

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES INSTITUT FÜR GEISTIGES EIGENTUM

(11) CH 697 922 A2

(51) Int. Cl.: **F01D 5/18** (2006.01) **F02C 3/00** (2006.01)

Patentanmeldung für die Schweiz und Liechtenstein

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

(12) PATENTANMELDUNG

(21) Anmeldenummer: 01

01509/08

(71) Anmelder:

General Electric Company, 1 River Road 12345 Schenectady, New York (US)

(22) Anmeldedatum:

23.09.2008

(72) Erfinder:

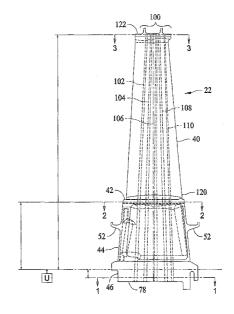
lan Reeves, Easley, South Carolina 29642 (US) Daniel Tragesser, Simponville, South Carolina 29680 (US)

(43) Anmeldung veröffentlicht: 31.

31.03.2009

(74) Vertreter:

(30) Priorität: 28.09.2007 US 60/976,238


31.07.2008 US 12/184,097

R. A. Egli & Co. Patentanwälte, Horneggstrasse 4

8008 Zürich (CH)

(54) Luftgekühlte Schaufel für eine Turbine.

(57) Es wird eine Schaufel (22) für eine Turbine beschrieben. Die Schaufel enthält einen Schwalbenschwanzabschnitt (46), der dafür konfiguriert ist, die Schaufel mit einem Turbinenrad zu koppeln, wobei der Schwalbenschwanzabschnitt eine Unterseite (78) aufweist. Die Schaufel enthält ausserdem einen Schaftabschnitt (44), der sich von dem Schwalbenschwanzabschnitt erstreckt, und einen Flügel (40) mit einer Wurzel (120) und einem Spitzenabschnitt (122), einer Flügelform und einem geometrisch-idealen Profil im Wesentlichen gemäss den in Tabelle I angegebenen Kartesischen Koordinatenwerten X, Y und Z. Die Schaufel enthält ausserdem mehrere Kühlkanäle (100) - maximal fünf (102, 104, 106, 108, 110) an der Zahl - die sich zwischen der Wurzel und dem Spitzenabschnitt des Flügels erstrecken. Jeder der Kühlkanäle tritt aus dem Flügel an dem Spitzenabschnitt aus, wobei die mehreren Kühlkanäle in einem Wölbungslinienmuster angeordnet sind.

Beschreibung

Querverweise zu verwandten Anmeldungen

[0001] Diese Anmeldung beansprucht den Nutzen der vorläufigen US-Patentanmeldung mit der Seriennummer 60/976 238, eingereicht am 28. September 2007, mit dem Titel «Turbine Bücket Airfoil Cooling Hole Location, Style, and Configuration».

Allgemeiner Stand der Technik

[0002] Das Gebiet der Erfindung betrifft allgemein Turbinenschaufeln und insbesondere eine Turbinenschaufel, die einen Kühlkreislauf mit Kühllöchern aufweist, die so bemessen und angeordnet sind, dass eine Optimierung der Kühlleistung und des Turbinenwirkungsgrades unterstützt werden.

[0003] In bekannten Gasturbinenmotoren bewirken Verbrennungsgase die Rotation einer Turbine, die einen Verdichter antreibt. Der Verdichter speist Druckluft in eine Brennkammer, in der die Verbrennungsgase erzeugt werden. Weil solche Motoren bei relativ hohen Temperaturen arbeiten, kann die Leistung eines solchen Motors durch die Materialien begrenzt sein, die bei der Herstellung der Turbineschaufeln, die im vorliegenden Text manchmal auch einfach als «Schaufeln» bezeichnet werden, verwendet werden. Genauer gesagt, können höhere Temperaturen dazu führen, dass thermische Spannungen in den Schaufeln entstehen, die ihre Belastbarkeit im Betrieb einschränken. Solche Spannungen können in industriellen Gasturbinenmotoren aufgrund der relativ grossen Turbinenschaufeln noch grösser sein.

[0004] Turbinen sind dafür ausgelegt, bei einer vorgegebenen Temperatur zu arbeiten, bei der eine gewünschte Leistung und ein gewünschter Wirkungsgrad ermöglicht werden. In der Regel sind neuere Turbinen dafür ausgelegt, bei höheren Temperaturen zu arbeiten, wodurch eine stärkere Kühlung der Schaufeln erforderlich ist als im Fall von Schaufeln, die in Turbinen verwendet werden, die bei niedrigeren Temperaturen arbeiten. Nach längerem Betrieb bei hohen Temperaturen kann ein Auswechseln der Turbinenschaufeln erforderlich sein.

[0005] Um es zu ermöglichen, dass die Turbinen mit höheren Betriebstemperaturen und verbessertem Motorwirkungsgrad arbeiten, ohne einen Schaufelausfall zu riskieren, werden wenigstens in einigen Turbinen hohle, konvektionsgekühlte Turbinenschaufeln eingesetzt. Wenigstens einige dieser Schaufeln enthalten innenliegende Kühlkanäle, die einen Kühlstrom in das Innere der Schaufeln lenken, damit die Schaufel auf einer relativ gleichmässigen Temperatur gehalten werden kann. Der Turbinen-luftstrom wird von einem Verdichter in die innenliegenden Kanäle innerhalb der Schaufeln umgelenkt. Wenn Turbinenschaufeln ausgetauscht werden, so kann es wünschenswert sein, eine im Wesentlichen ähnliche Menge an Kühlstrom beizubehalten, wie zuvor vorhanden war.

Kurzdarstellung der Erfindung

[0006] Gemäss einem Aspekt wird eine Schaufel für eine Turbine bereitgestellt. Die Schaufel enthält einen Schwalbenschwanzabschnitt, der dafür konfiguriert ist, die Schaufel mit einem Turbinenrad zu koppeln. Der Schwalbenschwanzabschnitt enthält eine Unterseite. Die Schaufel enthält ausserdem einen Schaftabschnitt, der sich von dem Schwalbenschwanzabschnitt erstreckt, und einen Flügel, der einen Wurzelabschnitt, einen Spitzenabschnitt, eine Flügelform und ein geometrisch-ideales Profil im Wesentlichen gemäss Kartesischen Koordinatenwerten X, Y und Z, die in Tabelle I angegeben sind, enthält. Z ist eine Entfernung von der Unterseite des Schwalbenschwanzabschnitts, und X und Y sind Koordinaten, die das Profil in jeder Entfernung Z von der Unterseite definieren. Die Schaufel enthält ausserdem mehrere Kühlkanäle. Die mehreren Kühlkanäle, maximal fünf an der Zahl, erstrecken sich zwischen dem Wurzel- und dem Spitzenabschnitt des Flügels. Jeder der Kühlkanäle tritt an dem Spitzenabschnitt aus, und die mehreren Kühlkanäle sind in einem Wölbungslinienmuster angeordnet.

[0007] Gemäss einem weiteren Aspekt wird ein Gasturbinenmotor bereitgestellt. Der Gasturbinenmotor enthält einen Rotor, der mindestens ein Rotorrad enthält, und mehrere Schaufeln, die sich radial von dem mindestens einen Rotorrad erstrecken. Jede der mehreren Schaufeln enthält einen Schwalbenschwanzabschnitt, einen Schaftabschnitt, einen Flügel und mehrere Kühlkanäle, die dort hindurch verlaufen. Der Flügel weist ein geometrisch-ideales Profil auf, das im Wesentlichen gemäss Kartesischen Koordinatenwerten X, Y und Z, die in Tabelle I angegeben sind, ausgebildet ist, wobei Z eine Entfernung von einer Unterseite des Schwalbenschwanzabschnitts ist und X- und Y-Koordinaten sind, die das Profil in jeder Entfernung Z von der Unterseite definieren. Die mehreren Kühlkanäle erstrecken sich jeweils zwischen der Unterseite des Schwalbenschwanzabschnitts und einem Spitzenabschnitt jedes Flügels. Die mehreren Kühlkanäle, maximal fünf an der Zahl, sind in einem Wölbungslinienmuster angeordnet sind.

Kurze Beschreibung der Zeichnungen

[8000]

Fig. 1 ist eine schematische Querschnittsdarstellung einer beispielhaften Turbine, die ein Turbinenrad der zweiten Stufe enthält.

- Fig. 2 ist eine Vorderansicht einer beispielhaften Turbinenschaufel, die in der in Fig. 1 gezeigten Turbine verwendet werden kann.
- Fig. 3 ist eine Seitenansicht der in Fig. 2 gezeigten Turbinenschaufel.
- Fig. 4 veranschaulicht eine perspektivische Ansicht der in Fig. 2 gezeigten Turbinenschaufel und veranschaulicht ein Kartesisches Koordinatensystem für die in Tabelle I angegebenen X-, Y- und Z-Werte.
- Fig. 5 ist ein Schaubild von Querschnitten der Turbinenschaufel entlang den in Fig. 4 gezeigten Linien.
- Fig. 6 ist eine Querschnittsansicht der in Fig. 2 gezeigten Turbinenschaufel entlang der Linie 1–1.
- Fig. 7 ist eine Querschnittsansicht der in Fig. 2 gezeigten Turbinenschaufel entlang der Linie 2–2.
- Fig. 8 ist eine Querschnittsansicht der in Fig. 2 gezeigten Turbinenschaufel entlang der Linie 3-3.

Detaillierte Beschreibung der Erfindung

[0009] Fig. 1 veranschaulicht eine Querschnittsansicht einer beispielhaften Turbine 10. In dem Ausführungsbeispiel enthält die Turbine 10 einen Rotor 12, der Rotorräder 14, 16 und 18 der ersten, der zweiten bzw. der dritten Stufe aufweist, die Schaufeln 20, 22 bzw. 24 und Statorleitschaufeln 26, 28 bzw. 30 enthalten. Jede Reihe von Schaufeln 20, 22 bzw. 24 und Statorleitschaufeln 26, 28 bzw. 30 definiert eine nachfolgende Stufe der Turbine 10. In dem Ausführungsbeispiel ist die Turbine 10 eine dreistufige Turbine. Alternativ kann die Turbine 10 mehr oder weniger als drei Stufen enthalten. In einer Ausführungsform ist die Turbine 10 eine Gasturbine vom Typ General Electric 6B, hergestellt von der General Electric Company von Schenectady, New York.

[0010] Innerhalb der zweiten Turbinenstufe enthält das Rotorrad 16 Schaufeln 22, die axial gegenüber den stromaufwärtigen Statorleitschaufeln 30 montiert sind. Die Schaufeln 22 sind um den Umfang des Rades 16 der zweiten Stufe herum beabstandet. In dem Ausführungsbeispiel enthält das Rad 16 der zweiten Stufe zweiundneunzig Schaufeln 22.

[0011] Fig. 2 und 3 veranschaulichen eine perspektivische Vorderansicht und eine Seitenansicht einer beispielhaften Turbinenschaufel 22. In dem Ausführungsbeispiel enthält die Schaufel 22 einen Flügel 40, der sich von einer Plattform 42 nach aussen erstreckt, und einen Schaft 44, der sich von einer gegenüberliegenden Seite der Plattform 42 nach aussen erstreckt. Das radiale Innenende des Schafts 44 erstreckt sich von einem Schwalbenschwanz 46, der dazu dient, die Schaufel 22 an das Turbinenrad 16 (in Fig. 1 gezeigt) zu koppeln. Der Schwalbenschwanz 46 passt bekanntlich in entsprechende (nicht gezeigte) Schwalbenschwanzöffnungen, die in dem Turbinenrad 16 definiert sind. Die Schaufel 22 enthält ausserdem Radraumdichtungen, d. h. Winkelstege 52, die sich von dem Schaft 44 axial nach aussen erstrecken. In einem Ausführungsbeispiel besteht der Flügel 40 aus einer bekannten Superlegierung auf Nickelbasis, wie zum Beispiel Alloy 738.

[0012] Fig. 4 veranschaulicht eine perspektivische Ansicht der in Fig. 2 gezeigten Turbinenschaufel 22 und veranschaulicht ein Kartesisches Koordinatensystem 54 für die in der folgenden Tabelle I angegebenen X-, Y- und Z-Werte. Das Kartesische Koordinatensystem 54 hat orthogonal zueinander stehende Achsen X, Y und Z, wobei die Z-Achse, oder die Bezugslinie, im Wesentlichen senkrecht zu der Plattform 42 verläuft und sich allgemein in einer radialen Richtung durch den Flügel 40 hindurch erstreckt. Ein erster Profilquerschnitt 58, ein zweiter Profilquerschnitt 60, ein dritter Profilquerschnitt 62, ein vierter Profilquerschnitt 64, ein fünfter Profilquerschnitt 66, ein sechster Profilquerschnitt 68, ein siebenter Profilquerschnitt 70, ein achter Profilquerschnitt 72, ein neunter Profilquerschnitt 74 und ein zehnter Profilquerschnitt 76 des Flügels 40 sind veranschaulicht.

