СПОСОБ КОМАНДНОГО НАВЕДЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА НА НАЗЕМНЫЕ ЦЕЛИ

10-01-2011 дата публикации
Номер:
RU2408846C1
Контакты: 121170, Moskva, Kutuzovskij pr-kt, 34, Otkrytoe aktsionernoe obshchestvo "Kontsern radiostroenija "Vega"
Номер заявки: 81-14-200933/28
Дата заявки: 24-12-2009

[2]

Изобретение относится к системам наведения, в частности к системам командного наведения самолетов на наземные объекты, использующим для картографирования земной поверхности бортовые радиолокационные станции (БРЛС), а в качестве средств поражения - ракеты воздух-поверхность (В-П) различного назначения.

[3]

В настоящее время, ввиду невозможности высокоточного определения координат удаленных наземных целей с помощью наземных радиолокационных станций (РЛС), командное наведение самолетов на наземные цели не используются. Для решения этой задачи применяются системы самонаведения, эффективность которых в значительной степени зависит от используемых методов самонаведения и методов картографирования местности.

[4]

Методы самонаведения должны обеспечивать вывод самолета на определенное расстояние, под определенным углом и с определенной угловой скоростью линии визирования (УСЛВ) цели, зависящими от режимов работы БРЛС (обычный луч (ОЛ), доплеровское обострение луча (ДОЛ), фокусированное синтезирование апертуры (ФСА) антенны) и используемых средств поражения (бомбы, ракеты В-П с некогерентными и когерентными головками самонаведения).

[5]

Необходимо, однако, отметить, что системам самонаведения присущи два серьезных недостатка:

[6]

дальность действия ограничивается дальностью действия бортовой РЛС, что при малой высоте полета, которая необходима для преодоления наземных систем противовоздушной обороны ПВО, приводит к уменьшению дальности действия системы наведения самолета;

[7]

низкая скрытность, обусловленная работой РЛС на излучение, что приводит к возрастанию вероятности обнаружения ударного самолета противоборствующей стороной с принятием мер огневого или радиоэлектронного противодействия.

[8]

В связи с этим весьма эффективным средством устранения этих недостатков является использование командного наведения ударных самолетов носителей средств поражения с высоко летящих и далеко расположенных от зон действия ПВО противника авиационных комплексов радиолокационного дозора и наведения (АК РЛДН), без включения БРЛС наводимого ударного самолета. Такой прием обеспечивает, с одной стороны, существенное увеличение скрытности наведения, а с другой стороны, возрастание дальности действия системы наведения в целом, особенно при полете ударного самолета на малой высоте.

[9]

Однако необходимо подчеркнуть, что командное наведение должно обеспечивать все те же преимущества, которые давало самонаведение по адаптации к режимам работы БРЛС и средствам поражения, при условии, что набор команд, передаваемых на борт наводимого ударного самолета, должен быть таким же, что и при передаче на самолет, наводимый на воздушные цели.

[10]

Задача изобретения - разработка способа командного наведения по курсу в горизонтальной плоскости с АК РЛДН ударного летательного аппарата (ЛА), например самолета, на наземную, в общем случае, подвижную цель.

[11]

В наиболее простом варианте для командного наведения на наземную цель может быть использован метод прямого наведения, используемый в системах командного радиоуправления наземного базирования при наведении на воздушные цели. Суть этого метода состоит в том, что продольная ось наводимого ЛА должна все время совмещаться с направлением на цель. В такой ситуации требуемый курс должен формироваться по правилу

[12]

[13]

где ψТ(k) - требуемое значение курса в k-й момент времени;

[14]

xЦ, zЦ и xC, zC - координаты ЛА в k-й момент времени в той или иной прямоугольной системе координат.

