.00 (t, 1H-aromatic); 7.12-7.27 (m, 7H-aromatic) 97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
aromatic); 7.12-7.27 (m, 7H-aromatic) 97	
97 CDCl ₃ ; 0.85 (t, CH ₃); 1.57-2.00 (m, 2x CH ₂); 2.82-2.99 (m, CH, 2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
2x H ^A -CH ₂); 2.99-3.11 (m, H ^B -CH ₂); 3.32-3.49 (m, H ^B -CH ₂); 5.14 (q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98 CDCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃); 3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	_
(q, CH); 6.98 (t, 1H-aromatic); 7.11-7.29 (m, 7H-aromatic) 98	
ODCl ₃ ; 1.81-1.96 (m, CH ₂); 2.85-3.17 (m, CH, 2x H ^A -CH ₂); 3.37-3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) ODCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃);3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) ODCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
3.55 (m, 2x H ^B -CH ₂); 3.44 (s, CH ₃); 3.77-3.87 (m, H ^A -CH ₂); 3.89-4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃);3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
4.00 (m, H ^B -CH ₂); 5.50 (q, CH); 7.09 (t, 1H-aromatic); 7.20-7.38 (m, 7H-aromatic) 99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃);3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
(m, 7H-aromatic) 99	
99 CDCl ₃ , 1.73-2.00 (m, H ^A -CH ₂ , H ^B -CH ₂); 2.92-3.34 (m, CH, CH ₂ , H ^A -CH ₂); 3.40 (s, CH ₃);3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
H ^A -CH ₂); 3.40 (s, CH ₃);3.42-3.60 (m, H ^B -CH ₂); 3.76-3.97 (m, CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
CH ₂); 5.49 (dd, CH); 7.02-7.11 (m, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
7H-aromatic) 100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
100 CDCl ₃ ; 1.81-1.97 (m, CH ₂); 2.85-3.18 (m, CH, 2x H ^A -CH ₂); 3.38-3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
3.57 (m, 2x H ^B -CH ₂); 3.43 (s, CH ₃); 3.77-3.88 (m, H ^A -CH ₂); 3.90-4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
4.01 (m, H ^B -CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.20-7.39	
(m. 7H-aromatic)	
101 CDCl ₃ ; 1.73-2.02 (m, CH ₂); 2.95-3.60 (m, CH, 2x H ^A -CH ₂ , 2x H ^B -	
CH ₂); 3.40 (s, CH ₃); 3.74-3.85 (m, H ^A -CH ₂); 3.88-3.98 (m, H ^B -	<u> </u>

Co.	NMR data	melting
No.		point (°C)
	CH ₂); 5.50 (q, CH); 7.07 (t, 1H-aromatic); 7.21-7.40 (m, 7H-aromatic)	
102	contains 10% from isomer LIB-90-B	
	CDCl ₃ ; 1.60-1.86 (m, CH ₂); 2.62-3.50 (m, CH, 3x H ^A -CH ₂ , 3x H ^B -	
	CH ₂); 5.67 (q, CH); 7.02 (t, 1H-aromatic); 7.11-7.43 (m, 12H-	
	aromatic)	
103	mixture of diastereoisomers A and B	
	CDCl ₃ ; 1.50-1.83 (m, CH ₂); 2.48-3.45 (m, CH, 3x H ^A -CH ₂ , 3x H ^B -	
}	CH ₂); 5.61-5.80 (m, CH); 7.00 (t, 1H-aromatic); 7.11-7.43 (m,	
	12H-aromatic)	<u> </u>
104	CDCl ₃ ; 1.83-1.98 (m, CH ₂); 2.92-3.20 (m, CH, 2x H ^A -CH ₂); 3.29-	
	3.42 (m, H ^B -CH ₂); 3.42-3.58 (m, H ^B -CH ₂); 3.72 (s, OH); 3.98-4.12	
	(m, H ^A -CH ₂); 4.12-4.26 (m, H ^B -CH ₂); 5.02 (q, CH); 7.08 (t, 1H-	
	aromatic); 7.22-7.40 (m, 7H-aromatic)	
105	CDCl ₃ ; 1.80 (m, CH ₂); 2.97-3.33 (m, H ^A -CH ₂ , CH, CH ₂), 3.41-	
	3.58 (m, H ^B -CH ₂); 3.91 (t, OH); 3.98-4.21 (m, CH ₂), 5.04 (q, CH),	
	7.08 (t, 1H-aromatic); 7.19-7.42 (m, 7H-aromatic)	
106	CDCl ₃ ; 1.82-2.01 (m, CH ₂); 2.93-3.20 (m, CH, 2x H ^A -CH ₂); 3.27-	
	3.40 (m, H^B -CH ₂); 3.46-3.61 (m, OH, H^B -CH ₂); 3.98-4.11 (m, H^A -	
	CH ₂); 4.12-4.27 (m, H ^B -CH ₂); 4.97 (q, CH); 7.10 (t, 1H-aromatic);	
107	7.21-7.42 (m, 7H-aromatic)	
107	CDCl ₃ ; 1.78-2.04 (m, CH ₂); 2.96-3.34 (m, CH, 2x H ^A -CH ₂ , H ^B -CH ₂); 3.41-3.59 (m, H ^B -CH ₂); 3.84-3.97 (m, OH); 3.08-4.21 (m,	
	CH_2); 5.41-5.39 (m, H_1 - CH_2); 5.64-5.97 (m, OH_2); 5.06-4.21 (m, CH_2); 5.05 (q, CH_3); 7.09 (t, 1H-aromatic); 7.18-7.42 (m, 7H-	
	aromatic)	
108	CDCl ₃ ; 1.50-1.70 (m, H ^A -CH ₂); 1.88-2.05 (m, H ^B -CH ₂); 2.56-2.73	<u> </u>
100	(m, CH, H^A -CH ₂); 2.73-2.88 (t, CH ₂); 2.94-3.23 (m, H^A -CH ₂ , 2x	1
	H ^B -CH ₂); 3.39-3.63 (m, CH ₂); 6.68-6.85 (m, 2H-aromatic); 7.07-	
	7.32 (m, 6H-aromatic)	
109	CDCl ₃ ; 1.52-1.70 (m, H ^A -CH ₂); 1.85-2.01 (m, H ^B -CH ₂); 2.50-2.69	<u>. </u>
	(m, CH, H ^A -CH ₂); 2.72-2.85 (t, CH ₂); 2.86-2.99 (dt, H ^A -CH ₂);	
	2.99-3.13 (m, 2x H ^B -CH ₂); 3.41-3.58 (m, CH ₂); 3.85 (s, CH ₃); 5.11	
	(s, CH ₂); 6.62 (dd, 1H-aromatic); 6.77 (d, 2H-aromatic); 7.10-7.46	
	(m, 10H-aromatic)	
110	CDCl ₃ ; 1.58-1.77 (m, H ^A -CH ₂); 1.80-1.96 (m, CH ₂); 1.96-2.11 (m,	
	H ^B -CH ₂); 2.36 (s, CH ₃); 2.47-2.79 (m, CH, CH ₂ , H ^A -CH ₂); 3.18-	
	3.29 (m, H ^A -CH ₂ , H ^B -CH ₂); 3.30-3.43 (m, CH ₂ , H ^B -CH ₂); 7.08-	
	7.34 (m, 9H-aromatic)	
111	CDCl ₃ ; 1.60-2.07 (m, CH ₂ , H ^A -CH ₂ , H ^B -CH ₂); 2.56-2.68 (t, CH ₂);	
	2.71-2.88 (m, CH, H ^A -CH ₂); 3.13-3.27 (m, H ^A -CH ₂ , H ^B -CH ₂);	
	3.29-3.48 (m, CH ₂ , H ^B -CH ₂); 7.08-7.40 (m, 9H-aromatic)	<u> </u>
112	CDCl ₃ ; 1.57-1.74 (m, H ^A -CH ₂); 1.76-1.92 (m, CH ₂); 1.92-2.08 (m,	
	H ^B -CH ₂); 2.61 (t, CH ₂); 2.68-2.87 (m, CH, H ^A -CH ₂); 3.13-3.27 (m,	
	$ H^{A}-CH_{2}, H^{B}-CH_{2}); 3.28-3.42 (m, CH_{2}, H^{B}-CH_{2}); 6.82-6.96 (dt,$	
	1H-aromatic); 7.03-7.33 (m, 7H-aromatic)	<u> </u>
113	CDCl ₃ ; 1.61-1.79 (m, H ^A -CH ₂); 1.81-2.08 (m, CH ₂ , H ^B -CH ₂); 2.38	
<u></u>	(s, 2x CH ₃); 2.58-2.73 (m, CH, CH ₂ , H ^A -CH ₂); 3.15-3.46 (m, CH ₂ ,	<u> </u>