[0013] Fig. 5 ist ein Schaubild von Querschnitten des Flügels 40 an einem ersten Profilguerschnitt 58, einem zweiten Profilguerschnitt 60, einem dritten Profilguerschnitt 62, einem vierten Profilguerschnitt 64, einem fünften Profilguerschnitt 66, einem sechsten Profilguerschnitt 68, einem siebenten Profilguerschnitt 70, einem achten Profilguerschnitt 72, einem neunten Profilquerschnitt 74 und einem zehnten Profilquerschnitt 76. Die Y-Achse erstreckt sich im Wesentlichen parallel zu einer Mittelachse der Turbine, d. h. der Drehachse. Durch Definieren von X- und Y-Koordinatenwerten an ausgewählten Positionen in der radialen Richtung, d.h. in einer Z-Richtung, kann das Profil des Flügels 40 bestimmt werden. Durch Verbinden der X- und Y-Werte mit stufenlosen durchgehenden Bögen wird jeder Profilquerschnitt in jeder radialen Entfernung Z fixiert. Die Oberflächenprofile an den verschiedenen Oberflächenpositionen zwischen den radialen Entfernungen Z können durch Verbinden benachbarter Profile bestimmt werden. Die X- und Y-Koordinaten zum Bestimmen des Flügelquerschnittsprofils in jeder radialen Position oder Flügelhöhe Z sind in der folgenden Tabelle I dargestellt, wobei Z gleich null an einer Unterseite 78 der Schaufel 22 ist. Diese Tabellenwerte sind in Inch angegeben und stellen das tatsächliche Flügelprofil unter Umgebungs-, Nichtbetriebs- oder kalten Bedingungen dar und gelten für einen unbeschichteten Flügel. Der Flügel 40 kann mindestens teilweise mit einer (in Fig. 4 nicht gezeigten) Beschichtung überzogen sein, wodurch sich die Abmessungen des Flügels 40 vergrössern können. In einem Ausführungsbeispiel schützt die Beschichtung den Flügel 40 von Korrosion und/oder Oxidation. Ausserdem weist die in Tabelle I verwendete Vorzeichenkonvention dem Wert Z einen positiven Wert und den Koordinaten X und Y positive und negative Werte zu, wie sie in der Regel in einem Kartesischen Koordinatensystem verwendet werden.

[0014] Die Werte in Tabelle 1 sind computergeneriert und auf vier Stellen hinter dem Komma ausgewiesen. Angesichts der praktischen Fertigungsgrenzen werden jedoch die tatsächlichen Werte, die zum Ausbilden des Flügels 40 nutzbar sind, auf nur drei Stellen hinter dem Komma zum Bestimmen des Profils des Flügels 40 als gültig angesehen. Darüber hinaus gibt es typische Fertigungstoleranzen, die in dem Profil des Flügels 40 zu berücksichtigen sind. Dementsprechend gelten die in Tabelle I genannten Werte für das Profil eines geometrischidealen Flügels. Es versteht sich darum, dass typische Plus- oder Minus-Fertigungstoleranzen für die X-, Y- und Z-Werte gelten und dass ein Flügel, der ein Profil im Wesentlichen gemäss diesen Werten aufweist, solche Toleranzen enthält. Zum Beispiel liegt eine Fertigungstoleranz von etwa ±0,010 Inch innerhalb der Konstruktionsgrenzen für den Flügel, und vorzugsweise wird eine Fertigungstoleranz von etwa ±0,008 Inch eingehalten. Dementsprechend sind Werte von X und Y, die auf drei Stellen hinter dem Komma genau sind und eine Fertigungstoleranz von etwa ±0,010 Inch und vorzugsweise etwa ±0,008 Inch aufweisen, akzeptabel, um das Profil des Flügels 40 an jeder radialen Position entlang seiner gesamten Länge zu definieren.

[0015] Der Flügel 40 verleiht dem Luftstrom kinetische Energie und trägt damit zu einer gewünschten Strömung an einem (nicht gezeigten) Verdichter bei. Der Flügel 40 dreht die Fluidströmung, verlangsamt die relative Geschwindigkeit der Fluidströmung in dem jeweiligen Flügelbezugsrahmen und führt zu einem Anstieg des statischen Drucks der Fluidströmung. Der Flügel 40 ermöglicht, zusammen mit seiner Wechselwirkung mit umgebenden Flügeln und Randflächen, in bestimmten Ausführungsbeispielen: einen hohen Wirkungsgrad des Luftstroms in den Stufen, eine verbesserte Aeromechanik, einen gleichmässigen Laminarstrom von Stufe zu Stufe, weniger thermische Spannungen, eine verbesserte Interrelation der Stufen, um den Luftstrom wirkungsvoll von Stufe zu Stufe zu transportieren, und weniger mechanische Spannungen. In der Regel sind mehrere Reihen von Flügelstufen, wie zum Beispiel Rotor/Statorflügel, so ausgerichtet, dass ein gewünschtes Auslass-Einlass-Druckverhältnis erreicht wird. Die Flügel 40 können mittels des Schwalbenschwanzes 46 (in den Fig. 2 und 3 gezeigt) mit den Rädern gekoppelt werden.

[0016] Die Ausrichtung des Flügels 40 und jede Wechselwirkung mit umgebenden Flügeln unterstützt das Herstellen einer wünschenswerten Fluidströmungsdynamik und eines wünschenswerten Laminarstromes. Die Fluidströmung schneidet den Flügel 40 und wird verstärkt. Genauer gesagt, werden die Fluiddynamik und der Laminarstrom von dem Flügel 40 verstärkt. Insofern wird eine gleichmässige Übergangsfluidströmung zu benachbarten bzw. stromabwärtigen Flügeln unterstützt. Darüber hinaus verläuft die Strömung von jedem Flügel 40 stromabwärts in Richtung der benachbarten bzw. stromabwärtigen Flügel und wird infolge der verstärkten Laminarfluidströmung von dem Flügel 40 verstärkt. Darum unterstützt die Ausrichtung des Flügels 40 das Verhindern von Fluidströmungsturbulenzen in der Einheit, die den Flügel 40 umfasst.

[0017] In dem Ausführungsbeispiel kann die Konfiguration des Flügels 40 (mit oder ohne Fluidströmungswechselwirkung) unter Verwendung verschiedener Konstruktionsprozesse und -verfahren bestimmt werden. Zu solchen Konstruktionsprozessen und -verfahren können zum Beispiel folgende gehören: berechnete Fluiddynamik (CFD), herkömmliche Fluiddynamikanalyse, Euler- und Navier-Stokes-Gleichungen, manuelle Positionierung, Strömungstests (zum Beispiel in Windtunneln) und Modifizierung der Flügel, Vor-Ort-Tests, Modellierung, Anwendung wissenschaftlicher Prinzipien auf die Konstruktion oder Entwicklung der Flügel, Maschinen, Vorrichtungen oder Fertigungsprozesse, und Flügelströmungstests und -modifizierung.

[0018] Wie oben angesprochen, unterstützt die Konfiguration des Flügels 40 und die Wechselwirkung des Flügels 40 mit umgebenden Flügeln und Randflächen einen hohen Wirkungsgrad des Luftstroms in den Stufen, eine verbesserte Aeromechanik, einen gleichmässigen Laminarstrom von Stufe zu Stufe, weniger thermische Spannungen, eine verbesserte Interrelation der Stufen, um den Luftstrom wirkungsvoll von Stufe zu Stufe zu transportieren, und weniger mechanische Spannungen sowie weitere wünschenswerte Effekte im Vergleich zu ähnlichen Flügeln, die gleiche Anwendungen haben. In dem Ausführungsbeispiel unterstützt der Flügel 40 die Erhöhung des Wirkungsgrades des Turbinenbetriebes im Vergleich zu Turbinen, die mit bekannten Flügeln bestückt sind. Der erhöhte Wirkungsgrad ermöglicht neben den oben genannten Vorteilen eine höhere Ausgangleistung bei gleichzeitig verringertem Kraftstoffverbrauch. Insofern werden auch die Emissionen des Motors verringert.

[0019] Wie oben angemerkt, kann der Flügel 40 ausserdem beschichtet werden, um ihn vor Korrosion und Oxidation zu schützen, nachdem der Flügel 40 entsprechend den Werten von Tabelle I und innerhalb der oben erläuterten Toleranzen gefertigt wurde.

[0020] Folglich kann zusätzlich zu den Fertigungstoleranzen für die in Tabelle I angegebenen X- und Y-Werte ausserdem eine Zugabe zu diesen Werten hinzugerechnet werden, um die Beschichtungs-dicken zu berücksichtigen.

[0021]

TABELLE I

1										
	Prof	ilquerschr	itt 1	Prof	ilquerschn	itt 2	Prof	ilquerschn	itt 3	
Punkt	Х	Υ	Z	Х	Y	Z	Х	Υ	Z	
1	-1,2863	-0,5237	4,3045	-0,4461	-0,1553	5,1101	0,0433	-0,0905	5,9156	
2	-1,1988	-0,3007	4,3045	-0,8739	0,1801	5,1101	-1,115	-0,15	5,9156	
3	-0,1846	-0,1543	4,3045	-0,6366	-0,2319	5,1101	-1,1211	-0,3644	5,9156	
4	-0,2999	0,5367	4,3045	-0,1212	-0,1009	5,1101	-1,1587	-0,2834	5,9156	
5	-0,9855	0,0244	4,3045	-1,0812	-0,1065	5,1101	-0,5176	-0,1255	5,9156	
6	-0,6967	0,3164	4,3045	-1,2004	-0,3626	5,1101	-1,0141	-0,3555	5,9156	
7	-0,8939	-0,428	4,3045	-1,1163	-0,5101	5,1101	-0,2816	0,5688	5,9156	
8	-1,2639	-0,6589	4,3045	-0,1882	0,5598	5,1101	-0,771	-0,2363	5,9156	
9	-1,2719	-0,6549	4,3045	-1,2158	-0,4704	5,1101	-0,5587	0,4798	5,9156	
10	-0,4196	0,4898	4,3045	-0,7806	0,2746	5,1101	-0,8064	0,2978	5,9156	
11	-1,1477	-0,6294	4,3045	-0,9349	-0,4075	5,1101	-0,1371	-0,0659	5,9156	
12	-1,2949	-0,597	4,3045	-0,4733	0,4797	5,1101	-1,0184	0,0305	5,9156	
13	-0,0521	0,5832	4,3045	-0,7337	0,3155	5,1101	-1,1401	-0,2134	5,9156	
14	-1,2455	-0,6631	4,3045	-0,3166	-0,1218	5,1101	-1,0873	-0,3701	5,9156	
15	-1,2657	-0,4528	4,3045	-0,9637	0,0706	5,1101	-0,11	0,5753	5,9156	
16	0,0245	-0,1483	4,3045	0,0048	-0,1069	5,1101	-1,1605	-0,3137	5,9156	
17	-1,1298	-0,1801	4,3045	-1,1475	-0,2315	5,1101	-0,9348	-0,3211	5,9156	
18	-0,3224	-0,176	4,3045	-1,1692	-0,5137	5,1101	-0,3938	0,5452	5,9156	
19	-0,8772	0,1494	4,3045	-0,0133	0,564	5,1101	-0,6463	-0,1763	5,9156	
20	-0,7018	-0,312	4,3045	-1,2149	-0,4228	5,1101	-0,6617	0,4179	5,9156	
21	-0,5587	-0,2471	4,3045	-1,0615	-0,4867	5,1101	-0,5825	-0,1494	5,9156	
22	-0,5908	0,3938	4,3045	-0,3051	0,5382	5,1101	-0,3024	-0,0742	5,9156	
23	-1,0273	-0,5304	4,3045	-1,208	-0,4903	5,1101	-0,8986	0,197	5,9156	
24	-1,2844	-0,6415	4,3045	-1,0355	-0,4718	5,1101	-0,0163	-0,0784	5,9156	
25	-0,2381	0,5547	4,3045	-0,8245	-0,3362	5,1101	-1,0856	-0,0883	5,9156	
26	-1,1909	-0,6545	4,3045	-0,5813	0,4235	5,1101	-1,1364	-0,3565	5,9156	
27	-1,2928	-0,5601	4,3045	-0,5094	-0,1772	5,1101	0,0615	0,5472	5,9156	
28	-1,2233	-0,3504	4,3045	-0,8254	0,2315	5,1101	-1,1551	-0,2646	5,9156	
29	-0,115	-0,1487	4,3045	-0,0694	0,5664	5,1101	-1,0416	-0,3639	5,9156	
30	-1,0363	-0,0419	4,3045	-0,1842	-0,1036	5,1101	-0,2245	0,5748	5,9156	
31	-0,4813	-0,219	4,3045	-1,0443	-0,046	5,1101	-0,8323	-0,2683	5,9156	
32	-0,7595	0,2636	4,3045	-1,1891	-0,3291	5,1101	-0,5044	0,5057	5,9156	
33	-0,8316	-0,3865	4,3045	-1,1339	-0,5141	5,1101	-0,4648	-0,1089	5,9156	
34	-0,4783	0,4608	4,3045	-0,1289	0,565	5,1101	-0,7563	0,3441	5,9156	
35	-1,123	-0,6106	4,3045	-1,2173	-0,4598	5,1101	0,0036	0,5606	5,9156	

