Unmanned vehicle concrete dam surface defect dynamic detection method based on wolf pack algorithm
附图说明 图1为本发明实施例的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法的流程图。 技术领域 本发明涉及一种基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,属于混凝土坝表面缺陷识别技术领域。 具体实施方式 下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。 如图1所示,本发明实施的一种基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,具体包含以下步骤: 步骤(1)定义无人载具集群中人工狼的个数N和由自动巡检控制站组成的中心控制节点。中心控制节点管理缺陷表,分为旧缺陷表和新增缺陷表。每个表包含缺陷位置信息X和缺陷函数值Y,并把新旧缺陷表同步给所有人工狼,人工狼建立缺陷状态表达式; 步骤(1.1)中心控制节点中缺陷表的表达式如下: 其中flag为新旧缺陷的标识符,last代表旧缺陷,new代表新缺陷。标识符后存放的是缺陷位置信息X和缺陷函数值Y。 步骤(1.2)对于每个人工狼i,其缺陷函数值Yi表达式如下: 其中k为缺陷等级系数,n为所有的缺陷等级,bi为缺陷等级系数下对应的缺陷个数。 步骤(1.3)对于每个人工狼i,其缺陷状态表达式如下: <Xi|Yi|static=0|1|2> 其中static为缺陷状态标识符,0代表中心控制节点已保存的旧缺陷,1代表新增缺陷,2代表旧缺陷的缺陷等级系数发生改变。 步骤(2)初始化本文方法所用到的参数。定义狼群中所有人工狼的位置Xi,搜索狼比例因子α,搜索狼的最大游走时间Tmax,距离判定因子w; 步骤(2.1)搜索狼个数Snum由搜索狼比例因子α决定,具体表达式如下: 其中α∈[0,1],N为所有无人载具数目,Snum取整数。 步骤(3)初始化本文方法的侦察环境。将大坝巡检区域划分Ax×Ay的离散网格,Ax、Ay表示在长度和宽度下的网格数量。每个网格坐标定义一个结构体信息I(v),v∈(1,2,...,Ax×Ay),包含该处是否存在大坝缺陷、人工狼信息素; 步骤(3.1)网格坐标下的结构体信息I(v)描述了当前位置的缺陷信息和人工狼信息素,公式为: I(v)=(Y,X),v∈(1,2,...,Ax×Ay) 其中,Y是缺陷函数值,Y=0说明第v个网格处不存在缺陷;若Y≠0,说明第v个网格处存在缺陷。使用人工狼的位置X作为信息素,方便其他人工狼进行通信。 步骤(4)搜索狼进行游走行为来动态检测坝面缺陷。选择无人载具集群中Snum匹搜索狼,分别向各自的h个方向感知附近的大坝缺陷,以游走步长stepα进行搜索,并记录每前进一步感知的缺陷函数值Yip后退回原来的位置。搜索狼在感知不同方向Yip后,选择最大Yip且大于当前位置缺陷函数值Yi0所在的方向移动,更新搜索狼的位置Xi和缺陷函数值Yi。当搜索狼检测到大坝缺陷,先通过对比中心控制节点同步的缺陷表来判断当前位置的缺陷的类型属性,并做对应的处理。搜索狼再更新网格信息,为后续搜索狼的识别提供记录。若搜索狼未检测到缺陷,重复上述游走行为直到达到最大游走时间Tmax; 步骤(4.1)搜索狼在d维空间中进行游走行为时,其位移表达式如下: 其中为搜索狼i在方向p上的游走位移,p(p=1,2,...,h)代表h个方向,xid为原始位置,为游走步长。 步骤(4.2)搜索狼在检测到大坝缺陷时,通过对比中心控制节点同步的缺陷表来判断当前缺陷类型属性,建立缺陷状态表达式的具体步骤如下: 当搜索狼检测到缺陷,对比缺陷表当缺陷的位置信息X和缺陷函数值Y都相同,即检测到的缺陷位于中心控制节点的旧缺陷表,令static=0;当X相同但Y不同,即检测到的缺陷的等级发生改变,令static=2;当缺陷的位置信息X不存在缺陷表中,即为新发缺陷,记录缺陷函数值Y并令static=1。 