Co.	NMR data	melting
No.		point (°C)
	H ^A -CH ₂ , 2x H ^B -CH ₂); 7.04 (s, 3H-aromatic); 7.13-7.35 (m, 5H-	
	aromatic)	
114	CDCl ₃ ; 1.76-2.00 (m, 2x CH ₂); 2.63 (t, CH ₂); 2.82-3.55 (m, CH,	-
	3x CH ₂); 7.01-7.36 (m, 8H-aromatic)	
115	CDCL ₃ ; 1.77 (s, CH ₃); 1.79 (s, CH ₃); 1.88 (m, CH ₂); 2.82-2.97 (m,	
	CH); 3.05 (t, H ^A -CH ₂); 3.18-3.40 (m, CH ₂); 3.45 (dd, H ^B -CH ₂);	
	7.07 (t, 1H-aromatic); 7.17-7.39 (m, 7H-aromatic)	
116	CDCl ₃ ; 1.52 (d, CH ₃); 1.78-2.17 (m, 3x CH ₂); 2.82-3.19 (m, 2x	
	CH ₂ , H ^A -CH ₂); 3.20-3.37 (m, H ^B -CH ₂); 5.62 (q, CH); 7.10-7.50	
	(m, 13H-aromatic); 7.55-7.67 (m, 2H-aromatic); 7.69-7.80 (m, 2H-	
	aromatic); 7.93 (d, 1H-aromatic); 8.01 (d, 1H-aromatic)	
117	mixture of 2 diastereoisomers	
	CDCl ₃ ; 1.10 (d, 0.4x CH ₃); 1.45 (d, 0.6x CH ₃); 1.55 (s, 0.6x CH ₃);	
	1.62 (s, 0.4x CH ₃); 1.50-1.97 (m, CH ₂); 2.48-3.66 (m, CH, 3x	
	CH ₂); 4.70-5.19 (OH); 5.26 (q, 0.4 CH); 5.43 (q, 0.6x CH); 6.97-	
	7.44 (m, 9H-aromatic)	
118	2 diastereoisomers	
119	CDCl ₃ ; 1.51 (d, CH ₃); 1.60-1.79 (m, H ^A -CH ₂); 1.85-2.00 (m, H ^B -	
	CH ₂); 2.68-2.89 (m, CH, 2x H ^A -CH ₂); 3.17 (dt, H ^B -CH ₂); 3.36 (d,	
	H ^B -CH ₂); 3.85 (s, 2x CH ₃); 5.52 (q, CH); 6.78 (d, 1H-aromatic);	
	7.00 (d, 1H-aromatic); 7.29 (m, 5H-aromatic)	
120	CDCl ₃ ; 1.51 (d, CH ₃); 1.60 (m, H ^A -CH ₂); 1.98(m, H ^B -CH ₂); 2.68-	
	2.93 (m, CH, 2x H ^A -CH ₂); 3.16 (m, H ^B -CH ₂); 3.40 (dd, H ^B -CH ₂);	
	3.84 (s, 2x CH ₃); 5.49 (q, CH); 6.72 (d, 1H-aromatic); 6.97 (d, 1H-	
	aromatic); 7.28 (m, 5H-aromatic)	<u></u>
121	CDCl ₃ ; 1.50 (d, CH ₃); 1.55-1.70 (m, H ^A -CH ₂); 1,91-2.08 (m, H ^B -	
•	CH ₂); 2.60-2.89 (m, CH, 2x H ^A -CH ₂); 3.06-3:23 (m, H ^B -CH ₂);	
	3.84 (s, CH ₃); 5.12 (s, CH ₂); 5.49 (q, CH); 6.58-6.68 (dd, 1H-	
	aromatic); 6.71-6.82 (m, 2H-aromatic); 7.16-7.48 (m, 10H-	•
	aromatic)	
122	CDCl ₃ ; 1.43 (d, CH ₃); 1.59-1.77 (m, H ^A -CH ₂); 1,83-2.01 (m, H ^B -	
	CH ₂); 2.61-2.83 (m, CH, 2x H ^A -CH ₂); 2.93-3.20 (m, 2x H ^B -CH ₂);	
	3.87 (s, CH ₃); 5.12 (s, CH ₂); 5.51 (q, CH); 6.61-6.72 (dd, 1H-	
	aromatic); 6.73-6.83 (m, 2H-aromatic); 7.17-7.45 (m, 10H-	
	aromatic)	<u> </u>
123	CDCl ₃ ; 1.50 (d, CH ₃); 1.56-1.86 (m, CH ₂); 2.02-2.47 (m, CH,	
	CH ₂); 2.59-2.90 (m, H ^A -CH ₂ , CH ₂); 3.18-3.31 (dt, H ^B -CH ₂); 3.79	
	(s, CH ₃); 5.51 (q, CH); 6.87-6.91 (m, 2H-aromatic); 7.08-7.36 (m,	
	7H-aromatic)	
124	CDCl ₃ ; 1.49 (d, CH ₃); 1.52-1.69 (m, CH ₂); 2.08-2.33 (m, CH, H ^A -	
	CH ₂); 2.37-2.52 (m, H ^B -CH ₂); 2.58-2.79 (m, CH ₂); 2.83-2.98 (dt,	
	H ^A -CH ₂); 3.12-3.27 (m, H ^B -CH ₂); 3.78 (s, CH ₃); 5.49 (q, CH);	
	6.74-6.90 (m, 2H-aromatic); 7.08-7.38 (m, 7H-aromatic)	
125	CDCl ₃ ; 1.43 (d, CH ₃); 1.48-1.68 (m, CH ₂); 1.93-2.22 (m, CH, H ^A -	
	CH ₂); 2.23-2.39 (m, H ^B -CH ₂); 2.48-2.70 (m, CH ₂); 2.70-2.82 (m,	
	H ^A -CH ₂); 3.10-3.22 (dt, H ^B -CH ₂); 3.75 (s, CH ₃); 3.78 (s, CH ₃);	
	5.42 (q, CH); 6.60-6.72 (m, 3H-aromatic); 7.10-7.27 (m, 5H-	<u> </u>

