

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

 CO8L
 69/00
 (2006.01)
 CO8G
 64/18
 (2006.01)

 CO8G
 64/38
 (2006.01)
 CO8G
 77/448
 (2006.01)

 CO8K
 5/00
 (2006.01)
 CO8K
 5/3475
 (2006.01)

(52) CPC특허분류

CO8L 69/00 (2013.01) **CO8G 64/186** (2013.01)

(21) 출원번호

10-2015-0159987

(22) 출원일자

2015년11월13일

심사청구일자

2015년11월13일

(65) 공개번호

10-2016-0067735

(43) 공개일자

2016년06월14일

(30) 우선권주장

1020140173005 2014년12월04일 대한민국(KR)

(56) 선행기술조사문헌

KR1020080083278 A*

JP3457805 B2

KR1020070037718 A

KR1020130047332 A

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2017년07월19일

(11) 등록번호 10-1759717

(24) 등록일자 2017년07월13일

(73) 특허권자

주식회사 엘지화학

서울특별시 영등포구 여의대로 128 (여의도동)

(72) 발명자

고운

대전광역시 유성구 문지로 188 LG화학 기술연구원 반형민

대전광역시 유성구 문지로 188 LG화학 기술연구원 (뒷면에 계속)

(74) 대리인

유미특허법인

전체 청구항 수 : 총 12 항

심사관: 김재민

(54) 발명의 명칭 코폴리카보네이트 조성물 및 이를 포함하는 물품

(57) 요 약

본 발명은 특정 실록산 화합물을 폴리카보네이트 주쇄에 도입한 코폴리카보네이트와 UV 안정화제를 포함하는 코폴리카보네이트 수지 조성물에 관한 것으로, 내후성이 우수하여 이를 이용하여 제조된 제품은 외부에 노출되어 자외선 등에 의한 표면 품질 저하 및 물성의 저하가 적다는 특징이 있다.

(52) CPC특허분류

CO8G 64/38 (2013.01)

CO8G 77/448 (2013.01)

COSK 5/005 (2013.01)

COSK 5/3475 (2013.01)

CO8L 2205/025 (2013.01)

(72) 발명자

황영영

대전광역시 유성구 문지로 188 LG화학 기술연구원

박정준

대전광역시 유성구 문지로 188 LG화학 기술연구원

홍무호

대전광역시 유성구 문지로 188 LG화학 기술연구원

이기재

대전광역시 유성구 문지로 188 LG화학 기술연구원

전병규

대전광역시 유성구 문지로 188 LG화학 기술연구원 소영옥

대전광역시 유성구 문지로 188 LG화학 기술연구원 **고태윤**

대전광역시 유성구 문지로 188 LG화학 기술연구원

명세서

청구범위

청구항 1

(a) 하기 화학식 1로 표시되는 제1 반복 단위; 및 하기 화학식 2로 표시되는 반복 단위 및 하기 화학식 3으로 표시되는 반복 단위를 포함하는 제2 반복 단위를 포함하는 코폴리카보네이트, 및 (b) UV 안정화제를 포함하고, 하기 수학식 1의 ΔYI 가 7 이하인,

코폴리카보네이트 조성물:

[화학식 1]

$$\begin{bmatrix} R_1 & Z & R_4 & O \\ R_2 & R_3 & O \end{bmatrix}$$

상기 화학식 1에서,

 R_1 내지 R_4 는 각각 독립적으로 수소, C_{1-10} 알킬, C_{1-10} 알콕시, 또는 할로겐이고,

Z는 비치환되거나 또는 페닐로 치환된 C_{1-10} 알킬렌, 비치환되거나 또는 C_{1-10} 알킬로 치환된 C_{3-15} 사이클로알킬렌, $O, S, SO, SO_2,$ 또는 CO이고,

[화학식 2]

상기 화학식 2에서,

 X_1 은 각각 독립적으로 C_{1-10} 알킬렌이고,

 R_5 는 각각 독립적으로 수소; 비치환되거나 또는 옥시라닐, 옥시라닐로 치환된 C_{1-10} 알콕시, 또는 C_{6-20} 아릴로 치환된 C_{1-15} 알킬; 할로겐; C_{1-10} 알콕시; 알릴; C_{1-10} 할로알킬; 또는 C_{6-20} 아릴이고,

n은 10 내지 200의 정수이고,

[화학식 3]

상기 화학식 3에서,

 X_2 은 각각 독립적으로 C_{1-10} 알킬렌이고,

 Y_1 은 각각 독립적으로 수소, C_{1-6} 알킬, 할로겐, 히드록시, C_{1-6} 알콕시 또는 C_{6-20} 아릴이고,

 R_6 는 각각 독립적으로 수소; 비치환되거나 또는 옥시라닐, 옥시라닐로 치환된 C_{1-10} 알콕시, 또는 C_{6-20} 아릴로 치환된 C_{1-15} 알킬; 할로겐; C_{1-10} 알콕시; 알릴; C_{1-10} 할로알킬; 또는 C_{6-20} 아릴이고,

m은 10 내지 200의 정수이고,

[수학식 1]

ΔYI = YI(500 시간) - YI(0 시간)

상기 수학식 1에서,

YI(0 시간)은 상기 코폴리카보네이트 조성물에 대해 ASTM D1925에 의거하여 측정한 YI(Yellow Index) 값이고,

YI(500 시간)은 ASTM D4329에 의거하여 상기 코폴리카보네이트 조성물을 60℃에서 340 nm의 자외선을 0.55 w/m²의 광량으로 500 시간 조사 후, ASTM D1925에 의거하여 측정한 YI(Yellow Index) 값을 의미한다.

청구항 2

제1항에 있어서,

상기 ΔYI가 3.5 이하인 것을 특징으로 하는,

코폴리카보네이트 조성물.

청구항 3

제1항에 있어서,

상기 코폴리카보네이트는 중량 평균 분자량이 1,000 내지 100,000 g/mol인 것을 특징으로 하는, 코폴리카보네이트 조성물.

청구항 4

제1항에 있어서,

상기 코폴리카보네이트 조성물은, 폴리카보네이트를 추가로 포함하는 것을 특징으로 하는, 코폴리카보네이트 조성물.

청구항 5

제4항에 있어서,

상기 폴리카보네이트는, 폴리카보네이트의 주쇄에 폴리실록산 구조가 도입되어 있지 않은 것을 특징으로 하는, 코폴리카보네이트 조성물.

청구항 6

제4항에 있어서,

상기 폴리카보네이트는 하기 화학식 5로 표시되는 반복 단위를 포함하는 것을 특징으로 하는,

코폴리카보네이트 조성물:

[화학식 5]

상기 화학식 5에서,

 R'_1 내지 R'_4 는 각각 독립적으로 수소, C_{1-10} 알킬, C_{1-10} 알콕시, 또는 할로겐이고,

X'는 비치환되거나 또는 페닐로 치환된 C_{1-10} 알킬렌, 비치환되거나 또는 C_{1-10} 알킬로 치환된 C_{3-15} 사이클로알킬 렌, $O,\ S,\ SO,\ SO_2,\ 또는\ CO이다.$

청구항 7

삭제

청구항 8

제1항에 있어서,

상기 화학식 1로 표시되는 반복 단위는, 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)에테르, 비스(4-히드록시페닐) 설폰, 비스(4-히드록시페닐)설폭사이드, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)케톤, 1,1-비스(4-히드록시페닐)에탄, 비스페놀 A, 2,2-비스(4-히드록시페닐)부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(4-히드록시-3,5-디브로모페닐)프로판, 2,2-비스(4-히드록시-3,5-디클로로페닐)프로판, 2,2-비스(4-히드록시-3-클로로페닐)프로판, 2,2-비스(4-히드록시-3-클로로페닐)프로판, 2,2-비스(4-히드록시-3-클로로페닐)프로판, 2,2-비스(4-히드록시-3-레틸페닐)프로판, 2,2-비스(4-히드록시-3-등로로페닐)프로판, 1,1-비스(4-히드록시페닐)-1-페닐에탄, 비스(4-히드록시페닐)디페닐메탄, 및 a, \u03c4-비스[3-(0-히드록시페닐)프로필]폴리디메틸실록산으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방향족 디올 화합물로부터 유래한 것을 특징으로 하는,

코폴리카보네이트 조성물.