[15]

Однако при наведении на движущиеся цели этот метод, как и все разновидности прямых методов [1, 3], имеет ограничения по ракурсам наведения, обеспечивая эффективный вывод на цель только в задней полусфере. Кроме того, при этом методе не учитывается специфика работы БРЛС наводимого ударного ЛА в различных режимах (ОЛ, ДОЛ, ФСА), используемой для коррекции и выдачи команд целеуказания средствам поражения.

[16]

Техническим результатом изобретения является реализация возможности командного всеракурсного наведения ударных ЛА на наземные, в общем случае, подвижные цели, обеспечивающего большую дальность и более высокую скрытность наведения по сравнению с системами самонаведения, а также адаптацию к режимам работы БРЛС наводимого ударного ЛА (при необходимости ее включения) и используемым средствам поражения.

[17]

Эта возможность реализуется тем, что на борту АК РЛДН одновременно измеряются собственные координаты местоположения xAK, zAK, дальности до цели ДЦ и наводимого ЛА ДС и их азимуты φЦ и φC, определяются требуемые значения бортового пеленга φT цели с наводимого ЛА, угловой скорости ωT линии визирования цели, расстояния ДСЦ между целью и наводимым ЛА и его скорость VC, по которым формируют сигнал требуемого курса ψT в виде алгебраической суммы его значения на предыдущем такте и взвешенных на соответствующие коэффициенты усиления значения ошибок наведения по бортовому пеленгу и угловой скорости линии визирования

[18]

[19]

где в соотношениях (1) и (2):

[20]

ψT(k) и ψT(k-1) - требуемые значения курса в k-й и (k-1)-й моменты времени, отстоящие друг от друга на интервал t передачи команд на борт наводимого ЛА;

[21]

φT и - соответственно требуемое расчетное значение бортового пеленга и оценка его фактического текущего значения;

[22]

ωT и - соответственно требуемое расчетное значение угловой скорости линии визирования цели и ее текущая оценка;

[23]

ДСЦ - расстояние между наводимым ударным ЛА и целью;

[24]

VC - скорость полета наводимого ЛА самолета;

[25]

qφ и qω - коэффициенты, определяющие точность наведения соответственно по бортовому пеленгу и УСЛВ цели.

[26]

Kψ - коэффициент, определяющий максимальную величину крена наводимого ударного ЛА при обработке значений при максимальных ошибках наведения.

[27]

Геометрические соотношения между фазовыми координатами, используемыми в (1) и (2), показаны на фиг.1.

[28]

На этом чертеже в системе координат X0OZ0, связанной с определенной точкой земной поверхности, показано расположение OAK авиационного комплекса радиолокационного дозора и наведения (АК РЛДН), OC - наводимого ударного ЛА и ОЦ - цели, а также векторы VAK, VC, и VЦ скоростей АК РЛДН, ЛА и цели, текущие значения курса ψ и бортового пеленга φ и требуемые значения курса ψT.

[29]

Необходимо отметить, что в зависимости от предполагаемого режима работы БРЛС наводимого ударного ЛА и применяемого оружия требуемые значения ψT и ωT рассчитываются по различным формулам.

[30]

Если после окончания командного наведения предполагается использование БРЛС наводимого ударного ЛА в режиме обычного (реального) луча и неуправляемого оружия, то

[31]

[32]

Целесообразность использования ωT=0 следует из соотношения для текущего промаха h

[33]

[34]

Если необходимо вывести ударный ЛА в точку включения БРЛС в режимах ДОЛ или ФСА, то требуемое значение бортового пеленга и угловой скорости линии визирования определяются соотношениями

[35]

[36]

где ДСЦЗ и φЗ - заданные (известные) значения дальности от наводимого ударного ЛА до цели и ее бортового пеленга, на которых необходимо включить его БРЛС;

[37]

λ и ΔF - длина волны БРЛС и полоса пропускания ее доплеровского фильтра;

[38]

ΔlT - требуемая линейная разрешающая способность БРЛС по азимуту;

[39]

VC - скорость полета наводимого ударного ЛА.