Co.	NMR data	melting
No.		point (°C)
	aromatic)	
126	CDCl ₃ ; 1.48 (d, CH ₃); 1.45-1.70 (m, CH ₂); 2.04-2.38 (m, CH, H ^A -	
	CH ₂); 2.35-2.51 (m, H ^B -CH ₂); 2.52-2.74 (m, CH ₂); 2.85-2.97 (dt,	
	H ^A -CH ₂); 3.12-3.26 (m, H ^B -CH ₂); 3.81 (s, CH ₃); 3.84 (s, CH ₃);	!
	5.46 (q, CH); 6.67-6.79 (m, 3H-aromatic); 7.17-7.35 (m, 5H-	
	aromatic)	
127	CDCl ₃ ; 1.56 (d, CH ₃); 1.60-1.79 (m, CH ₂); 2.08-2.29 (m, CH, H ^A -	
	CH ₂); 2.37 (s, CH ₃); 2.39-2.54 (m, H ^B -CH ₂); 2.69-2.80 (t, CH ₂);	
ļ	2.82-2.97 (m, H ^A -CH ₂); 3.23-3.36 (dt, H ^B -CH ₂); 5.56 (q, CH);	
	7.07-7.22 (m, 4H-aromatic); 7.22-7.40 (m, 5H-aromatic)	
128	CDCl ₃ ; 1.55 (d, CH ₃); 1.55-1.75 (m, CH ₂); 2.10-2.30 (m, CH, H ^A -	
	CH ₂); 2.35 (s, CH ₃); 2.46-2.61 (m, H ^B -CH ₂); 2.66-2.78 (t, CH ₂);	
	2.90-3.03 (dt, H ^A -CH ₂); 3.18-3.32 (m, H ^B -CH ₂); 5.55 (q, CH);	
	7.04-7.22 (m, 4H-aromatic); 7.23-7.40 (m, 5H-aromatic)	
129	CDCl ₃ ; 1.44 (d, CH ₃); 1.33-1.62 (m, CH ₂); 2.06-2.24 (m, CH, H ^A -	
	CH ₂); 2.33-2.44 (dq, H ^B -CH ₂); 2.71-2.92 (m, CH ₂ , H ^A -CH ₂); 3.09-	
	3.22 (m, H ^B -CH ₂); 5.41 (q, CH); 6.80-6.92 (m, 1H-aromatic); 6.93-	
	7.11 (m, 2H-aromatic); 7.13-7.30 (m, 5H-aromatic)	
130	CDCl ₃ ; 1.53 (d, CH ₃); 1.56-1.76 (m, CH ₂); 2.02-2.19 (m, H ^A -CH ₂);	
	2.19-2.32 (m, CH); 2.32-2.49 (m, H ^B -CH ₂); 2.53-2.78 (m, CH ₂);	
	2.78-2.93 (m, H ^A -CH ₂); 2.92 (s, 2x CH ₃); 3.20-3.32 (dt, H ^B -CH ₂);	,
	5.54 (q, CH); 6.71 (d, 2H-aromatic); 7.11 (d, 2H-aromatic); 7.22-	
	7.39 (m, 5H-aromatic)	
131	CDCl ₃ ; 1.51 (d, CH ₃); 1.50-1.71 (m, CH ₂); 2.08-2.33 (m, CH, H ^A -	
	CH ₂); 2.38-2.53 (m, H ^B -CH ₂); 2.53-2.76 (m, CH ₂); 2.85-2.99 (m, H ^A -CH ₂); 2.92 (s, 2x CH ₃); 3.13-3.28 (m, H ^B -CH ₂); 5.51 (q, CH);	
	6.70 (d, 2H-aromatic); 7.10 (d, 2H-aromatic); 7.21-7.39 (m, 5H-	
	aromatic)	
132	CDCl ₃ ; 1.52 (d, CH ₃); 1.56-1.73 (m, CH ₂); 2.01-2.17 (m, H ^A -CH ₂);	_
152	2.17-2.29 (m, CH); 2.30-2.46 (m, H ^B -CH ₂); 2.54-2.77 (m, CH ₂);	
	$2.78-2.90 \text{ (m, H}^{A}-CH_{2}); 3.19-3.31 \text{ (dt, H}^{B}-CH_{2}); 3.77 \text{ (s, CH}_{3});$	
	5.52 (q, CH); 6.82 (d, 2H-aromatic); 7.13 (d, 2H-aromatic); 7.20-	
	7.38 (m, 5H-aromatic)	
133	CDCl ₃ ; 1.49 (d, CH ₃); 1.48-1.69 (m, CH ₂); 2.04-2.32 (m, CH, H ^A -	
	CH ₂); 2.33-2.50 (m, H ^B -CH ₂); 2.51-2.76 (m, CH ₂); 2.84-2.97 (dt,	
	H ^A -CH ₂); 3.11-3.26 (m, H ^B -CH ₂); 3.75 (s, CH ₃); 5.48 (q, CH);	
	6.81 (d, 2H-aromatic); 7.11 (d, 2H-aromatic); 7.18-7.37 (m, 5H-	
	aromatic)	
134	CDCL ₃ ; 1.31 (d, CH ₃); 1.52 (d, CH ₃); 1.61 (m, CH ₂); 1.98-2.16	
	(m, CH, H ^A -CH ₂); 2.36 (dt, H ^B -CH ₂); 2.68-2.90 (m, CH, H ^A -CH ₂);	
	3.22 (dt, H ^B -CH ₂); 5.50 (q, CH); 7.12-7.38 (m, 10H-aromatic)	
135	CDCl ₃ ; 1.19 (d, CH ₃); 1.24 (m, H ^A -CH ₂); 1.39 (d, CH ₃); 1.45 (m,	
	H _B -CH ₂); 1.77 (m, H ^A -CH ₂); 2.10-2.21 (m, H ^B -CH ₂); 2.25-2.39	
	(m, CH); 2.74 (dt, H ^A -CH ₂); 2.87 (m, CH); 3.02 (m, H ^B -CH ₂); 5.39	
	(q, CH); 7.03-7.27 (m, 10H aromatic)	<u> </u>
136	CDCl ₃ ; 1.28 (d, CH ₃); 1.37-1.65 (m, CH ₂); 1.49 (d, CH ₃); 1.73-1.92 (m, H ^A -CH ₂); 2.17-2.43 (m, CH, H ^B -CH ₂); 2.68-2.81 (m, H ^A -	
	1.92 (m, H ^o -CH ₂); 2.17-2.43 (m, CH, H ^o -CH ₂); 2.68-2.81 (m, H ^o -	