청구항 9

제1항에 있어서,

상기 화학식 1은 하기 화학식 1-1로 표시되는 것을 특징으로 하는,

코폴리카보네이트 조성물:

[화학식 1-1]

청구항 10

삭제

청구항 11

제1항에 있어서,

상기 화학식 2로 표시되는 반복단위와 상기 화학식 3으로 표시되는 반복단위의 중량비는, 1:99 내지 99:1인 것을 특징으로 하는,

코폴리카보네이트 조성물.

청구항 12

제1항에 있어서,

상기 화학식 2로 표시되는 반복 단위는, 하기 화학식 2-2로 표시되는 것을 특징으로 하는,

코폴리카보네이트 조성물:

[화학식 2-2]

$$\begin{bmatrix} R_5 \\ S_{i} - O \end{bmatrix} \begin{bmatrix} R_5 \\ S_{i} \\ R_5 \end{bmatrix} \begin{bmatrix} R_5 \\ S_{i} \\ R_5 \end{bmatrix}$$

청구항 13

제1항에 있어서,

상기 화학식 3로 표시되는 반복 단위는, 하기 화학식 3-2로 표시되는 것을 특징으로 하는,

코폴리카보네이트 조성물:

[화학식 3-2]

청구항 14

제1항에 있어서,

상기 UV 안정화제는 하기 화학식 4로 표시되는 것을 특징으로 하는,

코폴리카보네이트 조성물:

[화학식 4]

$$R_8$$
 R_9
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

상기 화학식 4에서,

 R_7 내지 R_{10} 은 각각 독립적으로 수소, 하이드록시, 할로겐, 또는 1 내지 12 탄소 원자를 가지는 하이드로카본기 이고.

 Y_2 및 Y_3 는 각각 독립적으로 수소; 또는 1 내지 40 탄소 원자를 가지는 하이드로카본기이고; 여기서 상기 하이드로카본기는 질소 원자 또는 산소 원자를 추가로 포함할 수 있다.

발명의 설명

기술분야

[0001] 본 발명은 내후성이 우수한 코폴리카보네이트 조성물 및 이를 포함하는 물품에 관한 것이다.

배경기술

- [0002] 폴리카보네이트 수지는 비스페놀 A와 같은 방향족 디올과 포스겐과 같은 카보네이트 전구체가 축중합하여 제조되고, 우수한 충격강도, 수치안정성, 내열성 및 투명성 등을 가지며, 전기전자 제품의 외장재, 자동차 부품, 건축 소재, 광학 부품 등 광범위한 분야에 적용된다.
- [0004] 이러한 폴리카보네이트 수지는 최근 보다 다양한 분야에 적용하기 위해 2종 이상의 서로 다른 구조의 방향족 디올 화합물을 공중합하여 구조가 다른 단위체를 폴리카보네이트의 주쇄에 도입하여 원하는 물성을 얻고자 하는 연구가 많이 시도되고 있다.
- [0006] 폴리카보네이트 수지로 제조된 제품은, 외부에 노출될 경우 자외선 등에 의한 표면 품질 저하 및 물성의 저하가 나타나게 된다. 따라서, 이러한 자외선 등에 의하여 폴리카보네이트 수지의 물성이 저하되지 않는 내후성이 요구된다.
- [0008] 이에 본 발명자들은, 후술할 바와 같이 특정 실록산 화합물을 폴리카보네이트 주쇄에 도입한 코폴리카보네이트 와 UV 안정화제를 포함하는 코폴리카보네이트 수지 조성물이 내후성 등의 물성이 우수함을 확인하여 본 발명을 완성하였다.

발명의 내용

해결하려는 과제

- [0009] 본 발명은 내후성이 우수한 코폴리카보네이트 조성물을 제공하기 위한 것이다.
- [0010] 또한, 본 발명은 상기 코폴리카보네이트 조성물을 포함하는 물품을 제공하기 위한 것이다.

과제의 해결 수단

- [0011] 상기 과제를 해결하기 위하여, 본 발명은 (a) 방향족 폴리카보네이트계 제1 반복 단위; 및 하나 이상의 실록산 결합을 갖는 방향족 폴리카보네이트계 제2 반복 단위를 포함하는 코폴리카보네이트, 및 (b) UV 안정화제를 포함하고, 하기 수학식 1의 Δ YI가 7 이하인, 코폴리카보네이트 조성물을 제공한다:
- [0012] [수학식 1]
- [0014] 상기 수학식 1에서.
- [0015] YI(0 시간)은 상기 코폴리카보네이트 조성물에 대해 ASTM D1925에 의거하여 측정한 YI(Yellow Index) 값이고,
- [0016] YI(500 시간)은 ASTM D4329에 의거하여 상기 코폴리카보네이트 조성물을 60℃에서 340 nm의 자외선을 0.55 w/m² 의 광량으로 500 시간 조사 후, ASTM D1925에 의거하여 측정한 YI(Yellow Index) 값을 의미한다.
- [0018] 코폴리카보네이트를 이용하여 제품을 제조할 경우, 상기 제품은 외부에 노출되어 자외선 등에 의한 표면 품질 저하 및 물성의 저하가 나타나게 된다. 따라서, 이러한 자외선 등에 의한 물성 저하를 최소화하기 위하여, 본 발명에서는 코폴리카보네이트와 함께 UV 안정화제를 함께 사용한다는 특징이 있다.
- [0020] 이하, 본 발명을 보다 상세히 설명한다.
- [0022] 코폴리카보네이트
- [0023] 본 발명에 따른 코폴리카보네이트는, 방향족 폴리카보네이트계 제1 반복 단위; 및 하나 이상의 실록산 결합을 갖는 방향족 폴리카보네이트계 제2 반복 단위를 포함한다.
- [0025] 상기 방향족 폴리카보네이트계 제1 반복 단위는, 방향족 디올 화합물 및 카보네이트 전구체가 반응하여 형성되는 것으로, 바람직하게는 하기 화학식 1로 표시된다:
- [0026] [화학식 1]

$$\begin{bmatrix} R_1 & Z & R_4 & O \\ R_2 & R_3 & O \end{bmatrix}$$

[0028] 상기 화학식 1에서,

[0027]

- [0029] R₁ 내지 R₄는 각각 독립적으로 수소, C₁₋₁₀ 알킬, C₁₋₁₀ 알콕시, 또는 할로겐이고,
- [0030] Z는 비치환되거나 또는 페닐로 치환된 C_{1-10} 알킬렌, 비치환되거나 또는 C_{1-10} 알킬로 치환된 C_{3-15} 사이클로알킬렌, $O, S, SO, SO_2,$ 또는 CO이다.
- [0032] 상기 화학식 1에서, 바람직하게는, R_1 내지 R_4 는 각각 독립적으로 수소, 메틸, 클로로, 또는 브로모이다.
- [0034] 또한 바람직하게는, Z는 비치환되거나 또는 페닐로 치환된 직쇄 또는 분지쇄의 C₁₋₁₀ 알킬렌이며, 보다 바람직하게는 메틸렌, 에탄-1,1-디일, 프로판-2,2-디일, 부탄-2,2-디일, 1-페닐에탄-1,1-디일, 또는 디페닐메틸렌이다. 또한 바람직하게는, Z는 사이클로헥산-1,1-디일, 0, S, SO, SO₂, 또는 CO이다.

