US 20030175708A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0175708 A1

Sep. 18, 2003 (43) **Pub. Date:**

Swanson et al.

(54) NUCLEIC ACIDS AND PROTEINS FROM **CENARCHAEUM SYMBIOSUM**

(75) Inventors: Ronald V. Swanson, Del Mar, CA (US); Robert A. Feldman, Santa Cruz, CA (US); Christa Schleper, Darmstadt (DE); Edward F. DeLong, Monterey, CA (US); Christina M. Preston, Pacific Grove, CA (US)

> Correspondence Address: FISH & RICHARDSON, PC 4350 LA JOLLA VILLAGE DRIVE **SUITE 500** SAN DIEGO, CA 92122 (US)

- (73) Assignee: Diversa Corporation, San Diego, CA
- (21) Appl. No.: 10/029,120
- (22)Filed: Dec. 21, 2001

Related U.S. Application Data

- (62) Division of application No. 09/408,020, filed on Sep. 29, 1999.
- (60) Provisional application No. 60/102,294, filed on Sep. 29, 1998.

Publication Classification

(51)	Int. Cl. ⁷	C12Q	1/68;	G06F	19/00;
		G01N	33/48;	G01N	33/50

(52)

(57)ABSTRACT

The present application relates to nucleic acids and polypeptides from Cenarchaeum symbiosum. Methods of making the polypeptides and antibodies against the polypeptides are also described.

US 2003/0175708 A1

FIGURE 2

ID										
<u>No</u>	Gene	<u>Stra</u>	<u>ain</u>	TATA BO	×		Coding	<u>g Stært</u>	TATA to St	art (bp
81	Hypoth 03	А	AAGCTAGACT	TTTAAT	TGGG	ATCCGGCGGG	GCGGCGCATG			25
82		в	AAGCTAAACT	TTTAAT	TGGG	ATCCGGCGAG	CCGGCGCGTG	*****		
83	Hypoth 02	А	GGAAACTTTG	ATTATA	CGGG	CGTGCTGCCC	CGGGGCCCAT	G	~~~~~	26
84		в	GGAAACTTTG	ATTATA	CGGG	CGTACATTCC	CGGGGCCCAT	G		
85	ORF 02	А	AAGGCAAGGT	алталт	AGCC	TGCCGTCTGT	AACGGCCGTA	TG	~~~~~~	27
86		в	ACGGCAAGGT	AATAAT	AGCC	TGCCGTCCGT	ACCTGCCGTA	TG		
87	ORF 03	А	CATGGAACTA	GATATT	AACC	GGTTCCGCGG	ATCCCATGCA	TG		27
88		В	CATGGAACTA	GATAAT	AACC	GGTCCCGCGG	GTACAATGCA	TG		
89	PPI	А	ATACCGAGAA	GTTATA	GCAG	GGTATGGAAT	GTGCGCGCGC	ATG	******	28
90		в	AGCACGACAA	GTTATA	GCAG	GGTACAAAGG	AGCAGCGCAC	ATG		
91	GSAT	Α	ATCCGCCCTG	аттала	TTAT	GGGGGGGAGCG	GCCTGCTGCC	GTG		28
92		В	ATCCGGCCTC	аттала	TTAC	GCGCGGTACA	ACCTGCTGCC	GTG		
93	ORF 05	А	CCTTCATACA	САТААА	тссс	GCTTGGATGT	GCGGCTGCGC	ATG		28
94		B	ACTTCATACA	сатала	TCCC	GCCTGAACGG	TCGTCCGCGC	ATG	~~~~~~~	
95	deaminase	A	.GGCATATAC	CATAAT	ATGC	CGGGCGGTGG	CACCATGGCC	GTTG		29
96		в	CCGCATATAC	саталт	ATGC	CEGECGEGEG	CAGGCTGCCC	GTG~~~~~	********	
97	RNA helic	А	TGTACGAAAC	CATAAA	ACAA	CAGGCCGCGT	CAGGGCCGCG	CGTG		29
98		в	GGGTAGAAAC	сатала	ACAA	CAGGCCGCGG	CAGGGCG CG	CGTG		
99	ORF 06	А	ACACGCAG	TATAAA	CGGG	GECCCEGECE	GCGCGTATCA	CATG		29
100		в	ATACACGTGG	татала	CAGA	GG.CCGGACG	GCGCGGACCA	CATG		
101	tRNA-tyr	А	GCGATAGTTA	TTTAAA	ACTA	GGATGCCGAT	CACGGATCGT	CCCA		29
102		в	GCGATAGTTA	TTTAAA	ACTA	GGATGCCGGG	CACCCGTCGT	CCCA		
103	TBP	A	CCGGGCCCCG	GTTAAA	ATAG	CG.CACGGGC	GGATCCTGAC	CAATG		30
104		в	CCGGGCCCCCG	GTTAAA	ATAG	AGTGCGGCCG	GGCACCGGAT	CAATG~~~~~		
105	TIM	А	GCGTCGATAG	алтала	TACG	CCCAGGGGGC	CCCGTGGCGC	GATCGCCCGT	G	36
106		в	GCGTCGATAG	аатааа	TACG	CCC.CCCC	GCGGTGC	GATEGCECGT	G~~~~~~	
107	Hypoth 01	A	ATTTCAACTA	сатала	TGCC	TAGTTACGCA	GAAATAGCAA	ACGACGTACT	TCGACTAATG	45
108		в	ACTTCAACTA	САТААА	TGCC	TAGCTACGCA	GAAATATCAA	ACAAAGTACT	TCGACTAATG	
109	ORF 01	Α	ACGGCAGGCT	ATTATT	ACCT	TGCCTTGCGT	TGTA //G	CGGGGTGCGG	CAGGGGATG	52
110		в	ACGGCAGGCT	ATTATT	ACCT	TGCCGTGTG.	TACA //G	AGGGGGGCCTG	CCGCGAGTC	
111	Methylase	A	CTACAACGAT	TTTAAG	TCGG	CGCCGGGGGCA	GCCG.//G	ATGTGGGGCA	GGCAACATG	104
112		в	CTACAAAGAT	TTTAAG	ACGG	CCCCCCCTCCC	GCGG.//T	GGCACGGGGG	CCTATCTTG	
113	16S RNA	A	TCGGCGATGG	TTTATA	TGCC	CATGGACGGG	CCGATCCGAT	CGTACGTGAC	GC.//AAT	220
114		в	CCGGCGATGG	тттата	TGCC	CATGGACAAG	GCGATCCGAT	CGTACGTGAC	GC.//AAT	
	Archaeal p	romo	oter							

consensus

Seq

YTTAWA

FIGURE 3

•

.

NUCLEIC ACIDS AND PROTEINS FROM CENARCHAEUM SYMBIOSUM

RELATED APPLICATIONS

[0001] The present application is a divisional of co-pending U.S. patent application Ser. No. 09/408,020, filed Sep. 29, 1999, which claims priority from U.S. Provisional Patent Application Serial No. 60/102,294, filed Sep. 29, 1998, the disclosure of which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] The identification and characterization of organisms which inhabit a diverse range of ecosystems leads to a greater understanding of the operation of such ecosystems. In addition, because the physiology of such organisms is adapted to function in the particular habitat which the organism inhabits, the enzymes which carry out the organism's physiological processes may possess characteristics which provide advantages when they are utilized in therapeutic procedures, industrial applications, or research applications. Furthermore, by determining the sequences of these organisms' genes, insight into their biochemical pathways and processes may be gained without the necessity of culturing the organisms in the laboratory, thereby enabling the physiological characterization of organisms which are recalcitrant to growth in the laboratory. Molecular phylogenetic surveys have recently revealed an ecologically widespread Crenarchaeal group that inhabits cold and temperate terrestrial and marine environments. To date these organisms have resisted isolation in pure culture, so their phenotypic and genotypic characteristics remain largely unknown. In order to characterize the physiology of these archaea, to develop methodological approaches for characterizing uncultivated microorganisms and identifying their presence in a sample, and to identify enzymes produced by these archae which may be useful in therapeutic, industrial, or laboratory applications, genomic analyses of the non-thermophilic crenarchaeote Cenarchaeum symbiosum was undertaken.

[0003] Non-thermophilic Crenarchaeota are one of the more abundant, widespread and frequently recovered prokaryotic groups revealed by molecular phylogenetic approaches. These microorganisms were originally detected in high abundance in temperate ocean waters and polar seas. (DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89, 5685-5689; DeLong, E. F et al. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371, 695-697; Fuhrman, J. A., et al. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356, 148-149; Massana, R., et al. 1997. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Env. Microb. 63, 50-56; McInerney, J. O. et al. 1995. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl. Env. Microb. 61, 1646-1648; Preston, C. M. et al. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93, 6241-6246) Representatives have now been reported in terrestrial environments and freshwater lake sediments, indicating a widespread distribution. (Bintrim, S. B. et al. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94, 277-282; Jurgens, G. et al. 1997. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl. Env. Mircob. 63, 803-80515, Kudo, Y. et al 1997. Peculiar archaea found in Japanese paddy soils. Biosc. Biotech. Biochem. 61, 917-920; Ueda, et al. 1995. Molecular phylogenetic analysis of a soil microbial community. Eur. J. Soil Sci. 46, 415-421; Hershberger, K. L. et al. 1996. Wide diversity of Crenarchaeota. Nature 384, 420; MacGregor, B. J. 1997. Crenarchaeota in Lake Michigan sediment. Appl. Env. Microb. 63, 1178-1181 et al; Schleper, C. et al. 1997. Recovery of crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl. Env. Microb. 63, 321-323) The ecological distribution of these organisms was initially surprising, since their closest cultivated relatives are all thermophilic or hyperthermophilic. No representative of this new archaeal group has yet been obtained in pure culture, so the phenotypic and metabolic properties of these organisms, as well as their impact on the environment and global nutrient cycling, remain unknown. Since growth temperature and habitat characteristics vary so widely between non-thermophilic and the hyperthermophilic Creanarchaeota, these groups are likely to differ greatly with respect to their specific physiology and metabolism.

[0004] To gain a better perspective on the genetic and physiological characteristics of non-thermophilic crenarchaeotes, a genomic study of Cenarchaeum symbiosum was begun. This archaeon lives in specific association with the marine sponge Axinella mexicana off the coast of California, allowing access to relatively large amounts of biomass from this species. (Preston, C. M. et al. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93, 6241-6246) The approach taken herein differs in several respects from now standard genomic characterization of cultivated organisms, and also from comparable studies of uncultivated obligate parasites or symbionts. C. symbiosum has not been completely physically separated from the tissues of its metazoan host. Therefore, its genetic material needs to be identified within the context of complex genomic libraries that contain significant amounts of eucaryotic DNA, as well as DNA derived from members of Bacteria.

[0005] Molecular phylogenetic surveys of mixed microbial populations have revealed the existence of many new lineages undetected by classical microbiological approaches. (DeLong, E. F. 1997. Marine microbial diversity: the tip of the iceberg. Tibtech 15, 2-9.; Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276, 734-740) Furthermore, quantitative rRNA hybridization experiments demonstrate that some of these novel prokaryotic groups represent major components of natural microbial communities. These molecular phylogenetic approaches have altered current views of microbial diversity and ecology, and have demonstrated that traditional cultivation techniques may recover only a small, skewed fraction of naturally occurring microbes. However, phylogenetic identification using single gene sequences provides a limited perspective on other biological properties, particularly for novel lineages only distantly related to cultivated and characterized organisms. Consequently, additional approaches are necessary to better characterize ecologically abundant and potentially biotechnologically useful microorganisms, many of which resist cultivation attempts.

SUMMARY OF THE INVENTION

[0006] One embodiment of the present invention is an isolated, purified, or enriched nucleic acid comprising a sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, the sequences complementary to SEQ ID NO: 1 and SEQ ID NO: 2, fragments comprising at least 10 consecutive nucleotides of SEQ ID NO: 1 and SEQ ID NO: 2, and fragments comprising at least 10 consecutive nucleotides of the sequences complementary to SEQ ID NO: 1 and SEQ ID NO: 2. One aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of high stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of moderate stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of low stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 70% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 99% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters.

[0007] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs: 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79 and the sequences complementary thereto. One aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of high stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of moderate stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of low stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 70% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 99% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters.

[0008] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid comprising at least 10 consecutive bases of a sequence selected from the group consisting of SEQ ID NOs: 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79 and the sequences complementary thereto. One aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 70% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters.

[0009] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid comprising a

sequence selected from the group consisting of SEQ ID NOs: 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73, 77 and the sequences complementary thereto. One aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of high stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of moderate stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid capable of hybridizing to the nucleic acid of this embodiment under conditions of low stringency. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 70% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 99% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters.

[0010] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid comprising at least 10 consecutive bases of a sequence selected from the group consisting of SEQ ID NOs: 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73, 77 and the sequences complementary thereto. One aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 70% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters. Another aspect of the present invention is an isolated, purified, or enriched nucleic acid having at least 99% homology to the nucleic acid of this embodiment as determined by analysis with BLASTN version 2.0 with the default parameters.

[0011] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80.

[0012] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid encoding a polypeptide comprising at least 10 consecutive amino acids of a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80.

[0013] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0014] Another embodiment of the present invention is an isolated, purified, or enriched nucleic acid encoding a polypeptide comprising at least 10 consecutive amino acids of a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0015] Another embodiment of the present invention is an isolated or purified polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72,

76, and 80. Another aspect of the present invention is an isolated or purified polypeptide comprising at least 10 consecutive amino acids of the polypeptides of this embodiment. Another aspect of the present invention is an isolated or purified polypeptide having at least 70% homology to the polypeptide of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters. Another aspect of the present invention is an isolated or purified polypeptide having at least 99% homology to the polypeptide of this emobdiment as determined by analysis with FASTA version 3.0t78 with the default parameters. Another aspect of the present invention is an isolated or purified polypeptide having at least 70% homology to an isolated or purified polypeptide comprising at least 10 consecutive amino acids of the polypeptides of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters. Another aspect of the present invention is an isolated or purified polypeptide having at least 99% homology to the polypeptide of to an isolated or purified polypeptide comprising at least 10 consecutive amino acids of the polypeptides of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters.

[0016] Another aspect of the present invention is an isolated or purified polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. One aspect of the present invention is an isolated or purified polypeptide comprising at least 10 consecutive amino acids of the polypeptides of this embodiment. Another aspect of the present invention is an isolated or purified polypeptide having at least 70% homology to the polypeptides of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters. Another aspect of the present invention is an isolated or purified polypeptide having at least 99% homology to the polypeptides of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters. Another aspect of the present invention is An isolated or purified polypeptide having at least 70% homology to an isolated or purified polypeptide comprising at least 10 consecutive amino acids of the polypeptides of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters. Another aspect of the present invention is an isolated or purified polypeptide having at least 99% homology to an isolated or purified polypeptide comprising at least 10 consecutive amino acids of the polypeptides of this embodiment as determined by analysis with FASTA version 3.0t78 with the default parameters.

[0017] Another embodiment of the present invention is an isolated or purified antibody capable of specifically binding to a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80.

[0018] Another embodiment of the present invention is an isolated or purified antibody capable of specifically binding to a polypeptide comprising at least 10 consecutive amino acids of one of the polypeptides of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80.

[0019] Another embodiment of the present invention is an isolated or purified antibody capable of specifically binding

to a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0020] Another embodiment of the present invention is an isolated or purified antibody capable of specifically binding to a polypeptide comprising at least 10 consecutive amino acids of one of the polypeptides of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0021] Another embodiment of the present invention is a method of making a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80 comprising introducing a nucleic acid encoding said polypeptide, said nucleic acid being operably linked to a promoter, into a host cell.

[0022] Another embodiment of the present invention is a method of making a polypeptide comprising at least 10 amino acids of a sequence selected from the group consisting of the sequences of SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80 comprising introducing a nucleic acid encoding said polypeptide, said nucleic acid being operably linked to a promoter, into a host cell.

[0023] Another embodiment of the present invention is a method of making a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 comprising introducing a nucleic acid encoding said polypeptide, said nucleic acid being operably linked to a promoter, into a host cell.

[0024] Another embodiment of the present invention is a method of making a polypeptide comprising at least 10 amino acids of a sequence selected from the group consisting of the sequences of SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 comprising introducing a nucleic acid encoding said polypeptide, said nucleic acid being operably linked to a promoter, into a host cell.

[0025] Another embodiment of the present i method of generating a variant comprising obtaining a nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, the sequences complementary to the sequences of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, fragments comprising at least 30 consecutive nucleotides of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, and fragments comprising at least 30 consecutive nucleotides of the sequences complementary to SEQ ID NOS. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and changing one or more nucleotides in said sequence to another nucleotide, deleting one or more nucleotides in said sequence, or adding one or more nucleotides to said sequence. In one aspect of the present invention, the method further comprises the step of testing the enzymatic properties of a translation product of said variant.

[0026] Another embodiment of the present invention is a computer readable medium having stored thereon a sequence selected from the group consisting of a nucleic acid code of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0027] Another embodiment of the present invention is a computer system comprising a processor and a data storage device wherein said data storage device has stored thereon a sequence selected from the group consisting of a nucleic acid code of SEQID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. In one aspect of the present invention, the computer system further comprises a sequence comparer and a data storage device having reference sequences stored thereon. For example, the sequence comparer may comprise a computer program which indicates polymorphisms. In another aspect of the present invention is the computer system of this embodiment further comprises an identifier which identifies features in said sequence.

[0028] Another embodiment of the present invention is a method for comparing a first sequence to a reference sequence wherein said first sequence is selected from the group consisting of a nucleic acid code of SEQID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 comprising the steps of reading said first sequence and said reference sequence through use of a computer program which compares sequences; and determining differences between said first sequence and said reference sequence with said computer program. In one aspect of the present invention, the step of determining differences between the first sequence and the reference sequence comprises identifying polymorphisms.

[0029] Another embodiment of the present invention is a method for identifying a feature in a sequence selected from the group consisting of a nucleic acid code of SEQID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 comprising the steps of reading said sequence through the use of a computer program which identifies features in sequences and identifying features in said sequence with said computer program.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 shows the locations of coding regions, the %G-C. and the %DNA identity between the approximately 28 Kb of common sequence in fosmids 101G10 and 60A5.

[0031] FIG. 2 shows the sequences surrounding the TATA boxes of several promoters from *Cenarchaeum symbiosum* and the distances from the TATA boxes to the initiation codons in these sequences.

[0032] FIG. **3** is a block diagram of an exemplary computer system.

[0033] FIG. 4 is a flow diagram illustrating one embodiment of a process 200 for comparing a new nucleotide or protein sequence with a database of sequences in order to determine the homology levels between the new sequence and the sequences in the database.

[0034] FIG. 5 is a flow diagram illustrating one embodiment of a process 250 in a computer for determining whether two sequences are homologous.

[0035] FIG. 6 is a flow diagram illustrating one embodiment of an identifier process for detecting the presence of a feature in a sequence.

DEFINITIONS

[0036] The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as, where applicable, intervening sequences (introns) between individual coding segments (exons).

[0037] As used herein, the term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

[0038] As used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual nucleic acids obtained from a library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The purified nucleic acids of the present invention have been purified from the remainder of the genomic DNA in the organism by at least 10^4 - 10^6 fold. However, the term "purified" also includes nucleic acids which have been purified from the remainder of the genomic DNA or from other sequences in a library or other environment by at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude.

[0039] As used herein, the term "recombinant" means that the nucleic acid is adjacent to "backbone" nucleic acid to which it is not adjacent in its natural environment. Additionally, to be "enriched" the nucleic acids will represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. Backbone molecules according to the present invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Preferably, the enriched nucleic acids represent 15% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. More preferably, the enriched nucleic acids represent 50% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. In a highly preferred embodiment, the enriched nucleic acid inserts in the population of recombinant backbone molecules. In a highly preferred embodiment, the enriched nucleic acid inserts in the population of recombinant backbone molecules.

[0040] A promoter sequence is "operably linked to" a coding sequence when RNA polymerase which initiates transcription at the promoter will transcribe the coding sequence into mRNA.

[0041] "Recombinant" polypeptides or proteins refer to polypeptides or proteins produced by recombinant DNA techniques; i.e., produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide or protein. "Synthetic" polypeptides or protein are those prepared by chemical synthesis.

[0042] A DNA "coding sequence" or a "nucleotide sequence encoding" a particular polypeptide or protein, is a DNA sequence which is transcribed and translated into a polypeptide or protein when placed under the control of appropriate regulatory sequences.

[0043] "Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described herein are known in the art and will be apparent to the ordinarily skilled artisan.

[0044] "Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 µg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 μ l of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μ g of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37° C. are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the gel electrophoresis may be performed to isolate the desired fragment.

[0045] "Oligonucleotide" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0046] In order to begin the characterization of *Cenar*chaeum symbiosum, a large region of the *C. symbiosum* genome was sequenced. In particular, two overlapping *C. symbiosum*-derived fosmid inserts of approximately 42 kb and 33 kb were sequenced. The sequences of the two fosmid inserts revealed that there are at least two major variants or strains of *C. symbiosum* that coexist inside the sponge tissues of a single sponge. This complexity of the *C. symbiosum* population was not detected in initial studies based solely on direct sequencing of PCR amplified SSU genes. (Preston, C. M. et al. 1996. A psychrophilic crenar-chaeon inhabits a marine sponge: *Cenarchaeum symbiosum* gen. nov., sp. nov. *Proc. Natl. Acad. Sci.* USA 93, 6241-6246) This natural variation would also have been lost upon isolation of a pure culture.

[0047] The *Cenarchaeum symbiosum* sequences obtained from the two fosmids containing overlapping genomic inserts are provided in the accompanying sequence listing and are identified as SEQ ID NO: 1 and SEQ ID NO: 2. The two fosmid sequences were not entirely identical in their overlapping portions but instead contained differences. Upon further investigation, it was discovered that the two fosmid sequences were derived from two different, but closely related, strains of *Cenarchaeum symbiosum* (called variant A and variant B) which may simultaneously inhabit a single sponge.

[0048] Within the sequences of the fosmid inserts, numerous open reading frames encoding polypeptides having homology to known proteins, as well as open reading frames encoding proteins which do not exhibit homology to known proteins, were identified. Homology was determined using the program FASTA with the default parameters. The polypeptides encoded by these sequences are identified in the accompanying sequence listing as SEQ ID NOs: 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76 and 80 (polypeptides with homology to known proteins) and SEQ ID NOs: 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74 and 78 (polypeptides without homology to known proteins). In addition, sequences encoding the 16S rRNA, the 23S rRNA and a tyrosine tRNAs were also identified.

[0049] One aspect of the present invention is an isolated, purified, or enriched nucleic acid comprising one of the sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 or the sequences complementary thereto. The isolated, purified or enriched nucleic acids may comprise DNA, including cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. Alternatively, the isolated, purified or enriched nucleic acids may comprise RNA.

[0050] As discussed in more detail below, the isolated, purified, or enriched nucleic acids of one of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 may be used to prepare one of

the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80.

[0051] Accordingly, another aspect of the present invention is an isolated, purified, or enriched nucleic acid which encodes one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80. The coding sequences of these nucleic acids may be identical to one of the coding sequences of one of the nucleic acids of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 or a fragment thereof or may be different coding sequences which encode one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 as a result of the redundancy or degeneracy of the genetic code. The genetic code is well known to those of skill in the art and can be obtained, for example, on page 214 of B. Lewin, Genes VI, Oxford University Press, 1997, the disclosure of which is incorporated herein by reference.

[0052] The isolated, purified, or enriched nucleic acid which encodes one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, and 80 may include, but is not limited to: only the coding sequence of one of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79; the coding sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 and additional coding sequences, such as leader sequences or proprotein sequences; or the coding sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 and non-coding sequences, such as introns or non-coding sequences 5' and/or 3' of the coding sequence. Thus, as used herein, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

[0053] Alternatively, the nucleic acid sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59,

61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 may be mutagenized using conventional techniques, such as site directed mutagenesis, or other techniques familiar to those skilled in the art, to introduce silent changes into the polynucleotides of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79. As used herein, "silent changes" include, for example, changes which do not alter the amino acid sequence encoded by the polynucleotide. Such changes may be desirable in order to increase the level of the polypeptide produced by host cells containing a vector encoding the polypeptide by introducing codons or codon pairs which occur frequently in the host organism.

[0054] The present invention also relates to polynucleotides which have nucleotide changes which result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80. Such nucleotide changes may be introduced using techniques such as site directed mutagenesis, random chemical mutagenesis, exonuclease III deletion, and other recombinant DNA techniques. Alternatively, such nucleotide changes may be naturally occurring allelic variants which are isolated by identifying nucleic acids which specifically hybridize to probes comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 or the sequences complementary thereto to nucleic acids from Cenarchaeum symbiosum or related organisms under conditions of high, moderate, or low strigency as provided herein.

[0055] The isolated, purified, or enriched nucleic acids of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 or the sequences complementary thereto may also be used as probes to identify the presence of Cenarchaeum symbiosum in a biological sample. In such procedures, a biological sample potentially harboring Cenarchaeum symbiosum is obtained and nucleic acids are obtained from the sample. The nucleic acids are contacted with the probe under conditions which permit the probe to specifically hybridize to any complementary sequences from Cenarchaeum symbiosum which are present therein.

[0056] Where necessary, conditions which permit the probe to specifically hybridize to complementary sequences from *Cenarchaeum symbiosum* may be determined by placing the probe in contact with complementary sequences from *Cenarchaeum symbiosum* as well as control sequences which are not from *Cenarchaeum symbiosis*. In some analyses, the control sequences may be from organisms related to *Cenarchaeum symbiosum*. Alternatively, the control sequences may be from organisms which are not related to

Cenarchaeum symbiosum. Hybridization conditions, such as the salt concentration of the hybridization buffer, the formamide concentration of the hybridization buffer, or the hybridization temperature, may be varied to identify conditions which allow the probe to hybridize specifically to nucleic acids from *Cenarchaeum symbiosum.*

[0057] If the sample contains nucleic acids from *Cenar-chaeum symbiosum*, specific hybridization of the probe to the nucleic acids from *Cenarchaeum symbiosum* is then detected. Hybridization may be detected by labeling the probe with a detectable agent such as a radioactive isotope, a fluorescent dye or an enzyme capable of catalyzing the formation of a detectable product.

[0058] Many methods for using the labeled probes to detect the presence of nucleic acids from *Cenarchaeum symbiosum* in a sample are familiar to those skilled in the art. These include Southern Blots, Northern Blots, colony hybridization procedures, and dot blots. Protocols for each of these procedures are provided in Ausubel et al. Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989, the entire disclosures of which are incorporated herein by reference.

[0059] Alternatively, more than one probe (at least one of which is capable of specifically hybridizing to any complementary sequences from Cenarchaeum symbiosum which are present in the nucleic acid sample), may be used in an amplification reaction to determine whether the nucleic acid sample contains nucleic acids from Cenarchaeum symbiosum. Preferably, the probes comprise oligonucleotides. In one embodiment, the amplification reaction may comprise a PCR reaction. PCR protocols are described in Ausubel and Sambrook, supra. Alternatively, the amplification may comprise a ligase chain reaction, 3SR, or strand displacement reaction. (See Barany, F., "The Ligase Chain Reaction in a PCR World", PCR Methods and Applications 1:5-16 (1991); E. Fahy et al., "Self-sustained Sequence Replication (3SR): An Isothermal Transcription-based Amplification System Alternative to PCR", PCR Methods and Applications 1:25-33 (1991); and Walker G. T. et al., "Strand Displacement Amplification-an Isothermal in vitro DNA Amplification Technique, Nucleic Acid Research 20:1691-1696 (1992) the disclosures of which are incorporated herein by reference in their entireties). In such procedures, the nucleic acids in the sample are contacted with the probes, the amplification reaction is performed, and any resulting amplification product is detected. The amplification product may be detected by performing gel electrophoresis on the reaction products and staining the gel with an interculator such as ethidium bromide. Alternatively, one or more of the probes may be labeled with a radioactive isotope and the presence of a radioactive amplification product may be detected by autoradiography after gel electrophoresis.

[0060] Probes derived from sequences near the ends of the sequences of SEQ ID Nos: 1 and 2 may also be used in chromosome walking procedures to identify clones containing genomic sequences located adjacent to the sequences of SEQ ID Nos: 1 and 2. Such methods allow the isolation of genes which encode additional proteins expressed in *Cenarchaeum symbiosum* and facilitate the further physiological characterization of the organism.

[0061] Another aspect of the present invention is a method for determining whether a sample contains variant A and/or variant B of Cenarchaeum symbiosum. In such procedures, a sample potentially harboring variant A and/or variant B Cenarchaeum symbiosum is obtained and nucleic acids are obtained from the sample. The nucleic acids are contacted with the probe under conditions which permit the probe to specifically hybridize to any complementary sequences from variant A or variant B of Cenarchaeum symbiosum which are present therein. Preferably, the probe comprises a sequence having one or more nucleotides which differ between variant A and variant B. Conditions in which the probe specifically hybridizes to nucleic acids from one of the variants but not to nucleic acids from the other variant may be determined by contacting the probe with its corresponding sequence from variant A and variant B and varying the hybridization conditions, such as the salt concentration of the hybridization buffer, the formamide concentration of the buffer, or the hybridization temperature, to identify conditions in which the probe hybridizes to the corresponding sequence from one variant but not to the corresponding sequence from the other variant. Hybridization of the probe to nucleic acids from the Cenarchaeum symbiosum variant is then detected using any of the procedures described above.

[0062] The isolated, purified or enriched nucleic acids of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 or the sequences complementary thereto may be used as probes to identify and isolate cDNAs encoding the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80. In such procedures, a cDNA library is constructed from a sample containing Cenarchaeum symbiosum. The cDNA library is then contacted with a probe comprising a coding sequence, or a fragment of a coding sequence, encoding one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or a fragment thereof under conditions which permit the probe to specifically hybridize to sequences complementary thereto. cDNAs which hybridize to the probe are then detected and isolated. Procedures for preparing and identifying cDNAs are disclosed in Ausubel et al. Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989, the disclosures of which are incorporated herein by reference.

[**0063**] The isolated, purified, or enriched nucleic acids of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61,

63, 65, 67, 69, 71, 73, 75, 77 and 79 or the sequences complementary thereto may be used as probes to identify and isolate related nucleic acids. In some embodiments, the related nucleic acids may be cDNAs or genomic DNAs from organisms other than *Cenarchaeum symbiosum*. For example, the other organisms may be organisms which are related to *Cenarchaeum symbiosum*. In such procedures, a nucleic acid sample containing nucleic acids from the related organism, such as a cDNA or genomic DNA library from the related organism, is contacted with the probe under conditions which permit the probe to specifically hybridize to related sequences. Hybridization of the probe to nucleic acids from the related organism is then detected using any of the methods described above.

[0064] Hybridization may be carried out under conditions of low stringency, moderate stringency or high stringency. As an example of nucleic acid hybridization, a polymer membrane containing immobilized denatured nucleic acids is first prehybridized for 30 minutes at 45° C. in a solution consisting of 0.9 M NaCl, 50 mM NaH₂PO₄, pH 7.0, 5.0 mM Na2EDTA, 0.5% SDS, 10× Denhardt's, and 0.5 mg/ml polyriboadenylic acid. Approximately 2×10⁷ cpm (specific activity 4-9×10⁸ cpm/ug) of ³²P end-labeled oligonucleotide probe are then added to the solution. After 12-16 hours of incubation, the membrane is washed for 30 minutes at room temperature in 1× SET (150 mM NaCl, 20 mM Tris hydrochloride, pH 7.8, 1 mM Na₂EDTA) containing 0.5% SDS, followed by a 30 minute wash in fresh 1× SET at Tm-10° C. for the oligonucleotide probe. The membrane is then exposed to auto-radiographic film for detection of hybridization signals.

[0065] By varying the stringency of the hybridization conditions used to identify nucleic acids, such as cDNAs or genomic DNAs, which hybridize to the detectable probe, nucleic acids having different levels of homology to the probe can be identified and isolated. Stringency may be varied by conducting the hybridization at varying temperatures below the melting temperatures of the probes. The melting temperature of the probe may be calculated using the following formulas:

[0066] For probes between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula: $Tm=81.5+16.6(\log [Na+])+0.41(fraction G+C)-(600/N)$ where N is the length of the probe.

[0067] If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation $Tm=81.5+16.6(\log [Na+])+0.41(fraction G+C)-(0.63\% formamide)-(600/N)$ where N is the length of the probe.

[0068] Prehybridization may be carried out in $6\times$ SSC, $5\times$ Denhardt's reagent, 0.5% SDS, 100 μ g denatured fragmented salmon sperm DNA or $6\times$ SSC, $5\times$ Denhardt's reagent, 0.5% SDS, 100 μ g denatured fragmented salmon sperm DNA, 50% formamide. The formulas for SSC and Denhardt's solutions are listed in Sambrook et al., supra.

[0069] Hybridization is conducted by adding the detectable probe to the prehybridization solutions listed above. Where the probe comprises double stranded DNA, it is denatured before addition to the hybridization solution. The filter is contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to

cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200 nucleotides in length, the hybridization may be carried out at 15-25° C. below the Tm. For shorter probes, such as oligonucleotide probes, the hybridization may be conducted at 5-10° C. below the Tm. Preferably, for hybridizations in $6\times$ SSC, the hybridization is conducted at approximately 68° C. Preferably, for hybridizations in 50% formamide containing solutions, the hybridization is conducted at approximately 42° C.

[0070] All of the foregoing hybridizations would be considered to be under conditions of high stringency.

[0071] Following hybridization, the filter is washed in 2×SSC, 0.1% SDS at room temperature for 15 minutes. The filter is then washed with $0.1\times$ SSC, 0.5% SDS at room temperature for 30 minutes to 1 hour. Thereafter, the solution is washed at the hybridization temperature in $0.1\times$ SSC, 0.5% SDS. A final wash is conducted in $0.1\times$ SSC at room temperature.

[0072] Nucleic acids which have hybridized to the probe are identified by autoradiography or other conventional techniques.

[0073] The above procedure may be modified to identify nucleic acids having decreasing levels of homology to the probe sequence. For example, to obtain nucleic acids of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5° C. from 68° C. to 42° C. in a hybridization buffer having a Na+ concentration of approximately 1M. Following hybridization, the filter may be washed with 2×SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 50° C. and "low" conditions below 50° C. A specific example of "moderate" hybridization conditions is when the above hybridization is conducted at 55° C. A specific example of "low stringency" hybridization conditions is when the above hybridization is conducted at 45° C.

[0074] Alternatively, the hybridization may be carried out in buffers, such as $6\times$ SSC, containing formamide at a temperature of 42° C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from 50% to 0% to identify clones having decreasing levels of homology to the probe. Following hybridization, the filter may be washed with $6\times$ SSC, 0.5% SDS at 50° C. These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide. A specific example of "moderate" hybridization conditions is when the above hybridization is conducted at 30% formamide. A specific example of "low stringency" hybridization conditions is when the above hybridization is conducted at 10% formamide.

[0075] Nucleic acids which have hybridized to the probe are identified by autoradiography.

[0076] For example, the preceding methods may be used to isolate nucleic acids having a sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% homology to a nucleic acid sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29,

31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases thereof, and the sequences complementary thereto. Homology may be measured using BLASTN version 2.0 with the default parameters. For example, the homologous polynucleotides may have a coding sequence which is a naturally occurring allelic variant of one of the coding sequences described herein. Such allelic variants may have a substitution, deletion or addition of one or more nucleotides when compared to the nucleic acids of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 and 79 or the sequences complementary thereto.

[0077] Additionally, the above procedures may be used to isolate nucleic acids which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, or at least 70% homology to a polypeptide having the sequence of one of SEQ ID NOS: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters.

[0078] Another aspect of the present invention is an isolated or purified polypeptide comprising the sequence of one of SEQ ID NOS: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. As discussed above, such polypeptides may be obtained by inserting a nucleic acid encoding the polypeptide into a vector such that the coding sequence is operably linked to a sequence capable of driving the expression of the encoded polypeptide in a suitable host cell. For example, the expression vector may comprise a promoter, a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

[0079] Promoters suitable for expressing the polypeptide or fragment thereof in bacteria include the *E. coli.* lac or trp promoters, the lacI promoter, the lacZ promoter, the T3 promoter, the T7 promoter, the gpt promoter, the lambda P_R promoter, the lambda P_L promoter the trp promoter, promoters from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), and the acid phosphatase promoter. Fungal promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, LTRs from retroviruses, and the mouse metallothionein-I promoter. Other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses may also be used.

[0080] Mammalian expression vectors may also comprise an origin of replication, any necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. In some embodiments, DNA sequences derived from the SV40 splice and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

[0081] Vectors for expressing the polypeptide or fragment thereof in eukaryotic cells may also contain enhancers to increase expression levels. Enhancers are cis-acting elements of DNA, usually from about 10 to about 300 bp in length that act on a promoter to increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and the adenovirus enhancers.

[0082] In addition, the expression vectors preferably contain one or more selectable marker genes to permit selection of host cells containing the vector. Such selectable markers include genes encoding dihydrofolate reductase or genes conferring neomycin resistance for eukaryotic cell culture, genes conferring tetracycline or ampicillin resistance in *E. coli*, and the *S. cerevisiae* TRP1 gene.

[0083] In some embodiments, the nucleic acid encoding one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof. Optionally, the nucleic acid can encode a fusion polypeptide in which one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof is fused to heterologous peptides or polypeptides, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification.

[0084] The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is ligated to the desired position in the vector following digestion of the insert and the vector with appropriate restriction endonucleases. Alternatively, blunt ends in both the insert and the vector may be ligated. A variety of cloning techniques are disclosed in Ausubel et al. Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989, the entire disclosures of which are incorporated herein by reference. Such procedures and others are deemed to be within the scope of those skilled in the art.

[0085] The vector may be, for example, in the form of a plasmid, a viral particle, or a phage. Other vectors include chromosomal, nonchromosomal and synthetic DNA sequences, derivatives of SV40; bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. A variety of cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

[0086] Particular bacterial vectors which may be used include the commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017), pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden), GEM1 (Promega Biotec, Madison, Wis., USA) pQE70, pQE60, pQE-9 (Qiagen), pD10, psiX174 pBluescript II KS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene), ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pKK223-8 and pCM7. Particular eukaryotic vectors include pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, and pSVL (Pharmacia). However, any other vector may be used as long as it is replicable and viable in the host cell.

[0087] The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, mammalian cells, insect cells, or plant cells. As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as *E. coli*, Streptomyces, *Bacillus subtilis, Salmonella typhimurium* and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, fungal cells, such as yeast, insect cells such as CHO, COS or Bowes melanoma, and adenoviruses. The selection of an appropriate host is within the abilities of those skilled in the art.

[0088] The vector may be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene guns, or Ti-mediated gene transfer. Particular methods include calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).

[0089] Where appropriate, the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g., temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof.

[0090] Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment thereof can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps.

[0091] Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of

mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts (described by Gluzman, Cell, 23:175 (1981), and other cell lines capable of expressing proteins from a compatible vector, such as the C127, 3T3, CHO, HeLa and BHK cell lines.

[0092] The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Depending upon the host employed in a recombinant production procedure, the polypeptides produced by host cells containing the vector may be glycosylated or may be non-glycosylated. Polypeptides of the invention may or may not also include an initial methionine amino acid residue.

[0093] Alternatively, the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof can be synthetically produced by conventional peptide synthesizers. In other embodiments, fragments or portions of the polypeptides may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides.

[0094] Cell-free translation systems can also be employed to produce one of the polypeptides of SEQ ID Nos: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof using mRNAs transcribed from a DNA construct comprising a promoter operably linked to a nucleic acid encoding the polypeptide or fragment thereof. In some embodiments, the DNA construct may be linearized prior to conducting an in vitro transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.

[0095] The present invention also relates to variants of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. The term "variant" includes derivatives or analogs of these polypeptides. In particular, the variants may differ in amino acid sequence from the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination.

[0096] The variants may be naturally occurring or created in vitro. In particular, such variants may be created using genetic engineering techniques such as site directed mutagenesis, random chemical mutagenesis, Exonuclease III deletion procedures, and standard cloning techniques. Alternatively, such variants, fragments, analogs, or derivatives may be created using chemical synthesis or modification procedures.

[0097] Other methods of making variants are also familiar to those skilled in the art. These include procedures in which

nucleic acid sequences obtained from natural isolates are modified to generate nucleic acids which encode polypeptides having characteristics which enhance their value in industrial or laboratory applications. In such procedures, a large number of variant sequences having one or more nucleotide differences with respect to the sequence obtained from the natural isolate are generated and characterized. Preferably, these nucleotide differences result in amino acid changes with respect to the polypeptides encoded by the nucleic acids from the natural isolates.

[0098] For example, variants may be created using error prone PCR. In error prone PCR, PCR is performed under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product. Error prone PCR is described in Leung, D. W., et al., Technique, 1:11-15 (19 89) and Caldwell, R. C. & Joyce G. F., PCR Methods Applic., 2:28-33 (1992), the disclosure of which is incorporated herein by reference in its entirety. Briefly, in such procedures, nucleic acids to be mutagenized are mixed with PCR primers, reaction buffer, MgCl₂, MnCl₂, Taq polymerase and an appropriate concentration of dNTPs for achieving a high rate of point mutation along the entire length of the PCR product. For example, the reaction may be performed using 20 fmoles of nucleic acid to be mutagenized, 30 pmole of each PCR primer, a reaction buffer comprising 50 mM KCl, 10 mM Tris HCl (pH 8.3) and 0.01% gelatin, 7 mM MgCl₂, 0.5 mM MnCl₂, 5 units of Taq polymerase, 0.2 mM dGTP, 0.2 mM dATP, 1 mM dCTP, and 1 mM dTTP. PCR may be performed for 30 cycles of 94° C. for 1 min, 45° C. for 1 min, and 72° C. for 1 min. However, it will be appreciated that these parameters may be varied as appropriate. The mutagenized nucleic acids are cloned into an appropriate vector and the activities of the polypeptides encoded by the mutagenized nucleic acids is evaluated.

[0099] Variants may also be created using oligonucleotide directed mutagenesis to generate site-specific mutations in any cloned DNA segment of interest. Oligonucleotide mutagenesis is described in Reidhaar-Olson, J. F. & Sauer, R. T., et al., Science, 241:53-57 (1988), the disclosure of which is incorporated herein by reference in its entirety. Briefly, in such procedures a plurality of double stranded oligonucleotides bearing one or more mutations to be introduced into the cloned DNA are synthesized and inserted into the cloned DNA are recovered and the activities of the polypeptides they encode are assessed.

[0100] Another method for generating variants is assembly PCR. Assembly PCR involves the assembly of a PCR product from a mixture of small DNA fragments. A large number of different PCR reactions occur in parallel in the same vial, with the products of one reaction priming the products of another reaction. Assembly PCR is described in U.S. patent application Ser. No. 08/677,112, filed Jul. 9, 1997 and U.S. patent application Ser. No. 08/942,504, filed Oct. 31, 1997, the disclosures of which are incorporated herein by reference in their entireties.

[0101] Still another method of generating variants is sexual PCR mutagenesis. In sexual PCR mutagenesis, forced homologous recombination occurs between DNA molecules of different but highly related DNA sequence in

vitro, as a result of random fragmentation of the DNA molecule based on sequence homology, followed by fixation of the crossover by primer extension in a PCR reaction. Sexual PCR mutagenesis is described in Stemmer, W. P., PNAS, USA, 91:10747-10751 (1994), the disclosure of which is incorporated herein by reference. Briefly, in such procedures a plurality of nucleic acids to be recombined are digested with DNAse to generate fragments having an average size of 50-200 nucleotides. Fragments of the desired average size are purified and resuspended in a PCR mixture. PCR is conducted under conditions which facilitate recombination between the nucleic acid fragments. For example, PCR may be performed by resuspending the purified fragments at a concentration of 10-30 ng/ μ l in a solution of 0.2 mM of each dNTP, 2.2 mM MgCl2, 50 mM KCL, 10 mM Tris HCl, pH 9.0, and 0.1% Triton X-100. 2.5 units of Taq polymerase per 100 μ l of reaction mixture is added and PCR is performed using the following regime: 94° C. for 60 seconds, 94° C. for 30 seconds, 50-55° C. for 30 seconds, 72° C. for 30 seconds (30-45 times) and 72° C. for 5 minutes. However, it will be appreciated that these parameters may be varied as appropriate. In some embodiments, oligonucleotides may be included in the PCR reactions. In other embodiments, the Klenow fragment of DNA polymerase I may be used in a first set of PCR reactions and Taq polymerase may be used in a subsequent set of PCR reactions. Recombinant sequences are isolated and the activities of the polypeptides they encode are assessed.

[0102] Variants may also be created by in vivo mutagenesis. In some embodiments, random mutations in a sequence of interest are generated by propagating the sequence of interest in a bacterial strain, such as an *E. coli* strain, which carries mutations in one or more of the DNA repair pathways. Such "mutator" strains have a higher random mutation rate than that of a wild-type parent. Propagating the DNA in one of these strains will eventually generate random mutations within the DNA. Mutator strains suitable for use for in vivo mutagenesis are described in PCT Published Application WO 91/16427, the disclosure of which is incorporated herein by reference in its entirety.

[0103] Variants may also be generated using cassette mutagenesis. In cassette mutagenesis a small region of a double stranded DNA molecule is replaced with a synthetic oligonucleotide "cassette" that differs from the native sequence. The oligonucleotide often contains completely and/or partially randomized native sequence.

[0104] Recursive ensemble mutagenesis may also be used to generate variants. Recursive ensemble mutagenesis is an algorithm for protein engineering (protein mutagenesis) developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. Recursive ensemble mutagenesis is described in Arkin, A. P. and Youvan, D. C., PNAS, USA, 89:7811-7815 (1992), the disclosure of which is incorporated herein by reference in its entirety.

[0105] In some embodiments, variants are created using exponential ensemble mutagenesis. Exponential ensemble mutagenesis is a process for generating combinatorial libraries with a high percentage of unique and functional mutants, wherein small groups of residues are randomized in parallel

to identify, at each altered position, amino acids which lead to functional proteins. Exponential ensemble mutagenesis is described in Delegrave, S. and Youvan, D. C., Biotechnology Research, 11:1548-1552 (1993), the disclosure of which incorporated herein by reference in its entirety. Random and site-directed mutagenesis are described in Arnold, F. H., Current Opinion in Biotechnology, 4:450-455 (1993), the disclosure of which is incorporated herein by reference in its entirety.

[0106] In some embodiments, the variants are created using shuffling procedures wherein portions of a plurality of nucleic acids which encode distinct polypeptides are fused together to create chimeric nucleic acid sequences which encode chimeric polypeptides. Shuffling procedures are described in U.S. patent application Ser. No. 08/677,112, filed Jul. 9, 1996, U.S. patent application Ser. No. 08/942, 504, filed Oct. 31, 1997, U.S. Pat. No. 5,939,250, issued Aug. 17, 1999, and U.S. patent application Ser. No. 09/375, 605, filed Aug. 17, 1999, the disclosures of which are incorporated herein by reference in their entireties.

[0107] The variants of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 may be (i) variants in which one or more of the amino acid residues of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code.

[0108] Conservative substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the following replacements: replacements of an aliphatic amino acid such as Ala, Val, Leu and Ile with another aliphatic amino acid; replacement of a Ser with a Thr or vice versa; replacement of an acidic residue such as Asp and Glu with another acidic residue; replacement of a residue bearing an amide group, such as Asn and Gln, with another residue bearing an amide group; exchange of a basic residue such as Lys and Arg with another basic residue; and replacement of an aromatic residue such as Phe, Tyr with another aromatic residue.

[0109] Other variants are those in which one or more of the amino acid residues of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 includes a substituent group.

[0110] Still other variants are those in which the polypeptide is associated with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol).

[0111] Additional variants are those in which additional amino acids are fused to the polypeptide, such as a leader sequence, a secretory sequence, a proprotein sequence or a sequence which facilitates purification, enrichment, or stabilization of the polypeptide.

[0112] In some embodiments, the fragments, derivatives and analogs retain the same biological function or activity as

the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, and 80. In other embodiments, the fragment, derivative, or analog includes a proprotein, such that the fragment, derivative, or analog can be activated by cleavage of the proprotein portion to produce an active polypeptide.

[0113] Another aspect of the present invention are polypeptides or fragments thereof which have at least 70%, at least 80%, at least 85%, at least 90%, at least 95%, or more than 95% homology to one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. Homology may be determined using a program, such as FASTA version 3.0t78 with the default parameters, which aligns the polypeptides or fragments being compared and determines the extent of amino acid identity or similarity between them. It will be appreciated that amino acid "homology" includes conservative amino acid substitutions such as those described above.

[0114] The polypeptides or fragments having homology to one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof may be obtained by isolating the nucleic acids encoding them using the techniques described above.

[0115] Alternatively, the homologous polypeptides or fragments may be obtained through biochemical enrichment or purification procedures. The sequence of potentially homologous polypeptides or fragments may be determined by proteolytic digestion, gel electrophoresis and/or microse-quencing. The sequence of the prospective homologous polypeptide or fragment can be compared to one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof using a program such as FASTA version 3.0t78 with the default parameters.