Co. NMR data melting point (CH ₂); 2.85-3.02 (m, CH); 3.09-3.21 (dt, H ^B -CH ₂); 5.50 (q, CH); 7.12-7.37 (m, 10H-aromatic) 137 CDCl ₃ ; 1.30 (d, CH ₃), 1.44 (d, CH ₃); 1.5 (m, CH ₂); 2.01-2.21 (m, CH, H ^A -CH ₂); 2.27-2.42 (dt, H ^B -CH ₂); 2.68-2.82 (m, CH); 2.83-2.95 (dt, H ^A -CH ₂), 3.05-3.19 (m, H ^B -CH ₂); 5.46 (q, CH); 7.15-7.38 (m, 10H-aromatic) 138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CH ₂); 2.85-3.02 (m, CH); 3.09-3.21 (dt, H ^B -CH ₂); 5.50 (q, CH); 7.12-7.37 (m, 10H-aromatic) 137 CDCl ₃ ; 1.30 (d, CH ₃), 1.44 (d, CH ₃); 1.5 (m, CH ₂); 2.01-2.21 (m, CH, H ^A -CH ₂); 2.27-2.42 (dt, H ^B -CH ₂); 2.68-2.82 (m, CH); 2.83-2.95 (dt, H ^A -CH ₂), 3.05-3.19 (m, H ^B -CH ₂); 5.46 (q, CH); 7.15-7.38 (m, 10H-aromatic) 138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
7.12-7.37 (m, 10H-aromatic) 137 CDCl ₃ ; 1.30 (d, CH ₃), 1.44 (d, CH ₃); 1.5 (m, CH ₂); 2.01-2.21 (m, CH, H ^A -CH ₂); 2.27-2.42 (dt, H ^B -CH ₂); 2.68-2.82 (m, CH); 2.83-2.95 (dt, H ^A -CH ₂), 3.05-3.19 (m, H ^B -CH ₂); 5.46 (q, CH); 7.15-7.38 (m, 10H-aromatic) 138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CDCl ₃ ; 1.30 (d, CH ₃), 1.44 (d, CH ₃); 1.5 (m, CH ₂); 2.01-2.21 (m, CH, H ^A -CH ₂); 2.27-2.42 (dt, H ^B -CH ₂); 2.68-2.82 (m, CH); 2.83-2.95 (dt, H ^A -CH ₂), 3.05-3.19 (m, H ^B -CH ₂); 5.46 (q, CH); 7.15-7.38 (m, 10H-aromatic) CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CH, H ^A -CH ₂); 2.27-2.42 (dt, H ^B -CH ₂); 2.68-2.82 (m, CH); 2.83-2.95 (dt, H ^A -CH ₂), 3.05-3.19 (m, H ^B -CH ₂); 5.46 (q, CH); 7.15-7.38 (m, 10H-aromatic) 138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
2.95 (dt, H ^A -CH ₂), 3.05-3.19 (m, H ^B -CH ₂); 5.46 (q, CH); 7.15-7.38 (m, 10H-aromatic) 138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
(m, 10H-aromatic) 138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastercoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
138 CDCl ₃ ; 0.77 (t, CH ₃); 1.20-1.85 (m, 2x CH ₂ , H ^A -CH ₂); 1.48 (d, CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) 139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CH ₃); 2.19-2.39 (m, CH, H ^B -CH ₂); 2.61-2.79 (m, CH, H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
3.03-3.18 (m, H ^B -CH ₂); 5.48 (q, CH); 7.11-7.37 (m, 10H-aromatic) CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
139 CDCl ₃ ; 0.80 (t, CH ₃); 1.51 (d, CH ₃); 1.51-1.78 (m, 2x CH ₂); 2.01 (m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
(m, CH, H ^A -CH ₂); 2.35 (dt, H ^B -CH ₂); 2.47 (m, CH); 2.72 (m, H ^A -CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) 140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CH ₂); 3.20 (dt, H ^B -CH ₂); 5.49 (q, CH); 7.13-7.32 (10H-aromatic) mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93- 2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
140 mixture of 3 diastereoisomers CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93- 2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CDCL ₃ , 0.70-0.84 (m, CH ₃); 1.18-1.84 (m, 2x CH ₂ , CH ₃); 1.93-2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
2.18 (m, H ^A -CH ₂ , 0.6x CH); 2.23-2.55 (m, H ^B -CH ₂ , 0.4x CH, 0.7x CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
CH); 2.67-3.94 (m, H ^A -CH ₂ , 0.3x CH); 3.00-3.26 (m, H ^B -CH ₂); 5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
5.39-5.55 (m, CH); 7.10-7.40 (m, 10H-aromatic)	
141 CDCl ₃ ; 0.79 (t, CH ₃); 1.17-1.82 (m, 2x CH ₂); 1.43 (d, CH ₃); 1.98-	
2.08 (m, CH, H ^A -CH ₂); 2.25-2.52 (m, CH, H ^B -CH ₂); 2.82-2.95 (m,	
H ^A -CH ₂); 3.00-3.18 (m, H ^B -CH ₂); 5.45 (q, CH); 7.12-7.39 (m,	
10H-aromatic)	
142 CDCl ₃ ; 1.12 (s, CH ₃); 1.27 (d, CH ₃); 1.43-1.60 (m, H ^A -CH ₂); 1.79-	
1.92 (m, H ^B -CH ₂); 2.27 (s, CH ₃); 2.51-2.62 (m, CH ₂); 2.73 (d, H ^A -	
CH ₂); 2.96 (d, H ^B -CH ₂); 5.40 (q, CH); 6.97-7.24 (m, 9H-aromatic)	
143 CDCl ₃ ; 1.16 (s, CH ₃); 1.39 (d, CH ₃); 1.49-1.61 (m, H ^A -CH ₂); 1.65-	
1.80 (m, H ^B -CH ₂); 2.19 (s, CH ₃); 2.41-2.52 (dt, H ^A -CH ₂); 2.70 (d,	
H ^A -CH ₂); 2.96 (d, H ^B -CH ₂); 2.97-3.09 (m, H ^A -CH ₂); 5.36 (q, CH);	
6.88-7.22 (m, 9H-aromatic)	
144 CDCl ₃ ; 0.81 (t, CH ₃); 1.20 (d, CH ₃); 1.40-1.78 (m, 2x CH ₂); 2.25	-
(s, CH ₃); 2.27-2.39 (m, H ^A -CH ₂); 2.43-2.57 (m, H ^B -CH ₂); 2.72 (d,	
H ^A -CH ₂); 2.97 (d, H ^B -CH ₂); 5.41 (q, CH); 6.94-7.27 (m, 9H-	
aromatic)	
145 CDCl ₃ ; 0.97 (t, CH ₃); 1.46 (d, CH ₃); 1.52-1.89 (m, 2x CH ₂); 2.25	
(s, CH ₃); 2.30-2.47 (m, H ^A -CH ₂); 2.74 (d, H ^A -CH ₂); 2.98-3.13 (m,	
H ^B -CH ₂); 3.10 (d, H ^B -CH ₂); 5.48 (q, CH); 6.90-7.27 (m, 9H-	
aromatic)	
146 mixture of 2 diastereoisomers	
CDCl ₃ ; 0.79-0.93 (m, CH ₃); 1.19 (d, 0.7x CH ₃); 1.38 (d, 0.3x	
CH ₃); 1.08-1.79 (m, 3x CH ₂); 2.17 (s, 0.3x CH ₃); 2.25 (s, 0.7x	
CH ₃); 2.27-2.38 (m, H ^A -CH ₂); 2.43-2.57 (m, H ^B -CH ₂); 2.60-2.77	
(m, H ^A -CH ₂); 2.89-3.07 (m, H ^B -CH ₂); 5.40 (q, CH); 6.92-7.28 (m,	
9H-aromatic)	
147 mixture of 2 diastereoisomers	<u> </u>
148 CDCl ₃ ; 1.48 (d, CH ₃); 1.53-1.69 (m, H ^A -CH ₂); 1,74-1.90 (m, H ^B -	
CH ₂); 2.29 (s, 2x CH ₃); 2.49-2.78 (m, CH, 2x H ^A -CH ₂); 3.12-3.31	
(m, 2x H ^B -CH ₂); 5.47 (q, CH); 6.93 (s, 3H-aromatic); 7.11-7.30	
(m, 5H-aromatic)	

