PATENT SPECIFICATION

1 569 062 (11)

- (21) Application No. 7698/78 (22) Filed 27 Feb. 1978
- (31) Convention Application No. 2 708 779
- (32) Filed 1 March 1977 in
- (33) Fed. Rep. of Germany (DE)
- 569 062 (44) Complete Specification published 11 June 1980
 - (51) INT CL3 C09B 43/12
 - (52) Index at acceptance C4P 126 2G5A 2H12 2H15 2H18 2H21 2H3 2H7 2H8 2H9 2HX (72) Inventors DIETER VOR DER BRÜCK and GERHARD

WOLFRUM

(54) DISAZO DYESTUFFS

(71) We, BAYER AKTIENGESELLSCHAFT, a body corporate organised under the laws of Federal Republic of Germany of Leverkusen, Germany, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:— The invention provides disazo dyestuffs which contain only one acid group and

	wherein	
10	p is 0 or 1, X denotes OH, NH—SO ₂ —R ₈ , N(R ₉)-alkylene-OSO ₃ H, N(R ₉)-alkylene-SO ₃ H, N(R ₉)-arylene-SO ₃ H, N(R ₉)-arylene-CH ₂ —SO ₃ H or N(R ₉)-arylene-SO ₂ —NH—SO ₂ —R ₈ ,	10
15	Z denotes acyl, R_1 and R_2 denote hydrogen or non-ionic substituents, R_3 , R_4 and R_5 denote hydrogen, optionally substituted alkyl, optionally substituted aralkyl, optionally substituted aryl, halogen, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted aralkoxy or	15
20	optionally substituted acylamino; or R_4 and R_3 together denote the remaining members of a fused benzene ring, R_6 and R_9 denote hydrogen or optionally substituted alkyl, R_7 denotes hydrogen, optionally substituted alkyl, optionally substituted	20
25	aryl or optionally substituted aralkyl and R_g denotes optionally substituted alkyl, optionally substituted aryl or dialkylamino. As used herein the term "non-ionic substituents" means a substituent which does not dissociate under the condition of production or use of the distort.	25
30	dyestuff. Preferred non-ionic substituents R_1 and R_2 are halogen, cyano, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted aryl, trifluoromethyl, nitro, thiocyano, optionally substituted carbamoyl, optionally substituted sulphamoyl, optionally substituted alkylsulphonyl and optionally substituted arylsulphonyl. Preferred substituents of the carbamoyl and sulphamoyl	30
35	groups are optionally substituted alkyl, optionally substituted aralkyl and optionally substituted aryl.	35

5

wherein

2	1,569,062	2
5	Preferred acyl radicals Z and in the acylamino groups R_3 , R_4 and R_5 are optionally substituted alkylcarbonyl, optionally substituted arylcarbonyl, optionally substituted alkoxycarbonyl, optionally substituted aryloxycarbonyl, optionally substituted alkylsulphonyl, optionally substituted aralkylsulphonyl and optionally substituted arylsulphonyl.	5
-	As used herein the term "acyl" means any organic "acid group", the hydrogen atom of which is easily replaced by for example a metal atom and includes, in addition to those acyl radicals mentioned above, an activated pyrimidinyl, an alkoxycarbonyl and a triazinyl radical.	3
10	Preferred alkyl radicals R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 , in the alkylsulphonyl groups and as substituted of the carbamoyl and sulphamoyl radicals are preferably those with 1 to 4 carbon atoms, which may be substituted by halogen, cyano, hydroxyl or $C_1 - C_4$ -alkoxy.	10
15	Preferred aryl radicals R_1 , R_2 , R_3 , R_4 , R_5 , R_7 and R_8 , in the arylcarbonyl and arylsulphonyl groups and as substituents of the carbamoyl and sulphamoyl groups are phenyl and naphthyl radicals which are optionally substituted by phenyl, C_1C_4 alkyl, halogen nitro or C_1C_4 alkoxy. Preferred aralkyl groups R_3 , R_4 , R_5 , R_7 and R_8 in the aralkylsulphonyl groups and as substituents of the carbamoyl and sulphamoyl radicals are benzyl and 2-	15
20	phenylethyl, which may be substituted in the phenyl radical by C_1 — C_4 -alkyl, C_1 — C_4 alkoxy, halogen, nitro or cyano. Preferred alkoxy groups R_1 , R_2 , R_3 , R_4 and R_5 and in the alkoxycarbonyl groups are C_1 — C_4 alkoxy groups, which may be optionally substituted by hydroxyl, halogen or cyano.	2(
25	Preferred aryloxy radicals R_3 , R_4 and R_5 and in the aryloxycarbonyl groups are phenyloxy or naphthyloxy radicals which are optionally substituted by phenyl, C_1-C_4 alkyl, halogen, nitro or C_1-C_4 alkoxy. Preferred aralkyloxy groups R_3 , R_4 and R_5 and in the aralkyloxycarbonyl radicals are benzyloxy and 2-phenylethoxy groups, which may be substituted in the	25
30	phenyl radical by C_1-C_4 alkyl, C_1-C_4 alkoxy, halogen, nitro or cyano. The alkylenes as a constituent of the radicals X are preferred C_2-C_6 alkylene groups, which may be straight-chain or branched. The arylenes as a constituent of the substituents X are preferably phenylene radicals, which may be further	30
35	substituted by $C_1 - C_4$ alkyl, $C_1 - C_4$ alkoxy, halogen, cyano or nitro. The alkyl groups of the dialkylamino radicals R_8 preferably contain 1 to 4 carbon atoms. Preferred halogen atoms are fluorine, chlorine and bromine, especially chlorine and bromine. Those dyestuffs which contain an acyl group Z which is not fibre-reactive are preferred.	35
40	Preferred dyestuffs within the formula I are those in which p has the above mentioned meaning, X denotes OH, NH-SO ₂ -R ₈ , N(R ₉)(C ₂ -C ₆) alkylene OSO ₃ H, N(R ₉)(C ₂ -C ₆) alkylene-SO ₃ H, N(R ₉)-phenylene-SO ₃ H, N(R ₉)-phenylene- CH ₂ -SO ₃ H or N(R ₉)-phenylene-SO ₂ -R ₈ wherein the phenylene	40
45	may be substituted by $C_1 - C_4$ alkyl, $C_1 - C_4$ alkoxy, halogen, cyano or nitro. R_1 and R_2 independently denote hydrogen, chlorine, bromine, methyl, ethyl, methoxy, ethoxy, cyano, trifluoromethyl or phenoxy, R_3 , R_4 , R_5 and R_6 independently denote hydrogen, $C_2 - C_2$ alkyl, $C_3 - C_3$	45
50	alkoxy, $C_1 - C_4$ alkylcarbonylamino, benzoylamino, $C_1 - C_4$ alkylsulphonyl- amino, phenylsulphonylamino, $C_1 - C_4$ alkoxycarbonylamino or phenoxy- carbonylamino, wherein the phenyl nuclei may be substituted by methyl, ethyl, methoxy, ethoxy, chlorine, bromine or cyano, R_7 denotes hydrogen, $C_1 - C_4$ alkyl which is optionally substituted by chlorine,	50
55	Nydroxyl, cyano, benzyl or phenethyl, R_{g} denotes C_{1} —C4 alkyl or phenyl which is optionally substituted by methyl, chlorine or bromine, R_{g} denotes hydrogen, methyl or ethyl and Z denotes C_{1} —C4 alkylcarbonyl which is optionally substituted by cyano	55
60	C_1-C_4 alkoxy, phenoxy or phenyl, benzoyl which is optionally substituted by C_1-C_4 alkyl, chlorine, bromine, nitro, cyano or C_1-C_4 alkoxy, C_1-C_4 alkyl-sulphonyl, phenylsulphonyl, phenoxycarbonyl or C_1-C_4 alkoxycarbonyl, wherein the phenyl and phenoxy groups may be substituted by chlorine, C_1-C_4 alkyl, C_1-C_4 alkoxy or cyano.	60
65	Particularly preferred dyestuffs are those which, in the form of the free acid, correspond to the formula	65

wherein

Z' denotes $C_1 - C_4$ alkylcarbonyl, benzoyl which is optionally substituted by methyl, methoxy or chlorine, phenylacetyl which is optionally substituted substituted by methyl, methoxy or chlorine or phenoxyacetyl which is optionally substituted by methyl, methoxy or chlorine, X' denotes CH, NH-SO₂-R'₈, N(R'₉)-(C₂-C₄)-alkylene-OSO₃H, N(R'₉)-(C₂-C₄)-alkylene-SO₃H or

$$N(R_q^1) \rightarrow SO_3 + SO_$$

10

5

 $\int_{-\infty}^{\infty} \frac{d}{dt}$

15

20

25

30

35

bromine or trifluoromethyl R'_{4} and R'_{4} independently denote hydrogen, methyl, ethyl, methoxy, ethoxy, acetylamino, methylsulphonylamino or phenylsulphonylamino, R' denotes hydrogen, methyl, ethyl, methoxy, ethoxy or acetylamino,

R[']₆ denotes hydrogen or methyl, R' denotes hydrogen, methyl, ethyl, 2-cyanoethyl, 2-chloroethyl, benzyl

or phenethyl, R'_{a} denotes $C_1 - C_4$ alkyl or phenyl which is optionally substituted by methyl, chlorine or bromine and

 R'_1 and R'_2 independently denote hydrogen, methyl, ethyl, chlorine,

R' denotes hydrogen, methyl or ethyl.