	Prof	ilquerschr	itt 1	Prof	filquerschn	itt 2	Prof	filquerschr	nitt 3
Punkt	Х	Υ	Z	X	Y	Z	X	Υ	Z
36	-1,2933	-0,6154	4,3045	-0,9848	-0,4402	5,1101	-0,1924	-0,0654	5,9156
37	-0,1139	0,578	4,3045	-0,4184	0,5025	5,1101	-0,9809	0,0877	5,9156
38	-1,2269	-0,6637	4,3045	-0,7004	-0,2644	5,1101	-1,1282	-0,1814	5,9156
39	-1,2771	-0,488	4,3045	-0,6849	0,3542	5,1101	-1,1046	-0,3688	5,9156
40	-1,1724	-0,2519	4,3045	-0,3818	-0,1368	5,1101	-0,053	0,5698	5,9156
41	-0,2538	-0,1634	4,3045	-0,92	0,1264	5,1101	-1,1606	-0,3024	5,9156
42	-0,9322	0,0886	4,3045	-0,0581	-0,102	5,1101	-0,9872	-0,3449	5,9156
43	-0,6345	-0,2793	4,3045	-1,1157	-0,1683	5,1101	-0,3381	0,5589	5,9156
44	-0,6445	0,3563	4,3045	-1,1859	-0,5078	5,1101	-0,4112	-0,0947	5,9156
45	-0,9543	-0,4721	4,3045	0,0425	0,5581	5,1101	-0,709	-0,2054	5,9156
46	-1,2788	-0,6489	4,3045	-1,2098	-0,3967	5,1101	-0,6111	0,4505	5,9156
47	-0,3604	0,515	4,3045	-1,0883	-0,4999	5,1101	-0,3571	-0,0831	5,9156
48	-1,1741	-0,6461	4,3045	-0,247	0,5509	5,1101	-1,1554	-0,3358	5,9156
49	-1,2946	-0,5785	4,3045	-1,2129	-0,4808	5,1101	-0,8538	0,2486	5,9156
50	0,0099	0,5841	4,3045	-0,885	-0,3746	5,1101	-0,0765	-0,0702	5,9156
51	-1,2457	-0,4011	4,3045	-0,5269	0,4538	5,1101	-1,0534	-0,0281	5,9156
52	-0,0453	-0,1467	4,3045	-0,5715	-0,2021	5,1101	-1,1495	-0,3451	5,9156
53	-1,0844	-0,11	4,3045	-0,2507	-0,1106	5,1101	-1,1504	-0,2461	5,9156
54	-0,4024	-0,1953	4,3045	-1,0051	0,0131	5,1101	-1,0699	-0,3691	5,9156
55	-1,099	-0,5906	4,3045	-1,1762	-0,2961	5,1101	-0,1673	0,577	5,9156
56	-0,8197	0,2078	4,3045	-1,1516	-0,5157	5,1101	-1,1589	-0,325	5,9156
57	-0,7676	-0,3478	4,3045	-1,2174	-0,4492	5,1101	-0,4485	0,5278	5,9156
58	-0,5353	0,4287	4,3045	-0,3623	0,5221	5,1101	-0,71	0,3823	5,9156
59	-1,2902	-0,6289	4,3045	-1,2012	-0,498	5,1101	-0,8833	-0,2952	5,9156
60	-0,1753	0,5686	4,3045	-0,763	-0,2993	5,1101	-0,2475	-0,0683	5,9156
61	-1,2086	-0,6607	4,3045	-0,634	0,3902	5,1101	-0,941	0,1433	5,9156
62	0,1332	0,5721	4,3045	1,2154	-0,9757	5,1101	1,2034	-1,0493	5,9156
63	1,3681	-0,8619	4,3045	0,6142	0,2446	5,1101	1,209	-1,0301	5,9156
64	0,1593	-0,1619	4,3045	1,2621	-0,9892	5,1101	0,3262	-0,2069	5,9156
65	0,4104	0,4721	4,3045	0,3675	0,4441	5,1101	0,5892	-0,4104	5,9156
66	1,3064	-0,9038	4,3045	0,1909	-0,145	5,1101	0,9255	-0,3487	5,9156
67	0,6542	0,2873	4,3045	1,291	-0,9507	5,1101	0,9136	-0,7676	5,9156
68	1,2324	-0,8528	4,3045	0,0977	0,5486	5,1101	1,1262	-1,0195	5,9156
69	0,9218	-0,032	4,3045	0,4816	-0,2792	5,1101	1,1804	-0,9489	5,9156
70	0,9982	-0,6024	4,3045	1,2605	-0,8676	5,1101	1,1396	-1,0351	5,9156
71	1,2437	-0,5656	4,3045	0,8101	-0,5358	5,1101	0,6386	0,1329	5,9156
72	0,6659	-0,3466	4,3045	1,0211	-0,3656	5,1101	0,4757	0,3121	5,9156
73	1,3692	-0,8165	4,3045	1,1577	-0,9065	5,1101	1,1793	-1,0629	5,9156
74	0,3516	-0,2061	4,3045	0,7601	0,0683	5,1101	0,7188	0,0211	5,9156
75	0,2501	0,5429	4,3045	1,2322	-0,9882	5,1101	0,1595	-0,1259	5,9156
76	1,3496	-0,8873	4,3045	0,5125	0,3407	5,1101	0,174	0,5089	5,9156
77	0,5118	0,407	4,3045	1,2788	-0,9786	5,1101	1,0665	-0,6643	5,9156
78	1,2767	-0,8963	4,3045	0,2613	0,4976	5,1101	1,1613	-1,0577	5,9156

	Pro	filquerschr	itt 1		ilquerschn	itt 2		filquerschr	nitt 3
Punkt	Х	Υ	Z	Х	Υ	Z	Х	Y	Z
79	0,7403	0,1979	4,3045	0,3111	-0,1895	5,1101	0,2281	0,4844	5,9156
80	1,1917	-0,8056	4,3045	1,2876	-0,9286	5,1101	0,7087	-0,5318	5,9156
81	1,059	-0,2403	4,3045	0,6076	-0,3652	5,1101	0,9744	-0,4531	5,9156
82	0,8574	-0,4793	4,3045	1,1785	-0,6871	5,1101	1,0832	-0,9694	5,9156
83	1,3298	-0,7316	4,3045	0,9767	-0,7022	5,1101	1,1528	-0,8781	5,9156
84	0,5428	-0,2807	4,3045	0,9057	-0,1565	5,1101	1,1531	-1,0511	5,9156
85	0,0718	0,5804	4,3045	1,2082	-0,9677	5,1101	0,5609	0,2258	5,9156
86	1,3725	-0,8468	4,3045	0,0673	-0,1156	5,1101	0,7604	-0,0438	5,9156
87	0,2241	-0,1735	4,3045	0,6613	0,1929	5,1101	1,197	-1,0564	5,9156
88	0,2882	-0,1883	4,3045	1,2523	-0,9912	5,1101	0,333	0,4242	5,9156
89	0,3585	0,4992	4,3045	0,129	-0,1282	5,1101	1,0212	-0,5584	5,9156
90	1,3218	-0,9018	4,3045	1,2891	-0,9616	5,1101	0,2815	0,4559	5,9156
91	0,6086	0,3293	4,3045	0,1523	0,5356	5,1101	0,8404	-0,6808	5,9156
92	1,253	-0,8761	4,3045	0,4262	-0,2467	5,1101	1,1329	-1,0272	5,9156
93	0,8641	0,0469	4,3045	1,279	-0,9076	5,1101	0,6749	0,0844	5,9156
94	1,0648	-0,6681	4,3045	0,7446	-0,4766	5,1101	0,8	-0,1101	5,9156
95	1,1844	-0,4559	4,3045	1,0751	-0,472	5,1101	1,17	-1,0617	5,9156
96	0,7252	-0,3835	4,3045	1,1073	-0,8474	5,1101	0,2722	-0,1766	5,9156
97	1,3635	-0,802	4,3045	0,8111	-0,005	5,1101	0,102	-0,1064	5,9156
98	0,4141	-0,2269	4,3045	0,4178	0,4124	5,1101	1,2076	-1,0406	5,9156
99	0,1939	0,5592	4,3045	1,2233	-0,9829	5,1101	0,3786	-0,24	5,9156
100	1,3602	-0,8757	4,3045	0,5647	0,294	5,1101	1,1957	-0,9884	5,9156
101	0,0941	-0,1536	4,3045	1,2712	-0,9848	5,1101	1,2034	-1,0091	5,9156
102	0,4605	0,442	4,3045	0,3152	0,4726	5,1101	0,65	-0,4701	5,9156
103	1,291	-0,902	4,3045	0,2516	-0,1655	5,1101	0,9864	-0,8547	5,9156
104	0,698	0,2434	4,3045	1,2903	-0,9396	5,1101	0,5261	-0,3531	5,9156
105	1,2122	-0,8291	4,3045	0,5356	-0,314	5,1101	0,8378	-0,1774	5,9156
106	0,9921	-0,135	4,3045	1,2281	-0,7958	5,1101	1,1461	-1,0432	5,9156
107	0,9291	-0,5393	4,3045	0,8948	-0,6176	5,1101	0,6006	0,1801	5,9156
108	1,3015	-0,6761	4,3045	0,9648	-0,2603	5,1101	1,1887	-1,0611	5,9156
109	0,6051	-0,3122	4,3045	1,2012	-0,9594	5,1101	1,1104	-0,7708	5,9156
110	1,3728	-0,8315	4,3045	0,7061	0,1392	5,1101	0,3826	0,3895	5,9156
111	0,305	0,5229	4,3045	1,2424	-0,991	5,1101	0,2167	-0,1495	5,9156
112	1,3366	-0,8961	4,3045	0,4661	0,3779	5,1101	0,1183	0,5299	5,9156
113	0,5612	0,3693	4,3045	1,2849	-0,9706	5,1101	0,4786	-0,3135	5,9156
114	1,2642	-0,8871	4,3045	0,2058	0,519	5,1101	1,2071	-1,0195	5,9156
115	1,3571	-0,7877	4,3045	0,3693	-0,2167	5,1101	0,4294	-0,2757	5,9156
116	0,8038	0,1237	4,3045	1,2837	-0,918	5,1101	0,7659	-0,595	5,9156
117	1,1291	-0,736	4,3045	0,6771	-0,4195	5,1101	0,8739	-0,2456	5,9156
118	1,123	-0,3473	4,3045	1,1275	-0,5792	5,1101	1,1995	-0,9987	5,9156
119	0,7828	-0,423	4,3045	1,0561	-0,789	5,1101	0,5193	0,2699	5,9156
120	0,4791	-0,2523	4,3045	0,8595	-0,0801	5,1101	0,4302	0,352	5,9156

Loch 1	-0,663	-0,0626	4,3045	-0,2702	0,1279	5,1101	-0,5863	0,0714	5,9156
Loch 2	-0,2928	0,102	4,3045	-0,6246	0,0044	5,1101	-0,2477	0,1538	5,9156
Loch 3	0,4613	0,0371	4,3045	0,8424	-0,3783	5,1101	0,4303	-0,0478	5,9156
Loch 4	0,8746	-0,3089	4,3045	0,4458	-0,0054	5,1101	0,8101	-0,4478	5,9156
Loch 5	0,0875	0,1167	4,3045	0,0965	0,0998	5,1101	0,1055	0,0828	5,9156