Co.	NMR data	melting
No.		point (°C)
149	CDCl ₃ ; 1.44 (d, CH ₃); 1.40-1.60 (m, H ^A -CH ₂); 1,80-1.96 (m, H ^B -	
	CH_2); 2.25 (s, 2x CH_3); 2.49-2.67 (m, CH_1 , H^A - CH_2); 2.81-2.92 (dt,	
	H ^A -CH ₂); 3.00-3.13 (m, H ^B -CH ₂); 3.21-3.36 (m, H ^B -CH ₂); 5.43 (q,	
	CH); 6.91 (s, 3H-aromatic); 7.13-7.32 (m, 5H-aromatic)	
150	CDCl ₃ ; 1.51 (d, CH ₃); 1.59-1.78 (m, H ^A -CH ₂); 1,87-2.02 (m, H ^B -	:
	CH ₂); 2.70-2.89 (m, CH, 2x H ^A -CH ₂); 3.10-3.23 (dt, H ^B -CH ₂);	
	3.28-3.43 (m, H ^B -CH ₂); 5.51 (q, CH); 6.87-6.98 (dt, 1H-aromatic);	
	7.10 (dd, 1H-aromatic); 7.21-7.38 (m, 6H-aromatic)	
151	CDCl ₃ ; 1.50 (d, CH ₃); 1.50-1.67 (m, H ^A -CH ₂); 1,92-2.08 (m, H ^B -	
	CH ₂); 2.73-2.93 (m, CH, 2x H ^A -CH ₂); 3.12-3.25 (m, H ^B -CH ₂);	
	3.28-3.44 (m, H ^B -CH ₂); 5.49 (q, CH); 6.80-6.91 (dt, 1H-aromatic);	
	7.08 (dd, 1H-aromatic); 7.19-7.38 (m, 6H-aromatic)	<u> </u>
152	CDCl ₃ ; 1.46 (d, CH ₃); 1.59-1.76 (m, H ^A -CH ₂); 1,87-2.02 (m, H ^B -	
	CH_2); 2.59-2.86 (m, CH_1 , 2x H^A - CH_2); 2.99-3.18 (m, 2x H^B - CH_2);	
	5.51 (q, CH); 5.91 (s, CH ₂); 6.60-6.75 (m, 3H-aromatic); 7.19-7.38	
153	(m, 5H-aromatic) contains 8% from isomer LIB-59-A	
133	CDCl ₃ ; 1.50 (d, CH ₃); 1.48-1.67 (m, H ^A -CH ₂); 1.89-2.08 (m, H ^B -	
	CH_{2}); 2.58-2.87 (m, CH ₃), 1.46-1.07 (m, H -CH ₂); 3.04-3.22 (m, 2x H ^B -CH ₂);	
	5.49 (q, CH); 5.90 (s, CH ₂); 6.59-7.75 (m, 3H-aromatic); 7.18-7.37	
	(m, 5H-aromatic)	
154	CDCl ₃ ; 1.43 (d, CH ₃); 1.55-1.72 (m, H ^A -CH ₂); 1,78-1.93 (m, H ^B -	
•••	CH_2); 2.60-2.81 (m, CH, 2x H ^A -CH ₂); 3.04-3.28 (m, 2x H ^B -CH ₂);	
	5.44 (q, CH); 5.86 (s, CH ₂); 6.69 (s, 1H-aromatic); 6.73 (s, 1H-	
	aromatic); 7.12-7.30 (m, 5H-aromatic)	
155	CDCl ₃ ; 1.43 (d, CH ₃); 1.45-1.58 (m, H ^A -CH ₂); 1,83-1.99 (m, H ^B -	
	CH ₂); 2.58-2.86 (m, CH, 2x H ^A -CH ₂); 3.03-3.18 (m, H ^B -CH ₂);	
	3.18-3.27 (dd, H ^B -CH ₂); 5.41 (q, CH); 5.85 (s, CH ₂); 6.69 (s, 1H-	
<u> </u>	aromatic); 6.71 (s, 1H-aromatic); 7.11-7.29 (m, 5H-aromatic)	<u> </u>
156	CDCl ₃ ; 1.51 (d, CH ₃); 1.55-1.72 (m, CH ₂); 1.91-2.08 (m, H ^A -CH ₂);	
	2.37-2.57 (m, CH, H ^B -CH ₂); 2.72-2.87 (m, H ^A -CH ₂); 3.14-3.28 (m,	
	H ^B -CH ₂); 3.19 (s, CH ₃); 4.34 (m, CH); 5.50 (q, CH); 7.20-7.39 (m,	
1	10H-aromatic)	· · · · · · · · · · · · · · · · · · ·
157	CDCl ₃ ; 1.50 (d, CH ₃); 1.51-1.68 (m, H ^A -CH ₂); 1.72-1.88 (m, H ^B -CH	
	CH ₂); 2.10-2.23 (m, CH, H ^A -CH ₂); 2.43-2.58 (m, H ^B -CH ₂); 2.85-	
	2.95 (dt, H ^A -CH ₂); 3.12-3.23 (m, H ^B -CH ₂); 3.21 (s, CH ₃); 4.43 (dd, CH); 5.46 (c, CH); 7.10 7.38 (m, 10H aromatic)	
150	CDCl : 1 23 (d. CH2): 1 35 (d. CH2): 1 73 (m. CH2): 2 65 (m. CH2)	<u> </u>
158	CDCl ₃ ; 1.23 (d, CH ₃); 1.35 (d, CH ₃); 1.73 (m, CH ₂); 2.65 (m, CH, H ^A -CH ₂); 2.91 (m, H ^B -CH ₂); 3.37 (m, CH); 5.44 (q, CH); 7.18 (m,	
	10H-aromatic)	
159	CDCl ₃ ; 1.14 (d, CH ₃); 1.35 (d, CH ₃); 1.50-1.65 (m, H ^A -CH ₂); 1.65-	<u> </u>
	1.80 (m, H _B -CH ₂), 2.39-2.62 (m, CH, CH ₂); 3.23-3.38 (m, CH);	
	5.33 (q, CH); 7.05-7.23 (m, 10H-aromatic)	
160	CDCl ₃ ; 1.15 (d, CH ₃); 1.41 (d, CH ₃); 1.63-1.78 (m, CH ₂); 2.68-	
	2.80 (m, CH, H^A -CH ₂); 3.00-3.13 (m, H^B -CH ₂); 3.38-3.50 (m,	
	CH); 5.44 (q, CH); 7.03-7.30 (m, 10H-aromatic)	
161	CDCl ₃ ; 1.36 (d, CH ₃); 1.37 (d, CH ₃); 1.41-1.59 (m, H ^A -CH ₂); 1.72-	
L		· · · · · · · · · · · · · · · · · · ·