Especially preferred compounds are those which, in the form of the freee acid, 20 correspond to the formula

wherein

w		
	X', R'_1 and R'_6 have the abovementioned meaning,	25
	R", denotes hydrogen or methyl,	
	R ["] ₃ denotes hydrogen, methyl or methoxy,	
	R ["] denotes hydrogen, methyl, methoxy, ethoxy or acetylamino,	
	R ["] denotes hydrogen, methyl or acetylamino and	
	Z" denotes acetyl, propionyl, benzoyl which is optionally substituted by	30
	weather weather an ablenting manufactul which is optionally substituted	

methyl, methoxy or chlorine, phenylacetyl which is optionally substituted by methyl methoxy or chlorine, or phenoxyacetyl which is optionally substituted by methyl, methoxy or chlorine.

The dyestuffs of the formula (I) are prepared by coupling diazotised aminoazo compounds of the formula

wherein

5

10

15

X, R_1 , R_2 , R_3 , R_4 and p have the meaning already given, to amines of the formula

(V)

wherein

 R_5 , R_6 and R_7 have the meaning already given, and subsequently acylating the product, the radical Z

wherein

Z has the meaning already given, being introduced.

The dyestuffs according to the invention are suitable for dyeing natural and synthetic fibre materials, in particular for dyeing polyamide fibres, in level yellow to orange shades of good colour yield and very good fastness to light and wet processing. The present invention accordingly further provides a process for dyeing a natural or synthetic fibre material comprising treating the material with a dyestuff of the present invention. The dyestuffs of the present invention are already absorbed well onto polyamide fibres in a neutral to weakly acid dyebath. Polyamides are understood here, in particluar, as those consisting of synthetic polyamides, such as ϵ -polycaprolactam, or condensation products of adipic acid and hexamethylenediamine. The dyestuffs are used here either in the form of the free acid or in the form of their salts, in particular the alkali metal salts, preferably the sodium or potassium salts, as well as the ammonium salts.

20

25

Example 1.

13.65 g of p-sulphanilic acid are dissolved in 150 ml of water with 5 g of sodium hydroxide. Thereafter, 5 g of sodium nitrite are added. The resulting solution is added dropwise into a mixture of 500 g of ice and 50 ml of concentrated hydrochloric acid. The mixture is subsequently stirred at 0°C for 2 hours, the excess nitrite is destroyed with amidosulphonic acid, and a solution of 8.8 g of 2,5-dimethylaniline in 100 ml of glacial acetic acid is added dropwise. The pH value is adjusted to about 4 with saturated sodium acetate solution. The dyestuff which has precipitated is filtered off and dried at about 40°C.

precipitated is filtered off and dried at about 40°C. 4.4 g of the dyestuff described above are stirred in 150 ml of 50% by weight hydrochloric acid and diazotised at room temperature with 1 g of sodium nitrite, dissolved in 10 ml of water. 1.6 g of m-toluidine are dissolved in 50 ml of glacial acetic acid and the solution is added to the diazonium salt solution. The pH value is adjusted to about 4 with saturated sodium acetate solution. The dyestuff which has precipitated is filtered off and dried at about 40°C.

3 g of the disazo dyestuff described above are stirred in 60 ml of acetic anhydride and 20 ml of glacial acetic acid at 120°C for 2 hours. The mixture is allowed to cool to room temperature and the dyestuff which has precipitated of the formula

> H_3 H_3

40

is filtered off, rinsed and dried at 40°C.

Dyeing Example.

0.1 g of the dyestuff prepared according to Example 1 is dissolved hot in 100 ml of water, 5 ml of ammonium acetate solution are added and the mixture is diluted with water to a volume of 500 ml. 10 g of a polyamide fabric are put into the dyebath, the dyebath is brought to the boil in the course of 20 minutes, 4 ml of 10% strength by weight acetic acid are added and the bath is kept at the boiling point for one hour. Thereafter, the fabric is rinsed and dried at 70 to 80%C.

A yellowish-tinged orange dyeing of very good fastness to light is obtained. Further valuable dyestuffs with the indicated colour shades according to the following tables are prepared in a manner corresponding to that in Example 1.

40

45

50

15

5

10

35

45

50

4

4

5

10

15

20

25

30

					<u> </u>	,569,	062								
		reddish-tinged yellow	• •	**	e e		¢ 0	yellowish-tinged orange	"	r F	"	r r	6	orange	• •
	Z	COCH3	-CO-CH3	-co-cH	-C0-CH3	-CO-CH ₃	-CO-CH ₃	-CO-CH3	-CO-CH3	-CO-CH ₃	-CO-CH3		-CO-CH ₃	-CO-CH ₃	-co-cH,
R e R	R,	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	R	5-CH3	5-CH3	Н	Н	5-CH3	6-CH ₃	5-CH ₃	5-CH3	5-CH3	5-CH3	5-CH3	5-CH3	5-CH3	6-CH,
	R4	Н	Н	CH ₃	CH3	CH ₃	CH ₃	H	CH ₃	-0-CH ₃	-0-CH3	-NH-CO-CH3	-NH-CO-CH3	-0-CH ₃	-0-сн0-сн.
Э́Н	R3	Н	CH3	СН₃	Н	Н	Н	-0-CH3	-0-CH3	-CH3	Н	Н	-CH ₃	-0-CH3	-0-CH.
	\mathbb{R}_2	Н	Н	Н	Н	Η	Η	Η	Н	Н	Н	Н	Н	Н	Н
	R1	Η	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	н

]	1,569	,062							-
	orange	yellowish-tinged orange	÷.	"	"	•	¢.	ĩ		•		orange	**	reddi sh-tinged orange	reddish-tinged yellow
z	-co-cH ₃		-co-cH3		-CO-CH3	-CO-CH3	-C0-CH3	¢ ¢	•	6	6 6	• •	• •	:	•
\mathbf{R}_{7}	Н	Н	Н	Н	Н	Н	Н	Н	, H	Н	Н	Н	Н	Н	Н
Rs	Н	Н	5-CH3	Н	Н	Н	Н	5-CH3	Н	5-CH ₃	5-CH ₃	6-CH ₃	Н	5-CH ₃	5-CH ₃
\mathbb{R}_4	-0-CH3	ĊН³	CH3	Н	CH ₃	-0-CH ₃	0CH3	CH ₃	Н	CH ₃	CH ₃	0-CH ₃	NH-CO-CH3	NH-CO-CH ₃	CH3
R₃	-0-CH3	Н	-CH ₃	CH ₃	CH ₃	Н	CH 3	-0CH3	Н	H	CH3	Н	Н	0CH3	CH,
\mathbb{R}_2	Н		Н											ш	
R,	Η	17 2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CI	2-C1	2-CI	2-CI	2-CI	2-CI	2-0CH ₃
No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

		yellowish-tinged orange	reddish-tinged yellow	reddish-tinged yellow	÷	orange	• •	•	•	• •	• •	reddish-tinged yellow		•
у 	Z	-co-cH		•		:					r. n	-CO-C2H5	-C0-C ₃ H ₇	
	R,	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Rs	5-CH3	5-C ₂ H ₅	5-C ₂ H ₅	Н	5-NH-CO-CH	:	ĩ	•	¢ .	• 6	5-CH3	6-CH ₃	Η
	R,	CH,	CH 3	CH ₃	0-CH3	CH3	CH3	CH3	Н	CH3	CH₃	CH₃	CH 3	CH₃
	R,	0CH3	CH3	CH3	Н	СН 3	CH3	0CH3	Н	Н	Н	Н	CH,	CCH
-	R,	Н	5-CH ₃ CH ₃	Н	Н	Н	Η		Н	Н	5-CI	Н	Н	Н
s. T	R1 .	31 2-0-CH ₃	32 2-CH ₃	2-CF ₃	2-CF ₃	2-CF ₃	Н	Н	Н	39 2-CH ₃	2-CI	Н	Н	Н
	No.	31	32	33	34	35	36	37	38	39	40	41	42	43

		· · · · · · · · · · · · · · · · · · ·			1,	569,062					
	reddi sh-tinged yellow	orange	5	yellowish-tinged orange	orange	ŝ	yellowish-tinged orange	reddi sh-tinged orange		÷	orange
Z		r F)	ŗ	"		"	**		-co-cH ₃
R,	Н	Н	Н "Н	H ₃ H	H ₃ H	, H ₃ H	Н	Н	CH ₃	C_2H_5	-CH ² -CH ²
R₅	5-CH3	5-CH ₃	5-0-CH3	6	5-0-CH ₃	5-0-CH ₃	Η	5-CH3	5-CH ₃	5-CH ₃	5-CH3
R,	CH ₃	0-CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН _в	CH ₃	C ₂ H₅	√ ни
R₃	CH3	, OCH	Н	Н	CH3	0-CH ₃	0-CH ₃	CH₃	Н	Н	H
R2	Н	Н	Н	Н	Н	Н		Н	Η	H	Н
No. R1	н	Н	2-CH3	2-CH ₃	2-CI	2-CI	50 H	Н	H	Н	2-CH ₃
οN	44	45	46	47	48	49	50	51	52	53	54

