Office de la Proprieté Canadian CA 2417509 C 2013/02/19

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 41 7 509
Findustie Canada Industry Ganada 1R BREVET GANALIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2001/07/17 (51) Cl.Int./Int.Cl. GO6F 9/44(2006.01),
S e . GO6F 9/46 (2006.01), HO4L 29/06 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2002/02/07 HO4L 29/08 (2006.01)
(45) Date de délivrance/lssue Date: 2013/02/19 _
(72) Inventeurs/Inventors:
(85) Entree phase nationale/National Entry: 2003/01/27 FERWERDA, PAUL. US:
(86) N° demande PCT/PCT Application No.: US 2001/022343 BOWER, PETER, US

(87) N° publication PCT/PCT Publication No.: 2002/010917 | (73) Proprietaire/Owner:
o ORACLE INTERNATIONAL CORPORATION, US
(30) Priorité/Priority: 2000/07/27 (US60/221,057)

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

54) Titre : SYSTEME ET PROCEDE DE CONCENTRATION DE DEMANDES ET D'EQUILIBRAGE DE LEUR CHARGE
54) Title: SYSTEM AND METHOD FOR CONCENTRATION AND LOAD-BALANCING OF REQUESTS

o g,
Infer-process TCP/IP
Client Communication connections
82 Server 99
1 RS
\‘\
\
\
N 81 |
Client \\\ RCe“n:}’;e
64 Se;ver S~ \‘\\ __....,......._..... 91 Server 94
T~ :1# ISL/ISH
| g1 - ~ Concentrator Remote
Client \ = _~--—7 pd I'
86 Server k-7 ,° Client 06
3 7 Server
d 80
//
U 4 01
V4
Py
///
Client 7
88 Server
n

n client/servers (inside the domain) invoking on 1 remote server (outside the domain) via ISL/ISH
intelligent concentrator results in 1 TCP/IP socket connection. On first invoke on object, client contact ISL to
determine ISH to handle invoke. ISL maintains information about active TCP/IP socket connections in ISH
processes, and concentrates invokes allowing request to be multiplexed over 1 connection.

(57) Abrégée/Abstract:

The Invention relates generally to distribute computing environments and specifically to a system and a method for reducing the
number of Object Request Broker (ORB) connections in an Internet Inter-ORB Protocol (IIOP) environment. Prior solutions

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2417509 C 2013/02/19

anen 2 417 509
13) C

(57) Abrege(suite)/Abstract(continued):

required a n X m number of connections to handle requests from clients (82,84,86,88) to remote servers (92,94 96 98). The
solution described allows there to be only m connections (81,91) through an intelligent concentrator (90), which significantly

reduces requirements and allows scalabllity. Prior solutions did not utilize multiple intelligent master concentrator processes (90) to
handle concentrator fallure or dynamic scalabillity.

02/10917 Al

W

CA 02417509 2003-01-27

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
7 February 2002 (07.02.2002)

(51) International Patent Classification’: GO6F 9/44, 9/46

(21) International Application Number: PCT/US01/22343

(22) International Filing Date: 17 July 2001 (17.07.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/221,057 27 July 2000 (27.07.2000) US

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: FERWERDA, Paul; 78 Graston Drive, Bed-
ford, NH 03110 (US). BOWER, Peter; 20 South Gate
Road, Hollis, NH 03049 (US).

(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Dubb Meyer
and Lovejoy LLP, Fourth Floor, Four Embarcadero Center,
San Francisco, CA 94111-4156 (US).

PCT

(10) International Publication Number

WO 02/10917 Al

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
A7, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ. 1.C, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ., NO, NZ, PL., PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CFL,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR CONCENTRATION AND LOAD-BALANCING OF REQUESTS

Inter-process TCP/HP
Client Communication connections Remote
S Client 95
. e;ver S Server
N 1
h .
N 81 =
Client I g;ﬁotte
Server s en a4
> 2 \H’\“‘\. N 91 Server
IR ISL/SH
g4 _--"" "/\4 Concentrator Remote
Client =T d .
Server ¥~ 7 Client o
% 3 . Server
d 90 3
, rd
7
4 . 91 iy
L _ a0
' /’ Remote
g o L Client 08
88 erver g

n

m

n client/servers (inside the domain) invoking on 1 remote server (outside the domain} via ISL/ISH
intelligent concentrator results in 1 TCP/IP socket connection. On first invoke on object, client contact ISL to
determine ISH to handle invoke. ISL maintains information about active TCP/IP socket connections in {SH
processes, and concentrates invokes allowing request to be multiplexed over 1 connection.

(57) Abstract: The invention relates generally to distribute computing environments and specifically to a system and a method for
reducing the number of Object Request Broker (ORB) connections in an Internet Inter-ORB Protocol (IIOP) environment. Prior
solutions required a n X m number of connections to handle requests from clients (82,84,86,88) to remote servers (92,94,96,98).
o The solution described allows there to be only m connections (81,91) through an intelligent concentrator (90), which significantly
reduces requirements and allows scalability. Prior solutions did not utilize multiple intelligent master concentrator processes (90) to

handle concentrator failure or dynamic scalability.

CA 02417509 2008-06-05

WO 02/10917 PCT/US01/22343

SYSTEM AND METHOD FOR CONCENTRATION
AND LOAD-BALANCING OF REQUESTS

- COPYRIGHT NOTICE
5 A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of the patent
document or the patent disclosure, as it appears in the Patent and

Trademark Office patent file or records, but otherwise reserves all

10 copyright rights whatsoever.

This application claims priority from provisional application
“SYSTEM AND METHOD FOR CONCENTRATION AND LOAD-
BALANCING OF REQUESTS, Application No. 60/221,057, filed July 27,

15 2000.

Field of the Invention

The invention relates generally to distributed computing
environments, and specifically to a system and a method for reducing the
20 number of Object Request Broker (ORB) connections in an internet

Inter-ORB Protocol (IIOP) environment.

Background

in the field of the distributed computing, several architectures exist

25 to allow machines to communicate with one another or to share
distributed or net-centric applications. One of these architectures
includes the Common Object Request Broken Architecture (CORBA).
CORBA is an architecture design specification developed by the Object

10

15

20

CA 02417509 2011-04-13
-
Management Group (OMG), an independent group devoted to developing
standards for use in object-oriented computing. Examples of CORBA-
compliant systems include Netscape’s ONE " product, and BEA System's
Weblogic Enterprise Server .

CORBA provides a specification for the Interface Definition Language
(IDL), which allows software developers to define interfaces to their object-
oriented applications in a standard fashion. IDL includes mappings that
allow IDL definition and types to be mapped to a variety of programming
languages, including C, C++, and JAVA®. Thus, CORBA allows developers
to create “transparent” applications, which may be interpreted independent
of the original programming language. Developer and third-party vendors
create objects which interact with one another through an Object Request
Broker (ORB). Using language mappings, developers can create client-side
“stubs” and server-side “skeletons”, which the ORB’s understand.

Since CORBA 2.0, the CORBA specification has included a method
to allow ORB’s to communicate seamlessly with each other. The ORB
Interoperability Architecture, or more specifically, the General Inter-ORB
Protocol (GIOP) standard, defines a set of message requests which ORB's
may make over a network. Various flavours of GIOP exist, each tailored to
the needs of a specific network transport. GIOP as defined by OMG,

comprises three components:

The Common Data Representation — a transfer syntax mapping IDL types

to low-level types for use between network agents.