[0116] The polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof invention may be used in a variety of applications. For example, the polypeptides or fragments thereof may be used to catalyze biochemical reactions. In particular, the polypeptides of SEQ ID NOs: 14 and 46, which have homology to glutamate semialdehyde amino transferase, or fragments thereof, may be used to catalyze the synthesis of 5-aminolevulinate from S-4-amino-5-oxopentanoate. The polypeptides of SEQ ID NOs: 26 and 58, which have homology to triose phosphate isomerase, or fragments thereof, may be used to catalyze the synthesis of glycerone phosphate from D-glyceraldehyde 3-phosphate. The polypeptides of SEQ ID NOs: 32 and 64, which have homology to dCMP deaminase, or fragments thereof, may be used to catalyze the reaction of

deoxyctidine and water to produce deoxyuridine and ammonia. The polypeptides of SEQ ID NOs: 38 and 72, which have homology to the MenA protein, or fragments thereof, may be used to catalyze the synthesis of menaquinone. The polypeptide of SEQ ID NO: 80, which has homology to glucose-1-dehydrogenase, may be used to catalyze the synthesis of D-glucono-1,5-lacctone from D-glucose.

[0117] The polypeptide of SEQ ID NO: 10, which has homology to lysyl tRNA synthetase, or fragments thereof, may be used to identify compounds capable of specifically inhibiting the growth of *Cenarchaeum symbiosis*, since tRNA synthetases are attractive targets for agents which inhibit growth.

[0118] Agents which specifically inhibit the activity of the lysyl tRNA synthetase from *Cenarchaeum symbiosum* may be identified using a variety of methods known to those skilled in the art. For example, a plurality of agents may be generated using combinatorial chemistry or recombinant DNA libraries encoding a large number of short peptides. The lysyl tRNA synthetases from *Cenarchaeum symbiosum* and control organisms are contacted with the agents and those agents which bind to the lysyl tRNA synthetase from *Cenarchaeum symbiosum* but not to the enzyme from the control organisms are identified. *Cenarchaeum symbiosum* is then contacted with the identified agents to determine which agents inhibit the organism's growth.

[0119] The polypeptides of SEQ ID NOs: 28 and 60, which have homology to the TATA box binding protein, or fragments thereof, may be used to identify promoters in nucleic acids from *Cenarchaeum symbiosis*. In such procedures, the polypeptide or fragment thereof is allowed to contact the nucleic acid and binding of the polypeptide or fragment thereof to the nucleic acid is detected. Binding may be detected by performing a gel shift analysis, a nuclease protection analysis, or by detecting the retention of the nucleic acid on a column matrix having the TATA box binding protein, or a fragment thereof, affixed thereto.

[0120] Compounds which specifically inhibit the binding of the TATA box binding protein of *Cenarchaeutm symbiosis* to promoters may also be used to inhibit growth of the organism. Such compounds may be identified as described above.

[0121] Similarly, agents which specifically inhibit the activity of the polypeptides of SEQ ID NOs: 34 and 66, which have homology to RNA helicase, may be used to inhibit the growth of *Cenarchaeum symbiosis*. Such agents may be identified as described above.

[0122] The polypeptides of SEQ ID NOs: 30 and 62, which have homology to DNA polymerase I, or fragments thereof, may be used to insert a detectable label into a nucleic acid or to generate blunt ends on nucleic acids which have been digested with a restriction endonuclease.

[0123] The polypeptides of SEQ ID NOs: 42 and 76, which have homology to site specific DNA methyltranseferases, or fragments thereof, may be used in procedures in which it is desirable to protect nucleic acid sequences from digestion with restriction endonucleases. For example, a nucleic acid sequence having one or more restriction sites therein may be treated with the polypeptides of SEQ ID NOs: 42 or 76 prior to the addition of linkers to the nucleic acid. Thereafter, the linkers may be digested with the restriction enzyme, while the sites in the remainder of the nucleic acid are protected from digestion.

[0124] The polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof, may also be used to generate antibodies which bind specifically to the polypeptides or fragments. The resulting antibodies may be used to determine whether a biological sample contains Cenarchaeum symbiosum. In such procedures, a biological sample is contacted with an antibody capable of specifically binding to one of the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. The ability of the biological sample to bind to the antibody is then determined. For example, binding may be determined by labeling the antibody with a detectable label such as a fluorescent agent, an enzymatic label, or a radioisotope. Alternatively, binding of the antibody to the sample may be detected using a secondary antibody having such a detectable label thereon. A variety of assay protocols which may be used to detect the presence of Cenarchaeum symbiosum in a sample are familiar to those skilled in the art. Particular assays include ELISA assays, sandwich assays, radioimmunoassays, and Western Blots.

[0125] Polyclonal antibodies generated against the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies which may bind to the whole native polypeptide. Such antibodies can then be used to isolate the polypeptide from cells expressing that polypeptide.

[0126] For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-497, the disclosure of which is incorporated herein by reference), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72, the disclosure of which is incorporated herein by reference), and the EBV-hybridoma technique (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96, the disclosure of which is incorporated herein by reference).

[0127] Techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778, the disclosure of which is incorporated herein by reference) can be adapted to produce single chain antibodies to the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at

least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. Alternatively, transgenic mice may be used to express humanized antibodies to these polypeptides or fragments thereof.

[0128] Antibodies generated against the polypeptides of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74 76, 78, and 80 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof may be used in screening for similar polypeptides from other organisms and samples. In such techniques, polypeptides from the organism are contacted with the antibody and those polypeptides which specifically bind the antibody are detected. Any of the procedures described above may be used to detect antibody binding. One such screening assay is described in "Methods for Measuring Cellulase Activities", *Methods in Enzymology*, Vol 160, pp. 87-116, which is hereby incorporated by reference in its entirety.

[0129] As used herein the term "nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77" encompasses the nucleotide sequences of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, fragments of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, nucleotide sequences homologous to SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or homologous to fragments of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, and sequences complementary to all of the preceding sequences. The fragments include portions of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77. Preferably, the fragments are novel fragments. Homologous sequences and fragments of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 refer to a sequence having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75% or 70% homology to these sequences. Homology may be determined using any of the computer programs and parameters described herein, including BLASTN version 2.0 with the default parameters. Homologous sequences also include RNA sequences in which uridines replace the thymines in the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77. The homologous sequences may be obtained using any of the procedures described herein or may result from the correction of a sequencing error. It will be appreciated that the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 can be represented in the traditional single character format (See the inside back cover of Stryer, Lubert. *Biochemistry*, 3rd edition. W. H Freeman & Co., New York.) or in any other format which records the identity of the nucleotides in a sequence.

[0130] As used herein the term "polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78" encompasses the polypeptide sequence of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 which are encoded by the extended cDNAs of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, polypeptide sequences homologous to the polypeptides of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78, or fragments of any of the preceding sequences. Homologous polypeptide sequences refer to a polypeptide sequence having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75% or 70% homology to one of the polypeptide sequences of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. Homology may be determined using any of the computer programs and parameters described herein, including FASTA version 3.0t78 with the default parameters or with any modified parameters. The homologous sequences may be obtained using any of the procedures described herein or may result from the correction of a sequencing error. The polypeptide fragments comprise at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of the polypeptides of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. Preferably, the fragments are novel fragments. It will be appreciated that the polypeptide codes of the SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 can be represented in the traditional single character format or three letter format (See the inside back cover of Starrier, Lubert. Biochemistry, 3rd edition. W. H Freeman & Co., New York.) or in any other format which relates the identity of the polypeptides in a sequence.

[0131] It will be appreciated by those skilled in the art that the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 can be stored, recorded, and manipulated on any medium which can be read and accessed by a computer. As used herein, the words "recorded" and "stored" refer to a process for storing information on a computer medium. A skilled artisan can readily adopt any of the presently known methods for recording information on a computer readable medium to generate manufactures comprising one or more of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79,

3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77, one or more of the polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, or 20 nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77.

[0132] Another aspect of the invention is a computer readable medium having recorded thereon one or more of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, and 79. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, or 15 of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, and 79.

[0133] Another aspect of the present invention is a computer readable medium having recorded thereon one or more of the nucleic acid codes of SEQ ID NOs. 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, or 15 of SEQ ID NOs. 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77.

[0134] Another aspect of the present invention is a computer readable medium having recorded thereon one or more of the polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. Another aspect of the present invention is a computer readable medium having recorded thereon one or more of the the polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80. Another aspect of the present invention is a computer readable medium having recorded thereon one or more of the the polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80. Another aspect of the present invention is a computer readable medium having recorded thereon one or more of the the polypeptide codes of SEQ ID NOS. 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0135] Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, or 20 polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, or 15 polypeptide codes of SEQ ID NOS. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, and 80. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, or 15 polypeptide codes of SEQ ID NOS. 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0136] Computer readable media include magnetically readable media, optically readable media, electronically readable media and magnetic/optical media. For example, the computer readable media may be a hard disk, a floppy disk, a magnetic tape, CD-ROM, Digital Versatile Disk (DVD), Random Access Memory (RAM), or Read Only Memory (ROM) as well as other types of other media known to those skilled in the art.

[0137] Embodiments of the present invention include systems, particularly computer systems which store and

manipulate the sequence information described herein. One example of a computer system 100 is illustrated in block diagram form in FIG. 3. As used herein, "a computer system" refers to the hardware components, software components, and data storage components used to analyze the nucleotide sequences of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the sequences of the polypeptide codes of 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. The computer system 100 preferably includes a processor for processing, accessing and manipulating the sequence data. The processor 105 can be any well-known type of central processing unit, such as the Pentium III from Intel Corporation, or similar processor from Sun, Motorola, Compaq or International Business Machines.

[0138] Preferably, the computer system **100** is a general purpose system that comprises the processor **105** and one or more internal data storage components **110** for storing data, and one or more data retrieving devices for retrieving the data storage on the data storage components. A skilled artisan can readily appreciate that any one of the currently available computer systems are suitable.

[0139] In one particular embodiment, the computer system 100 includes a processor 105 connected to a bus which is connected to a main memory 115 (preferably implemented as RAM) and one or more internal data storage devices 110, such as a hard drive and/or other computer readable media having data recorded thereon. In some embodiments, the computer system 100 further includes one or more data retrieving device 118 for reading the data stored on the internal data storage devices 110.

[0140] The data retrieving device **118** may represent, for example, a floppy disk drive, a compact disk drive, a magnetic tape drive, etc. In some embodiments, the internal data storage device **110** is a removable computer readable medium such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded thereon. The computer system **100** may advantageously include or be programmed by appropriate software for reading the control logic and/or the data from the data storage component once inserted in the data retrieving device.

[0141] The computer system 100 includes a display 120 which is used to display output to a computer user. It should also be noted that the computer system 100 can be linked to other computer systems 125a-c in a network or wide area network to provide centralized access to the computer system 100.

[0142] Software for accessing and processing the nucleotide sequences of the nucleic acid codes of SEQ ID Nos.1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 (such as search tools, compare tools, and modeling tools etc.) may reside in main memory **115** during execution.

[0143] In some embodiments, the computer system **100** may further comprise a sequence comparer for comparing

the above-described nucleic acid codes of SEQ ID Nos. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 stored on a computer readable medium to reference nucleotide or polypeptide sequences stored on a computer readable medium. A "sequence comparer" refers to one or more programs which are implemented on the computer system 100 to compare a nucleotide sequence with other nucleotide sequences and/or compounds stored within the data storage means. For example, the sequence comparer may compare the nucleotide sequences of the nucleic acid codes of SEQ ID Nos. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 stored on a computer readable medium to reference sequences stored on a computer readable medium to identify homologies or structural motifs. Various sequence comparer programs identified elsewhere in this patent specification are particularly contemplated for use in this aspect of the invention. Protein and/or nucleic acid sequence homologies may be evaluated using any of the variety of sequence comparison algorithms and programs known in the art. Such algorithms and programs include, but are by no means limited to. TBLASTN, BLASTN, BLASTP, FASTA, TFASTA, and CLUSTALW (Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8):2444-2448; Altschul et al., 1990, J. Mol. Biol. 215(3):403-410; Thompson et al., 1994, Nucleic Acids Res. 22(2):4673-4680; Higgins et al., 1996, Methods Enzymol. 266:383-402; Altschul et al., 1990, J. Mol. Biol. 215(3):403-410; Altschul et al., 1993, Nature Genetics 3:266-272).

[0144] In one embodiment, protein and nucleic acid sequence homologies are evaluated using the Basic Local Alignment Search Tool ("BLAST") which is well known in the art (see, e.g., Karlin and Altschul, 1990, *Proc. Natl. Acad. Sci. USA* 87:2267-2268; Altschul et al., 1990, *J Mol. Biol.* 215:403-410; Altschul et al., 1993, *Nature Genetics* 3:266-272; Altschul et al, 1997, *Nuc. Acids Res.* 25:3389-3402). In particular, five specific BLAST programs are used to perform the following task:

- **[0145]** (1) BLASTP and BLAST3 compare an amino acid query sequence against a protein sequence database;
- **[0146]** (2) BLASTN compares a nucleotide query sequence against a nucleotide sequence database;
- **[0147]** (3) BLASTX compares the six-frame conceptual translation products of a query nucleotide sequence (both strands) against a protein sequence database;
- **[0148]** (4) TBLASTN compares a query protein sequence against a nucleotide sequence database translated in all six reading frames (both strands); and
- **[0149]** (5) TBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.

[0150] The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as "high-scoring segment pairs," between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. High-scoring segment pairs are preferably identified (i.e., aligned) by means of a scoring matrix, many of which are known in the art. Preferably, the scoring matrix used is the BLOSUM62 matrix (Gonnet et al, 1992, Science 256:1443-1445. Henikoff and Henikoff, 1993, Proteins 17:49-61). Less preferably, the PAM or PAM250 matrices may also be used (see, e.g., Schwartz and Dayhoff, eds., 1978, Matrices for Detecting Distance Relationships: Atlas of Protein Sequence and Structure, Washington: National Biomedical Research Foundation). BLAST programs are accessible through the U.S. National Library of Medicine, e.g., at www.ncbi.nlm.nih.gov.

[0151] The BLAST programs evaluate the statistical significance of all high-scoring segment pairs identified, and preferably selects those segments which satisfy a userspecified threshold of significance, such as a user-specified percent homology. Preferably, the statistical significance of a high-scoring segment pair is evaluated using the statistical significance formula of Karlin (see, e.g., Karlin and Altschul, 1990, *Proc. Natl. Acad. Sci. USA* 87:2267-2268).

[0152] The parameters used with the above algorithms may be adapted depending on the sequence length and degree of homology studied. In some embodiments, the parameters may be the default parameters used by the algorithms in the absence of instructions from the user.

[0153] FIG. 4 is a flow diagram illustrating one embodiment of a process 200 for comparing a new nucleotide or protein sequence with a database of sequences in order to determine the homology levels between the new sequence and the sequences in the database. The database of sequences can be a private database stored within the computer system 100, or a public database such as GEN-BANK that is available through the Internet.

[0154] The process 200 begins at a start state 201 and then moves to a state 202 wherein the new sequence to be compared is stored to a memory in a computer system 100. As discussed above, the memory could be any type of memory, including RAM or an internal storage device.

[0155] The process 200 then moves to a state 204 wherein a database of sequences is opened for analysis and comparison. The process 200 then moves to a state 206 wherein the first sequence stored in the database is read into a memory on the computer. A comparison is then performed at a state 210 to determine if the first sequence is the same as the second sequence. It is important to note that this step is not limited to performing an exact comparison between the new sequence and the first sequence in the database. Well-known methods are known to those of skill in the art for comparing two nucleotide or protein sequences, even if they are not identical. For example, gaps can be introduced into one sequence in order to raise the homology level between the two tested sequences. The parameters that control whether gaps or other features are introduced into a sequence during comparison are normally entered by the user of the computer system.

[0156] Once a comparison of the two sequences has been performed at the state 210, a determination is made at a

decision state **210** whether the two sequences are the same. Of course, the term "same" is not limited to sequences that are absolutely identical. Sequences that are within the homology parameters entered by the user will be marked as "same" in the process **200**.

[0157] If a determination is made that the two sequences are the same, the process 200 moves to a state 214 wherein the name of the sequence from the database is displayed to the user. This state notifies the user that the sequence with the displayed name fulfills the homology constraints that were entered. Once the name of the stored sequence is displayed to the user, the process 200 moves to a decision state 218 wherein a determination is made whether more sequences exist in the database. If no more sequences exist in the database, then the process 200 terminates at an end state 220. However, if more sequences do exist in the database, then the process 200 moves to a state 224 wherein a pointer is moved to the next sequence in the database so that it can be compared to the new sequence. In this manner, the new sequence is aligned and compared with every sequence in the database.

[0158] It should be noted that if a determination had been made at the decision state **212** that the sequences were not homologous, then the process **200** would move immediately to the decision state **218** in order to determine if any other sequences were available in the database for comparison.

[0159] Accordingly, one aspect of the present invention is a computer system comprising a processor, a data storage device having stored thereon a nucleic acid code of SEQ ID Nos. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78, a data storage device having retrievably stored thereon reference nucleotide sequences or polypeptide sequences to be compared to the nucleic acid code of SEQ ID Nos.1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 and a sequence comparer for conducting the comparison. The sequence comparer may indicate a homology level between the sequences compared or identify structural motifs in the above described nucleic acid code of SEQ ID Nos. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 or it may identify structural motifs in sequences which are compared to these nucleic acid codes and polypeptide codes. In some embodiments, the data storage device may have stored thereon the sequences of at least 2, 5, 10, 15, 20, 25, 30 or 40 or more of the nucleic acid codes of SEQ ID Nos. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0160] Another aspect of the present invention is a method for determining the level of homology between a nucleic acid code of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 and a reference nucleotide sequence or polypeptide sequence, comprising the steps of reading the nucleic acid code or the polypeptide code and the reference nucleotide or polypeptide sequence through the use of a computer program which determines homology levels and determining homology between the nucleic acid code or polypeptide code and the reference nucleotide or polypeptide sequence with the computer program. The computer program may be any of a number of computer programs for determining homology levels, including those specifically enumerated herein, including BLAST2N or BLASTN with the default parameters or with any modified parameters. The method may be implemented using the computer systems described above. The method may also be performed by reading at least 2, 5, 10, 15, 20, 25, 30 or 40 or more of the above described nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 through use of the computer program and determining homology between the nucleic acid codes or polypeptide codes and reference nucleotide sequences or polypeptide sequences.

[0161] FIG. 5 is a flow diagram illustrating one embodiment of a process 250 in a computer for determining whether two sequences are homologous. The process 250 begins at a start state 252 and then moves to a state 254 wherein a first sequence to be compared is stored to a memory. The second sequence to be compared is then stored to a memory at a state 256. The process 250 then moves to a state 260 wherein the first character in the first sequence is read and then to a state 262 wherein the first character of the second sequence is read. It should be understood that if the sequence is a nucleotide sequence, then the character would normally be either A, T, C, G or U. If the sequence is a protein sequence, then it is preferably in the single letter amino acid code so that the first and sequence sequences can be easily compared.

[0162] A determination is then made at a decision state 264 whether the two characters are the same. If they are the same, then the process 250 moves to a state 268 wherein the next characters in the first and second sequences are read. A determination is then made whether the next characters are the same. If they are, then the process 250 continues this loop until two characters are not the same. If a determination is made that the next two characters are not the same, the process 250 moves to a decision state 274 to determine whether there are any more characters either sequence to read.

[0163] If there aren't any more characters to read, then the process 250 moves to a state 276 wherein the level of

homology between the first and second sequences is displayed to the user. The level of homology is determined by calculating the proportion of characters between the sequences that were the same out of the total number of sequences in the first sequence. Thus, if every character in a first 100 nucleotide sequence aligned with a every character in a second sequence, the homology level would be 100%.

[0164] Alternatively, the computer program may be a computer program which compares the nucleotide sequences of the nucleic acid codes of the present invention, to reference nucleotide sequences in order to determine whether the nucleic acid code of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 differs from a reference nucleic acid sequence at one or more positions. Optionally such a program records the length and identity of inserted, deleted or substituted nucleotides with respect to the sequence of either the reference polynucleotide or the nucleic acid code of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77. In one embodiment, the computer program may be a program which determines whether the nucleotide sequences of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 contain a single nucleotide polymorphism (SNP) with respect to a reference nucleotide sequence.

[0165] Accordingly, another aspect of the present invention is a method for determining whether a nucleic acid code of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 differs at one or more nucleotides from a reference nucleotide sequence comprising the steps of reading the nucleic acid code and the reference nucleotide sequence through use of a computer program which identifies differences between nucleic acid sequences and identifying differences between the nucleic acid code and the reference nucleotide sequence with the computer program. In some embodiments, the computer program is a program which identifies single nucleotide polymorphisms. The method may be implemented by the computer systems described above and the method illustrated in FIG. 6. The method may also be performed by reading at least 2, 5, 10, 15, 20, 25, 30, or 40 of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and the reference nucleotide sequences through the use of the computer program and identifying differences between the nucleic acid codes and the reference nucleotide sequences with the computer program.

[0166] In other embodiments the computer based system may further comprise an identifier for identifying features within the nucleotide sequences of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0167] An "identifier" refers to one or more programs which identifies certain features within the above-described nucleotide sequences of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. In one embodiment, the identifier may comprise a program which identifies an open reading frame in the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77.

[0168] FIG. 7 is a flow diagram illustrating one embodiment of an identifier process 300 for detecting the presence of a feature in a sequence. The process 300 begins at a start state 302 and then moves to a state 304 wherein a first sequence that is to be checked for features is stored to a memory 115 in the computer system 100. The process 300 then moves to a state 306 wherein a database of sequence features is opened. Such a database would include a list of each feature's attributes along with the name of the feature. For example, a feature name could be "Initiation Codon" and the attribute would be "ATG". Another example would be the feature name "TAATAA Box" and the feature attribute would be "TAATAA". An example of such a database is produced by the University of Wisconsin Genetics Computer Group (www.gcg.com). Alternatively, the features may be structural polypeptide motifs such as alpha helices, beta sheets, or functional polypeptide motifs such as enzymatic active sites, helix-turn-helix motifs or other motifs known to those skilled in the art.

[0169] Once the database of features is opened at the state 306, the process 300 moves to a state 308 wherein the first feature is read from the database. A comparison of the attribute of the first feature with the first sequence is then made at a state 310. A determination is then made at a decision state 316 whether the attribute of the feature was found in the first sequence. If the attribute was found, then the process 300 moves to a state 318 wherein the name of the found feature is displayed to the user.

[0170] The process 300 then moves to a decision state 320 wherein a determination is made whether move features exist in the database. If no more features do exist, then the process 300 terminates at an end state 324. However, if more features do exist in the database, then the process 300 reads the next sequence feature at a state 326 and loops back to the state 310 wherein the attribute of the next feature is compared against the first sequence.

[0171] It should be noted, that if the feature attribute is not found in the first sequence at the decision state 316, the process 300 moves directly to the decision state 320 in order to determine if any more features exist in the database.

[0172] Accordingly, another aspect of the present invention is a method of identifying a feature within the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and

78 comprising reading the nucleic acid code(s) or polypeptide code(s) through the use of a computer program which identifies features therein and identifying features within the nucleic acid code(s) with the computer program. In one embodiment, computer program comprises a computer program which identifies open reading frames. The method may be performed by reading a single sequence or at least 2, 5, 10, 15, 20, 25, 30, or 40 of the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 through the use of the computer program and identifying features within the nucleic acid codes or polypeptide codes with the computer program.

The nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, [0173] 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 may be stored and manipulated in a variety of data processor programs in a variety of formats. For example, the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 may be stored as text in a word processing file, such as MicrosoftWORD or WORDPER-FECT or as an ASCII file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE. In addition, many computer programs and databases may be used as sequence comparers, identifiers, or sources of reference nucleotide sequences or polypeptide sequences to be compared to the nucleic acid codes of SEO ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78. The following list is intended not to limit the invention but to provide guidance to programs and databases which are useful with the nucleic acid codes of SEQ ID NOs. 1, 2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 or the polypeptide codes of SEQ ID NOs. 6, 10, 14, 26, 28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

[0174] The programs and databases which may be used include, but are not limited to: MacPattern (EMBL), DiscoveryBase (Molecular Applications Group), GeneMine (Molecular Applications Group), Look (Molecular Applications Group), MacLook (Molecular Applications Group), BLAST and BLAST2 (NCBI), BLASTN and BLASTX (Altschul et al, *J. Mol. Biol.* 215: 403 (1990)), FASTA (Pearson and Lipman, *Proc. Natl. Acad. Sci. USA*, 85: 2444 (1988)), FASTDB (Brutlag et al. Comp. App. Biosci. 6:237-245, 1990), Catalyst (Molecular Simulations Inc.), Catalyst/

SHAPE (Molecular Simulations Inc.), Cerius².DBAccess (Molecular Simulations Inc.), HypoGen (Molecular Simulations Inc.), Insight II, (Molecular Simulations Inc.), Discover (Molecular Simulations Inc.), CHARMm (Molecular Simulations Inc.), Felix (Molecular Simulations Inc.), Del-Phi, (Molecular Simulations Inc.), QuanteMM, (Molecular Simulations Inc.), Homology (Molecular Simulations Inc.), Modeler (Molecular Simulations Inc.), ISIS (Molecular Simulations Inc.), Quanta/Protein Design (Molecular Simulations Inc.), WebLab (Molecular Simulations Inc.), WebLab Diversity Explorer (Molecular Simulations Inc.), Gene Explorer (Molecular Simulations Inc.), SeqFold (Molecular Simulations Inc.), the MDL Available Chemicals Directory database, the MDL Drug Data Report data base, the Comprehensive Medicinal Chemistry database, Derwents's World Drug Index database, the BioByteMasterFile database, the Genbank database, and the Genseqn database. Many other programs and data bases would be apparent to one of skill in the art given the present disclosure.

[0175] Motifs which may be detected using the above programs include sequences encoding leucine zippers, helix-turn-helix motifs, glycosylation sites, ubiquitination sites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.

[0176] The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples.

[0177] In order to begin the physiological characterization of *Cenarchaeum symbiosum*, it was necessary to obtain enriched preparations of *Cenarchaeum symbiosum* for use in the construction of genomic DNA libraries in fosmid based vectors. Genomic DNA libraries were constructed from two enriched preparations using the methods described in Example 1 below.

EXAMPLE 1

Enrichment of *Cenarchaeum symbiosum* Cells in Samples Obtained from *Axinella Mexicana*

[0178] Enriched preparations of *Cenarchaeum symbiosum* for use in the preparation of the first fosmid genomic DNA library were obtained essentially as described in Preston, C. M. et al. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: *Cenarchaeum symbiosum* gen. nov., sp. nov. *Proc. Natl. Acad. Sci.* USA 93, 6241-6246, the disclosure of which is incorporated herein by reference. Briefly, a small individual of *A. mexicana* was incubated in calcium- and magnesium-free artificial seawater (ASW) containing 0.25 mg/ml Pronase. The tissue was then homogenized and enriched for archaeal cells by differential centrifugation.

[0179] Enriched preparations of *Cenarchaeum symbiosum* for use in preparing the second fosmid genomic DNA library were obtained from a different sponge individual using the following improved enrichment procedure. A small individual of *A. mexicana* was incubated in calcium- and magnesium-free artificial seawater (460 mm NaCl, 11 mM KCl, 7 mM Na₂SO₄, 2 mM NaHCO₃) containing 0.25 mg/ml Pronase at room temperature for one hour. The sponge tissue

was rinsed in artificial seawater and homogenized in a blender. Large particles and spicules were removed by low-speed centrifugation (4000 rpm, Sorvall GSA rotor at 4° C.). The supernatant was next centrifuged at 5000 rpm for 5 min. at 4° C. to remove large sponge cells, and the resulting supernatant was centrifuged at 10,000 rpm in a GSA rotor at 4° C. for 20 min. to collect the Cenarchaeum symbiosum cells. Following centrifugation, the recovered cell fraction containing Cenarchaeum symbiosum was further incubated for 1 hr at 4° C. in 10 mM Tris/HCl pH 8 and 200 mM EDTA. The cells were then pelleted and subsequently purified on a 15% Percoll (Sigma) cushion in artificial sea water centrifuged at 2500 rpm in a Beckman SS34 rotor. Archaeal cells banded in the light, upper fraction after centrifugation. This cell fraction was washed in ASW and resuspended in TE buffer (10 mM TrisHCl pH 8, 0.1 mM EDTA). The additional incubation step was found to increase the lysis of sponge cells, which resulted in an enhanced separation of archaeal and eukaryotic cells in the percoll gradient.

[0180] Quantitative hybridization experiments were performed as described in DeLong, E. F. 1992. Archaea in coastal marine environments. *Proc. Natl. Acad. Sci.* 89, 5685-5689, the disclosure of which is incorporated herein by reference, using an oligonucleotide specific for archaea having the sequence GTGCTCCCCCGCCAATTCCT (SEQ ID NO: 115). These hybridization experiments indicated that 25% to 30% of the total rRNA from this fraction was derived from archaea.

[0181] The enriched cell preparations were then utilized to construct fosmid libraries as described in Example 2 below.

EXAMPLE 2

Construction of Fosmid Libraries

[0182] DNA was extracted from the enriched preparations of Example 1 and inserted into fosmids as described in Preston, C. M. et al. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93, 6241-6246 and Stein, J. L. et al. 1996. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591-599, the disclosures of which are incorporated herein by reference. A vertical cross section of sponge (0.5 g) was mechanically dissociated in 0.22 μ m filtered, autoclaved seawater using a tissue homogenizer. Cell lysis was accomplished by incubating the dissociated cells in 1 mg of lysozyme per ml for 30 min. at 37° C. followed by an incubation for 30 min. at 55° C. with 0.5 mg of proteinase K per ml and 1% SDS. The tubes were finally placed in a boiling water bath for 60 sec to complete lysis. The protein fraction was removed with two extractions with phenol:chloroform:isoamyl alcohol (50:49:1), pH 8.0, followed by a chloroform: isoamyl alcohol (24:1) extraction. Nucleic acids were ethanol-precipitated and resuspended in TE buffer (10 mM Tris.HCl/ mM Na₂-EDTA, pH 8.0). Approximately 5 μ g of DNA was purified by CsCl equilibrium density gradiant ultracentriguation on a Beckman Optima tabletop ultracentrifuge using a TLA100 rotor.

[0183] The genomic DNA obtained above was inserted into fosmids as follows. The genomic DNA was partially digested with Sau3AI (Promega) and treated with heat-labile

phosphatase (HK phosphatase; Epicentre). The partially digested genomic DNA was ligated with pFOS (See U. J. Kim et al., Nucleic Acids Res. 20:1083-1085 (1992), the disclosure of which is incorporated herein by reference) which had previously been digested with AatII, phosphatase treated (HK phosphatase), and subsequently digested with BamHI. The ligation mixture was used for in vitro packaging with the Gigapack XL packaging system (Stratagene) selecting for DNA inserts of 35 to 45 kb. The phage particles were transfected into *E. coli* DH10B (Bethesda Research LaboratoriesP and the cells were spread onto LB plates supplemented with 12.5 μ g/ml chloramphenicol.

EXAMPLE 3

Identification of Fosmids Containing the *Cenarchaeum symbiosum* rRNA Operon

[0184] The fosmid libraries constructed above were screened to identify clones containing the rRNA operon. PCR reactions were conducted on the library using primers known to amplify the rRNA operon.

[0185] The first fosmid library yielded seven unique clones, out of a total of 10,236 recombinant fosmids, which contained the *Cenarchaeum symbiosum* rRNA operon. The second fosmid library yielded eight unique clones, out of a total of 2100 recombinant fosmids, which contained the *Cenarchaeum symbiosum* rRNA operon.

[0186] The sequences of the 16S rRNA genes in each of the 15 fosmids containing the *Cenarchaeum symbiosum* rRNA operon were determined. The sequences of the small subunit rRNA genes of these 15 fosmids exhibited variations with respect to one another. Ten of the fosmids contained a small subunit rRNA gene having the sequence of the 16S rRNA gene in the insert of SEQ ID NO: 1, while the remaining fosmids contained a small subunit rRNA gene having the sequence of the 16S rRNA gene in the insert of SEQ ID NO: 2. As discussed in more detail below, the differences in the sequences of the rRNA genes may be used to determine whether a sample contains *Cenarchaeum symbiosum* variant A or *Cenarchaeum symbiosum* variant B.

[0187] In addition to determining the sequences of the rRNA genes, the sequences adjacent to the rRNA genes were also determined.

EXAMPLE 4

Fosmid Sequencing

[0188] Partial restriction enzyme digests were conducted on two purified fosmids, fosmid 101G10 (which contains the variant A sequence) and fosmid 60A5 (which contains the variant B sequence). The partially digested DNA was used to construct plasmid libraries containing inserts of 1-2 kb. The resulting plasmids were sequenced using Applied Biosystems (ABI, Foster City, Calif.) Prism Dye-terminator FS reaction mix. Direct sequencing from fosmids was used for gap filling and resequencing to ensure accuracy. Fosmid sequencing was performed by using DNA from a single 3 ml overnight culture purified on an Autogen 740 automated plasmid isolation system. Each reaction consisted of one preparation of DNA directly resuspended by the addition of $16 \,\mu l H_2O$, 8 μl oligonucleotide primer (1.4 pmol/ μl) and 16 μl ABI Prism Dye-terminator FS reaction mix. Cycle sequencing was performed with a 96° C. 3 min. preincubation followed by 25 cycles of the sequence 96° C. sec./50° C. sec./60° C. 4 min. and a 5 min. post-cycling incubation at 60° C. Sequencing reaction products were analyzed on ABI 377 Prism Sequencers.

[0189] The complete sequences of the *Cenarchaeum symbiosum* derived inserts in the two fosmids are provided in the accompanying sequence listing as SEQ ID NO: 1 (fosmid 101G10) and SEQ ID NO: 2 (fosmid 60A5). The insert of fosmid 101G10 (SEQ ID NO: 1, designated variant A) was 32,998 bp and was syntenic over ca. 28 kbp with the 42,432 bp insert of fosmid 60A5 (SEQ ID NO:2, designated variant B). Analysis of the common 28 kbp region is shown in **FIG.** 1.

[0190] Although the sequences of both fosmids could be aligned unambiguously over most of the overlapping region, four large insertion/deletions ranging in size from 142 bp to 1994 bp were identified between positions 20,500 and 25,800. The longest insertion contained a repetitive element of 1784 bp, that was found in the sequence of SEQ ID NO: 1 between menA and ORF05. It was composed of a 3-fold direct repeat of 575 bp (rep1 through 3 in **FIG. 1**), with repeats exhibiting only minor sequence variation (95.8% to 98.7% identity).

[0191] A segment of 56 bp at the start of this repeat was also found adjacent to the 3' terminus of the third direct repeat. No obvious structural or sequence similarities to known repeats or mobile genetic elements from other organisms were identified within the repeat sequence. Its occurrence in only one variant and its relatively low G+C content relative to the rest of the fragment suggest that it may have been acquired by horizontal transfer from a different genetic context.

[0192] The sequenced regions contained several open reading frames or RNA encoding sequences. Some of the identified open reading frames encode proteins having homology to previously identified proteins. In particular, some of the open reading frames encode proteins involved in several metabolic pathways, providing insight into the physiology of *Cenarchaeum symbiosum*.

[0193] An open reading frame which encodes a protein having homology to glutamate semialdehyde aminotransferase (a protein involved in heme biosynthesis) was identified between nucleotides 7604-8908 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 23558-24682 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 45 and 13 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 46 and 14 respectively in the accompanying sequence listing. A gene encoding glutamate semialdehyde aminotransferase has also been detected in a rRNA operon containing genomic fragment of a planktonic marine crenarchaeote. (Stein, J. L. et al. 1996. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591-599)

[0194] An open reading frame encoding a protein having homology to triose-phosphate isomerase was identified between 13944-14612 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 29655-30491 of

the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 57 and 25 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 58 and 26 respectively in the accompanying sequence listing. This triosephosphate isomerase represents the first such protein sequence reported in a crenarchaeote, and shares known archaeal signature sequences and deletions which distinguish archaeal triosephosphate isomerase genes from their eucaryal and eubacterial homologues.

[0195] An open reading frame encoding a protein having homology to the TATA binding protein was identified between 14616-15164 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 30501-31049 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 59 and 27 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 60 and 28 respectively in the companying sequence listing. This TATA boxbinding protein (TBP) is similar to other known archaeal TBP's and is N-terminally truncated with respect to the eukaryal homologs. It shares 49% amino acid similarity with TBP from *Pyrococcus woesii*.

[0196] An open reading frame encoding a protein having homology to DNA polymerase (a protein involved in DNA replication and repair) was identified between nucleotides 15488-18025 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 31371-33905 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 61 and 29 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 62 and 30 respectively in the accompanying sequence listing.

[0197] The DNA polymerase of *Cenarchaeum symbiosum* has a high degree of similarity to the crenarchaeal homologs from the extreme thermophiles *Sulfolobus acidocaldarius* and *Pyrodictium occultum* (54% and 53% resp.) and exhibits all conserved motifs of B-(a-)type DNA polymerases and 3'-5'-exonuclease motifs, both indicative of archaeal polymerases. A more detailed phylogenetic analysis and biochemical characterization of the *C. symbiosum* polymerase has been published elsewhere. (Schleper, C., et al. 1997. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon *Cenarchaeum symbiosum*. *J. Bact.* 179, 7803-7811)

[0198] An open reading frame which encodes a protein having homology to dCMP deaminase (a protein involved in pyrimidine synthesis) was identified between nucleotides 18022-18663 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 33902-34456 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 63 and 31 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 64 and 32 respectively in the accompanying sequence listing.

[0199] An open reading frame encoding a protein having homology to the ATP dependent RNA helicase (a protein

involved in translation) was identified between nucleotides 18638-20149 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 34559-36067 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 65 and 33 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 66 and 34 respectively in the accompanying sequence listing. The identified ATP RNA helicase is highly similar in sequence to homologues found in the genomic sequences of three euryarchaeota (Bult, C., et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058-1073; Klenk, H. P. et al. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fullgidus. Nature 390, 364-370; Smith, D. R.et al. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum delta H: functional analysis and comparative genomics. J. Bacteriol. 179, 7135-7155).

[0200] An open reading frame encoding a protein having homology to MenA (a protein involved in menaquinone biosynthesis) was identified between nucleotides 20956-21834 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 37404-38282 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 71 and 37 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 72 and 38 respectively in the accompanying sequence listing.

[0201] An open reading frame encoding a protein having homology to the site specific DNA methyltranseferase proteins involved in restriction/modification was identified between nucleotides 26378-27454 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 40563-41669 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 75 and 41 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 76 and 42 respectively in the accompanying sequence listing.

[0202] An open reading frame encoding a protein having homology to the histone HI DNA binding protein was identified between nucleotides 10625-1134 of the insert from fosmid 60A5 (SEQ ID NO: 2). This open reading frame has been assigned SEQ ID No: 5 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 6 in the accompanying sequence listing.

[0203] An open reading frame encoding a protein having homology to lysyl tRNA synthetase was identified between nucleotides 13046-14620 of the insert from fosmid 60A5 (SEQ ID NO: 2). This open reading frame has been assigned SEQ ID No: 9 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 10 in the accompanying sequence listing.

[0204] A hypothetical open reading frame was identified between nucleotides 11478-13046 of the insert from fosmid 60A5 (SEQ ID NO: 2). This open reading frame has been assigned SEQ ID No: 7 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 8 in the accompanying sequence listing.

[0205] An open reading frame encoding a protein having homology to peptidylprolyl cis/trans isomerase (a chaperone) was identified between nucleotides 20156-20434 of the insert from fosmid 101G10 (SEQ ID NO: 1) on the strand complementary to that provided in the sequence listing. This open reading frame has been assigned SEQ ID No: 67 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 68 in the accompanying sequence listing.

[0206] An open reading frame encoding a protein having homology to glucose-1-dehydrogenase was identified between nucleotides 28065-29843 of the insert from fosmid 101G10 (SEQ ID NO: 1). This open reading frame has been assigned SEQ ID No: 79 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 80 in the accompanying sequence listing.

[0207] A hypothetical open reading frame designated Hypothetical 01 was identified between nucleotides 1358-2290 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 17329-18213 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 43 and 11 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 44 and 12 respectively in the accompanying sequence listing.

[0208] A hypothetical open reading frame designated Hypothetical 02 was identified between nucleotides 8961-9767 of the insert from fosmid 101G10 (SEQ ID NO: 1) between nucleotides 24913-25728 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 47 and 15 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 48 and 16 respectively in the accompanying sequence listing.

[0209] An open reading frame designated ORF 01 was identified between nucleotides 9772-10479 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 25732-26427 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 49 and 17 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 50 and 18 respectively in the accompanying sequence listing.

[0210] An open reading frame designated ORF 02 was identified between nucleotides 10545-10922 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 26504-26881 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 51 and 19 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 52 and 20 respectively in the accompanying sequence listing.

[0211] An open reading frame designated ORF 03 was identified between nucleotides 11382-11987 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 27337-27936 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands

provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 53 and 21 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 54 and 22 respectively in the accompanying sequence listing.

[0212] An open reading frame designated ORF 04 was identified between nucleotides 12916-13737 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 28822-29631 of the insert from fosmid 60A5 (SEQ ID NO: 2) on the strands complementary to the insert strands provided in SEQ ID NOs: 1 and 2. These open reading frames have been assigned SEQ ID NOs: 55 and 23 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 56 and 24 respectively in the accompanying sequence listing.

[0213] An open reading frame designated Hypothetical 03 was identified between nucleotides 20554-20955 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 37002-37403 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 69 and 35 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 70 and 36 respectively in the accompanying sequence listing.

[0214] An open reading frame designated ORF 05 was identified between nucleotides 25151-26377 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 39454-40572 of the insert from fosmid 60A5 (SEQ ID NO: 2). These open reading frames have been assigned SEQ ID NOs: 73 and 39 respectively in the accompanying sequence listing, while the polypeptides they encode have been assigned SEQ ID NOs: 74 and 40 respectively in the accompanying sequence listing.

[0215] An open reading frame encoding a protein with no homology to known proteins was identified between nucleotides 3-10421 of the insert from fosmid 60A5 (SEQ ID NO: 2). This open reading frame has been assigned SEQ ID No: 3 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 4 in the accompanying sequence listing.

[0216] An open reading frame designated ORF06 was identified between nucleotides 27535-28002 of the insert from fosmid 101G10 (SEQ ID NO: 1). This open reading frame has been assigned SEQ ID No: 77 in the accompanying sequence listing, while the polypeptide it encodes has been assigned SEQ ID No: 78 in the accompanying sequence listing.

[0217] A gene coding for $tRNA^{TYr}$ was identified between nucleotides 12129-12251 of the insert from fosmid 101G10 (SEQ ID NO: 1) and between nucleotides 28058-28180 of the insert from fosmid 60A5 (SEQ ID NO:2). This tRNA contains a 45 bp intron in the vicinity of the anticodon loop.

[0218] Table 1 shows the level of homology between the open reading frames in the inserts from fosmid 101G10 and fosmid 60A5 at the nucleic acid level. Table 1 also shows the level of homology at the amino acid level between the polypeptides encoded by the insert from fosmid 101G10 and fosmid 60A5. Nucleic acid homology was calculated using BLASTN with the default parameters. Amino acid homol-

ogy was calculated using FASTA with the parameters. As shown in Table 1 and **FIG. 1**, the protein coding regions were highly similar in both nucleic acid and deduced amino acid sequences.

[0219] Over the 28 kb common region in the 101G10 and 60A5 inserts, the inserts shared >99.2% identity in their ribosomal RNA genes, approximately 87.8% overall DNA identity, an average of 91.6% similarity in ORF amino acid sequence, and complete colinearity of protein encoding regions. As shown in Table 1, in protein coding regions the DNA identity of the two contigs ranged from 80.9% (triose phosphate isomerase) to 91.5% (Hypothetical 03). Within intergenic regions the identity dropped to 70-86%, and small insertions or deletions were found frequently. The high similarity in coding regions and upstream sequences aided in the identification of genes, start codons, and putative transcriptional promoter motifs (see below). Genes appear as densely packed in C. symbiosum as they are in other sequenced archaeal genomes (Bult, C., et al. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058-1073, Klenk, H. P. et al 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364-370; Smith, D. R., et al. 1997. Comof Methanobacterium plete genome sequence thermoautotrophicum delta H: functional analysis and comparative genomics. J. Bacteriol. 179, 7135-7155).

[0220] The ribosomal RNA operon of Cenarchaeum symbiosum is composed of the genes for the 16S and 23S rRNAs separated by a spacer of 131 bp. This organization is typical of crenarchaeotes, and differs from rRNA operons of eurvarchaeotes, which usually contain 5S RNA and tRNA genes. (Garrett, R. A. et al. 1991. Archaeal rRNA operons. TIBS 16, 22-26). The large subunit rRNA genes are located between nucleotides 2680-5674 of SEQ ID NO: 1 (fosmid 101G10) and between nucleotides 18645-21639 of SEQ ID NO: 2 (fosmid 60A5). The small subunit rRNA genes are located between nucleotides 5806-7278 of SEO ID NO: 1 (on the opposite strand from that shown in the Sequence Listing, as indicated in FIG. 1) and between nucleotides 21771-23243 of SEQ ID NO: 2. The large and small subunit rRNA genes in the two fosmids were 99.2% and 99.3% identical, respectively.

[0221] As mentioned above, the sequences of the Cenarchaeum symbiosum derived inserts in fosmids 101G10 and 60A5 had a high degree of homology but were not completely identical. The sequence of the insert in fosmid 101G10 was designated variant A, while the sequence of the insert in fosmid 60A5 was designated variant B. Such sequence differences could arise if the fosmid inserts were derived from two closely related but distinct strains of Cenarchaeum symbiosum or, alternatively, the sequence differences could be due to cloning or sequencing artifacts. To confirm that the fosmid inserts were in fact derived from two closely related strains, portions of the inserts in a plurality of different fosmids were sequenced to determine whether they were identical to either of the inserts in fosmids 101G10 and 60A5, as would be the case if there were in fact two closely related strains of Cenarchaeum symbiosum.

[0222] In particular, the ribosomal RNA spacer regions of variant A and variant B contained 10 distinguishing signature nucleotides and the 16S rRNA genes of variant A and

variant B contained two distinguishing nucleotides. Example 5 provides the results of a PCR based analysis of the 16S rRNA gene and the 16S-23S spacer region in 13 different fosmid inserts.

EXAMPLE 5

PCR Based Analysis of Fosmid Inserts to Determine Whether They Contain the Variant A or Variant B Sequences

[0223] Primers 21F and 459R-LSU (CTTTCCCTCACG-GTA, SEQ ID NO: 116) were used to amplify the 16S-23S spacer region from the fosmids. The amplification products were sequenced using primer SP23rev (CTA TTG CCG TCT TTA CACC, SEQ ID NO: 11 7).

[0224] PCR reactions with two archaea-specific 16S rDNA primers (21F and 958R (DeLong, E. F. 1992. Archaea in coastal marine environments. *Proc. Natl. Acad. Sci.* 89, 5685-5689, the disclosure of which is incorporated herein by reference), one of which was biotinylated, were used to amplify a 950 base pair (bp) fragment from the fosmids. The PCR products were purified and sequenced as described in Preston, C. M. et al. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: *Cenarchaeum symbiosum* gen. nov., sp. nov. *Proc. Natl. Acad. Sci. USA* 93, 6241-6246 with primer 519R 16S rDNA

[0225] The results of this analysis are shown in Table 2. As shown in Table 2, in samples obtained from several unique rRNA operon-containing fosmids, a sequence identical to either variant A (101G10) or variant B (60A5) was present.

[0226] The above methods may also be used to determine whether a biological sample contains variant A and/or variant B. In such procedures, nucleic acids are obtained from the biological sample, amplified using the above primers, and sequenced using the above oligonucleotide to determine whether the sample contains the variant A and/or the variant B sequence.

[0227] Similarly, the amplification reaction may be conducted using any primers which generate amplification products having sequences which differ between variant A and variant B. The amplification products may then be sequenced to determine whether they have the sequence of variant A and/or variant B. In some embodiment, the amplification reaction may be conducted under conditions in which the amplification primers specifically hybridize to one of the variants.

[0228] RFLP analyses were also be used to assess whether the fosmids contained the sequence of variant A or variant B as described in Example 6 below.

EXAMPLE 6

RFLP Based Analysis of Fosmids to Determine Whether They Contain the Variant A or Variant B Sequences

[0229] Primer set 21F (DeLong, E. F. 1992. Archaea in coastal marine environments. *Proc. Natl. Acad Sci.* 89, 5685-5689) and 459R-LSU for the amplification of 2.2 kbp of the ribosomal operon, primer set GSAT810F (GAATC-CGCC CCCGACTATCTT, SEQ ID NO: 118) and 16S37REV (CATGGCTTAGTATCAATC SEQ ID NO: 119)

for the amplification of the 16S RNA-GSAT region (2.2 kbp) and primer set Cenpol357F (ACITACAACGGI GACGAY-TTTGA SEQ ID NO: 120) and Cenpol735R (CAC-CCCGAARTAGTTYTTYTT SEQ ID NO: 121) for an internal DNA polymerase fragment (of 1134 bp) were used in PCR reactions with 5 ng of purified fosmids. The PCR products were cut with TaqI and HpaII (16S-23S RNA), HaeIII and RsaI (GSAT-16S RNA) or HaeIII and AvaII (polymerase) and analyzed on 2% agarose gels.

[0230] The results are shown in Table 2. If the pattern did not exactly match but closely resembled the RFLP of either type A or B, it was assigned as a lower case letter (a or b, Table 2), meaning that at least 3 out of 4 or 3 out of 5 bands created by restriction digest appear identical in size to the ones from either type A or B. As shown in Table 2, RFLP patterns of the 1150 bp fragment covering the 5'-end of the GSAT gene and 16S gene and the internal fragment of 1134 bp from the DNA polymerase gene revealed that all fosmids analyzed could again be assigned to either the A or B type, although slight variations were also detected (lower case letters in Table 2), suggesting that both variants exhibit further microheterogeneity which is detectable in protein coding and intergenic regions.

