СПОСОБ ЭЛЕКТРОТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ТРУБОПРОВОДЫ И ИНДУКЦИОННАЯ НАГРЕВАТЕЛЬНАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ

26-03-2019 дата публикации
Номер:
RU2683028C1
Контакты: 450064, g. Ufa, ul. Kosmonavtov, 7-39, Konesev Sergej Gennadevich
Номер заявки: 93-13-201724
Дата заявки: 13-11-2017

[1]

Изобретение применимо на объектах нефтегазовой отрасли, а также химической, пищевой и иной промышленности, где производится транспортирование по трубопроводам термовязких текучих сред. Изобретение предназначено для компенсации теплопотерь и для нагревания вязких текучих сред, а также для ликвидации и предотвращения образования отложений и пробок в трубопроводах различного назначения, в частности непосредственно в добывающих скважинах, в промысловых и магистральных нефтепроводах, в технологических продуктопроводах.

[2]

Известен способ попутного обогрева протяженного трубопровода, в котором в качестве источника тепла применяют нагревательный кабель [Электронный ресурс: http://www.etirex.ru/index_htm_files/Etirex-catalog-2015.pdf (дата обращения: 19.10.2017), официальный сайт компании «ETIREX-Chromalox», каталог продукции, раздел «Электрический обогрев нагревательными кабелями», статья «Промышленный электрический обогрев нагревательными кабелями»].

[3]

Устройство, реализующее данный способ, включает в себя систему управления, нагревательный кабель, элементы крепления. Используются два основных типа нагревательных кабелей: кабели постоянной мощности (резистивные линейные, резистивные зональные) и саморегулирующие кабели [Электронный ресурс: http://www.mtraychem.ru/sistemy-podogreva-truboprovodov-i-nagrevatelnye-kabeli (дата обращения: 19.10.2017), официальный сайт компании «Мастерская тепла - Raychem (Райхем)», поставляющей кабели для промышленного обогрева труб и трубопроводов, статья «Системы подогрева трубопроводов и нагревательные кабели»].

[4]

К недостаткам данного способа и систем кабельного электрообогрева его реализующих, относятся: сложность организации аварийного разогрева трубопровода, повышенная пожароопасность.

[5]

Известен способ обогрева протяженного трубопровода, в котором в качестве источника тепла применяется система индукционного нагрева токами высокой частоты [Электронный ресурс: http://элсит.рф/статьи/индукционный-нагрев-труб (дата обращения: 19.10.2017), официальный сайт компании «ЭЛСИТ», статья «Индукционный нагрев труб»].

[6]

Устройство, реализующее данный способ, содержит устройство преобразования и управления, представляющее собой трансформатор, первичная обмотка которого выполняет роль индуцирующего провода, а вторичная обмотка представляет собой ферромагнитный теплообменник и выполняет роль нагрузки трансформатора, параметры элементов электронагревателя рассчитаны таким образом, что обеспечивают работу аппарата в длительном режиме без перегрева [Электронный ресурс: http://klevoz.ru/nuda/induktivno-konduktivnie-elektronagrevateli-gejzer-sftra-primen/main.html (дата обращения: 19.10.2017), продукция компании ООО «Южно-Сибирская Электротехническая Компания», статья «Индуктивно-кондуктивные электронагреватели «Гейзер»].

[7]

Недостатком данного устройства является сложность нагрева протяженных трубопроводов.

[8]

В качестве прототипа выбран способ электротермического воздействия на протяженные трубопроводы [Патент на изобретение РФ №2584137 от 20.05.2016. МПК Н05В 6/10], при котором осуществляют нагрев трубопровода посредством нагревательных элементов, размещенных на трубопроводе, поддерживающих температуру перекачиваемой жидкости в промежутке между температурами кристаллизации асфальтосмолопарафиновых отложений и коксования перекачиваемой жидкости, нагревательные элементы выполняют в виде двух проводящих обкладок, разделенных диэлектриком и свернутых в спираль, и размещают на трубопроводе с интервалами, определяемыми температурным режимом и технологическим процессом перекачки, для каждого нагревательного элемента дополнительно введен коммутатор, подключенный к концу первой и к началу второй обкладки нагревательного элемента.