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-3 -

The GIOP Message Formats - of which there are currently seven,
including client request, server reply, client cancel request, client locate

request, serverlocate reply, server close connection, and message error.

5 The GIOP Message Transport Assumptions - including that: the
transport is connection-oriented, reliable, can be viewed as a byte
stream, provides reasonable notification of disorderly connection loss,
and that the transport's model for initiating connections can be mapped
onto the general connection model of TCP/IP.

10
A common GIOP implementation, which all ORB’s must by
specification be able to use, is the Internet Ir{ter-ORB Protocol (lIOP).
IIOP maps GIOP messages to TCP/IP, allowing the ORB to use a
TCP/IP network, for example the Internet, as a communications bus or
15 backbone. Referring to the pyramid structure of Figure 1, at the lowest
level of the pyramid exists the Physical Deviée, for example an Ethernet
card having a MAC (Media Access Control) address. Upon this sits the
Ethernet protocol, which provides a connection-based, broadcast
topology where messages are encoded and collisions resolved. The next
20 layer is the Internet Protocol (IP), which specifies the format of packets
that traverse the Internet and supports hostnames and |IP addresses.
The hostname allows |P to be routed. Above |P is the Transport Control
Protocol (TCP), which adds the functionality of port number and control
directives such as packet segmentation and time to live. This provides
25 reliable, stream-based delivery. IIOP is built upon TCP. Above IIOP sits
the ORB level, which marshals the IOP requests. At the top of the

pyramid is the application level itself, which includes object

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

_4 -

implementations and other ORB objects and services, such as the
Naming Service.

In such a distributed Object System as described above and, as

further illustrated in Figure 2, requests 50 are passed back and forth

5 between processes requiring an object’s function 42, 44, 46, 48 and the

processes implementing an object's function 52, 54, 56, 58. The

example of Figure 2 shows n clients invoking upon m servers. With such

a system it is difficult to achieve scalability when there are n x m

connections, where n represents processes requiring a group of object

10 function and m represents the processes implementing the group of

object functions. This is commonly known as a “fan-out problem”, and

leads to difficulties in ensuring system resources are sufficient enough

to allow scalability. Techniques exist to allow concentration of requests

through a concentrator process to an I|OP/ORB domain or group of

15 objectimplementations. The problem is how scalability may be achieved

going in the opposite direction, from the object implementations within

the domain, to other object implementations outside of the domain.

Summary of the Invention
20 To address the problem of scalability in Object Systems, an

embodiment of the invention allows native clients, and servers acting as
native clients, to invoke on a remote object reference. The ability {o
invoke on a remote object reference should be: scalable, robust, usable
as a mechanism to carry out invocations on object references
25 Implemented in foreign ORB servers, usable as a mechanism to carry
out invocations that are implemented in remote clients (client callbacks),
and usable as a mechanism to carry out invocations that deliver events

to remote clients.

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-5 -

One solution and embodiment of the invention is to utilize an
intelligent concentrator process for requests going from within the
domain to outside of the domain. One or more master processes are
configured which load-balance requests across sub-processes which

5 actually handle the requests. The master processes may dynamically
add sub-processes as required by the load. Additionally, the master
processes can allow conceﬁtration by ensuring that multiple requests
from within the domain use the same actual connection for theirrequests
to an object implementation outside of the domain. A multiplicity of these

10 master processes allow for fail-over and recoverability in case a master
process dies.

An embodiment of the invention allows both native clients, and
native servers acting as clients, to invoke o”n object references whose
implementation exists outside of an Internet Inter-ORB Protocol (IIOP)

15 domain. This provides an underlying mechanism allowing for remote
clients to receive events, for remote clients to receive callbacks and for
native clients and servers acting as clients to invoke on object references
whose implementation is in a remote server built with an Object Request
Broker (ORB).

20

Description of the Figures
Figure 1 illustrates how the [IOP and ORB layers relate 0 other

network communication protocols in the prior art.
Figure 2 illustrates a fan-out problem known in the prior art.
25 Figure 3 shows for an embodiment of the invention how an I1SH
can be used to interface between multiple clients and a TCP/IP link to a

server.,

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-6 -

Figure 4 shows for an embodiment of the invention how an
ISL/ISH concentrator may be used to minimize the number of server
connections required to service n clients.
Figure 5 illustrates an embodiment of the invention in which an
5 |ISL and multiple ISH’s serve a variety of client and server types.
Figure 6 shows for an embodiment of the invention how the
routing code interacts with the ISL and the ISH(s).
Figure 7 shows for an embodiment of the invention the services
contained in the ISL.
10 Figure 8 shows for an embodiment of the invention steps in the
routing/binding process.
Figure 9 shows for an embodiment of the invention the unbinding
Process.
Figure 10 illustrates an outbound IIOP embodiment of the
15 invention using a bi-directional connection.
Figure 11 illustrates an outbound IIOP embodiment of the
invention using a paired connection.
Figure 12 illustrates an outbound IIOP embodiment of the
invention using an asymmetric connection.
20 Figure 13 shows for an embodiment of the invention how a

bidirectional connection may be rebound after a client has disconnected.

Detailed Description of the Preferred Embodiment

Various embodiments of the invention will now be described with
25 respecttothe accompanying figures. Several definitions are given below,

which will be useful in the discussion of the preferred embodiments.

Client/Server - a machine or process which may act either as a client or

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

as a server, or both.

Domain - a collection of machines and resources that may be
administered as a unit. Domains can be set up based on application
5 function, security needs, or geographical location, and are particularly

useful in situations where multiple applications intercommunicate.

Native - a client or server located within the domain.

10 Callback - the ability to invoke on an object reference that has been
created by a remote client (acting as a server) such that an [IOP request

is delivered to the object- implementation in the remote client.

Callout - the ability to take an object reference for some remote server
15 and invoke on it such that a request Is delivered to that remote server.
The callout may be to a remote client acting as a server (callback) or to
a remote ORB server.
ISH (IIOP Server Handler) - Refers specifically to the component that
receives 1IIOP messages from remote clients, and forwards them as
20 Tunneled GIOP (TGIOP) messages to native (or in-domain) servers.
This component also receives the replies and makes sure they get back
to the appropriate
remote client. In one embodiment of the invention, the ISH will also
receive TGIOP request messages from native clients/servers and send
25 the |IOP request messages on to remote servers. This component
receives the replies and makes sure they get back to the appropriate

native client/server.

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343

-8 -

ISL (IIOP Server Listener) - Refers to the component that decides
which ISH should handle a particular remote client conversation with a
native server. The ISL handles fail-over for ISHs and load balancing of
connections to native objects. In one embodiment of the invention, the
5 |SL also decides which {SH should handle a particular conversation with
a remote server for object references that are not located in a client

connected to an ISH. The ISL concentrates connections for multiple
invokes on identical remote objects. '

10 Inbound IIOP - A concept known in the prior art which refers to initiating

an HHOP request from a remote server to a native client within the
domain.