[0231] The above methods may also be used to determine whether a biological sample contains variant A and/or variant B. In such procedures, nucleic acids are obtained from the biological sample, amplified using the above primers, and digested as described above to determine whether the sample contains the variant A and/or the variant B sequence. Similar analyses may also be performed using other portions of the sequences of SEQ ID NOs: 1 and 2 which are different from one another.

[0232] To further confirm the existence of two closely related strains of *Cenarchaeum symbiosum*, biological samples were obtained from several individual sponges and analyzed to determine whether the samples contained variant A and/or variant B. Example 7 below provides the results of a PCR analysis of the *Cenarchaeum symbiosum* 16S rRNA genes in samples obtained from several individual sponges in different locations and at different times.

EXAMPLE 7

Analysis of Samples from Individual Sponges

[0233] The 16S rRNA genes of variant A and variant B differ at positions 175 and 183.7 (*E. coli* numbering). PCR reactions with two archaea-specific 16S rDNA primers (21F and 958R (DeLong, E. F. 1992. Archaea in coastal marine environments. *Proc. Natl. Acad. Sci.* 89, 5685-5689, the disclosure of which is incorporated herein by reference), one of which was biotinylated, were used to amplify a 950 base pair (bp) fragment from total nucleic acids derived from several different sponge individuals. The PCR products were purified and sequenced as described in Preston, C. M. et al. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: *Cenarchaeum symbiosum* gen. nov., sp. nov. *Proc. Natl. Acad. Sci.* USA 93, 6241-6246 with primer 519R, the disclosure of which is incorporated herein by reference.

[0234] The amplification products were sequenced to determine whether they corresponded to variant A and/or variant B. The results are shown in Table 3. As shown in Table 3, in 15 out of 16 cases U/C ambiguities were found

at the signature positions, indicating the presence of both variants in samples obtained from a single sponge (Table 3). Only one sponge (S4) yielded an unambiguous sequence identical to variant A, but variant B was detected in this individual by another criterion (see below).

[0235] Hybridization analyses were also used to determine whether individual sponges harbored variant A and/or variant B. The results of these analyses are provided in Example 8 below.

EXAMPLE 8

Hybridization Based Analysis of Samples Obtained from *Axinella Mexicana* to Determine Whether the Samples Contain Variant A and/or Variant B

[0236] Two oligonucleotides specific for each variant type were designed from the 23S rDNA gene sequences of fosmids 101G10 and 60A5. The probes differed in 3 positions and have the sequences ACACTTCAACTATTTCCTG (SEQ ID NO: 122 variant A) and ACACTTTGAC-TATTTCGTG (SEQ ID NO: 123, variant B). Nucleic acid samples from individual sponges (300 ng) and controls (fosmids 101G10 and 60A5, 50 ng each) were denatured, bound to nylon membranes (Hybond-N, Amersham), hybridized with the labeled probes (Massana, R. et al. 1997. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. *Appl. Env. Microb.* 63, 50-56, the disclosure of which is incorporated herein by reference in its entirety) and washed at 41.5° C. Hybridization was analyzed by autoradiography.

[0237] The results are provided in Table 3. In the samples from the majority of host sponges examined, the presence of both 23S rRNA variants was observed, confirming that the specific association of *C. symbiosum* with its host typically involves the presence of both variants.

[0238] The data provide strong evidence that these genomic clones are derived from two very closely related, but distinct strains, as opposed to representing two ribosomal RNA operon regions originating from the same organism. This conclusion is consistent with the observation that all crenarchaeota characterized to date contain only one ribosomal RNA operon (Garrett, R. A. et al. 1991. Archaeal rRNA operons. *TIBS* 16, 22-26).

[0239] The high conservation between the inserts in fosmid 101G10 and fosmid 60A5 was not entirely confined to coding regions but also extended into adjacent upstream sequences. Due to this upstream similarity, and also because the average G+C content of the sequences was relatively high, it was possible to readily identify prospective transcriptional (A+T rich) promoter elements. A motif corresponding to the consensus of the archaeal TATA-box-like element (C/T-T-A-T/A-A) (Hain, J. et al. 1992. Elements of an archaeal promoter defined by mutational analysis. *Nucl. Acids. Res.* 20, 5423-5428) was identified upstream of nearly all genes (**FIG. 2**). The exceptions were the genes encoding MenA and DNA polymerase which are located immediately downstream of other ORFs and may therefore be transcribed as polycistronic mRNAs. In vivo and in vitro studies in other archaea have shown that initiation of transcription occurs consistently 24 to 28 bp downstream from the central T of this motif (Hain, J et al. 1992. Elements of an archaeal promoter defined by mutational analysis. *Nucl Acids. Res.* 20, 5423-5428; Palmer, J. R. and Daniels, C. J. 1995. In vivo definition of an archaeal promoter. *J. Bacteriol.* 177 1844-1849). For twelve of the protein encoding genes, the promoter element was found 25 to 30 bp upstream of the ORF (FIG. 2), suggesting that transcriptional initiation occurs in close proximity to, or directly at, the translational start codon.

[0240] A similar observation has been made for 30 of the predicted 100 strong and medium promoters from 156 kbp sequence of Sulfolobus solfataricus (Sensen, C. W. et al. 1996. Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus solfataricus P2. Molec. Microb. 22, 175-191). Transcription initiation at, or in close proximity to, the translational start codons has been mapped for some genes in Halobacterium salinarium (Brown, J. W. et al. 1989. Gene structure, organization, and expression in archaebacteria. CRC Crit. Rev. Microb. 16, 287-337) and S. solfataricus (Klenk, H. P., et al. 1993. Nucleotide sequence, transcription and phylogeny of the gene encoding the superoxide dismutase of Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1174 95-98), and alternative mechanisms for initial mRNA-ribosome contact in Archaea have been hypothesized (Brown, J. W. et al. 1989. Gene structure, organization, and expression in archaebacteria. CRC Crit. Rev. Microb. 16, 287-337).

[0241] The promoters listed in **FIG. 2**, or fragments thereof, may be used in expression vectors or expression systems. In one embodiment, the promoters listed in **FIG. 2** may be operably linked to coding regions and introduced into archaebacteria, and in particular *Cenarchaeum symbiosum*, to express the encoded gene product in the archaebacterial cells.

[0242] Alternatively, the promoters listed in **FIG. 2** may be operably linked to coding regions and introduced into host cells which are not normally capable of directing transcription from archaebacterial promoters. In addition, genes encoding the proteins required for transcription from these promoters are also introduced into the host cells. The genes encoding these transcription factors may be on the same vector as the promoter from *Cenarchaeum symbiosum* or on a different vector. In some embodiments, the genes encoding these transcription factors are linked to an inducible promoter. Expression of the transcription factors is induced when it is desired to express the proteins which are operably linked to the promoter from *Cenarchaeum symbiosum*.

[0243] Although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims. All documents cited herein are incorporated herein by reference in their entirety.

TABLE 1

Comparison of Overlapping Coding Sequences from Fosmid 101G10 and Fosmid 60A5

Gene	Functional	% Identity			
Name ¹	Category	Nucleotide	Amino Acid		
Hypothetical 01	unknown	81.4	76.6		
238	translation	99.16			
16S	translation	99.3			
GSAT	heme biosynthesis	83.2	83.8		
Hypothetical 02	unknown	83.4	81.4		
ORF 01	unknown	83.3	85.7		
ORF 02	unknown	89.9	95.2		
ORF 03	unknown	87.9	86.7		
tRNA ^{tyr}	translation	99.2			
ORF 04	unknown	87.8	88.1		
TIM	glycolysis	80.9	83.3		
TBP	transcription	83.4	86.3		
DNA polymerase	replication/repair	89.0	93.9		
dCMP deaminase	pyrimidine synthesis	85.7	89.8		
RNA helicase (ATP dependent)	translation	86.1	92.2		
PPI	chaperone	88.4	92.5		
Hypothetical 03	unknown	91.5	92.4		
MenA	menaquinone	86	89.4		
	biosynthesis				
ORF 05	unknown	87.5	90.6		
Methylase	restriction/modification	86.4	87.5		

¹Hypothetical: open reading frame (ORF) with similarity to proteins of

unknown function from the databases. ORF = open reading frame identified by similarity between both fosmids, including upstream promoter sequence; GSAT = glutamate semialdehyde aminotransferase; TIM = triose-phosphate isomerase; TBP = TATA box-binding protein; PPI = peptidylprolyl cis/trans isomerase.

[0244]

TABLE	2
-------	---

Analysis of Polymorphism at Four Distinct Loci in Different Fosmids							
		16S-23S		AT*3	DNA I	Pol* ³	
Fosmid	16S RNA*1	spacer*2	HaeIII	RsaI	HaeIII	AvaII	
101G10	А	А	А	Α	А	Α	
60A5	В	в	В	в	В	в	
15A5	В	В	_	_	b	b	
43H4	Α	_	—	—	Α	Α	
60H6	Α	Α	_	_	a/b	в	
69H2	Α		_	_	Α	Α	
87F4	В		_	_	b	a/b	
C1H5	Α	Α	Α	Α			
C4H1	Α	Α	Α	Α			
C4H9	Α	Α	А	Α	Α	в	
C7D4	Α	Α	Α	Α	Α	Α	
C8B8	В	в	В	В	В	b	
C15A3	Α	Α	Α	Α			
C17D2	В	_	b	в	В	b	
C20B5	Α	Α	а	a/b			

*1partial sequence (101G10 through 87F4) or RFLP analysis (C1H5

 **partial sequence (101010 through 0/14) or KLL analysis (crite through C20B5).
**²partial sequence.
*³RFLP analysis of PCR products; A/B: identical pattern to either 101G10
(= A) or 60A5 (= B); a, b: similar pattern to either A or B (see materials and methods). Fosmids C1H5, C4H1, C15A3 and C20B5 did not yield
PCD and data with polymorase-specific primers. PCR products with polymerase-specific primers. The first seven fosmids were isolated from a first library, the last 8 fos-

mids (prefix C) are from a second library. -- = not determined.

[0245]

TABLE 3

Detection of <i>C. symbiosium</i> Variants in Natural Populations of <i>A. mexicana</i>					
	Variations in 23S rRNA Hybridization				
A. mexicana Individual	rDNA Po	rDNA Positions**			
or Isolated DNA Source*	175	183.7	Type A	Variant Type B	
fosmid 101G10 from s12	U	U	+	_	
fosmid 60A5 from s12	С	С	-	+	
s12	Ŷ	Ŷ	+	+	
s1	_	_	+	+	
82	_		+	+	
83	v	v	+		
s4	II.	TI I	, T	337	
s 1	v	v	т	w	
85	v	v			
s0 s7	I	I	+	+	
87			+	w	
s8	Ŷ	Ŷ	+	+	
s9	Ŷ	Ŷ	+	w	
s10			+	+	
s11	Y	Y	+	+	
s13	—	—	+	+	
s14	_	—	+	w	
s16	—		+	+	
s17	_	—	-	w	
s18	Y	Y	-	w	
s19	_		+	+	
s20	_		+	+	
s21	_		+	+	
s22	_		+	+	
s23	_	_	+	+	
s24	_		+	+	
s25	_		+	+	
s26	_		+	+	
s27	_		+	+	
\$28	_		+	+	
s29	_		+	+	
s30	_		+	+	
he1	_		_		
hs?					
1182	v	v	+	+	
118.5	I V	1 V	+	w	
ns4	Y	Y	+	w	
ns5	Ŷ	Ŷ	+	+	
hh1	_		w	w	
hh2	Y	Y	+	+	
hh3	Y	Y	+	+	
Aq1	Y	Y	—	—	
Aq2	Y	Y		_	
Aq3	_		+	+	

*s = Naples Reef; hs = Haskle; hh = Hermit Hole; Aq = captive sponge. ${}^{**}Y$ = direct sequence of PCR product yields C and U at the same position.

- = not determined; w = weakly positive.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 123 <210> SEO ID NO 1 <211> LENGTH: 32998 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (7604)...(8908) <221> NAME/KEY: CDS <222> LOCATION: (8961)...(9767) <221> NAME/KEY: CDS <222> LOCATION: (10545)...(10922) <221> NAME/KEY: CDS <222> LOCATION: (13944)...(14612) <221> NAME/KEY: CDS <222> LOCATION: (18638)...(20149) <221> NAME/KEY: CDS <222> LOCATION: (20554)...(20955) <221> NAME/KEY: CDS <222> LOCATION: (20956)...(21834) <221> NAME/KEY: CDS <222> LOCATION: (25151)...(26377) <221> NAME/KEY: CDS <222> LOCATION: (27535)...(28002) <221> NAME/KEY: CDS <222> LOCATION: (28065)...(29483) <400> SEOUENCE: 1 gateettgae etetgegett attgeageea tggaetgaee ggeegtgegg ggetaaataa

agetgaggeg cegeetgeag getetgetea geegttgatt atacagtaet egeactegea 120 ggtcttgctt tcgtcatctt ttgccctgca cttggcgtgc tggcccgact ggcactggac 180 gcagateteg tetatgttgt etategaggt gtaetttttg gaetggteaa ageegaagee 240 gccgtccttt ggtccaacca tgaagcggtc agggccgtta tgccttaatt atctttgccg 300 tcggggcggg gccgcttctg ccggcgggag ccccccttga ggccgctccc cggctcgttg 360 tcccacaqqt qcatqctqcc cctqatcata aacqaqccqa ctatqattqc tacaaqcccq 420 cccactatca gtataaacag cctagccacg ccccccattc tgcccatgcg tgtaatatgc 480 tgcacctgta aacaaacatt gcgcggggca tgggccgtcc ggacagacag aactgcccat 540 gagacaggtg cctgcgggcc ggtaagctac attaatttat caccccccac gggcgggccc 600 catgagcagg accaagagaa taatcatctg ggcatccata ctgggcgggg ggataatcta 660 ctttctcgtc cagggcgaga ttgccagaaa tgtattgtcc tgagaacaga agccatgcag 720 caactgcccg atcgtttttc aggtacctac tgggcttttt ggagttcgtt gatcaaaagc 780 ggtacaggta ttctatacat gccagtcttg gctggaaaaa taaattgaag atcggcggat 840 cctatctacq agcqcctqcc tqcttttcac ttqactaqcc qqaqtacttc qtctqcaatt 900 totqtatagc taggcattta tgtagttgag atacatgtcc gcgggatccg tttcatagtc 960 tgaatcaaac accggatcat tccttctctt taattcctta aatgcctgat gcagttcaag 1020 caggacggtt acatcatcgc gtttgattat ccgttctgtt gtttcagctt tttgctcatt 1080 ctcatccatg attataggct acggtatttg actaaaaagg tttccatctt catgagtcgt 1140 gtgtttgccg tggaattacc taccggggga acataaaaaa atgagtcata aacagcgcac 1200 tgcatccacc gtggacccat gagacaacga gccggcagcg gtgcacagca ccgagtacaa 1260 ccccqcaatc gtcttatcca acgacctgcc ctatgaaaac tccagacgga tctcttccgg 1320

60

-continued

gcatccagta	cccatgtatg	tgagaattct	gactatctta	ccgtggtgtt	ggcagtgtct	1380
caacgacggt	attaccgagg	tgattcatga	taattttgtt	gactggagta	tactgaaaca	1440
tggtatttgc	cgcatgaaat	actgacagca	ccagatcttg	aaattcttgt	tcatcttcca	1500
gatcagttac	ttttaagcca	atccttttac	attcttctct	cgatatgcgc	cttccatgac	1560
tgtgatattt	tttagaggaa	gacattattt	ctgatatttt	ttttgacttt	tttaccgctg	1620
cagactcgtt	ctcaaacatg	tatctagcca	gccattttg	tacaagttcc	acacttagct	1680
tctggctgct	aatgcatttt	tgaattagcc	cgggaggata	ttgccctaac	agtggaagcc	1740
atgcgccgag	cctccccggg	tgtttttctg	acaccgactg	tgcttcttga	aactcgctaa	1800
ttagaaactg	tgcagacatt	atgtgcatgc	cggtcctggt	tggaataata	aattgggggt	1860
cggtgggacc	tatcgatgag	tgtttaccca	ttaccaggca	attcgatgag	catgcaagca	1920
tcgcagctgc	cgacatcgcg	gcatatggga	taatgatccg	gacatttta	aattttgcac	1980
gtatgtatga	gacgattgct	tcggtggact	cgacggagcc	ccccggactg	tggagtatta	2040
aatctaattt	cttagtcttt	aaatcacgca	tcatcctcat	aaatccatac	aggtcaccat	2100
ttgttatgag	agcttcatta	gacgtatgcg	cttcgtccgt	tatccagttg	gtcgcataca	2160
gtattgtatc	cctccccgaa	tactgttgca	attttgaaag	atagtcgtga	agtactacac	2220
caggtgcctg	ctcaccgact	gactccatta	gtcgaagtac	gtcgtttgct	atttctgcgt	2280
aactaggcat	ttatgtagtt	gaaatgacta	cccgcgggaa	tcataccata	gtctgtgtcg	2340
tatgacttgc	cttttttctt	catcaatttc	tcatattcct	catgcagttc	gagcaggatg	2400
gccatgtcac	tacgtttgtt	cgtctgtttt	gttgtctcgg	gcttttggtc	catattatta	2460
tccatgctag	taaaggacta	tgttccttta	aaaaggttcg	tgattttaat	ttccaagtgt	2520
ttgcctcgca	atttcctcca	aggcacatga	aaaacgggcc	acaggcagag	cacagcatcc	2580
gctggggacc	catgaaataa	gcccccggcg	gtgcacagca	tccgctgggg	gctcaataaa	2640
aaaatgagtc	atcatgcata	gtctctatgt	aaatggctga	accggtgttt	tggtcgatta	2700
gtaaaggctg	gctcaccact	cgccgaagct	tgtgggatac	accaccttcc	tatcaacgca	2760
gtcttcttct	gcgaaccttc	atccgaagaa	ggaatatctt	gtctcgggat	aggattcgtg	2820
cttagatgct	ttcagcactt	agcctagatg	gcttagctgc	ccggcctgcc	ctgtcggaca	2880
accggtagac	cagtggccac	gcctctctgt	tcctctcgta	ctaagagcga	cttcccctca	2940
gatattcgcg	cttccatcag	gcagaggccg	acctgtctca	cgacggtcta	aacccagctc	3000
atgttccctt	ttaataggcg	agcagcctca	cccttggccc	ctgctgcagg	accaggatag	3060
gaaaagccga	catcgaggta	ccaaaccgcg	gggtcgatag	gagctctcgc	ccgcgacgag	3120
cctgttatcc	ctggggtaat	ttttctgtca	cctccgggcc	ccaatagtgg	gcacacgaag	3180
gatcgctaag	ccagactttc	gtctatgaat	tccgtgcgtt	tggaaatcca	ttcagtctag	3240
tttttggctt	tgccctcttc	agcggatttc	tgacccgctt	gaactaaact	ttgggcccct	3300
ttgatatctt	ttcaaagggg	tgccgcccca	gccgaactgc	ccacctgcac	atgtccccgg	3360
tcttcaccgg	gtaagtggca	ctgcaggaaa	tgtctggtgt	tacatcggcg	tcccctgacg	3420
tcccaaagaa	cgccaggaaa	tgactcccag	atacgctatg	cactccctgc	tataccacaa	3480
gcacaagctg	cagtaaaact	ccacggggtc	ttctctcccc	gatggaagat	gatggactgt	3540
tcgtccacct	tatgtggctt	caccgggttg	taggcgggga	cagtggggct	ctcgttgttc	3600

-continued

cattcatgca	cgtcggaact	tacccgacaa	ggcatttggc	taccttaaga	gagtcagagt	3660
tactcccggc	gttaaccggt	ccttagctcg	gttgaaccca	agttttagat	accggcaccg	3720
gccaggattc	agcgactata	catacccttt	cgggctagca	gtcgcctgtg	ttttattaa	3780
acagtcgaaa	cccccttgtc	actgcaacct	gctgccgcca	ttcctcatga	cagctgcagg	3840
catcccttat	acctaagcta	caggactaat	ttgccgaatt	ccctcgccat	acggtatacc	3900
cgtagcacct	tagtttacta	aaccagcgca	cctgtgtcgg	atctgggtac	gaacttgcag	3960
tttgctagcc	gcacggtctt	tcatggtctc	ctggaatcgg	gaaaactctg	ctaacgcaaa	4020
gccactcccg	cctcgggcct	gttctcgtca	ttacgacact	cccaggccct	cgaacggttc	4080
gacacgacga	cggtcatgtt	ccccctatcc	ggaagcgaac	catgcggttc	aaacgctccc	4140
tgcaaggtac	cagaatatta	actggtttcc	cattcggact	actctgttga	ggcagtcctt	4200
aggatcgact	aactccaggc	tgacgacgca	ttgcctggaa	acccttgcgc	ttacggtggt	4260
gcggattctc	accgcactat	gctgttactg	ccaccaggat	ctgcaataga	aatcggtcca	4320
caggacgtca	ccgccctgct	tcgtcccaat	cactacgcca	acctaccacg	gtgcacctat	4380
cacggtgcac	gtctggagta	tcggtactct	gctttagccc	cgtccgtttt	tgtggcgccc	4440
tcgctcggca	ggtaagttgt	tacacacttt	ttgaaggata	gctacttctg	agcttacctc	4500
cctgctgtct	tggcgatgac	acgcactttg	gcttgacact	tagcagaaat	ttggggacct	4560
taactccagt	ctgggttaaa	cccctctcgg	tcgtgaacct	tacgtcacac	gaacccgtgt	4620
ccatgcttct	gcgatgtgta	tccgttcgga	gtttgaatgg	atggtgagga	atctcttccc	4680
cgcgccaccc	tatcagtgct	ctaccggaaa	caccatctcc	acatagcacg	ccctgcgaga	4740
cgcttcggtt	ggaactagca	agcgccagtc	tagattggtt	tttgacccct	attcccaagt	4800
cacacaaacg	agttgcacgt	cagaactgct	gcagacctcc	agtgggcttt	cgcccacctt	4860
catcttgctc	aggaatagat	cgactggctt	ctagccttac	cgccatgact	taacgcactt	4920
tcacacgctt	ctcctcacaa	tgctgcgaga	attcggtttc	ccttcggcta	cgcctttcta	4980
ggcttaacct	cgccatgaca	gcaagctccc	tggcccgtgt	ttcgagacgg	aacgcatgac	5040
actgacgaca	tgagctccgg	actttcagct	ccattgctgg	aacctccggt	ccgaaaaaat	5100
cgtctttcat	gccatgcacg	tctgtaagca	ataggtttca	tgcacttttc	acccccttc	5160
cggggtactt	ttcagctttc	cctcacggta	ctagtacact	atcggtcttg	agagatattt	5220
agcctttgat	gctactttca	ccaatcttcg	ctgcccactg	ccaaggacaa	ctactcgggt	5280
gctggccctg	ccccattcca	cttcgtctag	gggggtatca	ccctctaagc	cggaacattt	5340
cagaacactt	caactatttc	ctggggccat	tgcgccgcac	caaaacacca	catctcggcc	5400
gcgttaccgc	ggcagattca	gtttgggctc	tttccttttc	gatcgcctct	acttgggaaa	5460
tctctattga	tttctcttcc	tcgtggtact	aagatgcttc	aattcccacg	gttcgacctc	5520
cgcttgcgcg	gagtatacag	gattcctatt	cggaaatctc	gggatcaacg	ggtgcgtgca	5580
cctaccccga	gcttatcgca	gcttgccacg	tccttcttct	ctcctcaagc	ctagcaatcc	5640
tcctattgcc	gtctttacac	cggcatattc	agccacatat	tacacgacta	tgcatgatga	5700
tcatcgcagt	ccccagggga	gggggccgct	acatccttca	tacaccactt	gcgtggtgca	5760
ttgcaccatg	caaagatcat	gtgcattctg	ttcaaaccag	tttctaagga	ggtgatccga	5820
ccgcaggttc	ccctacggtc	accttgttac	gacttttccc	ttgtcgctta	cctcaagttc	5880
gataacgcca	attagacgtc	acctcactaa	aagcaaactt	caatgaaacg	acgggcggtg	5940
-------------	------------	------------	------------	------------	------------	------
tgtgcaagga	gcagggacgt	attcactgcg	cggtaatgac	gcgcggttac	tagggattcc	6000
agattcgtga	gggcgagttg	cagccctcag	tcataactgt	ggtagcgttt	ggggattacc	6060
tcctcctttc	ggatatggaa	cccattgtca	ctaccattgc	agcccgcgtg	tggccccaga	6120
gtttcggggc	atactgacct	gccgtggccc	tttccttcct	ccgcattaac	tgcggcggtc	6180
ccgctaattc	gccccactgc	tccggagagc	aatggtggca	actagaggca	aggatctcgc	6240
tcgttacctg	acttaacagg	acatctcacg	gcacgagctg	gcgacggcca	tgcaccacct	6300
ctcagcttgt	ctggtagagt	cttcagcttg	accttcacac	tgctgtctct	ccgggtaaga	6360
tttctggcgt	tgactccaat	tgaaccgcag	gcttcacccc	ttgtggtgct	cccccgccaa	6420
ttcctttaag	tatcatactt	gcgtacgtac	ttcccaggcg	gcaaacttaa	cggcttccct	6480
gcggcactgc	actggctctt	acgccaatgc	atcactgagt	ttgcattgtt	tacagctggg	6540
actacccggg	tatctaatcc	ggtttgctcc	cccagctttc	atccctcacc	gtcggacgtg	6600
ttctagtaga	ccgccttcgc	cacagggggt	catcgataga	tcagaggatt	ttaccccttc	6660
ctaccgagta	ccgtctacct	ctcccactcc	ctagccgtgc	agtatttccg	gcagcctatg	6720
cgttgagcgc	atagatttaa	ccgaaaactt	acacggcagg	ctacggatgc	tttaggccca	6780
ataatcctcc	tgaccacttg	aggtgctggt	tttaccgcgg	cggctgacac	cagaacttgc	6840
ccacccctta	ttcgccggtg	gttttaagac	cggtaaaaga	tttctttagc	agaaaacact	6900
cggattaacc	ttgtcgtgct	ttcgcacatt	gcaaagtttt	ctcgcctgct	gcgccccata	6960
gggcctgggt	ccgtgtctca	gtacccatct	ccgggcctct	cctctcagag	cccgtatctg	7020
ttatagcctt	ggtgggccat	tacctcacca	acaagctgat	agaccgcagt	cccatcctac	7080
ggcgataaat	catttgggcc	acaaaccatt	ccaggcatag	tggcctatcg	gatattattc	7140
tcagtttccc	gaggttatcc	ccgtccatag	gttagattga	ctacgtgtta	ctgagccgtc	7200
tgccttgtat	tgctacaatg	actcgcatgg	cttagtatca	atccgatagc	agtcaggtcc	7260
ggcaggatca	accggattca	taattggatt	atttttttt	tgttaagtac	gcttgtactt	7320
ttggaattga	acagaatgca	cataatcttc	acatctcaga	tatgaccctt	cgatcatacc	7380
ctcattctgt	gtgcgtaact	ggaggccagc	gaatcacaat	atggtacaat	accatgcatt	7440
catcgcaagc	gccgctcttg	cgtcacgtac	gatcggatcg	gcccgtccat	gggcatataa	7500
accatcgccg	atttccgccc	ccggcagccc	cgatcagggg	ccggatctgc	ctgtatgatg	7560
gcgatccgcc	ctgattaaat	tatgggggga	gcggcctgct	gccgtggatc	tggaacgcga	7620
gtacagggca	aagaccggcg	gctcggcccg	gatctttgcc	aggtcgaaaa	agtaccacgt	7680
cggcgggggtc	agccacaaca	taaggttcta	cgagccgtat	ccgtttgtga	caaggtccgc	7740
gagcggcaag	cacctcgtcg	acgtggacgg	gaacaagtat	gtagactact	ggatggggca	7800
ctggagcctg	atactggggc	acgcgccggc	gccagtcagg	tcggcagtag	aggggcagct	7860
tcgccgcggc	tggatccacg	ggaccgtcaa	cgagcagacg	atgaatctct	cggagataat	7920
acgcggcgcg	gtaagcgtgg	cagaaaagac	aaggtacgtc	acgtcgggga	cggaggccgt	7980
catgtatgcg	gcaaggctgg	cgcgcgcgca	tacgggcaga	aaaataatag	caaaggcgga	8040
cggcggctgg	cacgggtacg	cgtcggggct	gctcaagtcg	gtcaactggc	cgtatgatgt	8100
gcccgagagc	ggggggctcg	tcgacgaaga	gcactctata	tccattccgt	acaacgatct	8160

tgaaggttcc	ctggatgttc	ttgggcgcgc	aggcgacgac	ttggcatgcg	tgataatcga	8220
gccgctgctg	aacaacaaca	gctgcatacc	ggcggatgag	gactatctgc	gcggcataca	8280
ggagtttgtg	cattcaaggg	gcgcgctgct	tgtcctcgac	gagatagtga	cagggttccg	8340
gtttaggttt	ggctgcgcgt	atgctgcagc	agggctggac	cccgatatag	tggcgctcgg	8400
caagatagtc	ggggggcggat	tccccatagg	ggtgatatgc	ggcaaggacg	aggtgatgga	8460
aatctccaac	actatatcgc	atgcaaagtc	cgacagggcg	tacatcggcg	gcggcacatt	8520
ctctgcaaac	cccgccacga	tgacagcggg	cgcggcagcg	ctcggggagc	tcaaaaagag	8580
aaagggcaca	atatacccga	ggataaactc	catgggggac	gacgcaaggg	acaagctctc	8640
aaagatattt	gggaacaggg	tatccgtgac	cggaaggggc	tcgctgttca	tgactcactt	8700
tgttcaagat	ggcgccggca	gggtctcaaa	tgctgcagat	gcggcagcct	gcgatgttga	8760
gctgctgcac	aggtaccacc	tggacatgat	cacccgggac	ggcatattct	ttctgccggg	8820
caagctgggg	gccatatcgg	cggcgcactc	aaaggccgac	ctcaagacca	tgtattccgc	8880
atcagagcgc	tttgcagaag	gcctatgagg	tatagcgccg	gaggaaactt	tgattatacg	8940
ggcgtgctgc	cccggggccc	atgatactct	tcggcaagag	cgaccccgcc	gagctggtgc	9000
gccaggcgga	cctcctgtgc	agcaagaacc	agttcagggc	ggcaataggc	ctgtacggga	9060
aaatcctcaa	ggacgacccg	cagaacaggg	gcgtcctgca	caaaaagggg	ctggcccaga	9120
acagggcaaa	aaagtactct	gatgcgatca	cgtgctttga	ccggctgctc	gagcttgaca	9180
acaaggacgc	gcccgcgtac	aacaacaagg	ccatagccca	ggccgagctc	ggagacacgg	9240
catccgcgct	ggaaaactac	ggcagggcca	tcgaggccga	cccgcggtac	gcgccggcgc	9300
gcttcaacag	ggccgtgctg	ctcgacaggc	tgggcgagca	tgaggaggcg	ctgccggacc	9360
tcgacagggc	agccgagctg	gaccgacgca	agccgaaccc	gaggttctac	aaggggatag	9420
tgctcggcaa	gatgggcagg	cacgaagagg	cgctggcctg	cttcaagggc	gtgtgcaaga	9480
ggcatcccgg	ccacgccgac	tcacagttcc	acgtggggat	agagcttacc	gagcttggca	9540
ggcacgccga	ggccctcggg	gagcttgcat	cactgcccgc	ggagcaccgc	gagaacgcca	9600
atgtattgta	tgccagggcg	cgcagcctct	cgggccttgg	cagggaggac	gaatccatag	9660
cgcacctgca	aaaggcggcc	aaaaaagatt	ccaagacgat	aaaaagtgg	gcccgcgcag	9720
aaaaggcctt	tgacggaata	cgggacgatc	ccggttcaaa	aagatagccg	gctagaggat	9780
ctttttctt	gccgcgtcaa	tccgcatcat	gcggaccttt	ttttgggcc	ccacaagtcg	9840
cgattcatag	actggtacat	agaccacctc	caccgccttt	gcggcaaact	cctcccgcag	9900
gtcgcgcatg	ccgtcaggcg	ggggcccgcg	cagcttctct	tttagttttg	agagcgcctc	9960
ttctgtctcc	acctcggggc	tccgcacatt	ctctgacgca	tcgagtatcc	tccgcgggta	10020
cggctccacc	gcgccgggcc	ccgtcttgta	gggaaagtcc	gtctcgccgc	cgtgccggtc	10080
aaggcacatc	atcccttctg	attccgcaaa	gacatgctct	tctagctcga	ggtcgaccct	10140
gttcttgccg	agccctgccg	agagcgtctt	gtgtatgcgc	gacttggacc	ttatgggaaa	10200
gacgccgtcg	cctagcacca	cctcgatcac	gttctggtcc	accttgatcg	ggtgaaccgc	10260
ctttctgaaa	aaatccgcag	agtacctggc	ggagacccgg	atcagcgcct	cgtggaccag	10320
ctttacagaa	tgcacatgga	cgtcttcttt	ccdcddddcc	ctcataaggg	ccctaaaggc	10380
acccgtcttc	tttgcctcta	tcatggcccg	agccgactcc	tcagtcatgg	cgttccgcag	10440

gaccgccgtc	ctggtctttc	cagtcatccc	ctgccgcacc	ccgcataagg	catactatac	10500
aacgcaaggc	aaggtaataa	tagcctgccg	tctgtaacgg	ccgtatgagg	tcggagggca	10560
ggcccggata	catcgaaaag	ttcctaaaga	gggcggacaa	ggcgatagac	aatgcagtcg	10620
agcagggcgt	caagagggca	gacgagatac	tagatgacgc	agtcgagctc	ggcaagatca	10680
ccgtgggcga	ggcgcaaaaa	agaagcgatg	tgctgctcaa	gcaggccgag	cgggagagca	10740
agcggctcaa	gtcaaggggc	gccaaaaagc	tcgaaaaggg	cataggggcg	gcaaaaaaga	10800
tggcagccgg	caagggcgac	gcgctagaga	ccctggcaaa	gctcggcgag	ctgagaaagg	10860
cggggatcat	aacggagaag	gagtttcgcg	ccaagaaaaa	gaagcttctc	gcggagatct	10920
gacttgaagc	cgctagacta	tacccgggac	ggctcgataa	aggaggtcac	aaagaggtgg	10980
tttataggca	cgccgtccct	tgtcgacctt	gcaggcgagc	tcggcatatc	tgagagcaac	11040
atattccacg	tgacatttcc	cgacggcgca	aagaccaccc	tgcatacgca	cgagggcggg	11100
cagctgctca	tagtgacctc	gggcaccggc	agcatgtcaa	tatttgaaaa	gaccggcgga	11160
ggcgaggcgg	aatttgcaat	aaaagagaca	gacaggatac	cgctaaagca	gggcagcatc	11220
cagtacatac	ctgccggcgt	gctcacgtgc	acggcgcaac	agacggcacc	accctgtccc	11280
atatagcggt	aaactacccg	tcgccatcgg	gaaaggagcc	gtatacatta	tggtatgaat	11340
ccgactttgc	cagccgggtc	accggcgtgc	tgtaaattat	attatttgag	cctctccagt	11400
atcgacaggc	ttacaaggtt	ggtcatcgtt	atccccttgc	ggatcacttc	ccttctagtc	11460
ttttcgcagt	acttgttgac	gctctggtgg	ctcttttcgc	tggatacctc	gagcaccaca	11520
atgttcccgc	tgtacgggaa	ggcaaacttt	ggcggaatcc	tcgagcatac	atccatgcgc	11580
cctattcccg	ccctgcctat	cttctccttt	cttgccacta	ccgacgccac	ctcgcgtatg	11640
tcctcctcgg	aatctccgta	ttccagatag	tacatggata	catagctcat	cccggggggat	11700
tccctttcga	atatctcctc	gtccatgctg	aataaatagg	aagggccgcc	cccgcggccc	11760
tccaccgcct	ttatcatttt	ggggccgttt	ttgaaccttg	ccagcaggta	gtggctggcc	11820
tgctgctcaa	agtacggctt	gcttttggac	gagaaagtgg	cggtcacaaa	gtacatctcg	11880
cctacgttcc	tcgacgagga	ccattcctcc	ttgagctcta	tcgaggcatg	gtcgtgcgtg	11940
tatggcgtgc	aggcatatcc	ccccggggag	gcctccgtct	tggacatgca	tgggatccgc	12000
ggaaccggtt	aatatctagt	tccatgccgc	cttggggggc	gggggccccg	cctgtggccg	12060
gccccggggc	aggcgtgcgt	ggatccatgc	gatagttatt	taaaactagg	atgccgatca	12120
cggatcgtcc	caagctagct	cagcctggta	gagcttccgg	ctgtagatgt	cggccttggc	12180
tgaccgtata	acagcatatc	aggcatacag	agaccgggtt	gtcgaaggtt	caattccttc	12240
gcttgggacc	acataaaact	gccgcgggta	caccgcgcat	gccgctgcgc	agtgcatgca	12300
atgtgcccag	tttgcccgcg	ccgtgaaaga	tggaattctg	tccgtgcact	gccgcatata	12360
tgccgcggcg	cgcctgcatg	ttgtgccctg	ctcgtacgcg	caaatgtcag	gagctgccgc	12420
gccaaaagac	ggcgcgttca	ctgccgcgca	tatgccgcgg	ctgcatgctg	tgccctgcct	12480
atacacggaa	agatcaggag	ctgccgcgcc	agaacactgc	gcggcgcgtg	cdccdcdcdd	12540
cagggccgcg	cccgtccgcc	gcatcgcgcg	accgggacct	ctgccgctcc	agcaatgtat	12600
cgagcgccga	gtcgtcgact	agagtgcgcg	ccggcaggcc	gcctggcgtc	ggcacgccct	12660
gcatccccat	ggcccggcqc	atctcatcgt	tctccctccg	gagccggctc	tccttctcat	12720

caagcctgct	gctcatcctg	tcgagaaaca	tcacatccga	gttgtataga	tccctgcgct	12780
gctccatcat	gcacagtatg	tggcgcaatc	gggactggtc	gcatattccg	gatgccatga	12840
gctccatgac	cccgtcttt	gtgtgcccat	tctgattccc	cccgggccgc	cttgcggccc	12900
cgcgcatccc	ggacctcatc	gccgcttcct	caggtattcc	cggactatcc	tgttggcaag	12960
ccgggtctcg	tctgtcccct	cgcgctcggc	cagcctggag	agctttcttg	cgccgttctt	13020
gcccagctct	attggtatct	ttttcttgat	gcccaccttg	cgcatcctct	ttagtattat	13080
cttgtggccg	gagcggggggc	tctgggcaag	caacctcagg	tagatccgcc	tcgacggcct	13140
gtcgagcttt	gctatctttg	ataccacctt	gagcgcctgg	gatatggtcg	gcaccgcctg	13200
gtagagcctt	gtcgcctcgt	cccgggatat	ggtgcccggt	accatcgcct	tgatcttgtc	13260
cggtacgccc	gcaaagccgt	ggtatttctt	gaacgtgggc	atcgacatgc	cgagcttttt	13320
tgcggcctcg	gattttgtcg	tctgctcggc	caggaacttg	catgcgtctg	caagctcccg	13380
cgggctcatc	tggagacggt	gcaggttctc	tacaaccgat	gcggcctttg	catcatccag	13440
gccgtactct	gtatccttgg	ttatcaccag	aaacttggac	tttttgcgc	ccaggtactt	13500
gagggccgca	agccggtggt	gccccgatat	gaggaggtac	agccccctgc	cgcccctctg	13560
tatgacgggc	gggttctgca	gcccctctga	tctgatcgac	tttgcgatat	cccgcacccg	13620
ggacctgtcc	agcctccttg	cctgcgcctc	cttccacaca	tgcacatttt	tgaggggcac	13680
ctcgcggagg	gtctgcttta	tcttgggctt	gtagcgccga	accaacgtac	ttttcaagat	13740
gcggatcctt	gttaactgtg	tttggtaagt	ttatcacaac	aattaggtta	gatagagctg	13800
ttcccacgcg	gcaatcccct	gtatacgcac	gcaaatccgc	gcatactccc	ccgggaggcg	13860
ttctggggcc	ccggggctca	cgagcccgga	acctggggtg	ccccgcgggg	gcgtcgatag	13920
aataaatacg	cgcaggggggc	cccgtggcgc	gatcgcccgt	gctgataata	aactgcaaaa	13980
actacaagga	ggcggccggc	ggcagaattg	acagcctagc	ggcggcagcc	dccddddcdd	14040
ccgcaaaata	cggcgtcagg	atagctcttg	ccccgccgca	gcacctgctg	ggcgcagtaa	14100
agggggaaga	tcttacagtt	ctggcgcagc	atatagacga	caagggggtt	ggaagcacca	14160
caggatatgt	cgtgccggag	ctgctgggag	aatccggcgt	ctctggcgcg	ctcatcaacc	14220
acagcgagca	ccgcgtatca	gctgaccagg	tggcaagcct	tgtgcccagg	ctcaggggtc	14280
tggatatgat	ctccgtggtc	tgtgtaaagg	attccgccga	ggcggcaaat	ctctcccggc	14340
accggcccga	ctacatagct	atcgagcctc	ccgagctgat	aggctcgggc	aggtccgtct	14400
catcggagag	gcccgagctg	ataggggagg	cagcagaggc	catcaggggg	gcggatggaa	14460
caaagctgct	ctgcggggcg	ggcataacat	caggcgctga	tgtgcgcaag	gccctcgagc	14520
tcggctccaa	ggggatcctc	gtggcaagcg	gggtggtaaa	atcatcagac	cccgctgcgg	14580
ccatagccga	gctggcacag	gccatgtcct	gagtactagg	cccccgcgtt	attgaggcgc	14640
gtcagcaggt	caaacgacga	cctgcgcagc	tcatccggcg	acttggcgcc	cgctatcacc	14700
atctttcccg	acgcaaagac	tagaaagctg	cagctgtcca	gccccttgag	tatcatcccg	14760
ggaaacgacc	cgggatcata	tacagcgcca	ggcatgcgcg	acgatatcct	gtctatggga	14820
acattcctac	cggcatccac	cgtggctaca	atattgcgca	cgacgggcct	tatcttgcag	14880
tcgccggcag	ccccgttgcg	caccaggtgg	agccgcgcct	cgtgcagctg	cccaaacgag	14940
gccctcacgg	atctggcgcc	gacggatatc	atcttgccag	aaatgaatac	agtcaccctc	15000

ccctgcatgc	cgggcgtctt	tatgtagccg	cacctgccgc	cgtatacggc	ctcatcatac	15060
atgcagcacg	gcatggcggc	catcttttt	gcgctcaccc	tttgtacaag	gtctgatgtg	15120
ctgacgacat	tgacgacccg	gggccgcgtc	cggggatcca	gcattggtca	ggateegeee	15180
gtgcgctatt	ttaaccgggg	cccdddcddc	cgcctcgcca	tcttgtcata	cttgcgcttc	15240
atcaaaatta	cagtgaccat	cagggttatg	ccggccacgt	tggtccctat	tatgtagacg	15300
tcccatatgt	gcaccccgta	tgttatccag	agcacagagc	cagcccctat	gaacatggtt	15360
agataccacg	agacgtccct	gaggctcttt	gtcttgtacg	ccttgattat	ctggtgcacc	15420
catccggaga	gtatcagtac	gccgccggcc	acggccacga	catccagcag	tgctatatcc	15480
acggtggtca	tttgaaaaag	aactgctcca	ttccagtctg	ctttggcttg	cccagcatct	15540
cgtcaaagtc	aaggcccatg	gacgaggtga	gctggtccag	agtagactcc	atgaactcta	15600
gatactttga	cgtgtccacc	tctcctgcct	gggccatctc	gacaggcttg	acgcctgtct	15660
tgttcatcac	ctttacgtac	gatattatgt	cgcctttttt	gacctccctt	gcgttctcga	15720
gcagtctggc	cgcccgtatg	tgctgcggga	cggtctttac	gtattcagag	ggcgccttgc	15780
ttatcatcac	attgaacgcc	agatccgcca	gcgggacccc	cctctcctcc	agcctcttcc	15840
cggatgccgc	tatggccttt	gagatcttta	gctttgccga	ttcaaactcg	tcctcggtct	15900
gtacagccga	cagtatgtcg	agcagcgaat	agaacagctc	ctttatgaac	gggggcgtgt	15960
gcgacttttt	ccccgtcagg	cccttgacgt	cgaccttgcc	ggactttgtc	accccgaaat	16020
agtttttctt	cctgttagat	agcacgacat	acctgtactc	tttgtccacc	tcgagctcga	16080
cgccgtgctc	cttttggcg	tgctcgacta	tatcatggat	ctgccgctcc	tctggattct	16140
ttatgaacag	cgaatcggtg	tccccgtaca	gcacctttac	gcccatctgc	tcgcagtgcg	16200
atatggtctg	catgatgata	tagcgcccga	ccgccgtggt	ggcctcggcg	gcaggcagaa	16260
agtacagcgg	gaatatctcg	gcgcccatca	ccccgtagct	tgcgtttagc	accaccttga	16320
gggcctggct	gatcacagta	tactgctgcc	gctgctcctc	cgttatagac	tggctctttg	16380
agaggctctt	gtaatagttg	acgcgcaggt	cgcggagcga	tcctattatc	atcgatgtaa	16440
gcccgttgtt	tttcgtgcat	acccagtggt	tggtatcggg	gatggtgttc	tttctgcatt	16500
cgggatgaac	gcacctgacg	gtctcgtacg	agaggtttcg	cacctttatt	atgctaggat	16560
acaggcttgc	aaaatccata	actgtaacat	caaagtgtat	gccctcttca	ggctcgacta	16620
cgagaccacc	gcggaacttt	ttgtccttga	ttacggcgtc	gttgcttacc	tgttgagacc	16680
tcttttccag	ctcgtccctg	cggggtatca	gcgcgttgcg	ctgcctgtgc	tcatagtaca	16740
gcaggctcct	tatccactgc	gagacgccca	tgcgggacat	atcatcgatg	ggcatccggg	16800
caatcctgct	ggtcaccacc	aggaggtcca	tcagtatctc	gttcccaaag	gtgctaagct	16860
ccagcgtcag	gcgcgcgtca	tgatagcaat	agtttgcagt	ctggtataga	gtgagatccc	16920
cgagagacac	gccataatcg	accttgccct	cgccgagcat	cgccttggac	acgctgttca	16980
gggagtaatc	tgtatacttt	gccgcaaatg	catacagctg	gaacgacctg	ttcgagaagg	17040
tcctgtacag	gtccagatgg	acgccgtgcc	ggagcgtggc	cgaatcccgc	atcatgtaca	17100
ggggtatgtc	ggaatccgcc	acgccgaggc	gccgggcccg	attgtacatg	tacggcatgt	17160
caaagtcgtc	cccgttgtat	gtaagcacaa	acgggtacga	gcctattatt	gctagcgcgt	17220
cgcggatcat	gtccgcctcc	ttgtcctcgt	cgtagaacac	cacctcgacc	ccgggggtca	17280

catcgtttgc	gccctcgtcc	gcgccgctct	tcaggacaag	gacctttctg	aggccgtcgg	17340
tggcggcaaa	ccccactgct	gtgaccctcc	tgtccgagat	cttggcatcg	gggatcctgc	17400
cctcctctga	atccacctcg	atgtcaaagc	tgaggcgcct	tatccggggt	atgggctggt	17460
tgagcaggtc	cgcccacccc	gctatgaact	cgcggaactc	tttcctgtcg	gccatgccct	17520
cgtctatgag	cttgtcccag	agaaggctct	tgagggccag	ttttacctcg	tcggatattg	17580
gcatgtcatg	cggaatcacc	tccccgcctg	ataccgaata	gtacctgccc	actaccaggc	17640
ccgcgtcata	cagatagttc	tcgtaatact	ttatgtcgga	ttcccacgtg	tctatcacgt	17700
ttctgatgct	cttctccgag	tgggtcccgc	ctatcgcaag	aggatcagag	acggttatct	17760
tggagacggg	cacctccttg	tcggctatca	ggtcgtgccg	catgacctgc	tctatcccga	17820
gcacgtcctc	cctgccccca	agaaagccga	gctcggaggg	cggcagcctc	gtataacagt	17880
agggcttgtg	ccccgtgttg	tccgtccagt	ggatgatctt	ttgcgattcc	gactcgtaga	17940
acttgaggac	cacggccctt	gcctggccat	cataggttgc	agatacaagc	agtgacgggg	18000
gaatctcttc	atcctgtgca	gtcagcgcac	cggcacctcc	tttgttcccc	cgggcatcct	18060
tgacgcccag	tatgtgatct	tctccttgtc	catcatggtt	atgctggccg	atgcatcttt	18120
taccagcttg	gaggcgttct	ccggatatgt	atccaggcag	acaaaccgcc	tgattcctat	18180
ggtcaccgcc	atctttgtgc	actctaaaca	cggagagaac	gtcgtataca	tggtggcgtt	18240
gcctccccct	gcgcctattc	ccagtatcgc	acagtgcatt	atcgcgttgg	cctctgcatg	18300
gttgcacagg	caccggtcca	ggccctcgcc	tgagcggatc	ttgccctcca	tgcgctctat	18360
gcacctttcg	cacccgccct	cgaagcagtt	ctttacgccg	gggggcgtcc	cgttgtatcc	18420
tgtggccagc	tgcctgtgat	ccctgactat	gacggccccc	acctttctga	ccatgcagtt	18480
ggatcggagc	tttgccagct	ccgcctgcag	catgaaatat	tcgtcccagg	acgggcgctc	18540
aaaaccgctc	aacggccatg	gtgccaccgc	ccggcatatt	atggtatatg	ccccggtgta	18600
cgaaaccata	aaacaacagg	ccgcgtcagg	gccgcgcgtg	gagaccgcac	acataacggg	18660
caaatacgta	gagcccggcg	ccgtcgagag	gcgcgactac	caggtgggcc	ttgccgagca	18720
ggccatacgg	gaaaactgca	tagtggtgct	gcctaccggc	ctcggcaaga	cggccgtggc	18780
cctgcaggtg	atctcccact	atttggacga	aggcaggggg	gctctcttcc	ttgcgccgac	18840
aagggtgctg	gtaaaccagc	accgccagtt	cctgggcagg	gcccttacca	tatccgatat	18900
taccctggtc	acaggcgagg	acaccgtccc	gaggcgcaaa	aaagcttggg	gcggcagcgt	18960
gatctgcgcc	acccccgaga	taacaagaaa	cgacatagcg	cgcggaatgg	tcccgctcga	19020
acagttcggc	ctggttgtgt	tcgacgaggc	ccacagggcg	gtgggcgact	atgcctattc	19080
cgcaatagcg	cgtgcagtgg	gggagaactc	tagaatgatc	ggcatgactg	cgacccttcc	19140
aagcgagagg	gagaaagccg	acgagataat	gggcactctt	ctctcaaaga	gcatagcaca	19200
aaggaccgaa	gacgacccgg	atgtaaagcc	ctacgtgcag	gagaccgaaa	ctgaatggat	19260
aaaggtggag	ctgcccccgg	agatgaagga	gatccaaaag	ctcctgaaga	tggccctcga	19320
cgaaagatat	gcggccctca	agaggtgcgg	ctatgatctc	ggctcgaaca	ggtcgctctc	19380
ggctctgctc	cgccttcgca	tggtcgttct	aagcggcaac	aggcgggcgg	caaagccttt	19440
gtttactgcg	atacgcatca	catacgcgct	caacatattc	gaggcccacg	gggtcacgcc	19500
gtttctaaag	ttctgcgaga	ggaccgtcaa	gaaaaagggc	gccggtgttg	cagagctgtt	19560

