
(12)UK Patent (19)GB <„>2497698 ,,,,Β
(45) Date of B Publication 02.10.2019

(54) Title of the Invention: Performing a multiply-multiply-accumulate instruction

(51) INTCL: G06F 9/30 (2018.01) G06F 9/38 (2018.01)

(21) Application No: 1305501.7

(22) Date of Filing: 24.09.2011

Date Lodged: 26.03.2013

(30) Priority Data:
(31) 12889916 (32) 24.09.2010 (33) US

(86) International Application Data:
PCT/US2011/053154 En 24.09.2011

(87) International Publication Data:
WO2012/040666 En 29.03.2012

(43) Date of Reproduction by UK Office 19.06.2013

(72) Inventor(s):
Eric S Sprangle

(73) Proprietor(s):
Intel Corporation
(Incorporated in USA - Delaware)
2200 Mission College Boulevard, Santa Clara,
California 95052, United States of America

(74) Agent and/or Address for Service:
HGF Limited
Document Handling - HGF - (Sheffield), 1 City Walk,
LEEDS, LS11 9DX, United Kingdom

(56) Documents Cited:
US 20090077345 A1 US 20020138535 A1
US6523055 B1
US20030229659 A1
US20030009502 A1
US20100121898 A1

(58) Field of Search:
As for published application 2497698 A viz:
INT CL G06F
Other: Korean & Japanese Utility models; eKOMPASS
updated as appropriate

Additional Fields
INT CL G06F
Other: EPODOC, WPI, Internet, Patent Fulltext

G
B

2497698

1/9

REPLACEMENT DRAWING

100

FIG. 1

2/9
R

EP
LA

C
EM

EN
T

D
R

AW
IN

G

O
00

3/9

REPLACEMENT DRAWING

4/9

R
EP

LA
C

EM
EN

T
D

R
AW

IN
G

34
0c

5/9
R

EP
LA

C
EM

EN
T

D
R

AW
IN

G

o CO

< < < £Ω £D

FI
G

. 5

6/9
R

EP
LA

C
EM

EN
T

D
R

AW
IN

G

rif
'· β

nU

. o

7/9
R

EP
LA

C
EM

EN
T

D
R

AW
IN

G

FI
G

. 7

8/9
R

EP
LA

C
EM

EN
T

D
R

AW
IN

G

9 O
ld

9/9

s

R
EP

LA
C

EM
EN

T
D

R
AW

IN
G

PERFORMING A MULTIPLY-MULTIPLY-ACCUMULATE INSTRUCTION

5

10

15

20

25

30

Background

Modem microprocessors typically include a pipeline having different stages, including

one or more front-end stages to obtain an instruction and then begin processing of the

instruction. These stages place the instruction, which is often received in a so-called macro­

instruction format, into a format usable by the processor, e.g., one or more micro-instructions or

so-called pops. These pops are passed to further portions of the processor pipeline. For

example, an out-of-order engine may reorder instructions from their program order to an order

more efficient for processing purposes. From this out-of-order engine, instructions may be

provided to one or more of multiple execution units. The execution units are the calculating

engines of the processor and can perform various operations on the data such as various

arithmetic and logic operations. Different processors may have different types of execution

units. When results are obtained in these execution units, the resulting data can be provided to

one or more back-end stages of the processor such as a reorder engine that can reorder

instructions executed out of order back into program order. Back-end stages may further include

a retirement unit to retire instructions that have been validly completed.

Historically, processors were configured to operate on scalar values, such as 8-bit, 16-bit,

32-bit or other width values. As processing speeds and transistor counts have increased, many

processors have begun to incorporate vector units. Vector units are used to perform a single

instruction on multiple data units, in which the instruction may be in so-called single instruction

multiple data (SIMD) form. Such vector processing can be especially adapted for graphics and

other compute intensive workloads. While certain user-level instructions have been introduced

to perform some operations on vector data, there are still inefficiencies in processing vector data.

Furthermore, while certain execution units are configured to handle vector operations, these

hardware units also can be inefficient for certain vector processing.

Brief Description of the Drawings

FIG. 1 is a flow diagram of a method in accordance with an embodiment the present

invention.

FIG. 2 is a block diagram of a group of pixels having a polygon to be drawn thereon.

FIG. 3 is a flow diagram of a method in accordance with another embodiment of the

present invention.

FIG. 4 is a block diagram of a hardware implementation of logic for handling a multiply -

multiply-accumulate instruction in accordance with an embodiment of the present invention.

1

5

10

15

20

25

30

FIG. 5 is a block diagram of a multiply-accumulate (MAC) unit in accordance with an

embodiment of the present invention.

FIG. 6 is a block diagram of a processor core in accordance with one embodiment of the

present invention.

