(19) **RU** (11)

152 848⁽¹³⁾ U1

(51) ΜΠΚ *G01B 21/20* (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ

(21)(22) Заявка: 2014153803/28, 29.12.2014

(24) Дата начала отсчета срока действия патента: 29.12.2014

Приоритет(ы):

(22) Дата подачи заявки: 29.12.2014

(45) Опубликовано: 20.06.2015 Бюл. № 17

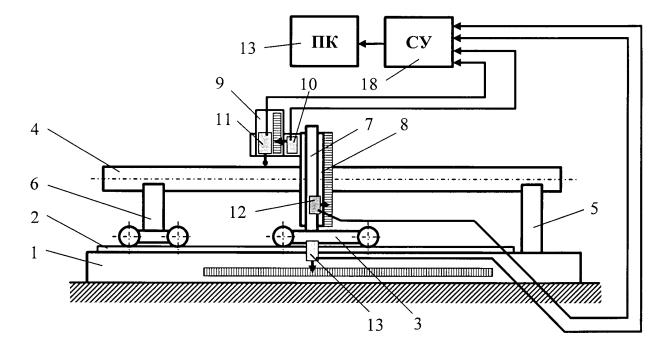
Адрес для переписки:

625000, г. Тюмень, ул. Володарского, 38, ТюмГНГУ, УНИР (72) Автор(ы):

Золотухин Иван Сергеевич (RU), Ефимович Игорь Аркадьевич (RU), Ошибков Александр Валерьевич (RU), Фролов Сергей Андреевич (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (RU)


 ∞

(54) УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КООРДИНАТ ТОЧЕК СЛОЖНОПРОФИЛЬНОЙ ПОВЕРХНОСТИ ДЛИННОМЕРНЫХ ДЕТАЛЕЙ

Формула полезной модели

- 1. Устройство для измерения координат точек сложнопрофильной поверхности длинномерных деталей, содержащее основание с направляющими для перемещения каретки вдоль детали, установленные на основании два базовых опорных узла, один из которых неподвижный, а другой с возможностью перемещения параллельно направляющим, кольцевой элемент, установленный на каретке в плоскости, перпендикулярной направляющим, и датчик для регистрации радиальной координаты точек поверхности детали, отличающееся тем, что в кольцевом элементе расположено соосно поворотное кольцо, на котором установлены измерительная пиноль с радиальным расположением оси и датчик положения измерительной пиноли в радиальном направлении, на кольцевом элементе установлен датчик регистрации углового положения поворотного кольца, на каретке установлен датчик продольного по отношению к детали положения каретки, а датчик для регистрации радиальной координаты точек поверхности детали закреплен на измерительной пиноли.
- 2. Устройство по п. 1, отличающееся тем, что на поворотном кольце напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали установлен противовес с массой, равной суммарной массе измерительной пиноли, упомянутого датчика и датчика положения измерительной пиноли в радиальном направлении.
- 3. Устройство по п. 1, отличающееся тем, что на поворотном кольце напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали установлены центрально-симметрично вторая измерительная пиноль со вторым датчиком для регистрации радиальной координаты точек поверхности детали и второй датчик положения второй измерительной пиноли в радиальном направлении.

2

Стр.: 2

52848

~

Полезная модель относится к устройствам для измерения контуров криволинейной поверхности детали механическими средствами, в частности для контроля точности геометрических параметров детали.

Известно устройство (а.с. СССР №1185055, G01B 5/20, опубл. 1985, Бюл. №38), которое содержит измерительные ролики, смонтированные на поворотных штангах, размещенных в одной плоскости и соединенных с датчиками угловых перемещений. Штанги и датчики установлены на поворотном кольце, на котором также установлены пружины, прижимающие поворотные штанги с роликами к поверхности измеряемой детали, и электромагниты, служащие для раздвижения штанг. Поворотное кольцо закреплено на каретке и имеет возможность поворота на 45 градусов. Каретка установлена на направляющих и ее положение регистрируется датчиком. Измеряемая деталь опирается одним концом на неподвижную опору, а другим - на подвижную опору. Опоры установлены на направляющих. Гибкий кабель соединяет датчики с преобразующим устройством, которое через кабели соединено с электронновычислительной машиной (ЭВМ).