cgaggaggac agaaacttta caggggccat ggcgcgcgca aaggcggcgc aggcagccgg 19620 catggagcat ccaaagatac caaagttgga agaggctgtg cgcggggcca aagggaaggc 19680 gctggtcttt acaagctaca gggactctgt cgatttaata cactcaaagc tgcaggctgc 19740 cgggataaac tcggggatcc tcataggaaa ggcgggagaa aagggcctca agcagaaaaa 19800 acaggtagag actgtcgcca agttccgcga cggggggatac gacgtgctcg tatctacaag 19860 agtgggcgag gagggcctcg acatatcgga ggtaaacctt gtggtattct atgacaatgt 19920 cccaagctcg ataaggtatg tgcagagaag gggcaggacc ggcaggaagg acgcgggcaa 19980 gctggtggta ctgatggcaa agggggactat agacgaggca tactactgga taggccggcg 20040 20100 caagattact gccgccaggg gcatggggga caggatgaac aagtcgcttg cagcgggggg ccctgcgcca aaggcagccc caaaaaaggg gctcgagggc tatttctagg cgggcttatc 20160 ccaggcgctt tatcacgtgg tagccaaact cggattttac cggctcggat acctcgccta 20220 cctgcaggcg gaacgcggca tcctcaaacg gctttaccat cttgcccctg ccaaagtagc 20280 ccaagetgee gteeetettt gegetgeeee egtetatega gageteettt geeagettte 20340 20400 caaacttttc gcccgccttg aggcgctctt gcactgcgag cgcctcgccc tgcttttta ccagtatgtg cgagcacttt atcttgtccg ccatgcgcgc gcacattcca taccctgcta 20460 taactteteg gtatgeaggg eeetgeegge eggeagatet teegggeggg eeegeeaage 20520 tagactttta attgggatcc ggcggggggg cgcatgtctt tgtattttac gataaagacg 20580 20640 gccaacctgg ccctgcccga cgtggtaaag aggtacaacc acgtcctggc gtgcaagagc gaggtgatga gggccgagaa gcagatccag gtgtccatct cgtcgtcggg cggtctggac 20700 aagtacgcgg agctcaagca gcagttcaac tcgaggataa ccgagttcta ccgctcgata 20760 gaggagctgg agaagacggg cgtggtggtc aagagcatag acgaggggct cctggacttt 20820 cccgcaaagc gctttgggga cgacatctgg ctgtgctgga aggtgggcga gcgcgagatc 20880 aagttctggc atgaaaagga ctcggggttt gacggaagaa agcccataga ggtaagtgac 20940 gagtcactag tgtagatgct ctcctcctgg ctgcgcgtaa tacgcgtccg gttcctgctc 21000 gcgtcggtga tagccgtatc agcgggcctt gccctctcct ggtggcacgg ccacggaata 21060 gacgcgctca cagcggcact caccatggcc ggagtggccg ctcttcatgc aagcgtggac 21120 atgctcaacg actactggga ctacaagcgc ggcatagata cgagaaccaa gaggaccccg 21180 atgagegggg ggacaggggt getgeeagag ggeetgetga geeeeegeea ggtgtaeege 21240 gccggcatca tatcactggt gctcgggact gccgccggcg catactttgt gatcacaacg 21300 gggcccgtca tagctgcgat actcggcttt gcggtggtct cgatttactt ttactcgaca 21360 aggattgtgg actcgggcct ctccgaggtg ctcgtcgggg tcaaggggggc gatgatcgtc 21420 cttggcgcct actacataca ggcgcccgag atcacgccgg ccgccctcct cgtcggcgcg 21480 gcagtggggg cgctgtcatc tgcggtcctc tttgtggcgt cgtttccgga ccacgacgca 21540 gacaaggagc gcggcagaaa aacgctggtg ataatactgg gcaaaaagag ggcctcgcgc 21600 atactctggg tctttccagc tgtggcgtat tcatccgtga tagcgggggt gattatccag 21660 gtgctgccag tgtactccct cgccatgctg cttgccgccc cccttgcggc aatatcggca 21720 aggggccttg ccaaagagta tgacggggac aggatcatac gggtcatgcg cggcacgctg 21780 cggttcagca ggactgcagg cgcgctgctg gtgctgggaa tactgcttgg ttgagtggaa 21840

ctagactcga	gactgtgtaa	gcataagatg	ggcatgcgat	caagtaccag	aaccgataga	21900
attattctcc	ataaaatcat	ggaattccca	caccccctga	taaagatctg	aagatctctg	21960
cccctctgac	ggaccagtcc	agacgaaagc	gccatctcat	caaaagggtc	ggtatttgaa	22020
ttagtcacgt	atgttgggga	cgaacgtagt	gaagtaccag	cacaatctgt	ccatcttcac	22080
ccagatcatg	cgattctaac	tgcaccatga	gagtcaatcg	ggtgtaaata	aattgggatc	22140
acttattcta	ctatcacgtt	atcatctgtc	atgtcaacga	agatggtttg	tataatctgc	22200
gggttcctaa	tatctccaat	gtcatcagaa	gttacttctt	tcgtttctcc	atcccgcaga	22260
gtaacattgt	gctgtcccat	aggctgatag	agcttctatg	tatatgaaaa	cttaccaact	22320
ttacagggaa	ttggaagata	aatcaagggt	tgttgaataa	gtcgactagg	aggcagcata	22380
gtataatctc	ctttgtacat	tatgcgtaca	tagccaccaa	ccggttgtaa	agcgacaccc	22440
tgatcaggat	ttcccgcatg	atgctccctg	ccttcctggc	ctgcacggac	tcgccgaata	22500
tctttttgga	cccctcaaac	accatctcca	cggatgtcca	gcagtcgtat	ccaatatcct	22560
tgttccactc	gtcgtaccgg	cccacctagg	ccttgaccac	gagctgcccg	gcacggcagc	22620
ccgtgcccaa	cctcgagttt	atcctgatcg	tggagatgaa	catgtgtaac	tgcagtcacg	22680
gaaaccttca	gtttctggac	agctatcttg	ggtctagctt	aaacatacgc	aacgtattgg	22740
cagaattact	agatttctat	ggtcatgctt	tcttctgtca	ctctatcgaa	cacggcacgt	22800
ataatgtgtg	tgcgcttttc	atctacaaga	cttgagcagg	ttattacttt	tgattccccg	22860
caccgcatag	taacgtcttg	tatgtccatt	atgaattaag	acatctacgc	gtataaaaac	22920
atagtattgt	taccggggcg	gggctacccc	agggtagcat	catccccctt	gtacatcatg	22980
tgagcatggc	cacaaaccgg	ctgcaggcca	acacctcgat	caagatctac	cgaatgatgt	23040
cccctccctt	cctggcctgc	acggcatcgc	cgaatatctt	tttgaacccc	gcaaacacca	23100
tctccacgga	tgtcctgcgg	ccgtatccaa	tatccttgtt	ccactcgtcg	taccggccca	23160
cctaggcctt	gaccacgagc	tgcccggcac	ggcagcccgt	gcccaacctc	gagtttatcc	23220
tgatcgtgga	gatgaacatg	tgtaactgca	gtcacggaaa	ccttcagttt	ctggacagct	23280
atcttgggtc	tagcttaaac	atacgcaacg	tattggcaga	attactagat	ttctatggtc	23340
atgctttctt	ctgtcactct	atcgaacacg	gcacgtataa	tgtgtgtgcg	cttttcatct	23400
acaagacttg	agcaggttat	tacttttgat	tccccgcacc	gcatagtaac	gtcttgtatg	23460
tccattatga	attaagacat	ctacgcgtat	aaaaacatag	tattgttacc	aaaacaaaac	23520
taccccaggg	tagcatcatc	ccccttgtac	atcatgtgag	catggccaca	aaccggctgc	23580
aggccaacac	ctcgatcaag	atctaccgaa	tgatgtcccc	tcccttcctg	gcctgcacgg	23640
catcgccgaa	tatctttttg	aaccccgcaa	acaccatctc	cacggatgtc	ctgcggccgt	23700
atccaatatc	cttgtcccac	tcgtcgtact	ggcccacttg	ggccttgacc	acgaactgcc	23760
cggcacggca	gcccgtgccc	aacctcgagt	ttatcctgat	cgtggagatg	aacatgtgga	23820
actgcaggca	cggaaacctt	cagtttctgg	acagctatct	tgggtctagc	ttaaacatac	23880
gcaacgtatt	ggcagaatta	ctagatttct	atggtcatgc	tttcttctgt	cactctatcg	23940
aacataaaac	gtataatatg	tgaacgcttt	tcatctacaa	gacttgtgga	ggttattact	24000
tttgattccc	cgcaccgtag	agtaacgtct	tgcatgtcca	taagggatta	agacatctac	24060
gcgtataaaa	acatagtatt	gttaccgggg	cggggttacc	ccagggtagc	atcatccccc	24120

ttgtacatca	tgtgagcatg	gccacaaacc	ggctgcaggc	caacacctcg	atcaagatct	24180
cccgaatgat	gtcccctccc	ttcctggcct	gcacggcctc	gccgaatatc	ttttgaacc	24240
ccgcaaacac	cgtccggttc	cccgtaccag	ttcggcatgc	agacgtcttt	aatcaggccg	24300
acaactctgc	cgtagttgta	ccctccaggt	ttctccatta	caaggccgga	atcttttgat	24360
ccaaatattt	ttcggcgcac	gatggcgcct	aattaggcag	ggttagtcag	caggctcaat	24420
caatatgcct	attttactct	tttacccacg	gcttctacca	ctttttaca	cccattacaa	24480
atgaacctct	gtggcccggt	gtccatttta	atggatgaat	ccgtgctgtc	ctcatgtgaa	24540
cacaacggac	acttgaaagt	gtacctgtat	ggaaatgtcg	gggggggcgtc	cttttcaccc	24600
aagacttttt	ctatgtatat	tgtgcaacat	ttggcatgat	acaccattcc	ccctttcttg	24660
gtataatgtt	gagtgcccgc	aacatccttc	ttgcacagag	cacataatcc	gggattcgat	24720
tcgtgccact	ccacacagga	agtatggcat	ttaaaatcag	aataaggcat	gatggagcct	24780
tctagattct	tcatgcatat	ccctcaaagc	tttttcatgt	ccatgttctc	ccccaaatgc	24840
catattactt	aactattctg	ttgtgcactg	ctgacaaggc	cctgaagttt	ccgagtactc	24900
aaacacctgt	acttcacaac	acagtgtaaa	acctcggggg	atcacaagga	aaggagctcg	24960
gtccaaaacc	aagaccgata	tggatagaga	aagagaatac	acgccgcggc	ttttggggat	25020
ttatccgcgg	cgggttgggt	gatatcaagt	gccagctcag	ggggcacgac	atgccgcagg	25080
atgtgatgga	gatcaaggga	cggcaatata	catggcactg	catgccgcag	gtgtggccat	25140
aacctgataa	ttgaggcccg	cggctgtgcc	tacagcacgg	gatattggcg	cagaacgggg	25200
caatctcaca	ctttgtaccc	ttcatacaca	taaatcccgc	ttggatgtgc	ggctgcgcat	25260
gatcagcggg	catgccacgg	ccgagggtac	acagaggata	gccgagatgt	ccggcgcaca	25320
ccatgacaac	tacaaggtgg	tagacgggct	gcacctctcc	aacgtgggga	tgggcaccta	25380
ccttggcgac	gcggatgacg	ccaccgacag	ggccgtcaca	gacgcggtca	agaggtcaat	25440
caagtcgggg	ataaacgtca	tagataccgc	gataaactac	cgcctccaga	gggccgagcg	25500
ttccgtgggc	agggccgtta	cagagctctc	agaggagggg	ctggtatcca	gggaccagat	25560
attcatatcc	acaaaggcgg	gatacgtgac	caacgattca	gaggtctccc	tcgacttttg	25620
ggagtatgta	aaaaaggaat	acgtcggtgg	cggcgtcata	cagtccgggg	acatatcctc	25680
gggataccac	tgcatgaagc	ccgcgtatct	agaggaccag	ctaaagagaa	gccttgcaaa	25740
catgaacgtc	gactgcatag	atcttgtcta	cgtgcacaac	ccggtggagg	ggcagatcaa	25800
ggaccgcccc	gtgccggaga	tcctcgaggg	gataggcgag	gcctttgcca	tgtacgagaa	25860
aatgcgggag	gctggccgca	taaggtatta	cgggctcgcc	acgtgggagt	gcttccgggt	25920
cgcagagggc	gacccgcaga	gcatgcagct	cgaagcagtg	gtaaaaaagg	ccaaggatgc	25980
cggcggggag	aaccacggct	ttaggttcat	acagctgcca	ttcaaccagt	actttgacca	26040
ggcctacatg	gtaaagaacc	aggggacggg	cggcggcaag	tcatccatac	tggaggcggc	26100
agccgcgctg	gacattggcg	tgttcacaag	cgtcccgttc	atgcagggca	agctgctcga	26160
gcctggcctg	ctgccggagt	ttggcgggct	ctcgcccgcc	ctgcggtccc	tgcagttcat	26220
caggtctaca	ccgggagtgc	ttgcccccct	gccggggcac	aagtccagcc	tgcatacaga	26280
cgagaaccta	aagatcatgg	gcgtgccccc	cattectect	gacaagttcg	gggagcttgt	26340
ggccagcctt	acctcatggt	cgcccggcca	gaaatagtca	gcgtgttccc	tcgggcatta	26400

tctggtctag	cacctttttt	ggcagcttcg	agtccgcaga	atctttcaca	ttgcgccggg	26460
tcctgtccac	gttggcagga	tacaggtcta	ttcccgtaaa	gcccctcttg	aggcacgccg	26520
agactatccc	cgttgtgccc	cttcccgcaa	acggatccag	cacatagtcg	ccctctcttg	26580
tggcaaactt	tactatccgg	gatacgaggt	cttctgggaa	caccgcaaag	tgctcgttgc	26640
cgtggtgcgc	ctttgtggat	atctcccaga	cgttcccagg	gttcttgccc	cgggggttgc	26700
atgctgcaaa	tatcggatag	tgctcgtggc	cccctatccg	cttgcgcgtc	gcatgccttt	26760
tgaacttgcg	gtagcatgtc	gggcagtgct	tttcggggtc	atacccgtgg	gcccgcgata	26820
tctcctcggt	ggttggcagc	tcgtcaaacg	gcgtctcggg	ggacgagccg	tgtatcactg	26880
ctgcaatcct	ccctatggct	tcagggtccc	tcctcccggg	ggagaactgc	agccggtcgc	26940
gctccggctt	cctgttgacc	ccgctcaggg	cctcgttgcc	ctggacgcgt	atcgggtcta	27000
tgtcaaaggc	gggggattcc	gactttgata	gcaccagcac	aaactcgtac	gcctgcgtaa	27060
ggttctgctt	cgagctctgt	gatagcgcgt	ttttcttgta	ccagactata	tcctcttgaa	27120
agtggtaccc	aaggtctaca	agtctgagcg	cgagccggtg	cgggaccatc	agcttccggc	27180
gccgcctccg	ggtgtcgcct	atcactatga	agaggctgcc	gtcgtcggta	agcaggtcca	27240
tgcagctctt	gaacacccct	gccagctcct	cgacgaactc	atcaggcgtc	ccctcctggc	27300
ccagctcgga	gggatccgac	ccgtactttc	tgtgcccgta	atacgggggg	gaagtgacgg	27360
ccagcctgta	cctgccgcgc	tcgccattct	ttttgcaag	cctgggcagc	accgcccggg	27420
catccccccg	gataacctgg	aaccggttgt	tcatgttgcc	tgccccacat	caggctggac	27480
ggacagatct	gcgcagcagg	cgggccgcgc	gatcctacgg	gtcatacaca	ttctatgcgg	27540
ctgccccggc	gccgacttaa	aatcgttgta	ggatgcggcg	ccgcagatgc	attgcccgcc	27600
ttatacaccg	cccgggatcg	gccgccttgc	agcacacgca	gtataaacgg	gggcccgggc	27660
ggcgcgtatc	acatgtggat	aaaggacgaa	ttcctcggcc	cgggcaacaa	gatgaggctg	27720
ctctacctga	tactgcccat	ctatgggtat	atctttctgg	agtactatcc	gttctttccc	27780
tggatggcca	cctactggtg	gtcagtagct	ctcagccccc	cgatagtgcc	cacgcattat	27840
gccggggagg	ccctggggcg	gctgatcggg	gatcacgtat	tgtttggcat	caccacaaag	27900
tacgtctatg	cggcaatatg	gctcggcatg	gcccatggga	taatcctgct	ggcagggcgc	27960
ctccgggggac	ctaggcaggc	gccacggacg	ggcatcccat	aggctctggg	gcatccgcgg	28020
gtccccgcgg	tccaattaaa	tacagcaagg	aacgggtagt	ttcgttgaag	ctgcaaggca	28080
agactgccgt	gatcaccggc	agtggtaccg	ggatcgggct	ggcggtggca	aggaaatttg	28140
ccgagaacgg	ggccagcgtg	gtaatactcg	gaaggagaaa	ggagcccctc	gatgaggcag	28200
cagcagagct	caaaaagata	gcggaatctg	caggctgcgg	ggcctcgatc	aggatattcg	28260
ccgggggtgga	cgtggccgac	gaatccgcga	taacgaaaat	gttcgacgag	ctgtccagct	28320
caggtgtaac	cgtggacata	ctggtgaaca	atgccggcgt	gtcggggccc	gtcacgtgct	28380
ttgccaacaa	tgatctagaa	gagttccgcg	gggcagtcga	catacacctg	accggctcct	28440
tctggacatc	gagggaggcc	ctcaaggtca	tgaaaaaggg	ctccaagatt	gtcaccatga	28500
ctacgttttt	tgcagaagag	aggccactcg	agcagaggcc	gtacaggttc	cgcgacccgt	28560
atacaaccgc	acagggcgca	aagaacaggc	tcgccgaggc	gatgtcgtgg	gatcttttag	28620
accgcgggat	aacatcgata	gcgaccaacc	ccggccccgt	ccattctgac	aggatataca	28680

agacggtata cccgagggcg gcactcgagt ttgtcagggt ttcagggttt gaggacctgc 28740 agccagaaga agtcgaggtg gcaggcggca ggctaatcca cctgctcggc gcggacgacg 28800 28860 atgcaagaaa aaaaqqcata qcagaqqccg cagagcactt tgccaagcta aagcccgtgg atcccgcaaa gctagaggcc acccttgatg ccctgctcgc aaagatcaag gggatagccg 28920 aaaagataca ggccaacact gcaaggatga taccagacgg ggagtttctc tcccaggacc 28980 aggtggccga gacggtactc gccctctgcg atgacaagat ggccaagacg gtaaacggcc 29040 gcgtaatccc cgccgacagg gtattctacc cggtaagggc gcatgtggcc aatgccgctc 29100 cgcgcgtgcc cccgcacgac tattccgggg gatgcgtcct attcatgata gatgcagcag 29160 acgacaggga tgtagaaagg gcgaccgccc tggcatccca tgtggaaagc cacgggggga 29220 29280 cggcagtctg catagtctca gaagactcgc cccgcgcggc aaaggagatg atagcgtcaa agttccactc gcatgcgagc cacatagaca aggtagacga gataaacagg tggctgagcg 29340 ctgcatcaac aaagataggc cccatatctg cagtggtcca cctgtccggc aggatgccaa 29400 29460 aatccggcag cctaatggat ctctccagaa aagaatggga cgcgctggtt gacaggttca tagggacgcc ggctgccgtc ctgcacaggt cgcttgagca ctttgcaccc ggcgggcgca 29520 aggacccccg tttgttcaag ggcaagagcg gcgtcatcgt gataataggc cccgacctgc 29580 ccgcggggaa aaaggcctcc ggcgccgaga gggcaagggc ggagatcttc cggggtgcgc 29640 29700 tcaggccgct gacgactaca gtcaaccagg agctcagcga tgtgctaaag tcaaacgtgc 29760 geetgtttae cateetteee ggeagggegg acggggggega gaeegatgat teeegatat ctgctgcaat cgactacttt ctgacccccg aggctgtctc gtccggcgag gtcatattct 29820 29880 gcgtagacga gaacaggggc tagcccgcca cagcgtccca gaagagtttt gctgccacta caagtatgac cactgccgcc agtatgcgca ggcccctctc cctcaggttc agcgagagct 29940 tggcgcccag caggcccccc gcaaacgcgc cagacgagag cagcagtgca tggtaaaagt 30000 caqtqtqccc caqcaqcqta tqqqtqacca tqccqqtaaa tqccacaaac atcaqqacca 30060 gctgcgcggt gggcgcggcc ctccacatgc tcatgcccat tatcgccacc atgagcggga 30120 caaatacaag gcccccgcct atcccaaaga agctcgatat tatccccgcg aaaaagctgg 30180 ccgctatgga tagcagcagg acggtcaggt gggagcgccg ctgcccctcc ccaatcctgc 30240 tgctgagcag caggtatgca gcagatccca ccaggacgat cccaaagaac aatctgaaga 30300 tatcaggcgt tgctgcggcg gagaatagcg cccctagaac ggtaccgggc agcgccagca 30360 ggcccagcgt cagccccgtc cggtagtcta tcctcttctg cctggcatat gacgcggtgg 30420 ccgccgacgc gctgctaaat gccgcaaaga ggctgctgct ggctgcagcc gtcggtgaaa 30480 agcccataaa ggtcagcacg ggaaccacca cgaacccgcc gccaagcccc accatcgagc 30540 cgattacccc ggctgccagg ccaagcagcg gcagccatac ctcctccatg acaacctgcg 30600 gcactgctgt tatgtataat accgtttttg ggggcgagga aacggatatc atgcctagaa 30660 gccgtctgtg ctatccctgc cgacccccaa gccccaccca cttcacactc atctagtaag 30720 caaatcttgc accaagccgg atattttcca tggttttggc aataaattca ataaacagta 30780 30840 cgttcggtca tactgcatgg caaaagagac catagggaac cgcccagtcg atatcatgaa ggagggcaac gaggtcaaga tagtattcca ccccattcta aaaggggcaa aacaccccga 30900 cgcggccgta ttctcgataa aactgtcgaa aaaagattta gagatcatca ggaatgcttt 30960

ctaacatact	gtaaaatctc	aaaaacatac	tgcaacgtgc	gatttatata	cgggaaatgc	31020
gatcgcgata	tagtgacaaa	atataaccga	tccgctagtg	aaagcatggg	atcggagacc	31080
tatgggtttg	atgccatacg	aggcatgcaa	gctaaccacg	aatattacgt	taccatatgt	31140
cctctaaaga	ttattcccaa	gctcttcata	ttcaacgagt	atgagctccc	ggcaaagctc	31200
agagctcaaa	ggacactccg	aaaatctaga	attccaaccc	tcaaggacta	catactaagc	31260
aatcctgacg	agtacatatt	ctcgtccctc	gctgcatcgg	tggatgggcg	catgaagttt	31320
atcccagccc	cgcatctggg	gccagatggt	aaaatgggca	gactccacat	agacatgtcc	31380
tccaagctaa	taatcaacga	cggacaacac	cgccgcaagg	caatagaggc	agccttgctc	31440
gagaagccgg	atctgggcaa	tgagtcaatt	tcagttgtat	ttttgagga	tcgagggctt	31500
aaacgctgtc	agcaaatgtt	ttccgatctg	aacaaaaatg	ctgtcaaacc	atccaagtca	31560
ctcaatatac	tgtatgacaa	caggaatcca	ttttctcgtt	ttatagtgga	catggtagat	31620
gagatagatg	ttttccggga	cagggtagag	ctggaaaaga	ccaccatagg	gaaaaatgcc	31680
aaggaagcat	ttactcttgg	gggattgtct	gatgcaacaa	tgagactgtt	cggcaaaaaa	31740
tccttgtcgc	gacccagcaa	ggaacaaaag	ggactcataa	aggagttctg	gaaatgcgtc	31800
tcagccaaca	tgcaagaatg	gggacggtta	gtagacggcg	aaatgtcggc	agacgagctg	31860
cgtgcaaact	atgtcaatgg	ccataccaac	tgccttaatt	cactagggga	ggtaggccga	31920
acagtaatca	agcagcatcc	agaatcgtgg	aaaagaaagc	tttcctctct	gtctcggatt	31980
gactggtcca	gggaaaacga	ggtgtgggag	ggcaatctta	tacagggtaa	gaagatggtg	32040
aggaccacca	tcggaataat	gctcggggct	ggcgtcatac	ttcgggaatg	cagcatacga	32100
gttcctgaag	agattgagag	gtatgagaaa	tgacatctgt	gtttgacaag	cggacgactg	32160
acagcatata	cgacgaggta	cgctcagtat	acctcaacga	tgcacgccct	tggatccttg	32220
ggtttagtgg	cggaaaagac	tcgacatgca	tggtacagat	tgtatggaaa	gccctctcgg	32280
aactacctgc	agacaagctg	gacaaaaaga	tctacatagt	gtcgtcggac	accttggtag	32340
agtccccaca	gatagtggag	cggctgacca	agtcacttga	cagcatagag	aaggcggcaa	32400
aagaggccca	tattccaata	tcgaccaacc	tactgcggcc	tccgattact	gacacattct	32460
gggtccggat	actgggcatg	gggtaccctg	cccccacctc	catgttcaga	tggtgcactg	32520
atatgctcaa	aatagcaaac	gctgacaggt	tcatcaaaga	gagagtctcc	gagtatgggg	32580
aggtcatagt	tttgctgggc	acccgcaaga	gcgagagcgc	cacccggcag	caggtaatga	32640
atctgctgga	gatagagaat	agcgttctaa	gccaccataa	aaaattcgca	cagacctacg	32700
tgtatacccc	cctggtggac	tttgaggcgg	aggacgtatg	gaactacctg	ctccagaata	32760
agaatccatg	gggcgataac	aaccgagacc	tacttgccct	gtatcaggat	gccaatgcgg	32820
cagagtgccc	tcttgtggtg	gacaccagca	cgccatcctg	cggaggtggc	aggttcggct	32880
gctggacgtg	cacggtggta	gacaagcaaa	agtctctgga	cagcatgatt	gaaaacggtc	32940
atgaatggat	ggaaccgctg	gcagaattgc	gccacattct	aaagcagaca	caggatcc	32998

<210> SEQ ID NO 2 <211> LENGTH: 42432 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS

<222> LOCAT	CION: (3)	.(10421)			
<221> NAME/	KEY: CDS				
<222> LOCAT	TION: (1062	5)(11434)	1		
<221> NAME/	KEY: CDS				
<222> LOCAT	CION: (1147)	3)(13046)	1		
<221> NAME/	KEY: CDS				
<222> LOCAT	CION: (1304)	5)(14620))		
<221> NAME/	KEY: CDS				
<222> LOCAT	CION: (2355)	3)(24862)			
<221> NAME/	KEY: CDS				
<222> LOCAT	CION: (2491)	3)(25728)			
<221> NAME/	KEY: CDS				
<222> LUCAI	TION: (2650)	4)(26881)	1		
<221> NAME/	TON: (2965)	5) (30/01)			
<2222 LOCAL	(XEV. CDC	5)(50491,			
<2221> NAME/	TON: (3455)	9) (36067)			
<2215 NAME	KEV. CDS)(30007,			
<222> LOCAT	TON: (3700)	2) (37403)			
<221> NAME/	KEY: CDS	-,,			
<222> LOCAT	CION: (3740)	4)(38282)			
<221> NAME/	KEY: CDS	, , ,			
<222> LOCAT	CION: (3945)	4)(40572))		
<400> SEQUE	ENCE: 2				
ggatccccgc	gccgccagga	gagggcagcc	ttggcggggt	ggcaatatcc	gacgacggga
ggtacatgta	cgcaatcggc	agggatctgc	tcacagtata	ccggtataca	atgaacccgc
	agatagaa	agaataaata	agaagtaatt	++a+a+aa+	
cccacyacac	ageeteggee	gegereggeg	cycayccacc	LICICIGUEL	ggcggcatta
accccacccc	caacacacca	accogcettg	acatetegga	tgacggccgc	cacctgtacg
J J				-]]]] -	
tcccggacga	aaacggcgtc	gtgtacaggt	ttgatctgga	aagcccgtac	aggctagacg
gcggcacgtt	tggctcttct	gtttatgtgg	gatccgacgt	tgccgcgccc	cgcggcgtat
acgtggcgcc	gggcggcagc	ctcatgctgg	tctcggatag	tgcagacggc	accatccaca
ggtacgagct	ggcaagcccg	tacgagccgg	cdddcdcddc	aaacagggga	tcattcgacg
+ at a gast st	aasaaataa	aatataaaaa	aggggtttag	agaagaata	apaptatota
tgteggatat	ggaeggeteg	cctgtcggggg	eggggtttge	gggeggeetg	cacatytaty
togoggaaaa	cascaccaa	agggtgtagg	agtatooggo	aaacacacac	cadatacadd
ccycyyyada	cyacaccyya	agggeeeace	ageaccegge	gggcacgcac	cagacacagg
aggeageege	agggccgcgg	ctactctcaa	ccgtcctgga	caaagacgga	accetgaggg
cggcctttga	cggcacggta	gacgcgggat	ccgtgcagcc	cgggatgatc	accatcaggg
acggccatgg	ctccaacacg	ggaatacccc	ttttgcttgc	cgggggtgcc	gcggactctg
atgtcatgac	atttgtggtc	cccgagaaag	acagggcaga	ggctgccgca	tacggggacc
agtcgctgca	tgttcccgcc	gcggcgctgg	cggggactgg	cddcdddccd	tttgtgcccg
		_ 1			
actttccgg	yyyetegetg	utyyugtede	Lytaccygda	cyayeggeeg	ccccagggeg
aggagatgag	acquacquag	agatocoaca	aat acacact	tactotaact	acaaacaaaa
aggagalggg	abygabygay	agueeeyaca	ggeuegegee	caceguade	Jeaggeggga
gtcagatgca	tatagacaac	accaacaaa	acatcaccto	gtacgatctt	ggcacgcccc
5 5 5		, ,, ,, ,,	,	5 5	
atgacataac	gaccggcgtc	cgcgcgggat	ccgacatcct	gccggcgtat	ccatccgcgg
-			-		

gcagaaacgt ggtgccgtca ataacgggca ttgccttctc ggatgacggc atgcggttgt

ttgcagcaaa ccggggcgac cgcattccaa tgtaccagct ggacagcccg tacgacatag

ggagcgccag cctcgaggga accctgttta cggggttcca gtcgggcatt gcattctcgg atgacggcac gcgcatgttt gccgccctgc tcaccgagaa tgccatacgg cagtacgacc

tggagggccc ctatgacata cgcggggcgg gcaatgcggg ccagtacgac ctggacatcc cgctgcaccc aggactgctg ttcctgctga cctcgggggt gcactttcg cccgacggga

cgaggatgtt	cgtcggcgag	gggatatcag	atgcggagga	tgccaacgcg	aacagggatg	1560
tcaacgtcaa	cctgtggcac	aggtttgatc	tctccacgcc	gtttgatgtg	ctcacggcgg	1620
agcgcgtgga	cacgtacgag	tacagcacgg	ggccggcagg	cgatctcgag	gacctctccc	1680
tgtcccctga	cggccgcaga	ttgtacaccc	tgtcgagcga	gagggtaagc	tcaagcgagt	1740
atacaatcac	ccgggcccag	tactggctgc	cagaaccgta	cgacgtgacg	ccgccgtacc	1800
atgtgccgtc	attcaacgca	agccaggggg	gcaacctggc	agacccctac	gggatggcct	1860
tctcgcccga	cgggaccagg	ctgctggtca	cggggcacgg	gcagacgaat	gcaaagctgt	1920
tccacctgaa	tccgcccttt	gatgtgggca	cggccgtgtt	ccacgaccac	ggcaggttcc	1980
dccccddddd	gcccgcaagc	gagatcgagg	cgtcggggat	atccctgtct	gccgacggct	2040
ccaggatgtt	tctctccgac	cgcggccgcg	gggccatcag	ccagtacacg	ctggttgcgc	2100
cctttgatgt	ggagtttgcg	tcggatgtgt	ccgcggatgg	gcagctcgac	gttggcgccc	2160
aggatgcgct	tcccggcggg	cttgccttct	cgcccggggg	gacgaggcta	ttcatggtgg	2220
gaggcatgga	caggtcagtt	cacatgtatt	ccctgaatac	gccgtttgac	ctgggcgggg	2280
cagagcatgc	ggcgtcgttt	ggcgtggggg	acagggtctc	ggatcccctc	ggcatcgcct	2340
ttgggaacgg	ggggactaaa	atgctaatag	ccgatacgac	aggctttgtg	cacgggtacg	2400
accttggcgc	cccgtacgat	atctcgggcc	ccgcgtacag	cggcatattt	gacgccggcg	2460
gcagcatccg	ggacgtggcc	gtcggcgggg	ggtccatgtt	catactcgag	ggggagacgg	2520
accgggtgta	tgagcaccgc	cccggcatat	acccggtggt	ctcagcactg	gacgggccgg	2580
cgctggtctc	tgctgcagca	gatgcaaggg	tgggtgcggc	cgaggtgctc	tttgatcgcg	2640
cggtggatgt	tggcgggata	gaccccgggg	gggtccgcat	agtggatgca	gcaggccccc	2700
tgcccggcgt	ggtgatctcg	gatgccgtca	taccaggcga	ggatcccggc	gtggccaggt	2760
tcagcctgtc	ggacgcggag	gtccttgccg	tgtccgggta	tgccgagccg	agtctggtct	2820
ttggaaggca	tgcggtgccg	ggcgcggcag	gcggcacatt	tccctcccag	ataggcaacg	2880
ccacggagct	tgtgggatcg	attccgaatc	cgaccctgga	ttttgggacg	accctgacgg	2940
gggcggcatt	ctcggcggac	gggacggtgg	tatttctctc	agacggcccc	accggcaggg	3000
tgtacccgta	ttcactgaat	atcccctttg	acatatcgtc	tgcggcgcct	gggggctttg	3060
taatcgtgcc	cgtcggagtc	tcggacattg	cgttttctgc	cgacgggcgg	aacatgctag	3120
tcgcggacga	aaccgggggga	atacacaggt	acctggcccg	cagcccgtac	gagataggca	3180
cggatttcat	caaatcatcc	ctgggtgagt	ttgtcgagac	attctcggcg	gcgccccgcg	3240
tgcaggatct	tgccggcatc	gccttttcgc	acgacggcat	gatcatgctt	gcggccggcg	3300
gctcggggtc	tgtgcaccgg	tactcgctgc	catccccgta	tgcagtatcg	ggggccaaat	3360
acgaggagac	ggcgatgatt	ggcgggagcc	cgtcggggct	ggagttctcg	tccgacggcc	3420
tgaggatgtt	tgttcccgat	gcgggctcgg	agacggcggc	agtctacggc	cttgccgccc	3480
cctacgggat	tggcgaggcg	gagccgctgc	cgccgctgtt	cctgggggta	ggggcagaag	3540
aggccacgct	ctcgcctgac	ggcaggcaca	tcctagttcc	cggcaggccc	ggcctgtccc	3600
agtactcgct	gttctcgacg	aatcttgagc	tgtgcgcgga	gccccggggc	attgacgggg	3660
gatcgtgcga	agatgggata	tacgcctttg	agagtccggg	caggggcgag	ggcgtatcgc	3720
ttgccgcctc	gataacggcg	gcagacgggc	caggaattgg	cgagctgcac	gggtttgcag	3780

gcccgccgat	gccggcgcct	gtcatggagc	aggtcacact	ggattcgcgg	gagggcacac	3840	
tcagggtcag	gctggacagg	acagtggacg	tcgacacggt	gcgcccctat	aagatgtggg	3900	
tggaggattc	agacggcagc	cagacaaccc	tggcaaattc	aacactgttg	aatgccgaaa	3960	
actcgaacat	tctgctcttc	aggctggatg	atgcggccgc	aggcaaaata	tccgggtata	4020	
catcccccgt	gtttcgcacg	tggtcgtcgc	cgttcctggg	cacagacgga	gccaccaggc	4080	
cccatacgct	gggctttgga	gacgtgcgcc	ttgcggatat	atacgatgca	tccggggatg	4140	
tcccgtcgcc	gtcgggcatt	gagttttcag	atgacggcat	gaggatgttc	gttacgggga	4200	
tcggcacgcc	aggcatcaac	atattcacac	tgtccgcccc	ctttgacata	acattgccga	4260	
agcattccgg	ctcaaccaac	ataggcggcc	tgtccgtgtc	tgatctggca	tttgcaaaca	4320	
atgggaacag	cctcacggtg	ctcgatgtgg	acggggtgtt	gcgcgtctac	gcccttgggg	4380	
acgattacaa	tgtggtcacc	ggaaccaccc	agaagtttag	gattacgctc	gataccacac	4440	
agggcatacc	caattccatt	tacacatctc	cggacggcct	gtcacagttt	gtggcatatg	4500	
atgacaggat	tgacttgtac	gtgcttggca	gcccaaacga	catatcgtcg	acaaccgaga	4560	
taatcccgta	ttcgctgcca	aggccggacc	cgccaaccgg	catggacttt	acgccagacg	4620	
ggcgcaggat	gttcctgtcc	accgagaacg	ggatagacca	gtacctgctt	tcagaaccgt	4680	
ttgcagtcac	cacgtcggta	ttttgcgca	cgatccccat	tgacggaggg	gcggagggaa	4740	
tacggtttgt	agacaacgga	aggggcctgt	ttgtgccggg	cgccgacggc	atcatccaga	4800	
ggcacgagct	catctacccg	tacggggcca	gcacgtcgtt	gttggagacc	gtcagggacg	4860	
gcgtgacgga	cggcggtccg	ggcgagaacc	cggccgccgg	agagatccgc	cttgcgggca	4920	
cattcaatgc	atccgataat	gtacagtcgc	cgtcgggcat	tgagttttca	ggcgacggca	4980	
cggggatgtt	tgttaccggg	tttggggccg	cgggcgtgaa	tgaattctcc	ctgtccgccc	5040	
cctttgatac	aaccctcccg	gtgcatgtgg	aattgcacga	tataggcggc	cagccggcag	5100	
ttgatctggc	gtttgcagaa	gatggcagga	ccctcctgtt	gctggccgcg	gatggaacac	5160	
tggatttcta	cagccttgcc	ggtgatgcct	atgatatagg	ggaagcatcc	cgtacttttc	5220	
aagtgccgtt	tgaggatgcc	gcgggtgctg	tgcccggcgc	cttttaccag	cctccggatg	5280	
gctcgtctat	tattgccgca	tttgacggca	ggattgacca	gtatgtggtg	atccccttcg	5340	
agttcgtgtc	atatccactg	acaaggcccg	gcacgcccac	agggattgac	tttgcgccag	5400	
acgggcgctg	gatgttcctg	tccaccgaga	acgggataga	ccagtacctg	ctgtcgatcc	5460	
cctttgacgt	gcgcagcctg	acgtatacgg	gaaccattcc	agtagacggg	gtggagggaa	5520	
tgcagtttgc	ggacaacggc	agggcactgt	ttttggcgga	cagtgaaggc	ttgatttaca	5580	
attatgacct	ggaggacccg	tatgctctgg	atggcaacac	aatttccgtg	gaattctcgt	5640	
ttgacggtag	cgtgatgtat	gtgctggagt	acgacacaaa	aagggtggtc	tcgtacgagt	5700	
tggagtttcc	ctttgacgta	tcgagcagaa	cacgtgcaga	cacgctggac	ataccacaaa	5760	
ttgactcacc	aagacacgtt	gcagtctcga	tgcccggcaa	ccacctgtac	ataacaaact	5820	
cggtgtttgg	ggaagatgac	accatacact	cctatggaat	atctaacaat	gacatatcgt	5880	
cggcatcata	catcggcgag	gaaggcatcc	cggaacccgt	gataaacggg	attgactttt	5940	
ccaacaacgg	ccgccgcatg	tttctgattg	ggggcaacgg	gttcgactac	caggtgatac	6000	
atgactacat	gctaggcaca	agatacgaca	tatccagcag	gagcctgctt	gatacatatg	6060	

ccattccagg	gccggttgtt	tttcccgcgg	gccttgattt	ctcgtttgac	aggctgtcca	6120
tgtttataat	aagcaccgcc	ggttcggtat	acaggtacgg	cctggacgat	ccgttcatag	6180
ttgaaacaat	ggactatcag	gagtctttcc	ggctgcccgt	accatcagcg	gctgataatt	6240
caatatcgga	tctggcattc	ggcagcagcg	gcctgaatgc	cgtaatatcg	cacgaggggc	6300
tcgacaccct	gtacagcttt	gtactggaca	tcccgtatgg	ggccgaattg	gatattgaca	6360
ggcttgagct	tccgctggtg	ggggttccga	cgggattcga	gttctcggac	aacgggcgcc	6420
agttgtacat	tggcgcgttt	cgtgactctc	aatcctcgcc	aggcaccctg	cctgcgggcc	6480
tgcagcgcta	tgagcttggc	ataccatatg	acctggcttc	ggctgtattt	gcgcagtccc	6540
tgggaatatt	cgattttcct	cccttcaacg	gcatgcgggc	caatggcagc	ttggcaggat	6600
tacatgtgcc	gcccgatgga	agcatcctgt	tcagggccgg	aaatgccgaa	agaaccgtaa	6660
tcagctatga	catggacagc	catgatttgg	atacattatc	attcagggaa	tcattcaaac	6720
cagatgtcgg	acagtcgaca	cccaacataa	gggacatgga	catatccccg	gacggcatgt	6780
tcctctacct	gcttcaaggc	gatgttctgg	acatgtacaa	ccttacagat	agttattcgc	6840
ttgatgcccc	ggcatatgcg	ggtaccctgg	atttggaacc	ggaggatgta	atacccaggg	6900
ggatttcatt	ctcacgggat	ggcacgagtc	tgtttatgac	aggcgaagac	gtggaccaca	6960
ttcacgaata	tgcattgaat	gaaccatggg	acatacgcaa	tgccatactt	gcaggctccc	7020
tgtccataag	cgcagtgaat	ggtgcaccgc	ggggggctgga	tatatcggag	gatggcacaa	7080
ctgcacatac	tatgcgcggg	cgtgactttg	acacgggggcc	cgcatccctg	gtaaaccaca	7140
tattgccagg	ccaatattcc	ctgctgacgg	atgcgccggc	gtttgcatac	cccgtggagg	7200
aggagggtgc	accggggggat	cttgcattct	ccgatgacgg	catgcgcatg	ttcgtggcgg	7260
gcgtaaacaa	ccatttaaga	cagtacaacc	tgctgtcgcc	gtatgacact	gaaaatgcag	7320
aacatttcat	ctcgacggat	ctgctgactg	cggacagggg	ccccacgggt	cttgtatttt	7380
cagatgagaa	cgactttttc	agcacaggcg	ccagggccca	atttgtgcgc	cagtttacga	7440
caaaccgccc	gtacgacgca	tccacaataa	cactgagtga	caacggactg	tacaaggtga	7500
gcgtggacgg	cctgccgtcc	ggcatacggt	ttacccccga	cggcatgaag	atgttcatat	7560
cgggccagga	gacggccatg	atataccagt	attccctgcc	gtccccgtat	gacacatccg	7620
gggcggtcag	ggacagggtt	gagatagtcg	cagggctctt	tagaaatgca	ggtttgtccg	7680
tcgggttgaa	cgagcccagt	ccttccggct	ttgacttttc	ggaggacgga	atggagctgt	7740
acgtgacggg	gtcgggcctt	gttcacaggt	atttcctgcc	atcgccatac	ggcctcgaag	7800
atgcagcgta	cggggggcagc	ttccacacgt	tcagggagag	cacgccgctg	ggagtggtgg	7860
tgcgggggga	tgccatgttt	gtggccgggg	acagtactga	ttccatattg	aaatattccc	7920
tgaacgcaca	acctgtcggc	aacataaccc	atgccgatac	gcgcgccggg	attgccgaca	7980
gggcggagat	cgtgtttggg	gcaatggcag	atacgcgcgc	cgagattctc	gacggcgccg	8040
atgtagttca	taagagtgtg	aaaattgacg	tattcccaat	atcggagggc	ataacagtgg	8100
gcagggcact	ttatccagag	gacgccgcca	tacttgatga	cggcgcgaat	gccacgcata	8160
atagggttgt	aatcattgtt	cacgacataa	cagaaggcga	tgcgccgtcc	atacatgatg	8220
agccgattgc	cgtggggatt	tacgccctcg	gccctatgga	tacaatcgcc	gtggttgatc	8280
tccaccgcct	ggccgtatcc	gcatccttgt	ccggggggtga	ttccccgtcg	gcctcagatg	8340

catccggagt	agtggccgag	agccgcagaa	acgcggtgga	caggcctggc	gtggaagagc	8400
gcataggaca	tggtgtatcc	ctggaggcgg	ccgacaggcc	tgccgtcgac	aacatgatgg	8460
atacggatag	tgccggcgtg	tacgaccgca	gtccggacga	cgggcccgcc	gtatccgaca	8520
ggtccgcgct	ggggcttgcc	cggatggcag	ccgacaggcc	tgcagtcgat	gacatgatgg	8580
atacggatag	tgccggcgtg	tacgaccgca	gcccggacga	cgggcccgcc	atatccgaca	8640
ggtccgcgct	ggggcttgcc	cggatggcag	ccgacaggcc	tgcagtcgac	gacatgatgg	8700
atacgggcag	tgccggcgtg	tacgaccgca	gcccggacga	cgggcccgcc	atatccgaca	8760
ggtccgcgct	ggggcttgcc	cggatggcag	ccgacaggcc	tgcagtcgat	gacatgatgg	8820
atacgggcag	tgagagcacg	agcaggcttg	gaccggttga	caggccagaa	atagtcgagc	8880
gccacagcct	ggccgcgtct	gtatacctgt	ccggggggcga	ttccccgtcg	gtcgcagacg	8940
gtcatgatgt	ggagtccgag	ggccgcagag	acgggggggga	caggcctggc	atcgacgagc	9000
gtatagtcat	caagatctcg	tacagccgcg	gcgcagccga	tgcgcccaga	gtggaggatg	9060
caatggagac	ttccggcgtg	accgcgtaca	gccgcggcgc	agccgatgcg	cccagagtgg	9120
aggatgcaat	ggagacttcc	ggcgtgaccg	tccccaggcg	cagtaccatg	gacgcgccca	9180
cagtggccga	tgaccacagc	ctggcccgga	ccgcatccat	atccgaaggc	gattccccga	9240
catttgcaga	ggcgcgccgc	gcggataccg	ttggggatat	agacgaggtg	gacgcgccca	9300
cagtggccga	tgaccacagt	ctggcccggg	ccgcatccat	atccgaaggc	gattccccga	9360
catttgcaga	ggtgcgccgc	gcggataccg	ttggggatat	agacgaggtg	gacgcgcccg	9420
ccgtggccga	gaggctcctg	gcagtcctcg	gcctgcaggc	ccctgattcg	ccgggagtgt	9480
gggatactgt	aggaatagat	cactcggaga	tttcaggcga	tcctgtgccg	gagccaagag	9540
tagtgcccag	gggcggtggc	ggtgggggag	gcggttcttc	gaaccgcggc	cttgaaccgc	9600
atggcggcgg	gtatgagatt	gactttgagt	tccgcataga	cggcaggctg	gtgctcttca	9660
atgggacaga	cgtgctagcc	gaatccggca	aggacctgct	catccgtccg	gtgttccggc	9720
cggaggggag	tttcaacata	tttgatatgg	aggtgttgtt	taccgccccc	ggcggggaga	9780
tatcgactgc	ctactacaac	agggctggaa	tcctcatggg	gattgactgc	ggcgagctga	9840
ttatgaccga	tacgacgtat	tcatgcgaca	tgctggacat	attcggagat	gagatatacc	9900
atgtggagag	gcttgacgca	ttcaacggca	tggtcatctc	cttggacggc	cccctcgacg	9960
ggacggtcag	tgtatcgctt	cgtgacaacc	acggcatccc	gctggcgcag	catcggctgc	10020
ataaatacga	gattttgatt	ttggacgccg	ctgaaaacag	acccctgtca	gtctcgacgg	10080
accccaagcc	cgtggaggat	ccatcgcccg	tgcagcatat	agagtccctc	cagatggatc	10140
cggagcccgt	ggagtccgag	cccctcccga	tggactccga	gcccgtggag	gatctggaac	10200
ctgtgcagca	tctagagtcc	ctcccgatgg	accccgagcc	cgtggaggat	ctggaacctg	10260
tgcagcatct	cgagcccgtg	cagggatccc	cgcccgtgca	gggagggccg	gagtccgtgg	10320
agtcaggcat	agcatacacg	ctatggcagt	tcctttcagg	actgctggat	gccctgggtc	10380
ttgccgaccc	ggatgtcgga	tctgtccaaa	aaacgtcctg	atgcgttcaa	aaagccggcc	10440
ctgcccccgt	gtgcgcggcc	atgcttcaac	atgatgggtt	tgaagggacc	agcccgcggt	10500
cctgccggca	tccaattccc	gagatcctgt	tacgtgcatc	ggccatccct	gtacgctgcc	10560
acatggttac	tttgtgtgat	catttccggg	cagagatcaa	gtcattgatt	ggaaaactta	10620