_____8_____

9			1,569,062			
		orange	reddish-tinged yellow		:	
	Z	-co-cH	ĩ		• •	6
	R,	-C ₂ H ₄ -CN	-c2H4-	C_2H_s	C ₂ H ₅	C ₂ H ₅
	Rs	5-CH ₃	5-CH3	5-CH3	6-CH ₃	5-CH ₃
		·				
	R4		СН ₃	Н	CH3	CH,
	R,	H	Н	Н	ĊH,	0-CH3
	\mathbb{R}_2	H	Н	Н	Н	Н
	No. R1	2-OCH	2-CI	Η	Н	Н
	No.	55	56 2	57	58	59

1 560 062

*****	1	,		1.	,569,(062	p						10
	reddish-tinged yellow	:	"	ŝ	:	"	yellowish-tinged orange	ŗ	÷	orange	¢ 6	reddi sh-tinged orange	reddish-tinged yellow
N	C0-CH3	:	•	•	:	÷	÷	•	ĩ				ĉ
R ₅ R ₅	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	C_2H_5	C ₂ H ₅
	Î H	3-CH3	3-CH ₃	Н	3-CH3	Н	3-CH ₃	3-CH3	Н	Н	3-CH ₃	3-CH ₃	3-CH ₃
	H	CH ₃	Н	CH3	CH₃	0-CH ₃	0-CH ₃	CH ₃	CH ₃	0CH ₃	0-CH ₃	0-CH3	CH 3
¥ `≃	H	Н	ĊH ₃	CH3	CH3	CH ₃	CH3	0-CH ₃	0-CH3	0-CH3	0-CH ₃	0-CH	CH
~	H	Н	Н	Н	Н	Н	Η	Н	Н	Н	Н	6-CH3	Н
۵		Η	Н	Н	Н		Н	Н	Н	Н	Н	4-CH ₃	4-0-CH ₃
Ž	60	61	62	63	t-9	65	66	67	68	69	70	71	72

1				1,569,0	62				
	reddi sh-tinged yellow	:	y ello wisn- linged orange ''	reddi sh-tinged yellow	5	;	;	£	
Z	COCH3	•	: :		.,	:		~~- ~~-	-œ-{}-œ-
R,	C ₂ H s	C ₂ H ₅	C2H5 C2H5	C ₂ H ₅	C ₂ H ₄ CN	-C2H4-	C ₂ H ₄ Cl	Н	Н
Ŗ	2-CH3	3-CH ₃	3-СН ₃ С ₂ Н ₅ 3-0-СН ₃ С ₂ Н ₅	Н	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	- 3-CH3
R	CH,	0-CH ₃	ин-со-сн _з Н	CH3	CH ₃	Н	СН₃	Н	CH3
R,	Н	H :	нн	CH ₃	CH ₃	Н	0CH3	CH₃	CH ₃
R2	Н	Н	н н	Н	Н	Н	Н	H	Н
R,	4-0-	r e	4-C1 6-C1	6-CI	6-C1	6-CI	6-C1	Н	Н
No	73	74	75 76	77	78	6 <i>L</i>	80	81	82

12				1,5	69,062				12
		reddish-tinged yellow		yellowish-tinged orange	£		orange	reddi sh-tinged yellow	
	z	-œ-	-œ-{}-cH ₃	- B B B			£		
	R,	Н	C ₂ H ₅	C ₂ H5	C ₂ H ₅				
	Rs	2-CH ₃	3-CH ₃	3-CH3	3-CH ₃	Н	3-CH ₃	3-CH3	
		13			· Ę	ocH ₃	0CH ₃	, ta	
	R₄	ĊH,	Н	Н	ĊH,	00	00	CH ₃	
	R3	CH3	CH ₃	0CH3	0CH3	CH3	0CH3	Н	
	R2	Н	H	Н	Н	Н	Н	5-C1 H	
								U	
	No. R1	83 H	Н	Н	Н	Η	Н	89 2-CI	
	No	83	84	85	86	87	88	89	

13			1,569	,062					13
	yellowish-tinged orange	ž	reddi sh-tinged yellow	orange	reddi sh-tinged yellow	"	5	y ellowish-tinged orange	
Ζ	-co-ch2-co-		енэ-о-ζ_)-о-сн [∋]	-∞-сн ₂ -{_}-а	-CO-CH ₂ -CN	-C0-0-C2H5	â	£	
R ,	C ₂ H,	н	H	Н	Н	Н	Н	C ₂ H5	
	3-0-CH ₃ C ₂ H,	3-CH ₃	3-CH ₃	3-NH-CO-CH	3-CH ₃	3-CH ₃	3-CH3	3-CH ₃	
R,	ocH ₃	0C ₂ H₅	CH3	OCH3	CH	CH ₃	CH 3	• OCH ₃	
R,	Н	Н	CH,	CH3	ĊH³	ĊH ₃	Н	H	
Ŗ	6-CI	6-CH ₃	6-CH ₃ CH ₃	Н	Н	Н	Н	6-CH3	
Ŗ	4-CI	4- CH 3	4-CH ₃	6-Br	6-C ₂ H₅	Н	Н	4-CH ₃	
No.	06	91	92	93	94	95	96	76	

Example 100.

5

10

15

20

18.1 g of 4-(N-methylsulphonyl-amidosulphonyl)-aniline are dissolved in 150 ml of water with 5 g of sodium hydroxide. Thereafter, 5 g of sodium nitrite are added. The resulting solution is added dropwise to a mixture of 500 g of ice and 50 ml of concentrated hydrochloric acid. The mixture is subsequently stirred at 0°C for 2 hours, the excess nitrite is destroyed with amidosulphonic acid, and a solution of 10.3 g of 2-methyl-5-methoxyaniline in 100 ml of glacial acetic acid is added dropwise. The pH value is adjusted to about 4 with saturated sodium acetate solution. The dyestuff which has precipitated is filtered off and dried at about 40°C.

8.7 g of the dyestuff described above are stirred in 150 ml of half-concentrated hydrochloric acid and diazotised at room temperature with 1 g of sodium nitrite, dissolved in 10 ml of water. 1.6 g of m-toluidine are dissolved in 50 ml of glacial acetic acid and the solution is added to the diazonium salt solution. The pH is adjusted to about 4 with saturated sodium acetate solution. The dyestuff which has precipitated is filtered off and dried at 40°C.

3.6 g of the disazo dyestuff described above are stirred in 60 ml of acetic anhydride and 20 ml of glacial acetic acid at 120°C for 2 hours. The mixture is allowed to cool to room temperature and the dyestuff, which has precipitated, of the formula

is filtered off.

The dyestuff dyes polyamide fibres yellowish-tinged orange.

20

5

10

15					1,569,	062	<u></u>				15
		reddish-tinged yellow	yellowish-tinged orange	reddish-tinged orange	y ellowi sh-tinged orange	yellowish-tinged orange	•	:		reddish-tinged yellow	•
	Z	-co-cH3	:	ć	:	:	:	••	~~- ~~-	:	6
R 2-2-2 2-2	یے ال س	н	Н	6-CH ₃	6-CH3	5-CH3	Н	Η	Н	6-CH3	6-CH₃
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H	Н	Н	Н	Н	CH ₃	$C_2H_5$	Н	H	-cH2
	<u>م</u> ر م	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	Н	3-CH3	3-CH ₃
	ก้ น้	CH	CH ₃	CH ₃	0CH3	Н	Н	0CH3	Н	, CH3	CH ₃
R8-502-N-502	R,	CH3	0CH3	CH3	CH3	CH3	0C2H5	СН₃	Н	Н	CH3
	$\mathbb{R}_2$	H	Н	Н	Н	Н	Н	Н	5-CH ₃	H	Н
	R,	Н	Н	2-CH3	Н	2-0CH ₃ H	Н	2-Cl	2-CI 5-CH ₃	2-CI	Н
	R,	CH 3	CH3	103 C ₂ H ₅	104 C ₃ H,	105 C ₃ H,	106 C ₄ H ₅	107 C ₄ H ₉	108 C.4H <b>。</b>	CH ₃	CH,
а. А.	No. R.	101 CH ₃	102 CH3	103	104	105	106	107	<b>*</b> 108	109 CH ₃	110 CH ₃
ан 1997 - Сарана 2017 - Саран											