	Prof	ilquerschn	nitt 4	Prof	ilquerschn	nitt 5	Prof	ilquerschr	itt 6
Punkt	Χ	Y	Z	X	Υ	Z	Х	Υ	Z
1	-0,9981	-0,2284	6,7212	-0,6613	-0,04	7,5267	-1.0043	0,1373	8,3323
2	-1,1125	-0,1884	6,7212	-0,6656	0,4981	7,5267	-1,0263	0,0535	8,3323
3	-0,7868	-0,1582	6,7212	-0,8611	0,3293	7,5267	-0,6842	0,0523	8,3323
4	-0,7015	0,4419	6,7212	-1,0014	0,1286	7,5267	-0,6058	0,5504	8,3323
5	-0,9052	0,2461	6,7212	-1,0396	-0,1022	7,5267	-0,798	0,4131	8,3323
6	-1,0705	-0,0172	6,7212	-1,0629	-0,0184	7,5267	-0,8663	0,3425	8,3323
7	-1,0596	-0,228	6,7212	-0,962	-0,1145	7,5267	-0,951	0,2319	8,3323
8	-1,1146	-0,1586	6,7212	-1,0635	-0,0781	7,5267	-1,0123	0,0196	8,3323
9	-1,1033	-0,2055	6,7212	-1,0528	-0,0933	7,5267	-1,0205	0,0935	8,3323
10	-0,6617	-0,1106	6,7212	-0,8337	-0,086	7,5267	-0,9584	0,0019	8,3323
11	-0,5739	0,5197	6,7212	-0,5213	0,5678	7,5267	-1,0226	0,0351	8,3323
12	-0,7891	0,37	6,7212	-0,5361	-0,018	7,5267	-0,8292	0,0219	8,3323
13	-0,9728	0,1551	6,7212	-0,7526	0,4354	7,5267	-0,5752	0,065	8,3323
14	-1,0954	-0,0785	6,7212	-0,9243	0,2501	7,5267	-0,683	0,5052	8,3323
15	-0,5339	-0,0713	6,7212	-1,0369	0,057	7,5267	-0,9908	0,1652	8,3323
16	-1,026	-0,2307	6,7212	-1,0101	-0,1126	7,5267	-0,9923	0,0079	8,3323
17	-1,1144	-0,1785	6,7212	-1,0675	-0,0499	7,5267	-1,0261	0,0629	8,3323
18	-0,9439	-0,2157	6,7212	-0,9305	-0,1102	7,5267	-0,9194	0,004	8,3323
19	-0,8387	-0,1788	6,7212	-0,7191	-0,0539	7,5267	-0,7411	0,0416	8,3323
20	-0,6605	0,4702	6,7212	-0,6192	0,5248	7,5267	-0,5651	0,5693	8,3323
21	-0,8685	0,2892	6,7212	-0,8658	-0,0949	7,5267	-0,7614	0,4459	8,3323
22	-1,0411	0,042	6,7212	-0,8268	0,3666	7,5267	-0,9245	0,27	8,3323
23	-1,0755	-0,2233	6,7212	-0,9774	0,1702	7,5267	-0,9813	0,0047	8,3323
24	-1,1111	-0,1341	6,7212	-1,0589	-0,0029	7,5267	-1,0158	0,1084	8,3323
25	-0,9708	-0,223	6,7212	-0,978	-0,1152	7,5267	-0,9699	0,0028	8,3323
26	-1,1089	-0,1976	6,7212	-1,0663	-0,0689	7,5267	-1,0253	0,0442	8,3323
27	-0,7244	-0,1338	6,7212	-0,5989	-0,0275	7,5267	-0,8608	0,0148	8,3323
28	-0,5286	0,5404	6,7212	-0,7102	0,4682	7,5267	-0,6268	0,0603	8,3323
29	-0,7463	0,4072	6,7212	-0,898	-0,1032	7,5267	-0,6451	0,5289	8,3323
30	-0,94	0,2013	6,7212	-0,8936	0,2904	7,5267	-0,833	0,3786	8,3323
31	-1,0836	-0,0476	6,7212	-1,0235	0,086	7,5267	-0,9757	0,1924	8,3323
32	-1,0429	-0,2303	6,7212	-1,0659	-0,034	7,5267	-1,0028	0,0128	8,3323
33	-1,115	-0,1685	6,7212	-0,9462	-0,1128	7,5267	-1,024	0,0784	8,3323
34	-0,8909	-0,1984	6,7212	-1,059	-0,0865	7,5267	-0,9468	0,0019	8,3323
35	-0,5982	-0,0896	6,7212	-0,7765	-0,0696	7,5267	-1,0184	0,0267	8,3323
36	-0,6179	0,4962	6,7212	-0,571	0,5481	7,5267	-0,8925	0,0082	8,3323

	Prof	filquerschr	itt 4	Prof	ilquerschn	itt 5	Prof	filquerschr	nitt 6
Punkt	X	Υ	Z	Х	Υ	Z	Х	Υ	Z
37	-0,8298	0,3306	6,7212	-1,0253	-0,1085	7,5267	-0,7976	0,0292	8,3323
38	-1,0085	0,0994	6,7212	-0,7906	0,4021	7,5267	-0,7231	0,4767	8,3323
39	-1,0903	-0,216	6,7212	-0,9517	0,2107	7,5267	-0,8962	0,3069	8,3323
40	-1,1053	-0,11	6,7212	-1,0488	0,0274	7,5267	0,0185	0,5357	8,3323
41	-0,2405	0,6006	6,7212	-0,9942	-0,1147	7,5267	0,0299	-0,0727	8,3323
42	-0,482	0,5583	6,7212	-1,0675	-0,0594	7,5267	-0,1377	0,0051	8,3323
43	-0,4686	-0,0563	6,7212	-0,3458	-0,0095	7,5267	-0,1876	0,6104	8,3323
44	0,0509	0,548	6,7212	-0,0338	-0,0688	7,5267	-0,3925	0,617	8,3323
45	-0,0929	0,5879	6,7212	-0,011	0,5591	7,5267	-0,4718	0,0677	8,3323
46	-0,3379	0,5933	6,7212	-0,3211	0,6074	7,5267	-0,0624	0,5735	8,3323
47	-0,1578	-0,0417	6,7212	-0,2706	0,6084	7,5267	-0,2691	0,621	8,3323
48	-0,1916	0,5996	6,7212	-0,2191	-0,0221	7,5267	-0,4806	0,5992	8,3323
49	-0,4345	0,5732	6,7212	0,0819	-0,1171	7,5267	-0,3175	0,053	8,3323
50	-0,2825	-0,036	6,7212	-0,114	0,5897	7,5267	-0,0237	-0,044	8,3323
51	-0,22	-0,0368	6,7212	-0,3714	0,6029	7,5267	0,0573	0,5135	8,3323
52	0,0738	-0,0985	6,7212	-0,4094	-0,0088	7,5267	-0,1475	0,6013	8,3323
53	-0,0442	0,5774	6,7212	-0,0947	-0,0495	7,5267	-0,3515	0,621	8,3323
54	-0,2893	0,5985	6,7212	0,0389	0,5389	7,5267	-0,1967	0,0246	8,3323
55	0,0181	-0,0791	6,7212	-0,2201	0,6059	7,5267	-0,0214	0,5558	8,3323
56	-0,407	-0,0459	6,7212	0,0874	0,5155	7,5267	-0,2282	0,617	8,3323
57	-0,0961	-0,0508	6,7212	-0,4703	0,5836	7,5267	-0,4369	0,6096	8,3323
58	-0,1421	0,5953	6,7212	-0,2823	-0,0139	7,5267	-0,3687	0,0605	8,3323
59	-0,3861	0,585	6,7212	0,0247	-0,0913	7,5267	-0,1045	0,5888	8,3323
60	-0,3449	-0,039	6,7212	-0,062	0,5761	7,5267	-0,3103	0,6223	8,3323
61	0,0038	0,5641	6,7212	-0,4729	-0,0117	7,5267	-0,5234	0,5857	8,3323
62	-0,0386	-0,0632	6,7212	-0,1565	-0,0339	7,5267	-0,4201	0,0654	8,3323
63	0,5121	-0,4022	6,7212	-0,1668	0,5997	7,5267	-0,5235	0,0675	8,3323
64	0,2335	-0,1761	6,7212	-0,4212	0,595	7,5267	-0,08	-0,0178	8,3323
65	0,3917	0,332	6,7212	0,4302	0,2293	7,5267	-0,2567	0,0406	8,3323
66	0,3803	-0,2798	6,7212	0,2284	0,4257	7,5267	0,2785	-0,2628	8,3323
67	0,4698	-0,3597	6,7212	0,239	-0,2112	7,5267	0,5138	-0,5433	8,3323
68	0,1812	-0,1469	6,7212	0,4538	-0,4053	7,5267	0,5465	-0,0571	8,3323
69	0,5219	0,1929	6,7212	0,5477	0,0694	7,5267	0,3347	0,2649	8,3323
70	0,3023	0,4075	6,7212	0,3546	0,3135	7,5267	0,1311	0,4634	8,3323
71	0,1043	0,5261	6,7212	0,1362	0,4883	7,5267	0,1322	-0,1386	8,3323
72	0,1282	-0,1211	6,7212	0,3296	-0,2834	7,5267	0,3684	-0,3588	8,3323
73	0,4336	0,2912	6,7212	0,5435	-0,5097	7,5267	0,4555	0,0973	8,3323
74	0,2063	0,4727	6,7212	0,4656	0,185	7,5267	0,2527	0,3563	8,3323
75	0,333	-0,2429	6,7212	0,2719	0,3908	7,5267	0,2307	-0,2179	8,3323
76	0,1561	0,5009	6,7212	0,4138	-0,3632	7,5267	0,4518	-0,4607	8,3323
77	0,568	-0,4627	6,7212	0,5858	0,0096	7,5267	0,5884	-0,1363	8,3323
78	0,5675	0,1353	6,7212	0,3932	0,2722	7,5267	0,3772	0,2107	8,3323
79	0,3479	0,3709	6,7212	0,1832	0,4583	7,5267	0,1734	0,4297	8,3323

	Pro	filquerschr	nitt 4	Pro	filquerschr	itt 5	Pro	filquerschr	itt 6
Punkt	Х	Υ	Z	Х	Υ	Z	Х	Y	Z
80	0,4259	-0,3189	6,7212	0,2852	-0,2463	7,5267	0,0819	-0,1043	8,3323
81	0,2841	-0,2082	6,7212	0,4923	-0,4486	7,5267	0,3244	-0,3099	8,3323
82	0,4739	0,2485	6,7212	0,5077	0,128	7,5267	0,5738	-0,6275	8,3323
83	0,2548	0,4417	6,7212	0,3141	0,3531	7,5267	0,5023	0,0209	8,3323
84	1,0795	-0,9325	6,7212	0,1374	-0,1463	7,5267	0,2898	0,317	8,3323
85	0,7891	-0,7435	6,7212	0,3725	-0,3225	7,5267	0,0948	0,4893	8,3323
86	0,8312	-0,3115	6,7212	0,1911	-0,1786	7,5267	0,1806	-0,1754	8,3323
87	1,0547	-1,0798	6,7212	0,5929	-0,5723	7,5267	0,4108	-0,4092	8,3323
88	0,6106	0,0759	6,7212	0,957	-1,0719	7,5267	0,4173	0,1548	8,3323
89	1,0965	-1,1181	6,7212	0,6219	-0,0513	7,5267	0,2139	0,394	8,3323
90	1,128	-1,1008	6,7212	1,0589	-1,1462	7,5267	0,9995	-1,1718	8,3323
91	1,1193	-1,0513	6,7212	1,0188	-1,1509	7,5267	0,9609	-1,0505	8,3323
92	0,988	-0,681	6,7212	1,0584	-1,1001	7,5267	0,738	-0,4617	8,3323
93	0,7466	-0,1453	6,7212	0,9722	-0,8543	7,5267	0,8329	-1,0105	8,3323
94	1,0714	-1,0984	6,7212	0,6882	-0,7001	7,5267	0,9435	-1,182	8,3323
95	1,1101	-1,1178	6,7212	0,7458	-0,2913	7,5267	0,9818	-1,194	8,3323
96	1,1292	-1,0815	6,7212	0,9995	-1,129	7,5267	0,9922	-1,1364	8,3323
97	1,1032	-1,0022	6,7212	1,0653	-1,1297	7,5267	0,8756	-0,8134	8,3323
98	0,7235	-0,6552	6,7212	0,8819	-0,6122	7,5267	0,6327	-0,7126	8,3323
99	0,8868	-0,4333	6,7212	0,874	-0,959	7,5267	0,6664	-0,2975	8,3323
100	1,0129	-1,0317	6,7212	0,6656	-0,1301	7,5267	0,8861	-1,0922	8,3323
101	1,0903	-1,1154	6,7212	1,0115	-1,1443	7,5267	0,9996	-1,1622	8,3323
102	0,6515	0,0151	6,7212	1,0525	-1,1524	7,5267	0,9566	-1,1934	8,3323
103	1,1233	-1,1089	6,7212	0,6409	-0,6359	7,5267	0,9961	-1,1809	8,3323
104	0,6216	-0,5254	6,7212	1,0618	-1,1099	7,5267	0,9742	-1,0874	8,3323
105	1,1227	-1,0613	6,7212	1,0356	-1,1575	7,5267	0,7855	-0,5783	8,3323
106	1,0348	-0,8064	6,7212	1,0152	-0,9763	7,5267	0,8061	-0,9698	8,3323
107	0,9661	-0,9761	6,7212	0,783	-0,3733	7,5267	0,9387	-1,1746	8,3323
108	0,8544	-0,8319	6,7212	0,9938	-1,1212	7,5267	0,9734	-1,1964	8,3323
109	0,7901	-0,2278	6,7212	1,0271	-1,1557	7,5267	0,9964	-1,1492	8,3323
110	1,0629	-1,0892	6,7212	1,0633	-1,1384	7,5267	0,9189	-0,9315	8,3323
111	1,1033	-1,1189	6,7212	0,8338	-0,4922	7,5267	0,7028	-0,3793	8,3323
112	1,1301	-1,0918	6,7212	1,0551	-1,0904	7,5267	0,8596	-1,0513	8,3323
113	1,1161	-1,0413	6,7212	0,9278	-0,733	7,5267	0,99	-1,1886	8,3323
114	0,9209	-0,9194	6,7212	1,0518	-1,0809	7,5267	0,9878	-1,124	8,3323
115	0,6733	-0,5897	6,7212	0,7812	-0,8295	7,5267	0,8313	-0,6956	8,3323
116	0,9389	-0,5565	6,7212	0,7067	-0,2102	7,5267	0,9494	-1,1884	8,3323
117	0,7006	-0,0642	6,7212	1,0053	-1,1368	7,5267	0,7199	-0,8408	8,3323
118	1,1166	-1,1149	6,7212	1,0445	-1,1563	7,5267	0,6283	-0,2165	8,3323
119	1,0804	-1,1074	6,7212	1,0645	-1,1198	7,5267	0,9125	-1,1333	8,3323
120	1.1263	-1,0713	6,7212	1,0386	-1,0435	7,5267	0,9648	-1,1962	8,3323