步骤(4.3)搜索狼完成缺陷状态表达式后,更新网格信息I(v)。更新过程的具体步骤如下: I(v)=(Y=2,Xi) 由于缺陷函数值Y不会超过1,采用Y=2表示此处缺陷已被搜索狼巡检。后续巡检时搜索狼再次遇见该网格处的缺陷可直接跳过,不做处理。 步骤(5)当搜索狼达到最大游走时间Tmax,搜索狼将各自的缺陷状态表达式向中心控制节点汇报,中心控制节点选择缺陷函数值最大的搜索狼成为头狼。头狼发出召唤行为,Mnum匹协作狼以奔袭步长stepb向头狼位置聚集; 步骤(5.1)搜索狼结束巡检后,中心控制节点选择缺陷函数值最大的搜索狼成为头狼,具体表达式如下: 其中,为第i个搜索狼的缺陷函数值最大,成为头狼;为Snum匹搜索狼缺陷函数值集合。 步骤(5.2)协作狼个数的具体表达式如下: Mnum=N-Snum 其中N为所有人工狼个数,Snum为搜索狼个数,包括其中一匹头狼。 步骤(5.3)协作狼以奔袭步长stepb快速向头狼聚集的过程,具体表达式如下: 其中为协作狼i第k+1次巡检时在d维空间中的位移,为第k次巡检的位移,为第k次巡检头狼在d维空间中的位置。 步骤(6)协作狼对头狼附近的缺陷实施围攻行为。当协作狼与头狼的位置dis<dnear时,以攻击步长stepc发起围攻行为。协作狼拍摄缺陷图片,在头狼更新当前缺陷位置的状态表达式后,获取头狼的缺陷状态表达式; 步骤(6.1)协作狼从奔袭行为转入围攻行为是基于临界距离dnear,具体表达式如下: 其中,D为待寻优的变量数,待寻优的第n个变量的取值范围为距离判定因子w决定收敛速度。 步骤(6.2)进入围攻行为后,协作狼以攻击步长stepc在d维空间前进,具体表达式如下: 其中λ为[-1,1]间均匀分布的随机数,为第k次巡检时缺陷在d维空间中的位置。 步骤(7)协作狼将缺陷图片、缺陷状态表达式发送给中心控制节点。中心控制节点读取并处理缺陷表达式,若是新增缺陷,在新增缺陷表中新增未知缺陷;若是已知缺陷但是缺陷等级或个数发生变化,在已知缺陷表中修改变动的缺陷信息; 步骤(7.1)协作狼在捕获缺陷后,其缺陷状态表达式为: 其中,协作狼将static=1的新增缺陷同步给中心控制节点缺陷表中flag=new的新增缺陷表;将static=2的缺陷变动信息同步给中心控制节点缺陷表中flag=last的已知缺陷表,其中若是缺陷等级系数发生改变,更新对应的缺陷函数值;若是缺陷已被修复,则令缺陷函数值Y=0。 步骤(8)重新初始化头狼。中心控制节点更新完缺陷状态表后把缺陷表同步给所有人工狼,取消当前头狼的地位,单轮巡检结束。从搜索狼的缺陷状态表达式中选择缺陷权重函数值最大的人工狼重新定义头狼,新增缺陷位置的附近Mnum匹为协作狼,其余为搜索狼; 步骤(9)重复四-八过程,直至所有人工狼的缺陷表达式不再更新或者网格节点全部被遍历,所有缺陷检测完毕,循环结束。 步骤(9.1)所有人工狼的缺陷表达式不再更新,具体公式为: 其中,无人载具集群N中任意一个人工狼n的标识符static=0,即未发现新增缺陷,所有缺陷检测完毕。 当网格节点全部被遍历,也可表示所有缺陷都已检测。具体公式为: I(v)=(Y=2,X),v∈(1,2,...,Ax×Ay) 其中,对于任意一个网格节点v∈(1,2,...,Ax×Ay),Y=2代表所有缺陷已被搜索狼巡检,所有缺陷检测完毕。 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。 背景技术 无人载具集群在特定工程地形下的混凝土坝表面缺陷检测的航迹路线规划主要分为静态规划和动态规划。静态航迹规划是将人工统计的缺陷3D坐标信息录入集群系统中,结合缺陷历史信息定位航迹中的缺陷,同时根据大坝3D模型使无人载具集群在组内编排时考虑避障风险,最后生成静态的航迹路线。该方法操作简单,易实施,但缺乏实时动态性。动态航迹规划是无人载具集群在行进的过程中实时检测缺陷,根据新增缺陷信息、缺陷修复、缺陷等级调整来自主决策航迹规划,最后生成动态的航迹路线。