Недостатком известного устройства является то, что в нем, с целью определения центров окружностей, вписанных в круглограммы сечений, измерение производится только по восьми образующим детали. Поэтому данное устройство не позволяет производить измерение координат всех точек контура сечения длинномерной детали и контроль точности изготовления геометрических параметров ее сложнопрофильной поверхности, тем более с большим перепадом точек контура в радиальном направлении.

Известно также устройство, выбранное в качестве прототипа (а.с. СССР №1310611, G01B 5/20, опубл. 1987, Бюл. №18), которое содержит основание, установленные на нем подвижный и неподвижный базовые узлы, один из которых может перемешаться вдоль прямой, лежащей в плоскости симметрии опорных узлов. На основании находится каретка, которая перемещается по направляющим. С кареткой при помощи шарнира соединен измерительный узел, выполненный в виде базового элемента с кольцевыми направляющими, который в рабочем положении охватывают контролируемую деталь. На кольцевых направляющих установлена каретка с кронштейном и измерительным датчиком, который обеспечивает проведение измерений в радиальном направлении.

Однако в известном устройстве измерение координат точек контура сечения длинномерной детали является трудоемким и производится с большим шагом, что не позволяет использовать его для контроля точности изготовления геометрических параметров сложнопрофильной поверхности с большим перепадом точек контура в радиальном направлении, особенно в автоматизированном режиме.

Задачей полезной модели является возможность проведения контроля геометрических параметров сложнопрофильных длинномерных деталей с большим перепадом точек контура в радиальном направлении благодаря повышению точности путем измерения координат облака точек всей контролируемой поверхности детали, в том числе и в автоматизированном режиме.

Технический результат при решении поставленной задачи достигается тем, что в устройстве для измерения координат точек сложнопрофильной поверхности длинномерных деталей, содержащем основание с направляющими для перемещения каретки вдоль детали, установленные на основании два базовых опорных узла, один из которых неподвижный, а другой с возможностью перемещения параллельно направляющим, кольцевой элемент, установленный на каретке в плоскости перпендикулярной направляющим, и датчик для регистрации радиальной координаты точек поверхности детали, в кольцевом элементе расположено соосно поворотное

кольцо, на котором установлены измерительная пиноль с радиальным расположением оси и датчик положения измерительной пиноли в радиальном направлении, на кольцевом элементе установлен датчик регистрации углового положения поворотного кольца, на каретке установлен датчик продольного по отношению к детали положения каретки, а датчик для регистрации радиальной координаты точек поверхности детали закреплен на измерительной пиноли.

Для повышения точности измерения и плавности перемещения поворотного кольца за счет сбалансированности масс на поворотном кольце напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали установлен противовес с массой равной суммарной массе измерительной пиноли, упомянутого датчика и датчика положения измерительной пиноли в радиальном направлении. Вместо противовеса для получения указанного эффекта может быть установлена центрально-симметрично вторая измерительная пиноль со вторым датчиком для регистрации радиальной координаты точек поверхности детали и второй датчик положения второй измерительной пиноли в радиальном направлении.

На фиг. 1 показана схема конструктивного выполнения устройства для измерения координат точек сложнопрофильной поверхности длинномерных деталей; на фиг. 2 - вид устройства с радиальным сечением контролируемой детали при использовании одной измерительной пиноли, установленного на ней датчика для регистрации радиальной координаты точек поверхности детали, и одного датчика положения измерительной пиноли в радиальном направлении; на фиг. 3 - вид устройства с радиальным сечением контролируемой детали при использовании одной измерительной пиноли, установленного на ней датчика для регистрации радиальной координаты точек поверхности детали, одного датчика положения измерительной пиноли в радиальном направлении и противовеса; на фиг. 4 - вид устройства с радиальным сечением контролируемой детали при использовании двух измерительных пинолей, установленных на них двух датчиков для регистрации радиальной координаты точек поверхности детали, и двух датчиков положения измерительной пиноли в радиальном направлении.