FIG. 7 is a block diagram of a processor in accordance with an embodiment of the

present invention.

FIG. 8 is a block diagram of a processor in accordance with another embodiment of the

present invention.

FIG. 9 is a block diagram of a system in accordance with an embodiment of the present

invention.

Detailed Description

In various embodiments, a user-level vector instruction can be used to efficiently perform

multiple operations on a set of operands. More specifically, a user-level vector instruction can

be used to perform a multiply-multiply-add operation, also described herein as a SUPERMADD

operation, on vector data to enable processor hardware to efficiently perform a number of

operations that otherwise would require a plurality of different user-level instructions and many

more arithmetic computations. Still further, some embodiments may provide for processor

hardware to efficiently perform this vector instruction.

Using embodiments of the present invention, a much higher throughput can be realized to

process incoming data. In addition to increasing throughput, e.g., by providing only a single

user-level instruction to perform multiple arithmetic operations on multiple incoming data

operands, a reduced number of operations to realize a result can occur, based on an

understanding of commonality of operations performed in multiple levels of the multiply-

multiply-add operation.

While the scope of the present invention is not limited in this regard, embodiments may

be particularly appropriate for graphics processing. In many graphics workloads, certain

operations are performed on groups of data representing pixel information for individual pixels

of a display. In such workloads, a group of pixels can be identified, e.g., a 4x4 block of pixels or

another such number. For each such block of pixels, various operations may be performed in the

graphics workload.

For example, pixel data may be processed in a vertex shader to determine attribute

information for vertices of a shape, e.g., a triangle represented, at least in part, by the pixels of

the block. The vertex shader may operate to obtain interpolated attribute values for the pixels of

the block. While the scope of the present invention is not limited in this regard, in one

2

5

10

15

20

25

30

35

implementation this interpolation may be a barycentric interpolation, and more particularly may

provide for both perspective correction and non-perspective correction. After such operations in

a vertex shader, the processed information may be provided, e.g., to a pixel shader where

additional processing may occur. Further details regarding operations performed in handling an

interpolation or other operation using an instruction in accordance with an embodiment of the

present invention will be discussed below.

To better understand concepts described herein, a background on vector operations is set

forth. Some single instruction multiple data (SIMD) and other multimedia types of instructions

are considered complex instructions. Most floating-point related instructions are also complex

instructions. As such, when an instruction decoder encounters a complex macro-instruction,

microcode can be accessed to retrieve a microcode sequence for that macro-instruction. The

various pops for performing that macro-instruction are communicated to, e.g., an out-of-order

execution logic, which may have buffers to smooth out and re-order the flow of micro­

instructions to optimize performance as they flow through the pipeline and are scheduled for

execution. Allocator logic allocates buffers and resources that each uop needs in order to

execute. Renaming logic may rename logical registers onto entries in a register fde (e.g.,

physical registers).

In one embodiment, vector instructions can be executed on various packed data type

representations. These data types may include a packed byte, a packed word, and a packed

doubleword (dword) for 128 bits wide operands. As an example, a packed byte format can be

128 bits long and contain sixteen packed byte data elements (a so-called 16-wide vector). A byte

is defined here as 8 bits of data. Information for byte data elements can be stored in bit 7

through bit 0 for byte 0, bit 15 through bit 8 for byte 1, bit 23 through bit 16 for byte 2, and

finally bit 120 through bit 127 for byte 15.

Generally, a data element is an individual piece of data that is stored in a single register

or memory location with other data elements of the same length. In some packed data

sequences, the number of data elements stored in a register can be 128 bits divided by the length

in bits of an individual data element. Although the data types can be 128 bit long, embodiments

of the present invention can also operate with 64 bit wide or other sized operands. It will be

appreciated that packed data formats may be further extended to other register lengths, for

example, to 96-bits, 160-bits, 192-bits, 224-bits, 256-bits or more. In addition, various signed

and unsigned packed data type representations can be handled in multimedia registers according

to embodiments of the present invention.

Referring now to FIG. 1, shown is a flow diagram of a method in accordance with an

embodiment the present invention. As shown in FIG. 1, a high level view of operations
3

5

10

15

20

25

30

35

performed in executing a single user-level instruction to implement a multiply-multiply-add

operation efficiently is described. As seen in FIG. 1, method 100, which may be implemented

within one or more portions of a processor such as a processor having an out-of-order

architecture is shown. As seen, method 100 may begin by receiving a dual multiply-add

instruction (block 110). This instruction may be a user-level or macro-instruction, e.g., received

by a processor front end. Responsive to receipt of this instruction, the instruction may be

decoded, e.g., in an instruction decoder, also of the front end (block 120).