히드록시페닐)디페닐메탄, 및 a,ω-비스[3-(ο-히드록시페닐)프로필]폴리디메틸실록산으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방향족 디올 화합물로부터 유래할 수 있다.

[0038] 상기 '방향족 디올 화합물로부터 유래한다'의 의미는, 방향족 디올 화합물의 하이드록시기와 카보네이트 전구체 가 반응하여 상기 화학식 1로 표시되는 반복단위를 형성하는 것을 의미한다.

[0040] 예컨대, 방향족 디올 화합물인 비스페놀 A와 카보네이트 전구체인 트리포스겐이 중합된 경우, 상기 화학식 1로 표시되는 반복단위는 하기 화학식 1-1로 표시된다.

[0041] [화학식 1-1]

[0042]

[0044] 상기 카보네이트 전구체로는, 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, 디-m-크레실 카보네이트, 디나프 틸 카보네이트, 비스(디페닐) 카보네이트, 포스겐, 트리포스겐, 디포스겐, 브로모포스겐 및 비스할로포르메이트 로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 바람직하게는, 트리포스겐 또는 포스겐을 사용할 수 있다.

[0046] 상기 하나 이상의 실록산 결합을 갖는 방향족 폴리카보네이트계 제2 반복 단위는, 하나 이상의 실록산 화합물 및 카보네이트 전구체가 반응하여 형성되는 것으로, 바람직하게는 하기 화학식 2로 표시되는 반복 단위 및 하기 화학식 3으로 표시되는 반복 단위를 포함한다:

[0047] [화학식 2]

[0048]

[0049] 상기 화학식 2에서,

[0050] X₁은 각각 독립적으로 C₁₋₁₀ 알킬렌이고,

[0051] R₅는 각각 독립적으로 수소; 비치환되거나 또는 옥시라닐, 옥시라닐로 치환된 C₁₋₁₀ 알콕시, 또는 C₆₋₂₀ 아릴로 치환된 C₁₋₁₅ 알킬; 할로겐; C₁₋₁₀ 알콕시; 알릴; C₁₋₁₀ 할로알킬; 또는 C₆₋₂₀ 아릴이고,

[0052] n은 10 내지 200의 정수이고,

[0053] [화학식 3]

[0054]

- [0055] 상기 화학식 3에서,
- [0056] X₂은 각각 독립적으로 C₁₋₁₀ 알킬렌이고,
- [0057] Y₁은 각각 독립적으로 수소, C₁₋₆ 알킬, 할로겐, 히드록시, C₁₋₆ 알콕시 또는 C₆₋₂₀ 아릴이고,
- [0058] R₆는 각각 독립적으로 수소; 비치환되거나 또는 옥시라닐, 옥시라닐로 치환된 C₁₋₁₀ 알콕시, 또는 C₆₋₂₀ 아릴로 치환된 C₁₋₁₅ 알킬; 할로겐; C₁₋₁₀ 알콕시; 알릴; C₁₋₁₀ 할로알킬; 또는 C₆₋₂₀ 아릴이고,
- [0059] m은 10 내지 200의 정수이다.
- [0061] 상기 화학식 2에서, 바람직하게는, X_1 는 각각 독립적으로 C_{2-10} 알킬렌이고, 보다 바람직하게는 C_{2-4} 알킬렌이고, 가장 바람직하게는 프로판-1,3-디일이다.
- [0063] 또한 바람직하게는, R₅는 각각 독립적으로 수소, 메틸, 에틸, 프로필, 3-페닐프로필, 2-페닐프로필, 3-(옥시라 닐메톡시)프로필, 플루오로, 클로로, 브로모, 아이오도, 메톡시, 에톡시, 프로폭시, 알릴, 2,2,2-트리플루오로 에틸, 3,3,3-트리플루오로프로필, 페닐, 또는 나프틸이다. 또한 바람직하게는, R₅는 각각 독립적으로 C₁₋₁₀ 알킬이고, 보다 바람직하게는 C₁₋₆ 알킬이고, 보다 바람직하게는 C₁₋₆ 알킬이고, 보다 바람직하게는 메틸이다.
- [0065] 또한 바람직하게는, 상기 n은 10 이상, 15 이상, 20 이상, 25 이상, 30 이상, 31 이상, 또는 32 이상이고, 50 이하, 45 이하, 40 이하, 39 이하, 38 이하, 또는 37 이하의 정수이다.
- [0067] 상기 화학식 3에서, 바람직하게는, X_2 는 각각 독립적으로 C_{2-10} 알킬렌이고, 보다 바람직하게는 C_{2-6} 알킬렌이고, 가장 바람직하게는 이소부틸렌이다.
- [0069] 또한 바람직하게는, Y₁는 수소이다.
- [0071] 또한 바람직하게는, R₆는 각각 독립적으로 수소, 메틸, 에틸, 프로필, 3-페닐프로필, 2-페닐프로필, 3-(옥시라 닐메톡시)프로필, 플루오로, 클로로, 브로모, 아이오도, 메톡시, 에톡시, 프로폭시, 알릴, 2,2,2-트리플루오로 에틸, 3,3,3-트리플루오로프로필, 페닐, 또는 나프틸이다. 또한 바람직하게는, R₆는 각각 독립적으로 C₁₋₁₀ 알킬이고, 보다 바람직하게는 C₁₋₆ 알킬이고, 보다 바람직하게는 C₁₋₃ 알킬이고, 가장 바람직하게는 메틸이다.
- [0073] 또한 바람직하게는, 상기 m은 40 이상, 45 이상, 50 이상, 55 이상, 56 이상, 57 이상, 또는 58 이상이고, 80 이하, 75 이하, 70 이하, 65 이하, 64 이하, 63 이하, 또는 62 이하의 정수이다.
- [0075] 상기 화학식 2로 표시되는 반복 단위 및 상기 화학식 3으로 표시되는 반복 단위는, 각각 하기 화학식 2-1로 표시되는 실록산 화합물 및 하기 화학식 3-1로 표시되는 실록산 화합물로부터 유래한다.
- [0076] [화학식 2-1]

[0077]

$$X_1 = \begin{cases} R_5 \\ S_1 = O \end{cases} = \begin{cases} R_5 \\ S_1 = X_1 \end{cases} = \begin{cases} R_5 \\ S_1 = X_$$

[0078] 상기 화학식 2-1에서, X₁, R₅ 및 n의 정의는 앞서 정의한 바와 같다.

[0079] [화학식 3-1]

HO
$$X_2 = \begin{bmatrix} R_6 \\ S_{i} - O \end{bmatrix}_{m} \begin{bmatrix} R_6 \\ S_{i} - X_2 - O \end{bmatrix}_{N}$$

[0080] [0081]

[0085]

상기 화학식 3-1에서, X₂, Y₁, R₆ 및 m의 정의는 앞서 정의한 바와 같다.

