4 124⁽¹³⁾ U1

C25C 3/22 (1995.01)

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ

(21), (22) Заявка: 96101578/20, 25.01.1996

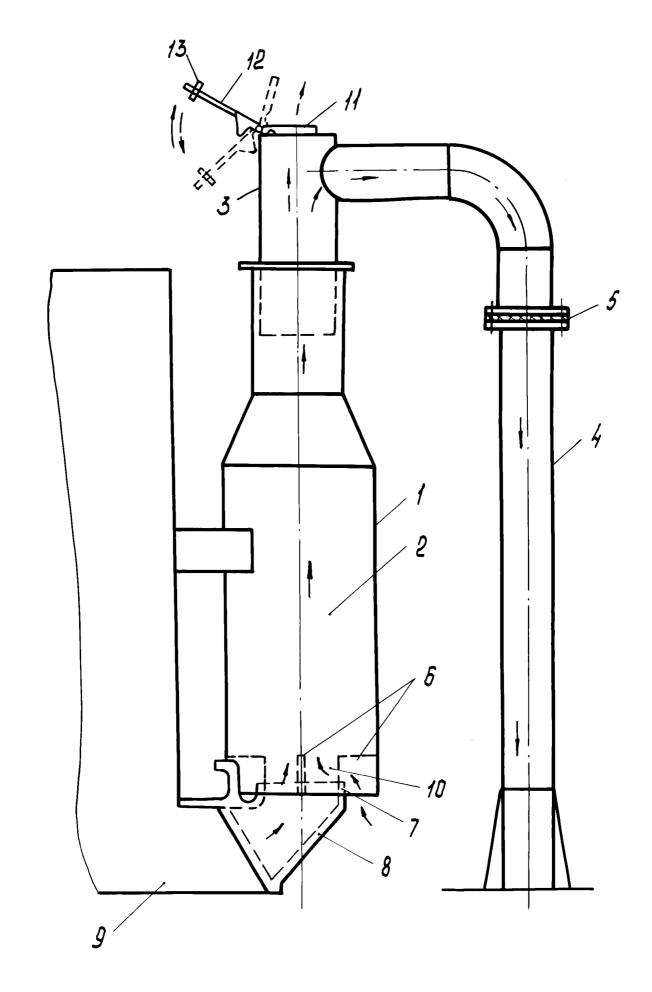
(46) Опубликовано: 16.05.1997

(71) Заявитель(и):

Акционерное общество открытого типа "Иркутский алюминиевый завод", Акционерное общество открытого типа "Сибирский научно-исследовательский, конструкторский и проектный институт алюминиевой и электродной промышленности"

(72) Автор(ы):

Жилин В.Т.. Павлов М.Н.. Хороших Б.А.


(73) Патентообладатель(и):

Акционерное общество открытого типа "Иркутский алюминиевый завод", Акционерное общество открытого типа "Сибирский научно-исследовательский, конструкторский и проектный институт алюминиевой и электродной промышленности"

(54) ГОРЕЛКА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

(57) Формула полезной модели

- 1. Горелка алюминиевого электролизера, включающая корпус камеры сгорания, телескопически связанный с газоотводящим патрубком, уплотнительную шайбу и лючек для прочистки горелки, отличающаяся тем, что к внутренней стенке основания корпуса камеры сгорания прикреплены радиально установленные пластины.
- 2. Горелка по п.1, отличающаяся тем, что газоотводящий патрубок имеет Г-образную форму.
- 3. Горелка по п. 1, отличающаяся тем, что лючек для прочистки горелки снабжен рычагом с противовесом.
- 4. Горелка по п.3, отличающаяся тем, что противовес связан с рычагом винтовой резьбой.
- 5. Горелка по пп.1 3, отличающаяся тем, что лючек с рычагом и противовесом выполнены из антимагнитного материала.

MKU: C25C 3/22

Горелка алюминиевого электролизера.

Предложение относится к производству металлов путем электролиза и может быть использовано при получении алюминия в электролизерах с самообжигающимися анодами.