aatcatgcat	gggatcgagg	gcggccgggg	agatatgtcg	gagaattttg	tggcgttttg	10680
cgtggcgtgc	gccaggggag	tcacaaagga	cgagatgaag	tatgtagacg	ggagggtctt	10740
ccacaaagag	tgccatgcaa	ggcacggcgg	gcagatccgc	ttccccaacc	cagaggtcga	10800
gcagcgcgtg	gccgagctga	aggtggacct	gatacagatg	agaaaccagc	tggccgagat	10860
gaacagggcg	tcggggggacg	gaggggtgca	ttccagcgcc	acctctgcgg	ccgaggccga	10920
gcagcacagg	gccgagctaa	aggtacagct	ggtgcagatg	agaaaccagc	tggccgagat	10980
gaacaggaag	gcccccggaa	agccggcacg	gaaaaaggcc	gcaggcaaga	ctgcacggag	11040
aaagagcggc	aagaagacgg	tgcgcaggaa	gaccggcaag	aggactgccg	gtaagaaggc	11100
cddddcdcdd	aggaagacta	cggtcaagag	gacggcgcgg	aggaagacca	cggcaaagaa	11160
ggcagccggc	agaaaggccg	gggcgcgcag	aaaggccaca	gtcaagagga	cggtgcacaa	11220
aaagattgga	gtgcggagga	agactacggc	aaggaggacg	gccggtaaga	gtacggtgcg	11280
caggaagagc	acagtcaaga	ggacggtgca	caggaagacc	ggcaagaagg	cagtagtacg	11340
caggaagagc	acagtcaaga	ggacggcacg	gaggccggcc	ggcagaaaga	cccccggaag	11400
ggccgcgcgc	agggccggcg	caaagaggcg	ctagcctgct	gattaggaat	ttaaggcggg	11460
cgccgggcag	caggtaaatg	cagtcgcttg	gacggctaga	cgaggcgtgc	gcggagatat	11520
cgcgcagcct	gcttgaatac	gagtccccca	ccgccggtga	tgtccggacg	gagatcagaa	11580
gggcatgcac	aaagtactcg	ctccggagga	tcccaaagaa	ccgcgagata	ctggccaccg	11640
ccaggggtca	ggactttgac	aggctgcgcc	ccctgctgct	caaaaagccc	gtaaagaccg	11700
catccggggt	ggccgtgata	gcagtcatgc	ccatgccgta	cgcgtgcccc	cacggcagat	11760
gcacatactg	ccccggcggg	gaggcgtcga	acacacccaa	cagctatacc	ggcggcgagc	11820
ccatagcggc	gggcgccatg	aacagcgggt	acgacccgga	agagcaggtc	cgcgcgggtc	11880
tggcccggct	gcgcgcgcac	ggccacgatg	tagccaagct	ggagatagta	atagtgggcg	11940
gcacattcct	gttcatgccg	caggagtacc	aggagtggtt	cgtcaagtcc	tgttatgacg	12000
cgctcaacgg	gtccgcttcc	gcggggatgg	aggaggccaa	gcaccgaaat	gaaactgccg	12060
tgcacagaaa	cgtgggcctc	accatagaga	ccaagccgga	ctattgcagg	acagagcatg	12120
tggacgcgat	gctcggcttt	ggggccacgc	gcgtggagat	aggcgtgcag	agcctccggg	12180
aggaggtcta	cttgagggtc	aaccggggggc	acggctacca	ggatgtgaca	gagtcgtttg	12240
ccgccgccag	ggatgcaggc	tacaaggtgg	ctgcccacat	gatgccagga	ctcccggggg	12300
ccaccccgga	aggcgacatc	gaggatctgc	gcatgctgtt	tgaggatccc	gcgctcaggc	12360
cggacatgct	caaggtgtac	cccgcgctag	tagtaagggg	cacccccatg	tatgaggagt	12420
attcgagggg	cgagtattcc	ccgtatacgg	aagaggaggt	catccgggtg	ctctccgagg	12480
ccaaggcgcg	cgtgcccagg	tgggcgagga	taatgcgcgt	gcagcgcgag	atacaccccg	12540
acgagatagt	ggccgggccg	aggagcggca	acctccgcca	gctggtgcac	aagaggctcc	12600
aagagcaggg	ccgccgatgc	cgctgcatac	ggtgcaggga	ggcggggctc	gcggggagga	12660
ccgtgccgca	gaagctccgt	attgacaggg	cggactattc	ggcctcgggg	gggagagaat	12720
cgtttatctc	gcttgtagac	ggggatgatg	ccatctatgg	ctttgtgcgc	ctgcgcaagc	12780
cctccggagc	agcacacagg	ccggaggtca	caccggaatc	ctgcataata	cgcgagctgc	12840
acgtatacgg	caggtcgctt	ggcctcggcg	agaggggcgg	catacagcac	tcgggtctag	12900

gcagaaggct	cgtctcagaa	gcagagtctg	ccgcccgtga	gcttggcgcg	ggcaggctcc	12960
ttgtgataag	cgccgtcggg	acaaggggtt	actatcgcag	gctcggatat	tcacgcacgg	13020
gcccctacat	ggggaaggtg	ctctgatgga	gacgataggc	cgcggcacct	ggatagacaa	13080
gctggcgcat	gaactggtag	agcgcgaaga	ggccctcggc	cgggatacag	agatgataaa	13140
cgtcgagagc	ggccttggcg	cgtccgggat	accccacatg	gggagcctcg	gggatgcagt	13200
cagggcgtac	ggcgtggggc	tcgccgtcgg	cgacatgggg	cacagcttcc	ggctcatagc	13260
gtactttgac	gacctcgacg	ggctccgcaa	ggtccccgag	ggcatgccat	cctcgctaga	13320
agagcacata	gcccgtcccg	tctcggcgat	acccgacccc	tacgggtgcc	acgattccta	13380
cggcatgcac	atgagcggcc	tgctgctaga	ggggctcgac	gcactgggca	tagagtatga	13440
ctttaggcgg	gcaagggaca	cgtaccgcga	cggcctgctc	gcagaacaga	tccacaggat	13500
actatcgaac	agctcggtaa	taggggagaa	gatagccgag	atggtgggcc	aggaaaagtt	13560
tcgcagcagc	ctgccgtact	ttgcagtctg	tgaacagtgc	gggaagatgt	acacggccga	13620
gtccgttgaa	tacctggcag	acagccgcaa	ggtgcggtac	aggtgcggcg	acgccgaggt	13680
aggcggaaga	aagatcgccg	gctgcgggca	cgagggcgag	gcggacacgg	gcggagccgg	13740
cggcaagctc	gcctggaagg	tggagtttgc	cgcaaggtgg	caggcgtttg	atgtacgctt	13800
tgaggcatac	ggcaaggaca	tcatggactc	tgtaaggata	aacgactggg	tctccgacga	13860
gatactatcc	agcccgcacc	cccaccatac	aaggtacgag	atgttcctcg	acaagggcgg	13920
caaaaagata	tcaaagtcgt	caggaaacgt	ggtcacgccg	cagaaatggc	tcaggtacgg	13980
caccccccag	tcgatactgc	tcctcatgta	caagcgcatc	acggggggcgc	gggagcttgg	14040
cctcgaggat	gtgccatccc	tgatggacga	gtacggcgat	cttcagcgcg	agtactttgc	14100
gggagggggc	aggggcggga	aagcccgcga	ggccaagaac	agggggctat	tcgagtatac	14160
gaacctgctg	gaggcacagg	aggggccgcg	gccgcatgcg	ggctaccggc	tgctagtcga	14220
gctctccagg	ctgttcaggg	agaataggac	cgagcgcgtc	acaaaaagc	tcgtcgagta	14280
cggggtaatt	gacgggccct	cgcccgggat	cgagcggctc	atagcactgg	ccggaaacta	14340
tgcagacgac	atgtattctg	ccgagagaac	agaggtggag	cttgacgggg	ccacaagggg	14400
ggccctctcg	gagctggcag	aaatgctcgg	ttccgccccg	gagggcggac	tgcaggatgt	14460
catatacggc	gtggccaagt	cccacggggt	gcccccgcgc	gactttttca	aggcgctgta	14520
caggataata	ctggatgcat	ccagcgggcc	gaggataggc	cccttcatag	aggacatagg	14580
cagggagaag	gtggcaggta	tgatacgggg	gcgcctctga	tggtccacga	cgtacacaac	14640
cggcggcgga	gcggcggctt	tttcctgata	atactgggcg	ccctcatctt	catcacggcc	14700
ccgctgtacc	tctcagattc	gccggagctt	ggggcggcag	ccatagcctt	tggctttgtc	14760
gtgggcgggg	cggggttcta	tctcaacttt	atcaaaaaga	aatcctaggg	ggcccggccc	14820
aagcatttta	tggcaagccc	ctgtgggagc	acccatggga	ttgttcagga	aaaagagccc	14880
cgaagaatcc	gagccggggc	cggacgagcc	cgggcccgag	gcggagatgg	aaaaggtgag	14940
ggcggacctt	gccggcgtgc	agagagacgt	ggtcaaaaag	tattccgagc	tgacggccct	15000
ctcagagaag	ctcgagaggg	taaagacaga	gtatgattcc	accgtgggct	cgctgatgtc	15060
cgagagaaag	gggctcgccg	aggcgaaaaa	agagtccgca	tcgctcgagg	aggcgcgcgc	15120
aggcctcgcc	gaagaagtcg	agcagaagag	ggcaaaactc	gaccaggcgg	agattgacct	15180

tggggataga	aagggcagga	tagaggagct	cgaccgcgcc	cacgcggctc	tcgccgggat	15240
aaaggaggag	tcagacaggg	gccgcgccga	gctgcacgag	atcaagcgga	agatcctcga	15300
gtcacagggc	gcgctcgaca	gggccaggga	cgcgcaggcc	aaggcggaag	cggagctgca	15360
caattccgcc	gaggggctca	agtccgcccg	ggacgaggcc	ggaaagctct	cccaggagcg	15420
cgacaatata	cgggccgaga	tagatcttgc	aaaaaggag	ctaaaggtgg	tccggggcca	15480
gatggagtcg	tcccccgagg	ggggcgccga	aaagcacgtg	gtcgaggccg	caagcgcgat	15540
ggtctcgtcg	ctcacccaga	ggctggctgc	cgccgagagg	gagcttggcg	tggtaaagaa	15600
ggtattggag	agggagagaa	aaaaacacaa	tcaggattcc	gaatagatct	ttttccactt	15660
gctcttcatt	tcttcctcgc	tcattcccag	atcgtacagg	ggtgatgtga	tatcgcggat	15720
ttcatccacc	gttatcttta	ccacggaaga	tatcccgctc	tttatgccgg	tcttttaaa	15780
atgggacgcc	atcgtatcga	actcttcgcc	tgaatcgagc	acggcggcag	tgccggtaaa	15840
gcggtagccc	tttctgagca	gcgggtctat	aacgttgatc	tctatggcgg	ggttggcgcg	15900
caggttctcg	acggtattgg	gtgaccttat	gttggcaaac	gccaggtgcc	cctcgtccca	15960
tacgatcaca	gagcccttgg	gcgagaggtt	cggcttgttg	tccggggtta	cagtggccac	16020
aaagcccatc	ttgatgcggt	tgacgtgatc	ccttacctct	gttccgatgg	tcgccatggg	16080
ctatccggtc	atgcggggtt	aaataaagct	ggggtgcagc	cgcagacact	cagccgttga	16140
ttatacagta	ctcgcactcg	caggtcttgc	tctcgtcatc	ttttgccctg	cattttgcgt	16200
gctggcccga	ctggcactgg	acgcagatct	cgtctatgtt	gtctatcgag	gtgtatttct	16260
tggactggtc	aaagccgaag	ccaccgtcct	ttggtccaac	catacagcgg	ttatgccgcc	16320
gtaccttaat	tatctttgcc	gtcggggcgg	ggccgcttct	gccggcggga	gccccccttg	16380
aggccgcccc	ccggctcgtt	gtcccacaga	tgcatgctgc	cccggatcat	aaacgagccg	16440
actatgatcg	ccacaagccc	gcccaccacc	agtatgaaca	gccttgccag	gcccgccaac	16500
ccgcccatgc	gtgtaatatg	cggcacccgt	aaacaaacat	tgcgcgaaga	aacaggggta	16560
ttccaggggc	caaggcccgc	aagctacatt	aatttatcag	tccggagggg	cgggccccat	16620
gagcagagtc	aaggcgatag	ccatctgggt	ggccatgata	ggcggaggca	tagccttctt	16680
tttcgcctcg	gactatgttg	tagaagtaat	gaggtaaacg	gggaaaacag	gatccaatac	16740
ggtttcttat	cctccctgtc	catggcggcc	ccgttcatat	aaagtcccaa	cgttcaatgt	16800
gccagatacg	atggtccctc	acaggggaat	ttggactgtc	ccgtgatgtt	ggtggtttag	16860
gaaacgcatt	acctaggcat	ttatgtagtt	gaggtgcacg	tccgagggat	ctgtttcatt	16920
atctggatca	aataatggaa	cttttctctt	cattaatttc	ctacattccg	cctgcagttc	16980
aagcatgatg	gttacatcat	cacgttcgat	tatccgttct	gttgtttcgg	tttttgctc	17040
actcccatcc	atgccaatat	acgacggcat	ttgtctaaaa	aggtttccat	cttcaagagt	17100
cgtgtgtttg	ccgtgcaatt	acctcccagg	ggagcataaa	aaataagcca	taaacgatgc	17160
acagcatccg	ccatggacct	atgaaaaaac	aagtcgtcag	tggcgcacag	tatccgatac	17220
aacctctcaa	tcgtgtcatc	cggcaactct	gcaccatgga	aactccggac	gatcgctatt	17280
ctatacatgc	tggttatcgt	acctgtgaga	atcctaatca	tcctacggct	atgttgatgg	17340
tttgctgata	actgaattac	cgaggtgatt	cgcgatgatt	ttgttgattg	gagtaaattg	17400
agacaggata	tccgctgcat	gagataccga	caatgtcaga	tcctgaaatt	cttggtcggc	17460

-continued	ł
------------	---

ttctagatca	gttattttca	aaccgatgcc	cctacactcc	tctcgcgata	tgtatctccc	17520
atgactgtaa	tattttccag	gagaagctaa	cattccagat	atttttttg	atttttctgc	17580
cgcatcagac	tcgccagcaa	acatgtggtc	ttccagccat	ttttgtacaa	gcacttcagc	17640
tagtttctgg	ctgctaatgc	atttttgaac	cagtccagga	ggatattgtc	ctaacaatgg	17700
aagccatgcg	ccaagcctgc	ccggatgttt	ttcagatacc	acctgcactt	cttgcaactc	17760
gtcaattaga	agctgtgcag	acattatttg	catgccaatc	ttggttggga	aaataaattg	17820
gggatcagcg	ggtcctatag	acgagtgttt	gcccattacc	agggaatttg	atgcgcaagc	17880
aagcatcgag	gctgctgaca	ttgcggcata	cggtatgatg	acccgaatat	catcatattt	17940
cgcatgaagg	tatgtgacaa	tcgattctgc	agactcggca	gaacctccag	gactgtggag	18000
tatcagatcc	aattttttag	tctttaaatc	acgcatcatc	ctcataaatc	catacaggtc	18060
accatttgtt	atgagagctt	cattaggcgt	atgcggttcg	tccgtcatcc	agttggtcgc	18120
atatagaatt	gtgtccctcc	ccgaatactg	ttgcaatttt	gaaagatagt	cgtgaagtac	18180
cacaccaggt	gcctgctcac	cggctgactc	cattagtcga	agtactttgt	ttgatatttc	18240
tgcgtagcta	ggcatttatg	tagttgaagt	ggctgccggc	gggaattaac	ccatagtctg	18300
aatcgtatga	cttgcctttt	ttcttcatca	atttctcata	tacctcatgc	aggtctagca	18360
ggatggccat	gtcactgcgc	ttgcttggta	attttgttgt	ctcgggcttt	tggtcgatat	18420
tcttctccat	gccgataaaa	gtcggtgttt	ctttaaaaac	gttcatgatt	ttaattttcg	18480
agtctttgcc	gtgcaatttc	ctccagagat	cataaaaaat	gagtcataaa	cggtgcacag	18540
catccgctgt	ggacccatga	aatgggcccc	cggcggtgca	cagcatccgc	tgggggctca	18600
ataaaaaaa	tgagtcatca	tgcatagtct	ctatgtaaat	ggctgaaccg	gtgttttggt	18660
cgattagtaa	aggctggctc	tccactcgcc	gaagcttgtg	ggttacacca	ccttcctatc	18720
aacgcagtct	tcttctgcga	accttcatcc	gaagaaggaa	tatcttgtct	cgggatagga	18780
ttcgtgctta	gatgctttca	gcacttagcc	tagatggctt	agctgcccgg	cctgccctgt	18840
cggacaaccg	gtagaccagt	ggccacgcct	ctctgttcct	ctcgtactag	gagcgacttc	18900
ccctcagata	ttcgcgcttc	catcaggcag	aggccgacct	gtctcacgac	ggtctaaacc	18960
cagctcatgt	tcccttttaa	taggcgagca	gcctcaccct	tggcccctgc	tgcaggacca	19020
ggataggaaa	agccgacatc	gaggtaccaa	accgcggggt	cgataggagc	tctcgcccgc	19080
gacgagcctg	ttatccctgg	ggtaatttt	ctgtcacctc	cgggccccaa	tagtgggcac	19140
acgaaggatc	gctaagccag	actttcgtct	atgaattccg	tgcgtttgga	aatccattca	19200
gtctagtttt	tggctttgcc	ctcttcagcg	gatttctgac	ccgcttgaac	taaactttgg	19260
gcccctttga	tatcttttca	aaggggtgcc	gccccagccg	aactgcccac	ctgcacgtgt	19320
ccccggtctt	caccgggtaa	gtggcactgc	aggaaatgtc	tggtgttaca	tcggcgtccc	19380
ctgacgtccc	aaagaacgcc	aggaaaagac	tcccagatac	gctatgcact	ccctgctata	19440
ccacaagcac	aagctgcagt	aaaactccac	ggggtcttct	ctccccgatg	gaagatgatg	19500
gactgttcgt	ccaccttatg	tggcttcacc	gggttgtagg	cggggacagt	ggggctctcg	19560
ttgttccatt	catgcacgtc	ggaacttacc	cgacaaggca	tttggctacc	ttaagagagt	19620
cagagttact	cccggcgtta	accggtcctt	agctcggttg	aacccaagtt	ttagataccg	19680
gcaccggcca	ggattcagcg	actatacata	ccctttcggg	ctagcagtcg	cctgtgtttt	19740

				-0011011	lueu	
tattaaacag	tcgaaacccc	cttgtcactg	caacctgctg	ccgccattcc	tcatgacagc	19800
tgcaggcatc	ccttatacct	aagctacagg	actaatttgc	cgaattccct	cgccatacgg	19860
tatacccgta	gcaccttagt	ttactaaacc	agcgcacctg	tgtcggatct	gggtacgaac	19920
ttgcagtttg	ctagccgcac	ggtctttcat	ggtctcctgg	agtcggggga	actctgctaa	19980
cgcaaagcca	ctcccgcctc	gggcctgttc	tcgtcattac	gacactccca	ggccctcgaa	20040
cggttcgaca	cgacgacggt	catgctcccc	ctatccggaa	gcgaaccatg	cggttcaaat	20100
gctccctgca	aggtaccaga	atattaactg	gtttcccatt	cggactactc	tgttgaggca	20160
gcccttagga	tcgactaact	ccaggctgac	gacgcattgc	ctggaaaccc	ttgcgctttc	20220
ggtggtgcgg	attctcaccg	cactatgctg	ttactgccgc	caggatctgc	aatagaaatc	20280
ggtccacagg	acgtcaccgc	cctgcttcgt	cccaatcact	acgccaacct	accacggtgc	20340
acctgccacg	gtgcacgtcc	ggagtatcgg	tactctgctt	tagccccgtc	cgtttttgtg	20400
gcgccctcgc	tcggcaggta	agttgttaca	cactttttga	aggatagcta	cttctgagct	20460
tacctccctg	ctgtcttggc	gacgacacgc	actttggctt	gacacttagc	agaaatttgg	20520
ggaccttaac	tccagtctgg	gttaaacccc	tctcggtcgt	gaaccttacg	tcacacgaac	20580
ccgtgtccat	gcttctgcga	tgtgtatccg	ttcggagttt	gaatggatgg	tgaggaatct	20640
cttccccgcg	ccaccctatc	agtgctctac	cggaaacacc	atctccacat	agcacgccct	20700
gcgagacgct	tcggttggaa	ctagcaagcg	ccagtctaga	ttggtttttg	acccctattc	20760
ccaagtcaca	caaacgagtt	gcacgtcaga	actgctgcag	acctccagtg	ggctttcgcc	20820
caccttcatc	ttgctcagga	atagatcgac	tggcttctag	ccttaccgcc	atgactcaac	20880
gcactttcac	acgcttctcc	tcacaatgct	gcgagaattc	ggtttccctt	cggctacgcc	20940
tttctaggct	taacctcgcc	atgacagcaa	gctccctggc	ccgtgtttcg	agacggaacg	21000
cacgacactg	acgacatgag	ctccggactt	ttagctccat	tgctggaacc	tccggtccga	21060
aaaaatcgtc	tttcatgccg	tgcacgtctg	taagcaatag	gtttcatgca	cttttcaccc	21120
cccttccggg	gtacttttca	gctttccctc	acggtactag	tacactatcg	gtcttgagag	21180
atatttagcc	tttgatgcta	ctttcaccaa	tcttcgctgc	ccactgccaa	ggacaactac	21240
tcgggtgctg	gccctgcccc	attccacttc	gtctaggggg	gtatcaccct	ctaagccgga	21300
acatttcaga	acactttgac	tatttcgtgg	ggccattgcg	ccgcaccaaa	acaccacatc	21360
tcggccgcgt	taccgcggca	gattcagttt	gggctctttc	cttttcgatc	gcctctactt	21420
gggaaatctc	tattgatttc	tcttcctcgt	ggtactaaga	tgcttcaatt	cccacggttc	21480
gacctccgct	tgcgcggagt	atacaggatt	cctattcgga	aatctcggga	tcaacgggtg	21540
cgtgcaccta	ccccgagctt	atcgcagctt	gccacgtcct	tcctctctcc	tcaagcctag	21600
caatcctcct	attgccgtct	ttacaccggc	atattcagcc	acatattaca	cgactatgca	21660
tgatgatcat	cgcggtcccc	aggggagggg	cccgctacat	ccttcatacg	ccactttcgt	21720
gacgcattgc	accatgtgaa	gatatgtgca	ccccgttcaa	accagtttct	aaggaggtga	21780
tccgaccgca	ggttccccta	cggtcacctt	gttacgactt	ttcccttgtc	gcttacctca	21840
agttcgataa	cgccaattag	acgtcacctc	actaaaagca	aacttcaatg	aaacgacggg	21900
cggtgtgtgc	aaggagcagg	gacgtattca	ctgcgcggta	atgacgcgcg	gttactaggg	21960
attccagatt	cgtgagggcg	agttgcagcc	ctcagtcata	actgtggtag	cgtttgggga	22020

ttacctcctc	ctttcggata	tggaacccat	tgtcactacc	attgcagccc	gcgtgtggcc	22080
ccagagtttc	ggggcatact	gacctgccgt	ggccctttcc	ttcctccgca	ttaactgcgg	22140
cggtcccgct	aattcgcccc	actgctcctg	agagcaatgg	tggcaactag	aggcaaggat	22200
ctcgctcgtt	acctgactta	acaggacatc	tcacggcacg	agctggcgac	ggccatgcac	22260
cacctctcag	cttgtctggt	aaagtcttca	gcttgacctt	cacactgctg	tctctccggg	22320
taagatttca	ggcgttgact	ccaattgaac	cgcaggcttc	accccttgtg	gtgctccccc	22380
gccaattcct	ttaagtttca	tacttgcgta	cgtacttccc	aggcggcaaa	cttaacggct	22440
tccctgcggc	actgcactgg	ctcttacgcc	aatgcatcac	cgagtttgca	ttgtttacag	22500
ctgggactac	ccgggtatct	aatccggttt	gctcccccag	ctttcatccc	tcaccgtcgg	22560
acgtgttcta	gtagaccgcc	ttcgccacag	ggggtcatca	atagatcaaa	ggattttacc	22620
ccttcctact	gagtaccgtc	tacctctccc	actccctagc	cgtgcagtat	ttccggcagc	22680
ctatgcgttg	agcgcataga	tttaaccgaa	aacttacacg	gcaggctacg	gatgctttag	22740
gcccaataat	cctcctgacc	acttgaggtg	ctggttttac	cgcggcggct	gacaccagaa	22800
cttgcccacc	ccttattcgc	cggtggtttt	aagaccggta	aaagatttct	ttagcagaaa	22860
acactcggat	taaccttgtc	gtgctttcgc	acattgcaaa	gttttctcgc	ctgctgcgcc	22920
ccatagggcc	tgggtccgtg	tctcagtacc	catctccggg	cctctcctct	cagagcccgt	22980
atctgttata	gccttggtgg	gccattacct	caccaacaag	ctgatagacc	gcagtcccat	23040
cctacggcga	taaatcattt	gggccacaaa	ccattccagg	catggtggcc	tatcgggtat	23100
tattctcagt	ttcccgaggt	tatccccgtc	cataggttag	attgactacg	tgttactgag	23160
ccgtctgcct	tgtattgcta	caatgactcg	catggcttag	tatcaatccg	atagcagtca	23220
ggtccggcag	gatcaaccgg	attcttattt	ggattattt	tttttcaaa	gtacgcctgt	23280
acttttggaa	ttgaacggaa	tgcacataat	cttcacatct	cagatatgac	ccttcgatca	23340
gatcctcatt	ctgtgtgcgt	aactggaggc	ctgcgaatca	caaaatggta	caataccatg	23400
gcttcatcgc	aagcgccgct	cttgcgtcac	gtacgatcgg	atcgccttgt	ccatgggcat	23460
ataaaccatc	gccggtttcc	gggcccgatc	ggacccttga	tcggcccgcg	gggggcgatc	23520
cggcctcatt	aaattacggg	gggtacaacc	tgctgccgtg	gatctagagc	gcgagtacag	23580
ggcaaagacc	aggggctcgg	cggggatatt	tgcccggtcg	agaaggtacc	atgtaggggg	23640
ggtcagccac	aacataaggt	actatgagcc	gtacccgttt	gttacaaggt	cggcgcgcgg	23700
caagcacctt	gtggacgtcg	acgggaacaa	gtataccgac	tattggatgg	ggcactggag	23760
cctgatactc	ggccacgcgc	cggcgcaagt	aaggtcggca	gtggaggggc	agctgcgccg	23820
cggctggata	cacgggaccg	caaacgagcc	caccatgcgg	ctctcggaga	tcatacgcgg	23880
ggcggtaaag	gcggcagaga	agataaggta	tgttacatcc	ggcacggagg	ccgtcatgta	23940
tgcggcaagg	atggcgcgcg	cacgcacggg	aaaaaagtg	atagcaaagg	tcgacggcgg	24000
ctggcacgga	tacgcgtcgg	ggctgctaaa	gtcggtcaac	tggccgtacg	atgtgcccga	24060
gagcggggggg	ctcgtcgacg	aggagcacac	cgtgtccatc	ccgtacaaca	atctggaggg	24120
atccctggag	gcgctaaggc	gcgcaggggg	cgaccttgca	tgtgtcatag	tcgagccgat	24180
gcttggcggc	ggcggctgca	taccggcaga	accggactat	ctccgcggca	tacaggagtt	24240
tgtgcattcg	aagggtgcac	tgttcattct	cgacgagata	gtcacggggt	tccggttcga	24300

				0011011	nuou	
ctttggctgc	gcgtacaaga	aaatgggggct	ggaccccgac	gtggtggcgc	tgggaaagat	24360
agtcgggggc	ggattcccca	taggtgtggt	gtgcggcaag	gacgaggtga	tgtgcatctc	24420
cgataccggc	gcgcatgcaa	gaaccgagag	ggcgtacatt	ggcggcggca	ccttttctgc	24480
aaaccccgcg	acgatgactg	cgggtgccgc	ggcactcggt	gcactcaggg	agagaagggg	24540
cacactatac	cccagaataa	actccatggg	ggacgacgca	agggcgcggc	tctcgaggat	24600
attcgacggc	agggttgcag	tgaccggcag	gggctcgctg	ttcatgacgc	actttacacc	24660
ggatggggcc	cgcaggatat	ccagcgcggc	agatgctgcc	gcctgcgatg	tgcatctgct	24720
gcacaggtac	cacctggaca	tgattacaag	ggacggcata	ttctttctgc	caggcaagct	24780
gggggccata	tctgccgccc	actcaagggc	ggaccttggg	gccatgtatt	cggcgtctga	24840
gcgctttgcg	ggggggactgt	gagttatacc	catgggaaac	tttgattata	cgggcgtaca	24900
ttcccggggc	ccatgatact	cttcggcaag	agcgacccct	ccgacctgct	ccgccaggcc	24960
gatcttttgt	gcagtgggaa	caagtacaag	gcggcagtgg	gcctgtacag	caggatactc	25020
aaggacgacc	cgcagaacag	gatggtcctg	cagagaaagg	gcctcgccct	caacaggata	25080
agaaggtact	ctgatgccat	aacgtgcttt	gatctgctgc	tcgagctgga	tgatggcgac	25140
gcgcctgcat	acaacaacaa	ggccatagcc	caggccgagc	tgggcgatac	ggcatccgcc	25200
ctggagaact	atggcagggc	catcgaagcc	agccccaggt	acgcgccggc	gtactttaac	25260
agggccgtcc	tgctcgacag	gctcggcgag	cacgaagacg	cgctgccgga	cctcgacaag	25320
gcgacaaggc	tggacaggga	caaggccaac	ccgaggttct	acaaggggat	agtcctggga	25380
aagatgggcc	ggcatgcaga	ggcgctgtcc	tgcttcaagg	aggtgtgcag	ggcggaccac	25440
ggccacgccg	actcacagtt	ccacgtggcg	atagaggtag	ccgagctcgg	caaacacgcc	25500
gaagccctcg	gtgagcttgc	ggcactgccc	gcagagtacc	gcgagaacgc	aaacgttctc	25560
tacgcccggg	cgcgcagcct	cgccggcctg	gacaggtacg	acgagtccat	tgcacacctg	25620
caaaaggccg	ccagaaagga	ctccaagaca	ataaaaagt	gggcccgcgc	cgagaaggcc	25680
tttgatcata	tacgggatga	tcccaggttc	aaaaagatag	ccgggtaaac	cctacagcat	25740
ctttttctt	gccgcgtcta	tccgcattat	ccggaccttt	ttttgggcc	ccacaagccg	25800
cgactcgtag	acaggggcat	acacttcttc	gaccgatctg	actgcaaact	cctcccggag	25860
gtcgcgcatg	ccgtcaggcg	ggggcccgcg	gagctttacc	cggagttttt	ccagcgccac	25920
cccggtgtct	atctccgggc	gccgcacatt	ctccgacgaa	tcaagcatgc	gccgcgggta	25980
cggctcgacc	gcgccggtcc	ccgtcttgta	gggaaagccg	gtctccccgc	cgtgccggtc	26040
aaggcacatc	acgccctctg	attccgcgta	tacgtgctcc	tcgagttcca	gatcgaccct	26100
gttcttgccg	cdcccddcdd	acagggtctt	gcgtatgcgc	gactttgacc	ttatcgggaa	26160
gacgccgtcg	cccagcacca	cctcgatcac	gttctgatcc	accttgatcg	ggtgcacggc	26220
ccttctgaaa	aagtcggccg	agtaccgggc	ggagacgcgg	atgagcgcct	cgtggacgag	26280
ccttacggaa	tgtacatgga	cgtcctcctt	tgggggcgcc	ctcatcatgg	ccctgaatgg	26340
ccccgtcttt	tttgcctcga	tcatggcccg	ggcggactgt	tcagtcatgg	cgttgcgcag	26400
gacgatgatc	cttgtcttgt	cagtcactcc	cggcaggccc	cctcatccgg	catgccctgt	26460
acacacggca	aggtaataat	agcctgccgt	ccgtacctgc	cgtatgaggt	cagaagagag	26520
gccgggtcac	attgaaaagt	tcctaaagag	ggcggacaag	gcgatcgaca	gcgcggtcga	26580

gcaggg	gcgtc	aagagggccg	acgagatact	agacgatgca	gtcgagctcg	gcaagattac	26640
ggtggg	JCGAG	gcgcagagga	ggagcgatgt	gctgctcaaa	caggccgagc	gggagagcag	26700
gcggct	caag	tccaagggcg	ccaaaaagct	cgaaaagggc	ataggcgccg	caaaaagat	26760
ggcago	caggc	aagggcgacg	cgctcgagac	gctcgcaaag	ctcggcgagc	tcagaaaggc	26820
ggggat	cata	acggagaaag	agtttcgcgc	caaaaagaaa	aagctcctcg	cagagatctg	26880
acatga	aaggc	cataatctac	tcccgggacg	gctccgcaaa	ggaggtcaca	aagaggtggt	26940
ttgtcg	ggtac	tccttcactg	atgaaccttg	caggcgacct	tggcatgacc	gagagtgaca	27000
tattcc	atgt	gacatttccc	gacggcgcca	agacgaccct	gcacacacac	gaaggcgggc	27060
agctgo	tgat	agtcacctcc	ggaacgggca	gcatgtcggt	ctttgaaaag	accggcggcg	27120
gggata	accga	ctttgcgata	aaagagaccg	accgcatacc	gctaaaggag	ggcagcatac	27180
agtaca	atacc	ggcgggtaca	ttgcacgtgc	acggcgccat	cgagggcacc	accctctccc	27240
acatag	gcggt	aaactatccc	tccccgtcgg	gaaaggagcc	gtataccatc	tggtacgaat	27300
ccgact	ttgc	gaacagggtc	accggcgtgc	tataagctac	tttagccgct	ccagtatgga	27360
caggct	caca	aggttggtca	tcgttatccc	cttgcggatg	acctcgcgcc	gcgtcttctc	27420
gcagta	acttg	ttgacgctct	ggtagctctt	ctcgctggag	acctcgagga	ctattatgtt	27480
cccgct	gtac	ggaaaggcaa	actttggcgg	caccctcgag	cagacgtcca	tgcgccctat	27540
tcccgc	cctg	cctatcttct	cctttctccc	caccacggac	gccacctcgc	atatgtcctc	27600
ctcgga	atcg	ccgtactcca	gatagtacac	cgatacatag	ctcaccccgg	gggactccct	27660
ctcgaa	atatg	tcctcgtcca	tgctaaacac	ataggatgcg	ccctcccccc	ggcccaccgc	27720
cttgat	catt	ctgggggcgt	ccttgaacct	tgccagcagg	tagtggttgg	cctgcggtgc	27780
aaagta	acggc	tggctctcgg	acgagaacgt	ggcggtcaca	aagtacatct	cgcggacgtt	27840
cctcga	acgag	gcccacgcgt	ccttgagctc	gatcgaggcg	tgatcgtgcg	tgtatggcgt	27900
gcaggo	catgc	ccdcccdddd	cccccgtctg	ggacatgcat	tgtacccgcg	ggaccggtta	27960
ttatct	agtt	ccatggggggc	gcagggcgcc	gcccccgtgt	ggcatgcgtg	gatccatgcg	28020
atagtt	attt	aaaactagga	tgccgggcac	ccgtcgtccc	aagctagctc	agcctggtag	28080
agette	cggc	tgtagatgtc	ggccttggct	gaccgtataa	cagcatatca	ggcatacaga	28140
gaccgg	ggttg	tcgaaggttc	aactccttcg	cttgggacca	cattataacg	gctgccgcct	28200
catgcg	ggctg	tgcacggcat	ccgtacacgt	tccatgcacg	ggtgccgcgg	cgtgccatat	28260
gcatgg	gatgg	tgcatgtaca	atgcacgggt	gccgcgacgc	actatacgca	tggatggtgc	28320
actata	agatg	cggctaaatg	tgcacggcag	agccgcaggg	cccgggccgc	gtgcacctat	28380
attctg	jccct	gtcccagggt	caggagccgc	gtcgccagaa	cgatgtgcgg	cdcccdcdcc	28440
gcacgg	lcddd	gccgccgggg	gcgcacgaca	ccgcatcgcc	ggacctggcg	ccatttctct	28500
ccagca	agtgc	gtcgagcgca	gaatcgtcga	ctagcgtgcg	ggatggcagc	ccdcccdddd	28560
taggca	acgcc	ctgcagctcc	attgcccggc	gcatctcctc	gttctccatg	cggaggcggc	28620
gctcct	tctc	ctcgagcctg	ctgctcatcc	tgtcgaggaa	cattacatct	gaattgtaca	28680
geteec	tttg	ctgccccatc	atgcagagga	tatggcgcag	ccttgacgta	tcgcatatac	28740
cggatg	gccat	gagctccctg	accccgtcct	ccgtgtggcc	gatgtgccgg	cccccgccg	28800
atgccc	tgcg	cacgccggac	ctcatcgctg	cttcctcagg	tactcccgga	ctatcctgtt	28860

				-contir	nued	
ggcaagccgg	gtctcgtcgg	tgccctcgcg	ctcggccacc	cgggcaagct	ttcttgcgcc	28920
gttcttgccg	agctctatgg	ggatcttctt	cctgacgccc	gtcttgcgca	ccctctttag	28980
caggatcctg	tggcccgagc	gggggctctg	ggctagcagc	ctcaggtaga	tccgcctcga	29040
cggccgatca	agccttgata	tgttcagcgc	caccttgagc	gcctgggaga	cggtcgggac	29100
ggcctggtac	agctttgtcg	cctcgtcccg	ggatatggtc	ccggggacta	gcgccttgat	29160
cttctccggc	acgcccgcaa	agccgtggta	ctttttgaac	gtgggcatcg	acatgccgag	29220
cttccttgcg	gcctcggcgc	gggtcatctg	ctcggcgaga	aacctgcacg	cgtcggcgag	29280
ctcccggggg	ctcatctgca	tccggtgcag	gttctccacg	accgatgccg	cctttgcgtc	29340
ctccaggccg	tactccgtat	ccttggttat	cacaagaaac	ttggactttt	ttgcgcccag	29400
atgctttagg	gccgcaagcc	tgtggttccc	cgatatgagc	aggtacagcc	ccctgccgcc	29460
cctctgtatt	acgggcgggt	tctgcaggcc	ctcggacctg	atcgactttg	caatctccct	29520
caccctggac	ctgtccagcc	tccttgcctg	cgcgtccttc	cacacgtgca	cgttcttgag	29580
gggcacctcg	cgtaggacct	gctttatccg	gggcttgtag	cgccgagcca	acgtactcta	29640
caagatacaa	atccttgtta	actgtgtttg	gtaagtttat	cacaacaatt	aggttagata	29700
gagctgttcc	cccgcaggcc	cccgtgcacg	tactctatcg	cgcagccccc	cgggggacag	29760
ccggaaccgg	gggctgccgg	ggcgggatcc	cgggcgtcga	tagaataaat	acgcgcgggg	29820
ccgcggtgcg	atcgcccgtg	ctgataataa	actgcaaaaa	ctatgaggag	gccgccggcg	29880
gcaggatccg	cgggctggca	gatgccgcgg	ccggggctgc	cgccaggtac	ggcgtcagga	29940
tagcgatagc	cccgccgcag	cacctgctgg	gcattatagc	aggccgggat	cttggcgtgc	30000
tggcccagca	tgtcgacgac	aaggggacgg	ggagcaccac	agggtatgtc	gtcccggagc	30060
tgctaaaaca	gtcgggggtc	tccggggcca	taatcaacca	cagcgagcac	cgcgtacccg	30120
cggaccaggt	ggcgggcctg	gtaccaaggc	tcaggggcct	tggcatggtc	tcggtggtct	30180
gcgtcaggga	tcccgccgag	gccgccgatc	tctcccggta	ttgccccgac	tacatagcga	30240
tagagcctcc	cgagctgata	ggttccggca	ggtccgtctc	gacagagagg	ccccaggtca	30300
tacaagaggc	cgcagaggcc	atcagggggg	ctggcggcgt	aaagctgctc	tgcggggcgg	30360
gcataacctc	cggggcggac	gtgcgcaggg	ccctcgagct	tggctccgag	ggcattcttg	30420
tggcaagcgg	ggtcgtaaag	tcggcagacc	ccgcaggggc	catcggggag	cttgcccggg	30480
ccatgtcctg	acgcaccatt	ctaggcgccc	gcgccgttga	ggcgcgccag	caggtcaaac	30540
gacgacctgt	atagctcgcc	tggcgaccgg	gcgcccgcta	tcaccacctt	tcccgacgca	30600
aacacaagga	agctgcagct	gcccagcccc	tttagtatca	tgccgggaaa	cgaccccggg	30660
tcgtacaccg	cgccgggtat	ccgcgacgat	atcctgtcta	tgggaacagt	ccgtcctgca	30720
tccactgtcg	ccaccatatt	gcgtacgacg	ggccttgtac	acccgccggc	cgccgccccg	30780
ttccggaaca	ggtgcagccg	ggcctcgtgc	agctgcgcaa	acgatgccct	cacggagctg	30840
gcgccgacgg	atatcatctt	gcccgagaga	aacaccgtca	cgcgcccccg	catgccgggt	30900
gttttgatat	agccgcacct	gccgccgtat	accgcctcgt	cgtacatgca	gcatggcatg	30960
gcggccatct	ttttgcgcc	caccctccgg	cccaggtcgg	cggtactcac	aacgttgacc	31020
accctgggcc	gtttccttgg	atccagcatt	gatccggtgc	ccggccgcac	tctattttaa	31080
ccggggcccg	ggcggcagcc	ccgcggccct	gtcgtacctg	cgctttagca	gcattacggc	31140

ggccatcagc	gccaccccgg	ccacgttggt	ccctattatg	tagacgtccc	atatgtgcac	31200
gccgtaggct	atccagagca	tggcccccgc	gcctatcagc	atggtcagat	accacgatac	31260
atccctgagg	ctctttgtcc	tgtacgcctt	gactatctgg	tgcacccatc	ccgacagtat	31320
cagcacgccg	ccggcagccg	ccacgatatc	cagcagggcg	atatccacgt	tcatttgaaa	31380
aagaactgct	ccatgccggt	ctgctttggc	ttgccgagta	tctcgtcaaa	gtcaaggccc	31440
atggacgagg	tgagctggtc	gagcgtcgac	tccatgaact	cgaggtactt	tgacgtgtcc	31500
acctcgcctg	cccgggccat	ctccaccggc	ttgacgccgg	tcttgttcat	cacctttacg	31560
tacgatatta	tgtcgccctt	tttgacctcc	cttgcgttct	ccagcagcct	tgccgcccgt	31620
atgtgctgcg	ggacggtctt	gacatattcg	gagggcgcct	tgcttatcat	cacattgaac	31680
gccaggtcca	cgagggggat	ctgcctctcc	tcgagcctct	tgccgcacgc	ggcgatcgcc	31740
tttgagatcc	tcatcttggc	tgactcgaac	tcgtcctcgc	tctcgactcc	tgagagtatg	31800
tcgagcagcg	agtagaagag	ctcctttatg	aacggggggcg	tgtgcgactt	tttgcccgtc	31860
agccccttga	cgtcgacctt	gcctgcccgg	gtcaccccga	aatagttttt	tttcctgttg	31920
gatagcacga	catacctgta	ctctttgtcc	acttcgagct	ccacaccgtg	ctccttcttt	31980
gcatgctcga	ctatctcgtg	gatctgcctc	tcttcgggat	cctttatgaa	cagagaatcg	32040
gtgtccccgt	acagcaccct	cactcccatc	tgctcgcagt	gcgatatcgt	ctgcatgatg	32100
atatagcgcc	cgacagcagt	ggtggcctct	gccgcgggta	aaaagtacag	cgggaatatc	32160
tcggcgccca	tcacgccgta	gcttgcgttg	agcacgacct	tgagggcctg	gctgattacg	32220
gtatactgct	gccgctgctc	ctccgtaatg	gatgtgctct	ttgagaggct	cttgtaatag	32280
ttgacgcgca	ggtcccgcag	cgagccgatt	atcatcgatg	tcaggccgtt	gttttttgta	32340
catacccagt	ggttggtatc	ggggatggtg	ttctttttgc	attctgcatg	cacgcaccgg	32400
acggtctcgt	acgagaggtt	cctcaccttt	atgatactgg	gatacaggct	cgcaaagtcc	32460
atcaccgtaa	catcaaagtg	tatgccctct	tcaggctcga	cgacaaggcc	cccgcggaac	32520
tttttatcct	ttattaccgc	gtcgttgctc	acctcgcgcg	acctgccctc	cagctcgtcc	32580
ctccgcggta	tgagcgcgtt	tcgctgtctg	tgctcatagt	acagcaggct	gcgtatccac	32640
tgcgagacgc	ccatgcggga	catgtcatcg	atgggcatcc	gggctattct	gctggtcacc	32700
accagcaggt	ccatgagtat	ctcgttgcca	aaggtgctaa	gctcgagcgt	caggcgcgcg	32760
tcgtgatagc	aatagtttgc	agtctggtat	aaggtgagat	cccccagttt	gaccccatag	32820
tcgaccttgc	cctcgccgag	catcgccttt	gtgacgctgt	taagggaata	gtccgtgtac	32880
tttgccgcaa	aggcgtacag	ctggaatgac	ctgttcgaga	aggtcctgta	caggtccagg	32940
tggactccgt	gccggagcgt	ggcagaatcc	cgcatcatgt	acaaaggaat	gtcagagtca	33000
gatactccga	ggcgccgtgc	cctgttgagc	atgtacggca	tgtcaaagtc	gtcgccgttg	33060
tacgtcagaa	caaacgggta	cgagcctatt	accgatagcg	cgtcgcggat	catgtcagct	33120
tccttgtcgt	agaataccac	ctcgacaccg	ggggtcacgc	cgttctcgcc	ctcttctgcg	33180
ccgctcctca	ggacgaatac	ctgttttagg	ccgtcggtgg	cggcaaaccc	caccgccgta	33240
accctcctgt	cggatatctt	ggggtcgggg	atcctgccct	cctctgaatc	cacctcgata	33300
tcaaagctga	ggcgccgtat	cctgggtatg	ggctggttga	gcaggtccgc	ccaccccgct	33360
atgaactcgc	ggaactcttt	tctgtccgcc	atgccctcgt	ctacaacctt	gtcccagagg	33420