Устройство для измерения координат точек сложнопрофильной поверхности длинномерных деталей содержит основание 1 с направляющими 2 для перемещения каретки 3 вдоль детали 4. На основании 1 установлены неподвижный базовый опорный узел 5 и базовый опорный узел 6 с возможностью перемещения параллельно направляющим 2. Базовые опорные узлы 5 и 6 предназначены для установки детали 4. На каретке 3 в плоскости, перпендикулярной направляющим 2, установлен кольцевой элемент 7, в котором расположено соосно поворотное кольцо 8. На поворотном кольце 8 закреплена измерительная пиноль 9 с радиальным расположением оси и датчик 10 положения измерительной пиноли 9 в радиальном направлении. Датчик 11 для регистрации радиальной координаты точек поверхности детали 4 закреплен на измерительной пиноли 9. На кольцевом элементе 7 установлен датчик 12 регистрации углового положения поворотного кольца 8, а на каретке 3 установлен датчик 13 продольного по отношению к детали 4 положения каретки 3.

На поворотном кольце 8 напротив измерительной пиноли 9 с датчиком 11 для регистрации радиальной координаты точек поверхности детали 4 может быть дополнительно установлен противовес 14 с массой равной суммарной массе измерительной пиноли 9, упомянутого датчика 11 и датчика 10 положения измерительной пиноли 9 в радиальном направлении. Вместо противовеса 14 может быть также установлена центрально-симметрично вторая измерительная пиноль 15 со вторым датчиком 16 для регистрации радиальной координаты точек поверхности детали и

второй датчик 17 положения второй измерительной пиноли 15 в радиальном направлении. Датчики 10, 11, 12, 13, 16, 17 соединены с согласующим устройством 18, которое соединено кабелем с персональным компьютером 19. Причем связь датчиков 10, 11, 16, 17 осуществляется через соединительное устройство, функцию которого может выполнять токосъемник или беспроводное приемо-передающее устройство. Устройство работает следующим образом.

Перед установкой контролируемой детали 4 каретку 3 отводят в крайнее положение к неподвижному базовому опорному узлу 5, а базовый опорный узел 6 перемещают параллельно направляющим 2 в положение соответствующее длине контролируемой детали 4 и необходимое для ее установки на оба базовые опорные узла 5 и 6. После закрепления контролируемой детали 4 на базовых опорных узлах 5 и 6 производят измерение координат облака точек всей контролируемой поверхности детали. Для этого перемещают каретку 3 с заданным шагом, замеряемым датчиком 13 продольного по отношению к детали 4 положения каретки 3, и в каждом фиксированном положении каретки 3 производят с помощью датчика 11 регистрацию радиальной координаты точек поверхности детали 4 через заданный угловой шаг, замеряемый датчиком 12 регистрации углового положения поворотного кольца 8. При больших перепадах точек контура поверхности детали 4 в радиальном направлении предварительно измерительную пиноль 9 с закрепленным на ней датчиком 11 для регистрации радиальной координаты точек перемещают в сторону детали 4 на расстояние, необходимое для обеспечения работы датчика 11 в пределах его рабочего диапазона. При этом величина перемещения измерительной пиноли 9 в радиальном направлении регистрируется датчиком 10 положения измерительной пиноли 9.

Для сбалансированности масс на поворотном кольце 8 напротив измерительной пиноли 9 с датчиком 11 для регистрации радиальной координаты точек поверхности детали 4 может быть дополнительно установлен противовес 14 с массой равной суммарной массе измерительной пиноли 9, упомянутого датчика 11 и датчика 10 положения измерительной пиноли 9 в радиальном направлении. При установке вместо противовеса 14 центрально-симметрично второй измерительной пиноли 15 со вторым датчиком 16 для регистрации радиальной координаты точек поверхности детали 4 и второго датчика 17 положения второй измерительной пиноли 15 в радиальном направлении показания снимаются одновременно с четырех датчиков 10, 11, 16 и 17. Все данные, полученные от датчиков 10, 11, 12, 13, 16, 17 передаются через согласующее устройство 18 на персональный компьютер 19, где производится их обработка с помощью программного обеспечения.