[9]

Устройство, реализующее данный способ, содержащее источник питания, систему управления, нагревательные элементы, размещенные на трубопроводе, каждый нагревательный элемент выполнен в виде двух проводящих обкладок, разделенных диэлектриком, свернутых в спираль, и нагревательные элементы размещены на трубопроводе с интервалами, определяемыми температурным режимом и технологическим процессом перекачки, положительный полюс источника питания подключен к началу первой обкладки нагревательного элемента, отрицательный полюс источника питания подключен к концу второй обкладки нагревательного элемента, для каждого нагревательного элемента дополнительно введен коммутатор, подключенный к концу первой и к началу второй обкладки нагревательного элемента.

[10]

Недостатком данного способа и устройства его реализующего является отсутствие компенсации тепловых потерь на участках, где нет нагревательных элементов.

[11]

Техническими задачами изобретения являются повышение энергоэффективности, повышение управляемости процесса теплопередачи, обеспечение аварийного разогрева трубопровода, снижение пожароопасности.

[12]

Поставленные задачи достигаются тем, что в известном способе электротермического воздействия на трубопроводы, при котором осуществляют нагрев трубопровода посредством нагревательных элементов, размещенных на трубопроводе, поддерживающих температуру перекачиваемой жидкости в промежутке между температурами кристаллизации асфальтосмолопарафиновых отложений и коксования перекачиваемой жидкости, каждый нагревательный элемент выполняют в виде первой и второй токопроводящих обкладок, разделенных диэлектриком и свернутых в спираль, размещают на трубопроводе с интервалами, определяемыми температурным режимом и технологическим процессом перекачки, для каждого нагревательного элемента дополнительно вводят коммутационный блок, к первой токопроводящей обкладке каждого нагревательного элемента дополнительно последовательно подключают токопроводящий кабель-индуктор, размещенный на трубопроводе, и образующий вместе с нагревательным элементом единый нагревательный компонент, источник питания через коммутационный блок соединяют с началом второй проводящей обкладки нагревательного элемента и с концом токопроводящего кабель-индуктора каждого единого нагревательного компонента.

[13]

Поставленные задачи достигаются также индукционной нагревательной системой, реализующей данный способ, содержащей источник питания, систему управления, коммутационный блок, нагревательные элементы, выполненные в виде первой и второй токопроводящих обкладок, разделенных диэлектриком, свернутых в спираль, и размещенные на трубопроводе с интервалами, определяемыми температурным режимом и технологическим процессом перекачки, причем к концу первой проводящей обкладки каждого нагревательного элемента последовательно подключен токопроводящий кабель-индуктор, размещенный на трубопроводе, и образующий вместе с нагревательным элементом единый нагревательный компонент, источник питания через коммутационный блок соединен с началом второй токопроводящей обкладки нагревательного элемента и с концом токопроводящего кабель-индуктора каждого единого нагревательного компонента.

[14]

Индукционная нагревательная система также может включать в себя единые нагревательные компоненты соединенные последовательно, либо параллельно, либо содержать группы единых нагревательных компонентов, соединенных последовательно-параллельно, либо параллельно-последовательно.

[15]

На фиг. 1 изображена индукционная нагревательная система, состоящая из источника питания 1, коммутационного блока 2 и системы управления 3, нагревательного элемента 4, выполненного в виде первой 5 и второй 6 проводящих обкладок, разделенных диэлектриком 7, и расположенного вместе с кабель-индуктором 8, подключенным к первой проводящей обкладке 5, нагревательного элемента 4, на трубопроводе 9. Нагревательный элемент 4 с кабель-индуктором 8 образуют единый нагревательный компонент 10. Источник питания 1 подключен через коммутационный блок 2 с системой управления 3 к началу второй токопроводящей обкладки 6 и концу кабель-индуктора 8. Кабель индуктор 8 может выполняться из литцендратного провода, либо одножильного, для выполнения индуктивно-резистивного нагрева.

[16]

На фиг. 2 изображена индукционно-нагревательная система с последовательно включенными едиными нагревательными компонентами 11, 12. Источник питания 1 подключен через коммутационный блок 2 с системой управления 3 к началу второй токопроводящей обкладки 6 нагревательного элемента 4 первого единого нагревательного компонента 11 и концу кабель-индуктора 8 последнего единого нагревательного компонента 12.