[40]

Геометрическое соотношение между фазовыми координатами, используемыми в (5) показано на фиг.2.

[41]

Если наводимый ударный ЛА по командам выводится непосредственно в точку применения неуправляемого оружия или ракет с некогерентными радиолокационными головками самонаведения (РГС), то требуемые значения бортового пеленга и УСЛВ определяются соотношениями (3). При использовании ракет с когерентными РГС, способных работать в режиме ДОЛ (ФСА):

[42]

[43]

где ДР - дальность пуска ракеты;

[44]

λP и ΔFP - длина волны РГС и полоса пропускания ее доплеровского фильтра;

[45]

ΔlTP - требуемое линейное разрешение РГС по азимуту.

[46]

Текущие значения и могут быть рассчитаны на АК РЛДН, исход из линейных перемещений наводимого ударного ЛА за время t, равное интервалу передачи команд наведения

[47]

[48]

где было учтено, что

[49]

Анализ соотношений (2)-(8) позволяет сделать следующие заключения.

[50]

Предложенный способ наведения ударных ЛА обеспечивает хорошее сопряжение алгоритма командного наведения с последующими этапами самонаведения при всех возможных режимах работы БРЛС без ограничения по ракурсам наведения. При этом существенно сокращается время работы БРЛС на излучение, поскольку она используется лишь для проведения коррекции и выдачи команд целеуказания средствам поражения.

[51]

Кроме того, предложенный способ обеспечивает хорошее сопряжение с различными вариантами использования средств поражения, что позволяет еще больше повысить скрытность наведения за счет вывода ударного ЛА непосредственно в область применения оружия без включения БРЛС наводимого самолета.

[52]

Способ наведения по выражению (2) определяется рекуррентным соотношением, в котором второе и третье слагаемые представляют собой взвешенные ошибки наведения по бортовому пеленгу и УСЛВ цели. Переменный коэффициент при третьем слагаемом учитывает условия функционирования наводимого ударного ЛА ДСЦ и VC. Это предопределяет перераспределение управляющих воздействий от устранения ошибок по углу на первоначальном участке наведения к устранению ошибок по УСЛВ цели на конечном участке, что обусловливает повышение точности наведения (4).

[53]

На фиг.3 представлена упрощенная схема возможного варианта системы командного наведения ударного ЛА на наземную цель, реализующей предлагаемый способ, где

[54]

1 - бортовая радиолокационная станция АК РЛДН (БРЛС АК РЛДН);

[55]

2 - навигационная система АК РЛДН;

[56]

3 - наземная цель;

[57]

4 - вычислитель АК РЛДН;

[58]

5 - передающая часть командной радиолинии управления (КРУ), размещенной на АК РЛДН;

[59]

6 - приемная часть КРУ, размещенная на наводимом ударном ЛА;

[60]

7 - система автоматического управления наводимого ударного ЛА;

[61]

8 - наводимый ударный ЛА.

[62]

Пунктирными линиями на схеме обозначены связи, реализуемые посредством радиосигналов.

[63]

Принципы построения бортовой РЛС и навигационной системы АК РЛДН известны и подробно описаны в литературе [3, 4]. Функционирование системы выполняется в следующем порядке.

[64]

Бортовая РЛС АК РЛДН 1, работающая в режиме кругового обзора с периодом обзора Т, формирует измерения дальности ДЦ до цели и ДС до ударного ЛА, и азимутов φЦ и φС (фиг.1), которые поступают в вычислитель 4, куда одновременно поступают измерения собственных координат xАК, zАК АК РЛДН, формируемые в навигационной системе. Вычислитель по результатам измерений ДЦ, φЦ, ДС, φС и xАK, zАK рассчитывает координаты цели (фиг.1)

[65]

[66]

и наводимого ЛА

[67]

[68]

В свою очередь, по (9) и (10) в вычислителе формируются косвенные измерения путем расчета текущих значений бортового пеленга φ цели относительно наводимого ударного ЛА (7), УСЛВ цели (8) и расстояния ДСЦ между целью и наводимым ударным ЛА

[69]

[70]

и его скорости

[71]

[72]

где T - период обзора РЛС АК РЛДН.