Loch 1	-0,5479	0,1383	6,7212	-0,5096	0,2053	7,5267	-0,18	0,2314	8,3323
Loch 2	-0,2251	0,1797	6,7212	-0,2026	0,2056	7,5267	-0,4713	0,2723	8,3323
Loch 3	0,4148	-0,0903	6,7212	0,3993	-0,1327	7,5267	0,3838	-0,1752	8,3323
Loch 4	0,1145	0,0659	6,7212	0,1236	0,0489	7,5267	0,1326	0,0319	8,3323
Loch 5	0,7778	-0,5172	6,7212	0,7455	-0,5867	7,5267	0,7132	-0,6561	8,3323

	Prof	ilquerschr	nitt 7	Prof	ilquerschr	itt 8	Prof	ilquerschr	nitt 9
Punkt	Х	Υ	Z	X	Υ	Z	Х	Υ	· Z
1	-0,9264	0,1336	9,1378	-0,8565	0,4588	9,9434	-0,6547	0,4314	10,7489
2	-0,9854	0,1605	9,1378	-0,5619	0,6317	9,9434	-0,5888	0,7092	10,7489
3	-0,7311	0,1622	9,1378	-0,675	0,5858	9,9434	-0,8107	0,4492	10,7489
4	-0,6348	0,5555	9,1378	-0,7539	0,2871	9,9434	-0,7585	0,6433	10,7489
5	-0,8293	0,4179	9,1378	-0,9004	0,2828	9,9434	-0,8868	0,4674	10,7489
6	-0,9569	0,267	9,1378	-0,946	0,3286	9,9434	-0,8708	0,5568	10,7489
7	-0,9604	0,1375	9,1378	-0,9427	0,3014	9,9434	-0,9023	0,5093	10,7489
8	-0,8709	0,1391	9,1378	-0,9159	0,3908	9,9434	-0,8995	0,4782	10,7489
9	-0,6287	0,1735	9,1378	-0,7871	0,5171	9,9434	-0,9035	0,4856	10,7489
10	-0,5199	0,6052	9,1378	-0,6004	0,6185	9,9434	-0,661	0,6882	10,7489
11	-0,9813	0,1523	9,1378	-0,5956	0,289	9,9434	-0,855	0,4565	10,7489
12	-0,7175	0,5058	9,1378	-0,8441	0,2822	9,9434	-0,8136	0,6075	10,7489
13	-0,8933	0,3526	9,1378	-0,9226	0,2871	9,9434	-0,8913	0,5303	10,7489
14	-0,9776	0,2261	9,1378	-0,9402	0,3477	9,9434	-0,9051	0,4937	10,7489
15	-0,9434	0,1343	9,1378	-0,6409	0,2902	9,9434	-0,6105	0,4245	10,7489
16	-0,9877	0,1694	9,1378	-0,8777	0,4373	9,9434	-0,5502	0,7167	10,7489
17	-0,782	0,1542	9,1378	-0,711	0,5665	9,9434	-0,7884	0,4466	10,7489
18	-0,5256	0,1759	9,1378	-0,6861	0,2898	9,9434	-0,7269	0,6602	10,7489
19	-0,5914	0,5768	9,1378	-0,8892	0,282	9,9434	-0,8765	0,4628	10,7489
20	-0,7948	0,4479	9,1378	-0,9471	0,3187	9,9434	-0,8591	0,5689	10,7489
21	-0,9404	0,2927	9,1378	-0,9372	0,295	9,9434	-0,8991	0,5165	10,7489
22	-0,9683	0,1409	9,1378	-0,9267	0,3742	9,9434	-0,5665	0,4161	10,7489
23	-0,9866	0,1969	9,1378	-0,8228	0,489	9,9434	-0,627	0,6993	10,7489
24	-0,9093	0,1345	9,1378	-0,6381	0,6031	9,9434	-0,8329	0,4524	10,7489
25	-0,68	0,1688	9,1378	-0,5504	0,2861	9,9434	-0,789	0,6246	10,7489
26	-0,6768	0,5317	9,1378	-0,8215	0,2832	9,9434	-0,8816	0,544	10,7489
27	-0,8622	0,3861	9,1378	-0,9116	0,2844	9,9434	-0,9044	0,5018	10,7489
28	-0,9714	0,2401	9,1378	-0,9435	0,3382	9,9434	-0,8938	0,4721	10,7489
29	-0,988	0,1878	9,1378	-0,946	0,3088	9,9434	-0,7215	0,4396	10,7489
30	-0,952	0,1355	9,1378	-0,8976	0,4147	9,9434	-0,6943	0,6751	10,7489
31	-0,9884	0,1786	9,1378	-0,7498	0,543	9,9434	-0,8658	0,4592	10,7489
32	-0,8328	0,1454	9,1378	-0,8666	0,2817	9,9434	-0,837	0,589	10,7489
33	-0,5771	0,1759	9,1378	-0,9304	0,2903	9,9434	-0,8954	0,5235	10,7489
34	-0,556	0,5919	9,1378	-0,9361	0,3569	9,9434	0,0006	0,5009	10,7489
35	-0,7569	0,4778	9,1378	-0,0697	0,0944	9,9434	-0,2626	0,2926	10,7489
36	-0,9224	0,3173	9,1378	-0,2807	0,2208	9,9434	-0,1441	0,6273	10,7489

	Pro	filquerschr	nitt 7	Prof	filquerschr	nitt 8	Pro	filquerschr	nitt 9
Punkt	Χ	Υ	Z	Х	Υ	Z	Х	Υ	Z
37	-0,9755	0,1458	9,1378	-0,5054	0,2812	9,9434	-0,0741	0,1363	10,7489
38	-0,9827	0,2117	9,1378	-0,4838	0,6511	9,9434	-0,3066	0,7033	10,7489
39	-0,2522	0,6356	9,1378	-0,2899	0,6556	9,9434	-0,4718	0,7241	10,7489
40	-0,4457	0,6258	9,1378	-0,1117	0,5972	9,9434	-0,3956	0,3629	10,7489
41	-0,4741	0,1733	9,1378	0,0428	-0,0072	9,9434	-0,0543	0,5561	10,7489
42	-0,2295	0,1207	9,1378	0,0461	0,4817	9,9434	-0,1813	0,2339	10,7489
43	-0,0071	0,0027	9,1378	-0,1521	0,1529	9,9434	-0,2073	0,6644	10,7489
44	0,0503	0,5047	9,1378	-0,3703	0,2529	9,9434	-0,4798	0,3936	10,7489
45	-0,1345	0,6081	9,1378	-0,4048	0,6607	9,9434	-0,0102	0,0662	10,7489
46	-0,331	0,6394	9,1378	-0,2163	0,6395	9,9434	-0,3719	0,7176	10,7489
47	-0,3721	0,1602	9,1378	-0,0458	0,5572	9,9434	0,0264	0,4717	10,7489
48	-0,1386	0,0815	9,1378	-0,0307	0,0622	9,9434	-0,3055	0,3185	10,7489
49	0,0783	-0,0645	9,1378	-0,2375	0,201	9,9434	-0,1142	0,6061	10,7489
50	-0,022	0,5546	9,1378	-0,4606	0,2743	9,9434	-0,1079	0,1696	10,7489
51	-0,2123	0,6294	9,1378	-0,5228	0,6427	9,9434	-0,2747	0,6932	10,7489
52	-0,4078	0,6328	9,1378	-0,3274	0,6599	9,9434	0,0616	-0,0235	10,7489
53	-0,2763	0,1366	9,1378	-0,1456	0,6136	9,9434	-0,4384	0,7239	10,7489
54	-0,0523	0,033	9,1378	0,0167	0,5085	9,9434	-0,4373	0,3793	10,7489
55	0,0842	0,4767	9,1378	-0,1102	0,1247	9,9434	-0,0263	0,529	10,7489
56	-0,097	0,5933	9,1378	-0,4164	0,2651	9,9434	-0,2212	0,2643	10,7489
57	-0,2924	0,6389	9,1378	-0,2528	0,6488	9,9434	-0,1752	0,6468	10,7489
58	-0,4831	0,6166	9,1378	-0,325	0,2382	9,9434	-0,0416	0,1017	10,7489
59	-0,4229	0,1682	9,1378	-0,4444	0,6571	9,9434	-0,3391	0,7114	10,7489
60	-0,1835	0,1023	9,1378	-0,0789	0,5787	9,9434	-0,5111	0,7217	10,7489
61	0,0364	-0,0298	9,1378	0,0068	0,0283	9,9434	0,0512	0,4417	10,7489
62	0,0149	0,5307	9,1378	-0,1955	0,1788	9,9434	-0,3499	0,342	10,7489
63	-0,173	0,6202	9,1378	-0,3651	0,6615	9,9434	-0,0836	0,5818	10,7489
64	-0,3696	0,6374	9,1378	-0,1806	0,6277	9,9434	-0,1428	0,2016	10,7489
65	-0,3239	0,1498	9,1378	-0,0139	0,5337	9,9434	-0,2405	0,6799	10,7489
66	-0,0948	0,0584	9,1378	0,1338	0,386	9,9434	-0,5229	0,4058	10,7489
67	-0,0605	0,576	9,1378	0,4935	-0,2518	9,9434	0,0201	0,0298	10,7489
68	0,3243	-0,3366	9,1378	0,4529	-0,5959	9,9434	-0,4051	0,7218	10,7489
69	0,5626	-0,6994	9,1378	0,2308	-0,2382	9,9434	0,3255	-0,0116	10,7489
70	0,5815	-0,2938	9,1378	0,25	0,2203	9,9434	0,1531	0,2994	10,7489
71	0,3869	0,0883	9,1378	0,5896	-0,4744	9,9434	0,2123	-0,2477	10,7489
72	0,2168	0,3377	9,1378	0,4428	-0,1417	9,9434	0,4555	-0,687	10,7489
73	0,1167	0,447	9,1378	0,3293	-0,3873	9,9434	0,458	-0,3011	10,7489
74	0,202	-0,1863	9,1378	0,1599	-0,1423	9,9434	0,2575	0,1206	10,7489
75	0,3991	-0,4422	9,1378	0,1011	0,4245	9,9434	0,0869	0,3954	10,7489
76	0,4931	-0,1086	9,1378	0,3898	-0,0326	9,9434	0,3019	-0,4002	10,7489
77	0,3233	0,191	9,1378	0,5119	-0,7018	9,9434	0,5614	-0,8989	10,7489
78	0,1478	0,416	9,1378	0,1945	0,305	9,9434	0,5883	-0,6229	10,7489
79	0,2851	-0,2853	9,1378	0,2645	-0,2873	9,9434	0,3714	-0,1073	10,7489