Next, the decoded instruction, along with one or more operands received with the

instruction may be sent to an execution unit (block 130). In some embodiments, this execution

unit may be a multiply-accumulate (MAC) unit, although the scope of the present invention is

not limited in this regard. While shown as being directly sent to the MAC unit, in some

implementations decoded instructions may first be stored in a temporary storage, e.g., a decoded

instruction queue and then provided, e.g., to out-of-order logic, which may choose to reorder

instruction flow of a program including this SUPERMADD instruction to more efficiently

perform operations on the data as the data and the desired execution units become available.

Referring still to FIG. 1, when all data for the instruction becomes available and the given

execution unit also becomes available, control passes to block 140 where the decoded instruction

may be executed. Still further, a result of the instruction may be stored in a destination storage.

For example, a user-level instruction may identify a destination location for the result, which

may correspond to a vector register so that result data, in the form of one or more vectors can be

appropriately stored such that the result can be used in further program execution. While shown

with this particular implementation in the embodiment of FIG. 1, understand the scope of the

present invention is not limited in this regard.

In graphics workloads, one example use of a SUPERMADD instruction is to handle pixel

interpolations with regard to a pixel block. Referring now to FIG. 2, shown is a block diagram

of a group of pixels having a polygon to be drawn thereon. As seen in FIG. 2, pixel block 180

may be a 4x4 matrix of pixels. While shown with 16 individual pixels in the example of FIG. 2,

understand that in different embodiments, more or fewer pixels may constitute a pixel block. For

example, in other implementations a SUPERMADD instruction can be performed on fewer

pixels (e.g., a 2x2 block) or more pixels, e.g., a 16x16 or greater block. Furthermore, understand

that the number of pixels in the X and Y dimensions need not be the same and need not have

base2 values. As shown in FIG. 2, within pixel block 180, a triangle 185 is present that has

vertices present in three pixels of the block. Of course in other implementations, a triangle or

other polygon may have one or more vertices present within a given pixel block and may extend

to another such pixel block. As part of shading operations, e.g., a vertex shading operation,
4

5

10

15

20

25

30

35

attributes of the different pixels of the block may be determined. Such attributes may correspond

to pixel positional information, e.g., XYZ values along with other attributes such as an attribute

corresponding to one or more colors with which the pixel is to be shaded (e.g., RGB values).

When processing a block of pixels such as that in FIG. 2, positional information, e.g.,

relating to the pixels in the X and Y directions can first be determined using a single reference

pixel of the block. With reference to FIG. 2, pixel 190 may correspond to a reference pixel for

the block. Thus based on XY values for this single pixel, offset values to each of the other pixels

of the block from this reference pixel can be determined. Instead of performing individual

calculations to determine the XY offsets of each pixel, which may use 32 different addition

operations, embodiments may leverage the fact that a common offset can be applied to multiple

pixels in both the X and Y directions to thus reduce the number of mathematical operations to be

performed.

In pixel shading operations, after pixel values have been determined, a constant may be

applied to each of the values to thus form a result that can be provided for further operations.

Here again, instead of performing individual multiplication operations for each of the X and Y

values, embodiments may again leverage the fact that a single constant is applied to each of these

pixel values to thus reduce the number of operations performed.

As will be described further below, different implementations may optimize the number

of mathematical operations performed in obtaining a result of the following general form:

AX+BY+C, where X and Y are reference values, A and B and C are constant coefficients.

To understand how embodiments can optimize, via a single user-level instruction, a

sequence of instructions that would need to be performed otherwise, it is instructive to consider a

set of example instructions that can be performed to obtain desired results using conventional

multiple user-level vector addition and multiplication operations.

Referring now to Table 1, shown are example instructions that can be performed to

realize a result of the above equation using multiple user-level instructions.

TABLE 1

vaddps vO, vO, PixclOffsctX; PixclOffsctX = 0123 0123 0123 0123
vaddps vl, vl, PixelOffsetY; PixelOffsetY = 0000 1111 2222 3333
vmadd233ps v2, vO, v22; temp = A*PixelX+C
vmadd231ps v2, vl, v22{cccc}; temp += B*PixelY

In sum, these instructions can be used to populate vector registers with pixel coordinate

values (e.g., X and Y values), execute multiplications, and then further to add a constant to each

of the pixels to thus realize a result, which may be stored in a destination storage such as a vector

5

5

10

15

20

25

30

35

register for later use by other portions of the graphics workload. Assume for purposes of

discussion that vector registers may provide for storage of 16 individual data elements, i.e., a so-

called 16 wide register. In this embodiment, each data element may be of floating-point 32-bit

format, although other formats such as 16-bit integer values are also possible.

Referring now to Table 2, shown is a Table that illustrates the operations performed by

the above instructions of Table 1 to obtain a set of 16 values, corresponding to a result of the

plane equation Ax+By+C, evaluated at each pixel location.