5				1,569,06	2				
	reddish-tinged yellow	yellowish-tinged orange	÷	reddish-tinged yellow		yellowish-tinged	01411.86	orange	reddish-tinged
Ζ	-cocH ₃	-cocH ₃	÷	"	:	••	î	-co-cH3	< <u>_</u> ~∞-
Ŗ	Н	Н	Н	Н	Н	6-CH ₃	Н	Н	Н
R,	H	C ₂ H ⁴ CN	-c_H4.	Н	Н	Η	Н	C ₂ H ₅	Н
R,	3-CH	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃
R,	CH,	ĊH ₃	CH3	CH3	СН	ĊH,	0CH3	0CH3	CH3
$\mathbb{R}_3$	H	Ĥ	0CH3	Н	CH ₃	ocH ₃	CH3	0CH3	CH₃
R,	Н	5-CI	Н	Н	Н	Н	Н	Н	Н
R,	Н	2-CI	2-CF ₃ H	Н	Н	Н	Н	Н	Н
R。	CH ,	112 CH ₃	113 CH ₃		:	•	6	ŝ	:
No. R.	111 CH ₃	112	113	114	115	116	117	118	119

_17				1,569,06	52			
	reddish-tinged yellow	ž		yellowish-tinged orange	reddish-tinged yellow	yellowish-tinged orange	"	6
2 	-α-cH20-	-co-()-oc_H5		"			"	-œ-
<u>م</u>	Н	H .	нн	Н	н	н	Η	Н
	H	C ₂ H ₅	3-CH ₅ 3-CH ₅	Н	Н	н	3-CH ₃	3-CH ₃
	3-CH ₃	3-C ₂ H ₅ C ₂ H ₅	3-CH ₃	Н	Н	н	3-CH3	3-CH ₃
<u>م</u>	CH ^ª	, CH3	CH ₃	CH ₃	CH3	NH-COCH3	Н	, OCH
۵	CH,	Н	СН ₃ Н	0CH ₃	Н	IN H	Н	CH3
· · · · · · · · · · · · · · · · · · ·	Н	5-CH ₃	нн	Н	H	Н	5-Cl	Н
	2-CI	2-CH ₃ 5-CH ₃	нн	Н	2-CH ₃	2-CH3	2-CI	2-CI
		:	£ 1	to the second se	H _{ac}	e de la companya de l	6	¢ (
a	120	121	122 123	124	125	126	127	128

				1,569	9,062			18
		yellowish-tinged orange	yellowish-tinged orange	reddish-tinged yellow	yellowish-tinged orange	۶ 	6	6
	Z	-co-(co-			-C-OC ₂ H ₅    0	-C-OC ₃ H,	-c-cH ₃	-C-CH2-0-
	ĸ	Н	Н	Н	6-CH ₃	Н	6-CH ₃	Н
· · ·	R,	3-CH ₃	3-CH ₃	C ₂ H ₅	C ₂ H ₅	-cH2	Н	н
	R₅	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	2-CH3	2-CH ₃	3-CH ₃
	R4	OCH3	, CH3	$C_2H_5$	OC2H5	OC ₃ H,	CH₃	CH ₃
	R3	ĊH,	CH ₃	Н	ĊH₃	ĊH³	0CH3	, OCH ₃
	R2	Н	Н	Н	Н	Н	Н	Н
	R1	Н	2-CH ₃	Н	Н	2-Br	2-CF3	Н
	R _s	d L	5 ;		a			$\alpha \checkmark$
	No.	129	130	131	132	133	134	135



	20			1	,569,062		<u></u>				20	)
			reddish-tinged yellow	y ellowish-tinged orange	reddish-tinged yellow	÷	"	:		yellowish-tinged orange	:	
		Z	-C0-CH3	-soz-	-305-J-a	205-	$-SO_2-C_4H_9$	-co-cH ₃	•	ŗ	•	
	R- Z- Z	R	н	Н	Н	Н	Н	Н	Η	Н	Н	
ò		R ₇	C ₂ H₅	C ₂ H₅	C2H5	C ₂ H₅	$C_2H_5$	Н	Н	Н	Н	
	N = N	R,	3-CH ₃	3-CH ₃	Н	Н	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	
	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	R4	CH ₃	CH ₃	Н	н	och ₃	Н	СН₃	0CH3	0CH3	
	- 20 ² - ×	R3	CH3	OCH ₃	CH ₃	Н	CH3	Н	CH3	Н	CH3	
		$\mathbb{R}_2$	H	Н	Н	Н	Н	Н	Н	Н	Н	
		R,	H	Н	2-CH ₃	Н	2-CI	Н	Н	Н	Н	
		x	HN205-	ŝ	â	"	:	HO ₃ S-C ₂ H ₄ NH-		:	:	
		No. X	140	141	142	143	144	145	146	147	148	

		es	reddish-tinged yellow	:			:	yellowish-tingeđ orange	reddish-tinged yellow	yellowish-tinged orange	ĉ	r K	:
		orange	reddish yellow					yellowi orange	reddish yellow	yellowi orange		-	
	Z	-co-cH ₃	:						<u>.</u>	√~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	С, 2н2-∞-	-0 ² H2-∞-	-CO-CH ₃
А.	R	Н	Н	€-CH₃	Н	Н	Н	Н	Н	Н	H A	Υ H	Η
	R ₇	Н	Н	Н	C ₂ H ₅	C ₂ H ₄ CN	-c ₂ H4-	C ₂ H5					
	Rs	3-CH ₃	3-CH	3-CH ₃	3-CH ₃	3-CH	3-CH ₃	3-CH ₃	H	H	Н	H	3-CH
	R4	oCH3	Н	, CH3	CH ₃	ĊH³	ĊH,	CH ₃	CH3	CH ₃	CH3	CH3	CH ₃ NH-COCH ₃ 3-CH ₃
	R,	0CH3	сн,	CH3	CH3	H	Н	Н	Н	0CH ₃	0CH3	OCH,	CH ₃ N
	R ₂	Н	Н	Н	Н	Н	Н	5-CI	Н	H	Н	Н	Н
	R,	Н	Н	Н	Н	Н	2-CI	2-CI	2-CH ₃	2-CH ₃	Н	Н	Н
	X	149 HO ₃ S-C ₂ H ₄ NH-	:	:	• •	:			÷		£	ç	**
	No.	149	150	151	152	153	154	155	156	157	158	159	160

				<del></del>	1.	,569,062	2					
	reddish-tinged yellow	y ellowish-tinged orange	•	"	ŗ	reddish-tinged yellow	y ellowi sh-tinged orange		:	reddish-tinged yellow	"	ž
Z	- ⁰⁰⁻	"	۰ د	:			"			-co-cH ₃	ŗ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R	Н	Н	Н	Η	Н	Н	Н	Η	Н	Н	Н	Н
R,	, H	C ₂ H₅	H ₃ H	H, H	H ₃ C ₂ H ₅	т, Н ₃ Н	H ₃ H	H ₃ H	H ₃ C ₂ H ₅	C ₂ H ₄ CI	C ₂ H ₅	C ₂ H ₅
Rs	3-CH ₃	Н	3-CH ₃	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	Н	Н	Н
R4	CH₃	0C2H5	OC ₂ H ₅	$0C_2H_5$	0C ₂ H ₅	ĊH,	0C ₂ H ₅	ĊH³	CH3	ĊH³	CH ₃	CH 3
R³	CH ₃	CH3	ĊH₃	Н	Η	ĊH ₃	CH ₃	OCH ₃	OCH3	CH ₃	Н	Н
R2	Н	Н	Н	Η	Н	Н	Н	Н	Н	Н	Н	Н
R1	Н	Н	Н	Н	Н	Η	Н	Н	Н	2-CI	Н	Н
No. X X R ₁	161 HO ₃ S-C ₂ H ₄ NH-	۰,		* *		H0 ₃ S-C ₂ H ₄ N-CH ₃	:		÷	:		î
No.	161	162	163	164	165	166	167	168	169	170	171	172

	reddi sh-tinged yellow		÷	:	:		• •		:	•	yellowish-tinged orange	reddi sh-tinged yellow	yellowish-tinged
	red yel										yel ora	yel	yel
N	$\bigcirc$		-co-cH3	6	:		:	•	ć	*	6	•	
R	В Ч Н	6-CH ₃	Н	Н	Н		5-CH ₃	Η	Н	Н	Н	Н	Н
R,	Н	Н		Н	C ₂ H ₃		Н	Н	Н	$C_2H_5$	C ₂ H ₅	Н	$C_2H_5$
R	3-CH3	3-CH	H H U H	3-CH3	3-CH3		3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	Н
R,	CH,	CH,	СН3	Н	Н		СН,	CH ₃	Н	СН₃	-CH ₃ CH ₃	CH3	i, H
R	Ξ	Н	CH ₃	$C_2H_5$	CH ₃		CH3	CH3	CH3	CH3	-0-0	Н	-0-CH ₃
R,	H	5-CH3	Н	Н	Н		Η	Н	Н	Н	Н	Н	H
R	Н	2-CH ₃ 5-CH ₃	Н	Н	Н		2-CI	Н	Н	Н	2-CI	2-CH ₃	Н
×	173 H0 ₃ S-C ₂ H ₄ N-		:	÷	177 H0 ₃ S-C ₂ H ₄ -N-	C ₂ H ₅		179 H0 ₃ S-C ₂ H ₄ -N- C ₄ H ₉	180 HO ₃ S-C ₄ H ₉ -NH-		•	<b>6</b>	184 HO ₃ S-C ₄ H ₉ -N-
No. X	173	174	175	176	177		178	179	180	181	182	183	184