Известна горелка элюминиевого электролизера, содержащая корпус камеры сгорания, телескопически связанный с дугообразным газсотводящим патрубком, уплотнительную шайбу и лючек для прочистки горелки (см. а.с. № 783368, кл. С25С 3/22, 1979 г.) (1).

Недостатком известной горелки, принятой за прототип, является то, что расстояние от зеркала расплава до места встречи газа с воздухом имеет вначительную величину, в результате чего не обеспечивается самововгорание газа.

Задачей данного предложения было обеспечить более надежную работу горелки.

Поставленная вадача решается тем, что в горелке, содержащей корпус камеры сгорания, телескопически связанный с газостводящим патрубком, уплотнительную шайбу и лючек для прочистки горелки, к внутренней стенке основания корпуса камеры сгорания прикреплены радиально установленные пластины;

- тем, что газостводящий патрубок имеет Г-образную форму;
- тем, что лючек для прочистки горелки снабжен рычагом с противовесом:
- тем, что противовес связан с рычагом винтовой резьбой;
- тем, что лючек с рычагом и противовесом выполнены из антимагнитного материала.

Общими привнаками предложенного устройства и прототипа является наличие корпуса камеры сгорания, телескопически связанного с газо-стводящим патрубком, уплотнительной шайбы и лючка для прочистки горелки.

Отличие заключается в том, что к внутренней сонования корпуса камеры сгорания прикреплены радиально установленные пластины. Такое выполнение позволило обеспечить поступление воздуха в горелку у самого основания ее, т.е. максимально приблизить к зеркалу расплава и тем самым обеспечить большую версятность самовозгорания горелки, чем в конструкции горелки по прототипу.

Другое отличие заключается в том, что газостводящий патрубок имеет Г-обравную форму. Такое выполнение позволило снабдить лючек для прочистки горелки рычагом с противовесом и тем самым обеспечить автоматическое открывание лючка в случае прекращения работы дымососа. Такое выполнение лючка с рычагом и противовесом можно выполнить на известном устройстве, установив его в верхней части дугообравного газоотводящего патрубка. Но в этом месте ухудшаются условия для прочистки горелки.

Указанные отличия позволяют сделать вывод о том, что данное предложение отвечает критерию полезной модели "новизна".

Для сравнения предложения с другими известными решениями проведен поиск по патентной и научно-технической литературе.

Известно "Устройство для автоматического поддержания горения в газовых горелках алюминиевых электролизеров" (см. патент США № 3102091, кл. НКИ 204-247, кл. МКИ С25С, 1961 г.)(2).

Известное устройство содержит трубку, соединяющую газосборник с горелкой. Вдоль трубы от газосборника до горелки имеются небольшие отверстия для подсоса воздуха. Сущность работы устройства заключа— ется в том, что засасываемый через эти отверстия воздух способствует воспламенению газа и передаче пламени до следующего отверстия вплоть до горелки.

Общими признаками известного и предложенного устройств является наличие отверстий (щелей) в основании горелки, способствующих само-воспламенению горелки. Отличие заключается в том, что в предложенном устройстве основание горелки со щелями (каналами) расположено на

патрубке газосборника, т.е. максимально приближено к зеркалу расплава, тогда как в известном устройстве между основанием горелки и патрубком газосборника имеется промежуточное звено-трубка с мелкими отверстиями вдоль нее. Но поскольку знодные газы содержат большое количество смолистых, то мелкие отверстия, да и сама трубка, быстро забиваются смолистыми и потому устройство не работает. В предложенном устройстве такого недостатка нет. Следовательно данное предложение отвечает современному уровню техники.