TABLE 2

A,A,A,A A,A,A,A A,A,A,A A,A,A,A
*

100, 101, 102, 103, 100, 101, 102, 103, 100, 101, 102, 103 100, 101, 102, 103
+
Β,Β,Β,Β Β,Β,Β,Β Β,Β,Β,Β Β,Β,Β,Β
*

200, 200, 200, 200, 201, 201, 201, 201, 202, 202, 202, 202, 203, 203, 203, 203
+
c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c

As seen, beginning in the second line of Table 2, assume a reference pixel value of (100,

200), namely an X value of 100 and a Y value of 200 for the reference pixel. Then via the first

add operation, which may correspond to a vector add, pixel offsets having values of 0, 1,2 and 3

can be added to the reference X value. In this conventional operation, thus 16 different add

operations occur. Similar operations occur with regard to the Y reference pixel (as seen in the

fourth line of Table 2). However, note that the values used for the pixels instead increment every

fourth pixel value. However, 16 addition operations still are performed. These two vector

addition instructions thus populate a pair of vector registers with pixel offset values

corresponding to the XY values for each of the pixels of the block. Then, a pair of vector

multiply-add instructions are performed to take each of these individual pixel values, multiply

them by a given constant value (i.e., a first coefficient A for the X pixels, and a second

coefficient B for the Y pixels) and, with regard to the first vector multiply add instruction, to add

an additional value, namely a constant value C. Thus at the conclusion of these four vector

instructions, and assuming 16 wide vectors to represent a pixel block of 16 pixels, the above four

instructions represent 32 individual adds and 32 individual multiply operations. Further, note

that multiply operations can be computationally expensive, as a 32-bit multiply effectively

requires the implementation of 32 adds.

6

5

10

15

20

25

30

35

As discussed above, in various embodiments a single vector multiply-multiply-add

instruction can be executed. By way of this instruction, and the understanding of a series of

conventional instructions that it can replace, different optimizations for reduced numbers of add

and multiply operations can be realized to thus perform the multiply-multiply-addition

instruction with high computational, area, and power consumption efficiencies.

As one example of reduced addition and multiply operations, it can be recognized that the

pixel offset operations represented in the above Table 2 perform the same calculation a number

of times. Accordingly, as one optimization, only a single calculation is performed for each of the

offset values. Furthermore, it can be recognized that multiplication operations are more

expensive than addition operations. Accordingly, a single multiplication operation can be

performed to obtain the product of the given coefficient and one pixel value, and additions

(and/or subtractions as discussed below) can be performed to obtain the other values.

Referring now to Table 3, shown are example operations to obtain four individual pixel

offsets, both for the X & Y directions.

TABLE 3

Ax 100:+A + 2A + 3A

B x 200: + B + 2B + 3B

As seen, assume the reference pixel of X value 100 and Y value 200, a single

multiplication operation of A x 100 can be performed, and then three addition operations,

namely an addition of A, 2A & 3A to the product of Ax 100 can be performed. Similarly, with

respect to the reference pixel Y, having a value of 200, the same operations can be performed.

As a further optimization, certain embodiments may leverage the fact that, since an

addition of the product + 3A requires both an add and a shift operation, another value (e.g., a

different pixel location) that is within the block, rather than on the edge of the block, can be used

as the reference pixel. For example, assume a reference pixel having a XY value of 101,201 is

used (e.g., corresponding to the pixel marked as 185 in FIG. 2). Then, Table 4 below shows the

operations that can be performed, namely a single multiplication with the corresponding

coefficient and this reference pixel value, and three addition operations, namely -A, +A, & +2A,

each of which can be implemented via a simple addition operation (the same operation can be

performed on the Y pixel). Thus in reference to Table 4, note that the operations to populate two

vectors with pixel offset values can be performed using, respectively a single multiplication and

three addition operations.

TABLE 4
7

Αχ 101:-A+A + 2A

5

10

15

20

25

30

35

Then to realize the final result with the addition of a constant value C, 16 different

addition operations can be performed. However, again note that there can be further efficiencies.

Specifically, instead of the first level operations described above in regard to Table 4,

instead as in Table 5, the multiplication operation may be implemented as a multiply-accumulate

in which each reference value is multiplied with the corresponding coefficient, and the constant

value is added to the sum of these products. This occurs before the three addition operations set

forth above.