Outbound lIOP - Refers to the inventions method of initiating an |IOP

15 request from a native client, or server acting as a client, in the domain to
a remote server not in the domain.

Asymmetric lIOP - In some versions of GIOP, IIOP connections are not

symmetrical, e.g. only clients can send requests and only servers can
20 receive them. If a server needs to send requests to an object in the

client, it must create a second connection from the server to the client.

Bi-directional IIOP - connections between the client and server are
symmetric, i.e. clients can send requests to servers on a connection and

25 servers can send requests to objects exported by the client on the same
connection.

10

15

20

25

CA 02417509 2011-04-13

HOP CONCENTRATION

~ Figure 3 shows a typical concentration process in an embodiment

of the invention. Current systems only provides for inbound OP

concentration - the invention adds support for outbound 1OP

concentration. As shownin Figure 3 an ISH concentrator 66 reduces the
number of connections required on a remote client/server 70 by
“concentréting” the connections from multiple local clients {o operaie
over a single server link 68. Several clients are contained within the

same domain as the ISH and communicate with each other by

‘interprocess communication. Client/servers outside the domain (remote

client/servers) communicate with the ISH via a standard TCP/IP link.
As illustrated in Figure 4, an embodiment of an ISH concentrator
of the invention is 'used tfo improve the scalability of the systerh first
depicted in Figure 2. An ISH 90 reduces the number of active
connections from n x mto n + m. In one embodiment of the invention
message queues are used o replaée the direct link to the remote servefs

- this reduces the number of active connections to just n.

OQUTBOUND HOP SUPPORT

An exemplary system including one embodiment of the invention

is shown in Figure 5. As illustrated, several clients invoke upon a series

of remote servers. The client may be, for example, a native C++ client

102, a JAVA®cliérit 164, a notification service 106, or a native server

acting as a client 108. The remote server may bé another native server
110, a native client registered for events 112, or a non-native CORBA-

compliant ORB server 114. When one of the clients invokes upon a

server, a routing process directs the connection to the ISL by calling a

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-10 -

BIND service 122. The ISL determines which ISH 130, 132, or 134 is
best suited to handle the connection. At least one ISH is thus required,
although many ISH’s may be used. The ISL determines which ISH to
hand the connection to by first checking to see if any ISH currently
5 handles a connection to the destination server. If none currently handle
such a connection, then the least burdened 1SH will be chosen. In this
manner the ISL serves to balance the load of increasing number of
connections among all available ISH's. |
When an ISH is chosen 126, the clienf thereafter invokes that
10 server via that ISH 128. Since the clients and ISH are within the same
domain they may communicate using Tunneled GIOP (TGIOP) 136. The
ISH’s communicate with servers outside of the domain using [IOP over
TCP/IP 138.
Outbound IIOP Support, as embodied in the invention, provides
15 native clients, and servers acting as native clients, the ability to invoke on
a remote object reference outside of the domain. This means that
events are able to flow to remote clients that have registered for events,
callbacks may be done to remote clients and objects in remote servers
may be accessed. The Outbound HOP Support comprises four

20 functional parts:

Support for bi-directional IIOP to objects contained in clients
connected to the ISH. If the remote ORB supports bi-directional GIOP

1.2, then the ISH can utilize the same connection to send requests and

25 . receive replies toffrom the connected client.

Support for bi-directional-like IIOP to objects contained in clients
connected to the ISH. If the ORB does not support bi-directional GIOP

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

- 11 -

1.2, then the client can call an Application Program Interface (API) to
notify the ISH of the listening host/port in the client. The ISH utilizes a
second paired outbound connection to send requests to, and receive
replies from the connected client. This outbound connection Is paired
5 with the incoming connection. If the client disconnects the incoming

connection, then the outbound connection is also torn down.

Support for invokes on an ISH or native client. The infrastruciure
supports routing to an ISH or native client based on the client
10 information. The ORB is modified to embed client identifier information

in an object reference.

Support for asymmetric outbound IIOP to objects not contained in
clients connected to an ISH. The ISL allows for concentration of
15 requests from different native clients/servers that are going to the same
remote server to go through the same connection. The ISL will allow for
load balancing of requests so that a specific connection does not get

overburdened.

20 To support scalability, an ISL can start up additional handlers as
necessary, and additional ISLs and additional ISHs can be added to
support increased outbound IlOP traffic as necessary.

To support failover, multiple IS’Hs can be started on a machine or
within the domain. If a client attempts to use an ISH unsuccessfully, an

25 attempt will be made to rebind the object‘ reference and failover to
another [SH.

In a typical environment of an embodiment of the invention,

system administrators may be the only users that will directly interact with

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-12 -

the Outbound IIOP Support components. They are responsible for
booting the ISL’s with the correct startup parameters to enable outbound
lIOP to objects not located in a connected client. The number of ISL’s
booted, and the various startup parameters, may be adjusted in order to
5 obtain the best configuration for their installations specific workload

characterisiics.

OUTBOUND ROUTING
Functional features in the outbound routing process are shown In
10 Figures 6-9. As shown in Figure 6 the ISL 160 and the ISH's 168
(several are shown for demonstration purposes, although the system
may operate with only one ISH) communicate with each other via a
shared memory 166. In one embodiment of the invention the ISL is
responsible for maintaining information about connections to remote
15 servers. A record of such connections is kept in the shared memory.
The ISH’s use this information to allow invokes upon the remote servers.
In return, the ISH’s maintain the information in the shared memory by
updating it to reflect closed or torn-down connections. The ISL then uses
the updated information to better allocate incoming requests for invokes.
20 A client seeking to invoke upon a remote service calls a routing code
150. The routing code interacts with the ISL to determine whether a
connection already exists, and if so passes it off to the respective ISH.
If a connection does not already exist the ISL chooses an ISH to service
the new connection.
25 Figure 7 shows some of the services the ISL 160 advertises or
makes available to the clients. Principally, a client may request via the
routing code to BIND 161 or UNBIND 162 from the ISL. An error routine

163 handles failed requests. As shown in Figure 8, the routing code 130

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-13 -

invokes a BIND 182 upon the ISL 184 which considers the remote server
and determines an appropriate ISH to use 188. It passes this
information back to the client 186. The client thereafter invokes 187

upon the specified ISH. The ISH thereafter handles the communication

5 between the client and the server. As further shown in Figure 9, when

the client is finished 190 with the server instance, or requests the
connection be closed, the application invokes an UNBIND 192 upon the
ISL 194. The ISL then marks the connection closed 196. After a period

of time the entry for that particular connection will be removed from the

10 shared memeory in a garbage collection process.

OUTBOUND lIOP TYPES
There are three different types of Outbound lIOP:

. Bi-directional Outbound IIOP reusing the same connection
15 Bi-directional-like Outbound [IOP via a second paired connection
. Asymmetric Outbound IIOP via a second connection

Bi-directional Outbound IIOP
An embodiment of the invention includes ISL/ISH support 224,

20 226, 228 for bi-directional [IOP to objects contained in clients connected
to the ISH (Figures 10). If the client ORB supports bi-directional GIOP
1.2, then the ISH will utilize the same conneaction to send requests and
receive replies to/from the connected client. A client 222 will create an
object reference and invoke on a native server. The client ORB will

25 identify the connection as being bi-directional using the service context.
The service context will travel with the message to the native server 236.
When unmarshalling the object reference, the native server will compare

the host/port in the service context with the host/port in the object

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-14 -

reference. If they match, the ORB will add the ISH client identifier and

other client information needed for routing to a tagged component in the

object reference. This client information will travel with the object
- reference whenever it is passed to other native servers.