Предложение поясняется чертежом, где на компрой показан общий вид горелки. Па долга нерхняя честь горелки с отнрытили выстания

Горелка содержит корпус 1 камеры сгорания 2, телескопически связанный с Г-образным газсотводящим патрубком 3, который, в свою очередь, связан с газоходом 4 системы газсочистки через электромволяционную вставку 5. К внутренней стенке в основании корпуса 1 камеры сгорания прикреплены радиально установленные пластины 6. В нижней части этих пластин 6 имеются вырезы 7 для фиксации горелки на выходном патрубке 8 газосборной угловой секции 9. Установленный таким образом корпус 1 имеет в основании каналы 10 для прохода воздуха между пластинами 6 в камеру сгорания 2.

На горизонтальной площадке Г-образного патрубка 3 установлен мочек 11 для прочистки горелки, снабженный рычагом 12 с противовесом 13. Рычаг 12 связан с противовесом 13 винтовой резьбой. Мочек 11, с рычагом 12 и противовесом 13 выполнены из антимагнитного материала, например из алюминия.

Предложенная горелка работает следующим образом. Поступающий в камеру сгорания 2 газ через патрубок 8 секции газосборника 9 смешивается с воздухом, поступающим в камеру сгорания 2 через каналы 10 между пластинами 6. Елагодаря тому, что каналы 10 расположены у самого основания горелки, т.е. максимально приближены к зеркалу расплава, обеспечивается автоматическое самововгорание газа. Из камеры

сгорания 2 газ поступает в Г-образный патрубок 3 и далее по газо-ходу 4 в систему газоочистки.

При нермальной работе системы газоочистки лючек 11 постоянно закрыт за счет разряжения в Г-образном патрубке 3.

В случае нарушения работы этой системы, например остановки дым сссса или выполнения ремонтных работ на газоходах, лючек 11 автоматически открывается за счет избыточного давления в Г-образном патрубке 3 и поэтому сгорание газа не прекращается.

Такая работа мечка 11 обеспечивается установкой противовеса 13 в положение равновесия с массой мочка 11 перемещением его по ревьбовому соединению на рычаге 12 вправо или влево.

Выполнение лючка 11 с рычагом 12 и противовесом 13 из антимагнитного материала позволяет исключить влияние магнитных полей на его работу.

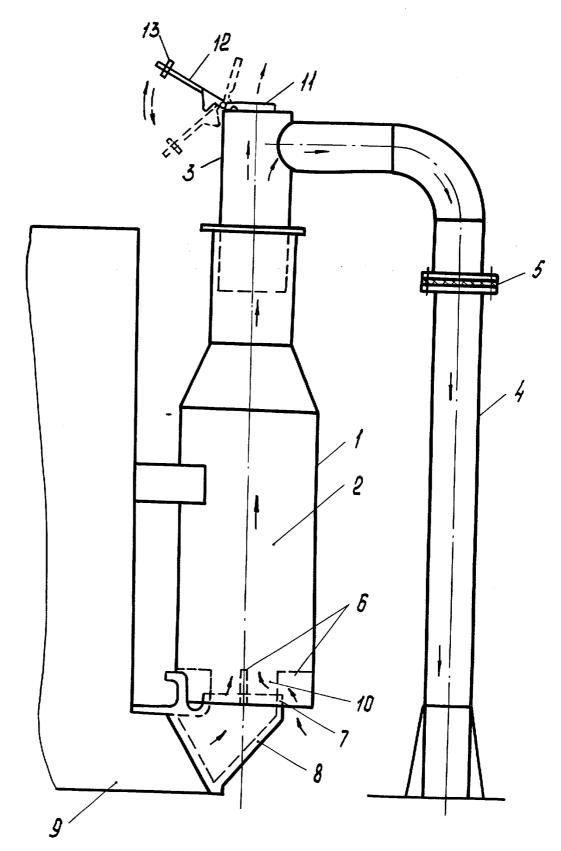
Таким образом данное предложение обеспечивает надежную работу горелки по сжиганию анодных газов алюминиевого электролизера.

ЗДиректор по производству AO ИркАЗа

Е.Н. Максютов

Начальник патентного отдела АО СибВАМИ

В. Т. Степанов


Авторы

М.Н.Павлов

Б.А. Хороших

96/01578

Горелка алюминиевого электролизера