TABLE 5

((A x 101) + C) + B x 201 = Base Value

Base Value: -A + A + 2A

Thus to obtain a desired result of the multiply-multiply-accumulate instruction

efficiently, operations in accordance with the following Table 6 can be performed:

TABLE 6

A x 101 1 multiplication
Bx201 1 multiplication
Sumi + Sum2 = Interim 1 addition
Interim + C= Base Value 1 addition
Base Value: -A + A + 2A 3 additions (resulting in intermediate

sums 1-3)
Intermediate Sums 1-3:+0 - B + B + 2B 12 additions (resulting in final sums

1-12)

As seen in Table 6, a base value may be obtained using two multiplication operations,

each having a multiplicand corresponding to a coefficient and a multiplier corresponding to a

pixel reference value. The resulting two products can then be summed, along with the constant

value (e.g., C) to thus realize the base value. The first coefficient (e.g., for the X values) may

then be added, subtracted and a 2X value may also be added to thus realize 3 add operations,

which can populate certain entries of the vector register. Then using the four values from above,

namely the base value and the sums of these three different addition operations, 12 addition

operations can be performed, namely each of the three intermediate sum values can be added

with zero, the second coefficient, the negative second coefficient, and 2X the second coefficient,

the results of which can populate the remaining entries of the vector register. Accordingly, using

two single multiplies and 17 add operations, the final result is achieved. In contrast, referring

back to Tables 1 and 2 using conventional instructions, the same result requires 32 different

multiplies and 64 add operations. Note further that each multiply operation corresponds to

approximately 8 different addition operations, a significant computation efficiency can be
8

5

10

15

20

25

30

35

realized.

Referring now to FIG. 3, shown is a flow diagram of a method in accordance with one

embodiment of the present invention. More specifically, method 200 of FIG. 3 corresponds to

operations performed in executing a multiply-multiply-accumulate instruction, e.g., in a fused

floating-point multiply accumulate unit of a processor. As seen method 200 may begin by

performing a first multiplication of a first operand value and a first coefficient (block 210).

More specifically, with reference to the interpolation discussion above, the first operand may

correspond to a reference pixel, e.g., in an X coordinate axis and the first coefficient may

correspond to a predetermined weighting value or constant. A similar multiplication operation

may be performed between a second operand and a second coefficient (block 220). Again, this

multiplication may be between a reference pixel value (e.g., in the Y coordinate axis) and a

second weighting value. Then at block 230 the two products may be summed with a third term,

e.g., a constant C. This addition operation may thus obtain a base value. This base value can be

stored in a selected location of a destination storage. For example, the base value may

correspond to an interpolated value for a pixel for a first coordinate axis (e.g., the X axis). Then

control passes to block 240, where additions may be performed between the base value and the

first coefficient, a negative value of the first coefficient, and twice the first coefficient. As set

forth above in Table 6, these values may be applied to the base value. Furthermore, the results of

these base sum operations (i.e., base sums) may be stored in each of multiple locations of the

destination storage. For example, with reference to a 16 wide vector, the base sums can be

stored in three places of the vector register.

With reference now to block 250, similar addition operations may be performed, namely

additions between each of these base sums and the second coefficient, negative second

coefficient, and twice the second coefficient. Similarly, each of these sums can be stored in a

given location of the destination storage, which may be another portion of a single vector register

or may be portions of a second vector register. Note that here, each of the coefficients may be

applied via an addition operation with each of the base sums, thus yielding 12 different add

operations, and storing the 12 different sums each in one location of one or more destination

storages. While shown with this particular implementation in the embodiment of FIG. 3,

understand the scope of the present invention is not limited in this regard. Furthermore,

understand that the operations set forth in FIG. 3 are for execution of a single multiply-multiply-

accumulate instruction, which can be part of a graphics workload that has further operations

performed both before and after this instruction.

Referring now to FIG. 4, shown is a block diagram of a hardware implementation of

logic for handling a multiply-multiply-accumulate instruction in accordance with an embodiment
9

29
 0

4 1
9

of the present invention. Logic 300 may be part of a processor pipeline. For example, logic 300

may be an execution unit within the processor such as a multiply accumulate unit, e.g., a

floating-point multiply accumulate unit. However, in other implementations dedicated circuitry

that is separate from a MAC unit can be used.

Still referring to FIG. 4, it is seen that logic 300 can be implemented as a tree structure

having a plurality of levels, including multipliers and adders. In the specific implementation

shown in FIG. 4, 2 multipliers and 17 adders may be present, although the scope of the present

invention is not limited in this regard. In general, logic 300 may be configured to perform a

multiply-multiply-add operation to populate a vector with multiple data elements, each

corresponding to a value for a given pixel of a pixel block, for example.

As seen, a first level of logic 300 may include a pair of multipliers 305a-305b, each of

which is to multiply an incoming reference value (e.g., X and Y) with a corresponding

coefficient (e.g., A and B.). The resulting product may be provided to a first adder 310 which

adds the two products to obtain a first sum, which is then combined with a third coefficient (e.g.,

C) in a second adder 320. This resulting base term is then provided to another level of adders

330a-330c, each of which is to perform an addition between a representation of the first

coefficient (e.g., A, -A, and 2A). These resulting sums can then be provided to another level of

adders 340a-340c, each of which includes a plurality of individual adders to add a sum from a

corresponding adder of the second level and a representation of the second coefficient (e.g., 0,

B, -B, and 2B). The resulting sums of each of the adders may be populated into one or more

vector registers, as discussed above to thus efficiently perform operations, e.g., during graphics

processing. While shown with this particular implementation in the embodiment of FIG. 4, the

scope of the present invention is not limited in this regard.