	Pro	filquerschr	itt 7	Pro	filquerschr	nitt 8	Profilquerschnitt 9		
Punkt	Х	Υ	Z	Х	Υ	Z	Х	Υ	Z
80	0,5094	-0,6128	9,1378	0,1649	0,346	9,9434	0,1841	0,2499	10,7489
81	0,4169	0,0357	9,1378	0,3157	0,108	9,9434	0,1764	-0,1905	10,7489
82	0,254	0,2901	9,1378	0,3535	0,0381	9,9434	0,4009	-0,5819	10,7489
83	0,1576	-0,1392	9,1378	0,5697	-0,8084	9,9434	0,4992	-0,3989	10,7489
84	0,3622	-0,389	9,1378	0,5424	-0,3627	9,9434	0,2921	0,0548	10,7489
85	0,5382	-0,2008	9,1378	0,3922	-0,491	9,9434	0,1208	0,348	10,7489
86	0,3558	0,1401	9,1378	0,0835	-0,0507	9,9434	0,2578	-0,3236	10,7489
87	0,1777	0,3837	9,1378	0,196	-0,1898	9,9434	0,5089	-0,7927	10,7489
88	0,2444	-0,2351	9,1378	0,0742	0,4537	9,9434	0,1013	-0,0781	10,7489
89	0,4551	-0,5269	9,1378	0,2228	0,263	9,9434	0,4154	-0,2039	10,7489
90	0,4459	-0,0174	9,1378	0,2973	-0,337	9,9434	0,2216	0,1858	10,7489
91	0,2895	0,2411	9,1378	0,1225	-0,0958	9,9434	0,1395	-0,1339	10,7489
92	0,1187	-0,101	9,1378	0,2762	0,1769	9,9434	0,3448	-0,4775	10,7489
93	0,7775	-0,7689	9,1378	0,7838	-1,2108	9,9434	0,5392	-0,4971	10,7489
94	0,898	-1,2423	9,1378	0,818	-1,2734	9,9434	0,7649	-1,3145	10,7489
95	0,8703	-1,2172	9,1378	0,7205	-0,809	9,9434	0,8002	-1,3298	10,7489
96	0,9167	-1,2391	9,1378	0,8611	-1,2165	9,9434	0,8188	-1,3044	10,7489
97	0,9314	-1,2067	9,1378	0,8713	-1,2698	9,9434	0,8073	-1,259	10,7489
98	0,8826	-1,0597	9,1378	0,7573	-1,1615	9,9434	0,6814	-0,8765	10,7489
99	0,7024	-0,5769	9,1378	0,8233	-1,2801	9,9434	0,7386	-1,2618	10,7489
100	0,7484	-1,0111	9,1378	0,8009	-1,2421	9,9434	0,7761	-1,327	10,7489
101	0,8814	-1,2331	9,1378	0,6266	-0,9155	9,9434	0,81	-1,324	10,7489
102	0,9297	-1,2252	9,1378	0,8005	-1,0332	9,9434	0,8155	-1,2858	10,7489
103	0,9244	-1,1813	9,1378	0,8616	-1,2833	9,9434	0,7913	-1,2078	10,7489
104	0,8135	-0,8654	9,1378	0,6785	-0,6976	9,9434	0,7608	-1,3071	10,7489
105	0,6232	-0,3876	9,1378	0,8571	-1,2045	9,9434	0,792	-1,3313	10,7489
106	0,8557	-1,1922	9,1378	0,8375	-1,2886	9,9434	0,8175	-1,3125	10,7489
107	0,9076	-1,2422	9,1378	0,8459	-1,2892	9,9434	0,8101	-1,2679	10,7489
108	0,916	-1,157	9,1378	0,8726	-1,2617	9,9434	0,7253	-1,0042	10,7489
109	0,7405	-0,6727	9,1378	0,7102	-1,0733	9,9434	0,6794	-1,1409	10,7489
110	0,6559	-0,855	9,1378	0,7612	-0,9209	9,9434	0,7699	-1,3214	10,7489
111	0,8753	-1,2256	9,1378	0,865	-1,2285	9,9434	0,8054	-1,3274	10,7489
112	0,9244	-1,2331	9,1378	0,8675	-1,2772	9,9434	0,8178	-1,2951	10,7489
113	0,9282	-1,1938	9,1378	0,8299	-1,2854	9,9434	0,8045	-1,25	10,7489
114	0,6635	-0,4819	9,1378	0,8718	-1,2533	9,9434	0,6357	-0,7494	10,7489
115	0,8487	-0,9622	9,1378	0,7923	-1,2265	9,9434	0,7499	-1,2844	10,7489
116	0,8408	-1,1673	9,1378	0,6352	-0,5867	9,9434	0,7836	-1,3305	10,7489
117	0,9321	-1,213	9,1378	0,8093	-1,2578	9,9434	0,8138	-1,3198	10,7489
118	0,889	-1,239	9,1378	0,8291	-1,1188	9,9434	0,8129	-1,2768	10,7489
119	0,9316	-1,2193	9,1378	0,8541	-1,2874	9,9434	0,7675	-1,1325	10,7489
120	0,9203	-1,169	9,1378	0,8687	-1,2408	9,9434	0,6205	-1,0199	10,7489

Loch 1	-0,1575	0,2573	9,1378	-0,1349	0,2832	9,9434	-0,1124	0,3091	10,7489
Loch 2	-0,4329	0,3392	9,1378	-0,3946	0,4062	9,9434	-0,3563	0,4732	10,7489
Loch 3	0,3684	-0,2177	9,1378	0,3529	-0,2601	9,9434	0,3374	-0,3026	10,7489
Loch 4	0,1416	0,015	9,1378	0,1506	-0,002	9,9434	0,1596	-0,019	10,7489
Loch 5	0,6809	-0,7256	9,1378	0,6486	-0,795	9,9434	0,6163	-0,8645	10,7489

	Profilquerschnitt 10				
Punkt	Χ	Υ	Z		
1	-0,8551	0,6867	11,5545		
2	-0,6417	0,8365	11,5545		
3	-0,8138	0,6581	11,5545		
4	-0,7705	0,7968	11,5545		
5	-0,8241	0,6627	11,5545		
6	-0,843	0,7436	11,5545		
7	-0,8601	0,7104	11,5545		
8	-0,8435	0,6743	11,5545		
9	-0,5776	0,5807	11,5545		
10	-0,5519	0,8422	11,5545		
11	-0,6627	0,6108	11,5545		
12	-0,7003	0,8236	11,5545		
13	-0,8094	0,7738	11,5545		
14	-0,7494	0,6365	11,5545		
15	-0,8518	0,7312	11,5545		
16	-0,8588	0,6945	11,5545		
17	-0,6119	0,8402	11,5545		
18	-0,75	0,8062	11,5545		
19	-0,8328	0,7548	11,5545		
20	-0,8583	0,7177	11,5545		
21	-0,834	0,6681	11,5545		
22	-0,5361	0,563	11,5545		
23	-0,8498	0,6799	11,5545		
24	-0,6199	0,5965	11,5545		
25	-0,6712	0,831	11,5545		
26	-0,7904	0,786	11,5545		
27	-0,706	0,624	11,5545		
28	-0,8605	0,7026	11,5545		
29	-0,7711	0,643	11,5545		
30	-0,7926	0,6501	11,5545		
31	-0,5819	0,8421	11,5545		
32	-0,7289	0,8144	11,5545		
33	-0,8215	0,7648	11,5545		
34	-0,8554	0,7246	11,5545		
35	-0,8477	0,7375	11,5545		

	Profilquerschnitt 10					
Punkt	Х	Y	Z			
36	-0,4889	0,8369	11,5545			
37	-0,4175	0,4985	11,5545			
38	-0,1576	0,2676	11,5545			
39	0,0226	0,4372	11,5545			
40	-0,4956	0,5434	11,5545			
41	0,0335	0,0037	11,5545			
42	-0,1127	0,6179	11,5545			
43	-0,226	0,3422	11,5545			
44	-0,2472	0,7394	11,5545			
45	-0,3966	0,815	11,5545			
46	-0,0831	0,1741	11,5545			
47	-0,0308	0,515	11,5545			
48	-0,3	0,4113	11,5545			
49	-0,3044	0,7748	11,5545			
50	-0,4577	0,8314	11,5545			
51	-0,164	0,6712	11,5545			
52	-0,38	0,4734	11,5545			
53	-0,1911	0,3056	11,5545			
54	0,0482	0,3975	11,5545			
55	-0,456	0,5219	11,5545			
56	-0,014	0,0765	11,5545			
57	-0,0885	0,5897	11,5545			
58	-0,22	0,7194	11,5545			
59	-0,3651	0,8035	11,5545			
60	-0,5203	0,8405	11,5545			
61	-0,1196	0,2215	11,5545			
62	-0,0036	0,4764	11,5545			
63	-0,1378	0,6451	11,5545			
64	-0,2753	0,7579	11,5545			
65	-0,4269	0,8241	11,5545			
66	-0,2623	0,3775	11,5545			
67	-0,048	0,1257	11,5545			
68	-0,059	0,5528	11,5545			
69	-0,1914	0,696	11,5545			
70	-0,3393	0,4433	11,5545			

	Profilquerschnitt 10					
Punkt	Х	YZ				
71	-0,3343	0,7901	11,5545			
72	0,4329	-0,3671	11,5545			
73	0,2249	0,0873	11,5545			
74	0,2483	-0,3739	11,5545			
75	0,4973	-0,8811	11,5545			
76	0,5585	-0,6944	11,5545			
77	0,3485	-0,1702	11,5545			
78	0,14	0,2444	11,5545			
79	0,1231	-0,1452	11,5545			
80	0,342	-0,5579	11,5545			
81	0,4728	-0,4665	11,5545			
82	0,265	0,0075	11,5545			
83	0,2075	-0,2972	11,5545			
84	0,4463	-0,773	11,5545			
85	0,3915	-0,2683	11,5545			
86	0,1832	0,1663	11,5545			
87	0,079	-0,0703	11,5545			
88	0,2883	-0,4511	11,5545			
89	0,5615	-1,0191	11,5545			
90	0,5113	-0,5665	11,5545			
91	0,3038	-0,0729	11,5545			
92	0,095	0,3215	11,5545			
93	0,1658	-0,2209	11,5545			
94	0,3946	-0,6652	11,5545			
95	0,6812	-1,2788	11,5545			
96	0,718	-1,3559	11,5545			
97	0,749	-1,3652	11,5545			
98	0,7661	-1,3342	11,5545			
99	0,7473	-1,2692	11,5545			
100	0,7083	-1,3385	11,5545			
101	0,7278	-1,3644	11,5545			
102	0,7614	-1,3562	11,5545			
103	0,762	-1,3175	11,5545			
104	0,6895	-1,0818	11,5545			
105	0,6251	-1,1572	11,5545			
106	0,7144	-1,3503	11,5545			
107	0,7417	-1,3667	11,5545			
108	0,7665	-1,3427	11,5545			
109	0,757	-1,3012	11,5545			
110	0,6038	-0,823	11,5545			
111 112	0,7055 0,7224	-1,3325 -1,3607	11,5545			
		-1,3607	11,5545 11,5545			
113	0,7559	-1,3013	11,0040			

	Profilquerschnitt 10					
Punkt	Х	Y	Z			
114	0,7643	-1,3257	11,5545			
115	0,73	-1,212	11,5545			
116	0,7112	-1,3444	11,5545			
117	0,7341	-1,3664	11,5545			
118	0,765	-1,3498	11,5545			
119	0,7595	-1,3093	11,5545			
120	0,6475	-0,9521	11,5545			

Loch 1	-0,3179	0,5402	11,5545	
Loch 2	Loch 2 -0,0898		11,5545	
Loch 3 0,3219		-0,345	11,5545	
Loch 4	0,1687	-0,0359	11,5545	
Loch 5	0,584	-0,934	11,5545	

[0022] Fig. 5 ist eine Illustration von Querschnitten der Turbinenschaufel 22. Wie in Fig. 2 gezeigt, enthält die Schaufel 22 mehrere Kühlfluidmediumkanäle 100, die auch als Kühlkanäle bezeichnet werden können. In einem Ausführungsbeispiel ist das Kühlfluidmedium Luft. Alternativ kann jedes beliebige Kühl-fluidmedium verwendet werden, das eine Kühlung der Turbinenschaufel 22 ermöglicht, wie im vorliegenden Text beschrieben. In dem Ausführungsbeispiel enthalten die mehreren Kühlkanäle 100 einen ersten Kühlkanal 102, einen zweiten Kühlkanal 104, einen dritten Kühlkanal 106, einen vierten Kühlkanal 108 und einen fünften Kühlkanal 110. Um die Kühlung des Flügels 40 zu verbessern, erstrecken sich die Kanäle 100 durch den Flügel 40 hindurch von einem Wurzelabschnitt 120 des Flügels 40 zu einem Spitzenabschnitt 122 des Flügels 40. Die Kanäle 100 erstrecken sich im Wesentlichen linear durch die zusammengesetzt-gekrümmten Flügel 40 und setzen sich durch die Plattform 42, den Schaftabschnitt 44 und den Schwalbenschwanzabschnitt 46 hindurch fort.