Использование поворотного кольца, базирующегося соосно в кольцевом элементе и имеющего возможность вращения на 360 градусов, а также одновременная запись на персональный компьютер данных, полученных от датчика для регистрации радиальной координаты точек поверхности детали, датчика положения измерительной пиноли в радиальном направлении, датчика регистрации углового положения поворотного кольца и датчика продольного по отношению к детали положения каретки позволяет проводить контроль геометрических параметров сложнопрофильных длинномерных деталей с большим перепадом точек контура в радиальном направлении, в том числе и в автоматизированном режиме. Благодаря измерению координат облака точек всей контролируемой поверхности детали повышается точность измерений. Установка на поворотном кольце центрально-симметрично напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали противовеса или второй измерительной пиноли со вторым датчиком для регистрации

радиальной координаты точек поверхности детали и второго датчика положения второй измерительной пиноли в радиальном направлении также позволяет повысить точность измерения и плавность перемещения поворотного кольца. Кроме того, использование двух датчиков для регистрации радиальной координаты точек поверхности детали, установленных на двух измерительных пинолях, и двух датчиков положения измерительной пиноли в радиальном направлении позволяет вдвое ускорить процесс измерения координат облака точек всей контролируемой поверхности детали, либо получать повторные значения радиальных координат точек поверхности детали, что повышает достоверность результатов измерений.

10

(57) Реферат

Устройство предназначено для измерения контуров криволинейной поверхности детали механическими средствами, в частности для контроля точности геометрических параметров детали. Устройство содержит основание с направляющими для перемещения каретки вдоль детали. На основании расположены два базовых опорных узла для установки детали - один неподвижный, а другой с возможностью перемещения параллельно направляющим. На каретке в плоскости, перпендикулярной направляющим, установлен кольцевой элемент, с расположенным в нем соосно поворотным кольцом, на котором закреплена измерительная пиноль с радиальным расположением оси и датчик положения измерительной пиноли в радиальном направлении. На кольцевом элементе установлен датчик регистрации углового положения поворотного кольца, а на каретке установлен датчик продольного по отношению к детали положения каретки. На поворотном кольце напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали может быть дополнительно установлен противовес с массой равной суммарной массе измерительной пиноли, упомянутого датчика и датчика положения измерительной пиноли в радиальном направлении. Вместо противовеса может быть также установлена центрально-симметрично вторая измерительная пиноль со вторым датчиком для регистрации радиальной координаты точек поверхности детали и второй датчик положения второй измерительной пиноли в радиальном направлении. Все датчики соединены с согласующим устройством, которое соединено с персональным компьютером, где производится обработка полученных от датчиков данных с помощью программного обеспечения. 2 з.п. ф-лы, 4 ил.

35

40

45

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КООРДИНАТ ТОЧЕК СЛОЖНОПРОФИЛЬНОЙ ПОВЕРХНОСТИ ДЛИННОМЕРНЫХ ДЕТАЛЕЙ

Устройство предназначено для измерения контуров криволинейной поверхности детали механическими средствами, в частности для контроля точности геометрических параметров детали. Устройство содержит основание с направляющими для перемещения каретки вдоль детали. На основании расположены два базовых опорных узла для установки детали - один возможностью перемещения неподвижный, другой c направляющим. На каретке в плоскости, перпендикулярной направляющим, установлен кольцевой элемент, с расположенным в нем соосно поворотным кольцом, на котором закреплена измерительная пиноль с радиальным расположением оси и датчик положения измерительной пиноли в радиальном направлении. На кольцевом элементе установлен датчик регистрации углового положения поворотного кольца, а на каретке установлен датчик продольного по отношению к детали положения каретки. На поворотном кольце напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали может быть дополнительно установлен противовес с массой равной суммарной массе измерительной пиноли, упомянутого датчика и датчика положения измерительной пиноли в радиальном направлении. Вместо противовеса может быть также установлена центрально-симметрично вторая измерительная пиноль со вторым датчиком для регистрации радиальной координаты точек поверхности детали и второй датчик положения второй измерительной пиноли в радиальном направлении. Все датчики соединены с согласующим устройством, которое соединено с персональным компьютером, где производится обработка полученных от датчиков данных с помощью программного обеспечения. 2 з. п. ф-лы, 4 ил.

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КООРДИНАТ ТОЧЕК СЛОЖНОПРОФИЛЬНОЙ ПОВЕРХНОСТИ ДЛИННОМЕРНЫХ ДЕТАЛЕЙ

Полезная модель относится к устройствам для измерения контуров криволинейной поверхности детали механическими средствами, в частности для контроля точности геометрических параметров детали.