5 At some point, a native server or native client will invoke on the
object reference. The routing code will invoke on the appropriate ISH
given the client information. The ISH send the request to the client over
the same client connection. The client will execute the method and send
the reply back fo the ISH via the client connection. The ISH will receive

10 the reply and send it to the native server.

Outbound HOP Via Paired Second Connection

The invention also includes ISH support for bi-directional-like [|OP
to objects contained in clients connected to the ISH (Figure 11). If the
15 client ORB does not support bi-directional GIOP 1.2, then the client can
call an API routine to notify the ISH of the listening port in the client. The
ISH then creates a separate paired outbound connection to send

requests and receive replies to/from the connected client
A client will create an object reference. It then calls a Bootstrap
20 function passing the object reference. The ISH will get the host/port from
| the Interoperable Object Reference (IOR), and store it with the client
context. The client will invoke on a native server passing the object
reference. The ISH will create a service contéxt containing the host/port
from the register call. This service context travels with the message 10
25 the native server. When unmarshalling the object reference, the native
server will compare the host/port in the service context with the host/port
in the object reference. If they match, the ORB adds the ISH id and client

information to a tagged component in the object reference. This client

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

- 15 -

information travels with the object reference whenever it is passed to
other native servers.

At some point, a native server or native client will invoke on the

object reference. The routing code will invoke on the appropriate ISH

5 passing the client information. The ISH will create a second connection

to the client. It will send the request to the client over the second

connection. The client will execute the method and send the reply back

to the ISH via the client connection. The ISH will receive the reply ana

send it to the native server. If the client disconnects from the ISH, then

10 the second connection will also be disconnected.

Asymmetric Outbound IIOP
| Embodiments of the invention also include ISL/ISH support for
asymmetric outbound 11OP to objects not contained in clients connected
15 to an ISH (Figures 12). The ISL allows for concentration of requests from
different native clients/servers that are going to the same remote server
to go through the same connection. The ISL can allow for load balancing
of requests so that a specific connection does not get overburdened. A
server 280 will get an object reference from‘ some source, which could
20 be a naming service, or passed in through a client, but not located in that
client. Since the object reference is not located in a client connected to
an ISH, the outgoing call can not be made using the bi-directional

method.

At some point, a native server or native client will invoke on the
o5 object reference. On the first invoke, there is no ISH id and client
information contained within the object reference. The routing code will
recognize the object key as a non-native server object reference. If no

ISH id and client information is passed, then the routing code will invoke

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-16 -

a service in the ISL 224 passing the host/port. The ISL will return a
service name to use to unbind the object reference and the client
information of the ISH 272. This is the client information of the ISH, not
the client information of any client connected to the ISH.

5 The ORB will invoke on the object reference. The infrastructure
will invoke on the ISH. The ISH will get the connection identifier from the
client information and determine 226 which outgoing connection to use
to send the request fo the client. If none is connected, then the ISH will
create a separate connection to the host/port. The ORB will utilize the

10 appropriate GIOP version for the version of [IOP profile in the IOR. The
client will execute the method and send the reply back to the ISH via the
separate connection. The ISH will receive the reply and send it to the

native server.

15 PROCESS FLOW
The following are detailed process flow descriptions, which

illustrate how the client, ISL, and ISH interact in one embodiment of the

invention:

20 From the perspective of the native client
At object reference bind time the ORB determines if the object
reference is remote. If so, the ORB is initialized with client information
from the object reference (if present). If client information is not present,
then a BIND flag is specified. Otherwise, no flag is specified.
25 A routing code determines if it has a remote object reference.
if the BIND flag is present: calls the BIND service. Stores returned
ISH client information and ISL information in shared memory.

If the BIND flag is not present: Stores client information in shared

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

217 -

memory.
" The routing code looks in the shared memory for client identifier
and invokes on it.
When the connection is torn down the system looks inside the
5 shared memory for the appropriate entry and calls UNBIND.
The ISL in turn marks connection as closing in shared memory so

ISH closes It.

From the perspective of the ISH
10 The ISH is invoked using the client id.
The I'SH receives the message from the message queue. A
request is handled in a inverse manner to a reply.
The infrastructure switches the ISH to the appropriate contexi
based on the client. If asymmetric Outbound IIOP, then the context is the
15 ISH context (0), not a client context. |
A copy of the IIOP request is made, and the IIOP request id is
replaced with a unique id. The request is placed on a list of outstanding
requests for this context.
If the context is a client context, then it has a bi-directional
20 connection or a paired second connection. If paired second connection
and the connection does not yet exist, then one is created. Routines are
called to send the IIOP request to the client. The routines buffer the
request until the connection is completed. Else, routines are called to
send the I|IOP request to the client.
25 If the context is the ISH context, the connection index is used to
determine the outbound connection. If there is not an existing
connection, then one is created. Routines are called to send the |IOP

request to the client. The routines buffer the request until the connection

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

.18 -

is completed. If there is an existing connection, the routines are called
to send the [IOP request to the client.
The ISH handles network and message queue events. When a
reply comes back from a connection, the list of outstanding requests is
5 searched for the corresponding request. The ISH replaces the unique id

with the original request id and sends the reply back to the client.

From the perspective of the ISL

The ISL is invoked on the first invoke on an object reference.

10 The service routine is called to bind the object reference. The
parameters are the host,°the port, and the client identifier.

The ISL hashes the host/port and looks in the data structures to
determine if the host/port is already in use. If in use and not at the
multiplex user limit, then the appropriate ISH client identifier, domain,

15 client process identifier, client queue, ISL group and server identifier are
returned.

The user multiplex reference count isp incremented.

If not found and an existing ISH can handle the connection, then
the existing ISH is assigned to handle the request. The appropriate ISH

20 client id, domain, client process identifier, client queue, ISL group and
server identifier are returned.

If no ISH can handle the connection, then a new ISH is started.
The appropriate ISH client identifier, client process identifier, client
queue, ISL group and server identifier are returned.

25
CONNECTION MANAGEMENT
Connection management is the process by which embodiments

.of the invention handle connections between the clients and the servers,

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

- 10 -

and specifically how the system handles connections it evaluates are not
currently in use.

One of the goals of the invention is that of scalability. Therefore,
it is desired to minimize the number of outbound connections. For this

5 reason, the system supports bi-directional connections and paired
second connections in order to have an efficient mechanism to invoke on
objects contained within connected clients. These cases comprise the
majority of outbound IIOP traffic. However, there may still be scenarios
where customers want to invoke on object references not contained in

10 a currently connected client. This could be object references for foreign
ORB servers; client/servers who connect and disconnect from the native
domain; or any object reference obtained from a name server. In order
to support these type of object references, but still provide scalability, the
system relocates these TCP/IP connections from the caller process to an

15 ISH. The caller (native client or native server) invokes on the IOR and the
native infrastructure is used to send the message to an ISH. The ISH
then sends the message to the remote server using the TCP/IP
connection. However, since these TCP/IP connections are no longer in
the actual caller process, they are not automatically torn down when the

20 caller (native client or native server) exits.