[73]

По косвенным измерениям (7), (8) и (11), (12) и рассчитанным значениям требуемого пеленга φT и требуемой УСЛВ ωT (3), (5) или (6), формируется сигнал требуемого курса (2), который поступает в передающую часть командной радиолинии управления 5. В передающей части КРУ, принцип работы которой известен, осуществляется кодирование сигнала ψT с дальнейшей модуляцией им сверхвысокочастотного сигнала, излучаемого в пространство.

[74]

Излученный сигнал поступает в приемную аппаратуру 6 КРУ, размещаемую на ударном ЛА, где выполняется демодуляция и декодирование с формированием сигнала ψT(k), который поступает в САУ 7, преобразующую его в управляющие сигналы воздействия, передаваемые по командной радиолинии управления на борт наводимого ударного ЛА, в результате которых и выполняется изменение текущего курса, реализующего наведение ударного ЛА 8 на наземную цель.

[75]

В качестве иллюстрации на фиг.4 для одних и тех же первоначальных ошибок наведения показаны траектории полета наводимого ЛА при использовании прямого метода (1) (штриховая линия) и предложенного способа (2) (сплошная линия), свидетельствующие о преимуществах последнего.

[76]

Литература

[77]

[1] Меркулов В.И., Дрогалин В.В., Канащенков А.И. и др. Авиационные системы радиоуправления. Т.2. Радиоэлектронные системы самонаведения. / Под ред. А.И.Канащенкова и В.И.Меркулова. - М.: Радиотехника, 2003. 389 с.

[78]

[2] Канащенков А.И., Меркулов В.И., Герасимов А.А. и др. Радиолокационные системы многофункциональных самолетов. Т.1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов. / Под ред. А.И.Канащенкова и В.И.Меркулова. - М.: Радиотехника, 2006. 655 c. Меркулов В.И., Канащенков А.И, Чернов В.С. и др. Авиационные системы радиоуправления. Т.3. Системы командного радиоуправления. Автономные и комбинированные системы наведения. / Под ред. А.И.Канащенкова и В.И.Меркулова. - М.: Радиотехника, 2004. 317 с.

[79]

[3] Верба, В.С. Авиационные комплексы радиолокационного дозора и наведения. Состояние и тенденции развития. - М.: Радиотехника. 2008. 432 с.

[80]

[4] Меркулов В.И., Дрогалин В.В., Канащенков А.И. и др. Авиационные системы радиоуправления. Т.1. Принципы построения систем радиоуправления. Основы синтеза и анализа. / Под ред. А.И.Канащенкова и В.И.Меркулова. - М.: Радиотехника, 2003. 190 с. Пат. 2210801 Российская Федерация. Универсальный способ наведения самолетов на наземные цели / Кононов Е.И., Канащенков А.И., Меркулов В.И., Самарин О.Ф., Францев В.В., Чернов B.C., Шуклин А.И.



Изобретение относится к области приборостроения и может найти применение в системах командного наведения летательных аппаратов (ЛА) на наземные объекты, использующих для картографирования земной поверхности бортовые радиолокационные станции (БРЛС), а в качестве средств поражения - ракеты воздух-поверхность (В-П) различного назначения. Технический результат - расширение функциональных возможностей. Для достижения данного результата на борту авиационного комплекса радиолокационного дозора и наведения одновременно измеряются собственные координаты местоположения, дальность до цели и дальность до наводимого ЛА и их азимуты. Определяются требуемые значения бортового пеленга цели с наводимого ЛА, угловой скорости линии визирования цели, расстояния между целью и наводимым ЛА и его скорость, по которым формируют сигнал требуемого курса наводимого ЛА. 3 з.п. ф-лы, 4 ил.