由于考虑无人载具集群动态检测,满足实时更新航迹规划需求,因此该方法具有很高的实用性和鲁棒性。 在混凝土坝表面缺陷检测时,很多缺陷信息基于人工检测,缺少实时性,即缺陷信息会随着时间空间动态变化,采用传统人工检测缺陷的方法会增加人工、时间成本。 发明内容 发明目的:针对现有技术中存在的问题与不足,本发明基于狼群算法的原理,从实时检测缺陷信息的角度考虑,生成无人载具集群的动态航迹规划。具体是一种基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,能够在无人载具行进时,进行缺陷的增加、修复、缺陷等级调整来动态生成航迹规划,该方法可以减少统计缺陷信息的成本需求,对无人载具的动态航迹规划具有良好的指导意义。 技术方案:一种基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,包括以下步骤: (1)定义无人载具集群中人工狼的个数N和由自动巡检控制站组成的中心控制节点。中心控制节点管理缺陷表,缺陷表分为旧缺陷表和新增缺陷表。每个表包含缺陷位置信息X和缺陷函数值Y,并把新旧缺陷表同步给所有人工狼,人工狼建立缺陷状态表达式。 (2)初始化本文基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法所用到的参数。定义狼群中所有人工狼的位置Xi,搜索狼比例因子α,搜索狼的最大游走时间Tmax,距离判定因子w。 (3)初始化本文基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法的侦察环境。将大坝巡检区域划分Ax×Ay的离散网格,Ax、Ay表示在长度和宽度下的网格数量。每个网格坐标定义一个结构体信息I(v),v∈(1,2,…,Ax×Ay),包含该处是否存在大坝缺陷、人工狼信息素。 (4)搜索狼进行游走行为来动态检测坝面缺陷。选择无人载具集群中Snum匹搜索狼,分别向各自的h个方向感知附近的大坝缺陷,以游走步长stepα进行搜索,并记录每前进一步感知的缺陷函数值Yip后退回原来的位置。搜索狼在感知不同方向Yip后,选择最大Yip且大于当前位置缺陷函数值Yi0所在的方向移动,更新搜索狼的位置Xi和缺陷函数值Yi。当搜索狼检测到大坝缺陷,先通过对比中心控制节点同步的缺陷表来判断当前位置的缺陷的类型属性,并做对应的处理。搜索狼再更新网格信息,为后续搜索狼的识别提供记录。若搜索狼未检测到缺陷,重复上述游走行为直到达到最大游走时间Tmax; (5)当搜索狼达到最大游走时间Tmax,搜索狼将各自的缺陷状态表达式向中心控制节点汇报,中心控制节点选择缺陷函数值最大的搜索狼成为头狼。头狼发出召唤行为,Mnum匹协作狼以奔袭步长stepb向头狼位置聚集; (6)协作狼对头狼附近的缺陷实施围攻行为。当协作狼与头狼的距离dis<dnear时,以攻击步长stepc发起围攻行为。协作狼拍摄缺陷图片,在头狼更新当前缺陷位置的状态表达式后,获取头狼的缺陷状态表达式。 (7)协作狼将缺陷图片、缺陷状态表达式发送给中心控制节点。中心控制节点读取并处理缺陷表达式,若是新增缺陷,在新增缺陷表中新增未知缺陷;若是已知缺陷但是缺陷等级或个数发生变化,在已知缺陷表中修改变动的缺陷信息。 (8)重新初始化头狼。中心控制节点更新完缺陷状态表后把缺陷表同步给所有人工狼,取消当前头狼的地位,单轮巡检结束。从搜索狼的缺陷状态表达式中选择缺陷权重函数值最大的人工狼重新定义头狼,新增缺陷位置的附近Mnum匹为协作狼,其余为搜索狼。 (9)重复(4)-(8)过程,直至所有人工狼的缺陷表达式不再更新或者网格节点全部被遍历,所有缺陷检测完毕,循环结束。 进一步地,所述步骤(1)中: (1.1)中心控制节点中缺陷表的表达式如下: 其中flag为新旧缺陷的标识符,last代表旧缺陷,new代表新缺陷。标识符后存放的是缺陷位置信息X和缺陷函数值Y。 (1.2)对于每个人工狼i,其缺陷函数值Yi表达式如下: 其中k为缺陷等级系数,n为所有的缺陷等级,bi为缺陷等级系数下对应的缺陷个数。其中步骤(4)中,更新搜索狼的缺陷函数值Yi是更新搜索狼自身当前方向的缺陷函数值,缺陷函数值Yi是通过上述表达式计算的。 (1.3)对于每个人工狼i,其缺陷状态表达式如下: <Xi|Yi|static=0|1|2> 其中static为缺陷状态标识符,0代表中心控制节点已保存的旧缺陷,1代表新增缺陷,2代表旧缺陷的缺陷等级系数发生改变。 进一步地,所述步骤(2)中计算搜索狼个数: 搜索狼个数Snum由搜索狼比例因子α决定,具体表达式如下: 其中α∈[0,1],N为所有无人载具数目,Snum取整数。 进一步地,所述步骤(3)中计算结构体信息I(v): 网格坐标下的结构体信息I(v)描述了当前位置的缺陷信息和人工狼信息素,公式为: I(v)=(Y,X),v∈(1,2,…,Ax×Ay) 其中,Y是缺陷函数值,Y=0说明第v个网格处不存在缺陷;若Y≠0,说明第v个网格处存在缺陷。使用人工狼的位置X作为信息素,方便其他人工狼进行通信。 进一步地,所述步骤(4)中包括: (4.1)搜索狼在d维空间中进行游走行为时,其位移表达式如下: 其中为搜索狼i在方向p上的游走位移,p(p=1,2,...,h)代表h个方向,xid为原始位置,为游走步长。 (4.2)搜索狼在检测到大坝缺陷时,通过对比中心控制节点同步的缺陷表来判断当前缺陷类型属性,建立缺陷状态表达式的具体步骤如下: 当搜索狼检测到缺陷,对比缺陷表当缺陷的位置信息X和缺陷函数值Y都相同,即检测到的缺陷位于中心控制节点的旧缺陷表,令static=0;当X相同但Y不同,即检测到的缺陷的等级发生改变,令static=2;当缺陷的位置信息X不存在缺陷表中,即为新发缺陷,记录缺陷函数值Y并令static=1。 (4.3)搜索狼完成缺陷状态表达式后,更新网格信息I(v)。更新过程的具体步骤如下: I(v)=(Y=2,Xi) 由于缺陷函数值Y不会超过1,采用Y=2表示此处缺陷已被搜索狼巡检。后续巡检时搜索狼再次遇见该网格处的缺陷可直接跳过,不做处理。 进一步地,所述步骤(5)中包括: (5.1)搜索狼结束巡检后,中心控制节点选择缺陷函数值最大的搜索狼成为头狼,具体表达式如下: 其中,为第i个搜索狼的缺陷函数值最大,成为头狼;为Snum匹搜索狼缺陷函数值集合。 (5.2)协作狼个数的具体表达式如下: Mnum=N-Snum 其中N为所有人工狼个数;Snum为搜索狼个数,包括其中一匹头狼。 (5.3)协作狼以奔袭步长stepb快速向头狼聚集的过程,具体表达式如下: 其中为协作狼i第k+1次巡检时在d维空间中的位移,为第k次巡检的位移,为第k次巡检头狼在d维空间中的位置。 进一步地,所述步骤(6)中包括: (6.1)协作狼从奔袭行为转入围攻行为是基于临界距离dnear,具体表达式如下: 其中,D为待寻优的变量数,待寻优的第n个变量的取值范围为距离判定因子w决定收敛速度。 (6.2)进入围攻行为后,协作狼以攻击步长stepc在d维空间前进,具体表达式如下: 其中λ为[-1,1]间均匀分布的随机数,为第k次巡检时缺陷在d维空间中的位置。 进一步地,所述步骤(7)中协作狼将缺陷状态表达式发送给中心控制节点,中心控制节点更新缺陷表为: 协作狼在捕获缺陷后,其缺陷状态表达式为: 其中,协作狼将static=1的新增缺陷同步给中心控制节点缺陷表中flag=new的新增缺陷表;将static=2的缺陷变动信息同步给中心控制节点缺陷表中flag=last的已知缺陷表,其中若是缺陷等级系数发生改变,更新对应的缺陷函数值;若是缺陷已被修复,则令缺陷函数值Y=0。 进一步地,所述步骤(9)中所有缺陷检测完毕,无人载具群终止巡检的条件为: 所有人工狼的缺陷表达式不再更新,具体公式为: 其中,无人载具集群N中任意一个人工狼n的标识符static=0,即未发现新增缺陷,所有缺陷检测完毕。 当网格节点全部被遍历,也可表示所有缺陷都已检测。