24							1,56	9,062					24
		reddish-tinged yellow	ŝ	"	orange	reddish-tinged	0101150 33	reddish-tinged yellow	2	yellowish-tinged orange	reddish-tinged yellow	•	
	Z	$\bigcirc$		-co-cH ₃	~ ~			-co-cH ₃	•	:	5	"	
	R。	н Н	6-CH3	Н	Н	Н	5-CH3	H	Н	Н	Н	Н	
	R,	Н	Н	C ₂ H ₅	$C_2H_5$	Н	C ₂ H₅	Н	C ₂ H ₄ CN	Н	Н	C ₂ H₅	
	R,	3-CH ₃	3-CH ₃	3-CH ₃	OCH3	3-CH3	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	Н	
	R,	CH3	CH3	CH ₃	-0CH3	-0CH3	-0CH3	CH³	oCH3	0CH3	CH ₃	CH3	
	R,	ĊH ₃	CH ₃ ,	H	CH ₃	CH3	ĊH,	CH ₃	Н	CH3	CH ₃	Н	
	R,	5-CH ₃	Н	Н	Н	Н	Н	6-CI	Н	H	Н	H	
	R,	2-CI	Н	Н	Н	2-CI	2-CI	2-CI	Н	2-СН ₃ Н	H-H	НН	
	o. X	185 H0 ₃ S-C ₄ H ₃ -N- 2-Cl 5-CH ₃ CH l. C ₃ H ₇	186 HO ₃ S-CH-CH-N- H CH ₃ C ₂ H ₅	187 H0 ₃ S-0-C ₂ H ₄ -NH H	., 188	., 61	0	191 H0 ₃ S-O-C ₂ H ₄ -N- 2-Cl H ₃ C	192 HO ₃ S-C ₄ H ₅ -N- H L C ₂ H ₅	3 ,,	194 HO ₃ S-O-CH-CH-NH- H	195 Н0 ₃ S-0-СН-СН-NН- Н   . С ₂ Н ₅	-
	ž	18	18	18	18	189	190	19	19	193	19	19.	

25			1,	569,062			<u> </u>	
	reddish-tinged yellow	yellowish-tinged orange	reddi sh-tinged yellow	yellowish-tinged orange	;	ŗ	reddish-tinged yellow	•
2		:	÷	-∞-	-COCH3	۰۰,	÷.	÷
R	6-CH3	Н	Н	Н	6-CH₃	Н	Н	Н
R,	Н	CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	C ₂ H ₅	Н	Н	Н	Н	C ₂ H ₅
R	3-CH ₃	Н	Н	3-CH ₃	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃
R, R,	CH,	Н	СН,	Н	OCH ₃	CH3	Н	Н
ĸ	H	, 0CH3	CH3	0CH3	H	0C2H5	Н	CH ₃
<b>R</b> 2	H	H	н	Н	н	Н	Н	Н
×		2-CI	Н	H	H	2-CI	N- 2-CH ₃   CH ₃	
×	196 H0,S-O-C-C-CH ₃       H ₃ C N- CH ₃	*	198 H0,S-C-C-NH- H,C CH,	8 6	200 HO ₃ S-C-C-N- H H ₃ C CH ₃ C ₂ H ₅		H0 ₃ S-CH-(CH ₂ ) ₃ -N- 2-CH ₃ H $(H_3)_{1}$ CH ₃	203 H0 ₃ S-CH-(CH ₂ ) ₂ -N- H -1 -1 -1 -1 -1
No. X	196	L61	198	199	200	201	202	203

26					1,56	9,062				26
	reddi sh-tinged yellow	ĩ	6	£	"	;	ŝ	66	yellowish-tinged orange	reddish-tinged yellow
Z	-CO-CH3	:	ŝ	√~~-	ŗ.	-C'0-C ₃ H,		-co-cH3	£	ŕ
R	Н	Н	Н	Н	6-CH ₃	Н	Н	Н	Н	6-CH ₃
R,	Н	Н	C ₂ H ₅	, H	ĊH³	H	Н	Н	C ₂ H ₅	Н
R,	3-CH3	3-CH3	Н	3-ОСН ₃ Н	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	Н	3-CH ₃
R4	C ₂ H5	Н	0CH ₃	CH3	CH3	Н	CH3	$C_2H_5$	0CH ₃	CH ₃
R³	CH3	СН	CH ₃	ĊH ₃	CH	CH3	Н	Н	ĊHĴ	CH3
R	Н	Н	Η	н	I ₃ H	T	Н	Н	н	Н
R	Н	Н	2-CI	Н	2-0CH ₃	Н	H HN-	Н	н	Н
No. X	204 HOS	205	206	207 HO3S-CH-NH-	20% " 208	209 HOSS CIAN	210 HO-SE-CH2-	211 211	HO-SEOH	213 HO-

_____26

_27						1,569,	062			27
No.	x	R ₁	R₂	R ₃	R₄	R ₅	R,	R ₆	1	
214	HO-	Н	Н	CH3	CH3	3-CH ₃	C ₂ H ₅	6-CH ₃	-CO-CH ₃ red yel	dish-tinged low
215	НО	2-C1	Н	OCH3	CH ₃	3-CH ₃	C ₂ H ₅	5-CH ₃	-∞-	••
216	HO-	2-0CH ₃	Н	CH3	OCH,	3-CH ₃	C₂H₄-CN	6-CH₃		

### Example 217.

23.5 g of 3-(N-phenylsulphonylamidosulphonyl)aniline are dissolved in 150 ml of water with 5 g of sodium hydroxide. Thereafter, 5 g of sodium nitrite are added. The resulting solution is added dropwise to a mixture of 500 g of ice and 50 ml of concentrated hydrochloric acid. The mixture is subsequently stirred at 0°C for 2 hours, the excess nitrite is destroyed with amidosulphonic acid, and a solution of 8.8 g of 2,5-dimethylaniline in 100 ml of glacial acetic acid is added dropwise. The pH value is adjusted to about 4 with saturated sodium acetate solution. The dyestuff which has precipitated is filtered off and dried at about 40°C.

5

10

15

20

6.58 g of the dyestuff described above are stirred in 150 ml of 50% by weight hydrochloric acid and diazotised at room temperature with 1 g of sodium nitrite, dissolved in 10 ml of water. 1.6 g of m-toluidine are dissolved in 50 ml of glacial acetic acid and the solution is added to the diazonium salt solution. The pH is adjusted to about 4 with saturated sodium acetate solution. The dyestuff which has precipitated is filtered off and dried at 40°C.

4.1 g of the disazo dyestuff described above are stirred in 60 ml of acetic anhydride and 20 ml of glacial acetic acid at 120°C for 2 hours. The mixture is allowed to cool to room temperature and the dyestuff, which has precipitated, of the formula



is filtered off.

The dyestuff dyes polyamide fibre material orange.

5

10

15

28					1,569,0	52				28
	-	reddish- tinged yellow	:	6	<b>.</b>		yellowish- tinged orange		ŝ	reddish- tinged yellow
	Z	-co-cH3		6	-ω-	•	-co-cH ₃	"	\$\overline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verline\$\verli	-co-cH ₃
N	R	Н	Н	Н	Н	Н	Н	Н	Ξ	Н
	R,	Н	Н	Н	Н	Н	Н	Н	Н	Н
2 - N = N - N = N	Rs	3-CH3	3-CH ₃	Н	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	3-CH ₃
	R4	H	CH3	Н	CH₃	CH,	CH ₃	0CH ₃	, OCH3	СН
₩ 4 0 0 2 0 - X	, R	Н	CH,	Н	Н	CH3	0CH ₃	CH3	CH ₃	Н
	$\mathbb{R}_2$	н	Η	Н	Н	Н	Н	Н	Н	H
	R1	H	Н	Н	Н	Н	Н	Η	Η	Н
	×	218 HO	219 HO	220 HO	221 HO	ОН	ОН	224 HO	ОН	ОН
-	No. X	218	219	220	221	222	223	224	225 HO	226 HO

29				1,569,062				····		29
	reddish- tinged yellow	*	*	\$	:	yellowish- tinged orange	:	reddish- tinged yellow	yellowish- tinged orange	
N	-co-cH3		:	-0-0 ⁻⁰⁻⁰⁻	-CO-CH3	ĩ	:	<b>R</b> .		
้ช	Н	6-CH3	Н	Н	Н	Н	H	6-CH ₃	6-CH3	
<b>R,</b>	C ₂ H,	Н	CH3	Н	C ₃ H ₄ CN	Н	Н	Н	Н	
	3-CH3	3-CH3	Н	3-CH3	3-CH ₃	<b>3-0-</b> СН, Н	2-CH	2-CH ₃	3-0-СН ₃ Н	
ž	CH3	CH ₃	ĊH,	ocH,	CH ₃	-0CH ₃		CH,	CH ₃	
น้	CH3	Н	Н	CH3	, CH3	Н	Н	CH3	Н	
R,	н	Н	4-CH ₃	Н	Н	Н	Н	Н	Н	
	2-CI	2-0CH ₃	2-CH ₃	4-0C ₂ H,H	4-0-4	4-CI	4-CI	4-CI	4-CI	
×	227 HO	228 HO	229 HO	230 HO	231 HO	232 HO	OH	234 HO	ОН	
No. X	227	228	229	230	231	232	233	234	235	

	1,569,062											
	reddish- tinged yellow	yellow <del>i</del> sh- tinged orange	reddish- tinged yellow	ĩ			•	÷ •	yellowish- tinged orange	6		
z	<u>-0-∞-</u>	-0-0-	-co-cH	•	e e	* 6		, (	6	<u>ω-</u>		
R	Н	Ξ.	Н	Н	Н	Н	6-CH ₃	Н	Н	н		
R,	Н	Н	CH-C	Н	Н	$C_2H_5$	Н	$C_2H_5$	Н	Н		
Rs	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	Н	3-CH ₃	3-CH ₃	3-CH3	3-CH ₃		
$\mathbb{R}_4$	CH ₃	со н   СН,	ĊH ₃	CH3	CH ₃	CH3	CH3	СН₃	CH,	0CH3		
R3	Н	-NH-CO CH ₃	Н	Н	CH3	CH ₃	СН₃	СН₃	0CH ₃	ĊH³		
R2	4-CI	Н	Η	4-CH ₃	4-CH ₃							
R1	2-CI	2-CI	Η	2-CH ₃	2-CH _a	2-CH ₃						
No. X	236 HO	237 HO	ОН	ОН	ОН	ЮН	ОН	ОН	ОН	OH		
No.	236	237	238	239	240	241	242	243	244	245 HO [.]		

31				1,5	59,062				
	yellowish- tinged orange		reddish- tinged yellow	;	yellowish- tinged orange	reddi sh- tinged yellow	;	ŗ	yellowish- tinged orange
2 2	-∞-		-сн ₂ 0 ² но-∞-	-α-ο	-C0-0C ₂ H ₅	-COCH3		•	
R	Н	Н	н	Н	Н	Н	Н	Н	Н
R,	C ₂ H <b>5</b>	Н	Н	Н	C ₂ H ₄ CN	Н	Н	H	C ₂ H5
Rs	Н	3-0-CH ₃ H	3-CH ₃	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	Н
R,	ĊH ₃	CH 3	CH,	CH,	och	CH,	CH3	CH ₃	СН₃
R,	CH ₃	CH,	H	Н	H	CH ₃	Н	CH3	0CH ₃
R2	4-CH ₃	4-CH ₃	4-CH ₃	4-CH ₃	Н	Н	Н	Н	Н
R1	2-CH	2-CH,	2-CH3	2-CH3	2-CH	3-CI	-50 ₂ - NH - H	Н	Н
No. X	246 HO	247 HO	248 HO	249 HO	250 HO	251 HO	252 (	., 253	254 ,,

32	·····					1,569,06	52					32
	yellowish- tinged orange	6.6		8.6	reddish- tinged yellow	:	yellowish <del>-</del> tinged orange	:	:	:	reddish- tinged yellow	reddish- tinged yellow
z	-co-cH			*	:	~~- ~~-		• •		**	5	<b>.</b>
R	€-CH₃	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	H
R,	Н	$C_2H_5$	Н	Н	Н	Н	Н	Н	Н	Н	Н	C ₂ H ₅
Rs	3-CH3	3-CH ₃	Н	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	3-CH ₃	Н	3-CH3	3-CH ₃	3-CH ₃
R,	OCH3	0CH3	och,	•HOO	ĊH,	СН,	сң,	0CH3	0CH3	0CH3	H	CH,
R,	CH3	сн <b>,</b>	H	Н	CH3	CH3	0CH ₃	CH3	Н	Н	CH3	CH
R2	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н	H
R1	Н	Н	. H	Н	2-0CH ₃	Н	Н	2-CH ₃	2-CI	2-CI	Н	н
X	-HN- 205-	6 6	•	•	6	÷	ĩ	<b>č</b> .	ŝ		CH ₃ -SO ₂ -NH-	266 C ₂ H ₅ -SO ₂ -NH-
No. X	255	256	257	258	259	260	261	262	263	264	265	266

33					1	,569,	062						
	reddish- tinged yellow	yellowish- tinged orange		orange	•	yellow	;	• •	<b>^</b>		*	orange	vellow
N	-co-cH ₃	•	*	cocH,	£ .	••		•	~~- ~~-	:	COC ₃ H ₇		COCH3
۵ ۲	Н	6-CH3	Н	Н	Н	Н	Н	Н	6-CH3	н	Н	H	Н
R,	Н	Н		C ₂ H ₅	Н	Η	Η	$C_2H_5$	Н	Н	Н	Н	Н
R.	3-CH3	3-CH ₃	3-СН₃ СН-{	3-CH3	3-C ₂ H ₅	3-CH ₃	Н	3-CH ₃	3-CH ₃	3-CH ₃	Н	3-0CH ₃	3-CH ₃
× ž	CH,	CH ₃	0CH3	0C ₂ H ₅	0C ₂ H ₅	CH3	CH3	CH3	Н	, CH,	CH,	CH ₃	CH3
R,	CH ₃	0CH3	CH3	0C2H5	сн,	CH,	СН <b>3</b>	Н	Н	CH3	Н	0CH3	CH,
R	H	Н	Н	Н	Н	4-CH ₃	4-CH ₃	4-CH ₃	4-CI	Н	Н	Н	Н
Ŗ	н	Н	Н	Н	2-0CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CI	Н	Н	2-CI	Н
No. X	267 C ₂ H ₅ -SO ₂ -NH-	<b>2</b>	269 C4Hs-SO2-NH-	:		CH ₃ -SO ₂ NH	:		"	276 HO ₃ S-C ₂ H ₄ NH	÷		279 H0 ₃ S0-C ₂ H ₄ NH
No.	267	268	269	270	271	272	273	274	275	276	277	278	279

3	4

1	,569	062	
- 1	,209	.002	

				1	,569,062				
	orange	yellow		:		orange	*	reddish- tinged yellow	ç.
Z	coch,	COCH20-	COCH ₂ O-H ₂ CO	coch ₂	COC2H4-	COCH ₃	:	-CO-CH3	
R	Η	Н	Н	Η	Н	Н	Н	Н	Η
R,	Н	CH3	Н	Н	CH₃	$C_2H_5$	H	Н	Н
Rş	3-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃		3-CH ₃	3-CH ₃
~	÷	ý	÷	κ	Ϋ́	÷	Н	ά	ή
R4	NHCOCH3	CH,	CH3	CH ₃	C2H5	CH ₃	0C2H5	CH₃	CH ₃
R₃	Η	CH3	Н	CH3	Н	0CH ₃	CH ₃	н	CH3
$\mathbb{R}_2$	Н	Н	H	Н	Н	Н	Н	Н	Н
		ŭ							
R,	Η	2-Br	H	Η	2-CI	Ξ, ΄ Τ	Н	Н	Η
. Х	280 HO ₃ S-0-C ₂ H ₄ NH		2 C -SOZNH	CH ₃	4	1.	286 a - 202 NH	287 HO-SEOH 782	
No.	28	281	282	283	284	285	28	28′	288

	35				1,569	,062			. 35
	-		reddi sh- tinged yellow	:		yellowish- tinged orange	reddish- tinged yellow	orange	reddi sh- tinged yellow
		Z		5	₩ -∞	-co-cH3	\$		-co-cH
		R。	6-CH3	Н	Н	Н	Н	Н	н
		R,	н	CH ₃	н	Н	C ₂ H ₄ CN	H ,	C ₂ H <b>s</b>
		R,	2-CH3	3-CH ₃	3-CH ₃	3-CH ₃	3-CH3	3-0CH ₃	3-CH _a
		R,	-0CH3	CH3	C ₂ H,	NH-C	CH ₃	CH 3	CH3
	~	R₃	CH 3	CH ₂	Н	Ż H	CH₃	-0C2H5	CH ₃
	• . 	R,	н	н	н	Н	Н	Н	Н
		R,	Н	H	Н	Н	2-CI	4-CI	н
		No. X	289 HOJS CHJ	290 HO3-PHN-	-HN-	292	293	294 CH3 CH3 NH	295 110,S-C4H9-N- C2H5
( )									