1. Способ командного наведения летательного аппарата (ЛА) на наземные цели, заключающийся в том, что на борту авиационного комплекса радиолокационного дозора и наведения (АК РЛДН) одновременно измеряются собственные координаты местоположения xак, zак, дальность до цели ДСЦ и ее азимут φЦ, дальность до наводимого ЛА ДС и его азимут φс, определяются требуемые значения бортового пеленга цели φТ с наводимого ЛА, угловой скорости линии визирования (УСЛВ) цели ωТ, расстояние между целью и наводимым ЛА ДСЦ, его скорость VC, по которым формируется сигнал требуемого курса в виде алгебраической суммы его значения на предыдущем такте и взвешенных на соответствующие коэффициенты усиления значения ошибок наведения по бортовому пеленгу и угловой скорости линии визирования:

где ψТ(k) и ψТ(k-1) - требуемое значение курса в k-й и (k-1)-й моменты времени, отстоящие друг от друга на интервал Т передачи команд на борт наводимого ЛА;
Т - период обзора радиолокационной станции (РЛС) АК РЛДН;
qφ и qω - коэффициенты, определяющие точность наведения соответственно по бортовому пеленгу и УСЛВ цели;
Kψ - коэффициент, определяющий максимальную величину крена наводимого ЛА при отработке значений при максимальных ошибках наведения;
и - оценки текущих значений бортового пеленга и угловой скорости линии визирования цели.

2. Способ по п.1, отличающийся тем, что при использовании бортовой радиолокационной станции (БРЛС) наводимого ЛА в режиме обычного луча (ОЛ) или применения неуправляемого оружия, оружия с некогерентными радиолокационными головками самонаведения (РГС) требуемое значение бортового пеленга (φT) и угловой скорости (ωT) линии визирования определяется как:
φT=0, ωT=0.

3. Способ по п.1, отличающийся тем, что при использовании БРЛС наводимого ЛА в режиме доплеровского обострения луча (ДОЛ) или фокусированного синтезирования апертуры антенны (ФСА) требуемое значение бортового пеленга и угловой скорости линии визирования определяется как:

где ДСЦЗ и φЗ - заданные (известные) значения дальности от наводимого ЛА до цели и ее бортового пеленга, на которых необходимо включить его БРЛС;
λ и ΔF - длина волны БРЛС и полоса пропускания ее доплеровского фильтра;
ΔlT - требуемая линейная разрешающая способность БРЛС по азимуту.

4. Способ по п.1, отличающийся тем, что при использовании оружия с когерентными РГС, способными работать в режиме ДОЛ или ФСА, требуемое значение бортового пеленга и угловой скорости линии визирования определяется как:

где ДР - дальность пуска ракеты;
λР и ΔFP - длина волны РГС и полоса пропускания ее доплеровского фильтра;
ΔlТР - требуемое линейное разрешение РГС по азимуту.



IPC - классификация

GG0G01G01CG01C2G01C21G01C21/G01C21/0G01C21/00

Цитирование ПИ

RU2217771C2RU2236666C2RU2292061C2

Цитирование НПИ

МЕРКУЛОВ В.И., ДРОГАЛИН В.В., КАНАЩЕНКОВ А.И. и др. Авиационные системы радиоуправления. Радиоэлектронные системы самонаведения. / Под ред. А.И. КАНАЩЕНКОВА и В.И. МЕРКУЛОВА - М.: Радиотехника, 2003, т.2, с.15-22. МЕРКУЛОВ В.И., ДРОГАЛИН В.В., КАНАЩЕНКОВ А.И. и др. Авиационные системы радиоуправления. Принципы построения систем радиоуправления.Основы синтеза и анализа. / Под ред. А.И. КАНАЩЕНКОВА и В.И. МЕРКУЛОВА. - М.: Радиотехника, 2003, т.1, с.7-11.
Получить PDF