FIG. 5 in turn is a block diagram of a MAC unit in accordance with an embodiment of

the present invention. As seen, MAC unit 400 may be configured to receive incoming

instructions (e.g., in the form of one or more μορ8) to direct execution of a given operation and

associated operands. In the context of a SUPERMADD instruction, the operands can include

multiple reference values, coefficients, constants, and so forth. For example, in one embodiment

a user-level instruction may include an opcode and multiple input values, and may take the

following form:

SUPERMADD operandi, operand 2

where operandi is a memory location that has A,B,C stored in memory (which in one

embodiment can each be a FP32 value stored next to each other), and operand2 is a register

(e.g., a 64 bit integer register that holds the two 32 bit integer values for X and Y). In an alternate

embodiment, the register may be a 32 bit integer register that holds two 16 bit integer values for

10

5

10

15

20

25

30

35

X and Y. In another alternate embodiment, the register may be a 16 bit integer register that holds

two 8 bit integer values for X and Y.

Still referring to FIG. 5, the MAC unit includes multipliers 410a-410b, each of which in

one embodiment can be implemented as a compressor tree. In turn, products obtained from the

multipliers may be applied to selected ones of a plurality of adder levels 420a-420d. While

shown as four such levels, more or fewer levels may be present in different embodiments. In

addition, a temporary storage 430 may provide for interim storage of values calculated in the

MAC unit such as base terms, intermediate values, final values, and so forth.

Referring now to FIG. 6, shown is a block diagram of a processor core in accordance

with one embodiment of the present invention. As shown in FIG. 6, processor core 500 may be a

multi-stage pipelined out-of-order processor. Processor core 500 is shown with a relatively

simplified view in FIG. 6 to illustrate various features used in connection with execution of a

SUPERMADD instruction in accordance with an embodiment of the present invention. As

shown in FIG. 6, core 500 includes front end units 510, which may be used to fetch instructions

to be executed and prepare them for use later in the processor. For example, front end units 510

may include a fetch unit 501, an instruction cache 503, and an instruction decoder 505. In some

implementations, front end units 510 may further include a trace cache, along with microcode

storage as well as a micro-operation storage. Fetch unit 501 may fetch macro-instructions, e.g.,

from memory or instruction cache 503, and feed them to instruction decoder 505 to decode them

into primitives, i.e., micro-operations for execution by the processor. One such instruction to be

handled in front end units 510 may be a user-level SUPERMADD instruction in accordance with

an embodiment of the present invention. This instruction may enable the front end units to

access various micro-operations to enable execution of the operations such as described above.

Coupled between front end units 510 and execution units 520 is an out-of-order (GOO)

engine 515 that may be used to receive the micro-instructions and prepare them for execution.

More specifically OOO engine 515 may include various buffers to re-order micro-instruction

flow and allocate various resources needed for execution, as well as to provide renaming of

logical registers onto storage locations within various register files such as register file 530 and

extended register file 535. Register file 530 may include separate register files for integer and

floating point operations. Extended register file 535 may provide storage for vector-sized units,

e.g., 256 or 512 bits per register.

Various resources may be present in execution units 520, including, for example, various

integer, floating point, and single instruction multiple data (SIMD) logic units, among other

specialized hardware. For example, such execution units may include one or more arithmetic

logic units (ALUs) 522. In addition, a MAC unit 524 in accordance with an embodiment of the
11

5

10

15

20

25

30

35

present invention may be present.

Results from the execution units may be provided to retirement logic, namely a reorder

buffer (ROB) 540. More specifically, ROB 540 may include various arrays and logic to receive

information associated with instructions that are executed. This information is then examined by

ROB 540 to determine whether the instructions can be validly retired and result data committed

to the architectural state of the processor, or whether one or more exceptions occurred that

prevent a proper retirement of the instructions. Of course, ROB 540 may handle other operations

associated with retirement.

As shown in FIG. 6, ROB 540 is coupled to a cache 550 which, in one embodiment may

be a low level cache (e.g., an LI cache) although the scope of the present invention is not limited

in this regard. Also, execution units 520 can be directly coupled to cache 550. From cache 550,

data communication may occur with higher level caches, system memory and so forth. While

shown with this high level in the embodiment of FIG. 6, understand the scope of the present

invention is not limited in this regard. For example, while the implementation of FIG. 6 is with

regard to an out-of-order machine such as of a so-called x86 ISA architecture, the scope of the

present invention is not limited in this regard. That is, other embodiments may be implemented

in an in-order processor, a reduced instruction set computing (RISC) processor such as an ARM­

based processor, or a processor of another type of ISA that can emulate instructions and

operations of a different ISA via an emulation engine and associated logic circuitry, such as

shown below with regard to FIG. 8.

Referring now to FIG. 7, shown is a block diagram of a processor in accordance with an

embodiment of the present invention. As shown in FIG. 7, processor 600 may be a multicore

processor including a plurality of cores 610a - 610n- In one embodiment, each such core may be

configured as core 500 described above with regard to FIG. 6. The various cores may be

coupled via an interconnect 615 to an uncore 620 that includes various components. As seen, the

uncore 620 may include a shared cache 630 which may be a last level cache. In addition, the

uncore may include an integrated memory controller 640, various interfaces 650 and a power

management unit 655, which may determine an appropriate low power state in which to place a

given core. In turn, power management unit 655 may generate a plurality of control signals to

cause various components, both of a given core as well as other processor units to enter into a

low power state. As seen, processor 600 may communicate with a system memory 660, e.g., via

a memory bus. In addition, by interfaces 650, connection can be made to various off-chip

components such as peripheral devices, mass storage and so forth. While shown with this

particular implementation in the embodiment of FIG. 7, the scope of the present invention is not

limited in this regard.
12

5

10

15

20

25

30

35

In other embodiments, a processor architecture may include emulation features such that

the processor can execute instructions of a first ISA, referred to as a source ISA, where the

architecture is according to a second ISA, referred to as a target ISA. In general, software,

including both the OS and application programs, is compiled to the source ISA, and hardware

implements the target ISA designed specifically for a given hardware implementation with

special performance and/or energy efficiency features.

Referring now to FIG. 8, shown is a block diagram of a processor in accordance with

another embodiment of the present invention. As seen in FIG. 8, system 700 includes a

processor 710 and a memory 720. Memory 720 includes conventional memory 722, which holds

both system and application software, and concealed memory 724, which holds software

instrumented for the target ISA. As seen, processor 710 includes an emulation engine 730 which

converts source code into target code. Emulation may be done with either interpretation or

binary translation. Interpretation is often used for code when it is first encountered. Then, as

frequently executed code regions (e.g., hotspots) are discovered through dynamic profiling, they

are translated to the target ISA and stored in a code cache in concealed memory 724.

Optimization is done as part of the translation process and code that is very heavily used may

later be optimized even further. The translated blocks of code are held in code cache 724 so they

can be repeatedly re-used.

Still referring to FIG. 8, processor 710, which may be one core of a multicore processor

includes a program counter 740 that provides instruction pointer addresses to an instruction

cache (I-cache) 750. As seen, I-cache 750 may further receive target ISA instructions directly

from concealed memory portion 724 on a miss to a given instruction address. Accordingly, I-

cache 750 may store target ISA instructions which can be provided to a decoder 760 which may

be a decoder of the target ISA to receive incoming instructions, which may be at the macro­

instruction level and to convert the instructions to micro-instructions for execution within a

processor pipeline 770. While the scope of the present invention is not limited in this regard,

pipeline 770 may be an out-of-order pipeline including various stages to perform and retire

instructions. Various execution units such as described above may be present within pipeline

770 to execute to a user-level dual multiply-accumulatc instruction in accordance with an

embodiment of the present invention. That is, even in an implementation in which a processor

710 is of a different micro-architecture than a micro-architecture for which a user-level multiply-

multiply-accumulate instruction is provided, the instruction can be executed on the underlying

hardware.

Embodiments may be implemented in many different system types. Referring now to

FIG. 9, shown is a block diagram of a system in accordance with an embodiment of the present
13

5

10

15

20

25

30

35

invention. As shown in FIG. 9, multiprocessor system 800 is a point-to-point interconnect

system, and includes a first processor 870 and a second processor 880 coupled via a point-to-

point interconnect 850. As shown in FIG. 9, each of processors 870 and 880 may be multicore

processors, including first and second processor cores (i.e., processor cores 874a and 874b and

processor cores 884a and 884b), although potentially many more cores may be present in the

processors. As described above, the processor cores may include MAC units or other logic to

perform user-level multiply-multiply instructions in accordance with an embodiment of the

present invention.

Still referring to FIG. 9, first processor 870 further includes a memory controller hub

(MCH) 872 and point-to-point (P-P) interfaces 876 and 878. Similarly, second processor 880

includes a MCH 882 and P-P interfaces 886 and 888. As shown in FIG. 9, MCH’s 872 and 882

couple the processors to respective memories, namely a memory 832 and a memory 834, which

may be portions of main memory (e.g., a dynamic random access memory (DRAM)) locally

attached to the respective processors. First processor 870 and second processor 880 may be

coupled to a chipset 890 via P-P interconnects 852 and 854, respectively. As shown in FIG. 8,

chipset 890 includes P-P interfaces 894 and 898.