具体公式为: I(v)=(Y=2,X),v∈(1,2,...,Ax×Ay) 其中,对于任意一个网格节点v∈(1,2,...,Ax×Ay),Y=2代表所有缺陷已被搜索狼巡检,所有缺陷检测完毕。 进一步地,所述步骤(4)、(5)、(6)中游走步长奔袭步长攻击步长在d维空间的相互转换关系为: 有益效果:本发明方法从群体智能的角度使用狼群算法针对无人载具行进过程中混凝土坝表面缺陷的增加、修复、缺陷等级调整,提出了一种无人载具集群动态地生成航迹规划的方法。该方法区别于传统的人工统计坝面缺陷信息方法,避免检测的人工成本;同时,比较根据缺陷的历史信息无人载具集群进行静态航迹规划的方法,本发明具有良好的实时性和鲁棒性,可以检测突发缺陷。进一步的,本发明能够对混凝土坝表面缺陷检测研究提供方法指导,同时对基于狼群算法的无人载具动态航迹规划研究奠定基础。 The invention discloses an unmanned vehicle concrete dam surface defect dynamic detection method based on a wolf pack algorithm. The method specifically comprises the steps of 1, defining the number of artificial wolves in an unmanned vehicle cluster and a central control node; 2, initializing parameters used by the method for dynamically detecting the surface defects of the concrete dam of the unmanned vehicle; 3, initializing a reconnaissance environment of the unmanned vehicle concrete dam surface defect dynamic detection method; 4, searching wolves to dynamically detect dam defects; 5, the central control node selects a first wolf; step 6, the cooperative wolves carry out a purse-attack behavior on defects near the first wolf; step 7, synchronizing the defect picture and the defect state expression to the central control node by the cooperation wolf; 8, the first wolf is initialized again; and 9, repeating the steps 4-8 until all defects are detected. According to the method, model guidance can be provided for concrete dam surface defect dynamic detection of the unmanned vehicle cluster under a specific engineering terrain, and meanwhile, a defect identification path of the unmanned vehicle cluster is dynamically planned by using a swarm intelligence thought based on the wolf pack algorithm. 1.