Asymmetric outbound HOP connections (not currently used by any
callers) should be torn down if the caller (native client or native server)
exits. This could be immediately after the last caller exits or it could be
after some timeout period. The different alternatives for managing

25 asymmetric outbound IIOP connections are described in the following

sections.

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

- 20 -

Reference Counting and Validation of Users

This alternative works as follows:
. The native client or native server (user of the object
reference) invokes on an object reference. |
5 On the first invoke, the ORB makes a call to the BIND
service in the ISL. An entry for this host/port is added to the
shared memory. An entry for the identifier of the user (native
client identifier or native server group/srvid) is added to the shared
memory. The ISL returns a connection identifier (maps to the
10 host/port entry in the shared memory) and the appropriate client
information for an ISH that will contain the TCP/IP connection to
the remote server.

. The ORB uses the client information to send the message

to the appropriate ISH. The ISH uses the connection identifier to
15 determine which outbound [IOP connection to use.

. The native client or native server continues to perform
invokes on the object reference. Each invoke results In a
message éent to the ISH.

. If another native client invokes on an object reference with

20 the same host/port, the BIND service will return the same
connection identifier and the same client information as the first
user. The reference count of the host/port entry will be
incremented. An entry for the identifier of the second user (native
client or native server) is added to the shared memory.

25 o Eventually, the first and second users release the object
reference. The first user release results in a call to the UNBIND
service, which decrements the reference count of host/port entry

and removes the identifier of the user. On the second user

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

.21 -

release, the reference count of the host/port entry is decremented

to zero. The ISL removes the host/port entry from the shared memory
and marks the connection entry (different from host/port entry) as
5 closing in the shared memory.
. The ISH closes the connection when it sees that the
connection entry in the shared memory is marked as closed.
. It marks the connection entry as unusead.
This is the case where the user exits normally and releases object
10 references. Other cases include the user exitingwithout releasing object
references and the user abnormally exiting. In order to ensure that
connections are released when no longer needed, this alternative uses
validation, in which the ISL validates the identifier of users of the
connection: stores the id’s in the shared memory; checks to see if a
15 server is inactive: and if on the local machine, the ISL will compare a
timestamp to see if the native client is still active; or uses a call to

validate a native client that is not on the same machine as the ISL.

Asymmetric Outbound Connection Timeout with No Unbind

20 This alternative works as foliows:

. The native client or native server (user of the object
reference) invokes on an object reference.

. On the first invoke, the ORB calls the BIND service in the

ISL. An entry for this host/port is added to the shared memory.

25 The ISL returns a connection identifier (maps to the host/port

| entry in the shared memory plus an additional

generation/timestamp field) and the appropriate clientinformation

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343

10

15

20

29

-0 .

for an ISH that will contain the TCP/IP connection to the remote
server.

. The ORB uses the client information to send the message
to the appropriate ISH. The ISH uses the connection identifier to
determine which outbound IIOP socket to use. If the connection
identifier is no longer valid (due to connection timeout), then an
error Is returned.

. The native client or natiQe server continues to perform
invokes on the object reference. Each invoke results in a
message sent to the ISH.

. If another native client invokes on an object reference with
the same host/port, the BIND service will return the same
connection identifier and the same client information as the first
invoke. No reference counting will be performed on the host/port
entry.

. Eventually, the first and second users release the object

reference. No unbind service is called. The connection stays up.

On each invoke, the ISH updates an activity timestamp field in
shared memory for the connection. On a regular basis, the ISL will
timeout the connection if no activity takes place within a user specified
time period. The ISL will mark the conneption as closed and remove the
host/port entry. The ISH will disconnect the connection when it sees the
connection has been marked as closed. It marks the connection entry as
unused.if the users of an connection die or do not release objeci
references, then the connection will stay up as long as it is active. It will
be torn down when it has not been active fdr thespecified time period.

An object reference may still be valid, but not used within the specified

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343

10

15

20

25

- 23 .

timeout period. In this case, the connection will be torn down and the
host/port entry removed. The ISH will receive the request, validate the
connection id, and return an error. This error will cause the ORB to
rebind the object reference. This will involve a call to the ISL BIND
service and an existing connection may be used or a new connection

may be created. This rebind should not be visible to the user.

Reference Count with Asymmetric Outbound Connection Timeout
This is a combination of alternative 1 and 2. The main difference

is that connections are torn down as soon as no one is using them.

This alternative works as foliows:

o The native client or native server (user of the object
reference) invokes on an object reference.

. On the first invoke, the ORB calls the BIND service in the
ISL. An entry for this host/port is added to the shared memory.
The ISL returns a connection identifier (maps to the host/port
entry in the shared memory plus an additional
generation/timestamp field) and the appropriate ISH id and client
information for an ISH that will contain the TCP/IP connection to
the remote server.

- The ORB uses the ISH id and client information {o send the
message to the appropriate ISH. The ISH uses the connection
identifier to determine which outbound IIOP connection to use. If
the connection identifier is no longer valid (due to connection
timeout), then an error is returned.

¢ The native client or native server continues to perform
invokes on the object reference. Each invoke results in a

message sent to the ISH.

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343

10

15

20

25

_ 24 -

. If another native client invokes on an object reference with
the same host/port, the BIND service will return the same
connection identifier and the same client information as the first
invoke. The reference count of the host/port entry will be
incremented.

. Eventually, the first and second users release the object
reference. The first user release results in a call to the UNBIND
service. It decrements the reference count of host/port entry. On
the second user release, the reference count of the host/port
entry is decremented to zero. The ISL removes the host/port entry
from the shared memory and marks the connection as closing in
the shared memory.

. The ISH closes the connection when it sees that the
connection entry in the shared memory is marked as close'd.

. It marks the connection entry as unused.

If the users of an connection die or do not release object
references, then the connection will stay up as long as it is active. It will
be torn down when it has not been active for the specified time period.
An object reference may still be valid, but not used within the specified
timeout period. In this case, the connection will be torn down and the
host/port entry removed. On a subsequent invoke, the ISH will receive
the request, validate the connection identifier, and return an error. This
error will cause the ORB to rebind the object reference. This will involve
a call to the ISL BIND service and an existing connection may be used
or a new connection may be created. This rebind should not be visible

to the user.

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343

10

19

20

25

- 95 -

ADDITIONAL FEATURES
Use of Bi-directional Connections for Callout

In some scenarios a client may connect, create a persistent
subscription to an event, and then disconnects from the ISH. When the
client reconnects to an ISH, it then expects to receive events for that
persistent subscription.

In one embodiment of the invention, the ISL knows about current
bi-directional connections and then uses them instead of creating a
separate connection to the host/port in the IOR. Notifying the ISL of
bi-directional connections allows for the optimal use of resources. The
ISH notifies the ISL of the bi-directional information. This requires locking
of the shared memory or extra messages on connection creation and

deletion.

Client Disconnection

In this scenario, illustrated in Figure 13, the client has
disconnected from the domain, but is still listening at the same host and
port. The object reference contains the client information of the
disconnected client. When the ORB invokes upon an unavailable
service, the infrastructure will return an error. The ORB will handle this
error and rebind 304 the object reference. An ISH will be selected to

create a new connection to the remote server, and the client information

will be updated.

Data Design :

The ISL and ISH each have data that they keep in memory. They
also share memory for items that need to be persistent across the life of
the ISL and its ISHs. If an ISL dies and restarts, it will reattach to the

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343

10

15

20

25

- 26 -

shared memory and will be able to recover any state that has been

saved in that shared memory.

Shared Memory |
The ISL shares memory with the ISHs that it controls. |If

asymmetric outbound llOP is enabled, then additional sections will be

present in the shared memory table. This memory is used by the ISL to

~ do appropriate concentration and load balancing and is used by the ISH

to keep track of which connections it needs to create. The ISL is the

primary writer of the shared memory.

ISH Failure

The ISH has {o keep information around that does not need to be
iIn shared memory. Among the information that does not need to be
shared Is areas for holding information about the current request, areas
to map request ids to clients (server). The ISL is responsible for

restarting an ISH. When it restarts the ISH, it will clear out the old shared

‘memory slots for the dead ISH and ensure that the ISH will connect to

that ISL's shared memory.
If a client invokes on an object reference bound to the ISH that

failed, an error will eccur. The caller will rebind, and an ISH will be
selected to perform the invoke. This could be the restarted ISH or
another ISH.

ISL Failure
The ISL will eventually restart if the system administrator started
it with recommended settings. If an object code was invoking the

service, but has not yet selected the server, then an alternative ISL will

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

- 927 -

be selected. If the object code was invoking the service and selected the
server then the system returns an error to the client. When the ISL

eventually restarts it will reconnect to the shared memory.

5 Native Client (or server acting as a client) Failure
The ISL will periodically scan the list of outbound connections. If
a connection has not been active in the timeout period specified, then
the corresponding entry will be freed and the outbound connection
disconnected. This will ensure that outbound connections created by
10 native clients or servers will always be torn down if the native client or

server fails.

Garbage Collection
There are "events" that can cause some portion of shared

15 memory to be cleaned up:

. Remote server fails. The ISH will return an error to the
client (or clients if multiple clients were using the connection).
When the client exits and the ISL is notified it will clean out the
appropriate host and port slot and appropriate client identifier

20 slot(s).

. The ISH realizes that a connection has exceeded the
timeout set by the administrator. The éorresponding entry will be
freed and the socket will be marked as closing. On the next
invoke, an error will be returned to the caller, and the ORB will

25 rebind the object reference. A new connection will be created and
the invoke will occur.

. The ISH dies. The ISL restarts the ISH. On the next invoke

on that bound object reference, an error will occur. The caller will

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

-8 -

rebind and an ISH will be selected to perform the invoke. The
existing entries for the ISH will remain in the shared memory. On
the first invoke, the restarted ISH will connect to the remote
server.
5 o The ISL dies. At restart time, it checks all ISHs and cleans

up entries for any ISH that has died.

. The ISL is shutdown. The ISL sends shutdown messages
to the ISH. The ISL removes the shared memory.

. The machine crashes and ISL and all the ISHs die at the

10 same time. The shared memory disappears.

Other features, aspects and objects of the invention can be
obtained from a review of the figures and the claims. It is to be
understood that other embodiments of the invention can be developed

15 and fall wifhin the spirit and scope of the invention and claims.

INDUSTRIAL APPLICABILITY
The invention has particular use in the field of Object-Oriented
systems, and specifically CORBA-compliant systems where n clients
20 may invoke upon m servers. Typically this would require n x m number
of connections to handle the requests. The invention described allows
there to be only m connections on the server which significantly reduces
resource requirements and alldws scalability. The invention further allows
for multiple intelligent master concentrator processes, to tackle

25 concentrator failure and offer dynamic scalability.

CA 02417509 2011-04-13

-79 .

What 1s claimed 1s:

1. A system for use in a distributed object environment for allowing a local client application
to invoke upon a remote server service, comprising:

a concentrator, which binds a request from the local client application to invoke upon the
remote server service, identifies the remote server service, and operable connects the local client
application to that remote server service, said concentrator further comprising:

a plurality of connection handlers, which handle a connection from the local client
application to the remote server service;
a listener which determines which of the plurality of connection handlers to use to

handle the connection by checking to see if any connection handler currently handles a

connection to the remote server service, wherein if none connection handler currently

handles such a connection then a least burdened connection handler is chosen; and
a shared memory for allowing communication between said listener and said
plurality of connection handlers, said shared memory including a list of currently
connected servers, and the plurality of connection handlers handling each connection;
wherein said listener performs the steps of
calling a service routine to bind an object reference, with a host, a port, and
a client 1identifier as parameters for the service routine call;
searching within the shared memory to determine if the host/port is already
1N use;
if an existing connection handler can handle the connection, then starting a

new connection handler.

2. A method for use in a distributed object environment for allowing a local client
application to invoke upon a remote service on a remote server, comprising:
providing a plurality of connection handlers, for handling a connection from the local

client application to the remote server;
determining, at a listener, which particular connection handler of said plurality of
connection handlers to handle the connection, including calling a service routine to bind an

object reference, together with host, pot, and client identifier parameters;

CA 02417509 2011-04-13
- 3() -

searching within a shared memory to determine if the host/port is already in use;

if an existing connection handler can handle the connection, then assigning the existing
connection handler to handle the request; and, if no existing connection handler can handle the
connection, then starting a new connection handler; binding a request from the local client
application invoking upon the remote service; identifying the remote server; and

operably connecting the local client application to that remote server through that

connection handler.

3. T'he method of claim 2 further comprising: referencing a shared memory space to see if

the remote server is currently connected to a connection handler.

4. The method of claim 3 further comprising: if the remote server is not currently connected

to a connection handler, then connecting the remote server to a connection handler and updating

the shared memory.

5. The method of claim 4 wherein the step of updating the shared memory comprises

updating a list of currently connected servers, and the connection handler handling each

connection.

6. The method of claim 3 further comprising the step of: determining which connection
handler should handle the connection by referencing a list of currently connected servers and the

connection handler handling each connection in the shared memory.

7. The method of claim 2 wherein one of multiple connection handlers may be used to

handle the connection.

8. A system for use in a distributed object environment for allowing a local client
application to invoke upon a remote server service, comprising:

a concentrator, for binding an invoke request from a local client application upon the
remote server service, said concentrator further including a plurality of connection handlers, for

handling a connection from the local client application to the remote server service:

CA 02417509 2011-04-13

-31 -

a listener which determines a particular connection handler of said plurality of connection

handlers to handle the connection; and

a shared memory for allowing communication between said listener and said plurality of

connection handlers, said shared memory including a list of currently connected servers, and the

connection handler handling each connection;
wherein said listener performs the steps of:
calling a service routine to bind a object reference, together with host, port, and
client identifier parameters;
searching within the shared memory to determine if the host/port is already in use;

if an existing connection handler can handle the connection, then assigning the existing

connection handler to handle the request; and

1f no existing connection handler can handle the connection, then starting a new

connection handler.