aggctcttga	gggccagctt	tacctcgtcg	gatatgggca	tgtcatgcgg	gattaccttg	33480
ccgccggata	ccgaatagta	cctgcccacg	accaggctct	tgtcgtacag	atagttctca	33540
tagtacttta	tgtcggattc	ccacgtgtcc	atgatgttgc	ggatgctctt	ctccgagttg	33600
gtcccgccta	tggcaagggg	gtcggccaca	gttatcttgg	tgacgggcac	atccttgtcg	33660
gctatcaggt	cgtgccgcat	gacctgctcc	gttcctagca	catcctccct	gccttcaagc	33720
tccccaagct	cggagggggg	ctgcctcgta	tagcagtagg	gcttgtgccc	cgtattgtcc	33780
gtccagtgta	cgatcttttg	tgattccggc	tcgtaaaact	tgaggacgac	cgcccctgcc	33840
tggctgtcgt	atgttgcaga	taccagcagc	gacgggggta	tctctacggc	atcttgcacc	33900
gtcaccgcac	cggcacctcc	ttgctgcctc	cgggcatcct	tgacgcccag	tacgagatct	33960
tttccttgtc	catcatggtt	atctcggagg	atgtctcttt	taccagccgg	gaggtgttct	34020
cggggtaggt	atcaaggcag	acaaaccgcc	tgatccctat	cgttacggcc	atcttggtac	34080
actccagaca	cggcgagaac	gtggtgtaca	tggtggcccc	cccgcccccc	gcgcctatcc	34140
cgagtatcgc	acagtgcatt	atagcgttgg	cctctgcatg	gttgcacagg	caccggtcca	34200
gggcctcgcc	tgacttgatc	ctgccctcga	tgcgctcggc	acacctctcg	cagccgccct	34260
cgtagcagtt	cttgacgcca	ggaggcgtcc	cgttataccc	tgtggcgagc	tgccggtggt	34320
ccctcactat	tacggccccc	accttgcgga	ctatacagtt	ggatcggagc	tttgcaagct	34380
ccgcctgcag	catgaaatat	tcatcccagg	tagggcgctc	aaagccgctc	acgggcagcc	34440
tgcccccgcc	cggcatatta	tggtatatgc	gggacggggc	cgtccacccg	cacccccgta	34500
tatggatctg	cgatcagggg	gtagaaacca	taaaacaaca	ggccgcggca	gggcgcgcgt	34560
ggagactggg	cacataacgg	gcaggtacat	cgagcccggt	gccgtcgaga	ggcgcgacta	34620
ccaggtgggc	ctggcggaac	aggccatacg	ggagaactgt	atcgtggtgc	tcccgacggg	34680
cctcggcaag	actgccgtcg	ccctccaggt	gatcgcccac	tatctcgacg	agggccgcgg	34740
ggcgctcttc	cttgccccta	caagggtcct	ggtaaaccag	caccgccagt	tcctgggcag	34800
ggcccttacc	atatccgata	ttacactggt	cacgggagag	gacaccattc	cccggcgcaa	34860
aaaggcgtgg	ggaggcagcg	tgatctgcgc	cacgcccgag	atagcaagaa	atgatataga	34920
gcgcggcctg	gtcccgctcg	aacagttcgg	cctggtcata	ttcgacgagg	cccacagggc	34980
ggtgggcgac	tatgcctatt	cttccatagc	gcgggcggta	ggggataact	ccaggatggt	35040
gggcatgact	gcgacgcttc	ccagcgagag	ggagaaggca	gacgagataa	tgggcaccct	35100
gctctccagg	agcatagccc	agaggacaga	agacgacccg	gacgtaaagc	cctatgtaca	35160
ggagactgcc	accgagtgga	taaaggtgga	tcttcccccc	gagatgaagg	agatacagag	35220
gctcctcaag	ctggccctcg	acgagaggta	ttcctccctc	aagaggtgcg	ggtacgatct	35280
tggctcgaac	aggtcgctct	cggcgctgct	ccggctgcgc	atggtggtgc	ttggcggcaa	35340
caggcgcgcg	gccaagccgc	tgttcactgc	gatacgcata	acgtacgcgc	taaacatatt	35400
cgaggcgcac	ggggtcacgc	cctttctaaa	gttctgcgag	aggacctcca	agaaaaaggg	35460
cgtcggcgtg	gcggagctgt	tcgaacagga	ccggaacttt	acaggggcca	tcgcgcgcgc	35520
aaaggccgcg	caggcggcag	gcatggagca	tcccaagata	ccaaagctcg	aggatgccgt	35580
ccdcddddcc	cggggaaagg	cgctggtctt	tacgagctat	cgtgattctg	tcgacctcat	35640
acactcaaga	ctcaaggcgg	ccgggataaa	ctcgggcatc	ctgataggaa	aggcgggaga	35700

aaagggccta	aagcagagaa	aacaggtgga	gactgtggca	aagttccgtg	acggcgggta	35760
cgacgtgctg	gtatcgacga	gggtcggcga	ggaggggctc	gacatatcgg	aggtcaacct	35820
ggtgatattc	tatgacaatg	tgccaagctc	gatcaggtac	gtgcagagga	gggggagaac	35880
aggcagaaag	gacgccggca	ggctgatagt	attgatggca	aaggggacga	tagacgaggc	35940
atactattgg	attggtcggc	gcaagatgag	cgccgccaag	ggcatgggtg	agaggatgaa	36000
ccggtcgctg	gcggcaggcg	gggctgctgc	caaggccgct	ccaaagggac	tcgaggggta	36060
cttttagccg	aggcgcttta	tcacgtgata	gccaaactct	gactttatgg	gttccgagat	36120
ctcgcctatc	tgcagccgga	acgcggcctc	ttcaaacggc	tttaccatct	ttcccctgcc	36180
aaagtagccg	agactgccgt	ccctctttgc	actgcccccg	tccatggaga	gctcctttgc	36240
gagcctgcca	aacttttccc	cggccttgag	gcgctcttt	actgctagcg	cctcgccctg	36300
ttttttacc	agtatgtgcg	agcactttat	cttgtctgcc	atgtgcgctg	ctcctttgta	36360
ccctgctata	acttgtcgtg	ctgccggggc	gcggtcatcc	cgcagggcct	gtattctgcc	36420
aggaactgtt	aatccgcagg	gactggtttc	cccgtattat	cctgtcatat	acaggggggga	36480
ttcggcggtc	cacgtgtatt	aacacctaaa	gcagggataa	acgtgtgaga	acaagtgggc	36540
acccggaacg	aatgttacgg	catactggag	gataaccaga	taaaggaact	agaacaaggc	36600
agcggcatcg	acgtaccgtt	gctggaccac	gagggcagtc	agttccattc	caacagaata	36660
catcttacac	tgggcaatat	cgtatctccg	cttgagcttg	gtgacggcag	tatgacaaac	36720
cccgggacgg	acctgacacc	atacgacgta	aagtcaatag	gcatggggcg	caccataaag	36780
cgatatgcaa	agtaccgttc	tgaaggatcg	caggccgtcc	gcatggatgt	catattcatg	36840
tcccgtgccg	cctgggatga	gatggataaa	ggcaaggcat	gaccggccgg	ttttggggca	36900
tactgccggt	atacagcggg	aacaggcatt	cagagacttt	ggcggattcc	gtgtgacccg	36960
ccccaagcta	aacttttaat	tgggatccgg	cgagccggcg	cgtgtcatcg	tactttacca	37020
taaagaccgc	caacctggcc	ctgcccgacg	tggtcaaaaa	gtacaaccac	gtcctggcat	37080
gcaagagcga	ggtgatgagg	gccgagaagc	agatccagac	gtccatctcc	tcgtctagcg	37140
ggctcgacaa	gtactcggag	ctcaagcaac	agttcaactc	ccggataacc	gagttctacc	37200
gctcgataga	agagctggaa	aagaccggtg	cggtggtcaa	gagcatagac	gagggcctgc	37260
tggactttcc	cgcaaagcgc	tttggggacg	acatctggct	gtgctggaag	acaggcgagc	37320
gcgagatcaa	gttctggcat	gaaaaggact	ctggttttgg	cggaagaaag	cccatagagg	37380
taagtgacga	gtcactagtg	tagatgctct	ccgcctggtt	gcgcgtaata	cgcgtccgct	37440
tcctgctcgc	gtcggtgata	gccgtctcgg	cgggcctcgc	cctctcctgg	tggcacggcc	37500
acgaaataga	cgcattctcc	gccgcgctca	ccatggccgg	cgtggccgcg	ctccacgcaa	37560
gcgtggacat	gctcaacgat	tattcggact	acaagcgcgg	catagatacc	ataaccaaga	37620
ggaccccgat	gagcggcgga	acaggggtgc	tgccagaagg	cctgcttacc	cccggccagg	37680
tgcaccgcgc	cggcatcata	tcgctggtcc	tgggctctgc	tgtcggcgcg	tactttgtgg	37740
tcacaacggg	gcccgtcata	gccatgatac	tcggctttgc	cgtagtctcg	atatactttt	37800
actcgacgag	gattgtagac	tcgggcctct	ccgaggtctt	tgtggccgtc	aaggggggcga	37860
tgatcgtcct	tggcgcctac	tacatacagg	cgcccgagat	aacgcctgcc	gccgttctgg	37920
taaaaacaac	cgtgggcgcc	ctctcgtcgg	cggtcctctt	tgtggcgtcg	tttccagacc	37980

acgatgcgga	caagtcccgc	ggcagaaaga	cgcttgttat	aatcctgggc	aaggagaggg	38040
cctcgcggat	cctctgggtg	ttccccgcag	tggcatactc	gtccgttata	acgggggtca	38100
tcctgcagtt	cctgccggtg	catgcactaa	ccatgctgct	tgcagccccc	cttgcagtaa	38160
ttgcggcaaa	aggccttgcc	agggagtacg	gcggggacgg	gatcatacgg	gtcatgcgcg	38220
gcacgctgcg	gtttagcagg	gttgcaggcg	ccctgctggt	gttgggcatt	ctgttgggct	38280
gagtggagct	aggttcgaga	cgatgtaagc	ttaaactagg	tatgcaattg	gatcacttag	38340
attctactaa	cacgccatcg	tcttttacat	caacgaatat	agttcgtata	acctgcgagt	38400
tatcatcatc	cctgacgttc	tcgggagtta	tttcttttga	ttccccgtct	tgtagaacaa	38460
cgctgtactt	atccataatt	aggtaaaact	tctacatgta	taaaaacgta	ctatcttcac	38520
ggggccccgg	caggcctttg	ggatttttcg	ctgcgtcaag	tccgagtgtt	ttcagggtgt	38580
gtgggtactc	tgaaaaatcc	cgggggcttt	ccggcagggt	acacaagaat	agttaagtaa	38640
tgcagcattc	aaagtaaaac	atggacatga	acaagctctg	cgggatatgc	atgaggagtc	38700
tggtgggtga	gatcatgcct	tatttccatt	acaagtgcca	taccgcctgt	gtaaaatggc	38760
atgaatccaa	tcccgggttg	tgtgccctgt	gcaaaaagga	tgtcacgggg	attaaacatt	38820
ttacaaagat	agggggaatg	gtataccatg	aagactgttg	tacaatattt	gtggaaaaag	38880
tcctgggtca	aaagaacaac	cccccaaaat	tcccgtatac	gtacagtttt	acatgtccgt	38940
cgtgctcaca	cgaggacagc	gtggatacgg	ccgtcaagat	ggacaccggg	ccgcagagat	39000
tcatctgcaa	cgggtgcaga	aaaaaggtaa	aagccacggg	taaaaggata	agataggcat	39060
cttgattggc	cccgccgtat	acaagatgaa	atcatgcatt	ctaaatacca	gggcttgaga	39120
acgcaataaa	accccggatg	cctgccggaa	gagtccggtc	ataaaatccg	gcccccgtac	39180
cggaggatct	gtcggttgtg	ggatggatat	catccacttg	ccattacatc	acgccaattc	39240
gcgtgcagtc	ctgcccgtgc	ggcagggata	caaagccatg	atgcagaact	ggaggcaccc	39300
atccggggaa	actgcaggct	gccccggaat	ctaaaggtgc	aaatggctgc	agaacccccg	39360
gaccggcggg	tcgcaccccg	ggcgggatac	caacgaacgg	acccgcaccg	tacacttcat	39420
acacataaat	cccgcctgaa	cggtcgtccg	cgcatgatca	gcgggcacgc	cacggccgag	39480
ggtacacgca	ggatagccga	gatgtcgggc	gcccatatcg	acaactacaa	gatggtcgac	39540
gggctgcacc	tctccaacgt	ggggatgggc	acctaccttg	gcgacgcgga	tgacgccacc	39600
gacagggccg	tcacggacgc	agtcaagagg	tccgtcaaaa	caggcataaa	cgtcatagat	39660
acggcgataa	actaccgcct	ccagagggcc	gagcgctctg	tcggcagggc	cgtcacggag	39720
ctctcagaag	aggggctcgt	atcaagggac	caaatattca	tatcgacaaa	ggcgggctat	39780
gtaacaaacg	actccgaggt	ctcgcttgac	ttttgggagt	atgtgaaaaa	agagtacgtc	39840
gggggcggcg	tgatccaggc	aggcgacata	tcctccggat	accactgcat	gaagcccgcc	39900
tatctagagg	accagctgaa	gaggagcctt	gcaaacatgg	gcctcgactg	tatcgacctt	39960
gtctacgtgc	acaaccccgt	cgaggggcag	atcaaggacc	gccccatacc	ggagatcctc	40020
gactgtatag	gagaggcctt	tgccatgtac	gagaaggcaa	gggaggatgg	ccgcatcaga	40080
tactatgggc	tcgccacgtg	ggagtgcttt	cgtgttgcag	gggacaaccc	gcagaatgtc	40140
cagctcgaag	acgttgtaaa	gaaggccaaa	gacgcaggcg	gggacaacca	cggattcaag	40200
ttcatacagc	tgcccttcaa	ccagtacttt	gaccaggctt	acatgctaaa	gaaccagacg	40260

60

-continued

gtggacggca	gaaagctgtc	catactggat	gcggcagtat	cccttggcgt	cggtgtgttc	40320
acgagtgtcc	cgttcatgca	aggcaagctg	ctcgagcctg	gcctgctgcc	ggagtttggc	40380
gggctctccc	ccgccctgcg	atccctgcag	tttatcaggt	ctacaccagg	cgtgcttgcc	40440
cccctgccgg	ggcacaactc	agctgcgcat	acagacgaga	acctcaagat	catgggcgtg	40500
ccccccatcc	cgcctgacaa	gttcggggag	cttgtggcca	gcctcacctc	gtggtcgccc	40560
ggtcagaaat	agccggtcag	ctgcctctcg	ggcattatct	ggtcgagcac	cttttttgag	40620
agccgtgaat	cggcggaatc	ctgcacgttg	cgccgggccc	ttgccacgtt	ggcaggatac	40680
aggtctatcc	cggtaaagcc	cctcttgagg	catgcagaga	ctattcccgt	ggtccccctg	40740
cctgcaaacg	ggtccagcac	gtaatcgccc	tcttttgtgg	caaactttac	tatcctggat	40800
acaaggtctt	ctgggaatac	cgcaaagtgc	tcgtttccat	ggtgcgcctt	tgtggatatc	40860
tcccagacgt	tccccgggtt	cttgccccgc	gggttgcatg	cggcaaatat	cggatagtgc	40920
tcgtggcccc	ctatcctctt	gcgcgtcgca	tgcctccgga	acttgcgata	gcacgtgggg	40980
cagtactttt	cggggtcata	gccgtgggcc	catgatattt	ccccggtggt	tggcagctcg	41040
tcaaacggcg	taccaggcgt	tgagccgtgt	atcacggctg	caatcctccc	tattgcctcg	41100
ggatccctct	tcccggggggc	gaactgcagc	cggtcatttg	cgggtttgct	gtttatcccg	41160
ctcagggcct	cgttgccctg	gacgcgtatc	gggtttatgt	cataggcggg	ggtatccgac	41220
tttgagagga	ccagaacaaa	ctcgtacgcc	tgcgtcaggt	tttgccgcga	gctttgcgag	41280
atggcgtttc	gcttgtacca	gattatatcc	tcctggaaat	ggtacccaag	atccaccagc	41340
cttagcgcga	gccggtgcgg	gaccatcagc	ttgtggcgcc	gcctcctggt	atcacctatc	41400
actatgaaga	ggctcccgtc	gtctgttagc	aggtccatgc	agctcttgaa	tactcctgcc	41460
agctcctcga	tgaactcgtc	tggcgtcttt	tcctggccca	gctcggaggg	ctccgacccg	41520
tactttctgt	gcccgtaata	gggaggggat	gttaccgcca	gtctgtacct	gccgcgctcg	41580
gctgtattct	ttgccagccg	cggcagcacc	tcccgggcgt	cgccctgcag	tatctggaac	41640
ttttcactca	agataggccc	ccgtgccatc	catctgcccc	tgcgcgatcc	gacaagtcgt	41700
attcatcttg	taccgcggca	cccgcgccgt	cttaaaatct	ttgtagctta	taccggcgcg	41760
ccgcagatgc	ggtacaatcc	ctccggtgct	cccgcgatcc	ggcgcggtgc	catcagccgc	41820
cccgtttccc	cttccggggg	ccccgccacc	atacacgtgg	tataaacaga	ggccggacgg	41880
cgcggaccac	atgtggataa	aggacgagtt	tcttggcaaa	ggcaacaaga	tgaggctgct	41940
ctacatcata	ctgcccatct	acgggtacct	cttcctggag	tactggccgt	tcctgccctg	42000
gatggctaca	ttctggtggt	cggtggcgct	cagececect	attctcctga	tgccttatgc	42060
cggggaggcc	ataggtcagc	tgatcggcgg	gcatgtattg	tttggagttg	tcacaaagta	42120
tgtctatgcg	gcagtatggc	tgggcatggc	acacgggata	atcctcctga	cagggcgcct	42180
cagggccagg	gctggtaccc	tgcgcgaatc	ccccgcatag	ccccggcagg	gcccgttgtt	42240
ccggatggcc	aaggccggcg	catacatccc	atgatgcata	gaccggggggg	acatgatcgc	42300
agcagatcgt	tccatgccgc	ccccgtacgc	tctggggcgc	acctagtcag	ggcggggccc	42360
cccgcggtcc	aattaaatac	ggcaaggaac	ggggggtctc	gttgaaactg	cagggcagga	42420
ctgccgtgat	cc					42432

<210> SEQ ID NO 3

<213 <213	L> LE 2> TY	NGTH	1: 10 DNA	419	,		,										
<21.	3> OF)> FE	GAN1	SM: E:	Cena	archa	eum	symb	losu	ım								
<22. <22.	222> LOCATION: (1)(10419)																
<400)> SE	QUEN	ICE :	3													
atc Met 1	ccc Pro	gcg Ala	ccg Pro	cca Pro 5	gga Gly	gag Glu	ggc Gly	agc Ser	ctt Leu 10	ggc Gl y	ggg ggg	gtg Val	gca Ala	ata Ile 15	tcc Ser	48	
gac Asp	gac Asp	GJÀ ddd	agg Arg 20	tac Tyr	atg Met	tac Tyr	gca Ala	atc Ile 25	ggc Gl y	agg Arg	gat Asp	ctg Leu	ctc Leu 30	aca Thr	gta Val	96	
tac Tyr	cgg Arg	tat Tyr 35	aca Thr	atg Met	aac Asn	ccg Pro	ccc Pro 40	cat His	gac Asp	ata Ile	gcc Ala	tcg Ser 45	gcc Ala	gcg Ala	ctc Leu	144	
ggt Gl y	gcg Ala 50	cag Gln	tca Ser	ttt Phe	tct Ser	ctg Leu 55	cct Pro	ggc Gl y	ggc Gl y	atc Ile	agc Ser 60	ccc Pro	gcc Ala	ccc Pro	ggc Gl y	192	
gcg Ala 65	ccg Pro	acc Thr	ggc Gl y	ctt Leu	gac Asp 70	atc Ile	tcg Ser	gat Asp	gac Asp	ggc Gl y 75	cgc Arg	cac His	ctg Leu	tac Tyr	gtc Val 80	240	
ccg Pro	gac Asp	gaa Glu	aac Asn	ggc Gl y 85	gtc Val	gtg Val	tac Tyr	agg Arg	ttt Phe 90	gat Asp	ctg Leu	gaa Glu	agc Ser	ccg Pro 95	tac Tyr	288	
agg Arg	cta Leu	gac Asp	ggc Gl y 100	ggc Gl y	acg Thr	ttt Phe	ggc Gl y	tct Ser 105	tct Ser	gtt Val	tat Tyr	gtg Val	gga Gl y 110	tcc Ser	gac Asp	336	
gtt Val	gcc Ala	gcg Ala 115	ccc Pro	cgc Arg	ggc Gl y	gta Val	tac Tyr 120	gtg Val	gcg Ala	ccg Pro	ggc Gl y	ggc Gl y 125	agc Ser	ctc Leu	atg Met	384	
ctg Leu	gtc Val 130	tcg Ser	gat Asp	agt Ser	gca Ala	gac Asp 135	ggc Gly	acc Thr	atc Ile	cac His	agg Arg 140	tac Tyr	gag Glu	ctg Leu	gca Ala	432	
agc Ser 145	ccg Pro	tac Tyr	gag Glu	ccg Pro	gcg Ala 150	ggc Gly	gcg Ala	gca Ala	aac Asn	agg Arg 155	gga Gly	tca Ser	ttc Phe	gac Asp	gtg Val 160	480	
tcg Ser	gat Asp	atg Met	gac Asp	ggc Gl y 165	tcg Ser	cct Pro	gtc Val	ddd ddd	gcg Ala 170	ggg Gl y	ttt Phe	gcg Ala	ggc Gly	ggc Gl y 175	ctg Leu	528	
cac His	atg Met	tat Tyr	gtc Val 180	gcg Ala	gga Gly	aac Asn	gac Asp	acc Thr 185	gga Gl y	agg Arg	gtc Val	tac Tyr	cag Gln 190	tat Tyr	ccg Pro	576	
gcg Ala	ggc Gl y	acg Thr 195	cac His	cag Gln	ata Ile	cag Gln	gag Glu 200	gca Ala	gcc Ala	gca Ala	GJ À 333	ccg Pro 205	cgg Arg	ctg Leu	ctc Leu	624	
tcg Ser	gcc Ala 210	gtc Val	ctg Leu	gac Asp	aaa Lys	gac Asp 215	gga Gl y	acc Thr	ctg Leu	agg Arg	gcg Ala 220	gcc Ala	ttt Phe	gac Asp	ggc Gly	672	
acg Thr 225	gta Val	gac Asp	gcg Ala	gga Gl y	tcc Ser 230	gtg Val	cag Gln	ccc Pro	GJ À ddd	atg Met 235	atc Ile	acc Thr	atc Ile	agg Arg	gac Asp 240	720	
ggc Gl y	cat His	ggc Gly	tcc Ser	aac Asn 245	acg Thr	gga Gly	ata Ile	ccc Pro	ctt Leu 250	ttg Leu	ctt Leu	gcc Ala	ddd Gl λ	ggt Gl y 255	gcc Ala	768	
gcg Ala	gac Asp	tct Ser	gat Asp 260	gtc Val	atg Met	aca Thr	ttt Phe	gtg Val 265	gtc Val	ccc Pro	gag Glu	aaa Lys	gac Asp 270	agg Arg	gca Ala	816	

gag Glu	gct Ala	gcc Ala 275	gca Ala	tac Tyr	GJÀ ddd	gac Asp	cag Gln 280	tcg Ser	ctg Leu	cat His	gtt Val	ccc Pro 285	gcc Ala	gcg Ala	gcg Ala	864
ctg Leu	gcg Ala 290	GJÀ ddd	act Thr	ggc Gl y	ggc Gly	999 Gly 295	ccg Pro	ttt Phe	gtg Val	ccc Pro	gac Asp 300	ttt Phe	tcc Ser	GJ À ddd	ggc Gl y	912
tcg Ser 305	ctg Leu	ctg Leu	gcg Ala	tcc Ser	ctg Leu 310	tac Tyr	cgg Arg	cac His	gag Glu	cgg Arg 315	ccg Pro	ttc Phe	cag Gln	ggc Gl y	gag Glu 320	960
gag Glu	atg Met	gca Ala	cgg Arg	acg Thr 325	gag Glu	aga Arg	tcc Ser	gac Asp	agg Arg 330	tac Tyr	gcg Ala	ctt Leu	act Thr	gta Val 335	act Thr	1008
gca Ala	ggc Gl y	GJ À ddd	agt Ser 340	cag Gln	atg Met	cat His	gtg Val	ggc Gl y 345	ggc Gly	gcc Ala	ggc Gl y	gga Gl y	aac Asn 350	atc Ile	acc Thr	1056
tgg Trp	tac Tyr	gat Asp 355	ctt Leu	ggc Gl y	acg Thr	ccc Pro	cat His 360	gac Asp	ata Ile	acg Thr	acc Thr	ggc Gl y 365	gtc Val	cgc Arg	gcg Ala	1104
gga Gl y	tcc Ser 370	gac Asp	atc Ile	ctg Leu	ccg Pro	gcg Ala 375	tat Tyr	cca Pro	tcc Ser	gcg Ala	ggc Gl y 380	aga Arg	aac Asn	gtg Val	gtg Val	1152
ccg Pro 385	tca Ser	ata Ile	acg Thr	ggc Gl y	att Ile 390	gcc Ala	ttc Phe	tcg Ser	gat Asp	gac Asp 395	ggc Gl y	atg Met	cgg Arg	ttg Leu	ttt Phe 400	1200
gca Ala	gca Ala	aac Asn	cgg Arg	ggc Gly 405	gac Asp	cgc Arg	att Ile	cca Pro	atg Met 410	tac Tyr	cag Gln	ctg Leu	gac Asp	agc Ser 415	ccg Pro	1248
tac Tyr	дас Авр	ata Ile	999 Gl y 420	agc Ser	gcc Ala	agc Ser	ctc Leu	gag Glu 425	gga Gl y	acc Thr	ctg Leu	ttt Phe	acg Thr 430	GJ À ddd	ttc Phe	1296
cag Gln	tcg Ser	ggc Gly 435	att Ile	gca Ala	ttc Phe	tcg Ser	gat Asp 440	gac Asp	ggc Gl y	acg Thr	cgc Arg	atg Met 445	ttt Phe	gcc Ala	gcc Ala	1344
ctg Leu	ctc Leu 450	acc Thr	gag Glu	aat Asn	gcc Ala	ata Ile 455	cgg Arg	cag Gln	tac Tyr	gac Asp	ctg Leu 460	gag Glu	ggc Gly	ccc Pro	tat Tyr	1392
gac Asp 465	ata Ile	cgc Arg	GJÀ dàd	gcg Ala	ggc Gl y 470	aat Asn	gcg Ala	ggc Gl y	cag Gln	tac Tyr 475	gac Asp	ctg Leu	gac Asp	atc Ile	ccg Pro 480	1440
ctg Leu	cac His	cca Pro	gga Gly	ctg Leu 485	ctg Leu	ttc Phe	ctg Leu	ctg Leu	acc Thr 490	tcg Ser	G1 X 333	gtg Val	cac His	ttt Phe 495	tcg Ser	1488
ccc Pro	gac Asp	GJ À ddd	acg Thr 500	agg Arg	atg Met	ttc Phe	gtc Val	ggc Gl y 505	gag Glu	GJÅ ∂∂∂	ata Ile	tca Ser	gat Asp 510	gcg Ala	gag Glu	1536
gat Asp	gcc Ala	aac Asn 515	gcg Ala	aac Asn	agg Arg	gat Asp	gtc Val 520	aac Asn	gtc Val	aac Asn	ctg Leu	tgg Trp 525	cac His	agg Arg	ttt Phe	1584
gat Asp	ctc Leu 530	tcc Ser	acg Thr	ccg Pro	ttt Phe	gat Asp 535	gtg Val	ctc Leu	acg Thr	gcg Ala	gag Glu 540	cgc Arg	gtg Val	gac Asp	acg Thr	1632
tac Tyr 545	gag Glu	tac Tyr	agc Ser	acg Thr	ggg Gly 550	ccg Pro	gca Ala	ggc Gl y	gat Asp	ctc Leu 555	gag Glu	gac Asp	ctc Leu	tcc Ser	ctg Leu 560	1680
tcc Ser	cct Pro	gac Asp	ggc Gl y	cgc Arg 565	aga Arg	ttg Leu	tac Tyr	acc Thr	ctg Leu 570	tcg Ser	agc Ser	gag Glu	agg Arg	gta Val 575	agc Ser	1728

tca Ser	agc Ser	gag Glu	tat Tyr 580	aca Thr	atc Ile	acc Thr	cgg Arg	gcc Ala 585	cag Gln	tac Tyr	tgg Trp	ctg Leu	cca Pro 590	gaa Glu	ccg Pro	1776
tac Tyr	gac Asp	gtg Val 595	acg Thr	ccg Pro	ccg Pro	tac Tyr	cat His 600	gtg Val	ccg Pro	tca Ser	ttc Phe	aac Asn 605	gca Ala	agc Ser	cag Gln	1824
GJ À 333	ggc Gl y 610	aac Asn	ctg Leu	gca Ala	gac Asp	ccc Pro 615	tac Tyr	GJ À ddd	atg Met	gcc Ala	ttc Phe 620	tcg Ser	ccc Pro	gac Asp	GJ À ddd	1872
acc Thr 625	agg Arg	ctg Leu	ctg Leu	gtc Val	acg Thr 630	GJÀ ddd	cac His	GJ À ddd	cag Gln	acg Thr 635	aat Asn	gca Ala	aag Lys	ctg Leu	ttc Phe 640	1920
cac His	ctg Leu	aat Asn	ccg Pro	ccc Pro 645	ttt Phe	gat Asp	gtg Val	ggc Gl y	acg Thr 650	gcc Ala	gtg Val	ttc Phe	cac His	gac Asp 655	cac His	1968
ggc Gl y	agg Arg	ttc Phe	cgc Arg 660	ccc Pro	GJÀ ddd	GJÀ ddd	ccc Pro	gca Ala 665	agc Ser	gag Glu	atc Ile	gag Glu	gcg Ala 670	tcg Ser	GJ X ddd	2016
ata Ile	tcc Ser	ctg Leu 675	tct Ser	gcc Ala	gac Asp	ggc Gly	tcc Ser 680	agg Arg	atg Met	ttt Phe	ctc Leu	tcc Ser 685	gac Asp	cgc Arg	ggc Gl y	2064
cgc Arg	690 GJ À G33	gcc Ala	atc Ile	agc Ser	cag Gln	tac Tyr 695	acg Thr	ctg Leu	gtt Val	gcg Ala	ccc Pro 700	ttt Phe	gat Asp	gtg Val	gag Glu	2112
ttt Phe 705	gcg Ala	tcg Ser	gat Asp	gtg Val	tcc Ser 710	gcg Ala	gat Asp	GJ À ddd	cag Gln	ctc Leu 715	gac Asp	gtt Val	ggc Gly	gcc Ala	cag Gln 720	2160
gat Asp	gcg Ala	ctt Leu	ccc Pro	ggc Gl y 725	GJ À ddd	ctt Leu	gcc Ala	ttc Phe	tcg Ser 730	ccc Pro	GJ À ddd	GJ À ddd	acg Thr	agg Arg 735	cta Leu	2208
ttc Phe	atg Met	gtg Val	gga Gl y 740	ggc Gl y	atg Met	gac Asp	agg Arg	tca Ser 745	gtt Val	cac His	atg Met	tat Tyr	tcc Ser 750	ctg Leu	aat Asn	2256
acg Thr	ccg Pro	ttt Phe 755	gac Asp	ctg Leu	ggc Gly	GJÀ ddd	gca Ala 760	gag Glu	cat His	gcg Ala	gcg Ala	tcg Ser 765	ttt Phe	ggc Gl y	gtg Val	2304
GJ À ddd	gac Asp 770	agg Arg	gtc Val	tcg Ser	gat Asp	ccc Pro 775	ctc Leu	ggc Gl y	atc Ile	gcc Ala	ttt Phe 780	ggg Gl y	aac Asn	GJ À ddd	GJ X ddd	2352
act Thr 785	aaa Lys	atg Met	cta Leu	ata Ile	gcc Ala 790	gat Asp	acg Thr	aca Thr	ggc Gly	ttt Phe 795	gtg Val	cac His	GJ À ddd	tac Tyr	gac Asp 800	2400
ctt Leu	ggc Gl y	gcc Ala	ccg Pro	tac Tyr 805	gat Asp	atc Ile	tcg Ser	ggc Gl y	ccc Pro 810	gcg Ala	tac Tyr	agc Ser	ggc Gl y	ata Ile 815	ttt Phe	2448
gac Asp	gcc Ala	ggc Gly	ggc Gl y 820	agc Ser	atc Ile	cgg Arg	gac Asp	gtg Val 825	gcc Ala	gtc Val	ggc Gly	GJ À ddd	830 GJ À 333	tcc Ser	atg Met	2496
ttc Phe	ata Ile	ctc Leu 835	gag Glu	GJÀ ddd	gag Glu	acg Thr	gac Asp 840	cgg Arg	gtg Val	tat Tyr	gag Glu	cac His 845	cgc Arg	ccc Pro	ggc Gl y	2544
ata Ile	tac Tyr 850	ccg Pro	gtg Val	gtc Val	tca Ser	gca Ala 855	ctg Leu	gac Asp	GJÀ dàd	ccg Pro	gcg Ala 860	ctg Leu	gtc Val	tct Ser	gct Ala	2592
gca Ala 865	gca Ala	gat Asp	gca Ala	agg Arg	gtg Val 870	ggt Gly	gcg Ala	gcc Ala	gag Glu	gtg Val 875	ctc Leu	ttt Phe	gat Asp	cgc Arg	gcg Ala 880	2640

gtg Val	gat Asp	gtt Val	ggc Gly	999 885	ata Ile	gac Авр	ccc Pro	GJ À aaa	890 GJ À G33	gtc Val	cgc Arg	ata Ile	gtg Val	gat Asp 895	gca Ala	2688
gca Ala	ggc Gl y	ccc Pro	ctg Leu 900	ccc Pro	ggc Gly	gtg Val	gtg Val	atc Ile 905	tcg Ser	gat Asp	gcc Ala	gtc Val	ata Ile 910	cca Pro	ggc Gl y	2736
gag Glu	gat Asp	ccc Pro 915	ggc Gly	gtg Val	gcc Ala	agg Arg	ttc Phe 920	agc Ser	ctg Leu	tcg Ser	gac Asp	gcg Ala 925	gag Glu	gtc Val	ctt Leu	2784
gcc Ala	gtg Val 930	tcc Ser	ggg ggg	tat Tyr	gcc Ala	gag Glu 935	ccg Pro	agt Ser	ctg Leu	gtc Val	ttt Phe 940	gga Gly	agg Arg	cat His	gcg Ala	2832
gtg Val 945	ccg Pro	ggc Gly	gcg Ala	gca Ala	ggc Gly 950	ggc Gly	aca Thr	ttt Phe	ccc Pro	tcc Ser 955	cag Gln	ata Ile	ggc Gl y	aac Asn	gcc Ala 960	2880
acg Thr	gag Glu	ctt Leu	gtg Val	gga Gly 965	tcg Ser	att Ile	ccg Pro	aat Asn	ccg Pro 970	acc Thr	ctg Leu	gat Asp	ttt Phe	999 Gl y 975	acg Thr	2928
acc Thr	ctg Leu	acg Thr	980 GJ X Gdd	gcg Ala	gca Ala	ttc Phe	tcg Ser	gcg Ala 985	gac Asp	GJ À ddd	acg Thr	gtg Val	gta Val 990	ttt Phe	ctc Leu	2976
tca Ser	gac Asp	ggc Gly 995	ccc Pro	acc Thr	ggc Gly	agg Arg	gtg Val 1000	tac Tyr	ccg Pro	tat Tyr	tca Ser	ctg Leu 1005	aat Asn	atc Ile	ccc Pro	3024
ttt Phe	gac Asp 1010	ata Ile	tcg Ser	tct Ser	gcg Ala	gcg Ala 1015	cct Pro	GJÀ ddd	ggc Gly	ttt Phe	gta Val 1020	atc Ile)	gtg Val	ccc Pro	gtc Val	3072
gga Gly 1025	gtc Val	tcg Ser	gac Asp	att Ile	gcg Ala 1030	ttt Phe)	tct Ser	gcc Ala	gac Asp	999 Gly 1035	cgg Arg	aac Asn	atg Met	cta Leu	gtc Val 1040	3120
gcg Ala	gac Asp	gaa Glu	acc Thr	999 Gly 1045	gga Gly	ata Ile	cac His	agg Arg	tac Tyr 1050	ctg Leu)	gcc Ala	cgc Arg	agc Ser	ccg Pro 1055	tac Tyr	3168
gag Glu	ata Ile	ggc Gly	acg Thr 1060	gat Asp	ttc Phe	atc Ile	aaa Lys	tca Ser 1065	tcc Ser	ctg Leu	ggt Gly	gag Glu	ttt Phe 1070	gtc Val)	gag Glu	3216
aca Thr	ttc Phe	tcg Ser 1075	gcg Ala	gcg Ala	ccc Pro	cgc Arg	gtg Val 1080	cag Gln	gat Asp	ctt Leu	gcc Ala	ggc Gly 1085	atc Ile	gcc Ala	ttt Phe	3264
tcg Ser	cac His 1090	gac Asp	ggc Gly	atg Met	atc Ile	atg Met 1095	ctt Leu	gcg Ala	gcc Ala	ggc Gly	ggc Gly 1100	tcg Ser)	gjà dàd	tct Ser	gtg Val	3312
cac His 1105	cgg Arg	tac Tyr	tcg Ser	ctg Leu	cca Pro 111(tcc Ser)	ccg Pro	tat Tyr	gca Ala	gta Val 1115	tcg Ser	GJÀ ddd	gcc Ala	aaa Lys	tac Tyr 1120	3360
gag Glu	gag Glu	acg Thr	gcg Ala	atg Met 1125	att Ile	ggc Gly	GJ À ddd	agc Ser	ccg Pro 1130	tcg Ser	GJ À 333	ctg Leu	gag Glu	ttc Phe 1135	tcg Ser	3408
tcc Ser	gac Asp	ggc Gly	ctg Leu 1140	agg Arg	atg Met	ttt Phe	gtt Val	ccc Pro 1145	gat Asp	gcg Ala	ggc Gl y	tcg Ser	gag Glu 1150	acg Thr)	gcg Ala	3456
gca Ala	gtc Val	tac Tyr 1155	ggc Gly	ctt Leu	gcc Ala	gcc Ala	ccc Pro 1160	tac Tyr	GJÀ dàd	att Ile	ggc Gly	gag Glu 1165	gcg Ala	gag Glu	ccg Pro	3504
ctg Leu	ccg Pro 1170	ccg Pro	ctg Leu	ttc Phe	ctg Leu	999 Gly 1175	gta Val	gjà dàà	gca Ala	gaa Glu	gag Glu 1180	gcc Ala)	acg Thr	ctc Leu	tcg Ser	3552

cct Pro 1185	gac Asp	ggc Gly	agg Arg	cac His	atc Ile 1190	cta Leu)	gtt Val	ccc Pro	ggc Gly	agg Arg 1195	ccc Pro	ggc Gly	ctg Leu	tcc Ser	cag Gln 1200	3600
tac Tyr	tcg Ser	ctg Leu	ttc Phe	tcg Ser 1205	acg Thr 5	aat Asn	ctt Leu	gag Glu	ctg Leu 1210	tgc Cys	gcg Ala	gag Glu	ccc Pro	cgg Arg 1215	ggc Gly	3648
att Ile	gac Asp	GJÀ ddd	gga Gly 1220	tcg Ser	tgc Cys	gaa Glu	gat Asp	999 Gly 1225	ata Ile	tac Tyr	gcc Ala	ttt Phe	gag Glu 1230	agt Ser	ccg Pro	3696
ggc Gly	agg Arg	ggc Gly 1235	gag Glu	ggc Gly	gta Val	tcg Ser	ctt Leu 1240	gcc Ala	gcc Ala	tcg Ser	ata Ile	acg Thr 1245	gcg Ala	gca Ala	gac Asp	3744
GJÀ ddd	cca Pro 1250	gga Gly)	att Ile	ggc Gly	gag Glu	ctg Leu 1255	cac His	ggg ggg	ttt Phe	gca Ala	ggc Gl y 1260	ccg Pro)	ccg Pro	atg Met	ccg Pro	3792
gcg Ala 1265	cct Pro	gtc Val	atg Met	gag Glu	cag Gln 1270	gtc Val)	aca Thr	ctg Leu	gat Asp	tcg Ser 1275	cgg Arg	gag Glu	ggc Gly	aca Thr	ctc Leu 1280	3840
agg Arg	gtc Val	agg Arg	ctg Leu	gac Asp 1285	agg Arg	aca Thr	gtg Val	gac Asp	gtc Val 1290	gac Asp	acg Thr	gtg Val	cgc Arg	ccc Pro 1295	tat Tyr	3888
aag Lys	atg Met	tgg Trp	gtg Val 1300	gag Glu	gat Asp	tca Ser	gac Asp	ggc Gly 1305	agc Ser	cag Gln	aca Thr	acc Thr	ctg Leu 1310	gca Ala	aat Asn	3936
tca Ser	aca Thr	ctg Leu 1315	ttg Leu	aat Asn	gcc Ala	gaa Glu	aac Asn 1320	tcg Ser	aac Asn	att Ile	ctg Leu	ctc Leu 1325	ttc Phe	agg Arg	ctg Leu	3984
gat Asp	gat Asp 1330	gcg Ala)	gcc Ala	gca Ala	ggc Gly	aaa Lys 1335	ata Ile	tcc Ser	GJ À ddd	tat Tyr	aca Thr 1340	tcc Ser)	ccc Pro	gtg Val	ttt Phe	4032
cgc Arg 1345	acg Thr 5	tgg Trp	tcg Ser	tcg Ser	ccg Pro 1350	ttc Phe)	ctg Leu	ggc Gly	aca Thr	gac Asp 1355	gga Gly 5	gcc Ala	acc Thr	agg Arg	ccc Pro 1360	4080
cat His	acg Thr	ctg Leu	ggc Gly	ttt Phe 1365	gga Gly 5	gac Asp	gtg Val	cgc Arg	ctt Leu 1370	gcg Ala	gat Asp	ata Ile	tac Tyr	gat Asp 1375	gca Ala	4128
tcc Ser	GJ À ddd	gat Asp	gtc Val 1380	ccg Pro	tcg Ser	ccg Pro	tcg Ser	ggc Gly 1385	att Ile	gag Glu	ttt Phe	tca Ser	gat Asp 1390	gac Asp	ggc Gl y	4176
atg Met	agg Arg	atg Met 1395	ttc Phe	gtt Val	acg Thr	GJ À ddd	atc Ile 1400	ggc Gly	acg Thr	cca Pro	ggc Gly	atc Ile 1405	aac Asn 5	ata Ile	ttc Phe	4224
aca Thr	ctg Leu 1410	tcc Ser)	gcc Ala	ccc Pro	ttt Phe	gac Asp 1415	ata Ile 5	aca Thr	ttg Leu	ccg Pro	aag L y s 1420	cat His)	tcc Ser	ggc Gly	tca Ser	4272
acc Thr 1425	aac Asn	ata Ile	ggc Gly	ggc Gl y	ctg Leu 1430	tcc Ser)	gtg Val	tct Ser	gat Asp	ctg Leu 1435	gca Ala	ttt Phe	gca Ala	aac Asn	aat Asn 1440	4320
GJ À aaa	aac Asn	agc Ser	ctc Leu	acg Thr 1445	gtg Val	ctc Leu	gat Asp	gtg Val	gac Asp 1450	, GJ À Gđđ	gtg Val	ttg Leu	cgc Arg	gtc Val 1455	tac Tyr	4368
gcc Ala	ctt Leu	ddd ddd	gac Asp 1460	gat Asp	tac Tyr	aat Asn	gtg Val	gtc Val 1465	acc Thr	gga Gly	acc Thr	acc Thr	cag Gln 1470	aag Lys	ttt Phe	4416
agg Arg	att Ile	acg Thr 1475	ctc Leu	gat Asp	acc Thr	aca Thr	cag Gln 1480	ggc Gly	ata Ile	ccc Pro	aat Asn	tcc Ser 1485	att Ile	tac Tyr	aca Thr	4464
tct Ser	ccg Pro 1490	gac Asp)	ggc Gly	ctg Leu	tca Ser	cag Gln 1495	ttt Phe 5	gtg Val	gca Ala	tat Tyr	gat Asp 1500	gac Asp)	agg Arg	att Ile	gac Asp	4512
--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	----------------------------	--------------------	----------------------------	--------------------	--------------------	--------------------	-------------------------	----------------------------	--------------------	----------------------------	------
ttg Leu 1505	tac Tyr	gtg Val	ctt Leu	ggc Gly	agc Ser 1510	cca Pro)	aac Asn	gac Asp	ata Ile	tcg Ser 1515	tcg Ser	aca Thr	acc Thr	gag Glu	ata Ile 1520	4560
atc Ile	ccg Pro	tat Tyr	tcg Ser	ctg Leu 1525	cca Pro	agg Arg	ccg Pro	gac Asp	ccg Pro 1530	cca Pro	acc Thr	ggc Gly	atg Met	gac Asp 1535	ttt Phe	4608
acg Thr	cca Pro	gac Asp	999 Gly 1540	cgc Arg)	agg Arg	atg Met	ttc Phe	ctg Leu 1545	tcc Ser	acc Thr	gag Glu	aac Asn	999 Gly 1550	ata Ile)	gac Asp	4656
cag Gln	tac Tyr	ctg Leu 1555	ctt Leu	tca Ser	gaa Glu	ccg Pro	ttt Phe 1560	gca Ala	gtc Val	acc Thr	acg Thr	tcg Ser 1565	gta Val	ttt Phe	ttg Leu	4704
cgc Arg	acg Thr 1570	atc Ile)	ccc Pro	att Ile	gac Asp	gga Gl y 1575	GJ À GJÀ	gcg Ala	gag Glu	gga Gly	ata Ile 1580	cgg Arg)	ttt Phe	gta Val	дас Аѕр	4752
aac Asn 1585	gga Gly	agg Arg	ggc Gly	ctg Leu	ttt Phe 1590	gtg Val)	ccg Pro	ggc Gl y	gcc Ala	gac Asp 1595	ggc Gly	atc Ile	atc Ile	cag Gln	agg Arg 1600	4800
cac His	gag Glu	ctc Leu	atc Ile	tac Tyr 1605	ccg Pro	tac Tyr	GJ À ddd	gcc Ala	agc Ser 1610	acg Thr)	tcg Ser	ttg Leu	ttg Leu	gag Glu 1615	acc Thr	4848
gtc Val	agg Arg	gac Asp	ggc Gly 1620	gtg Val)	acg Thr	gac Asp	ggc Gl y	ggt Gl y 1625	ccg Pro	ggc Gl y	gag Glu	aac Asn	ccg Pro 1630	gcc Ala)	gcc Ala	4896
gga Gly	gag Glu	atc Ile 1635	cgc Arg	ctt Leu	gcg Ala	ggc Gl y	aca Thr 1640	ttc Phe	aat Asn	gca Ala	tcc Ser	gat Asp 1645	aat Asn 5	gta Val	cag Gln	4944
tcg Ser	ccg Pro 1650	tcg Ser)	ggc Gly	att Ile	gag Glu	ttt Phe 1655	tca Ser	ggc Gly	gac Asp	ggc Gly	acg Thr 1660) GJ X GJA	atg Met	ttt Phe	gtt Val	4992
acc Thr 1665	GJÀ GJÀ	ttt Phe	gga gga	gcc Ala	gcg Ala 1670	ggc Gly)	gtg Val	aat Asn	gaa Glu	ttc Phe 1675	tcc Ser	ctg Leu	tcc Ser	gcc Ala	ccc Pro 1680	5040
ttt Phe	gat Asp	aca Thr	acc Thr	ctc Leu 1685	ccg Pro	gtg Val	cat His	gtg Val	gaa Glu 1690	ttg Leu)	cac His	gat Asp	ata Ile	ggc Gly 1695	ggc Gly	5088
cag Gln	ccg Pro	gca Ala	gtt Val 1700	gat Asp)	ctg Leu	gcg Ala	ttt Phe	gca Ala 1705	gaa Glu	gat Asp	ggc Gl y	agg Arg	acc Thr 1710	ctc Leu)	ctg Leu	5136
ttg Leu	ctg Leu	gcc Ala 1715	gcg Ala	gat Asp	gga Gly	aca Thr	ctg Leu 1720	gat Asp	ttc Phe	tac Tyr	agc Ser	ctt Leu 1725	gcc Ala	ggt Gl y	gat Asp	5184
gcc Ala	tat Tyr 1730	gat Asp)	ata Ile	GJÀ ddd	gaa Glu	gca Ala 1735	tcc Ser	cgt Arg	act Thr	ttt Phe	caa Gln 1740	gtg Val)	ccg Pro	ttt Phe	gag Glu	5232
gat Asp 1745	gcc Ala	gcg Ala	ggt Gly	gct Ala	gtg Val 1750	ccc Pro)	ggc Gly	gcc Ala	ttt Phe	tac Tyr 1755	cag Gln 5	cct Pro	ccg Pro	gat Asp	ggc Gl y 1760	5280
tcg Ser	tct Ser	att Ile	att Ile	gcc Ala 1765	gca Ala	ttt Phe	gac Asp	ggc Gl y	agg Arg 1770	att Ile	gac Asp	cag Gln	tat Tyr	gtg Val 1775	gtg Val	5328
atc Ile	ccc Pro	ttc Phe	gag Glu 1780	ttc Phe)	gtg Val	tca Ser	tat Tyr	cca Pro 1785	ctg Leu	aca Thr	agg Arg	ccc Pro	ggc Gl y 1790	acg Thr)	ccc Pro	5376