[0023] In dem Ausführungsbeispiel kann ein Kühlmedium, zum Beispiel Luft, zu den mehreren Kühlkanälen 100, die sich durch den Flügel 40 hindurch erstrecken, geleitet werden. Das Rad 16, auf dem die Schaufel 22 montiert ist, enthält eine einzelne Sammelkammer, die in die Kühlkanäle 100 hinein öffnet, wenn der Schwalbenschwanz 46 an dem Rad 16 befestigt ist. Folglich wird, wenn sich das Rad 16 dreht, Kühlmedium aus der einzelnen Sammelkammer in dem Rad 16 in die Kühlkanäle 100 geleitet, wobei es radial nach aussen durch die Kanäle 100 strömt, bevor es durch Kühllochaustrittspositionen, die in dem Spitzenabschnitt 122 des Flügels 40 definiert sind, austritt.

[0024] Turbinen sind dafür ausgelegt, bei einer vorgegebenen Temperatur zu arbeiten, bei der eine gewünschte Leistung und ein gewünschter Wirkungsgrad ermöglicht werden. In der Regel sind neuere Turbinen dafür ausgelegt, bei einer höheren Temperatur zu arbeiten als ältere Turbinen, und neuere Turbinenkomponenten sind dafür ausgelegt, den höheren Temperaturen zu widerstehen. Um höheren Temperaturen zu widerstehen, kann die Form eines Flügels geändert werden, und/oder das Material, aus dem die Schaufel besteht, kann geändert werden. In einem weiteren Beispiel werden Schaufeln mit grösseren Kühlkanälen versehen, um geeignete Temperaturen im gesamten Flügel aufrecht zu erhalten. Jedoch kann das Umlenken einer grösseren Menge Luft von dem Verdichter in die Kühlkanäle hinein den Wirkungsgrad der Turbine verringern. Das Ändern der Luftmenge, die von dem Verdichter in die Kühlkanäle hinein umgelenkt wird, kann ausserdem behördliche Regulierungsauflagen veranlassen und einen Turbinenbetreiber zwingen, Berichtsauflagen zu erfüllen und/ oder andere Massnahmen zu ergreifen. Darum ist es beim Auswechseln verschlissener oder beschädigter Schaufeln nicht immer notwendig oder von Vorteil, die Schaufel durch eine Schaufel zu ersetzen, die zur Verwendung in einer neuen, mit höherer Temperatur arbeitenden Turbine ausgelegt ist. Beim Auswechseln einer verschlissenen oder beschädigten Schaufel ist es von Vorteil, die Zufuhrbedingungen, die voraussichtliche Grenznutzungsdauer der Schaufel und die Reparaturstrategie der Originalschaufel beizubehalten. Dazu gehört auch das Beibehalten eines im Wesentlichen ähnlichen Wertes an Schaufelkühlung, der vorher schon vorhanden war. Es ist jedoch auch von Vorteil, dass eine Austauschschaufel eine modifizierte Form hat und aus einem anderen Material besteht, wenn diese Form oder dieses Material die Leistung der Turbine verbessert.

[0025] Wie oben beschrieben, ist Fig. 2 eine Querschnitts-Vorderansicht der Turbinenschaufel 22, und veranschaulicht eine beispielhafte Ausrichtung von Kühlkanälen 100. Fig. 6 ist eine Querschnittsansicht des Flügels 40 entlang der Linie 1–1 (in Fig. 2 gezeigt). Fig. 7 ist eine Querschnittsansicht des Flügels 40 entlang der Linie 2-2 (in Fig. 2 gezeigt). Fig. 8 ist eine Querschnittsansicht des Flügels 40 entlang der Linie 3–3 (in Fig. 2 gezeigt). Die beispielhafte Ausrichtung der Kühlkanäle 100 ermöglicht es, dass der Flügel 40 die Turbinenleistung und die Grenznutzungsdauer der Schaufel beibehält und/oder verbessert.

[0026] Um den Austausch einer originalen Vierlochschaufel der Stufe 2 gegen eine im vorliegenden Text beschriebene Schaufel 22 zu ermöglichen, erstrecken sich die Luftkanäle 100 in dem Ausführungsbeispiel in einem Wölbungslinienmuster 140 (in Fig. 5 gezeigt) des Flügels 40. Genauer gesagt, erstreckt sich in dem Ausführungsbeispiel das Wölbungslinienmuster 140 allgemein entlang einer Hauptwölbungslinie 142 (in Fig. 5 gezeigt) des Flügels 40. Die Hauptwölbungslinie 142 hat an allen Punkten den gleichen Abstand zwischen einer ansaugseitigen Fläche 144 (in Fig. 5 gezeigt) und einer druckseitigen Fläche 146 (in Fig. 5 gezeigt) des Flügels 40. In dem Ausführungsbeispiel beträgt eine Entfernung zwischen Kanten von Luftkanälen 100 und entweder der ansaugseitigen Fläche 144 und/oder der druckseitigen Fläche 146 des Flügels 40 nicht weniger als etwa 0,050 Inch. Alternativ können die Positionen der Luftkanäle 100 in dem Flügel 40 so angepasst werden, dass Anpassungen der Kanaldurchmesser vorgenommen werden können, ohne gegen die Vorgaben der Mindestwanddicke zu Verstössen. Des Weiteren kann in alternativen Ausführungsformen das Wölbungslinienmuster 140 geringfügig von der Hauptwölbungslinie 142 verschoben oder verändert werden, um eine wirksame Kühlung des Flügels zu ermöglichen.

[0027] Wie gezeigt, enthalten die mehreren Kühlkanäle 100 erste 102, zweite 104, dritte 106, vierte 108 und fünfte 110 Kühlkanäle, die sich jeweils durch den Flügelprofilquerschnitt 40 hindurch erstrecken. Zur Orientierung ist der erste Kühlkanal 102 der Vorderkante 150 (in Fig. 6 gezeigt) am nächsten angeordnet, und der fünfte Kühlkanal 110 ist einer Hinterkante 152 (in Fig. 6 gezeigt) am nächsten angeordnet. In einem Ausführungsbeispiel betragen die Durchmesser 160, 162, 164 und 166 des ersten 102, des zweiten 104, des dritten 106 bzw. des vierten 108 Kühlkanals ungefähr 0,070 Inch durch den Flügel 40 hindurch. Oder anders ausgedrückt: In dem Ausführungsbeispiel betragen die Durchmesser 160, 162, 164 und 166 ungefähr 0,070 Inch zwischen der Linie 2–2 (d. h. der Wurzel 120, in Fig. 2 gezeigt) und der Linie 3–3 (d. h. der Spitze 122, in Fig. 2 gezeigt). In dem Ausführungsbeispiel beträgt ein Durchmesser 168 des fünften Kühlkanals 110 durch den Flügel 40 hindurch ungefähr 0,050 Inch. In einem Ausführungsbeispiel haben die Durchmesser der Kühlkanäle eine Abmessungstoleranz von etwa ±0,005 Inch.

[0028] In einem Ausführungsbeispiel erstrecken sich der erste 102, der zweite 104, der dritte 106, der vierte 108 und der fünfte 110 Kühlkanal ausserdem durch den Schaft 44 und den Schwalbenschwanz 46 hindurch. In dem Ausführungsbeispiel sind die Durchmesser 160, 162, 164, 166 und 168 zwischen der Linie 1–1 und der Linie 2–2 (in Fig. 2 gezeigt) grösser. In dem Ausführungsbeispiel betragen die Durchmesser 160, 162, 164 und 166 0,140 Inch zwischen der Linie 1–1 und der Linie 2–2, und der Durchmesser 168 beträgt 0,100 Inch zwischen der Linie 1–1 und der Linie 2–2.

[0029] Die Kühlkanalaustrittspositionen des Flügelprofilquerschnitts 40 werden so umverlegt, dass eine Durchmessermaximierung ermöglicht wird, ohne die Anforderungen an die Mindestwanddicke auf einer Seite zu verletzen und gleichzeitig

einen übermässig grossen Rand auf der anderen Seite zu lassen. Die Austrittspositionen sind an der Unterseite 78 der Schaufel 22 und an der Spitze 122 des Flügelprofilguerschnitts 40 definiert.

[0030] Tabelle II gibt beispielhafte Kühlkanalpositionen und Lochdurchmesser innerhalb der Turbinenschaufel 22 an. Positionen und Durchmesser sind in Inch und ausserdem in Millimetern angegeben (z. B. hat der erste Kanal 102 einen Durchmesser 160 von Linie 1–1 zu Linie 2–2 von 0,140 Inch oder 3,56 Millimetern).

T /	BEI	Ŧ	I	TT

Loch-	Loch-	Loch-	Unterer		Mittlerer		Oberer	
nummer	durch-	durch-	Profilquerschnitt		Profilquerschnitt		Profilquerschnitt	
	messer	messer						
	von 1 zu	von 2 zu	X	Y	X	Y	X	Y
**	2	3						
102	0,140	0,070	-0,888	0,000	-0,682	0,096	-0,293	0,583
	[3,56]	[1,78]	[22,56]	[0,0]	[17,32]	[2,44]	[7,44]	[14,81]
104	0,140	0,070	-0,420	0,000	-0,304	0,089	-0,075	0,352
	[3,56]	[1,78]	[10,67]	[0,0]	[7,72]	[2,26]	[1,90]	[8,94]
106	0,140	0,070	0,083	0,000	0,083	0,125	0,174	-0,047
	[3,56]	[1,78]	[2,11]	[0,0]	[2,11]	[3,18]	[4,42]	[1,19]
108	0,140	0,070	0,586	0,000	0,469	0,058	0,312	-0,372
	[3,56]	[1,78]	[14,88]	[0,0]	[11,91]	[1,47]	[7,92]	[9,45]
110	0,100	0,050	0,905	0,000	0,891	-0,274	0,563	-0,978
	[2,54]	[1,27]	[22,99]	[0,0]	[22,63]	[6,96]	[14,30]	[24,84]

[0031] Mit Bezug auf die Fig. 6–8 ist der Ursprung des in Tabelle II referenzierten Kartesischen X, Y, Z-Koordinatensystems, das zum Lokalisieren der Kühlkanäle verwendet wird, der Schnittpunkt der Bezugsebenen S, T und ü. Diese Bezugsebenen sind in den Zeichnungen angegeben. Die Entfernung X zur Mitte der Löcher ist die Entfernung von der Bezugslinie T, und die Entfernung Y ist die Entfernung von der Bezugslinie S. Werte für eine Entfernung X und eine Entfernung Y sind in drei Entfernungen von der Bezugslinie U angegeben. Genauer gesagt, sind Werte für eine Entfernung X und eine Entfernung Y an der Linie 1–1 (d. h. am unteren Profilquerschnitt), an der Linie 2–2 (d.h. am mittleren Profilquerschnitt) und an der Linie 3–3 (d.h. am oberen Profilquerschnitt) angegeben, während die Entfernung Z die Entfernung von der Bezugslinie U ist. Somit liegt der Ursprung des Koordinatensystems am Schnittpunkt der Bezugslinien S, T und U. Fig. 6 ist eine Querschnittsansicht der Turbinenschaufel 22 entlang der Linie 1–1. Fig. 7 ist eine Querschnittsansicht der Turbinenschaufel 22 entlang der Linie 3–3. In dem Ausführungsbeispiel werden die Kanäle 100 mittels STEM-Bohren (Shaped Tube Electrochemical Machining) ausgebildet.

[0032] Die oben beschriebenen Ausführungsformen einer Turbinenschaufel stellen einen kosteneffektiven und verlässlichen Austausch für derzeit verwendete Schaufeln der Stufe 2 dar. Die oben beschriebenen Schaufeln behalten die ursprünglichen Bedingungen und ähnliche Reparaturstrategien wie die Schaufeln bei, die ersetzt werden, während die Turbinenleistung und die Grenznutzungsdauer der Schaufel beibehalten und/oder verbessert werden.

[0033] Oben sind Ausführungsbeispiele einer Schaufel für eine Turbine und einen Turbinenmotor ausführlich beschrieben worden. Die luftgekühlte Schaufel und der Turbinenmotor sind nicht auf die im vorliegenden Text beschriebenen konkreten Ausführungsformen beschränkt. Vielmehr können Komponenten unabhängig und separat von anderen im vorliegenden Text beschriebenen Komponenten verwendet werden.