9. The system of claim 8 wherein the local client application performs the steps of:
determining, at object reference bind time, whether the object reference is remote, and 1f so
initializing an object request broker (ORB) with client information from the object reference;

if a bind flag is present binding the remote server service and storing returned client information
and listener information 1n said shared memory;

if a bind flag is not present storing client information in said shared memory; searching within
sald shared memory for a client 1dentifier and invoking upon it; and,

when the connection is torn down searching within said shared memory for the appropriate entry,

and using said entry to unbind the remote server service.

10. The system of claim 8 wherein said connection handler performs the steps of:

receiving a message from a message queue;

switching the connection handler to either a client context or a handler context on the local
client application;

making a copy of an request and replacing an original request id for that request with a
unique 1d; placing the request on a list of outstanding requests for this context;

if the context is a client context, and if paired second connection and the connection does

CA 02417509 2011-04-13
-3 -

not yet exist, then creating one, and sending the request to the local client application;
if the context is the handler context, using a connection index to determine the outbound
connection, and if one does not exist then creating one, and sending the request to the local client
application; and,

wherein a reply comes back from a connection, searching the list of outstanding requests

for the corresponding request, replacing the unique id with the original request 1d, and sending the

reply back to the local client application.

11. The system of claim 8 wherein the local client application is any one of a native C++

client, a JAVA® client, a notification server, or a native server acting as a client.

12. The system of claim 8 wherein the remote server service is any one of a native server, a

native client registered for events, or a non-native CORBA-compliant ORB server.

13. A method for use in a distributed object environment for allowing a local client
application to invoke upon a remote server service, comprising:

providing a plurality of connection handlers, for handling a connection from the local
client application to the remote server service;

determining, at a listener, which particular connection handler of said plurality of
connection handlers to handle the connection; and binding a request from the local client
application invoking upon the remote server service, said step of binding includes;

identifying the remote server services, and, operably connecting the local client

application to that remote server service through said particular connection handler; wherein said

listener pertorms additional steps of:

calling a service routine to bind an object reference, together with host, port, and

client identifier parameters;

searching within the shared memory to determine if the host/port is already in use;
if an existing connection handler can handle the connection, then assigning the existing

connection handler to handle the request; and if no existing connection handler can handle the

connection, then starting a new connection handler.

CA 02417509 2011-04-13
- 33 -

14. The method of claim 13 wherein said local client application performs the additional steps
of:

determining, at object reference bind time, whether the object reference is remote, and 1f
so initializing an ORB with client information from the object reference; if a bind flag is present
binding the remote server service and storing returned client information listener information in
said shared memory;

if a bind flag is not present storing client information in said shared memory; searching
within said shared memory for a client identifier and invoking upon 1t; and,

when the connection is torn down searching within said shared memory for the appropriate

entry, and using said entry to unbind the remote server service.

15. The method of claim 13 wherein said connection handler performs the additional steps of:

receiving a message from a message queue; switching the connection handler to either a
client context or a handler context based on the local client application;

the context is a client context, and if pair second connection and the connection does not
yet exist, then creating one, and sending the request to the local client application;

if the context is the handler context, using a connection index to determine the outbound
connection, and if one does not exist then creating one, and sending the request to the local client
application; and,

when a reply comes back from a connection, searching the list of outstanding requests for

the corresponding request, replacing the unique request id, and sending the reply back to the local

client application.

16. The method of claim 13 wherein the local client application is any one of a native C++

client, a JAVA® client, a notification server, or a native server acting as a client.

17. The method of claim 13 wherein the remote server service is any one of a native server, a

native client registered for events, or a non-native CORBA-compliant ORB server.

18. A system for use in a distributed object environment for allowing a local client application

to invoke upon a remote server service, comprising:

CA 02417509 2011-04-13
=34 -

a concentrator, for binding an invoke request from a local client application upon the
remote server service, said concentrator further including a plurality of connection handlers, for
handling a connection from the local client application to the remote server service;

a listener which determines a particular connection handler of said plurality of connection
handlers to handle the connection; and

a shared memory for allowing communication between said listener and said plurality of
connection handlers, said shared memory including a list of currently connected servers, and the
plurality of connection handlers handling each connection; wherein said listener performs the

steps of:

calling a service routine to bind an object reference, together with host, port, and

client in use;
incrementing a user multiplex reference count;

if an existing connection handler can handle the connection, then assigning the

existing connection handler to handle the request; and if no existing connection handler

can handle the connection, the starting a new connection handier.

19. A method for use in a distributed object environment for allowing a local client application

to invoke upon a remote server service, comprising:

providing a plurality of connection handlers, for handling the connection from the local

client application to the remote server service;
determining, at a listener, which particular connection handler of said plurality of
connection handlers to handle the connection; and

binding a request from the local client application invoking upon the remote server

service, said step of binding includes;

identifying the remote server services, and, operably connecting the local client
application to that remote server service through said particular connection handler;

wherein said listener performs additional steps of: calling a service routine to bind an
object reference, together with host, port, and client identifier parameters;

searching within the shared memory to determine if the host/port 1s already in use;

incrementing a user multiplex reference count;

1f an existing connection handler can handle the connection, then assigning the existing

CA 02417509 2011-04-13

.35 -

connection handler to handle the request; and
if no existing connection handler can handle the connection, then starting a new

connection handler.

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

1713

0c

[-"OId

14dV d0ldd

Zc Johe QviAl / @d1neQ jedisAyd
iz Abojodo | MiomieN lauiaylg

oz (d]) 10001014 18uUiau|

8¢ SOJINSS 0L

0¢ (dOlII) 10901014 gHO-I8)u] J8uis)]

2 (940) Jajoig 1senbay 108ld0

¢ s}08lqQ uones)|ddy aiem)jos

SUBSTITUTE SHEET (RULE 26)

WO 02/10917

40

n clients invoking on m servers via l|IOP and TCP/IP sockets resulits in n * m TCP/IP socket connections.

Prior solutions-fan out problem.

52

N
ﬁ-

CA 02417509 2003-01-27

2/13

54
56

SUBSTITUTE SHEET (RULE 26)

PCT/US01/22343

53

PRIOR ART

FIG. - 2

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

3/13

0

L

1U3l[D
sjoway

JETNETS

89

SUOIJO8UU0D
dl/dO1

€~ Old

uonesIunwwon
$S8204d-18)U]

JEVNETS
U3l0

142

¢9

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

4/13

86

ow/

06

146

c6

V- OId

'UOI}OBUUOI | J8A0 paxa|diynw &g 0] }senbal BuiMo||e S8)0AUl SBJeljuUadU0D pue ‘s9sse00id
HSQ| Ul SUOIIOBUUO0D 18X00S dI/dD1L SAll0e 1noge uoijeuwliojul sulelulews S| "9) oAUl jpuey 01 HS| sulwielsp

0] TS| 10BIUO09 U310 108[q0 U0 8YOAUI 1S1I) UQD ‘UOROBULOD 193008 dI/dDL | Ul S)jnsal 1ojesjuasuod juabijisul

HSI/1S] BIA (Ulewop 8yl apIsino) J8AIaS ajoual | Uo BupjoAul (Urewiop ay) apisul) SiSAIes/jualjo U

LW
FEVVELS

Jusiio
90wy

e
JEVNELS

Jusiio
ooy

4
SETNEIS
WSO
\Sowisy

)
FETVELS

usio
aJoWay

N 16
06
10]B1U92U09
HSI/ 1S
16
SUOIOBUUO0D
n__\n_o._.