aca Thr	GJÀ ∂àà	att Ile 1795	gac Asp	ttt Phe	gcg Ala	cca Pro	gac Asp 1800) GJ À ddd	cgc Arg	tgg Trp	atg Met	ttc Phe 1805	ctg Leu	tcc Ser	acc Thr	5424
gag Glu	aac Asn 1810	GJ À 333	ata Ile	gac Asp	cag Gln	tac Tyr 1815	ctg Leu	ctg Leu	tcg Ser	atc Ile	ccc Pro 1820	ttt Phe)	gac Asp	gtg Val	cgc Arg	5472
agc Ser 1825	ctg Leu	acg Thr	tat Tyr	acg Thr	gga Gly 1830	acc Thr)	att Ile	cca Pro	gta Val	gac Asp 1835	gl à dda	gtg Val	gag Glu	gga Gl y	atg Met 1840	5520
cag Gln	ttt Phe	gcg Ala	gac Asp	aac Asn 1845	ggc Gly	agg Arg	gca Ala	ctg Leu	ttt Phe 1850	ttg Leu)	gcg Ala	gac Asp	agt Ser	gaa Glu 1855	ggc Gly	5568
ttg Leu	att Ile	tac Tyr	aat Asn 1860	tat Tyr)	gac Asp	ctg Leu	gag Glu	gac Asp 1865	ccg Pro	tat Tyr	gct Ala	ctg Leu	gat Asp 1870	ggc Gly)	aac Asn	5616
aca Thr	att Ile	tcc Ser 1875	gtg Val	gaa Glu	ttc Phe	tcg Ser	ttt Phe 1880	gac Asp)	ggt Gly	agc Ser	gtg Val	atg Met 1885	tat Tyr	gtg Val	ctg Leu	5664
gag Glu	tac Tyr 1890	gac Asp	aca Thr	aaa Lys	agg Arg	gtg Val 1895	gtc Val	tcg Ser	tac Tyr	gag Glu	ttg Leu 1900	gag Glu)	ttt Phe	ccc Pro	ttt Phe	5712
gac Asp 1905	gta Val	tcg Ser	agc Ser	aga Arg	aca Thr 1910	cgt Arg)	gca Ala	gac Asp	acg Thr	ctg Leu 1915	gac Asp	ata Ile	cca Pro	caa Gln	att Ile 1920	5760
gac Asp	tca Ser	cca Pro	aga Arg	cac His 1925	gtt Val	gca Ala	gtc Val	tcg Ser	atg Met 1930	ccc Pro)	ggc Gly	aac Asn	cac His	ctg Leu 1935	tac Tyr	5808
ata Ile	aca Thr	aac Asn	tcg Ser 1940	gtg Val)	ttt Phe	GJÀ ddd	gaa Glu	gat Asp 1945	gac Asp	acc Thr	ata Ile	cac His	tcc Ser 1950	tat Tyr)	gga Gly	5856
ata Ile	tct Ser	aac Asn 1955	aat Asn	gac Asp	ata Ile	tcg Ser	tcg Ser 1960	gca Ala)	tca Ser	tac Tyr	atc Ile	ggc Gly 1965	gag Glu	gaa Glu	ggc Gly	5904
atc Ile	ccg Pro 1970	gaa Glu	ccc Pro	gtg Val	ata Ile	aac Asn 1975	GJ À ddd	att Ile	gac Asp	ttt Phe	tcc Ser 1980	aac Asn)	aac Asn	ggc Gl y	cgc Arg	5952
cgc Arg 1985	atg Met	ttt Phe	ctg Leu	att Ile	999 Gly 1990	ggc Gly)	aac Asn	GJ À ddd	ttc Phe	gac Asp 1995	tac Tyr 5	cag Gln	gtg Val	ata Ile	cat His 2000	6000
gac Asp	tac T y r	atg Met	cta Leu	ggc Gly 2005	aca Thr 5	aga Arg	tac Tyr	gac Asp	ata Ile 2010	tcc Ser	agc Ser	agg Arg	agc Ser	ctg Leu 2015	ctt Leu	6048
gat Asp	aca Thr	tat Tyr	gcc Ala 2020	att Ile)	cca Pro	ggg Gl y	ccg Pro	gtt Val 2025	gtt Val	ttt Phe	ccc Pro	gcg Ala	ggc Gl y 2030	ctt Leu)	gat Asp	6096
ttc Phe	tcg Ser	ttt Phe 2035	gac Asp	agg Arg	ctg Leu	tcc Ser	atg Met 2040	ttt Phe)	ata Ile	ata Ile	agc Ser	acc Thr 2045	gcc Ala	ggt Gly	tcg Ser	6144
gta Val	tac Tyr 2050	agg Arg	tac Tyr	ggc Gly	ctg Leu	gac Asp 2055	gat Asp	ccg Pro	ttc Phe	ata Ile	gtt Val 2060	gaa Glu)	aca Thr	atg Met	gac Asp	6192
tat Tyr 2065	cag Gln	gag Glu	tct Ser	ttc Phe	cgg Arg 2070	ctg Leu)	ccc Pro	gta Val	cca Pro	tca Ser 2075	gcg Ala 5	gct Ala	gat Asp	aat Asn	tca Ser 2080	6240
ata Ile	tcg Ser	gat Asp	ctg Leu	gca Ala 2085	ttc Phe	ggc Gly	agc Ser	agc Ser	ggc Gly 2090	ctg Leu	aat Asn	gcc Ala	gta Val	ata Ile 2095	tcg Ser	6288

cac His	gag Glu	GJ À 333	ctc Leu 2100	gac Asp)	acc Thr	ctg Leu	tac Tyr	agc Ser 2105	ttt Phe	gta Val	ctg Leu	gac Asp	atc Ile 2110	ccg Pro	tat Tyr	6336
GJ À ddd	gcc Ala	gaa Glu 2115	ttg Leu	gat Asp	att Ile	gac Asp	agg Arg 2120	ctt Leu	gag Glu	ctt Leu	ccg Pro	ctg Leu 2125	gtg Val	GJ À ddd	gtt Val	6384
ccg Pro	acg Thr 2130	gga Gly	ttc Phe	gag Glu	ttc Phe	tcg Ser 2135	gac Asp	aac Asn	GJ À ddd	cgc Arg	cag Gln 2140	ttg Leu)	tac Tyr	att Ile	ggc Gl y	6432
gcg Ala 2145	ttt Phe	cgt Arg	gac Asp	tct Ser	caa Gln 2150	tcc Ser	tcg Ser	cca Pro	ggc Gl y	acc Thr 2155	ctg Leu	cct Pro	gcg Ala	ggc Gl y	ctg Leu 2160	6480
cag Gln	cgc Arg	tat Tyr	gag Glu	ctt Leu 2165	ggc Gly	ata Ile	cca Pro	tat Tyr	gac Asp 2170	ctg Leu)	gct Ala	tcg Ser	gct Ala	gta Val 2175	ttt Phe	6528
gcg Ala	cag Gln	tcc Ser	ctg Leu 2180	gga Gly)	ata Ile	ttc Phe	gat Asp	ttt Phe 2185	cct Pro	ccc Pro	ttc Phe	aac Asn	ggc Gly 2190	atg Met	cgg Arg	6576
gcc Ala	aat Asn	ggc Gly 2195	agc Ser	ttg Leu	gca Ala	gga Gly	tta Leu 2200	cat His	gtg Val	ccg Pro	ccc Pro	gat Asp 2205	gga Gly	agc Ser	atc Ile	6624
ctg Leu	ttc Phe 2210	agg Arg	gcc Ala	gga Gly	aat Asn	gcc Ala 2215	gaa Glu	aga Arg	acc Thr	gta Val	atc Ile 2220	agc Ser)	tat Tyr	gac Asp	atg Met	6672
gac Asp 2225	agc Ser	cat His	gat Asp	ttg Leu	gat Asp 2230	aca Thr	tta Leu	tca Ser	ttc Phe	agg Arg 2235	gaa Glu	tca Ser	ttc Phe	aaa Lys	cca Pro 2240	6720
gat Asp	gtc Val	gga Gly	cag Gln	tcg Ser 2245	aca Thr	ccc Pro	aac Asn	ata Ile	agg Arg 2250	gac Asp)	atg Met	gac Asp	ata Ile	tcc Ser 2255	ccg Pro	6768
gac Asp	ggc Gly	atg Met	ttc Phe 2260	ctc Leu)	tac Tyr	ctg Leu	ctt Leu	caa Gln 2265	ggc Gly	gat Asp	gtt Val	ctg Leu	gac Asp 2270	atg Met	tac Tyr	6816
aac Asn	ctt Leu	aca Thr 2275	gat Asp	agt Ser	tat Tyr	tcg Ser	ctt Leu 2280	gat Asp	gcc Ala	ccg Pro	gca Ala	tat T y r 2285	gcg Ala	ggt Gl y	acc Thr	6864
ctg Leu	gat Asp 2290	ttg Leu	gaa Glu	ccg Pro	gag Glu	gat Asp 2295	gta Val	ata Ile	ccc Pro	agg Arg	GJ X GJ X GJA	att Ile)	tca Ser	ttc Phe	tca Ser	6912
cgg Arg 2305	gat Asp	ggc Gl y	acg Thr	agt Ser	ctg Leu 2310	ttt Phe	atg Met	aca Thr	ggc Gl y	gaa Glu 2315	gac Asp	gtg Val	gac Asp	cac His	att Ile 2320	6960
cac His	gaa Glu	tat Tyr	gca Ala	ttg Leu 2325	aat Asn	gaa Glu	cca Pro	tgg Trp	gac Asp 2330	ata Ile)	cgc Arg	aat Asn	gcc Ala	ata Ile 2335	ctt Leu	7008
gca Ala	ggc Gl y	tcc Ser	ctg Leu 2340	tcc Ser)	ata Ile	agc Ser	gca Ala	gtg Val 2345	aat Asn	ggt Gl y	gca Ala	ccg Pro	cgg Arg 2350	GJ X 333	ctg Leu	7056
gat Asp	ata Ile	tcg Ser 2355	gag Glu	gat Asp	ggc Gly	aca Thr	act Thr 2360	gca Ala	cat His	act Thr	atg Met	cgc Arg 2365	GJÀ ddd	cgt Arg	дас Авр	7104
ttt Phe	gac Asp 2370	acg Thr	GJÀ ddd	ccc Pro	gca Ala	tcc Ser 2375	ctg Leu	gta Val	aac Asn	cac His	ata Ile 2380	ttg Leu)	cca Pro	ggc Gly	caa Gln	7152
tat Tyr 2385	tcc Ser	ctg Leu	ctg Leu	acg Thr	gat Asp 2390	gcg Ala	ccg Pro	gcg Ala	ttt Phe	gca Ala 2395	tac Tyr	ccc Pro	gtg Val	gag Glu	gag Glu 2400	7200

gag Glu	ggt Gl y	gca Ala	ccg Pro	999 Gly 2405	gat Asp	ctt Leu	gca Ala	ttc Phe	tcc Ser 2410	gat Asp)	gac Asp	ggc Gly	atg Met	cgc Arg 2415	atg Met	7248
ttc Phe	gtg Val	gcg Ala	ggc Gly 2420	gta Val)	aac Asn	aac Asn	cat His	tta Leu 2425	aga Arg	cag Gln	tac Tyr	aac Asn	ctg Leu 2430	ctg Leu)	tcg Ser	7296
ccg Pro	tat Tyr	gac Asp 2435	act Thr	gaa Glu	aat Asn	gca Ala	gaa Glu 2440	cat His	ttc Phe	atc Ile	tcg Ser	acg Thr 2445	gat Asp	ctg Leu	ctg Leu	7344
act Thr	gcg Ala 2450	gac Asp	agg Arg	ggc Gly	ccc Pro	acg Thr 2455	ggt Gly 5	ctt Leu	gta Val	ttt Phe	tca Ser 2460	gat Asp)	gag Glu	aac Asn	gac Asp	7392
ttt Phe 2465	ttc Phe	agc Ser	aca Thr	ggc Gl y	gcc Ala 2470	agg Arg)	gcc Ala	caa Gln	ttt Phe	gtg Val 2475	cgc Arg	cag Gln	ttt Phe	acg Thr	aca Thr 2480	7440
aac Asn	cgc Arg	ccg Pro	tac Tyr	gac Asp 2485	gca Ala	tcc Ser	aca Thr	ata Ile	aca Thr 2490	ctg Leu)	agt Ser	gac Asp	aac Asn	gga Gl y 2495	ctg Leu	7488
tac Tyr	aag L y s	gtg Val	agc Ser 250(gtg Val)	gac Asp	ggc Gly	ctg Leu	ccg Pro 2505	tcc Ser	ggc Gl y	ata Ile	cgg Arg	ttt Phe 2510	acc Thr)	ccc Pro	7536
gac Asp	ggc Gl y	atg Met 2515	aag Lys	atg Met	ttc Phe	ata Ile	tcg Ser 2520	ggc Gl y	cag Gln	gag Glu	acg Thr	gcc Ala 2525	atg Met	ata Ile	tac Tyr	7584
cag Gln	tat Tyr 2530	tcc Ser	ctg Leu	ccg Pro	tcc Ser	ccg Pro 2535	tat Tyr 5	gac Asp	aca Thr	tcc Ser	999 Gly 2540	gcg Ala)	gtc Val	agg Arg	gac Asp	7632
agg Arg 2545	gtt Val	gag Glu	ata Ile	gtc Val	gca Ala 2550) GJÀ GJÀ	ctc Leu	ttt Phe	aga Arg	aat Asn 2555	gca Ala	ggt Gly	ttg Leu	tcc Ser	gtc Val 2560	7680
GJÀ ddd	ttg Leu	aac Asn	gag Glu	ccc Pro 2565	agt Ser	cct Pro	tcc Ser	ggc Gly	ttt Phe 2570	gac Asp	ttt Phe	tcg Ser	gag Glu	gac Asp 2575	gga Gly 5	7728
atg Met	gag Glu	ctg Leu	tac Tyr 2580	gtg Val)	acg Thr	ggg Gly	tcg Ser	ggc Gly 2585	ctt Leu	gtt Val	cac His	agg Arg	tat T y r 2590	ttc Phe)	ctg Leu	7776
cca Pro	tcg Ser	cca Pro 2595	tac Tyr	ggc Gly	ctc Leu	gaa Glu	gat Asp 2600	gca Ala	gcg Ala	tac Tyr	GJÀ ddd	ggc Gly 2605	agc Ser	ttc Phe	cac His	7824
acg Thr	ttc Phe 2610	agg Arg	gag Glu	agc Ser	acg Thr	ccg Pro 2615	ctg Leu	gga Gl y	gtg Val	gtg Val	gtg Val 2620	cgg Arg)	GJÀ ∂∂∂	gat Asp	gcc Ala	7872
atg Met 2625	ttt Phe	gtg Val	gcc Ala	GJ À ∂∂∂	gac Asp 2630	agt Ser)	act Thr	gat Asp	tcc Ser	ata Ile 2635	ttg Leu	aaa Lys	tat Tyr	tcc Ser	ctg Leu 2640	7920
aac Asn	gca Ala	caa Gln	cct Pro	gtc Val 2645	ggc Gly	aac Asn	ata Ile	acc Thr	cat His 2650	gcc Ala)	gat Asp	acg Thr	cgc Arg	gcc Ala 2655	el λ daa	7968
att Ile	gcc Ala	gac Asp	agg Arg 2660	gcg Ala)	gag Glu	atc Ile	gtg Val	ttt Phe 2665	ej GjÅ ddd	gca Ala	atg Met	gca Ala	gat Asp 2670	acg Thr)	cgc Arg	8016
gcc Ala	gag Glu	att Ile 2675	ctc Leu	gac Asp	ggc Gly	gcc Ala	gat Asp 2680	gta Val	gtt Val	cat His	aag Lys	agt Ser 2685	gtg Val	aaa Lys	att Ile	8064
gac Asp	gta Val 2690	ttc Phe	cca Pro	ata Ile	tcg Ser	gag Glu 2695	ggc Gly	ata Ile	aca Thr	gtg Val	ggc Gly 2700	agg Arg)	gca Ala	ctt Leu	tat Tyr	8112

cca Pro 2705	gag Glu 5	gac Asp	gcc Ala	gcc Ala	ata Ile 2710	ctt Leu	gat Asp	gac Asp	ggc Gl y	gcg Ala 2715	aat Asn	gcc Ala	acg Thr	cat His	aat Asn 2720	8160
agg Arg	gtt Val	gta Val	atc Ile	att Ile 2725	gtt Val	cac His	gac Asp	ata Ile	aca Thr 2730	gaa Glu)	ggc Gl y	gat Asp	gcg Ala	ccg Pro 2735	tcc Ser	8208
ata Ile	cat His	gat Asp	gag Glu 2740	ccg Pro	att Ile	gcc Ala	gtg Val	999 Gly 2745	att Ile	tac Tyr	gcc Ala	ctc Leu	ggc Gly 2750	cct Pro	atg Met	8256
gat Asp	aca Thr	atc Ile 2755	gcc Ala	gtg Val	gtt Val	gat Asp	ctc Leu 2760	cac His	cgc Arg	ctg Leu	gcc Ala	gta Val 2765	tcc Ser	gca Ala	tcc Ser	8304
ttg Leu	tcc Ser 2770) GJ À Gdd	ggt Gly	gat Asp	tcc Ser	ccg Pro 2775	tcg Ser	gcc Ala	tca Ser	gat Asp	gca Ala 2780	tcc Ser)	gga Gly	gta Val	gtg Val	8352
gcc Ala 2785	gag Glu	agc Ser	cgc Arg	aga Arg	aac Asn 2790	gcg Ala	gtg Val	gac Asp	agg Arg	cct Pro 2795	ggc Gly	gtg Val	gaa Glu	gag Glu	cgc Arg 2800	8400
ata Ile	gga Gl y	cat His	ggt Gly	gta Val 2805	tcc Ser	ctg Leu	gag Glu	gcg Ala	gcc Ala 2810	gac Asp	agg Arg	cct Pro	gcc Ala	gtc Val 2815	gac Asp	8448
aac Asn	atg Met	atg Met	gat Asp 2820	acg Thr	gat Asp	agt Ser	gcc Ala	ggc Gl y 2825	gtg Val	tac Tyr	gac Asp	cgc Arg	agt Ser 2830	ccg Pro	gac Asp	8496
gac Asp	GJÀ dàà	ccc Pro 2835	gcc Ala	gta Val	tcc Ser	gac Asp	agg Arg 2840	tcc Ser	gcg Ala	ctg Leu	ggg ggg	ctt Leu 2845	gcc Ala	cgg Arg	atg Met	8544
gca Ala	gcc Ala 2850	gac Asp)	agg Arg	cct Pro	gca Ala	gtc Val 2855	gat Asp	gac Asp	atg Met	atg Met	gat Asp 2860	acg Thr)	gat Asp	agt Ser	gcc Ala	8592
ggc Gly 2865	gtg Val	tac Tyr	gac Asp	cgc Arg	agc Ser 2870	ccg Pro	gac Asp	gac Asp	GJÀ ddd	ccc Pro 2875	gcc Ala	ata Ile	tcc Ser	gac Asp	agg Arg 2880	8640
tcc Ser	gcg Ala	ctg Leu	GJÀ ddd	ctt Leu 2885	gcc Ala	cgg Arg	atg Met	gca Ala	gcc Ala 2890	gac Asp	agg Arg	cct Pro	gca Ala	gtc Val 2895	gac Asp	8688
gac Asp	atg Met	atg Met	gat Asp 2900	acg Thr	ggc Gly	agt Ser	gcc Ala	ggc Gly 2905	gtg Val	tac Tyr	gac Asp	cgc Arg	agc Ser 2910	ccg Pro	gac Asp	8736
gac Asp	ggg ggg	ccc Pro 2915	gcc Ala	ata Ile	tcc Ser	gac Asp	agg Arg 2920	tcc Ser	gcg Ala	ctg Leu	ggg ggg	ctt Leu 2925	gcc Ala	cgg Arg	atg Met	8784
gca Ala	gcc Ala 2930	gac Asp)	agg Arg	cct Pro	gca Ala	gtc Val 2935	gat Asp	gac Asp	atg Met	atg Met	gat Asp 294(acg Thr)	ggc Gly	agt Ser	gag Glu	8832
agc Ser 2945	acg Thr 5	agc Ser	agg Arg	ctt Leu	gga Gly 2950	ccg Pro	gtt Val	gac Asp	agg Arg	cca Pro 2955	gaa Glu 5	ata Ile	gtc Val	gag Glu	cgc Arg 2960	8880
cac His	agc Ser	ctg Leu	gcc Ala	gcg Ala 2965	tct Ser	gta Val	tac Tyr	ctg Leu	tcc Ser 2970	GJ X GJ X	ggc Gl y	gat Asp	tcc Ser	ccg Pro 2975	tcg Ser	8928
gtc Val	gca Ala	gac Asp	ggt Gly 2980	cat His	gat Asp	gtg Val	gag Glu	tcc Ser 2985	gag Glu	ggc Gly	cgc Arg	aga Arg	gac Asp 2990	ggg ggg	GJÀ ddd	8976
gac Asp	agg Arg	cct Pro 2995	ggc Gly	atc Ile	gac Asp	gag Glu	cgt Arg 3000	ata Ile	gtc Val	atc Ile	aag Lys	atc Ile 3005	tcg Ser	tac T y r	agc Ser	9024

cgc Arg	ggc Gly 3010	gca Ala)	gcc Ala	gat Asp	gcg Ala	ccc Pro 3015	aga Arg	gtg Val	gag Glu	gat Asp	gca Ala 3020	atg Met)	gag Glu	act Thr	tcc Ser	9072
ggc Gl y 3025	gtg Val	acc Thr	gcg Ala	tac Tyr	agc Ser 3030	cgc Arg	ggc Gl y	gca Ala	gcc Ala	gat Asp 3035	gcg Ala	ccc Pro	aga Arg	gtg Val	gag Glu 3040	9120
gat Asp	gca Ala	atg Met	gag Glu	act Thr 3045	tcc Ser	ggc Gl y	gtg Val	acc Thr	gtc Val 3050	ccc Pro)	agg Arg	cgc Arg	agt Ser	acc Thr 3055	atg Met	9168
gac Asp	gcg Ala	ccc Pro	aca Thr 3060	gtg Val	gcc Ala	gat Asp	gac Asp	cac His 3065	agc Ser	ctg Leu	gcc Ala	cgg Arg	acc Thr 3070	gca Ala	tcc Ser	9216
ata Ile	tcc Ser	gaa Glu 3075	ggc Gly	gat Asp	tcc Ser	ccg Pro	aca Thr 3080	ttt Phe)	gca Ala	gag Glu	gcg Ala	cgc Arg 3085	cgc Arg	gcg Ala	gat Asp	9264
acc Thr	gtt Val 3090) GJ À ddd	gat Asp	ata Ile	gac Asp	gag Glu 3095	gtg Val	gac Asp	gcg Ala	ccc Pro	aca Thr 3100	gtg Val)	gcc Ala	gat Asp	gac Asp	9312
cac His 3105	agt Ser	ctg Leu	gcc Ala	cgg Arg	gcc Ala 3110	gca Ala	tcc Ser	ata Ile	tcc Ser	gaa Glu 3115	ggc Gl y	gat Asp	tcc Ser	ccg Pro	aca Thr 3120	9360
ttt Phe	gca Ala	gag Glu	gtg Val	cgc Arg 3125	cgc Arg	gcg Ala	gat Asp	acc Thr	gtt Val 3130) GJ À ddd	gat Asp	ata Ile	gac Asp	gag Glu 3135	gtg Val	9408
gac Asp	gcg Ala	ccc Pro	gcc Ala 3140	gtg Val	gcc Ala	gag Glu	agg Arg	ctc Leu 3145	ctg Leu	gca Ala	gtc Val	ctc Leu	ggc Gly 3150	ctg Leu	cag Gln	9456
gcc Ala	cct Pro	gat Asp 3155	tcg Ser	ccg Pro	gga Gly	gtg Val	tgg Trp 3160	gat Asp)	act Thr	gta Val	gga Gly	ata Ile 3165	gat Asp	cac His	tcg Ser	9504
gag Glu	att Ile 3170	tca Ser)	ggc Gly	gat Asp	cct Pro	gtg Val 3175	ccg Pro	gag Glu	cca Pro	aga Arg	gta Val 3180	gtg Val)	ccc Pro	agg Arg	ggc Gl y	9552
ggt Gl y 3185	ggc Gly	ggt Gly	GJÀ ddd	gga Gly	ggc Gly 3190	ggt Gly	tct Ser	tcg Ser	aac Asn	cgc Arg 3195	ggc Gly	ctt Leu	gaa Glu	ccg Pro	cat His 3200	9600
ggc Gly	ggc Gly	GJÀ ddd	tat Tyr	gag Glu 3205	att Ile	gac Asp	ttt Phe	gag Glu	ttc Phe 3210	cgc Arg)	ata Ile	gac Asp	ggc Gly	agg Arg 3215	ctg Leu 5	9648
gtg Val	ctc Leu	ttc Phe	aat Asn 3220	9 GJ À GJA	aca Thr	gac Asp	gtg Val	cta Leu 3225	gcc Ala	gaa Glu	tcc Ser	ggc Gly	aag Lys 3230	gac Asp	ctg Leu	9696
ctc Leu	atc Ile	cgt Arg 3235	ccg Pro	gtg Val	ttc Phe	cgg Arg	ccg Pro 3240	gag Glu)	GJ À 333	agt Ser	ttc Phe	aac Asn 3245	ata Ile	ttt Phe	gat Asp	9744
atg Met	gag Glu 3250	gtg Val)	ttg Leu	ttt Phe	acc Thr	gcc Ala 3255	ccc Pro	ggc Gl y	GJ À dad	gag Glu	ata Ile 3260	tcg Ser)	act Thr	gcc Ala	tac Tyr	9792
tac Tyr 3265	aac Asn	agg Arg	gct Ala	gga Gly	atc Ile 3270	ctc Leu	atg Met	ddd ddd	att Ile	gac Asp 3275	tgc Cys	ggc Gly	gag Glu	ctg Leu	att Ile 3280	9840
atg Met	acc Thr	gat Asp	acg Thr	acg Thr 3285	tat Tyr	tca Ser	tgc C y s	gac Asp	atg Met 3290	ctg Leu	gac Asp	ata Ile	ttc Phe	gga Gl y 3295	gat Asp	9888
gag Glu	ata Ile	tac Tyr	cat His 3300	gtg Val	gag Glu	agg Arg	ctt Leu	gac Asp 3305	gca Ala	ttc Phe	aac Asn	ggc Gl y	atg Met 3310	gtc Val	atc Ile	9936

tcc Ser	ttg Leu	gac Asp 3315	ggc Gly	ccc Pro	ctc Leu	дас Авр	999 Gly 3320	acg Thr	gtc Val	agt Ser	gta Val	tcg Ser 3325	ctt Leu	cgt Arg	gac Asp	9984
aac Asn	cac His 3330	ggc Gly	atc Ile	ccg Pro	ctg Leu	gcg Ala 3335	cag Gln	cat His	cgg Arg	ctg Leu	cat His 3340	aaa Lys)	tac Tyr	gag Glu	att Ile	10032
ttg Leu 3345	att Ile	ttg Leu	gac Asp	gcc Ala	gct Ala 3350	gaa Glu	aac Asn	aga Arg	ccc Pro	ctg Leu 3355	tca Ser	gtc Val	tcg Ser	acg Thr	gac Asp 3360	10080
ccc Pro	aag L y s	ccc Pro	gtg Val	gag Glu 3365	gat Asp	cca Pro	tcg Ser	ccc Pro	gtg Val 3370	cag Gln	cat His	ata Ile	gag Glu	tcc Ser 3375	ctc Leu	10128
cag Gln	atg Met	gat Asp	ccg Pro 3380	gag Glu	ccc Pro	gtg Val	gag Glu	tcc Ser 3385	gag Glu	ccc Pro	ctc Leu	ccg Pro	atg Met 3390	gac Asp	tcc Ser	10176
gag Glu	ccc Pro	gtg Val 3395	gag Glu	gat Asp	ctg Leu	gaa Glu	cct Pro 3400	gtg Val	cag Gln	cat His	cta Leu	gag Glu 3405	tcc Ser	ctc Leu	ccg Pro	10224
atg Met	gac Asp 3410	ccc Pro	gag Glu	ccc Pro	gtg Val	gag Glu 3415	gat Asp	ctg Leu	gaa Glu	cct Pro	gtg Val 3420	cag Gln)	cat His	ctc Leu	gag Glu	10272
ccc Pro 3425	gtg Val	cag Gln	gga Gly	tcc Ser	ccg Pro 3430	ccc Pro	gtg Val	cag Gln	gga Gl y	999 Gly 3435	ccg Pro	gag Glu	tcc Ser	gtg Val	gag Glu 3440	10320
tca Ser	ggc Gl y	ata Ile	gca Ala	tac Tyr 3445	acg Thr	cta Leu	tgg Trp	cag Gln	ttc Phe 3450	ctt Leu	tca Ser	gga Gly	ctg Leu	ctg Leu 3455	gat Asp	10368
gcc Ala	ctg Leu	ggt Gly	ctt Leu 3460	gcc Ala	gac Asp	ccg Pro	gat Asp	gtc Val 3465	gga Gly	tct Ser	gtc Val	caa Gln	aaa Lys 3470	acg Thr	tcc Ser	10416
tga																10419
<210 <211 <212 <213	> SE > LE > TY	Q ID NGTH PE: GANI	NO : 34 PRT SM:	4 72 Cena	.rcha	.eum	symb	iosu	m							
<400	> SE	QUEN	ce:	4												
Met 1	Pro	Ala	Pro	Pro 5	Gly	Glu	Gly	Ser	Leu 10	Gly	Gly	Val	Ala	Ile 15	Ser	
Asp	Asp	Gly	Arg 20	Tyr	Met	Tyr	Ala	Ile 25	Gly	Arg	Asp	Leu	Leu 30	Thr	Val	
Tyr	Arg	Tyr 35	Thr	Met	Asn	Pro	Pro 40	His	Asp	Ile	Ala	Ser 45	Ala	Ala	Leu	
Gly	Ala 50	Gln	Ser	Phe	Ser	Leu 55	Pro	Gly	Gly	Ile	Ser 60	Pro	Ala	Pro	Gly	
Ala 65	Pro	Thr	Gly	Leu	Asp 70	Ile	Ser	Asp	Asp	Gly 75	Arg	His	Leu	Tyr	Val 80	
Pro	Asp	Glu	Asn	Gly 85	Val	Val	Tyr	Arg	Phe 90	Asp	Leu	Glu	Ser	Pro 95	Tyr	
Arg	Leu	Asp	Gly 100	Gly	Thr	Phe	Gly	Ser 105	Ser	Val	Tyr	Val	Gly 110	Ser	Азр	
Val	Ala	Ala 115	Pro	Arg	Gly	Val	T y r 120	Val	Ala	Pro	Gly	Gly 125	Ser	Leu	Met	
Leu	Val	Ser	Asp	Ser	Ala	Asp	Gly	Thr	Ile	His	Arg	Tyr	Glu	Leu	Ala	

-continued

73

_	120					125					140				
	130					133					140				
Ser 145	Pro	Tyr	Glu	Pro	Ala 150	Gly	Ala	Ala	Asn	Arg 155	Gly	Ser	Phe	Asp	Val 160
Ser	Asp	Met	Asp	Gly 165	Ser	Pro	Val	Gly	Ala 170	Gly	Phe	Ala	Gly	Gl y 175	Leu
His	Met	Tyr	Val 180	Ala	Gly	Asn	Asp	Thr 185	Gly	Arg	Val	Tyr	Gln 190	Tyr	Pro
Ala	Gly	Thr 195	His	Gln	Ile	Gln	Glu 200	Ala	Ala	Ala	Gly	Pro 205	Arg	Leu	Leu
Ser	Ala 210	Val	Leu	Asp	Lys	Asp 215	Gly	Thr	Leu	Arg	Ala 220	Ala	Phe	Asp	Gly
Thr 225	Val	Asp	Ala	Gly	Ser 230	Val	Gln	Pro	Gly	Met 235	Ile	Thr	Ile	Arg	Asp 240
Gly	His	Gly	Ser	Asn 245	Thr	Gly	Ile	Pro	Leu 250	Leu	Leu	Ala	Gly	Gly 255	Ala
Ala	Asp	Ser	Asp 260	Val	Met	Thr	Phe	Val 265	Val	Pro	Glu	Lys	A sp 270	Arg	Ala
Glu	Ala	Ala 275	Ala	Tyr	Gly	Asp	Gln 280	Ser	Leu	His	Val	Pro 285	Ala	Ala	Ala
Leu	Ala 290	Gly	Thr	Gly	Gly	Gly 295	Pro	Phe	Val	Pro	Asp 300	Phe	Ser	Gly	Gly
Ser 305	Leu	Leu	Ala	Ser	Leu 310	Tyr	Arg	His	Glu	Arg 315	Pro	Phe	Gln	Gly	Glu 320
Glu	. Met	Ala	Arg	Thr 325	Glu	Arg	Ser	Asp	Arg	Tyr	Ala	Leu	Thr	Val 335	Thr
Ala	Gly	Gly	Ser	Gln	Met	His	Val	Gly	Gly	Ala	Gly	Gly	Asn	Ile	Thr
Trp	Tyr	Asp	340 Leu	Gly	Thr	Pro	His	345 Asp	Ile	Thr	Thr	Gly	350 Val	Arg	Ala
Gly	Ser	355 Asp	Ile	Leu	Pro	Ala	360 Tyr	Pro	Ser	Ala	Gly	365 Arg	Asn	Val	Val
Prc	370 Ser	Ile	Thr	Gly	Ile	375 Ala	Phe	Ser	Asp	Asp	380 Gly	Met	Arq	Leu	Phe
385	<u>م</u> اح	Aen	Ara	Glv	390 Asp	Ara	TIP	Pro	P Me+	395 Tyr	Gln	Len	Asp	Ser	400 Pro
A19	ALG.	ASI	Arg	405	Авр	Arg	тте	PTO	410	туr	GTU	ьец	ызр ml	415	PLO
Tyr	Asp	Ile	Gly 420	Ser	Ala	Ser	Leu	Glu 425	Gly	Thr	Leu	Phe	Thr 430	Gly	Phe
Gln	Ser	Gl y 435	Ile	Ala	Phe	Ser	Asp 440	Asp	Gly	Thr	Arg	Met 445	Phe	Ala	Ala
Leu	Leu 450	Thr	Glu	Asn	Ala	Ile 455	Arg	Gln	Tyr	Asp	Leu 460	Glu	Gly	Pro	Tyr
Asp 465	Ile	Arg	Gly	Ala	Gly 470	Asn	Ala	Gly	Gln	T y r 475	Asp	Leu	Asp	Ile	Pro 480
Leu	His	Pro	Gly	Leu 485	Leu	Phe	Leu	Leu	Thr 490	Ser	Gly	Val	His	Phe 495	Ser
Pro	Asp	Gly	Thr 500	Arg	Met	Phe	Val	Gly 505	Glu	Gly	Ile	Ser	A sp 510	Ala	Glu
Asp	Ala	Asn 515	Ala	Asn	Arg	Asp	Val 520	Asn	Val	Asn	Leu	Trp 525	His	Arg	Phe
Asp	Leu 530	Ser	Thr	Pro	Phe	Asp 535	Val	Leu	Thr	Ala	Glu 540	Arg	Val	Asp	Thr

Tyr Glu Tyr Ser Thr Gly Pro Ala Gly Asp Leu Glu Asp Leu Ser Leu 545 550 555 Ser Pro Asp Gly Arg Arg Leu Tyr Thr Leu Ser Ser Glu Arg Val Ser 565 570 575 Ser Ser Glu Tyr Thr Ile Thr Arg Ala Gln Tyr Trp Leu Pro Glu Pro 580 585 590 Tyr Asp Val Thr Pro Pro Tyr His Val Pro Ser Phe Asn Ala Ser Gln 600 605 Gly Gly Asn Leu Ala Asp Pro Tyr Gly Met Ala Phe Ser Pro Asp Gly 610 615 620 Thr Arg Leu Leu Val Thr Gly His Gly Gln Thr Asn Ala Lys Leu Phe 625 630 635 His Leu Asn Pro Pro Phe Asp Val Gly Thr Ala Val Phe His Asp His 645 650 Gly Arg Phe Arg Pro Gly Gly Pro Ala Ser Glu Ile Glu Ala Ser Gly 660 665 Ile Ser Leu Ser Ala Asp Gly Ser Arg Met Phe Leu Ser Asp Arg Gly 675 680 685 Arg Gly Ala Ile Ser Gln Tyr Thr Leu Val Ala Pro Phe Asp Val Glu 695 700 690 Phe Ala Ser Asp Val Ser Ala Asp Gly Gln Leu Asp Val Gly Ala Gln705710715720 Asp Ala Leu Pro Gly Gly Leu Ala Phe Ser Pro Gly Gly Thr Arg Leu 725 730 Phe Met Val Gly Gly Met Asp Arg Ser Val His Met Tyr Ser Leu Asn 740 745 750 Thr Pro Phe Asp Leu Gly Gly Ala Glu His Ala Ala Ser Phe Gly Val 755 760 765 Gly Asp Arg Val Ser Asp Pro Leu Gly Ile Ala Phe Gly Asn Gly Gly 770 775 780 Thr Lys Met Leu Ile Ala Asp Thr Thr Gly Phe Val His Gly Tyr Asp 785 790 795 800 785 790 795 Leu Gly Ala Pro Tyr Asp Ile Ser Gly Pro Ala Tyr Ser Gly Ile Phe 805 810 Asp Ala Gly Gly Ser Ile Arg Asp Val Ala Val Gly Gly Gly Ser Met 820 825 830 Phe Ile Leu Glu Gly Glu Thr Asp Arg Val Tyr Glu His Arg Pro Gly 835 840 845 Ile Tyr Pro Val Val Ser Ala Leu Asp Gly Pro Ala Leu Val Ser Ala 850 855 860 Ala Ala Asp Ala Arg Val Gly Ala Ala Glu Val Leu Phe Asp Arg Ala 865 870 875 880 Val Asp Val Gly Gly Ile Asp Pro Gly Gly Val Arg Ile Val Asp Ala 885 890 895 Ala Gly Pro Leu Pro Gly Val Val Ile Ser Asp Ala Val Ile Pro Gly 900 905 910 Glu Asp Pro Gly Val Ala Arg Phe Ser Leu Ser Asp Ala Glu Val Leu 915 920 925 Ala Val Ser Gly Tyr Ala Glu Pro Ser Leu Val Phe Gly Arg His Ala 930 935 940

Val 945	Pro	Gly	Ala	Ala	Gl y 950	Gly	Thr	Phe	Pro	Ser 955	Gln	Ile	Gly	Asn	Ala 960
Thr	Glu	Leu	Val	Gly 965	Ser	Ile	Pro	Asn	Pro 970	Thr	Leu	Asp	Phe	Gly 975	Thr
Thr	Leu	Thr	Gly 980	Ala	Ala	Phe	Ser	Ala 985	Asp	Gly	Thr	Val	Val 990	Phe	Leu
Ser	Asp	Gly 995	Pro	Thr	Gly	Arg	Val 1000	Tyr	Pro	Tyr	Ser	Leu 1005	Asn 5	Ile	Pro
Phe	Asp 101(Ile)	Ser	Ser	Ala	Ala 1015	Pro 5	Gly	Gly	Phe	Val 1020	Ile)	Val	Pro	Val
Gly 102!	Val 5	Ser	Asp	Ile	Ala 1030	Phe)	Ser	Ala	Asp	Gly 1035	Arg 5	Asn	Met	Leu	Val 1040
Ala	Asp	Glu	Thr	Gly 1045	Gly 5	Ile	His	Arg	Ty r 1050	Leu)	Ala	Arg	Ser	Pro 1055	Tyr
Glu	Ile	Gly	Thr 1060	Asp)	Phe	Ile	Lys	Ser 1065	Ser	Leu	Gly	Glu	Phe 1070	Val)	Glu
Thr	Phe	Ser 1075	Ala	Ala	Pro	Arg	Val 1080	Gln	Asp	Leu	Ala	Gly 1085	Ile	Ala	Phe
Ser	His 109(Asp	Gly	Met	Ile	Met 1095	Leu	Ala	Ala	Gly	Gly 1100	Ser	Gly	Ser	Val
His 110!	Arg 5	Tyr	Ser	Leu	Pro 1110	Ser)	Pro	Tyr	Ala	Val 1115	Ser 5	Gly	Ala	Lys	Tyr 1120
Glu	Glu	Thr	Ala	Met 1125	Ile 5	Gly	Gly	Ser	Pro 113(Ser)	Gly	Leu	Glu	Phe 1135	Ser
Ser	Asp	Gly	Leu 114(Arg)	Met	Phe	Val	Pro 1145	Asp	Ala	Gly	Ser	Glu 1150	Thr)	Ala
Ala	Val	T y r 1155	Gly	Leu	Ala	Ala	Pro 1160	Tyr	Gly	Ile	Gly	Glu 1165	Ala	Glu	Pro
Leu	Pro 117(Pro)	Leu	Phe	Leu	Gly 1175	Val 5	Gly	Ala	Glu	Glu 1180	Ala)	Thr	Leu	Ser
Pro 118!	Asp 5	Gly	Arg	His	Ile 1190	Leu)	Val	Pro	Gly	Arg 119	Pro 5	Gly	Leu	Ser	Gln 1200
Tyr	Ser	Leu	Phe	Ser 1205	Thr 5	Asn	Leu	Glu	Leu 121(Cys)	Ala	Glu	Pro	Arg 1215	Gly
Ile	Asp	Gly	Gly 1220	Ser)	Сув	Glu	Asp	Gly 1225	Ile	Tyr	Ala	Phe	Glu 1230	Ser)	Pro
Gly	Arg	Gly 1235	Glu	Gly	Val	Ser	Leu 1240	Ala	Ala	Ser	Ile	Thr 1245	Ala	Ala	Asp
Gly	Pro 125(Gly	Ile	Gly	Glu	Leu 1255	His 5	Gly	Phe	Ala	Gly 1260	Pro)	Pro	Met	Pro
Ala 126!	Pro 5	Val	Met	Glu	Gln 1270	Val)	Thr	Leu	Asp	Ser 1275	Arg 5	Glu	Gly	Thr	Leu 1280
Arg	Val	Arg	Leu	Asp 1285	Arg 5	Thr	Val	Asp	Val 1290	Asp)	Thr	Val	Arg	Pro 1295	Tyr
Lys	Met	Trp	Val 1300	Glu)	Asp	Ser	Asp	Gly 1305	Ser	Gln	Thr	Thr	Leu 131(Ala)	Asn
Ser	Thr	Leu 1315	Leu	Asn	Ala	Glu	Asn 1320	Ser	Asn	Ile	Leu	Leu 1325	Phe	Arg	Leu
Asp	Asp 133(Ala	Ala	Ala	Gly	Lys 1335	Ile	Ser	Gly	Tyr	Thr 1340	Ser	Pro	Val	Phe
Arg	Thr	Trp	Ser	Ser	Pro	Phe	Leu	Gly	Thr	Asp	Gly	Ala	Thr	Arg	Pro

134	5				135	0				1355	5				1360
His	Thr	Leu	Gly	Phe 1365	Gly 5	Asp	Val	Arg	Leu 137(Ala)	Asp	Ile	Tyr	Asp 1375	Ala
Ser	Gly	Asp	Val 1380	Pro)	Ser	Pro	Ser	Gly 1385	Ile 5	Glu	Phe	Ser	Asp 1390	Asp)	Gly
Met	Arg	Met 1395	Phe 5	Val	Thr	Gly	Ile 1400	Gly D	Thr	Pro	Gly	Ile 1405	Asn 5	Ile	Phe
Thr	Leu 141(Ser)	Ala	Pro	Phe	Asp 1415	Ile 5	Thr	Leu	Pro	L y s 1420	His)	Ser	Gly	Ser
Thr 142	Asn 5	Ile	Gly	Gly	Leu 143	Ser 0	Val	Ser	Asp	Leu 1435	Ala 5	Phe	Ala	Asn	Asn 1440
Gly	Asn	Ser	Leu	Thr 1449	Val 5	Leu	Asp	Val	Asp 145(Gly	Val	Leu	Arg	Val 1455	Tyr 5
Ala	Leu	Gly	Asp 1460	Asp)	Tyr	Asn	Val	Val 1465	Thr 5	Gly	Thr	Thr	Gln 1470	Lys)	Phe
Arg	Ile	Thr 1475	Leu 5	Asp	Thr	Thr	Gln 1480	Gly D	Ile	Pro	Asn	Ser 1485	Ile	Tyr	Thr
Ser	Pro 1490	Asp)	Gly	Leu	Ser	Gln 1495	Phe 5	Val	Ala	Tyr	Asp 1500	Asp)	Arg	Ile	Asp
Leu 150!	Tyr 5	Val	Leu	Gly	Ser 151	Pro 0	Asn	Asp	Ile	Ser 1515	Ser 5	Thr	Thr	Glu	Ile 1520
Ile	Pro	Tyr	Ser	Leu 1525	Pro 5	Arg	Pro	Asp	Pro 1530	Pro)	Thr	Gly	Met	Asp 1535	Phe
Thr	Pro	Asp	Gly 1540	Arg)	Arg	Met	Phe	Leu 1545	Ser	Thr	Glu	Asn	Gly 1550	Ile)	Asp
Gln	Tyr	Leu 1555	Leu 5	Ser	Glu	Pro	Phe 1560	Ala D	Val	Thr	Thr	Ser 1565	Val 5	Phe	Leu
Arg	Thr 157(Ile)	Pro	Ile	Asp	Gly 1575	Gly 5	Ala	Glu	Gly	Ile 1580	Arg)	Phe	Val	Asp
Asn 158	Gly 5	Arg	Gly	Leu	Phe 159	Val 0	Pro	Gly	Ala	Asp 1595	Gly 5	Ile	Ile	Gln	Arg 1600
His	Glu	Leu	Ile	Tyr 1609	Pro 5	Tyr	Gly	Ala	Ser 161(Thr)	Ser	Leu	Leu	Glu 1615	Thr 5
Val	Arg	Asp	Gly 1620	Val)	Thr	Asp	Gly	Gly 1625	Pro 5	Gly	Glu	Asn	Pro 1630	Ala)	Ala
Gly	Glu	Ile 1635	Arg 5	Leu	Ala	Gly	Thr 1640	Phe)	Asn	Ala	Ser	Asp 1645	Asn 5	Val	Gln
Ser	Pro 1650	Ser)	Gly	Ile	Glu	Phe 1655	Ser 5	Gly	Asp	Gly	Thr 1660	Gly)	Met	Phe	Val
Thr 166	Gly	Phe	Gly	Ala	Ala 167	Gly 0	Val	Asn	Glu	Phe 1675	Ser 5	Leu	Ser	Ala	Pro 1680
Phe	Asp	Thr	Thr	Leu 1685	Pro 5	Val	His	Val	Glu 1690	Leu)	His	Asp	Ile	Gly 1695	Gly
Gln	Pro	Ala	Val 1700	Asp)	Leu	Ala	Phe	Ala 1705	Glu 5	Asp	Gly	Arg	Thr 1710	Leu)	Leu
Leu	Leu	Ala 1715	Ala 5	Asp	Gly	Thr	Leu 1720	Asp)	Phe	Tyr	Ser	Leu 1725	Ala 5	Gly	Asp
Ala	Tyr 1730	Asp)	Ile	Gly	Glu	Ala 173	Ser 5	Arg	Thr	Phe	Gln 1740	Val)	Pro	Phe	Glu
Asp 174!	Ala 5	Ala	Gly	Ala	Val 175	Pro 0	Gly	Ala	Phe	Ty r 1755	Gln 5	Pro	Pro	Asp	Gly 1760

Ser Ser Ile Ile Ala Ala Phe Asp Gly Arg Ile Asp Gln Tyr Val Val Ile Pro Phe Glu Phe Val Ser Tyr Pro Leu Thr Arg Pro Gly Thr Pro Thr Gly Ile Asp Phe Ala Pro Asp Gly Arg Trp Met Phe Leu Ser Thr Glu Asn Gly Ile Asp Gln Tyr Leu Leu Ser Ile Pro Phe Asp Val Arg Ser Leu Thr Tyr Thr Gly Thr Ile Pro Val Asp Gly Val Glu Gly Met Gln Phe Ala Asp Asn Gly Arg Ala Leu Phe Leu Ala Asp Ser Glu Gly Leu Ile Tyr Asn Tyr Asp Leu Glu Asp Pro Tyr Ala Leu Asp Gly Asn Thr Ile Ser Val Glu Phe Ser Phe Asp Gly Ser Val Met Tyr Val Leu Glu Tyr Asp Thr Lys Arg Val Val Ser Tyr Glu Leu Glu Phe Pro Phe Asp Val Ser Ser Arg Thr Arg Ala Asp Thr Leu Asp Ile Pro Gln Ile Asp Ser Pro Arg His Val Ala Val Ser Met Pro Gly Asn His Leu Tyr Ile Thr Asn Ser Val Phe Gly Glu Asp Asp Thr Ile His Ser Tyr Gly Ile Ser Asn Asn Asp Ile Ser Ser Ala Ser Tyr Ile Gly Glu Glu Gly Ile Pro Glu Pro Val Ile Asn Gly Ile Asp Phe Ser Asn Asn Gly Arg Arg Met Phe Leu Ile Gly Gly Asn Gly Phe Asp Tyr Gln Val Ile His Asp Tyr Met Leu Gly Thr Arg Tyr Asp Ile Ser Ser Arg Ser Leu Leu Asp Thr Tyr Ala Ile Pro Gly Pro Val Val Phe Pro Ala Gly Leu Asp Phe Ser Phe Asp Arg Leu Ser Met Phe Ile Ile Ser Thr Ala Gly Ser Val Tyr Arg Tyr Gly Leu Asp Asp Pro Phe Ile Val Glu Thr Met Asp Tyr Gln Glu Ser Phe Arg Leu Pro Val Pro Ser Ala Ala Asp Asn Ser Ile Ser Asp Leu Ala Phe Gly Ser Ser Gly Leu Asn Ala Val Ile Ser His Glu Gly Leu Asp Thr Leu Tyr Ser Phe Val Leu Asp Ile Pro Tyr Gly Ala Glu Leu Asp Ile Asp Arg Leu Glu Leu Pro Leu Val Gly Val Pro Thr Gly Phe Glu Phe Ser Asp Asn Gly Arg Gln Leu Tyr Ile Gly Ala Phe Arg Asp Ser Gln Ser Ser Pro Gly Thr Leu Pro Ala Gly Leu