[0034] Diese schriftliche Beschreibung verwendet Beispiele, um die Erfindung, einschliesslich der besten Art ihrer Ausführung, zu offenbaren, und ausserdem, um es jedem Fachmann zu ermöglichen, die Erfindung zu praktizieren, einschliesslich des Herstellens und Verwendens von Vorrichtungen oder Systemen und des Ausführens der zugehörigen Verfahren. Der patentfähige Geltungsbereich der Erfindung wird durch die Ansprüche definiert und kann weitere Beispiele enthalten, die dem Fachmann einfallen. Es ist beabsichtigt, dass derartige andere Beispiele in den Geltungsbereich der Ansprüche fallen, wenn sie Strukturelemente aufweisen, die sich nicht vom Wortlaut der Ansprüche unterscheiden, oder wenn sie gleichwertige Strukturelemente enthalten, die sich nur unwesentlich vom Wortlaut der Ansprüche unterscheiden.

Patentansprüche

 Schaufel (20, 22, 24) für eine Turbine (10), wobei die Schaufel Folgendes umfasst: einen Schwalbenschwanzabschnitt (46), der dafür konfiguriert ist, die Schaufel mit einem Turbinenrad (16) zu koppeln, wobei der Schwalbenschwanzabschnitt eine Unterseite (78) umfasst; einen Schaftabschnitt (44), der sich von dem Schwalbenschwanzabschnitt erstreckt;

einen Flügel (40), der einen Wurzelabschnitt (120), einen Spitzenabschnitt (122), eine Flügelform und ein geometrisch-ideales Profil im Wesentlichen gemäss den in Tabelle I angegebenen Kartesischen Koordinatenwerten (54) X, Y und Z umfasst, wobei Z eine Entfernung von der Unterseite des Schwalbenschwanzabschnitts ist und X und Y Koordinaten sind, die das Profil in jeder Entfernung Z von der Unterseite definieren; und mehrere Kühlkanäle (100), wobei diese mehreren Kühlkanäle maximal fünf (102, 104, 106, 108, 110) an der Zahl sind, die sich zwischen der Wurzel und dem Spitzenabschnitt des Flügels erstrecken, wobei jeder der Kühlkanäle an

dem Spitzenabschnitt austritt, wobei die mehreren Kühlkanäle in einem Wölbungslinienmuster angeordnet sind (140).

- Schaufel (20, 22, 24) nach Anspruch 1, wobei die mehreren Kühlkanäle (100) an den Spitzen- und Wurzelabschnitten (120, 122) des Flügels (40) im Wesentlichen gemäss in Tabelle II angegebenen Kartesischen X- und Y-Koordinatenwerte (54) angeordnet sind.
- 3. Schaufel (20, 22, 24) nach Anspruch 1, wobei die mehreren Kühlkanäle (100) im Wesentlichen parallel zueinander ausgerichtet sind.
- 4. Schaufel (20, 22, 24) nach Anspruch 1, wobei ein erster, ein zweiter, ein dritter und ein vierter (102, 104, 106, 108) der mehreren Kühlkanäle (100) jeweils einen Durchmesser (160, 162, 164, 166) von etwa 0,070 Inch ± 0,005 Inch von der Wurzel (120) zum Spitzenabschnitt (122) des Flügels aufweist und ein fünfter (110) der mehreren Kühlkanäle einen Durchmesser (168) von etwa 0,050 Inch ± 0,005 Inch von der Wurzel zum Flügelspitzenabschnitt aufweist.
- 5. Schaufel (20, 22, 24) nach Anspruch 4, wobei mindestens einer der ersten, zweiten, dritten, vierten und fünften Kühlkanäle (102, 104, 106, 108, 110) einen grösseren Durchmesser (160, 162, 164, 166, 168) innerhalb des Schwalbenschwanzes (46) und der Schaftabschnitte (44) als in dem Flügel (40) aufweist.
- Schaufel (20, 22, 24) nach Anspruch 1, wobei die mehreren Kühlkanäle (100) eine Verlängerung der Grenznutzungsdauer des Flügels (40) unterstützen.
- 7. Schaufel (20, 22, 24) nach Anspruch 1, wobei die mehreren Kühlkanäle (100) die Aufrechterhaltung einer gewünschten Flügeltemperatur innerhalb des Flügels (40) mit einem vorgegebenen Luftstrom durch die mehreren Kühlkanäle hindurch unterstützen.
- Schaufel (20, 22, 24) nach Anspruch 1, wobei die mehreren Kühlkanäle (100) zunehmende Kriechgrenzen durch den Flügel (40) hindurch unterstützen.
- Schaufel (20, 22, 24) nach Anspruch 1, wobei der Flügel (40) des Weiteren eine Beschichtung umfasst, die sich mindestens teilweise über jede Seite des Flügels erstreckt.
- 10. Gasturbinenmotor, der Folgendes umfasst: einen Rotor (12), der mindestens ein Rotorrad (14) umfasst; und mehrere Schaufeln (20, 22, 24), die sich radial von dem mindestens einen Rotorrad erstrecken, wobei jede der mehreren Schaufeln einen Schwalbenschwanzabschnitt (46), einen Schaftabschnitt (44), einen Flügel (40) und mehrere Kühlkanäle (100), die sich dort hindurch erstrecken, umfasst, wobei der Flügel ein geometrisch-ideales Profil aufweist, das im Wesentlichen gemäss in Tabelle I angegebenen Kartesischen Koordinatenwerten (54) X, Y und Z ausgebildet ist, wobei Z eine Entfernung von einer Unterseite des Schwalbenschwanzabschnitts ist und X und Y Koordinaten sind, die das Profil in jeder Entfernung Z von einer Unterseite (78) des Schwalbenschwanzabschnitts definieren, wobei sich die mehreren Kühlkanäle jeweils zwischen der Unterseite des Schwalbenschwanzabschnitts und einem Spitzenabschnitt (122) jedes Flügels erstrecken, wobei die mehreren Kühlkanäle maximal fünf (102, 104, 106, 108, 110) an der Zahl sind, die in einem Wölbungslinienmuster (140) angeordnet sind.

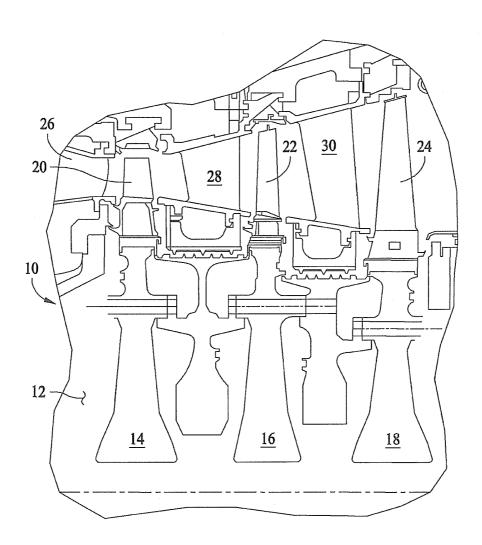
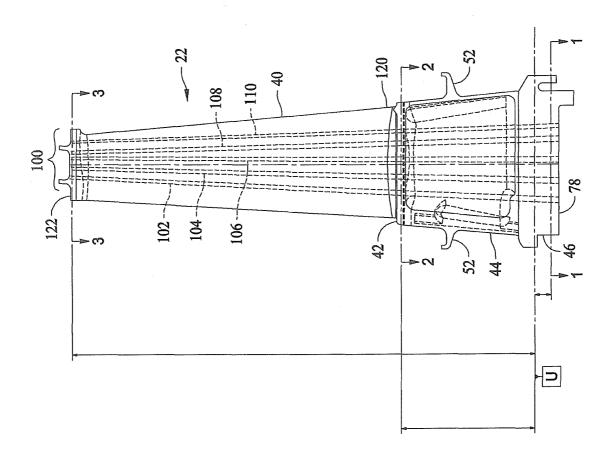
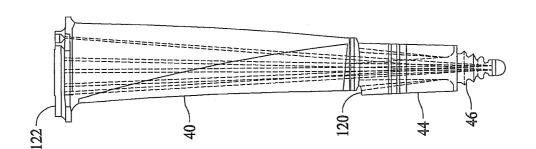




FIG. 1

FIG. 2

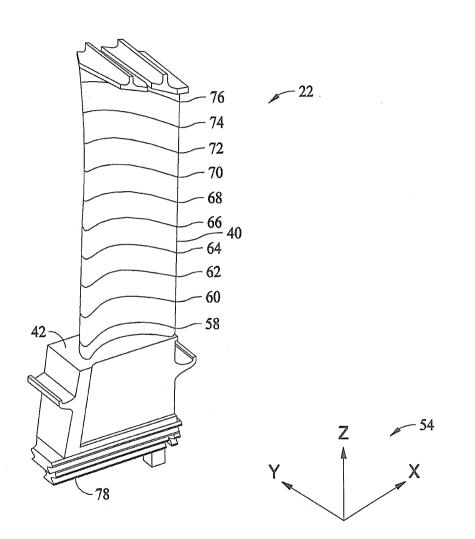
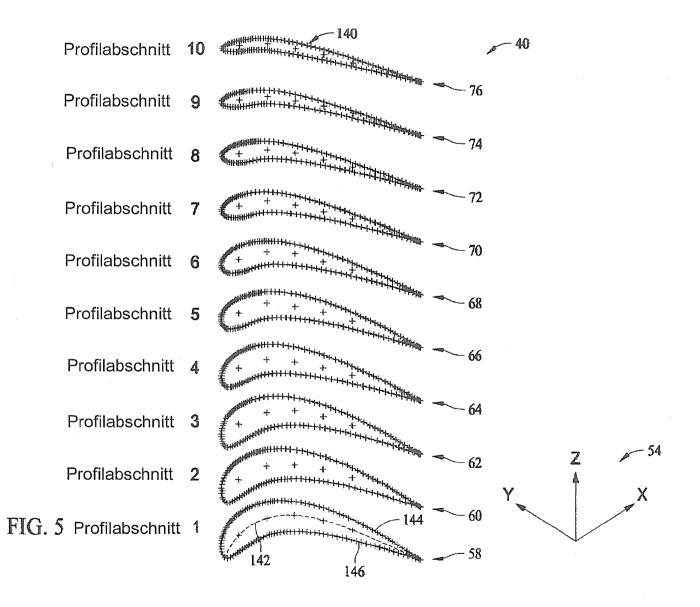



FIG. 4

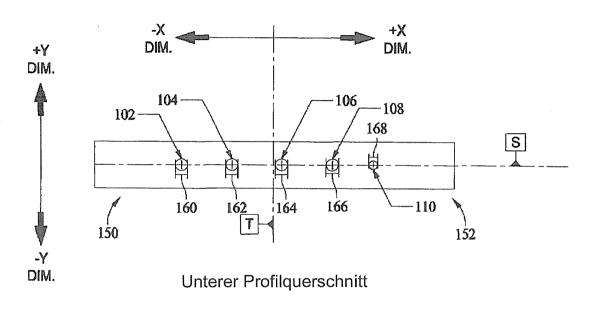
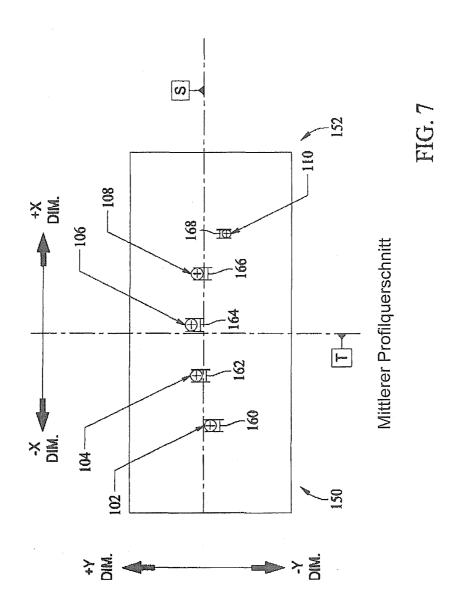
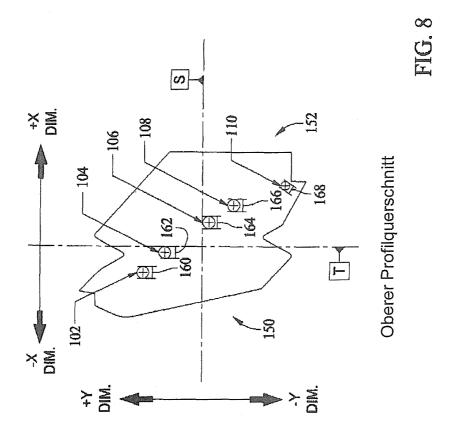




FIG. 6