[0083] 상기 '실록산 화합물로부터 유래한다'의 의미는, 상기 각각의 실록산 화합물의 하이드록시기와 카보네이트 전구체가 반응하여 상기 각각의 화학식 2로 표시되는 반복 단위 및 화학식 3으로 표시되는 반복 단위를 형성하는 것을 의미한다. 또한, 상기 화학식 2 및 3의 반복 단위의 형성에 사용할 수 있는 카보네이트 전구체는, 앞서 설명한 화학식 1의 반복 단위의 형성에 사용할 수 있는 카보네이트 전구체에서 설명한 바와 같다.

상기 화학식 2-1로 표시되는 실록산 화합물 및 상기 화학식 3-1로 표시되는 실록산 화합물의 제조 방법은 각각 하기 반응식 1 및 2와 같다.

[0086] [반응식 1]

HO
$$X_{1}' + H = \begin{bmatrix} R_{5} \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} R_{5} \\ S_{1} - I \end{bmatrix}$$

$$R_{5} + R_{5} = \begin{bmatrix} R_{5} \\ R_{5} \end{bmatrix} = \begin{bmatrix} R_{5} \\ R_{5} \end{bmatrix}$$

$$HO \longrightarrow X_1 = \begin{bmatrix} R_5 \\ \dot{S}i - O \\ R_5 \end{bmatrix} = \begin{bmatrix} R_5 \\ \dot{S}i - X_1 \end{bmatrix} = COH$$

2-1

[0087] [0088]

상기 반응식 1에서,

[0089] X₁'는 C₂₋₁₀ 알케닐이고,

[0090] X₁, R₅ 및 n의 정의는 앞서 정의한 바와 같고,

[0091] [반응식 2]

HO
$$X_{2}' + H = \begin{cases} R_{6} \\ S_{1} \\ R_{6} \end{cases} = \begin{cases} R_{6} \\ S_{1} \\ R_{6} \end{cases}$$
8
9

HO
$$X_2 = \begin{bmatrix} R_6 \\ S_1 = O \end{bmatrix}_m \begin{bmatrix} R_6 \\ S_1 = V_1 \end{bmatrix}$$
 OH

[0092] [0093]

- 상기 반응식 2에서,
- [0094] X₂'는 C₂₋₁₀ 알케닐이고,
- [0095] X₂, Y₁, R₆ 및 m의 정의는 앞서 정의한 바와 같다.
- [0097] 상기 반응식 1 및 반응식 2의 반응은, 금속 촉매 하에 수행하는 것이 바람직하다. 상기 금속 촉매로는 Pt 촉매를 사용하는 것이 바람직하며, Pt 촉매로 애쉬바이(Ashby)촉매, 칼스테드(Karstedt)촉매, 라모레오(Lamoreaux) 촉매, 스파이어(Speier)촉매, PtCl₂(COD), PtCl₂(벤조니트릴)₂, 및 H₂PtBr₆로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 상기 금속 촉매는 상기 화학식 7 또는 9로 표시되는 화합물 100 중량부를 기준으로 0.001 중량부 이상, 0.005 중량부 이상, 또는 0.01 중량부 이상이고, 1 중량부 이하, 0.1 중량부 이하, 또는 0.05 중량부 이하로 사용할 수 있다.
- [0099] 또한, 상기 반응 온도는 80 내지 100℃가 바람직하다. 또한, 상기 반응 시간은 1시간 내지 5시간이 바람직하다.
- [0101] 또한, 상기 화학식 7 또는 9로 표시되는 화합물은 오르가노디실록산과 오르가노시클로실록산을 산 촉매 하에서 반응시켜 제조할 수 있으며, 상기 반응 물질의 함량을 조절하여 n 및 m을 조절할 수 있다. 상기 반응 온도는 50 내지 70℃가 바람직하다. 또한, 상기 반응 시간은 1시간 내지 6시간이 바람직하다.
- [0103] 상기 오르가노디실록산으로, 테트라메틸디실록산, 테트라페닐디실록산, 헥사메틸디실록산 및 헥사페닐디실록산으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 또한, 상기 오르가노시클로실록산은 일례로 오르 가노시클로테트라실록산을 사용할 수 있으며, 이의 일례로 옥타메틸시클로테트라실록산 및 옥타페닐시클로테트라실록산 등을 들 수 있다.
- [0105] 상기 오르가노디실록산은, 상기 오르가노시클로실록산 100 중량부를 기준으로 0.1 중량부 이상, 또는 2 중량부 이상이고, 10 중량부 이하, 또는 8 중량부 이하로 사용할 수 있다.
- [0107] 상기 산 촉매로는 H₂SO₄, HClO₄, AlCl₃, SbCl₅, SnCl₄ 및 산성 백토로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 또한, 상기 산 촉매는 오르가노시클로실록산 100 중량부를 기준으로 0.1 중량부 이상, 0.5 중량부 이상, 또는 1 중량부 이상이고, 10 중량부 이하, 5 중량부 이하, 또는 3 중량부 이하로 사용할 수 있다.
- [0109] 상기 화학식 2로 표시되는 반복 단위와 상기 화학식 3으로 표시되는 반복 단위 간의 중량비는 1:99 내지 99:1가 될 수 있다. 바람직하게는 3:97 내지 97:3, 5:95 내지 95:5, 10:90 내지 90:10, 또는 15:85 내지 85:15이고, 보다 바람직하게는 20:80 내지 80:20이다. 상기 반복 단위의 중량비는 실록산 화합물, 예컨대 상기 화학식 2-1로 표시되는 실록산 화합물 및 상기 화학식 3-1로 표시되는 실록산 화합물의 중량비에 대응된다.
- [0111] 바람직하게는, 상기 화학식 2로 표시되는 반복 단위는, 하기 화학식 2-2로 표시된다:

[0112] [화학식 2-2]

$$\begin{bmatrix} R_5 \\ S_i - O \end{bmatrix} \begin{bmatrix} R_5 \\ S_i \\ R_5 \end{bmatrix} \begin{bmatrix} R_5 \\ S_i \\ R_5 \end{bmatrix}$$

[0113]

[0114]

- 상기 화학식 2-2에서, R₅ 및 n은 앞서 정의한 바와 같다. 바람직하게는, R₅는 메틸이다.
- [0116] 또한 바람직하게는, 상기 화학식 3으로 표시되는 반복 단위는, 하기 화학식 3-2로 표시된다:
- [0117] [화학식 3-2]

$$\begin{bmatrix} 0 & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ S_i & & \\ S_i & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ S_i & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ S_i & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ S_i & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\ & & \\ \end{bmatrix} \begin{bmatrix} R_6 & & & \\$$

[0118]