3(	<u>.</u>				1,569	,062						36
	reddi sh- tinged yellow	6		•	••	• •	orange	•	yellow	orange	yellow	:
Z	-со-сн,	2		CO-CH3	"	•	COCH3	• •	<b>∞</b> -	6-CH3 COCH2 - CH3	-02HD-02-	сос,н,
R	6-CH3	Н		Η	Н	Н	Η	Н	Н	6-CH3	H	Н
R,	Н	н	R7 - N - Z	Н	Н	Н	H	C ₂ H ₅	Н	Н	Н	C ₂ H ₅
R,	3-ĊH ₃	3-CH ₃		H	3-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃	2-CH ₃	3-CH ₃	3-CH ₃	3-CH ₃
R4	C ₂ H ₅	CH ₃	N=N=N-	Н	CH ₃	CH3	CH3	CH₃	CH ₃	0C2H5	CH3	CH,
R,	Н	CH3	N N N	Н	Н	CH3	0CH3	0CH3	CH3	Н	C ₂ H₅	CH,
$\mathbb{R}_2$	4-CH3	Н	<u>لا</u>	Н	Н	Н	Н	Н	H	Н	, H	4-CI
R1	2-CH ₃	4-0-4		Н	Н	Н	Н	Н	4-CI	4-CH ₃	3-CI	2-CI
X	296 H0 ₃ S-C ₄ H ₉ -N- L C ₂ H ₅	297 H0 ₃ S-C ₃ G ₆ -N- <b>4</b> CH2	m 1 1	НО	НО	НО	ОН	ОН	OH	OH	ОН	ОН
No.	296	297		298	299	300	301	302	303 HO	304 HO	305 1	306 HO

		1,56	9,062		
	orange	yellow	<b>*</b>	orange	
N	COC4H,	coch,		€H20-{	
້	Н	Н	Н	Н	
R,	C ₂ H5	Н	Н	Н	
Rs	Н	3-CH3	Н	3-0CH ₃ H	
ž	NHCOCH	CH3	• OCH	CH ₃	
R ₃	Н	CH3	CH 3	CH 3	
R,	Н	Н	Н	Н	
ž	4-0CH ₃	H -HH- H	H HN 205-	310 C2H50 SORNH H	
No. X	307 HO	-HN- 202-() 80E	309 H3C	310C2H50-	

37_____

No. XRRRRRRZ311 $\overbrace{\int}^{-1} - 3 \circ c_{NM}$ 4-c1HCHCH2-H, COH,yelow312C,H, SO,NHHHCHCH3-CH5-CH, COH,yelow313C,H, SO,NHHHCHCH3-CHHHCOCH,yelow313C,H, SO,NHHHCHS-CHHCOCH,yelow314 $hOS - CH_{2} - C_{1}$ HHCH3-CHHHCOCH,315 $hOS - CH_{2} - C_{1}$ HHCH3-CHHHCOCH,316 $hOS - CH_{2} - C_{1}$ HHCH3-CHHCOCH,yelowish-316 $hOS - CH_{2} - C_{1}$ HHCH3-CHHHNyelowish-316 $hOS - CH_{2} - C_{1}$ HHCH3-CHHHNyelowish-316 $hOS - CH_{2} - C_{1}$ HHCH3-CHHHNyelowish-316 $hOS - CH_{2} - C_{1}$ HHCH3-CHHNYelowish-317 $hOS - CH_{2} - C_{1}$ HHCHZHYelowish-Yelowish-318 $hOS - CH_{2} - HHHCHYelowish-Yelowish-Yelowish-318hOS - CH_{2} - HHHCHZHHYelowish-Yelowish-318hOS - CH_{2} - HHH$	38			·		1,569,062				38
XRRRRRRZZ $f \rightarrow 0_{2}$ RHCHCHZZHCOHZ $f \rightarrow 0_{2}$ $f \rightarrow 0_{2}$ HCHCHZZHCOHZCH_80_{3}NHHHHCHCHZZHHCOHZ $f \rightarrow 0_{2}$ HHHCHCHCHHHCOHZZ $h = 0_{2}$ HHHCHCHZZHHZCHZZ $h = 0_{2}$ HHHCHCHZZZHHZZZZZZZZ $h = 0_{2}$ HHHCHCHZZZHHZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ<			yellow	<b>£</b>		orange	yellowish- tinged orange	reddish-tinged yellow	reddish-tinged yellow	
X         R ₁ R ₂ R ₃ R ₄ R ₄ R ₄ R ₆ $f^{-1}_{C_1}$ H         H         CH         CH         CH         G         G         G $f^{-1}_{C_1}$ H         H         CH         CH         CH         G         G         G         G $f^{-1}_{C_1}$ H         H         H         H         H         H         H $C_1H_5 SO_5 NH$ H         H         H         CH         G         H         H $C_1H_5 SO_5 NH$ H         H         H         CH         H         H $O_3 S^{-1}_{-1} O_{-1} V_{-1}^{-1}$ H         H         H         H         H         H $O_3 S^{-1}_{-1} C_{-1} V_{-1}^{-1}$ H         H         H         G         H         H $O_3 S^{-1}_{-1} C_{-1} V_{-1}^{-1}$ H         H         CH         G         H         H $HO_3 S^{-1}_{-1} C_{-1} V_{-1}^{-1}$ H         H         CH         G         H         H $HO_3 S^{-1}_{-1} V_{-1}^{-1}$ H         H         CH         G </td <td></td> <td>Z</td> <td>COCH3</td> <td>$\bigcirc$</td> <td>COOC₂H₅</td> <td>cocH₃</td> <td>-co-cH3</td> <td>¢</td> <td>:</td> <td></td>		Z	COCH3	$\bigcirc$	COOC₂H₅	cocH ₃	-co-cH3	¢	:	
XR1R2R3R4XR1R1R3R4 $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ $(1)^{-3}$ <td></td> <td></td> <td>Н</td> <td>Н</td> <td>Н</td> <td>5-CH3</td> <td>6-CH3</td> <td>Н</td> <td>Н</td> <td></td>			Н	Н	Н	5-CH3	6-CH3	Н	Н	
XR1R3R4XR1R1R3R4C1HHHCH3CH3C2H5 SO2NHHHHHCH3CH3C2H5 SO2NHHHHHCH3CH3C4H5 SO2NHHHHHCH3CH3C4H5 SO2NHHHHHCH3CH3C4H5 SO2NHHHHHCH3CH3HO3S - CH2 $\overbrace{14}$ HHHCH3CH3HO3S - CL2 $\overbrace{14}$ HHHCH3CH3HO3S - CL2HHHHCH3CH3CH3HO3S - CL2HHHHCH3CH3CH3HHHHHCH3CH3CH3HHHHHCH3CH3CH3HHHHHCH3CH3CH3HHHHHCH3CH3CH3H <t< td=""><td></td><td>R。</td><td>C₂H₄CN</td><td>Н</td><td>Н</td><td>H</td><td>Н</td><td>Н</td><td>OC2H4-</td><td></td></t<>		R。	C ₂ H ₄ CN	Н	Н	H	Н	Н	OC2H4-	
XRRRRXRRRRC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHHC,H_5SO_2NHHHCH_3HO_5S-C,H_4-NH-HHCH_3HO_5S-C,H_4-NH4-CIHCH_3		R,	3-CH3	Н	3-CH ₃	3-CH ₃	3-CH ₃	2-CH ₃	3-CH ₃	
XRRRXRRRC4H5SO2NH $4+C1$ HC4H5SO2NHHHH03S-C4H5NHHHH03S-C2H4-NH-HHH03S-C2H4-NH4+C1H		R4	CH3	CH₃	Н	-0CH ₃	0CH ₃	CH3	CH3	
X R ₁ X R ₁ C ₂ H ₅ SO ₂ NH H C ₂ H ₅ SO ₂ NH H C ₄ H ₅ SO ₂ NH H HO ₃ S-CH ₂ $    +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		R3	CH3	Н	CH₃	н	CH	CH3	CH ₃	
X $C_2H_5 SO_2 NH$ $C_2H_5 SO_2 NH$ $C_4H_5 SO_2 NH$ $HO_3 S - CH_2 - H_1 - NH - HO_3 S - C_2 H_4 - NH - HO_3 S - C_2 H_4 - NH - HO_3 S - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O - C_2 H_4 - NH - HO_3 S - O -$		$\mathbb{R}_2$	н	H	Н	Н	Н	Н	H	
X C ₂ H ₅ S0 ₂ NH C ₄ H ₅ S0 ₂ NH C ₄ H ₅ S0 ₂ NH HO ₃ S−C ₄ L ₄ −NH− HO ₃ S−C ₂ H ₄ −NH− HO ₃ S−O−C ₂ H ₄ −NH−		R,	4-CI	H	Н	Н	Н	Н	4-CI	
				-	313 C ₄ H ₅ SO ₂ NH		$\left\{ \right\}$	H0 ₃ S-C ₂ H ₄ -NH-	317 H0 ₃ S-O-C ₂ H ₄ -NH	