Известно устройство (a.c.СССР № 1185055, G01B 5/20, опубл. 1985, Бюл.№ 38), которое содержит измерительные ролики, смонтированные на поворотных штангах, размещенных в одной плоскости и соединенных с датчиками угловых перемещений. Штанги и датчики установлены на поворотном кольце, на котором также установлены пружины, прижимающие поворотные штанги с роликами к поверхности измеряемой детали, и электромагниты, служащие для раздвижения штанг. Поворотное кольцо закреплено на каретке и имеет возможность поворота на 45 градусов. Каретка установлена на направляющих и ее положение регистрируется датчиком. Измеряемая деталь опирается одним концом на неподвижную опору, а другим – на подвижную опору. Опоры установлены на направляющих. Гибкий кабель соединяет датчики с преобразующим устройством, которое через кабели соединено с электронно-вычислительной машиной (ЭВМ).

Недостатком известного устройства является то, что в нем, с целью определения центров окружностей, вписанных в круглограммы сечений, измерение производится только по восьми образующим детали. Поэтому данное устройство не позволяет производить измерение координат всех точек контура сечения длинномерной детали и контроль точности изготовления геометрических параметров ее сложнопрофильной поверхности, тем более с большим перепадом точек контура в радиальном направлении.

Известно также устройство, выбранное В качестве прототипа (а.с.СССР № 1310611, G01B 5/20, опубл. 1987, Бюл.№ 18), которое содержит основание, установленные на нем подвижный и неподвижный базовые узлы, один из которых может перемешаться вдоль прямой, лежащей в плоскости симметрии опорных узлов. На основании находится каретка, которая перемещается по направляющим. С кареткой при помощи шарнира соединен измерительный узел, выполненный в виде базового элемента с кольцевыми направляющими, который в рабочем положении охватывают контролируемую деталь. На кольцевых направляющих установлена каретка с кронштейном и измерительным датчиком, который обеспечивает проведение измерений в радиальном направлении.

Однако в известном устройстве измерение координат точек контура сечения длинномерной детали является трудоемким и производится с большим шагом, что не позволяет использовать его для контроля точности изготовления геометрических параметров сложнопрофильной поверхности с большим перепадом точек контура в радиальном направлении, особенно в автоматизированном режиме.

Задачей полезной модели является возможность проведения контроля геометрических параметров сложнопрофильных длинномерных деталей с большим перепадом точек контура в радиальном направлении благодаря повышению точности путем измерения координат облака точек всей контролируемой поверхности детали, в том числе и в автоматизированном режиме.

Технический результат при решении поставленной задачи достигается тем, что в устройстве для измерения координат точек сложнопрофильной поверхности длинномерных деталей, содержащем основание с направляющими для перемещения каретки вдоль детали, установленные на основании два базовых опорных узла, один из которых неподвижный, а другой с возможностью перемещения параллельно направляющим, кольцевой элемент, установленный на каретке в плоскости перпендикулярной направляющим, и датчик для регистрации радиальной координаты точек поверхности детали, в кольцевом элементе расположено соосно поворотное кольцо, на котором установлены измерительная пиноль с радиальным расположением оси и датчик

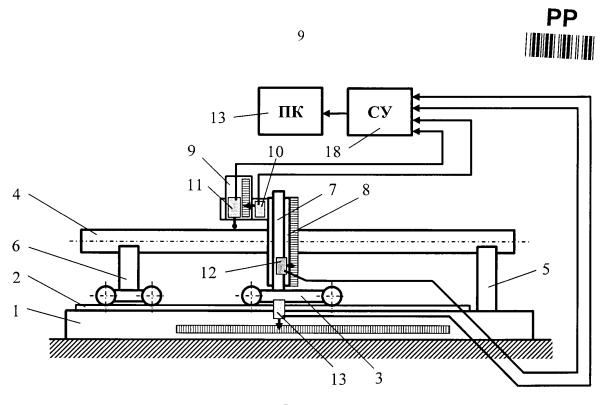
положения измерительной пиноли в радиальном направлении, на кольцевом элементе установлен датчик регистрации углового положения поворотного кольца, на каретке установлен датчик продольного по отношению к детали положения каретки, а датчик для регистрации радиальной координаты точек поверхности детали закреплен на измерительной пиноли.

Для повышения точности измерения и плавности перемещения поворотного кольца за счет сбалансированности масс на поворотном кольце напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали установлен противовес с массой равной суммарной массе измерительной пиноли, упомянутого датчика и датчика положения измерительной пиноли в радиальном направлении. Вместо противовеса для получения указанного эффекта может быть установлена центрально-симметрично вторая измерительная пиноль со вторым датчиком для регистрации радиальной координаты точек поверхности детали и второй датчик положения второй измерительной пиноли в радиальном направлении.