一种基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,包括以下步骤: (1)定义无人载具集群中人工狼的个数N和由自动巡检控制站组成的中心控制节点;中心控制节点管理缺陷表,缺陷表分为旧缺陷表和新增缺陷表;每个缺陷表包含缺陷位置信息X和缺陷函数值Y,并把新旧缺陷表同步给所有人工狼,人工狼建立缺陷状态表达式; (2)初始化无人载具凝土坝表面缺陷动态检测方法所用到的参数;定义狼群中所有人工狼的位置Xi,搜索狼比例因子α,搜索狼的最大游走时间Tmax,距离判定因子w; (3)初始化无人载具凝土坝表面缺陷动态检测方法的侦察环境;将大坝巡检区域划分Ax×Ay的离散网格,Ax、Ay表示在长度和宽度下的网格数量;每个网格坐标定义一个结构体信息I(v),v∈(1,2,...,Ax×Ay),包含该处是否存在大坝缺陷、人工狼信息素; (4)搜索狼进行游走行为来动态检测坝面缺陷; (5)当搜索狼达到最大游走时间Tmax,搜索狼将各自的缺陷状态表达式向中心控制节点汇报,中心控制节点选择缺陷函数值最大的搜索狼成为头狼;头狼发出召唤行为,Mnum匹协作狼以奔袭步长stepb向头狼位置聚集; (6)协作狼对头狼附近的缺陷实施围攻行为;当协作狼与头狼的距离dis<dnear时,以攻击步长stepc发起围攻行为;协作狼拍摄缺陷图片,在头狼更新当前缺陷位置的状态表达式后,获取头狼的缺陷状态表达式; (7)协作狼将缺陷图片、缺陷状态表达式发送给中心控制节点;中心控制节点读取并处理缺陷表达式,若是新增缺陷,在新增缺陷表中新增未知缺陷;若是已知缺陷但是缺陷等级或个数发生变化,在已知缺陷表中修改变动的缺陷信息。 (8)重新初始化头狼;中心控制节点更新完缺陷状态表后把缺陷表同步给所有人工狼,取消当前头狼的地位,单轮巡检结束;从搜索狼的缺陷状态表达式中选择缺陷权重函数值最大的人工狼重新定义头狼,新增缺陷位置的附近Mnum匹为协作狼,其余为搜索狼。 (9)重复(4)-(8)过程,直至所有人工狼的缺陷表达式不再更新或者网格节点全部被遍历,所有缺陷检测完毕,循环结束。 2.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述(4)中,搜索狼进行游走行为来动态检测坝面缺陷:选择无人载具集群中Snum匹搜索狼,分别向各自的h个方向感知附近的大坝缺陷,以游走步长stepα进行搜索,并记录每前进一步感知的缺陷函数值Yip后退回原来的位置;搜索狼在感知不同方向Yip后,选择最大Yip所在的方向移动,更新搜索狼的位置Xi和缺陷函数值Yi;当搜索狼检测到大坝缺陷,先通过对比中心控制节点同步的缺陷表来判断当前位置的缺陷的类型属性,并做对应的处理;搜索狼再更新网格信息,为后续搜索狼的识别提供记录;若搜索狼未检测到缺陷,重复上述游走行为直到达到最大游走时间Tmax。 3.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(1)中: (1.1)中心控制节点中缺陷表的表达式如下: 其中flag为新旧缺陷的标识符,last代表旧缺陷,new代表新缺陷;标识符后存放的是缺陷位置信息X和缺陷函数值Y; (1.2)对于每个人工狼i,其缺陷函数值Yi表达式如下: 其中k为缺陷等级系数,n为所有的缺陷等级,bi为缺陷等级系数下对应的缺陷个数; (1.3)对于每个人工狼i,其缺陷状态表达式如下: <Xi|Yi|static=0|1|2> 其中static为缺陷状态标识符,0代表中心控制节点已保存的旧缺陷,1代表新增缺陷,2代表旧缺陷的缺陷等级系数发生改变。 4.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(2)中计算搜索狼个数: 搜索狼个数Snum由搜索狼比例因子α决定,具体表达式如下: 其中α∈[0,1],N为所有无人载具数目,Snum取整数。 5.