- [0119] 상기 화학식 3-2에서, R₆ 및 m은 앞서 정의한 바와 같다. 바람직하게는, R₆는 메틸이다.
- [0121] 또한 바람직하게는, 본 발명에 따른 코폴리카보네이트는, 상기 화학식 1-1로 표시되는 반복 단위, 상기 화학식 2-2로 표시되는 반복 단위 및 상기 화학식 3-2로 표시되는 반복 단위를 모두 포함한다.
- [0123] 본 발명에 따른 코폴리카보네이트는, 방향족 디올 화합물, 카보네이트 전구체 및 하나 이상의 실록산 화합물을 중합하는 단계를 포함하는 제조 방법으로 제조할 수 있다. 상기 방향족 디올 화합물, 카보네이트 전구체 및 하나 이상의 실록산 화합물은 앞서 설명한 바와 같다.
- [0125] 상기 중합시, 상기 하나 이상의 실록산 화합물은, 방향족 디올 화합물, 카보네이트 전구체 및 하나 이상의 실록 산 화합물 총합 100 중량%에 대해 0.1 중량% 이상, 0.5 중량% 이상, 1 중량% 이상, 또는 1.5 중량% 이상이고, 20 중량% 이하, 10 중량% 이하, 7 중량% 이하, 5 중량% 이하, 4 중량% 이하, 3 중량% 이하, 또는 2 중량% 이하를 사용할 수 있다. 또한, 상기 방향족 디올 화합물은, 방향족 디올 화합물, 카보네이트 전구체 및 하나 이상의 실록산 화합물 총합 100 중량%에 대해 40 중량% 이상, 50 중량% 이상, 또는 55 중량% 이상이고, 80 중량% 이하, 70 중량% 이하, 또는 65 중량% 이하로 사용할 수 있다. 또한, 상기 카보네이트 전구체는, 방향족 디올 화합물, 카보네이트 전구체 및 하나 이상의 실록산 화합물 총합 100 중량%에 대해 10 중량% 이상, 20 중량% 이상, 또는 30 중량%이고, 60 중량% 이하, 50 중량% 이하, 또는 40 중량% 이하로 사용할 수 있다.
- [0127] 또한, 상기 중합 방법으로는, 일례로 계면중합 방법을 사용할 수 있으며, 이 경우 상압과 낮은 온도에서 중합 반응이 가능하며 분자량 조절이 용이한 효과가 있다. 상기 계면중합은 산결합제 및 유기용매의 존재 하에 수행 하는 것이 바람직하다. 또한, 상기 계면중합은 일례로 선중합(pre-polymerization) 후 커플링제를 투입한 다음, 다시 중합시키는 단계를 포함할 수 있고, 이 경우 고분자량의 코폴리카보네이트를 얻을 수 있다.
- [0129] 상기 계면중합에 사용되는 물질들은 폴리카보네이트의 중합에 사용될 수 있는 물질이면 특별히 제한되지 않으며, 그 사용량도 필요에 따라 조절할 수 있다.
- [0131] 상기 산결합제로는 일례로 수산화나트륨, 수산화칼륨 등의 알칼리금속 수산화물 또는 피리딘 등의 아민 화합물을 사용할 수 있다.
- [0133] 상기 유기 용매로는 통상 폴리카보네이트의 중합에 사용되는 용매이면 특별히 제한되지 않으며, 일례로 메틸렌 클로라이드, 클로로벤젠 등의 할로겐화 탄화수소를 사용할 수 있다.
- [0135] 또한, 상기 계면중합은 반응 촉진을 위해 트리에틸아민, 테트라-n-부틸암모늄브로마이드, 테트라-n-부틸포스포 늄브로마이드 등의 3차 아민 화합물, 4차 암모늄 화합물, 4차 포스포늄 화합물 등과 같은 반응 촉진제를 추가로

사용할 수 있다.

- [0137] 상기 계면중합의 반응 온도는 0 내지 40℃인 것이 바람직하며, 반응 시간은 10분 내지 5시간이 바람직하다. 또한, 계면중합 반응 중, pH는 9이상 또는 11이상으로 유지하는 것이 바람직하다.
- [0139] 또한, 상기 계면중합은 분자량 조절제를 더 포함하여 수행할 수 있다. 상기 분자량 조절제는 중합개시 전, 중합 개시 중 또는 중합개시 후에 투입할 수 있다.
- [0141] 상기 분자량 조절제로 모노-알킬페놀을 사용할 수 있으며, 상기 모노-알킬페놀은 일례로 p-tert-부틸페놀, p-쿠밀페놀, 데실페놀, 도데실페놀, 테트라데실페놀, 헥사데실페놀, 옥타데실페놀, 에이코실페놀, 도코실페놀 및 트리아콘틸페놀로 이루어진 군으로부터 선택된 1종 이상이고, 바람직하게는 p-tert-부틸페놀이며, 이 경우 분자량조절 효과가 크다.
- [0143] 상기 분자량 조절제는 일례로 방향족 디올 화합물 100 중량부를 기준으로 0.01 중량부 이상, 0,1 중량부 이상, 또는 1 중량부 이상이고, 10 중량부 이하, 6 중량부 이하, 또는 5 중량부 이하로 포함되고, 이 범위 내에서 원하는 분자량을 얻을 수 있다.
- [0145] 또한 바람직하게는, 상기 방향족 폴리카보네이트계 제1 반복 단위 및 하나 이상의 실록산 결합을 갖는 방향족 폴리카보네이트계 제2 반복 단위의 몰비가 1:0.001-0.006 및/또는 중량비가 1:0.01-0.03이다.
- [0147] 또한 바람직하게는, 상기 코폴리카보네이트는, 중량 평균 분자량이 1,000 내지 100,000 g/mol, 보다 바람직하게는 15,000 내지 35,000 g/mol이다. 보다 바람직하게는, 상기 중량 평균 분자량(g/mol)은 20,000 이상, 21,000 이상, 22,000 이상, 23,000 이상, 24,000 이상, 25,000 이상, 26,000 이상, 27,000 이상, 또는 28,000 이상이다. 또한, 상기 중량 평균 분자량은 34,000 이하, 33,000 이하, 또는 32,000 이하이다.
- [0149] UV 안정화제
- [0150] 본 발명에 따른 코폴리카보네이트 조성물은, 상술한 코폴리카보네이트의 물성, 특히 내후성을 향상시키기 위하여 UV 안정화제를 포함한다.
- [0152] 본 발명에서 사용되는 UV 안정화제는, 코폴리카보네이트의 내후성을 향상시킬 수 있는 것이면 특별히 제한되지 않는다. 바람직하게는, 상기 UV 안정화제는 벤조트리아졸 구조를 포함하고, 보다 바람직하게는 하기 화학식 4로 표시된다:
- [0153] [화학식 4]

$$R_8$$
 R_9
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

[0155] 상기 화학식 4에서,

[0154]

- [0156] R_7 내지 R_{10} 은 각각 독립적으로 수소, 하이드록시, 할로겐, 또는 1 내지 12 탄소 원자를 가지는 하이드로카본기이고,
- [0157] Y_2 및 Y_3 는 각각 독립적으로 수소; 또는 1 내지 40 탄소 원자를 가지는 하이드로카본기이고; 여기서 상기 하이드 로카본기는 질소 원자 또는 산소 원자를 추가로 포함할 수 있다.
- [0159] 구체적으로, 상기 UV 안정화제는, 2-(5-메틸-2-하이드록시페닐)벤조트리아졸 (Tinuvin® P), 2-[2-하이드록시-3,5-비스(a, a-디메틸벤질)페닐]-2H-벤조트리아졸 (Tinuvin® 234), 2-(3,5-디-t-부틸-2-하이드록시페닐)벤조트리아졸 (Tinuvin® 320), 2-(3-t-부틸-5-메틸-2-하이드록시페닐)-5-클로로벤조트리아졸 (Tinuvin® 326), 2-(3',5'-디-t-부틸-2'-하이드록시페닐)-5-클로로벤조트리아졸 (Tinuvin® 327), 2-(3,5-디-t-아밀-2-하이드록시페닐)벤조트리아졸 (Tinuvin® 328) 및 2-(2-하이드록시-5-t-옥틸페닐)벤조트리아졸 (Tinuvin® 329)로 구성되는 군으로부터 선택되는 어느 하나를 사용할 수 있다.