· #

Co.	NMR data	melting
No.		point (°C)
!	1.90 (m, H ^B -CH ₂); 2.32-2.47 (dt, CH); 2.57-2.70 (m, H ^A -CH ₂);	
	2.89-3.02 (m, H ^B -CH ₂); 3.25-3.39 (m, CH); 5.32 (q, CH); 6.82-	
	6.94 (m, 2H-aromatic); 7.01-7.20 (m, 8H-aromatic)	
162	CDCl ₃ ; 1.27 (d, 0.65x CH ₃); 1.44 (d, 0.35x CH ₃); 1.52 (d, 0.35x	
	CH ₃); 1.55 (d, 0.65x CH ₃); 1.65-2.02 (m, CH ₂); 2.38 (s, 0.35x	
	CH ₃); 2.43 (s, 0.65x CH ₃); 2.62-2.87 (m, CH, H ^A -CH ₂); 2.97-3.08	
	(m, 0.35x HB-CH2); 3.13-3.26 (m, 0.65x HB-CH2); 3.27-3.39 (m,	
	0.35x CH); 3.74-3.88 (m, 0.65x CH); 5.47-5.62 (m, CH); 7.05-7.39	
	(m, 9H-aromatic)	
163	CDCl ₃ ; 1.09 (d, 0.8x CH ₃); 1.40 (d, 0.2x CH ₃); 1.42 (d, CH ₃);	
	1.57-1.87 (m, CH ₂); 2.19 (s, 0.2x CH ₃); 2.32 (s, 0.8x CH ₃); 2.57-	
	2.70 (m, CH, 0.2x H ^A -CH ₂); 2.74-2.87 (dt, 0.8x H ^A -CH ₂); 2.92-	
	3.20 (m, 0.2x CH H ^B -CH ₂); 3.66-3.78 (m, 0.8x CH); 5.32-5.51 (m,	į
	CH); 6.90-7.29 (m, 9H-aromatic)	
164	CDCl ₃ ; 1.84 (m, CH ₂); 2.15 (m, CH ₂); 2.43-2.59 (m, 2x CH ₂);	
	3.05-3.27 (m, 2x CH ₂); 3.86 (s, 2x CH ₃); 5.12 (s, 2x CH ₂); 6.66	
	(dd, 2H-aromatic); 6.73-6.84 (m, 4H-aromatic); 6.89-6.99 (m, 2H-	
	aromatic) 7.11-7.46 (m, 13H-aromatic)	•
165	mixture of diastereoisomers	
166	CDCl ₃ ; 1.54 (d, 3H, CH ₃); 1.60 (s, 3H, CH ₃); 1.96-2.14 (m, 1H,	
	H ^A -CH ₂); 2.28-2.41 (m, 1H, H ^B -CH ₂); 2.84-2.93 (m, 1H, H ^A -	
	NCH ₂); 3.12-3.31 (m, H ^B -NCH ₂); 5.58 (m, CH); 7.28-7.54 (m,	
	10H-aromatic)	
167	CDCl ₃ ; 1.54 (d, 3H, CH ₃); 1.60 (s, 3H, CH ₃); 1.96-2.14 (m, 1H,	
	H ^A -CH ₂); 2.28-2.41 (m, 1H, H ^B -CH ₂); 2.84-2.93 (m, 1H, H ^A -	
	NCH ₂); 3.12-3.31 (m, H ^B -NCH ₂); 5.58 (m, CH); 7.28-7.54 (m,	
2 Ng (10H-aromatic)	

-42-

C. Pharmacological examples

15

Example C.1: Enzymatic assays to test the effect of compounds on 11b-hydroxysteroid dehydrogenase type 1 and type 2

The effects of compounds on 11b-HSD1 dependent conversion of cortisone into cortisol (reductase activity) was studied in a reaction mixture containing 30 mM Tris-HCl buffer pH 7.2, 180 µM NADPH, 1mM EDTA, 2 µM cortisone, 1 µl drug and/or solvent and 11 µg recombinant protein in a final volume of 100 µl.

The effect on the 11b-HSD1-dehydrogenase activity (conversion of cortisol into cortisone) was measured in a reaction mixture containing 0.1M sodium phosphate buffer pH 9.0, 300 µM NADP, 25 µM cortisol, 1 µl drug and/or solvent and 3.5 µg recombinant protein in a final volume of 100 µl.

The effects on the 11b-HSD2 dependent **dehydrogenase** activity was studied in a reaction mixture containing 0.1M sodium phosphate buffer pH 7.5, 300 μM NAD, 100 nM cortisol (of which 2 nM is 3H-radio labelled), 1 μl drug and/or solvent and 2.5 μg recombinant protein in a final volume of 100 μl.

All incubations were performed for 45 min at 37C in a water bath. The reaction was stopped by adding 100 μl acetonitrile containing 20 μg corticosterone as internal standard. After centrifugation, the product formation was analysed in the supernatant by HPLC on a Hypersyl BDS-C18 column using 0.05 mM ammonium acetate / methanol (50/50) as solvent. In all of the aforementioned assays, the drugs to be tested were taken from a stock solution and tested at a final concentration ranging from - 10⁻⁵ M to 3.10⁻⁹ M. From the thus obtained dose response curves, the pIC50 value was calculated and scored as follows; Score 1 = pIC50 value < 5, Score 2 = pIC50 value in the range of 5 to 6, Score 3 = pIC50 value >6. Some of the thus obtained results are summarized in the table below. (in this table NT stands for Not Tested).

Example C2: Cellular assays to test the effect of compounds on 11b-hydroxysteroid dehydrogenase type 1 and type 2

The effects on 11b-HSD1 activity was measured in differentiated 3T3-L1 cells and rat hepatocytes.

Mouse fibroblast 3T3-L1 cells (ATCC-CL-173) were seeded at a density of 16500 cells / ml in 12 well plates and grown for 7 days in DMEM medium (supplemented with 10 % heat inactivated foetal calf serum, 2mM glutamine and 25 mg gentamycin) at 37C in

a humidified 5% CO2 atmosphere. Medium was refreshed twice a week. Fibroblasts were differentiated into adipocytes at 37C in a 5% CO2 humidified atmosphere in growth medium containing 2µg/ml insulin, 55 µg/ml IBMX and 39.2 µg/ml dexamethasone.

Primary hepatocytes from male rats were seeded on BD-Biocoat Matrigel matrix multiwell plates at a density of 250000 cells /well and incubated for 10 days at 37C in a 5% CO2 humidified atmosphere in DMEM-HAM's F12 medium containing 5% Nuserum, 100 U/ml penicillin, 100 μg/ml streptomycin, 0.25 μg/ml amphotericin B, 50 μg/ml gentamycin sulfate, 5μg/ml insulin and 392 ng/ml dexamethasone. Medium was refreshed 3 times a week.

Following a 4 hour pre-incubation with test compound, 0.5 µCi ³H-cortisone or dehydrocorticosterone, was added to the cultures. One hour later, the medium was extracted on Extrelut³-columns with 15 ml diethyl ether and the extract was analysed by HPLC as described above.

15

The effects on 11b-HSD2 activity was studied in HepG2 and LCC-PK1-cells HepG2-cells (ATCC HB-8065) were seeded in 12 well plates at a density of 100,000 cells/ml and grown at 37C in a humidified 5% CO2 atmosphere in MEM-Rega-3 medium supplemented with 10% heat inactivated foetal calf serum, 2 mM L-glutamine and sodium bicarbonate). Medium was refreshed twice a week.

Pig kidney cells (LCC-PK1, ATCC CRL-1392) were seeded at a density of 150,000

Pig kidney cells (LCC-PK1, ATCC CRL-1392) were seeded at a density of 150,000 cells /ml in 12 well plates and grown at 37C in a humidified 5% CO2 atmosphere in Medium 199 supplemented with Earls modified salt solution, 100 U/ml penicillin, 100 μg/ml streptomycin and 10 % foetal calf serum. Medium was refreshed twice a week.