£

88
\\\ e
/ 3 Janes 08
/ e o Jusli|n
\\.....\.\....\ 18
N~
™~ ~ -
N ~—
N ..lf.......... N
N TS IETNE 8
N S
AN LU
_‘w //
\
AN
N,
AN
N L
\
ISNIBS Z8

UOREDIUNWWON SO

$$920.d-Ia}u|

‘y

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

9/13

0cl
2l puiqun
1S T T Zzipug T
HSI
Aue _ 108ULI0DSIP
143" 0] p3)o3Uuo9?
Jou 14’
| JONIDS
g40 EN-UolU _

SJUBAS ._ou._
paJlajsibal
JUSi0 SN

chl

cel

19SS JUSI|O

OLlL sjowsl g\ 8¢l dOIll 9C | SOAUI dOIDL

0cl

U0
se buijoe
BESTNETS

EN

SRIIVEER
VIOHI=RTITIETN

JU3ljo
BeAE
aAljeu

Jusio
++9
aAljeu

801

901

124"

¢0l

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

6/13

991

0

9

|

Ol

Alowawl
paleys

9- Ol

9p09o
Buino.

Ovl

SITNETS

UOHEDIION

1Ual|0 se buioe
JOAIRS++9)

JusIfo
aAneU++[

—_—

| Jusi|o
oAlleu++9)

I

4

ovl

144

cvl

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

WO 02/10917 PCT/US01/22343
7113
(-
N
<~
\ 3 al a9
O © «©
\ \ <
0
Q Z |
— m <C
s Z L
)
I

-
©
v

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

8/13

180

184
188

ifVokes BIND 182

returns client info for ISH 186
Invokes on client id 187

-
O
F

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27
WO 02/10917 PCT/US01/22343

9/13

190

194

marks connection as closed 196

invokes:'UNBlND 192

198

-
)
r

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

10/13

OL - DId

‘uieuwiop ay} uiyim jualjo ayl 0} yoeq Ajdal ayi spiemio) HS| 8| "uoioauu09 1a)00s ay] BeiA

Ajdal sy} suinjal pue poyiaul 9y} swioHad JaAISS/USID 8jowal U "UOoI}oaUuU09 }8X00Ss [euooalipiq sy} BIA

JoAISS/jusl|o 910Wal 8y} Uo Ui splemiol oym HS| aul 0} 3sanbail ay) spuas Jusi|d ay| "eousisjal 199iqo ajows.
S} UO SOAUI ulewop ay} ulyim sianias ‘Ajjuenbasgng '0} pajosuuod JaAlas/jualo ajowal 1yl HS| au)

JO ssalppe U} aoualajal 102lqo ayl uiulm spagquia M 'dOIS leuonoalip-ig spuoddns Jaalas/ juaio slowey
‘urewiop ayj Ulylim sisniss 0] soualajal 109lqo ue sassed pue‘utewlop sy} 0] S10aUU00 JI9AI9S/AUSID SloWoy

dOll punoginQg |[euoioaiip-1g
0cc

Ocd ¢cce

8¢C
JETNETS

Jual[d
o]oWay

JEYNETS
JusIio

Ill
I’I-'
I.I‘Il
lil
—— se—

uoneuwLojul -
Q77 UoI}o2UU0)D -7
SNY g

({44

SUOI}o2UU0D uoesIuNwWwo)
di/dDoL S$$900.4d-18)U]

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

11/13

LL - "OId

‘dOIl PUnogino jeuoiioalip-iq 0} [eonuapi st Buisseoold ay) Jo 3sal 8y “JaAlas/jusIo a)owal sy} 01 HS| @yl WOl
LOI]J02UUO0D 18%00S pUNOgINO Ue sajeald A\ pue ssaippe uodasoy sy Jo JAA Alllou 0} poyiaw & s||ed U0

sjowal ‘pesisu| "dolo [euonosaip-1q syoddns Jou ssop Ing ‘Ulewop ay) 0} S}98UU09 JSAISS/USID Sjowey

dOll PUNOQING puUo9SS pailed

) 24

cSC JETNETLS

wey | 776
IDAIDS
0G¢C SO
o10WoY
T~ JIONIDS AL

sl

SUOI}O2UU0D uoneosiunwiwon
dI/dDL $$820.d-I9)U|

SUBSTITUTE SHEET (RULE 26)

PCT/US01/22343

12/13

CA 02417509 2003-01-27

WO 02/10917

c¢l-Old .

2} 0} uo }sanbai sy} spiemiol oym HS| eyl 0} }senbal syl SpusSs Jual sy | "19AISS 8]0Wial 8y} 0} UCO2UU0D e sey jeu}

HS| Ue 199]8s 0] S| 8Y} SMO||e UOIJBWIOUI SIY] "SHSI [|& Ul SUOIIo8auuU02 aAllo. Inoge Uoljewojul suiejurew Q| 8yl tonies
2j0Wal 8Y} 0] SOAUI Y} ajpuey [|IMm 1yl HS| 8yl uo ssaippe ay) 186 0] Q| @Ul S10ejU0D JSAISS/IUSID SY) ‘@MOAUl Isil) SU)

uo puiq a3 Buung "e)oAUI 181} 8Y} Uo soualalal 109[qo ay) spuiq JoAlas ajowal uo Bupjoaul (utewop sy} apisul) JaaiesausiD

dOll pPUnoginQ oujeWWsAsy

U

097 BEEYN =TS 89¢
TN IO
¢cle c
JONIBS 18NS 99¢
08¢ RUE. JUSiD
aJoway
| uonewoul "N S~
0Z7 UOI}o8UU0) N T~ _ 7
A0y NS 19AI9S 9¢
AN JUID
N
N
AN
h N
vcce N
// |
¥ J9AIeS ¢9cC

SUOoI102UU09 uolesiunuwiwio)
dl/dOL $S920.d-I8)U]|

ual[O

SUBSTITUTE SHEET (RULE 26)

CA 02417509 2003-01-27

PCT/US01/22343

WO 02/10917

13/13

00¢

-

| | JUSI|O UO SO)OAUI
o1 OLEP _ M|

S0¢ HSJ 40} uollewojul 1uaijo suinial

90¢

0€ (ANIG3YH) ANIgF seyoAul

¢c0t

SUBSTITUTE SHEET (RULE 26)

82

84

86

88

¥y

inter-process TCP/IP
Client Communication connections Remote
Client
Sezver Server 92
1
AN
.
N 81 |
Client | RN Remote
h Client
Server N 04
2 -~ AN 01 Server
™ .- ~ - \\ 2
TN ISL/ISH
- "f’g Cancentrator
i Remoie
4 Client
’ Server 9
80 3
01 1]

Server

Remoie
Client

Sarver
m

n client/servers (inside the domain) invoking on 1 remote server (outside the domain) via ISL/ISH
intelligent concentrator results in 1 TCP/IP sacket connection. On first invoke on object, client contact ISL to
determine ISH to handle invoke. ISL maintains information about active TCP/IP socket connections in ISH
processes, and concentrates invokes allowing request to be miultiplexed over 1 connection.

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - abstract drawing