[17]

На фиг. 3 изображена индукционно-нагревательная система с параллельно включенными едиными нагревательными компонентами 13,14. Источник питания 1 подключен через коммутационный блок 2 с системой управления 3 к началам вторых токопроводящих обкладок 6 нагревательных элементов 4 единых нагревательных компонентов 13,14 и концам кабель-индукторов 8 единых нагревательных компонентов 13,14.

[18]

На фиг. 4 изображена индукционно-нагревательная система с едиными нагревательными компонентами 15,16,17,18,19,20 расположенными на трубопроводе, подключенными параллельно-последовательно, причем единые нагревательные компоненты соединенные параллельно, объединены в группы 21, 22, а соединенные параллельно группы единых нагревательных компонентов подключены последовательно между собой, источник питания 1 через коммутационный блок 2, управляемый системой управления 3, соединен с началом вторых проводящих обкладок 6 первой группы 21 единых нагревательных компонентов 15, 16, 17 и с концами кабель-индукторов 8 последней группы 22 единых нагревательных компонентов 18, 19, 20.

[19]

На фиг. 5 изображена индукционно-нагревательная система с едиными нагревательными компонентами 23, 24, 25, 26, 27, 28 расположенными на трубопроводе, подключенными последовательно-параллельно, причем единые нагревательные компоненты соединенные последовательно, объединены в группы 29, 30, 31 а соединенные последовательно группы единых нагревательных компонентов подключены параллельно между собой, источник питания 1 через коммутационный блок 2, управляемый системой управления 3, соединен с началом вторых проводящих обкладок 6 единых нагревательных компонентов 23, 24, 25 и с концами кабель-индукторов 8 единых нагревательных компонентов 26, 27, 28.

[20]

Устройство работает следующим образом: от источника питания 1, через коммутационный блок 2, управляемый системой управления 3 электропитания подается на единый нагревательный компонент 10. Собственная емкость и индуктивность проводящих обкладок 5,6 нагревательного элемента 4, а так же индуктивность кабель-индуктора 8, образуют коммутационный контур, в котором протекает переменный ток, создающий магнитный поток, за счет которого наводятся вихревые токи в трубопроводе 9, нагревают его в зоне расположения единого нагревательного элемента 4 и кабель-индуктора 8, передавая тепло транспортируемой по трубопроводу 9 жидкости. Частота переменного тока согласуется с частотой собственных колебаний коммутационного контура и задается системой управления 3 коммутационного блока 2. Коммутационный блок 2 может быть выполнен, например, по схеме мостового или полумостового автономного инвертора.

[21]

В зависимости от условий технологического процесса, требуемой мощности нагревательной системы, количества зон и объектов с различными температурными режимами (диапазонам температур) на стадии проектирования индукционной нагревательной системы определяется количество единых нагревательных компонентов, способы их подключения друг с другом (параллельно, последовательно, параллельно-последовательно, последовательно-параллельно)

[22]

Предлагаемые способ и устройства позволяют реализовать режимы компенсации теплопотерь и аварийного разогрева трубопроводов, повысить энергетическую эффективность, автоматизацию, промышленную и пожарную безопасность процессов нагрева.



Изобретение применимо на объектах нефтегазовой отрасли, а также химической, пищевой и иной промышленности, где производится транспортирование по трубопроводам термовязких текучих сред. Способ и устройство электротермического воздействия на трубопроводы осуществляют нагрев трубопровода посредством нагревательных элементов, размещенных на трубопроводе, поддерживающих температуру перекачиваемой жидкости, каждый нагревательный элемент выполняют в виде первой и второй токопроводящих обкладок, разделенных диэлектриком и свернутых в спираль, размещенных на трубопроводе с интервалами, для каждого нагревательного элемента дополнительно вводят коммутационный блок, причем к первой токопроводящей обкладке каждого нагревательного элемента дополнительно последовательно подключают токопроводящий кабель-индуктор, размещенный на трубопроводе, и образующий вместе с нагревательным элементом единый нагревательный компонент, а источник питания через коммутационный блок соединяют с началом второй проводящей обкладки. Изобретение позволяет реализовать режимы компенсации теплопотерь и аварийного разогрева трубопроводов, повысить энергетическую эффективность, автоматизацию, промышленную и пожарную безопасность процессов нагрева. 2 н. и 3 з.п. ф-лы, 5 ил.