Twenty four hours prior to the onset of the experiment, medium was changed by medium containing 10% charcoal stripped foetal calf serum.

Following a 4 hour pre-incubation with test compound, 0.5 μCi ³H-cortisol or corticosterone, was added to the cultures. One hour later, the medium was extracted on Extrelut³-columns with 15 ml diethyl ether and the extract was analysed by HPLC as

30 described above.

35

As for the enzymatic assays, the compounds to be tested were taken from a stock solution and tested at a final concentration ranging from - 10⁻⁵M to 3.10⁻⁹M. From the thus obtained dose response curves, the pIC50 value was calculated and scored as follows; Score 1 = pIC50 value < 5, Score 2 = pIC50 value in the range of 5 to 6, Score 3 = pIC50 value >6. Some of the thus obtained results are summarized in the table below (in this table NT stands for Not Tested).

. (...

Compound Number	ର ବୁ କ	ର a a	ଦ ବୁ a	ଦ ଚୁ କୁ
1	3	1	3	1
2	2	NT	2	1
3	3	NT	2	1
4	1	NT	2	1
5	2	NT	2	1
6	2	NT	2	1
7	2	1	3	1
8	2	NT	2	NT
9	2	1	3	1
10	3	1	3	1
11	3	NT	2	NT
12	2	NT	2	NT
13	3	1	3	1
14	3	1	3	1
15	2	NT	2	NT
16	1	NT	2	NT
17	2	NT	2	NT
18	2	NT	2	NT
19	2	NT	3	NT
20	1	NT	1	NT
21	2	NT	3	NT
22	1	NT	2	NT
23	2	NT	3	NT
24	2	NT	1	NT
25	1	NT	3	NT
26	1	NT	2	NT
27	1	1	3	1
28	1	1	3	1
29	2	NT	2	NT
30	3	1	3	1
31	2	1	3	1

·	i			
Compound Number	Solution School (C1) HSD1-prot Reduct	ର ବୁ a	ର ବୁ a	g g ð
32	3	1	3	1
33	1	NT	3	NT
34	1	NT	2	NT
35_	<u>·</u> 1	1	3	1
36	1	NT	2	NT
37	1	NT	2	NT
38	1	NT	2	NT
39	1	NT	2	NT
40	2	NT	3	NT
41	2	1	3	1
42	1	NT	2	NT
43	2	NT	2	NT
44	1	NT	2	NT
45	3	1	3	1
46	1	NT	1	NT
47	1	NT	2	NT
48	1	NT	2	NT
49	2	NT	3	NT
50	1	NT	2	NT
51	1	NT	2	NT
52	1	NT	2	NT
53	1	NT	2	NT
54	1	NT	2	NT
55	1	NT	2	NT
56	1	NT	2	NT
57	2	1	3	1
58	2	NT	2	NT
59	2	1	3	1
60	1	NT	2	NT
61	1	NT	2	NT
62	1	NT	2	NT

-46-

		•		
Compound Number	S og e (C1) HSD1-prot Reduct	ର a a	ଦ ତ୍ର କ	ର ବୁ କ
63	1	NT	2	NT
64	1	NT	2	NT
65	1	1	3	1
66	1	NT	2	NT
67	2	NT	3	NT
68	1	NT	2	NT
69	2	NT	3	1
70	1	NT	3	1
71	3	NT	3	1
72	1	NT	2	NT
73	3	NT	2	NT
74	2	NT	2	NT
75	. 3	NT	2	NT
76	3	NT	2	NT
77	3	NT	3	1
78	3	NT	3	NT
79	3	NT	3	NT
80	3	NT	3	1
81	1	NT	3	NT
82	3	NT	2	NT
83	3	NT	1	NT
84	2	NT	3	NT
85	2	NT	1	NT
86	2	NT	3	NT
87	1	NT	2	NT
88	2	NT	2	NT
89	1	NT	2	NT
90	1	NT	2	NT
91	2	NT	3	NT
92	3	NT	2	NT
93	1	NT	1	NT

Compound Number	ର ବୁ କ	S S S S S S S S S S S S S S S S S S S	ର ବୁ a	ର ବୁ a
94	1	NT	3	NT
95	3	NT	2	NT
96	0	NT	1	NT
97	3	2	1	1
98	1	NT	2	NT
99	3	NT	3	NT
100	2	NT	1	NT
101	1	NT	4	NT
102	1	NT	4	NT
103	1	NT	4	NT
104	4	NT	2	NT
105	3	NT	3	NT
106	2	NT	1	NT
107	2	NT	4	NT
108	2	NT	2	NT
109	1	NT	2	NT
110	2	NT	2	NT
111	2	NT	2	NT
112	2	NT	2	NT
113	2	NT	2	NT
114	1	NT	3	NT
115	1	NT	3	NT
116	1	NT	1	NT
117	3	NT	3	NT
118	1	NT	2	NT
119	3	2	3	1
120	2	NT	3	NT
121	1	NT	1	NT _
122	2	NT	2	NT
123	2	NT	2	NT
124	2	NT	2	NT
	<u> </u>		<u> </u>	

	·· ····			 -
Compound Number	ରୁ a [C1] HSD1-prot Reduct	S g a a	ର g a	ର ଜୁ ଶୁ
125	1	NT	1	NT
126	1	NT	1	NT
127	2	NT	2	NT
128	2	NT	2	NT
129	2	NT	2	NT
130	4	NT	2	NT
131	1	NT	2	NT
132	2	NT	2	NT
133	1	NT	2	NT
134	3	NT	3	NT
135	1	NT	3	NT
136	2	NT	2	NT
137	3	NT	3	NT
138	2	NT	2	NT
139	3	NT	3	NT
140	1	NT	3	NT
141	3	NT	1	NT
142	1	NT	2	NT
143	1	NT	2	NT
144	1	NT	1	NT
145	1	NT	1	NT
146	1	NT	1	NT
147	1	NT	1	NT
148	1	NT	3	1
149	1	NT	3	1
150	3	NT	3	NT
151	3	NT	3	NT
152	2	NT	3	NT
153	2	NT	2	NT
154	1	NT	3	2
155	3	NT	3	NT

Compound Number	[C1] HSD1-prot Reduct	[C1] HSD2 prot Dehydro	[C2] HSD1 cellular 3T3-L1	[C2] HSD2 cellular HepG2
	Score	Score	Score	Score
156	2	NT	2	NT
157	2	NT	3	NT
158	3	NT	3	NT
159	3	NT	3	NT
160	3	NT	1	NT
161	2	NT	1	NT
162	3	2	3	1
163	3	2	3	1
164	1	NT	1	NT
165	1	NT	1	NT
166	NT	NT	2	NT
167	NT	NT	1	NT

D. Composition examples

The following formulations exemplify typical pharmaceutical compositions suitable for systemic or topical administration to animal and human subjects in accordance with the present invention.

"Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I) or a pharmaceutically acceptable addition salt thereof.

Example D.1: film-coated tablets

Preparation of tablet core

A mixture of A.I. (100 g), lactose (570 g) and starch (200 g) was mixed well and thereafter humidified with a solution of sodium dodecyl sulfate (5 g) and polyvinyl-pyrrolidone (10 g) in about 200 ml of water. The wet powder mixture was sieved, dried and sieved again. Then there was added microcrystalline cellulose (100 g) and hydrogenated vegetable oil (15 g). The whole was mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.