Furthermore, chipset 890 includes an interface 892 to couple chipset 890 with a high

performance graphics engine 838, by a P-P interconnect 839. In turn, chipset 890 may be

coupled to a first bus 816 via an interface 896. As shown in FIG. 9, various input/output (I/O)

devices 814 may be coupled to first bus 816, along with a bus bridge 818 which couples first bus

816 to a second bus 820. Various devices may be coupled to second bus 820 including, for

example, a keyboard/mouse 822, communication devices 826 and a data storage unit 828 such as

a disk drive or other mass storage device which may include code 830, in one embodiment.

Further, an audio I/O 824 may be coupled to second bus 820.

Embodiments may be implemented in code and may be stored on a storage medium

having stored thereon instructions which can be used to program a system to perform the

instructions. The storage medium may include, but is not limited to, any type of non-transitory

storage medium such as disk including floppy disks, optical disks, optical disks, solid state drives

(SSDs), compact disk read-only memories (CD-ROMs), compact disk rcwritablcs (CD-RWs),

and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random

access memories (RAMs) such as dynamic random access memories (DRAMs), static random

access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash

memories, electrically erasable programmable read-only memories (EEPROMs), magnetic or

optical cards, or any other type of media suitable for storing electronic instructions.

While the present invention has been described with respect to a limited number of
14

embodiments, those skilled in the art will appreciate numerous modifications and variations

therefrom. It is intended that the appended claims cover all such modifications and variations as

fall within the true spirit and scope of this present invention.

15

What is claimed is:

29
 0

4 1
9

1. An apparatus comprising:

a processor having a plurality of execution units, at least one of the execution units

5 including a circuit comprising:

a first multiplier to multiply a first reference value with a first coefficient to

obtain a first product;

a second multiplier to multiply a second reference value with a second

coefficient to obtain a second product;

10 a first adder to combine the first and second products to obtain a first sum;

a second adder to combine the first sum and a third term to obtain a base

value;

a third level of adders each to combine the base value with one of a plurality

of representations of the first coefficient to obtain a first sum set; and

15 a fourth level of adders each to combine the first sum set with one of a

plurality of representations of the second coefficient to obtain a second sum set, wherein the

circuit is to populate a vector destination storage having a plurality of locations each to store

an output of one of the third and fourth levels of adders.

20 2. The apparatus of claim 1, wherein each location of the plurality of locations

corresponds to a pixel of a pixel block.

3. The apparatus of claim 1, wherein the circuit is part of a multiply-accumulate

(MAC) unit.

25

4. The apparatus of claim 1, wherein the circuit is to populate the vector

destination storage responsive to a user-level multiply-multiply-add instruction.

5. The apparatus of claim 4, wherein the circuit is to receive the first and second

30 reference values and the third term associated with the user-level multiply-multiply-add

instruction.

16

29
 0

4 1
9

6. The apparatus of claim 5, wherein the processor further includes a front end

unit to receive the first and second reference values and the user-level multiply-multiply-add

instruction.

5 7. The apparatus of claim 4, wherein the circuit is to perform two multiplication

operations and greater than 16 addition operations responsive to the user-level multiply-

multiply-add instruction.

8. A method comprising:

10 receiving a dual multiply-add instruction in a front end unit of a processor;

decoding the dual multiply-add instruction and sending the decoded instruction and

operands therefore to an execution unit of the processor; and

executing the decoded instruction in the execution unit; including

multiplying a first reference value with a first coefficient to obtain a first product;

15 multiplying a second reference value with a second coefficient to obtain a second

product;

combining the first and second products to obtain a first sum;

combining the first sum and a third term to obtain a base value;

combining the base value with each of a plurality of representations of the first

20 coefficient to obtain a first sum set;

combining the first sum set with each of a plurality of representations of the second

coefficient to obtain a second sum set; and

storing the first sum set, and the second sum set in a vector destination storage.

25 9. The method of claim 8, wherein the plurality of representations of the first

coefficient include the first coefficient, a negative value of the first coefficient, and twice the

first coefficient.

10. The method of claim 9, wherein the plurality of representations of the second

30 coefficient include the second coefficient, a negative value of the second coefficient, and

twice the second coefficient.

17

11. A system comprising:

a processor having a plurality of execution units, at least one of the execution units

configured to execute the method of any of claims 8-10; and

a dynamic random access memory (DRAM) coupled to the processor.

5

12. The system of claim 11, wherein one of the execution units further comprises

a MAC unit.

10

29
 0

4 1
9

18