[0161] 코폴리카보네이트 조성물

- [0162] 본 발명에 따른 코폴리카보네이트 조성물은, 상술한 코폴리카보네이트 및 UV 안정화제를 포함한다.
- [0164] 한편, 본 발명에서는 상기 수학식 1과 같은 '내후성'을 평가한다. 상기 수학식 1은, 코폴리카보네이트 조성물에 대해 ASTM D1925에 의거하여 측정한 YI(Yellow Index) 값과(YI (0시간)), 코폴리카보네이트 조성물을 ASTM D4329에 의거하여 특정 조건(온도: 60℃, UV 파장: 340 nm, 광량: 0.55 w/m², 조사 시간: 500 시간)으로 자외선을 조사한 후, ASTM D1925에 의거하여 측정한 YI(Yellow Index) 값(YI (500시간))의 차이를 의미한다. 따라서, 이의 값이 작을수록 변형이 적다는 것을 의미하여 보다 내후성이 우수한 것을 의미한다. 한편, 상기 자외선의 조사는 당업계에서 일반적으로 알려진 장치를 사용할 수 있으며, 일례로 Q-LAB社의 QUV-A Accelerated Weathering Test chamber를 사용할 수 있다.
- [0166] 바람직하게는, 상기 수학식 1의 ΔΥΙ가 6.5 이하, 6.0 이하, 5.5 이하, 5.0 이하, 4.5 이하, 4.0 이하, 3.5 이하, 또는 3.0 이하이다. 또한, 상기 ΔΥΙ가 작을수록 내후성이 우수한 것이므로 하한은 0이나, 일례로 상기 Δ ΥΙ가 0.1 이상, 0.2 이상, 0.3 이상, 0.4 이상, 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상, 0.9 이상, 또는 1.0 이상일 수 있다.
- [0168] 또한 바람직하게는, 상기 코폴리카보네이트 조성물은, 중량 평균 분자량이 1,000 내지 100,000 g/mol, 보다 바람직하게는 15,000 내지 35,000 g/mol이다. 보다 바람직하게는, 상기 중량 평균 분자량(g/mol)은 20,000 이상, 21,000 이상, 22,000 이상, 23,000 이상, 24,000 이상, 25,000 이상, 26,000 이상, 27,000 이상, 또는 28,000 이상이다. 또한, 상기 중량 평균 분자량은 34,000 이하, 33,000 이하, 또는 32,000 이하이다.
- [0170] 또한 바람직하게는, 상기 코폴리카보네이트 조성물은, ASTM D256(1/8 inch, Notched Izod)에 의거하여 23℃에서 측정한 상온충격강도가 700 내지 1000 J/m이다. 보다 바람직하게는, 상기 상온충격강도(J/m)는 710 이상, 720 이상, 730 이상, 740 이상, 750 이상, 또는 760 이상이다. 또한, 상기 상온충격강도(J/m)는 그 값이 높을수록 우수한 것이어서 상한의 제한은 없으나, 일례로 850 이하, 840 이하, 830 이하, 820 이하, 810 이하, 800 이하, 또는 790 이하이다.
- [0172] 또한 바람직하게는, 상기 코폴리카보네이트 조성물은, ASTM D256(1/8 inch, Notched Izod)에 의거하여 -30℃에서 측정한 저온충격강도가 600 내지 800 J/m이다. 보다 바람직하게는, 상기 저온충격강도(J/m)는 610 이상, 620 이상, 630 이상, 640 이상, 또는 650 이상이다. 또한, 상기 저온충격강도(J/m)는 그 값이 높을수록 우수한 것이어서 상한의 제한은 없으나, 일례로 750 이하, 740 이하, 730 이하, 720 이하, 710 이하, 700 이하, 또는 690 이하이다.
- [0174] 또한 바람직하게는, 상기 코폴리카보네이트 조성물은, ASTM D1238(300℃, 1.2 kg 조건)에 의거하여 측정한 MI(melt index)가 5 내지 20 g/10 min이다. 보다 바람직하게는, 상기 MI(g/10 min)는 6 이상, 7 이상, 8 이상, 9 이상, 또는 10 이상이고, 19 이하, 18 이하, 17 이하, 16 이하, 또는 15 이하이다.
- [0176] 또한, 본 발명에 따른 코폴리카보네이트 조성물은, 필요에 따라 폴리카보네이트를 함께 사용함으로서 코폴리카 보네이트의 물성을 조절할 수 있다. 상기 폴리카보네이트는, 폴리카보네이트의 주쇄에 폴리실록산 구조가 도입 되어 있지 않다는 점에서, 본 발명에 따른 코폴리카보네이트와 구분된다.
- [0178] 바람직하게는, 상기 폴리카보네이트는 하기 화학식 5로 표시되는 반복 단위를 포함한다:
- [0179] [화학식 5]

$$\begin{bmatrix} R'_1 \\ R'_2 \\ R'_3 \end{bmatrix}$$

[0181] 상기 화학식 5에서,

[0180]

[0182] R'1 내지 R'4는 각각 독립적으로 수소, C₁₋₁₀ 알킬, C₁₋₁₀ 알콕시, 또는 할로겐이고,

- [0183] X'는 비치환되거나 또는 페닐로 치환된 C₁₋₁₀ 알킬렌, 비치환되거나 또는 C₁₋₁₀ 알킬로 치환된 C₃₋₁₅ 사이클로알킬 렌, O, S, SO, SO₂, 또는 CO이다.
- [0185] 또한 바람직하게는, 상기 폴리카보네이트는 중량 평균 분자량이 15,000 내지 35,000 g/mol이다. 보다 바람직하게는, 상기 중량 평균 분자량(g/mol)은 20,000 이상, 21,000 이상, 22,000 이상, 23,000 이상, 24,000 이상, 25,000 이상, 26,000 이상, 27,000 이상, 또는 28,000 이상이다. 또한, 상기 중량 평균 분자량은 34,000 이하, 33,000 이하, 또는 32,000 이하이다.
- [0187] 상기 화학식 5로 표시되는 반복 단위는, 방향족 디올 화합물 및 카보네이트 전구체가 반응하여 형성된다. 상기 사용할 수 있는 방향족 디올 화합물 및 카보네이트 전구체는, 앞서 화학식 1로 표시되는 반복 단위에서 설명한 바와 동일하다.
- [0189] 바람직하게는, 상기 화학식 5의 R'1 내지 R'4 및 X'는, 각각 앞서 설명한 화학식 1의 R1 내지 R4 및 X와 동일하다.
- [0191] 또한 바람직하게는, 상기 화학식 5로 표시되는 반복 단위는, 하기 화학식 5-1로 표시된다.
- [0192] [화학식 5-1]

- [0193]
- [0195] 상기 코폴리카보네이트 조성물에서, 코폴리카보네이트 및 폴리카보네이트의 중량비는 99:1 내지 1:99인 것이 바람직하며, 보다 바람직하게는 90:10 내지 50:50, 가장 바람직하게는 20:80 내지 80:20이다.
- [0197] 코폴리카보네이트 조성물을 포함하는 물품
- [0198] 또한, 본 발명은 상술한 코폴리카보네이트 조성물을 포함하는 물품을 제공한다.
- [0200] 바람직하게는, 상기 물품은 사출 성형품이다. 또한, 상기 물품은 일례로 산화방지제, 열안정제, 광안정화제, 가소제, 대전방지제, 핵제, 난연제, 활제, 충격보강제, 형광증백제, 안료 및 염료로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다.
- [0202] 상기 물품의 제조 방법은, 본 발명에 따른 코폴리카보네이트 조성물과 산화방지제 등과 같은 첨가제를 믹서를 이용하여 혼합한 후, 상기 혼합물을 압출기로 압출성형하여 펠릿으로 제조하고, 상기 펠릿을 건조시킨 다음 사출성형기로 사출하는 단계를 포함할 수 있다.
- [0204] 상술한 바와 같이, 본 발명에 따른 코폴리카보네이트 조성물은 내후성이 우수하기 때문에, 이를 이용하여 제조 된 제품은 외부에 노출되어 자외선 등에 의한 표면 품질 저하 및 물성의 저하가 적다는 특징이 있다.