1. Способ электротермического воздействия на трубопроводы, при котором осуществляют нагрев трубопровода посредством нагревательных элементов, размещенных на трубопроводе, поддерживающих температуру перекачиваемой жидкости в промежутке между температурами кристаллизации асфальтосмолопарафиновых отложений и коксования перекачиваемой жидкости, каждый нагревательный элемент выполняют в виде первой и второй токопроводящих обкладок, разделенных диэлектриком и свернутых в спираль, размещают на трубопроводе с интервалами, определяемыми температурным режимом и технологическим процессом перекачки, для каждого нагревательного элемента дополнительно вводят коммутационный блок, отличающийся тем, что к первой токопроводящей обкладке каждого нагревательного элемента дополнительно последовательно подключают токопроводяший кабель-индуктор, размещенный на трубопроводе и образующий вместе с нагревательным элементом единый нагревательный компонент, источник питания через коммутационный блок соединяют с началом второй проводящей обкладки нагревательного элемента и с концом токопроводящего кабель-индуктора каждого единого нагревательного компонента.

2. Индукционная нагревательная система, реализующая данный способ, содержащая источник питания, систему управления, коммутационный блок, нагревательные элементы, выполненные в виде первой и второй токопроводящих обкладок, разделенных диэлектриком, свернутых в спираль, и размещенные на трубопроводе с интервалами, определяемыми температурным режимом и технологическим процессом перекачки, отличающееся тем, что к концу первой проводящей обкладки каждого нагревательного элемента последовательно подключен токопроводящий кабель-индуктор, размещенный на трубопроводе и образующий вместе с нагревательным элементом единый нагревательный компонент, источник питания через коммутационный блок соединен с началом второй токопроводящей обкладки нагревательного элемента и с концом токопроводящего кабель-индуктора каждого единого нагревательного компонента.

3. Индукционная нагревательная система по п. 2, отличающаяся тем, что единые нагревательные компоненты, расположенные на трубопроводе, подключены последовательно, причем конец кабель-индуктора одного единого нагревательного компонента соединен с началом второй токопроводящей обкладки нагревательного элемента другого единого нагревательного компонента, источник питания через коммутационный блок, управляемый системой управления, соединен с началом второй токопроводящей обкладки нагревательного элемента первого единого нагревательного компонента и с концом токопроводящего кабель-индуктора последнего единого нагревательного компонента.

4. Индукционная нагревательная система по п. 2, отличающаяся тем, что единые нагревательные компоненты, расположенные на трубопроводе, подключены параллельно-последовательно, причем единые нагревательные компоненты, соединенные параллельно, объединены в группы, а соединенные параллельно группы единых нагревательных компонентов подключены последовательно между собой, источник питания через коммутационный блок, управляемый системой управления, соединен с началом вторых проводящих обкладок первой группы единых нагревательных компонентов и с концами кабель-индукторов последней группы единых нагревательных компонентов.

5. Индукционная нагревательная система по п. 2, отличающаяся тем, что единые нагревательные компоненты, расположенные на трубопроводе, подключены последовательно-параллельно, причем единые нагревательные компоненты, соединенные последовательно, объединены в группы, а соединенные последовательно группы единых нагревательных компонентов подключены параллельно между собой, источник питания через коммутационный блок, управляемый системой управления, соединен с началом вторых проводящих обкладок первой группы единых нагревательных компонентов и с концами кабель-индукторов последней группы единых нагревательных компонентов.



CPC - классификация

HH0H05H05BH05B6H05B6/H05B6/1H05B6/10

IPC - классификация

HH0H05H05BH05B6H05B6/H05B6/1H05B6/10

Цитирование ПИ

RU2417563C2RU2496281C1US5182792A

Цитирование НПИ

RU 2584137 C2, 27.01. 2016.
Получить PDF