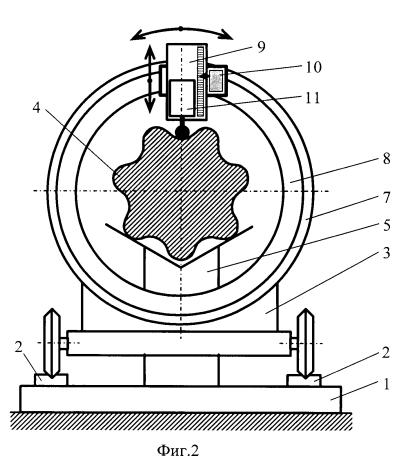
На фиг.1 показана схема конструктивного выполнения устройства для измерения координат точек сложнопрофильной поверхности длинномерных деталей; на фиг. 2 – вид устройства с радиальным сечением контролируемой детали при использовании одной измерительной пиноли, установленного на ней датчика для регистрации радиальной координаты точек поверхности детали, и одного датчика положения измерительной пиноли в радиальном направлении; на фиг.3 вид устройства С радиальным контролируемой детали при использовании одной измерительной пиноли, установленного на ней датчика для регистрации радиальной координаты точек поверхности детали, одного датчика положения измерительной пиноли в радиальном направлении и противовеса; на фиг.4 – вид устройства с радиальным сечением контролируемой детали при использовании двух измерительных пинолей, установленных на них двух датчиков для регистрации радиальной координаты точек поверхности детали, и двух датчиков положения измерительной пиноли в радиальном направлении.

точек сложнопрофильной Устройство для измерения координат поверхности длинномерных деталей содержит основание 1 с направляющими 2 для перемещения каретки 3 вдоль детали 4. На основании 1 установлены неподвижный базовый опорный узел 5 и базовый опорный узел 6 с возможностью перемещения параллельно направляющим 2. Базовые опорные узлы 5 и 6 предназначены для установки детали 4. На каретке 3 в плоскости, перпендикулярной направляющим 2, установлен кольцевой элемент 7, в котором расположено соосно поворотное кольцо 8. На поворотном кольце 8 закреплена измерительная пиноль 9 с радиальным расположением оси и датчик 10 положения измерительной пиноли 9 в радиальном направлении. Датчик 11 для регистрации радиальной координаты точек поверхности детали 4 закреплен на измерительной пиноли 9. На кольцевом элементе 7 установлен датчик 12 регистрации углового положения поворотного кольца 8, а на каретке 3 установлен датчик 13 продольного по отношению к детали 4 положения каретки 3.

На поворотном кольце 8 напротив измерительной пиноли 9 с датчиком 11 для регистрации радиальной координаты точек поверхности детали 4 может быть дополнительно установлен противовес 14 с массой равной суммарной массе измерительной пиноли 9, упомянутого датчика 11 и датчика 10 положения измерительной пиноли 9 в радиальном направлении. Вместо противовеса 14 может быть также установлена центрально-симметрично вторая измерительная пиноль 15 со вторым датчиком 16 для регистрации радиальной координаты точек поверхности детали и второй датчик 17 положения второй измерительной пиноли 15 в радиальном направлении. Датчики 10, 11, 12, 13, 16, 17 соединены с согласующим устройством 18, которое соединено кабелем с персональным компьютером 19. Причем связь датчиков 10, 11, 16, 17 осуществляется через соединительное устройство, функцию которого может выполнять токосъемник или беспроводное приемо-передающее устройство.

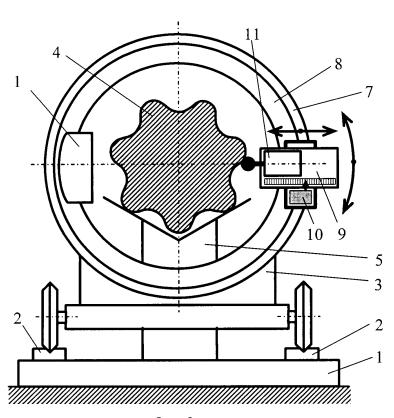

Устройство работает следующим образом.