발명의 효과

[0205] 상기에서 살펴본 바와 같이, 본 발명에 따른 코폴리카보네이트 조성물은 내후성이 우수하여 이를 이용하여 제조 된 제품은 외부에 노출되어 자외선 등에 의한 표면 품질 저하 및 물성의 저하가 적다는 특징이 있다.

발명을 실시하기 위한 구체적인 내용

[0206] 이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.

[0208] 제조예 1: AP-34

$$\begin{array}{c|c} & CH_3 & CH_3 \\ \hline Si-O & Si \\ CH_3 & CH_3 \end{array} \\ OF$$

[0209] [0210]

옥타메틸시클로테트라실록산 47.60 g(160 mmol), 테트라메틸디실록산 2.40 g(17.8 mmol)을 혼합한 후, 상기 혼합물을 옥타메틸시클로테트라실록산 100 중량부 대비 산성백토(DC-A3) 1 중량부와 함께 3L 플라스크에 넣고 60 ℃로 4시간 동안 반응시켰다. 반응 종료 후, 에틸아세테이트로 희석하고 셀라이트를 사용하여 빠르게 필터링하였다. 이렇게 수득된 말단 미변성 폴리오르가노실록산의 반복단위(n)는 ¹H NMR로 확인한 결과 34이었다.

[0212] 상기 수득된 말단 미변성 폴리오르가노실록산에 2-알릴페놀 4.81 g(35.9 mmol)과 칼스테드 백금 촉매 (Karstedt's platinum catalyst) 0.01 g(50 ppm)을 투입하여 90℃에서 3시간 동안 반응시켰다. 반응 종료 후, 미반응 실록산은 120℃, 1 torr의 조건으로 이베이퍼레이션하여 제거하였다. 이렇게 수득한 말단 변성 폴리오르 가노실록산을 'AP-34'로 명명하였다. AP-34는 연황색 오일이며, Varian 500MHz을 이용하여 ¹H NMR을 통해 반복 단위(n)는 34임을 확인하였으며, 더 이상의 정제는 필요하지 않았다.

[0214] 제조예 2: MB-58

$$\begin{array}{c|c} HO \\ \hline \\ O \\ \hline \\ O \\ \hline \\ CH_3 \\ Si-O \\ CH_3 \\ Si-O \\ Si \\ CH_3 \\ \hline \\ OH \\ \end{array}$$

[0215] [0216]

옥타메틸시클로테트라실록산 47.60 g(160 mmol), 테트라메틸디실록산 1.5 g(11 mmol)을 혼합한 후, 상기 혼합물을 옥타메틸시클로테트라실록산 100 중량부 대비 산성백토(DC-A3) 1 중량부와 함께 3L 플라스크에 넣고 60℃로 4시간 동안 반응시켰다. 반응 종료 후, 에틸아세테이트로 희석하고 셀라이트를 사용하여 빠르게 필터링하였다. 이렇게 수득된 말단 미변성 폴리오르가노실록산의 반복단위(m)는 ¹H NMR로 확인한 결과 58이었다.

[0218] 상기 수득된 말단 미변성 폴리오르가노실록산에 3-메틸부트-3-에닐 4-하이드록시벤조에이트(3-methylbut-3-enyl 4-hydroxybenzoate) 6.13 g(29.7 mmol)과 칼스테드 백금 촉매(Karstedt's platinum catalyst) 0.01 g(50 pp m)을 투입하여 90℃에서 3시간 동안 반응시켰다. 반응 종료 후, 미반응 실록산은 120℃, 1 torr의 조건으로 이 베이퍼레이션하여 제거하였다. 이렇게 수득한 말단 변성 폴리오르가노실록산을 'MB-58'로 명명하였다. MB-58은 연황색 오일이며, Varian 500MHz을 이용하여 ¹H NMR을 통해 반복단위(m)는 58임을 확인하였으며, 더 이상의 정 제는 필요하지 않았다.

[0220] 제조예 3: EU-50

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{CO} \\ \text{CH}_{3} \\ \text{Si-O} \\ \text{CH}_{3} \\ \text{Si} \\ \text{CH}_{3} \\ \text{OCH}_{3} \\ \end{array}$$

[0221] [0222]

옥타메틸시클로테트라실록산 47.60 g(160 mmol), 테트라메틸디실록산 1.7 g(13 mmol)을 혼합한 후, 상기 혼합물을 옥타메틸시클로테트라실록산 100 중량부 대비 산성백토(DC-A3) 1 중량부와 함께 3L 플라스크에 넣고 60℃로

4시간 동안 반응시켰다. 반응 종료 후, 에틸아세테이트로 희석하고 셀라이트를 사용하여 빠르게 필터링하였다. 이렇게 수득된 말단 미변성 폴리오르가노실록산의 반복단위(n)는 ¹H NMR로 확인한 결과 50이었다.