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(3)中计算结构体信息I(v): 网格坐标下的结构体信息I(v)描述了当前位置的缺陷信息和人工狼信息素,公式为: I(v)=(Y,X),v∈(1,2,…,Ax×Ay) 其中,Y是缺陷函数值,Y=0说明第v个网格处不存在缺陷;若Y≠0,说明第v个网格处存在缺陷;使用人工狼的位置X作为信息素,方便其他人工狼进行通信。 6.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(4)中包括: (4.1)搜索狼在d维空间中进行游走行为时,其位移表达式如下: 其中为搜索狼i在方向p上的游走位移,p(p=1,2,…,h)代表h个方向,xid为原始位置,为游走步长; (4.2)搜索狼在检测到大坝缺陷时,通过对比中心控制节点同步的缺陷表来判断当前缺陷类型属性,建立缺陷状态表达式的具体步骤如下: 当搜索狼检测到缺陷,对比缺陷表当缺陷的位置信息X和缺陷函数值Y都相同,即检测到的缺陷位于中心控制节点的旧缺陷表,令static=0;当X相同但Y不同,即检测到的缺陷的等级发生改变,令static=2;当缺陷的位置信息X不存在缺陷表中,即为新发缺陷,记录缺陷函数值Y并令static=1; (4.3)搜索狼完成缺陷状态表达式后,更新网格信息I(v);更新过程的具体步骤如下: I(v)=(Y=2,Xi) 由于缺陷函数值Y不会超过1,采用Y=2表示此处缺陷已被搜索狼巡检。后续巡检时搜索狼再次遇见该网格处的缺陷可直接跳过,不做处理。 7.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(5)中包括: (5.1)搜索狼结束巡检后,中心控制节点选择缺陷函数值最大的搜索狼成为头狼,具体表达式如下: 其中,为第i个搜索狼的缺陷函数值最大,成为头狼;为Snum匹搜索狼缺陷函数值集合; (5.2)协作狼个数的具体表达式如下: Mnum=N-Snum 其中N为所有人工狼个数;Snum为搜索狼个数,包括其中一匹头狼; (5.3)协作狼以奔袭步长stepb快速向头狼聚集的过程,具体表达式如下: 其中为协作狼i第k+1次巡检时在d维空间中的位移,为第k次巡检的位移,为第k次巡检头狼在d维空间中的位置。 8.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(6)中包括: (6.1)协作狼从奔袭行为转入围攻行为是基于临界距离dnear,具体表达式如下: 其中,D为待寻优的变量数,待寻优的第n个变量的取值范围为距离判定因子w决定收敛速度; (6.2)进入围攻行为后,协作狼以攻击步长stepc在d维空间前进,具体表达式如下: 其中λ为[-1,1]间均匀分布的随机数,为第k次巡检时缺陷在d维空间中的位置。 9.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(7)中协作狼将缺陷状态表达式发送给中心控制节点,中心控制节点更新缺陷表为: 协作狼在捕获缺陷后,其缺陷状态表达式为: 其中,协作狼将static=1的新增缺陷同步给中心控制节点缺陷表中flag=new的新增缺陷表;将static=2的缺陷变动信息同步给中心控制节点缺陷表中flag=last的已知缺陷表,其中若是缺陷等级系数发生改变,更新对应的缺陷函数值;若是缺陷已被修复,则令缺陷函数值Y=0。 10.根据权利要求1所述的基于狼群算法的无人载具混凝土坝表面缺陷动态检测方法,其特征在于,所述步骤(9)中所有缺陷检测完毕,无人载具群终止巡检的条件为: 所有人工狼的缺陷表达式不再更新,具体公式为: 其中,无人载具集群N中任意一个人工狼n的标识符static=0,即未发现新增缺陷,所有缺陷检测完毕; 当网格节点全部被遍历,也可表示所有缺陷都已检测;具体公式为: I(v)=(Y=2,X),v∈(1,2,…,Ax×Ay) 其中,对于任意一个网格节点v∈(1,2,…,Ax×Ay),Y=2代表所有缺陷已被搜索狼巡检,所有缺陷检测完毕; 所述步骤(4)、(5)、(6)中游走步长奔袭步长攻击步长在d维空间的相互转换关系为: