

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

CO4B 35/626 (2006.01) **CO4B** 35/48 (2006.01) **CO4B** 35/64 (2006.01)

(52) CPC특허분류

CO4B 35/62695 (2013.01) **CO4B** 35/48 (2013.01)

(21) 출원번호 10-2016-0152597

(22) 출원일자 **2016년11월16일** 심사청구일자 **2016년11월16일**

(56) 선행기술조사문헌

KR101330767 B1*

KR1020140087017 A*

JP2005112663 A*

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2018년04월12일

(11) 등록번호 10-1848349

(24) 등록일자 2018년04월06일

(73) 특허권자

주식회사 쎄노텍

경상남도 함안군 대산면 옥렬1길 112()

(72) 발명자

강종봉

경상남도 창원시 마산합포구 제2부두로 17, 102동 802호 (신포동1가, 마산만 I'PARK)

이주성

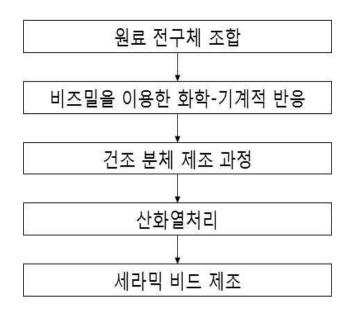
경상남도 창원시 마산합포구 월영동로 19, 205동 1801호 (해운동, 두산2차아파트)

(뒷면에 계속)

(74) 대리인

맹성재

전체 청구항 수 : 총 11 항


심사관: 김란

(54) 발명의 명칭 기계-화학적 밀링을 이용한 세라믹 비드 분체 제조방법 및 그 세라믹 비드

(57) 요 약

본 발명은 나노급의 입자 분포와 균질의 성분 균일도를 갖는 세라믹 비드 분체를 위하여 지르코니아 전구체 및 세리아 전구체 원료를 조합하여 기계-화학적 밀링 공정으로 원료를 혼합하고 합성을 유도하는 제조방법에 관한 것이다.

대 표 도 - 도1

(52) CPC특허분류

CO4B 35/62615 (2013.01)

CO4B 35/62625 (2013.01)

CO4B 35/62655 (2013.01)

CO4B 35/64 (2013.01)

CO4B 2235/3225 (2013.01)

CO4B 2235/3229 (2013.01)

CO4B 2235/449 (2013.01)

CO4B 2235/781 (2013.01)

CO4B 2235/782 (2013.01)

(72) 발명자

정승화

경상남도 창원시 마산회원구 내서읍 광려로 28,

105동 1002호 (대동이미지아파트)

이 발명을 지원한 국가연구개발사업

과제고유번호 10052448

부처명 산업통상자원부

연구관리전문기관 한국산업기술평가관리원

연구사업명 우수기술연구센터(ATC) 사업

연구과제명 브레이크다운 방식을 이용한 세라믹 나노분체 제조기반기술 및 제품의 개발

기 여 율 1/1 주관기관 (주)쎄노

연구기간 2015.06.01 ~ 2020.05.31

강동훈

경상남도 창원시 마산회원구 양덕서로 30, 115동 1304호 (양덕동, 메트로시티)

명세서

청구범위

청구항 1

교반용기에 지르코니아 전구체 $65 \sim 85$ wt%, 세리아 전구체 $10 \sim 30$ wt% 및 아이언 전구체를 $1 \sim 10$ wt%의 비율로 조합하고 정제수를 넣어 배합하는 단계;

상기 교반용기에 세라믹 비드를 충진하여 기계-화학적으로 밀링하는 단계;

밀링된 슬러리를 건조하는 단계 및

건조된 분말을 500 ℃ 이상에서 열처리하여 합성된 분체를 획득하는 단계를 포함하는 것을 특징으로 하는 세라 믹 비드의 원료 제조방법.

청구항 2

교반용기에 지르코니아 전구체 $40 \sim 80$ wt%, 세리아 전구체 $1 \sim 40$ wt% 및 이트리아 전구체 $1 \sim 20$ wt% 및 아이 언 전구체를 $1 \sim 5$ wt%의 비율로 조합하고 정제수를 넣어 조합하는 단계;

상기 교반용기에 세라믹 비드를 충진하여 기계-화학적으로 밀링하는 단계;

밀링된 슬러리를 건조하는 단계 및

건조된 분말을 500 ℃ 이상에서 열처리하여 합성된 분체를 획득하는 단계를 포함하는 것을 특징으로 하는 세라 믹 비드의 원료 제조방법.

청구항 3

제1항 또는 제2항에 있어서,

상기 지르코니아 전구체는 $Zr(CH_2COO)_2$, $ZrO(NO_3)_2$, $(ZrOCl_2 \cdot 8H_2O)$, $Zr(OH)_4 \cdot xH_2O$, $ZrSO_4 \cdot 4H_2O$, $ZrO_2 \cdot P_2O_5$, $Zr(CH_3-CH_2COO)_2$ 분말 중에서 선택된 하나 또는 2 이상의 조합인 것을 특징으로 하는 세라믹 비드의 원료 제조방법.

청구항 4

제1항 또는 제2항에 있어서,

상기 세리아 전구체는 $Ce(CH_3CO_2)_3$, $Ce_2(CO_3)_3$, $Ce(CIO_3)_2$, CeH_3 , $CeH_{2.69}$ 분말 중에서 선택된 하나 또는 2 이상의 조합인 것을 특징으로 하는 세라믹 비드의 원료 제조방법.

청구항 5

제2항에 있어서,

상기 이트리아 전구체는 $Y(OH)_3$, YCl_3 , YCl_3 · GH_2O , YF_3 분말 중에서 선택된 하나 또는 2 이상의 조합인 것을 특징으로 하는 세라믹 비드의 원료 제조방법.

청구항 6

제1항 또는 제2항에 있어서,

기계-화학적으로 밀렁하는 단계는 1.0 mm 이하의 입자 크기의 비즈를 사용하고, 50 ℃ 이상의 온도와 12 m/s 이상의 선속도로 회전하여 밀렁하는 것을 특징으로 하는 세라믹 비드의 원료 제조방법.

청구항 7

제1항 또는 제2항에 있어서,

기계-화학적으로 밀링하는 단계에서 산 또는 염기성 물질을 추가하여 분체 표면의 활성도를 증가시키는 것을 특징으로 하는 세라믹 비드의 원료 제조방법.

청구항 8

제1항 또는 제2항에 있어서,

슬러리를 건조하는 단계는 스프레이 드라이 방법으로 과립 분체를 형성하는 것을 특징으로 하는 세라믹 비드의 원료 제조방법.

청구항 9

제1항 또는 제2항의 제조방법으로 제조된 세라믹 비드 분체.

청구항 10

제9항의 세라믹 비드 분체를 사용하여,

텀블링 공정으로 세라믹 비드를 형성하고 소성하여 세라믹 비드를 제조하는 방법.

청구항 11

제10항의 제조방법으로 제조된 세라믹 비드.

발명의 설명

기술분야

[0001] 본 발명은 기계-화학적 밀링을 이용한 세라믹 비드 분체 제조방법에 관한 것으로서, 상세하게는 나노급 성분 균일도의 세라믹 비드 분체를 위하여 전구체 원료를 조합하여 기계-화학적 밀링 공정으로 원료를 혼합하고 합성을 유도하는 제조방법에 관한 것이다.

배경기술

- [0002] 지르코니아(ZrO₂)는 높은 내화성, 화학적 안정성 및 높은 강도와 인성으로 내화물, 엔지니어링 세라믹 및 내마모 성 세라믹으로 사용되고 있으며, 다른 산화물과 결합하여 상승된 온도에서 높은 전기 전도성으로 전자 세라믹으로 사용되고 있다.
- [0003] 지르코니아의 고강도 및 내마모성 특성을 이용한 세라믹 비드(bead)는 미립자의 분쇄 분산에 사용되며, 고밀도, 고강도, 고경도, 고내마모성 및 크기 분포 등의 특성이 중요하다.
- [0004] 지르코니아는 온도에 따라 다양한 상변화를 하며 체적 변화를 수반하여 전단변형으로 기계적 특성이 저하되므로, 큐빅 산화물이나 칼시아(CaO), 마그네시아(MgO) 또는 이트리아(Y₂O₃)를 적절하게 첨가하여 상전이를 안정화시킨 것이 안정화 지르코니아이다.
- [0005] 세리아 안정화 지르코니아(ceria stabilized zirconia bead)는 내마모성 및 고경도 뿐만 아니라 밀도가 높아 페 인트와 잉크 등 고점도의 분쇄분산에 매우 효율적이다.
- [0006] 종래의 지르코니아 세라믹 비드는 건식으로는 몰드 성형 제조방법, 텀블링 제조방법, 슬러리 제조방법 및 용용 제조방법 등이 있는데, 대부분의 방법에서 사용하는 출발 원료가 ZrO_2 , Y_2O_3 , CeO_2 등 산화물 분말을 사용하기 때문에 출발 산화물 분말의 입자 크기가 비교적 불균일하여 비드의 마모도 특성 등이 저하되는 문제점이 있다.
- [0007] 특허문헌 1에는 지르코니아계 및 세륨 옥사이드계 소결 비드에 관한 것으로, 겔화 시스템을 사용하는 슬러리 제조방법으로서 출발 원료는 ZrO₂ 및 CeO₂ 산화물 분말을 사용하고 있다.

선행기술문헌

특허문헌

[0008] (특허문헌 0001) 1. 한국 공개특허 제2007-0122204호

발명의 내용

해결하려는 과제

[0009] 본 발명은 나노급 성분 균일도의 세라믹 비드 분체를 위하여 전구체 원료를 조합하여 기계-화학적 밀링 공정으로 원료를 혼합하고 합성을 유도하는 제조방법을 제공하고자 한다.

과제의 해결 수단

- [0010] 상기의 해결하고자 하는 과제를 위한 본 발명에 따른 세라믹 비드의 원료 제조방법은, 교반용기에 지르코니아 전구체 65 ~ 85 wt%, 세리아 전구체 10 ~ 30 wt% 및 첨가제 전구체를 1 ~ 10 wt%의 비율로 조합하고 정제수를 넣어 배합하는 단계; 상기 교반용기에 세라믹 비드를 충진하여 기계-화학적으로 밀렁하는 단계; 밀링된 슬러리를 건조하는 단계 및 건조된 분말을 500 ℃ 이상에서 열처리하여 합성된 분체를 획득하는 단계를 포함하는 것을 특징으로 한다.
- [0011] 본 발명에 따른 세라믹 비드의 원료 제조방법의 다른 실시예로서, 교반용기에 지르코니아 전구체 40 ~ 80 wt%, 세리아 전구체 1 ~ 40 wt% 및 이트리아 전구체 1 ~ 20 wt% 및 첨가제 전구체를 1 ~ 5 wt%의 비율로 조합하고 정제수를 넣어 조합하는 단계; 상기 교반용기에 세라믹 비드를 충진하여 기계-화학적으로 밀링하는 단계; 밀링된슬러리를 건조하는 단계 및 건조된 분말을 500 ℃ 이상에서 열처리하여 합성된 분체를 획득하는 단계를 포함하는 것을 특징으로 한다.
- [0012] 상기 지르코니아 전구체는 Zr(CH₂COO)₂, ZrO(NO₃)₂, (ZrOCl₂·8H₂O), Zr(OH)₄·xH₂O, ZrSO₄·4H₂O, ZrO₂·P₂O₅, Zr(CH₃-CH₂COO)₂ 분말 중에서 선택된 하나 또는 2 이상의 조합인 것을 특징으로 한다.
- [0013] 상기 세리아 전구체는 Ce(CH₃CO₂)₃, Ce₂(CO₃)₃, Ce(ClO₃)₂, CeH₃, CeH_{2.69} 분말 중에서 선택된 하나 또는 2 이상의 조합인 것을 특징으로 한다.
- [0014] 상기 이트리아 전구체는 Y(OH)3, YCl3, YCl3, 6H2O, YF3 분말 중에서 선택된 하나 또는 2 이상의 조합인 것을 특징으로 한다.
- [0015] 기계-화학적으로 밀링하는 단계는 1.0 mm 이하의 입자 크기의 비즈를 사용하고, 50 ℃ 이상의 온도와 12 m/s 이상의 선속도로 회전하여 밀링하며, 산 또는 염기성 물질을 추가하여 분체 표면의 활성도를 증가시키는 것을 특징으로 한다.
- [0016] 슬러리를 건조하는 단계는 스프레이 드라이 방법으로 과립 분체를 형성하는 것을 특징으로 한다.
- [0017] 본 발명의 또 다른 실시예로서, 세라믹 비드의 원료 제조방법 제조된 세라믹 비드 분체를 사용하여, 텀블링 공 정으로 세라믹 비드를 형성하고 소성하여 세라믹 비드를 제조하는 것을 특징으로 한다.

발명의 효과

[0018] 본 발명은 나노급 성분 균일도의 세라믹 비드 분체를 제공함으로써, 비드의 밀도, 경도 및 마모율 등의 특성을 향상시켜 고품위의 세라믹 비드를 제조할 수 있다.

도면의 간단한 설명

[0019] 도 1은 본 발명에 제조방법의 흐름도이다.

도 2는 본 발명에 따른 세라믹 비드의 전자현미경 조직 사진이다.

발명을 실시하기 위한 구체적인 내용

[0020] 이하, 본 발명의 실시를 위한 구체적인 실시예를 도면을 참고하여 설명한다. 본 발명의 실시예는 하나의 발명을 설명하기 위한 것으로서 권리범위는 예시된 실시예에 한정되지 아니하고, 예시된 도면은 발명의 명확성을 위하여 핵심적인 내용만 확대 도시하고 부수적인 것을 생략하였으므로 도면에 한정하여 해석하여서는 아니 된다.

- [0021] 도 1은 본 발명에 따른 세라믹 비드 제조방법의 흐름도이다.
- [0022] 1. 전구체 원료의 준비
- [0023] 지르코니아(ZrO₂)를 제조할 수 있는 전구체로서는 Zirconium acetate(Zr(CH₂COO)₂), Zirconium nitrate(ZrO(NO₃)₂), Zirconium chloride (ZrOCl₂·8H₂O), Zirconium hydroxide(Zr(OH)₄·xH₂O), Zirconium sulfate (ZrSO₄·4H₂O), Zirconium phosphate (ZrO₂·P₂O₅), Zirconium propionate(Zr(CH₃-CH₂COO)₂) 등의 지르 코늄염 분말 중에서 하나를 선택하거나 2 이상의 조합을 할 수 있다. 사용되는 분말 원료의 입자 크기는 수십 um정도이다.
- [0024] 세리아(CeO₂)를 제조할 수 있는 전구체로서는 Cerium acetate(Ce(CH₃CO₂)₃), Cerium carbonate(Ce₂(CO₃)₃), Cerium chlorate(Ce(ClO₃)₂), Cerium hydride (CeH₃, CeH_{2.69}) 등의 세륨염 분말 중에서 하나를 선택하거나 2 이상의 조합을 할 수 있다.
- [0025] 이트리아(Y₂O₃)를 제조할 수 있는 전구체로서는 Yttrium hydroxide(Y(OH)₃), Yttrium chloride(YCl₃, YCl₃· 6H₂O), Yttrium fluoride(YF₃) 등의 이트륨염 분말 중에서 하나를 선택하거나 2 이상의 조합을 할 수 있다.
- [0026] 이외에도 부원료 또는 첨가제로서 Al₂O₃, MgO, NnO₂, Fe₂O₃, Fe(ClO₃)₂, CuO, TiO₂, Sb₂O₃, ZnO, CaO, La₂O₃, SrO, BaO 등의 전구체 또는 산화물 분말을 준비할 수 있다.
- [0027] 사용되는 분말 원료의 입자 크기는 수십 um정도이다. 상기와 같이 금속염은 분말형태로 사용할 수도 있고, 수용 액 상태의 금속염 원료를 사용할 수 있다.
- [0028] 전구체의 배합은 지르코니아 전구체는 65 ~ 85 wt%, 세리아 전구체는 10 ~ 30 wt% 및 부원료는 1 ~ 10 wt%의 비율로 배합한다.
- [0029] 본 발명의 다른 실시예로서, 전구체의 배합은 지르코니아 전구체는 40 ~ 80 wt%, 세리아 전구체 1 ~ 40 wt% 및 이트리아 전구체 1 ~ 20 wt% 및 부원료는 1 ~ 5 wt%의 비율로 배합한다.
- [0030] 2. 기계-화학적 밀링 공정
- [0031] 본 발명의 특징으로서 조합된 전구체 원료를 기계적 에너지를 전달할 수 있는 고에너지 비즈(beads) 밀을 이용하여 수용액 상태에서 기계적 분쇄를 하면서 화학적 반응을 유도하는 것이다.
- [0032] 비즈 밀은 1.0 mm 이하의 크기의 비즈를 넣어 수용액 상태에서 50 ℃ 이상의 온도와 12 m/s 이상의 선속도로 회전하여 반응성의 증대와 나노크기로 분산시킬 수 있다. 이 때 산 또는 염기성 물질을 추가하면 보다 높은 분체 표면의 활성도를 증가시킴으로써 기계-화학적 반응을 촉진할 수 있다.
- [0033] 고에너지 밀링으로 각 전구체들을 수십 nm의 나노급의 미립자가 되어 고점도의 슬러리 상태가 된다. 또한, 전구체의 표면이 용매인 물에 의해 OH 기를 일부 생성시킬 수 있으며, 강한 기계적 에너지 밀링에 의한 열과 산 또는 염기성 물질에 의해 일부 이온상태로 존재하면서 나노급으로 균질의 분산 상태를 얻을 수 있다.
- [0034] 3. 분체 제조
- [0035] 기계-화학적 밀링으로 제조된 슬러리를 80℃ 이상의 온도에서 스프레이 드라이어(spray dryer) 방법으로 분산 건조하여 수십 um 정도의 과립 분체를 얻는다. 분체의 건조는 원심분리 또는 여과압축(filter press) 등 다양한 방법이 적용 가능하다.
- [0036] 4. 열처리
- [0037] 건조된 분체를 500 ℃ 이상에서 열처리를 하여 전구체에 포함된 황산기(SO₄), 질산기(NO₃), 염소기(C1) 등을 제 거하고 분체를 합성한다. 합성된 분체는 기계적 분쇄로 보다 작은 입자 형태로 제조할 수 도 있다.
- [0038] 산화물 분말과 전구체가 혼합하여 조합되는 경우에 전체 산화물의 함량이 50 wt% 이상이 되면 열처리 공정을 하지 않을 수도 있다.
- [0039] 5. 세라믹 비드의 제조
- [0040] 본 발명에 따라 제조된 분체는 슬러리를 이용하는 모든 비드 제조방법과 프레스 및 텀블링 제조방법 등 모든 건

- 식 공정에 사용할 수 있다.
- [0041] 본 발명에 따른 제조방법으로 만든 비드 분체를 이용하여 세라믹 비드를 제조하여 그 특성을 살펴보았다.
- [0042] [실시예 1]
- [0043] 지르코늄 옥시클로라이드 (ZrOCl₂・8H₂O) 80wt% 및 세륨 클로레이트 (Ce(ClO₃)₃) 18.5wt% 및 아이언 클로레이트 (Fe(ClO₃)₂) 1.5wt%의 혼합 분말에 대하여 정제수가 30wt%가 되도록 하여 교반용기에서 조합하였다.
- [0044] 교반용기에 NH40H를 전체 중량의 1wt% 투입한다. 조합된 원료 및 정제수는 교반기를 통하여 0.35mm의 직경을 갖는 이트리아 안정화 지르코니아 비드를 이용하여 15 m/s의 선속도로 회전하는 고속 에너지밀기에서 1시간동안 분쇄 및 분산하였다. 이때 슬러리의 온도는 60℃를 유지한다.
- [0045] 제조된 슬러리를 투입온도 200℃에서 스프레이 건조하여 과립 분체를 획득하였다.
- [0046] 획득한 분체를 900℃의 온도에서 3시간 동안 열처리하여 텀블링 공정을 이용하여 1.0mm의 비드를 제조하였다.
- [0047] 제조된 비드는 1300℃에서 3시간동안 소성하고, 밀도, 경도 및 마모율을 측정하고 전자현미경으로 소결 조직사 진을 관찰하였다.
- [0048] [비교예 1]
- [0049] 비교예 1은 원료가 전구체가 아닌 산화물 분말을 사용하여 실시예 1의 공정으로 비드를 제조하여 측정하였다.
- [0050] 지르코니아(ZrO₂) 분말 80 wt%와 세리아(CeO2) 분말 20 wt%를 혼합하고 정제수를 고형분이 70wt%가 되도록 교반 용기에서 조합하였다. 조합된 원료 및 정제수는 교반기를 통하여 0.35mm의 직경을 갖는 이트리아 안정화 지르코 니아 비드를 이용하여 15 m/s의 선속도로 회전하는 고속 에너지밀기에서 1시간동안 분쇄 및 분산하였다. 이때 슬러리의 온도는 60℃를 유지한다.
- [0051] 제조된 슬러리를 투입온도 200℃에서 스프레이 건조하여 과립 분체를 획득하였다.
- [0052] 획득한 분체를 900℃의 온도에서 3시간 동안 열처리하여 텀블링 공정을 이용하여 1.0mm의 비드를 제조하였다.
- [0053] 제조된 비드는 1300℃에서 3시간동안 소성하고, 밀도, 경도 및 마모율을 측정하고 전자현미경으로 소결 조직사 진을 관찰하였다.
- [0054] [실시예 2]
- [0055] 실시예 2는 실시예 1과 같은 방법으로 하고 밀링 시간을 3 시간으로 변화시켜 세라믹 비드를 제조하여, 같은 방법으로 측정하였다.
- [0056] [실시예 3]
- [0057] 지르코늄 옥시클로라이드 (ZrOCl₂・8H₂O) 80wt% 및 세륨 클로레이트 (Ce(ClO₃)₃) 18.5wt% 및 아이언 클로레이트 (Fe(ClO₃)₂) 1.5wt%의 혼합 분말에 대하여 정제수가 30wt%가 되도록 하여 교반용기에서 조합하였다.
- [0058] 교반용기에 NH4OH를 전체 중량의 2wt% 투입한다. 조합된 원료 및 정제수는 교반기를 통하여 0.35mm의 직경을 갖는 이트리아 안정화 지르코니아 비드를 이용하여 15 m/s의 선속도로 회전하는 고속 에너지밀기에서 3시간동안 분쇄 및 분산하였다. 이때 슬러리의 온도는 60℃를 유지한다.
- [0059] 제조된 슬러리를 투입온도 200℃에서 스프레이 건조하여 과립 분체를 획득하였다.
- [0060] 획득한 분체를 900℃의 온도에서 3시간 동안 열처리하여 텀블링 공정을 이용하여 1.0㎜의 비드를 제조하였다.
- [0061] 제조된 비드는 1300℃에서 3시간동안 소성하고, 밀도, 경도 및 마모율을 측정하고 전자현미경으로 소결 조직사 진을 관찰하였다.
- [0062] [실시예 4]
- [0063] 지르코늄 옥시클로라이드 (ZrOCl₂・8H₂O) 80wt% 및 세륨 클로레이트 (Ce(ClO₃)₃) 18.5wt% 및 아이언 클로레이트 (Fe(ClO₃)₂) 1.5wt%의 혼합 분말에 대하여 정제수가 30wt%가 되도록 하여 교반용기에서 조합하였다.

[0064] 교반용기에 NH4OH를 전체 중량의 2wt% 투입한다. 조합된 원료 및 정제수는 교반기를 통하여 0.35mm의 직경을 갖는 이트리아 안정화 지르코니아 비드를 이용하여 15 m/s의 선속도로 회전하는 고속 에너지밀기에서 3시간동안 분쇄 및 분산하였다. 이때 슬러리의 온도는 60℃를 유지한다.

[0065] 제조된 슬러리를 투입온도 200℃에서 스프레이 건조하여 과립 분체를 획득하였다.

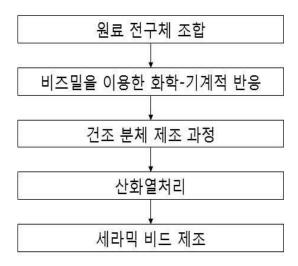
획득한 분체를 900℃의 온도에서 3시간 동안 열처리하여 텀블링 공정을 이용하여 1.0㎜의 비드를 제조하였다.

[0067] 제조된 비드는 1300℃에서 3시간동안 소성하고, 밀도, 경도 및 마모율을 측정하고 전자현미경으로 소결 조직사 진을 관찰하였다.

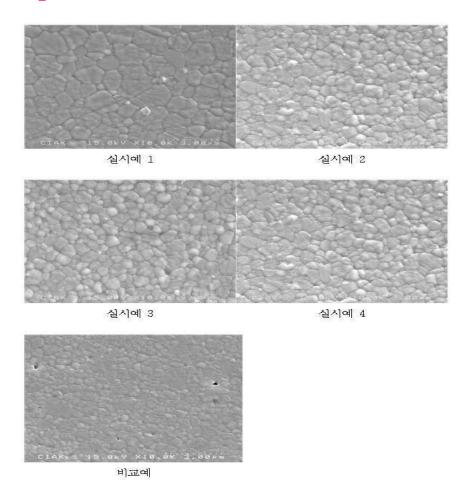
표 1에 실시예에 따른 측정결과를 보여준다. 도 2는 소결된 세라믹 비드의 전자현미경 조직사진이다.

丑 1

실시예	圣성 (wt%)				NH4OH	밀링	겉보기	경도	nl = 0 (n/
	ZrOOl₂ - 8H₂O	ZrO₂	Ce(ClO ₃) ₃	Fe(ClO ₃) ₃	(wt%)	시간	밀도	(하중:lkg)	마모율(%)
1	80	0	18.5	1.5	1	lhr	6.11	1046	0.023
2	80	0	18.5	1.5	1	3hr	6.13	1075	0.021
3	80	0	18.5	1.5	2	3hr	6.15	1103	0.020
4	70	10	18.5	1.5	2	3hr	6.14	1094	0.021
비교예	0	80	20	0	0	3hr	6.12	1025	0.028


[0069]

[0066]


[0068]

도면

도면1

도면2