- [0224] 상기 수득된 말단 미변성 폴리오르가노실록산에 유게놀(Eugenol) 6.13 g(29.7 mmol)과 칼스테드 백금 촉매 (Karstedt's platinum catalyst) 0.01 g(50 ppm)을 투입하여 90℃에서 3시간 동안 반응시켰다. 반응 종료 후, 미반응 실록산은 120℃, 1 torr의 조건으로 이베이퍼레이션하여 제거하였다. 이렇게 수득한 말단 변성 폴리오르 가노실록산을 'EU-50'으로 명명하였다. EU-50는 연황색 오일이며, Varian 500MHz을 이용하여 ¹H NMR을 통해 반복단위(n)는 50임을 확인하였으며, 더 이상의 정제는 필요하지 않았다.
- [0226] 제조예 4: 폴리카보네이트(PC)의 제조
- [0227] 중합 반응기에 물 1784 g, NaOH 385 g 및 BPA(bisphenol A) 232 g을 넣고, N₂ 분위기 하에 혼합하여 녹였다. 여기에 PTBP(para-tert butylphenol) 4.3 g과 TPG(triphosgene) 128 g을 MC에 녹여 pH를 11 이상으로 유지시켜 주면서 1시간 동안 투입하여 반응시킨 다음 10분 뒤에 TEA(triethylamine) 46 g을 넣어 커플링(coupling) 반응을 시켰다. 총 반응시간 1시간 20분이 지난 다음 pH를 4로 낮추어 TEA를 제거하였고, 증류수로 3회 세척하여 생성된 중합체의 pH를 6~7 중성으로 맞추었다. 이렇게 얻은 중합체를 메탄올과 핵산 혼합용액에서 재침전시켜 수득한 다음, 이를 120℃에서 건조하여 최종 코폴리카보네이트를 얻었다. 이렇게 수득한 폴리카보네이트를 'PC'로 명명하였다.
- [0229] 실시예 1
- [0230] (단계 1)
- [0231] 중합 반응기에 물 1784 g, NaOH 385 g 및 BPA(bisphenol A) 232 g을 넣고, N₂ 분위기 하에 혼합하여 녹였다. 여기에 PTBP(para-tert butylphenol) 4.3 g과 제조예 1에서 제조한 AP-34 5.91 g 및 제조예 2에서 제조한 MB-58 0.66 g의 혼합액(중량비 90:10)을 MC(methylene chloride)로 용해하여 넣어주었다. 그 다음 TPG(triphosgene) 128 g을 MC에 녹여 pH를 11 이상으로 유지시켜 주면서 1시간 동안 투입하여 반응시킨 다음 10분 뒤에 TEA(triethylamine) 46 g을 넣어 커플링(coupling) 반응을 시켰다. 총 반응시간 1시간 20분이 지난 다음 pH를 4로 낮추어 TEA를 제거하였고, 증류수로 3회 세척하여 생성된 중합체의 pH를 6~7 중성으로 맞추었다. 이렇게 얻은 중합체를 메탄올과 핵산 혼합용액에서 재침전시켜 수득한 다음, 이를 120℃에서 건조하여 최종 코폴리카보네이트를 얻었다.
- [0233] (단계 2)
- [0234] 상기 단계 1에서 제조한 코폴리카보네이트 100 중량부 대비 UV 안정화제로 Tinuvin® 329를 0.3 중량부를 혼합하여 코폴리카보네이트 조성물을 제조하였다.
- [0236] 실시예 2
- [0237] 상기 실시예 1의 단계 1에서 제조한 코폴리카보네이트 80 중량부, 상기 제조예 4에서 제조된 폴리카보네이트 (PC) 20 중량부 및 UV 안정화제로 Tinuvin® 329를 0.3 중량부를 혼합하여 코폴리카보네이트 조성물을 제조하였다.
- [0239] 실시예 3
- [0240] 상기 실시예 1의 단계 1에서 제조한 코폴리카보네이트 100 중량부 및 UV 안정화제로 Tinuvin® 329를 0.2 중량부를 혼합하여 코폴리카보네이트 조성물을 제조하였다.
- [0242] 비교예 1
- [0243] 상기 실시예 1의 단계 1에서 제조한 코폴리카보네이트를 비교예 1로 하였다.
- [0245] 비교예 2
- [0246] 폴리오르가노실록산 6.57 g(제조예 3의 폴리오르가노실록산(EU-50) 100 wt%)를 사용하는 것을 제외하고는, 상기 실시예 1의 단계 1과 동일한 방법으로 제조한 코폴리카보네이트를 비교예 2로 하였다.
- [0248] 비교예 3
- [0249] 상기 비교예 2에서 제조한 코폴리카보네이트 100 중량부 대비 UV 안정화제로 Tinuvin® 329를 0.3 중량부를 혼

합하여 코폴리카보네이트 조성물을 제조하였으며, 이를 비교예 3으로 하였다.

[0251] 비교예 4

- [0252] 제조예 4에서 제조한 폴리카보네이트(PC)를 비교예 4로 하였다.
- [0254] 상기 실시예 및 비교예의 제조에 사용한 주요 성분의 함량은 하기 표 1과 같다.

丑 1

[0255]

	실시예 1	실시예 2	실시예 3	비교예 1	비교예 2	비교예 3	비교예 4
AP-34	5.91 g	실시예 1 및	실시예 1 ³⁾	5.91 g	_	_	_
MB-58	0.66 g	제조예 4 ²⁾	결기에 I	0.66 g	_	_	_
Eu-50	-	세소예 4		_	6.57 g	6.57 g	_
BPA	232 g			232 g	232 g	232 g	232 g
TPG	128 g			128 g	128 g	128 g	128 g
PTBP	4.3 g			4.3 g	4.3 g	4.3 g	4.3 g
UV 안정화제	0.3	0.3	0.2	_	_	0.3	-
1)							
(중량부)							

- 1) Tinuvin® 329, 코폴리카보네이트 100 중량부 대비 함량
- 2) 실시예 1의 단계 1에서 제조한 코폴리카보네이트 80 중량부, 및 제조예 4의 폴리카보네이트 20 중량부
- 3) 실시예 1의 단계 1에서 제조한 코폴리카보네이트 100 중량부

[0257] 실험예

- [0258] 상기 실시예 및 비교예에서 제조한 각각의 코폴리카보네이트 조성물에 트리스(2,4-디-tert-부틸페닐)포스파이트 0.050 중량부, 옥타데실-3-(3,5-디-tert-부틸-4-히드록시페닐)프로피오네이트를 0.010 중량부, 펜타에리스리톨 데트라스테아레이트를 0.030 중량부 첨가하여, 벤트 부착 Φ30㎜ 이축압출기를 사용하여, 펠릿화한 후, JSW(주) N-20C 사출성형기를 사용하여 실린더 온도 300℃, 금형 온도 80℃에서 성형 시편을 사출 성형하였다.
- [0260] 이의 특성을 하기의 방법으로 측정하였고, 그 결과를 표 2에 나타내었다.
- [0261] 1) 중량평균분자량(g/mol): Agilent 1200 series를 이용, PC standard로 검량하여 측정하였다.
- [0262] 2) 상온충격강도 및 저온충격강도(J/m): ASTM D256(1/8 inch, Notched Izod)에 의거하여 23℃와 -30℃에서 각 각 측정하였다.
- [0263] 3) 유동성(MI, g/10 min): ASTM D1238(300℃, 1.2 kg 조건)에 의거하여 측정하였다.
- [0264] 4) 내후성(△YI): 시편(가로/세로/두께 = 60 mm/ 40 mm/ 3 mm)을 300℃에서 사출 성형한 후, ASTM D1925에 의 거하여 이를 Color-Eye 7000A(X-rite社)를 이용하여 YI(Yellow Index)를 측정하였다. 이어, ASTM D4329에 의거하여, 시편을 Q-LAB社의 QUV-A Accelerated Weathering Test chamber(온도: 60℃, UV 파장: 340 nm, 광량: 0.55 w/m²) 내에서 500 시간 체류 후, ASTM D1925에 의거하여 Color-Eye 7000A(X-rite社)를 이용하여 YI(Yellow Index)를 측정하였다(YI (500 시간)). 상기 YI (500 시간)과 YI (0 시간)의 차이를 계산하였다. 한 편, 상기 YI(Yellow Index) 측정 조건은 하기와 같았다.
- [0265] 측정 온도: 상온(23℃)
- [0266] Aperture size: Large area of view
- [0267] 측정법: Spectral range(360 nm 내지 750 nm)에서 투과율 측정

丑 2

[0268]

	단위	실시예 1	실시예 2	실시예 3	비교예 1	비교예 2	비교예 3	비교예 4
중량평균 분자량	g/mol	29400	28600	29100	29500	30300	30100	28700
상온충격 강도	J/m	781	776	779	823	748	699	850

	저온충격 강도	J/m	669	653	661	711	636	591	110
	유동성	g/10 min	12	14	13	11	10	11	14
Ī	내후성	_	3.2	2.9	3.4	20.3	25.4	7.6	18.9

[0270] 상기 표 2에 나타난 바와 같이, 본 발명에 따른 실시예의 경우 비교예에 비하여 내후성이 현저히 우수함을 확인할 수 있었다. 특히 UV 안정화제를 포함하지 않는다는 점에서 차이가 있는 비교예 1과 비교시, 내후성 향상 효과가 현저히 우수함을 확인할 수 있었다. 또한, UV 안정화제를 포함하지만 코폴리카보네이트가 상이한 비교예 3에 비하여도 내후성이 현저히 우수함을 확인할 수 있었다.