WHAT WE CLAIM IS: 1. A dyestuff which contains only one acid group and in the form of the free acid, corresponds to the general formula



e .	in which	5
5		
	X denotes OH, NH—SO ₂ —R ₈ , N(R ₉ )-alkylene-OSO ₃ H, N(R ₉ )-alkylene-SO ₃ H, N(R ₉ )-arylene-SO ₃ H, N(R ₉ )-alkylene-SO ₃ H, N(R ₉ )-arylene-SO ₃ H,	
	$N(R_9)$ -aiylene-SO ₃ H, $N(R_9)$ -aiylene-SO ₂ -NH-SO ₂ -R ₈ , $N(R_9)$ -arylene-CH ₂ -SO ₃ H or $N(R_9)$ -arylene-SO ₂ -NH-SO ₂ -R ₈ ,	10
10	Z denotes acyl, $R_1$ and $R_2$ independently denote hydrogen or a non-ionic substituent (as hereinbefore defined), $R_3$ , $R_4$ and $R_5$ independently denote hydrogen optionally substituted alkyl, optionally substituted aralkyl, optionally optionally substituted alkyl, optionally substituted alkoxy optionally	10
15	substituted aryl, halogen, optionally substituted alkoxy, optionally aryloxy, optionally substituted aralkyloxy or optionally substituted	15
13	acylamino or, $\mathbf{R}_4$ and $\mathbf{R}_3$ together denote the remaining members of a fused benzene	
୍ତ୍ର 20	$R_{0}$ and $R_{0}$ denote hydrogen or optionally substituted alkyl, $R_{0}$ and $R_{0}$ denote hydrogen, optionally substituted alkyl, optionally substituted $R_{7}$ denotes hydrogen, optionally substituted aralkyl and $R_{0}$ denotes optionally aryl or optionally substituted aralkyl optionally substituted	20
	substituted alkyl, optionally substituted aralkyl, optionally substituted	
	aryl or dialkylamino. $\mathbf{L}$ is which <b>P</b> is defined as in claim 1. X	
25	<ul> <li>aryl or dialkylamino.</li> <li>A dyestuff according to claim 1, in which P is defined as in claim 1, X</li> <li>A dyestuff according to claim 1, in which P is defined as in claim 1, X</li> <li>denotes OH, NH—SO₂—R₈, N(R₉)—(C₂ to C₈)alkylene-OSO₃H, N(R₉)—(C₂ to C₉)alkylene-SO₃H, N(R₉)-phenylene-(C₂ to C₉)alkylene-SO₃H, N(R₉)-phenylene-SO₃H, N(R₉)-phenylene-KO₃H, N(R₉)-p</li></ul>	25
	$(C_2 \text{ to } C_4)$ alkylene-SO ₃ 11, $\Gamma(C_4)$ = $SO_2NH$ — $SO_2$ — $R_4$ , wherein the $CH_2$ — $SO_3H$ or $N(R_6)$ -phenylene-SO ₂ $NH$ — $SO_2$ — $R_6$ , wherein the phenylene may be substituted by $C_1$ to $C_4$ alkyl, $C_1$ to $C_4$ alkoxy, halogen,	
		20
30	cyano or nitro, $R_1$ and $R_2$ independently denote hydrogen, chlorine or bromine, methyl, ethyl, methoxy, ethoxy, cyano, trifluoromethyl or phenoxy $R_3$ , $R_4$ , $R_5$ and ethyl, methoxy, ethoxy, cyano, trifluoromethyl or phenoxy $R_3$ , $R_4$ , $R_5$ and ethyl, methoxy, ethoxy, cyano, trifluoromethyl or phenoxy $R_3$ , $R_4$ , $R_5$ and ethyl, methoxy, ethoxy, cyano, trifluoromethyl or phenoxy $R_3$ , $R_4$ , $R_5$ and ethyl, methoxy, ethoxy, cyano, trifluoromethyl or phenoxy $R_3$ , $R_4$ , $R_5$ and ethyl, methoxy, ethoxy, ethox, ethoxy, ethoxy, ethoxy, ethox, et	30
2	ethyl, methoxy, ethoxy, cyano, trinitonicul of the set	
		35
<b>35</b>	methyl, ethyl, methoxy, ethoxy, chinne, bionine of optimity $R_7$ denotes hydrogen, C, to C, alkyl group which is optionally substituted by $R_7$ denotes hydrogen, C, to C, alkyl group which is optionally substituted by	
	$\mathbf{R}_{\bullet}$ denotes $\mathbf{C}_{1}$ to $\mathbf{C}_{4}$ alkyl or phenyl which is optimizing substituted by	40
40	methyl, chlorine or bromine, $R_9$ denotes hydrogen, methyl or ethyl and Z denotes a (C ₁ to C ₄ ) $R_9$ denotes hydrogen, methyl or ethyl and Z denotes a (C ₁ to C ₄ )	70
	alkyl)carbonyl group which is optionally substituted by C ₁ to	
	$C_4$ alkyl, chlorine, bromine, intro, cyano, $C_1$ to $C_4$ unon or $C_1$ to $C_4$	45
45	<ul> <li>alkyisuphonyi, plienyisuphonyi, plienyisuphonyi, plienyisuphonyi, alkoxycarbonyl group, wherein the phenyl and phenoxy groups may be substituted by chlorine, C₁ to C₄ alkyl, C₁ to C₄ alkoxy or cyano.</li> <li>3. A dyestuff according to claim 1 which, in the form of the free acid,</li> </ul>	
	3. A dyestuff according to claim 1 which, in the form of the corresponds to the general formula	
	· · · · · · · · · · · · · · · · · · ·	



50

(II)

.

50

I

in which

Z' denotes C, to C₄ alkyl)carbonyl, benzoyl which is optionally substituted by methyl, methoxy or chlorine, phenylacetyl which is optionally substituted by methyl, methoxy, or chlorine or phenoxyacetyl which is optionally substituted by metholy, of chlorine of phenoxyacetyl denotes OH, NH—SO₂—R'₈, N(R'₉)—C₂ to C₄ alkylene-OSO₃H, N(R'₉)—C₂ to C₄ alkylene-OSO₃H,



10

15

 $R'_1$  and  $R'_2$  independently denote hydrogen, methyl, ethyl, chlorine, bromine or trifluoromethyl,

- $R'_{3}$  and  $R'_{4}$  independently denote hydrogen, methyl, ethyl, methoxy, ethoxy, acetylamino, methylsulphonylamino or phenylsulphonylamino  $R_{5}^{*}$  denotes hydrogen, methyl, ethyl, methoxy ethoxy or acetylamino
- R' denotes hydrogen, methyl, ethyl, 2-cyanoethyl, 2-chloroethyl, benzyl 15

or phenethyl,  $R'_{4}$  denotes C₁ to C₄ alkyl or phenyl which is optionally substituted by methyl, chlorine or bromine and

- R' denotes hydrogen, methyl or ethyl. 4. A dyestuff according to claim 3 which, in the form of the free acid, 20 corresponds to the general formula



in which

X', R' and R' are defined as in claim 3,  $R''_2$  denotes hydrogen, or methyl,  $R''_3$  denotes hydrogen, methyl or methoxy,  $R''_4$  denotes hydrogen, methyl, methoxy, ethoxy or acetylamino,  $R''_5$  denotes hydrogen, methyl or acetylamino and Z'' denotes acetyl or propionyl, benzoyl which is optionally substituted by methyl, methoxy or chloring, phenylacetyl which is optionally substituted methyl, methoxy or chlorine, phenylacetyl which is optionally substituted by methyl, methoxy or chlorine, or phenoxyacetyl which is optionally substituted by methyl, methoxy or chlorine, or phenoxyacetyl which is optionally substituted by methyl, methoxy or chlorine.

5. A dyestuff according to claim 1, as hereinbefore specifically identified. 6. A process for the production of a dyestuff as claimed in claim 1, in which an aminodisazo dyestuff of the general formula

х-029-(СН2)_Р (VI)

in which

X, p, R₁, R₂, R₃, R₄, R₅, R₆ and R₇ are defined as in claim 1, is acylated. 7. A process according to claim 6, in which the aminodisazo dyestuff of formula (VI) is produced by diazotosing an amino compound of the general

40

25

35

40

5

10

25

30

35

5

R4

in which X, R₁, R₂, R₃, R₄ and p are as defined in claim 1, and coupling with an amine of the general formula



x-025-(Сн2)p

in which  $R_5$ ,  $R_6$  and  $R_7$  are defined as in claim 1. 8. A process according to claim 1, when carried out substantially as described in any one of the Examples. 9. A dyestuff as claimed in claim 1, when produced by the process of any of

claims 6 to 8.

10. A process for dyeing a natural or synthetic fibre material comprising treating the material with a dyestuff as claimed in any of claims 1 to 3, 5 and 9. 11. A process according to claim 10, when carried out substantially as

ì

described in the "Dyeing Example."

12. A natural or synthetic fibre material when dyed by the process of claim 10 or 11.

13. A process according to claim 10, in which a dyestuff as claimed in claim 4, is used.

14. A natural or synthetic fibre material when dyed by the process of claim 13.

For the Applicants, CARPMAELS & RANSFORD, Chartered Patent Agents, 43 Bloomsbury Square, London, WCIA 2RA.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1980. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

10

5

15

43

(IV)

(V)

5

10