Перед установкой контролируемой детали 4 каретку 3 отводят в крайнее положение к неподвижному базовому опорному узлу 5, а базовый опорный направляющим 2 узел 6 перемещают параллельно В положение соответствующее длине контролируемой детали 4 и необходимое для ее установки на оба базовые опорные узла 5 и 6. После закрепления контролируемой детали 4 на базовых опорных узлах 5 и 6 производят измерение координат облака точек всей контролируемой поверхности детали. Для этого перемещают каретку 3 с заданным шагом, замеряемым датчиком 13 продольного по отношению к детали 4 положения каретки 3, и в каждом фиксированном положении каретки 3 производят с помощью датчика 11 регистрацию радиальной координаты точек поверхности детали 4 через заданный угловой шаг, замеряемый датчиком 12 регистрации углового положения поворотного кольца 8. При больших перепадах точек контура поверхности детали 4 направлении В радиальном предварительно измерительную пиноль 9 с закрепленным на ней датчиком 11 для регистрации радиальной координаты точек перемещают в сторону детали 4 на расстояние, необходимое для обеспечения работы датчика 11 в пределах его рабочего диапазона. При этом величина перемещения измерительной пиноли 9 в радиальном направлении регистрируется датчиком 10 положения измерительной пиноли 9.

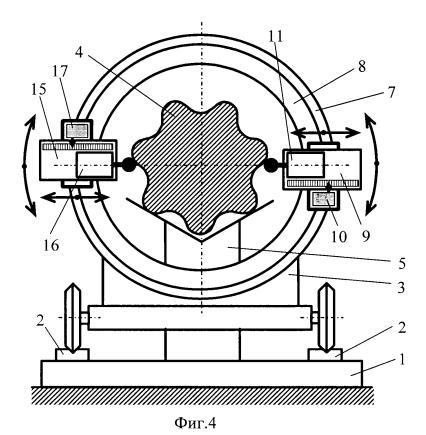

сбалансированности масс на поворотном кольце 8 напротив измерительной пиноли 9 датчиком 11 С для регистрации координаты точек поверхности детали 4 может быть дополнительно установлен противовес 14 с массой равной суммарной массе измерительной пиноли 9, упомянутого датчика 11 и датчика 10 положения измерительной пиноли 9 в радиальном направлении. При установке вместо противовеса 14 центральносимметрично второй измерительной пиноли 15 со вторым датчиком 16 для регистрации радиальной координаты точек поверхности детали 4 и второго датчика 17 положения второй измерительной пиноли 15 в радиальном направлении показания снимаются одновременно с четырех датчиков 10, 11, 16

и 17. Все данные, полученные от датчиков 10, 11, 12, 13, 16, 17 передаются через согласующее устройство 18 на персональный компьютер 19, где производится их обработка с помощью программного обеспечения.

Использование поворотного кольца, базирующегося соосно в кольцевом элементе и имеющего возможность вращения на 360 градусов, а также одновременная запись на персональный компьютер данных, полученных от датчика для регистрации радиальной координаты точек поверхности детали, датчика положения измерительной пиноли в радиальном направлении, датчика регистрации углового положения поворотного кольца и датчика продольного по отношению к детали положения каретки позволяет проводить контроль геометрических параметров сложнопрофильных длинномерных деталей с большим перепадом точек контура в радиальном направлении, в том числе и в автоматизированном режиме. Благодаря измерению координат облака точек всей контролируемой поверхности детали повышается точность измерений. Установка на поворотном кольце центрально-симметрично напротив измерительной пиноли с датчиком для регистрации радиальной координаты точек поверхности детали противовеса или второй измерительной пиноли со вторым датчиком для регистрации радиальной координаты точек поверхности детали и второго датчика положения второй измерительной пиноли в радиальном направлении также позволяет повысить точность измерения и плавность перемещения поворотного кольца. Кроме того, использование двух датчиков для регистрации радиальной координаты точек поверхности детали, установленных на двух измерительных пинолях, и двух датчиков положения измерительной пиноли в радиальном направлении позволяет вдвое ускорить процесс измерения координат облака точек всей контролируемой поверхности детали, либо получать повторные значения радиальных координат точек поверхности детали, что повышает достоверность результатов измерений.



Фиг.1



¥ III .2

10

Фиг.3

Стр.: 15