WO 2005/108360 PCT/EP2005/051968

-50-

Coating

To a solution of methyl cellulose (10 g) in denaturated ethanol (75 ml) there was added a solution of ethyl cellulose (5 g) in CH₂Cl₂ (150 ml). Then there were added CH₂Cl₂ (75 ml) and 1,2,3-propanetriol (2.5 ml). Polyethylene glycol (10 g) was molten and dissolved in dichloromethane (75 ml). The latter solution was added to the former and then there were added magnesium octadecanoate (2.5 g), polyvinyl-pyrrolidone (5 g) and concentrated color suspension (30 ml) and the whole was homogenated. The tablet cores were coated with the thus obtained mixture in a coating apparatus.

WO 2005/108360 PCT/EP2005/051968

-51-

Claims

1. A compound having the formula

5

15

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 1 or 2;

L represents a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl, hydroxy, C_{1-3} alkyloxy- or phenyl- C_{1-4} alkyl;

M represents a direct bond or a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from hydroxy, C_{1-4} alkyl or C_{1-4} alkyloxy;

 R^1 and R^2 each independently represent hydrogen, halo, cyano, hydroxy, C_{1-4} alkyl optionally substituted with halo,

 C_{1-4} alkyloxy- optionally substituted with one or where possible two or three substituents selected from hydroxy, Ar^1 and halo;

or R¹ and R² taken together with the phenyl ring to which they are attached form naphtyl or 1,3-benzodioxolyl, wherein said naphtyl or 1,3-benzodioxolyl are optionally substituted with halo;

R³ represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy-, cyano or hydroxy;

R⁴ represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy-, cyano or hydroxy;

R⁵ represents hydrogen, C₁₋₄alkyl or Ar²-C₁₋₄alky-;

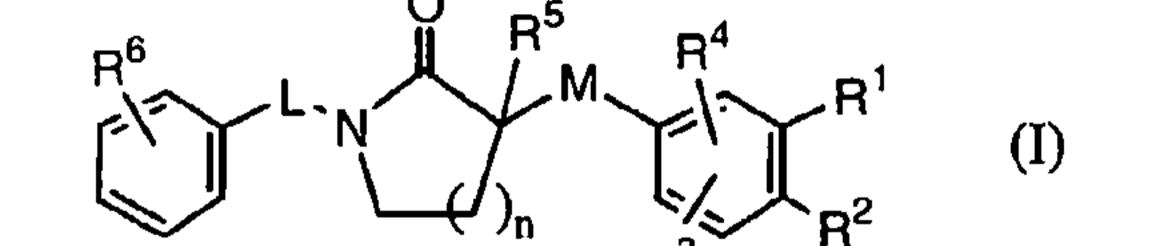
 R^6 represents hydrogen, halo, C_{1-4} alkyl or C_{1-4} alkyoxy-;

Ar¹ and Ar² each independently represent phenyl or naphtyl wherein said phenyl and naphtyl are optionally substituted with C₁₋₄alkyl, C₁₋₄alkyloxy-, or phenyl-C₁₋₄alkyl; for use as a medicine.

30

25

- 2. A compound according to claim 1 wherein; n is 1 or 2;
 - L represents a C_{1-3} alkyl linker optionally substituted with one or two substituents selected from C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl, hydroxy,
- 35 C₁₋₃alkyloxy- or phenyl-C₁₋₄alkyl; in particular L represents a C₁-linker


-52-

- optionally substituted with C_{1-4} alkyl; preferably L represents a C_1 -linker substituted with C_{1-4} alkyl, more preferably a C_1 -linker substituted with methyl;
- M represents a direct bond or a C_{1-2} alkyl optionally substituted with one or two substituents selected from hydroxy, C_{1-4} alkyl or C_{1-4} alkyloxy-; preferably M represents a C_{1} -linker optionally substituted with C_{1-4} alkyl;
- R¹ represents hydrogen, hydroxy, halo, C₁₋₄alkyl, C₁₋₄alkyloxy-, or C₁₋₄alkyloxy substituted with halo;
- R² represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy- or Ar¹-C₁₋₄alkyloxy-;
- R³ represents hydrogen, halo, C₁₋₄alkyl, C₁₋₄alkyloxy- or cyano;
- 10 R⁴ represents hydrogen, halo, C_{1.4}alkyl or C_{1.4}alkyloxy-;
 - R⁵ represents hydrogen, C₁₋₄alkyl or Ar²-C₁₋₄alkyl; in particular hydrogen;
 - R⁶ represents hydrogen, halo, or C₁₋₄alkyloxy; in particular hydrogen, chloro, fluoro, bromo or methoxy;
 - Ar¹ represents phenyl;
- 15 Ar² represents phenyl or naphtyl.
 - A compound according to claim 1 wherein;
 n is 1;
 - L represents a C_{2-3} alkyl linker optionally substituted with one or two substituents selected from C_{1-4} alkyl, C_{1-3} alkyloxy- C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl, hydroxy, C_{1-3} alkyloxy- or phenyl- C_{1-4} alkyl;
 - M represents a C_{2-3} alkyl linker optionally substituted with one or two substituents selected from hydroxy, C_{1-4} alkyl or C_{1-4} alkyloxy;
 - R⁵ represents Ar²-C₁₋₄alkyl;
- 25 R⁶ represents halo, C₁₋₄alkyl or C₁₋₄alkyloxy-.
 - 4. A compound according to claim 1 wherein R⁶ is at the para position, L represents a C₂-alkyl linker and M represents a C₁-linker.
- 5. A compound according to claim 1 wherein L represents a C₁-linker substituted with a C₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl-, hydroxyC₁₋₄alkyl- or phenylC₁₋₄alkyl- wherein said C₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl-, hydroxyC₁₋₄alkyl- or phenylC₁₋₄alkyl-is in the S-configuration.
- 6. A compound as claimed in claim 1 wherein the compound is selected from the group consisting of:
 - 3-[(2,6-Dichlorophenyl)methyl]-1-(1-phenylpropyl)-2-pyrrolidinone;
 - 3-[(2,6-Difluorophenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;

-53-

- 3-[(2,6-Dimethylphenyl)methyl]-1-(1-phenylethyl)-2-piperidinone;
- 3-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone;
- 3-[1-(2-Methylphenyl)ethyl]-1-(1-phenylethyl)-2-pyrrolidinone;
- 3-[(2,6-Dichlorophenyl)methyl]-1-(2-phenylethyl)-2-pyrrolidinone;
- 3-[(2-Methylphenyl)methyl]-1-(1-phenylethyl)-2-pyrrolidinone; an N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof.
- 7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective 11β-HSD1 inhibitory amount of a compound as described in any one of claims 1 to 6.
 - 8. A process of preparing a pharmaceutical composition as defined in claim 7, characterized in that, a pharmaceutically acceptable carrier is intimately mixed with an effective 11β-HSD1 inhibitory amount of a compound as described in any one of claims 1 to 6.
 - 9. A compound as claimed in any one of claims 2 to 6 for use as a medicine.
- 10. Use of a compound as claimed in any one of claims 1 to 6 in the manufacture of a medicament for treating pathologies associated with excess cortisol formation such as for example, obesity, diabetes, obesity related cardiovascular diseases, dementia, cognition, osteoporosis and glaucoma.

15