GIn	Arg	Tyr	Glu	Leu 2165	G⊥y S	Ile	Pro	Tyr	Asp 2170	Leu)	A⊥a	Ser	Ala	Val 2175	Phe
Ala	Gln	Ser	Leu 2180	Gly)	Ile	Phe	Asp	Phe 2185	Pro 5	Pro	Phe	Asn	Gly 2190	Met)	Arg
Ala	Asn	Gly 2195	Ser	Leu	Ala	Gly	Leu 2200	His)	Val	Pro	Pro	Asp 2205	Gly	Ser	Ile
Leu	Phe 2210	Arg	Ala	Gly	Asn	Ala 2215	Glu	Arg	Thr	Val	Ile 2220	Ser)	Tyr	Asp	Met
Asp 2225	Ser	His	Asp	Leu	Asp 2230	Thr)	Leu	Ser	Phe	Arg 2235	Glu 5	Ser	Phe	Lys	Pro 2240
Asp	Val	Gly	Gln	Ser 2245	Thr 5	Pro	Asn	Ile	Arg 2250	Asp)	Met	Asp	Ile	Ser 2255	Pro
Asp	Gly	Met	Phe 2260	Leu)	Tyr	Leu	Leu	Gln 2265	Gly	Asp	Val	Leu	Asp 2270	Met)	Tyr
Asn	Leu	Thr 2275	Asp	Ser	Tyr	Ser	Leu 2280	Asp)	Ala	Pro	Ala	T y r 2285	Ala	Gly	Thr
Leu	Asp 2290	Leu	Glu	Pro	Glu	Asp 2295	Val	Ile	Pro	Arg	Gly 2300	Ile)	Ser	Phe	Ser
Arg 2305	Asp	Gly	Thr	Ser	Leu 231(Phe)	Met	Thr	Gly	Glu 2315	Asp	Val	Asp	His	Ile 2320
His	Glu	Tyr	Ala	Leu 2325	Asn 5	Glu	Pro	Trp	Авр 2330	Ile)	Arg	Asn	Ala	Ile 2335	Leu
Ala	Gly	Ser	Leu 2340	Ser)	Ile	Ser	Ala	Val 2345	Asn 5	Gly	Ala	Pro	Arg 2350	Gly)	Leu
Asp	Ile	Ser 2355	Glu	Asp	Gly	Thr	Thr 2360	Ala)	His	Thr	Met	Arg 2365	Gly	Arg	Asp
Phe	Asp 2370	Thr	Gly	Pro	Ala	Ser 2375	Leu	Val	Asn	His	Ile 2380	Leu)	Pro	Gly	Gln
T y r 2385	Ser	Leu	Leu	Thr	Asp 2390	Ala)	Pro	Ala	Phe	Ala 2395	Tyr 5	Pro	Val	Glu	Glu 2400
Glu	Gly	Ala	Pro	Gly 2405	Asp 5	Leu	Ala	Phe	Ser 2410	Asp)	Asp	Gly	Met	Arg 2415	Met
Phe	Val	Ala	Gly 2420	Val)	Asn	Asn	His	Leu 2425	Arg	Gln	Tyr	Asn	Leu 243(Leu)	Ser
Pro	Tyr	Asp 2435	Thr	Glu	Asn	Ala	Glu 2440	His)	Phe	Ile	Ser	Thr 2445	Asp	Leu	Leu
Thr	Ala 2450	Asp	Arg	Gly	Pro	Thr 2455	Gly	Leu	Val	Phe	Ser 2460	Asp)	Glu	Asn	Asp
Phe 2465	Phe	Ser	Thr	Gly	Ala 2470	Arg)	Ala	Gln	Phe	Val 2475	Arg 5	Gln	Phe	Thr	Thr 2480
Asn	Arg	Pro	Tyr	Asp 2485	Ala 5	Ser	Thr	Ile	Thr 2490	Leu)	Ser	Asp	Asn	Gly 2495	Leu
Tyr	Lys	Val	Ser 2500	Val)	Asp	Gly	Leu	Pro 2505	Ser	Gly	Ile	Arg	Phe 2510	Thr)	Pro
Asp	Gly	Met 2515	Lys	Met	Phe	Ile	Ser 2520	Gly	Gln	Glu	Thr	Ala 2525	Met	Ile	Tyr
Gln	T y r 2530	Ser	Leu	Pro	Ser	Pro 2535	Tyr	Asp	Thr	Ser	Gly 2540	Ala)	Val	Arg	Asp
Arg 2545	Val	Glu	Ile	Val	Ala 2550	Gly	Leu	Phe	Arg	Asn 2555	Ala	Gly	Leu	Ser	Val 2560
Gly	Leu	Asn	Glu	Pro	Ser	Pro	Ser	Gly	Phe	Asp	Phe	Ser	Glu	Asp	Gly

	256	55			257(D				2575	5
Met Glu Leu	Ty r Va 2580	. Thr	Gly Sei	Gly 258	Leu 5	Val	His	Arg	T y r 2590	Phe)	Leu
Pro Ser Pro 259	Tyr Gly 5	/ Leu	Glu Asp 260) Ala	Ala	Tyr	Gly	Gly 2605	Ser	Phe	His
Thr Phe Arg 2610	Glu Sei	Thr	Pro Leu 2615	ı Gly	Val	Val	Val 2620	Arg)	Gly	Asp	Ala
Met Phe Val 2625	Ala Gly	7 Asp 2630	Ser Thi	Авр	Ser	Ile 2635	Leu 5	Lys	Tyr	Ser	Leu 2640
Asn Ala Glr	Pro Va 264	Gly 5	Asn Ile	e Thr	His 2650	Ala)	Asp	Thr	Arg	Ala 2655	Gly 5
Ile Ala Asp	Arg Ala 2660	a Glu	Ile Va	Phe 266	Gly 5	Ala	Met	Ala	Asp 2670	Thr)	Arg
Ala Glu Ile 267	Leu Asp 5	Gly	Ala Asp 268	o Val 80	Val	His	Lys	Ser 2685	Val	Lys	Ile
Asp Val Phe 2690	Pro Ile	e Ser	Glu Gly 2695	7 Ile	Thr	Val	Gly 2700	Arg)	Ala	Leu	Tyr
Pro Glu Asp 2705	Ala Ala	a Ile 2710	Leu Asp	Asp	Gly	Ala 2715	Asn 5	Ala	Thr	His	Asn 2720
Arg Val Val	Ile Ile 272	e Val 25	His Asp) Ile	Thr 2730	Glu)	Gly	Asp	Ala	Pro 2735	Ser
Ile His Asp	Glu Pro 2740) Ile	Ala Vai	Gly 274	Ile 5	Tyr	Ala	Leu	Gly 2750	Pro)	Met
Asp Thr Ile 275	Ala Vai 5	. Val	Asp Leu 276	1 His 50	Arg	Leu	Ala	Val 2765	Ser	Ala	Ser
Leu Ser Gly 2770	Gly Asp) Ser	Pro Se 2775	Ala	Ser	Asp	Ala 2780	Ser)	Gly	Val	Val
Ala Glu Ser 2785	Arg Arg	g Asn 2790	Ala Vai	Asp	Arg	Pro 2795	Gly 5	Val	Glu	Glu	Arg 2800
Ile Gly His	Gly Val 280	Ser	Leu Glu	ı Ala	Ala 2810	Asp)	Arg	Pro	Ala	Val 2815	Asp
Asn Met Met	Asp Thi 2820	Asp	Ser Ala	a Gly 282	Val 5	Tyr	Asp	Arg	Ser 2830	Pro)	Asp
Asp Gly Pro 283	Ala Val 5	Ser	Asp Are 284	g Ser 10	Ala	Leu	Gly	Leu 2845	Ala	Arg	Met
Ala Ala Asp 2850	Arg Pro	Ala	Val Ası 2855	Asp	Met	Met	Asp 2860	Thr)	Asp	Ser	Ala
Gly Val Tyr 2865	Asp Are	g Ser 2870	Pro Asp	Asp	Gly	Pro 2875	Ala 5	Ile	Ser	Asp	A rg 2880
Ser Ala Leu	Gly Leu 288	1 Ala 35	Arg Met	: Ala	Ala 2890	Asp)	Arg	Pro	Ala	Val 2895	Asp 5
Asp Met Met	Asp Thi 2900	Gly	Ser Ala	a Gly 290	Val 5	Tyr	Asp	Arg	Ser 2910	Pro)	Asp
Asp Gly Pro 291	Ala Ile 5	e Ser	Asp Arc 292	g Ser 20	Ala	Leu	Gly	Leu 2925	Ala	Arg	Met
Ala Ala Asp 2930	Arg Pro) Ala	Val Ası 2935	Asp	Met	Met	Asp 294(Thr)	Gly	Ser	Glu
Ser Thr Ser 2945	Arg Leu	1 Gl y 2950	Pro Val	Asp	Arg	Pro 2955	Glu 5	Ile	Val	Glu	Arg 2960
His Ser Leu	Ala Ala 296	a Ser 55	Val Ty	: Leu	Ser 2970	Gly D	Gly	Asp	Ser	Pro 2975	Ser

Val Ala Asp Gly His Asp Val Glu Ser Glu Gly Arg Arg Asp Gly Gly Asp Arg Pro Gly Ile Asp Glu Arg Ile Val Ile Lys Ile Ser Tyr Ser Arg Gly Ala Ala Asp Ala Pro Arg Val Glu Asp Ala Met Glu Thr Ser Gly Val Thr Ala Tyr Ser Arg Gly Ala Ala Asp Ala Pro Arg Val Glu Asp Ala Met Glu Thr Ser Gly Val Thr Val Pro Arg Arg Ser Thr Met Asp Ala Pro Thr Val Ala Asp Asp His Ser Leu Ala Arg Thr Ala Ser Ile Ser Glu Gly Asp Ser Pro Thr Phe Ala Glu Ala Arg Arg Ala Asp Thr Val Gly Asp Ile Asp Glu Val Asp Ala Pro Thr Val Ala Asp Asp His Ser Leu Ala Arg Ala Ala Ser Ile Ser Glu Gly Asp Ser Pro Thr Phe Ala Glu Val Arg Arg Ala Asp Thr Val Gly Asp Ile Asp Glu Val Asp Ala Pro Ala Val Ala Glu Arg Leu Leu Ala Val Leu Gly Leu Gln Ala Pro Asp Ser Pro Gly Val Trp Asp Thr Val Gly Ile Asp His Ser Glu Ile Ser Gly Asp Pro Val Pro Glu Pro Arg Val Val Pro Arg Gly Gly Gly Gly Gly Gly Gly Gly Ser Ser Asn Arg Gly Leu Glu Pro His Gly Gly Gly Tyr Glu Ile Asp Phe Glu Phe Arg Ile Asp Gly Arg Leu Val Leu Phe Asn Gly Thr Asp Val Leu Ala Glu Ser Gly Lys Asp Leu Leu Ile Arg Pro Val Phe Arg Pro Glu Gly Ser Phe Asn Ile Phe Asp Met Glu Val Leu Phe Thr Ala Pro Gly Gly Glu Ile Ser Thr Ala Tyr Tyr Asn Arg Ala Gly Ile Leu Met Gly Ile Asp Cys Gly Glu Leu Ile Met Thr Asp Thr Thr Tyr Ser Cys Asp Met Leu Asp Ile Phe Gly Asp Glu Ile Tyr His Val Glu Arg Leu Asp Ala Phe Asn Gly Met Val Ile Ser Leu Asp Gly Pro Leu Asp Gly Thr Val Ser Val Ser Leu Arg Asp Asn His Gly Ile Pro Leu Ala Gln His Arg Leu His Lys Tyr Glu Ile Leu Ile Leu Asp Ala Ala Glu Asn Arg Pro Leu Ser Val Ser Thr Asp Pro Lys Pro Val Glu Asp Pro Ser Pro Val Gln His Ile Glu Ser Leu

Gln	Met	Asp	Pro 338(Glu)	Pro	Val	Glu	Ser 3385	Glu 5	Pro	Leu	Pro	Met 339(Asp)	Ser	
Glu	Pro	Val 3395	Glu 5	Asp	Leu	Glu	Pro 340	Val D	Gln	His	Leu	Glu 3405	Ser 5	Leu	Pro	
Met	Asp 341(Pro)	Glu	Pro	Val	Glu 341	Asp 5	Leu	Glu	Pro	Val 3420	Gln)	His	Leu	Glu	
Pro 3425	Val 5	Gln	Gly	Ser	Pro 343(Pro)	Val	Gln	Gly	Gly 3439	Pro 5	Glu	Ser	Val	Glu 3440	
Ser	Gly	Ile	Ala	Tyr 3449	Thr 5	Leu	Trp	Gln	Phe 345(Leu)	Ser	Gly	Leu	Leu 3455	Asp 5	
Ala	Leu	Gly	Leu 3460	Ala)	Asp	Pro	Asp	Val 3465	Gly 5	Ser	Val	Gln	L y s 347(Thr)	Ser	
<210 <211 <212 <213 <220 <221 <222)> SE .> LE ?> TY ?> OF ?> FE .> NA ?> LC	Q II NGTH PE: QGANJ ATUF ME/H OCATJ	O NO I: 81 DNA SM: RE: RE: CEY: CON:	5 19 Cena CDS (1).	archa	aeum 310)	symt	piosu	ım							
<400)> SE	QUEN	ICE :	5												
atg Met 1	cat His	ddd ddd	atc Ile	gag Glu 5	ggc Gly	ggc Gly	cgg Arg	gga Gly	gat Asp 10	atg Met	tcg Ser	gag Glu	aat Asn	ttt Phe 15	gtg Val	48
gcg Ala	ttt Phe	tgc Cys	gtg Val 20	gcg Ala	tgc Cys	gcc Ala	agg Arg	gga Gly 25	gtc Val	aca Thr	aag Lys	gac Asp	gag Glu 30	atg Met	aag Lys	96
tat Tyr	gta Val	gac Asp 35	GJÀ ddd	agg Arg	gtc Val	ttc Phe	cac His 40	aaa Lys	gag Glu	tgc Cys	cat His	gca Ala 45	agg Arg	cac His	ggc Gl y	144
GJ À 333	cag Gln 50	atc Ile	cgc Arg	ttc Phe	ccc Pro	aac Asn 55	cca Pro	gag Glu	gtc Val	gag Glu	cag Gln 60	cgc Arg	gtg Val	gcc Ala	gag Glu	192
ctg Leu 65	aag Lys	gtg Val	gac Asp	ctg Leu	ata Ile 70	cag Gln	atg Met	aga Arg	aac Asn	cag Gln 75	ctg Leu	gcc Ala	gag Glu	atg Met	aac Asn 80	240
agg Arg	gcg Ala	tcg Ser	ggg Gl y	gac Asp 85	gga Gl y	GJÀ ddd	gtg Val	cat His	tcc Ser 90	agc Ser	gcc Ala	acc Thr	tct Ser	gcg Ala 95	gcc Ala	288
gag Glu	gcc Ala	gag Glu	cag Gln 100	cac His	agg Arg	gcc Ala	gag Glu	cta Leu 105	aag Lys	gta Val	cag Gln	ctg Leu	gtg Val 110	cag Gln	atg Met	336
aga Arg	aac Asn	cag Gln 115	ctg Leu	gcc Ala	gag Glu	atg Met	aac Asn 120	agg Arg	aag Lys	gcc Ala	ccc Pro	gga Gl y 125	aag Lys	ccg Pro	gca Ala	384
cgg Arg	aaa Lys 130	aag Lys	gcc Ala	gca Ala	ggc Gly	aag L y s 135	act Thr	gca Ala	cgg Arg	aga Arg	aag Lys 140	agc Ser	ggc Gl y	aag Lys	aag Lys	432
acg Thr 145	gtg Val	cgc Arg	agg Arg	aag Lys	acc Thr 150	ggc Gl y	aag Lys	agg Arg	act Thr	gcc Ala 155	ggt Gl y	aag Lys	aag Lys	gcc Ala	ggg Gl y 160	480
gcg Ala	cgg Arg	agg Arg	aag Lys	act Thr 165	acg Thr	gtc Val	aag Lys	agg Arg	acg Thr 170	gcg Ala	cgg Arg	agg Arg	aag Lys	acc Thr 175	acg Thr	528
gca Ala	aag Lys	aag Lys	gca Ala 180	gcc Ala	ggc Gly	aga Arg	aag Lys	gcc Ala 185	ggg Gly	gcg Ala	cgc Arg	aga Arg	aag Lys 190	gcc Ala	aca Thr	576

gtc Val	aag Lys	agg Arg 195	acg Thr	gtg Val	cac His	aaa Lys	aag Lys 200	att Ile	gga Gly	gtg Val	cgg Arg	agg Arg 205	aag Lys	act Thr	acg Thr	624	
gca Ala	agg Arg 210	agg Arg	acg Thr	gcc Ala	ggt Gly	aag L y s 215	agt Ser	acg Thr	gtg Val	cgc Arg	agg Arg 220	aag Lys	agc Ser	aca Thr	gtc Val	672	
aag Lys 225	agg Arg	acg Thr	gtg Val	cac His	agg Arg 230	aag Lys	acc Thr	ggc Gly	aag Lys	aag Lys 235	gca Ala	gta Val	gta Val	cgc Arg	agg Arg 240	720	
aag Lys	agc Ser	aca Thr	gtc Val	aag Lys 245	agg Arg	acg Thr	gca Ala	cgg Arg	agg Arg 250	ccg Pro	gcc Ala	ggc Gly	aga Arg	aag Lys 255	acc Thr	768	
ccc Pro	gga Gl y	agg Arg	gcc Ala 260	gcg Ala	cgc Arg	agg Arg	gcc Ala	ggc Gl y 265	gca Ala	aag Lys	agg Arg	cgc Arg	tag			810	
ccto	gctga	at														819	
<210 <211 <212 <212)> SE L> LE 2> TY 3> OF	Q ID NGTH PE: RGANI) NO [: 26 PRT [SM:	6 59 Cena	archa	aeum	symb	piosu	ım								
<400)> SE	QUEN	ICE :	6													
Met 1	His	Gly	Ile	Glu 5	Gly	Gly	Arg	Gly	Asp 10	Met	Ser	Glu	Asn	Phe 15	Val		
Ala	Phe	Cys	Val 20	Ala	Cys	Ala	Arg	Gly 25	Val	Thr	Lys	Asp	Glu 30	Met	Lys		
Tyr	Val	Asp 35	Gly	Arg	Val	Phe	His 40	Lys	Glu	Cys	His	Ala 45	Arg	His	Gly		
Gly	Gln 50	Ile	Arg	Phe	Pro	Asn 55	Pro	Glu	Val	Glu	Gln 60	Arg	Val	Ala	Glu		
Leu 65	Lys	Val	Asp	Leu	Ile 70	Gln	Met	Arg	Asn	Gln 75	Leu	Ala	Glu	Met	Asn 80		
Arg	Ala	Ser	Gly	Asp 85	Gly	Gly	Val	His	Ser 90	Ser	Ala	Thr	Ser	Ala 95	Ala		
Glu	Ala	Glu	Gln 100	His	Arg	Ala	Glu	Leu 105	Lys	Val	Gln	Leu	Val 110	Gln	Met		
Arg	Asn	Gln 115	Leu	Ala	Glu	Met	Asn 120	Arg	Lys	Ala	Pro	Gly 125	Lys	Pro	Ala		
Arg	Lys 130	Lys	Ala	Ala	Gly	L y s 135	Thr	Ala	Arg	Arg	L y s 140	Ser	Gly	Lys	Lys		
Thr 145	Val	Arg	Arg	Lys	Thr 150	Gly	Lys	Arg	Thr	Ala 155	Gly	Lys	Lys	Ala	Gl y 160		
Ala	Arg	Arg	Lys	Thr 165	Thr	Val	Lys	Arg	Thr 170	Ala	Arg	Arg	Lys	Thr 175	Thr		
Ala	Lys	Lys	Ala 180	Ala	Gly	Arg	Lys	Ala 185	Gly	Ala	Arg	Arg	Lys 190	Ala	Thr		
Val	Lys	Arg 195	Thr	Val	His	Lys	L y s 200	Ile	Gly	Val	Arg	Arg 205	Lys	Thr	Thr		
Ala	Arg 210	Arg	Thr	Ala	Gly	L y s 215	Ser	Thr	Val	Arg	Arg 220	Lys	Ser	Thr	Val		
L y s 225	Arg	Thr	Val	His	Arg 230	Lys	Thr	Gly	Lys	L y s 235	Ala	Val	Val	Arg	Arg 240		

Lys	Ser	Thr	Val	L y s 245	Arg	Thr	Ala	Arg	Arg 250	Pro	Ala	Gly	Arg	Lys 255	Thr	
Pro	Gly	Arg	Ala 260	Ala	Arg	Arg	Ala	Gly 265	Ala	Lys	Arg	Arg				
<210 <211 <212 <212 <221 <220 <221 <222)> SH 1> LH 2> TY 3> OF 3> OF 1> NH 2> LC	EQ II ENGTH PE: RGANI EATUF AME/F OCATI	O NO I: 15 DNA SM: E: CY: CON:	7 569 Cena CDS (1).	archa	aeum 1569;	symb	piosu	ım							
<400)> SE	QUEN	ICE :	7												
atg Met 1	cag Gln	tcg Ser	ctt Leu	gga Gly 5	cgg Arg	cta Leu	gac Asp	gag Glu	gcg Ala 10	tgc Cys	gcg Ala	gag Glu	ata Ile	tcg Ser 15	cgc Arg	48
agc Ser	ctg Leu	ctt Leu	gaa Glu 20	tac Tyr	gag Glu	tcc Ser	ccc Pro	acc Thr 25	gcc Ala	ggt Gl y	gat Asp	gtc Val	cgg Arg 30	acg Thr	gag Glu	96
atc Ile	aga Arg	agg Arg 35	gca Ala	tgc Cys	aca Thr	aag Lys	tac Tyr 40	tcg Ser	ctc Leu	cgg Arg	agg Arg	atc Ile 45	cca Pro	aag Lys	aac Asn	144
cgc Arg	gag Glu 50	ata Ile	ctg Leu	gcc Ala	acc Thr	gcc Ala 55	agg Arg	ggt Gl y	cag Gln	gac Asp	ttt Phe 60	gac Asp	agg Arg	ctg Leu	cgc Arg	192
ccc Pro 65	ctg Leu	ctg Leu	ctc Leu	aaa Lys	aag Lys 70	ccc Pro	gta Val	aag Lys	acc Thr	gca Ala 75	tcc Ser	GJÀ ddd	gtg Val	gcc Ala	gtg Val 80	240
ata Ile	gca Ala	gtc Val	atg Met	ccc Pro 85	atg Met	ccg Pro	tac Tyr	gcg Ala	tgc Cys 90	ccc Pro	cac His	ggc Gl y	aga Arg	tgc Cys 95	aca Thr	288
tac Tyr	tgc Cys	ccc Pro	ggc Gl y 100	GJ À 333	gag Glu	gcg Ala	tcg Ser	aac Asn 105	aca Thr	ccc Pro	aac Asn	agc Ser	tat Tyr 110	acc Thr	ggc Gly	336
ggc Gl y	gag Glu	ccc Pro 115	ata Ile	gcg Ala	gcg Ala	ggc Gly	gcc Ala 120	atg Met	aac Asn	agc Ser	GJÀ ddd	tac Tyr 125	gac Asp	ccg Pro	gaa Glu	384
gag Glu	cag Gln 130	gtc Val	cgc Arg	gcg Ala	ggt Gl y	ctg Leu 135	gcc Ala	cgg Arg	ctg Leu	cgc Arg	gcg Ala 140	cac His	ggc Gly	cac His	gat Asp	432
gta Val 145	gcc Ala	aag Lys	ctg Leu	gag Glu	ata Ile 150	gta Val	ata Ile	gtg Val	ggc Gly	ggc Gl y 155	aca Thr	ttc Phe	ctg Leu	ttc Phe	atg Met 160	480
ccg Pro	cag Gln	gag Glu	tac Tyr	cag Gln 165	gag Glu	tgg Trp	ttc Phe	gtc Val	aag Lys 170	tcc Ser	tgt Cys	tat Tyr	gac Asp	gcg Ala 175	ctc Leu	528
aac Asn	GJ À ddd	tcc Ser	gct Ala 180	tcc Ser	gcg Ala	GJÀ ∂∂∂	atg Met	gag Glu 185	gag Glu	gcc Ala	aag Lys	cac His	cga Arg 190	aat Asn	gaa Glu	576
act Thr	gcc Ala	gtg Val 195	cac His	aga Arg	aac Asn	gtg Val	ggc Gl y 200	ctc Leu	acc Thr	ata Ile	gag Glu	acc Thr 205	aag Lys	ccg Pro	gac Asp	624
tat Tyr	tgc Cys 210	agg Arg	aca Thr	gag Glu	cat His	gtg Val 215	gac Asp	gcg Ala	atg Met	ctc Leu	ggc Gl y 220	ttt Phe	GJÀ ddd	gcc Ala	acg Thr	672
cgc Arg 225	gtg Val	gag Glu	ata Ile	ggc Gly	gtg Val 230	cag Gln	agc Ser	ctc Leu	cgg Arg	gag Glu 235	gag Glu	gtc Val	tac Tyr	ttg Leu	agg Arg 240	720

gtc Val	aac Asn	cgg Arg	GJÅ ∂∂∂	cac His 245	ggc Gly	tac Tyr	cag Gln	gat Asp	gtg Val 250	aca Thr	gag Glu	tcg Ser	ttt Phe	gcc Ala 255	gcc Ala	768
gcc Ala	agg Arg	gat Asp	gca Ala 260	ggc Gly	tac Tyr	aag Lys	gtg Val	gct Ala 265	gcc Ala	cac His	atg Met	atg Met	cca Pro 270	gga Gl y	ctc Leu	816
ccg Pro	сј λ ддд	gcc Ala 275	acc Thr	ccg Pro	gaa Glu	ggc Gl y	gac Asp 280	atc Ile	gag Glu	gat Asp	ctg Leu	cgc Arg 285	atg Met	ctg Leu	ttt Phe	864
gag Glu	gat Asp 290	ccc Pro	gcg Ala	ctc Leu	agg Arg	ccg Pro 295	gac Asp	atg Met	ctc Leu	aag Lys	gtg Val 300	tac Tyr	ccc Pro	gcg Ala	cta Leu	912
gta Val 305	gta Val	agg Arg	ggc Gl y	acc Thr	ccc Pro 310	atg Met	tat Tyr	gag Glu	gag Glu	tat Tyr 315	tcg Ser	agg Arg	ggc Gl y	gag Glu	tat Tyr 320	960
tcc Ser	ccg Pro	tat Tyr	acg Thr	gaa Glu 325	gag Glu	gag Glu	gtc Val	atc Ile	cgg Arg 330	gtg Val	ctc Leu	tcc Ser	gag Glu	gcc Ala 335	aag Lys	1008
gcg Ala	cgc Arg	gtg Val	ccc Pro 340	agg Arg	tgg Trp	gcg Ala	agg Arg	ata Ile 345	atg Met	cgc Arg	gtg Val	cag Gln	cgc Arg 350	gag Glu	ata Ile	1056
cac His	ccc Pro	gac Asp 355	gag Glu	ata Ile	gtg Val	gcc Ala	360 343 350	ccg Pro	agg Arg	agc Ser	ggc Gly	aac Asn 365	ctc Leu	cgc Arg	cag Gln	1104
ctg Leu	gtg Val 370	cac His	aag Lys	agg Arg	ctc Leu	caa Gln 375	gag Glu	cag Gln	ggc Gl y	cgc Arg	cga Arg 380	tgc Cys	cgc Arg	tgc Cys	ata Ile	1152
cgg Arg 385	tgc Cys	agg Arg	gag Glu	gcg Ala	380 GJ À AAA	ctc Leu	gcg Ala	GJ À ∂∂∂	agg Arg	acc Thr 395	gtg Val	ccg Pro	cag Gln	aag Lys	ctc Leu 400	1200
cgt Arg	att Ile	gac Asp	agg Arg	gcg Ala 405	gac Asp	tat Tyr	tcg Ser	gcc Ala	tcg Ser 410	GJ À ddd	GJ À ddd	aga Arg	gaa Glu	tcg Ser 415	ttt Phe	1248
atc Ile	tcg Ser	ctt Leu	gta Val 420	gac Asp	GJÀ ddd	gat Asp	gat Asp	gcc Ala 425	atc Ile	tat Tyr	ggc Gly	ttt Phe	gtg Val 430	cgc Arg	ctg Leu	1296
cgc Arg	aag Lys	ccc Pro 435	tcc Ser	gga Gly	gca Ala	gca Ala	cac His 440	agg Arg	ccg Pro	gag Glu	gtc Val	aca Thr 445	ccg Pro	gaa Glu	tcc Ser	1344
tgc C y s	ata Ile 450	ata Ile	cgc Arg	gag Glu	ctg Leu	cac His 455	gta Val	tac Tyr	ggc Gl y	agg Arg	tcg Ser 460	ctt Leu	ggc Gl y	ctc Leu	ggc Gly	1392
gag Glu 465	agg Arg	ggc Gly	ggc Gl y	ata Ile	cag Gln 470	cac His	tcg Ser	ggt Gl y	cta Leu	ggc Gl y 475	aga Arg	agg Arg	ctc Leu	gtc Val	tca Ser 480	1440
gaa Glu	gca Ala	gag Glu	tct Ser	gcc Ala 485	gcc Ala	cgt Arg	gag Glu	ctt Leu	ggc Gly 490	gcg Ala	ggc Gly	agg Arg	ctc Leu	ctt Leu 495	gtg Val	1488
ata Ile	agc Ser	gcc Ala	gtc Val 500	GJÀ ddd	aca Thr	agg Arg	ggt Gl y	tac Tyr 505	tat Tyr	cgc Arg	agg Arg	ctc Leu	gga Gl y 510	tat Tyr	tca Ser	1536
cgc Arg	acg Thr	ggc Gly 515	ccc Pro	tac Tyr	atg Met	GJÀ ddd	aag Lys 520	gtg Val	ctc Leu	tga						1569

<210> SEQ ID NO 8 <211> LENGTH: 522 85

<2 <2	12> Т 13> О	YPE: RGANI	PRT ISM:	Cena	archa	aeum	symb	piosu	ım						
<4	00> S	EQUEI	ICE :	8											
Me 1	t Gln	Ser	Leu	Gly 5	Arg	Leu	Asp	Glu	Ala 10	Cys	Ala	Glu	Ile	Ser 15	Arg
Se	r Leu	Leu	Glu 20	Tyr	Glu	Ser	Pro	Thr 25	Ala	Gly	Asp	Val	Arg 30	Thr	Glu
Il	e Arg	Arg 35	Ala	Сув	Thr	Lys	Tyr 40	Ser	Leu	Arg	Arg	Ile 45	Pro	Lys	Asn
Ar	g Glu 50	Ile	Leu	Ala	Thr	Ala 55	Arg	Gly	Gln	Asp	Phe 60	Asp	Arg	Leu	Arg
Pr 65	o Leu	Leu	Leu	Lys	Lys 70	Pro	Val	Lys	Thr	Ala 75	Ser	Gly	Val	Ala	Val 80
Il	e Ala	Val	Met	Pro 85	Met	Pro	Tyr	Ala	Cys 90	Pro	His	Gly	Arg	Сув 95	Thr
ту	r Cys	Pro	Gly 100	Gly	Glu	Ala	Ser	Asn 105	Thr	Pro	Asn	Ser	Tyr 110	Thr	Gly
Gl	y Glu	Pro 115	Ile	Ala	Ala	Gly	Ala 120	Met	Asn	Ser	Gly	T y r 125	Asp	Pro	Glu
Gl	u Gln 130	Val	Arg	Ala	Gly	Leu 135	Ala	Arg	Leu	Arg	Ala 140	His	Gly	His	Asp
Va 14	l Ala 5	Lys	Leu	Glu	Ile 150	Val	Ile	Val	Gly	Gly 155	Thr	Phe	Leu	Phe	Met 160
Pr	o Gln	Glu	Tyr	Gln 165	Glu	Trp	Phe	Val	L y s 170	Ser	Cys	Tyr	Asp	Ala 175	Leu
As	n Gly	Ser	Ala 180	Ser	Ala	Gly	Met	Glu 185	Glu	Ala	Lys	His	Arg 190	Asn	Glu
Th	r Ala	Val 195	His	Arg	Asn	Val	Gly 200	Leu	Thr	Ile	Glu	Thr 205	Lys	Pro	Asp
ту	r C y s 210	Arg	Thr	Glu	His	Val 215	Asp	Ala	Met	Leu	Gly 220	Phe	Gly	Ala	Thr
Ar 22	g Val 5	Glu	Ile	Gly	Val 230	Gln	Ser	Leu	Arg	Glu 235	Glu	Val	Tyr	Leu	Arg 240
Va	l Asn	Arg	Gly	His 245	Gly	Tyr	Gln	Asp	Val 250	Thr	Glu	Ser	Phe	Ala 255	Ala
Al	a Arg	Asp	Ala 260	Gly	Tyr	Lys	Val	Ala 265	Ala	His	Met	Met	Pro 270	Gly	Leu
Pr	o Gly	Ala 275	Thr	Pro	Glu	Gly	Asp 280	Ile	Glu	Asp	Leu	Arg 285	Met	Leu	Phe
Gl	u Asp 290	Pro	Ala	Leu	Arg	Pro 295	Asp	Met	Leu	Lys	Val 300	Tyr	Pro	Ala	Leu
Va 30	l Val 5	Arg	Gly	Thr	Pro 310	Met	Tyr	Glu	Glu	T y r 315	Ser	Arg	Gly	Glu	Ty r 320
Se	r Pro	Tyr	Thr	Glu 325	Glu	Glu	Val	Ile	Arg 330	Val	Leu	Ser	Glu	Ala 335	Lys
Al	a Arg	Val	Pro 340	Arg	Trp	Ala	Arg	Ile 345	Met	Arg	Val	Gln	Arg 350	Glu	Ile
ні	s Pro	A sp 355	Glu	Ile	Val	Ala	Gly 360	Pro	Arg	Ser	Gly	Asn 365	Leu	Arg	Gln
Le	u Val 370	His	Lys	Arg	Leu	Gln 375	Glu	Gln	Gly	Arg	Arg 380	Cys	Arg	Cys	Ile

Arg Cys Arg Glu Ala Gly Leu Ala Gly Arg Thr Val Pro Gln Lys Leu Arg Ile Asp Arg Ala Asp Tyr Ser Ala Ser Gly Gly Arg Glu Ser Phe Ile Ser Leu Val Asp Gly Asp Asp Ala Ile Tyr Gly Phe Val Arg Leu Arg Lys Pro Ser Gly Ala Ala His Arg Pro Glu Val Thr Pro Glu Ser Cys Ile Ile Arg Glu Leu His Val Tyr Gly Arg Ser Leu Gly Leu Gly Glu Arg Gly Gly Ile Gln His Ser Gly Leu Gly Arg Arg Leu Val Ser Glu Ala Glu Ser Ala Ala Arg Glu Leu Gly Ala Gly Arg Leu Leu Val Ile Ser Ala Val Gly Thr Arg Gly Tyr Tyr Arg Arg Leu Gly Tyr Ser Arg Thr Gly Pro Tyr Met Gly Lys Val Leu <210> SEQ ID NO 9 <211> LENGTH: 1575 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)...(1575) <400> SEOUENCE: 9 atg gag acg ata ggc cgc ggc acc tgg ata gac aag ctg gcg cat gaa Met Glu Thr Ile Gly Arg Gly Thr Trp Ile Asp Lys Leu Ala His Glu ctg gta gag cgc gaa gag gcc ctc ggc cgg gat aca gag atg ata aac Leu Val Glu Arg Glu Glu Ala Leu Gly Arg Asp Thr Glu Met Ile Asn gtc gag agc ggc ctt ggc gcg tcc ggg ata ccc cac atg ggg agc ctc Val Glu Ser Gly Leu Gly Ala Ser Gly Ile Pro His Met Gly Ser Leu ggg gat gca gtc agg gcg tac ggc gtg ggg ctc gcc gtc ggc gac atg Gly Asp Ala Val Arg Ala Tyr Gly Val Gly Leu Ala Val Gly Asp Met 5.0 ggg cac age tte egg ete ata geg tae ttt gae gae ete gae ggg ete Gly His Ser Phe Arg Leu Ile Ala Tyr Phe Asp Asp Leu Asp Gly Leu cgc aag gtc ccc gag ggc atg cca tcc tcg cta gaa gag cac ata gcc Arg Lys Val Pro Glu Gly Met Pro Ser Ser Leu Glu Glu His Ile Ala cgt ccc gtc tcg gcg ata ccc gac ccc tac ggg tgc cac gat tcc tac Arg Pro Val Ser Ala Ile Pro Asp Pro Tyr Gly Cys His Asp Ser Tyr ggc atg cac atg agc ggc ctg ctg cta gag ggg ctc gac gca ctg ggc Gly Met His Met Ser Gly Leu Leu Leu Glu Gly Leu Asp Ala Leu Gly ata gag tat gac ttt agg cgg gca agg gac acg tac cgc gac ggc ctg Ile Glu Tyr Asp Phe Arg Arg Ala Arg Asp Thr Tyr Arg Asp Gly Leu ctc gca gaa cag atc cac agg ata cta tcg aac agc tcg gta ata ggg

-continued

Leu 145	Ala	Glu	Gln	Ile	His 150	Arg	Ile	Leu	Ser	Asn 155	Ser	Ser	Val	Ile	Gly 160		
gag Glu	aag Lys	ata Ile	gcc Ala	gag Glu 165	atg Met	gtg Val	ggc Gl y	cag Gln	gaa Glu 170	aag Lys	ttt Phe	cgc Arg	agc Ser	agc Ser 175	ctg Leu	528	
ccg Pro	tac Tyr	ttt Phe	gca Ala 180	gtc Val	tgt C y s	gaa Glu	cag Gln	tgc C y s 185	GJÀ ddd	aag L y s	atg Met	tac Tyr	acg Thr 190	gcc Ala	gag Glu	576	
tcc Ser	gtt Val	gaa Glu 195	tac Tyr	ctg Leu	gca Ala	gac Asp	agc Ser 200	cgc Arg	aag L y s	gtg Val	cgg Arg	tac Tyr 205	agg Arg	tgc Cys	ggc Gly	624	
gac Asp	gcc Ala 210	gag Glu	gta Val	ggc Gly	gga Gly	aga Arg 215	aag Lys	atc Ile	gcc Ala	ggc Gly	tgc C y s 220	ggg ggg	cac His	gag Glu	ggc Gly	672	
gag Glu 225	gcg Ala	gac Asp	acg Thr	ggc Gly	gga Gly 230	gcc Ala	ggc Gly	ggc Gly	aag Lys	ctc Leu 235	gcc Ala	tgg Trp	aag Lys	gtg Val	gag Glu 240	720	
ttt Phe	gcc Ala	gca Ala	agg Arg	tgg Trp 245	cag Gln	gcg Ala	ttt Phe	gat Asp	gta Val 250	cgc Arg	ttt Phe	gag Glu	gca Ala	tac Tyr 255	ggc Gly	768	
aag Lys	gac Asp	atc Ile	atg Met 260	gac Asp	tct Ser	gta Val	agg Arg	ata Ile 265	aac Asn	gac Asp	tgg Trp	gtc Val	tcc Ser 270	gac Asp	gag Glu	816	
ata Ile	cta Leu	tcc Ser 275	agc Ser	ccg Pro	cac His	ccc Pro	cac His 280	cat His	aca Thr	agg Arg	tac Tyr	gag Glu 285	atg Met	ttc Phe	ctc Leu	864	
gac Asp	aag Lys 290	ggc Gly	ggc Gly	aaa Lys	aag Lys	ata Ile 295	tca Ser	aag Lys	tcg Ser	tca Ser	gga Gl y 300	aac Asn	gtg Val	gtc Val	acg Thr	912	
ccg Pro 305	cag Gln	aaa Lys	tgg Trp	ctc Leu	agg Arg 310	tac Tyr	ggc Gly	acc Thr	ccc Pro	cag Gln 315	tcg Ser	ata Ile	ctg Leu	ctc Leu	ctc Leu 320	960	
atg Met	tac Tyr	aag Lys	cgc Arg	atc Ile 325	acg Thr	dda dda	gcg Ala	cgg Arg	gag Glu 330	ctt Leu	ggc Gly	ctc Leu	gag Glu	gat Asp 335	gtg Val	1008	
cca Pro	tcc Ser	ctg Leu	atg Met 340	gac Asp	gag Glu	tac Tyr	ggc Gly	gat Asp 345	ctt Leu	cag Gln	cgc Arg	gag Glu	tac Tyr 350	ttt Phe	gcg Ala	1056	
gga Gl y	GJ À ddd	ggc Gly 355	agg Arg	ggc Gl y	GJÀ ddd	aaa Lys	gcc Ala 360	cgc Arg	gag Glu	gcc Ala	aag L y s	aac Asn 365	agg Arg	dda dda	cta Leu	1104	
ttc Phe	gag Glu 370	tat Tyr	acg Thr	aac Asn	ctg Leu	ctg Leu 375	gag Glu	gca Ala	cag Gln	gag Glu	380 380 333	ccg Pro	cgg Arg	ccg Pro	cat His	1152	
gcg Ala 385	ggc Gl y	tac Tyr	cgg Arg	ctg Leu	cta Leu 390	gtc Val	gag Glu	ctc Leu	tcc Ser	agg Arg 395	ctg Leu	ttc Phe	agg Arg	gag Glu	aat Asn 400	1200	
agg Arg	acc Thr	gag Glu	cgc Arg	gtc Val 405	aca Thr	aaa Lys	aag Lys	ctc Leu	gtc Val 410	gag Glu	tac Tyr	GJÀ ddd	gta Val	att Ile 415	gac Asp	1248	
GJ À ddd	ccc Pro	tcg Ser	ccc Pro 420	GJÀ ddd	atc Ile	gag Glu	cgg Arg	ctc Leu 425	ata Ile	gca Ala	ctg Leu	gcc Ala	gga Gly 430	aac Asn	tat Tyr	1296	
gca Ala	gac Asp	gac Asp 435	atg Met	tat Tyr	tct Ser	gcc Ala	gag Glu 440	aga Arg	aca Thr	gag Glu	gtg Val	gag Glu 445	ctt Leu	gac Asp	GJ À ddd	1344	
gcc	aca	agg	ddd	gcc	ctc	tcg	gag	ctg	gca	gaa	atg	ctc	ggt	tcc	gcc	1392	

-continued

Ala Thr Arc 450	g Gly Ala	a Leu	Ser 455	Glu	Leu	Ala	Glu	Met 460	Leu	Gly	Ser	Ala	
ccg gag ggo Pro Glu Gly 465	c gga cto y Gly Leu	g cag 1 Gln 470	gat Asp	gtc Val	ata Ile	tac Tyr	ggc Gl y 475	gtg Val	gcc Ala	aag Lys	tcc Ser	cac His 480	1440
ggg gtg cco Gly Val Pro	c ccg cgo o Pro Aro 485	gac J Asp	ttt Phe	ttc Phe	aag Lys	gcg Ala 490	ctg Leu	tac Tyr	agg Arg	ata Ile	ata Ile 495	ctg Leu	1488
gat gca tco Asp Ala Sei	c agc ggg r Ser Gly 500	g ccg y Pro	agg Arg	ata Ile	ggc Gl y 505	ccc Pro	ttc Phe	ata Ile	gag Glu	gac Asp 510	ata Ile	ggc Gly	1536
agg gag aag Arg Glu Lys 515	g gtg gca s Val Ala 5	a ggt a Gly	atg Met	ata Ile 520	cgg Arg	ddd ddd	cgc Arg	ctc Leu	tga				1575
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	ID NO 10 TH: 524 : PRT NISM: Cer	ıarcha	aeum	symb	piosu	ım							
<400> SEQUE	ENCE: 10												
Met Glu Thi 1	r Ile Gly 5	y Arg	Gly	Thr	Trp	Ile 10	Asp	Lys	Leu	Ala	His 15	Glu	
Leu Val Glu	ı Arg Glı 20	ı Glu	Ala	Leu	Gly 25	Arg	Asp	Thr	Glu	Met 30	Ile	Asn	
Val Glu Sei 35	r Gly Leu	ı Gly	Ala	Ser 40	Gly	Ile	Pro	His	Met 45	Gly	Ser	Leu	
Gly Asp Ala 50	a Val Arg	g Ala	Ty r 55	Gly	Val	Gly	Leu	Ala 60	Val	Gly	Asp	Met	
Gly His Ser 65	r Phe Arg	g Leu 70	Ile	Ala	Tyr	Phe	Asp 75	Asp	Leu	Asp	Gly	Leu 80	
Arg Lys Val	l Pro Glu 85	ı Gly	Met	Pro	Ser	Ser 90	Leu	Glu	Glu	His	Ile 95	Ala	
Arg Pro Va	l Ser Ala 100	a Ile	Pro	Asp	Pro 105	Tyr	Gly	Cys	His	A sp 110	Ser	Tyr	
Gly Met His 115	s Met Sei 5	Gly	Leu	Leu 120	Leu	Glu	Gly	Leu	Asp 125	Ala	Leu	Gly	
Ile Glu Ty: 130	r Asp Phe	e Arg	Arg 135	Ala	Arg	Asp	Thr	Ty r 140	Arg	Asp	Gly	Leu	
Leu Ala Glu 145	ı Gln Ile	e His 150	Arg	Ile	Leu	Ser	Asn 155	Ser	Ser	Val	Ile	Gl y 160	
Glu Lys Ile	e Ala Glu 165	1 Met	Val	Gly	Gln	Glu 170	Lys	Phe	Arg	Ser	Ser 175	Leu	
Pro Tyr Phe	e Ala Va 180	L Cys	Glu	Gln	C y s 185	Gly	Lys	Met	Tyr	Thr 190	Ala	Glu	
Ser Val Glu 195	ı Tyr Lei 5	ı Ala	Asp	Ser 200	Arg	Lys	Val	Arg	T y r 205	Arg	Сув	Gly	
Asp Ala Glu 210	ı Val Gly	y Gly	Arg 215	Lys	Ile	Ala	Gly	C y s 220	Gly	His	Glu	Gly	
Glu Ala Asp 225	p Thr Gly	7 Gly 230	Ala	Gly	Gly	Lys	Leu 235	Ala	Trp	Lys	Val	Glu 240	
Phe Ala Ala	a Arg Trp 245	Gln	Ala	Phe	Asp	Val 250	Arg	Phe	Glu	Ala	T y r 255	Gly	
Lys Asp Ile	e Met Ası	Ser	Val	Arg	Ile	Asn	Asp	Trp	Val	Ser	Asp	Glu	

-continued

		260					265					270			
Ile Leu	1 Ser 275	Ser	Pro	His	Pro	His 280	His	Thr	Arg	Tyr	Glu 285	Met	Phe	Leu	
Asp L y s 290	s Gly)	Gly	Lys	Lys	Ile 295	Ser	Lys	Ser	Ser	Gly 300	Asn	Val	Val	Thr	
Pro Gln 305	ı Lys	Trp	Leu	Arg 310	Tyr	Gly	Thr	Pro	Gln 315	Ser	Ile	Leu	Leu	Leu 320	
Met Tyr	: L y s	Arg	Ile 325	Thr	Gly	Ala	Arg	Glu 330	Leu	Gly	Leu	Glu	Asp 335	Val	
Pro Ser	r Leu	Met 340	Asp	Glu	Tyr	Gly	Asp 345	Leu	Gln	Arg	Glu	Ty r 350	Phe	Ala	
Gly Gly	7 Gly 355	Arg	Gly	Gly	Lys	Ala 360	Arg	Glu	Ala	Lys	Asn 365	Arg	Gly	Leu	
Phe Glu 370	ı Tyr	Thr	Asn	Leu	Leu 375	Glu	Ala	Gln	Glu	Gly 380	Pro	Arg	Pro	His	
Ala Gly 385	y Tyr	Arg	Leu	Leu 390	Val	Glu	Leu	Ser	Arg 395	Leu	Phe	Arg	Glu	Asn 400	
Arg Thr	r Glu	Arg	Val 405	Thr	Lys	Lys	Leu	Val 410	Glu	Tyr	Gly	Val	Ile 415	Asp	
Gly Pro	Ser	Pro 420	Gly	Ile	Glu	Arg	Leu 425	Ile	Ala	Leu	Ala	Gly 430	Asn	Tyr	
Ala Asp	Авр 435	Met	Tyr	Ser	Ala	Glu 440	Arg	Thr	Glu	Val	Glu 445	Leu	Asp	Gly	
Ala Thr 450	r Arg)	Gly	Ala	Leu	Ser 455	Glu	Leu	Ala	Glu	Met 460	Leu	Gly	Ser	Ala	
Pro Glu 465	ı Gly	Gly	Leu	Gln 470	Asp	Val	Ile	Tyr	Gly 475	Val	Ala	Lys	Ser	His 480	
Gly Val	l Pro	Pro	Arg 485	Asp	Phe	Phe	Lys	Ala 490	Leu	Tyr	Arg	Ile	Ile 495	Leu	
Asp Ala	a Ser	Ser 500	Gly	Pro	Arg	Ile	Gly 505	Pro	Phe	Ile	Glu	Asp 510	Ile	Gly	
Arg Glu	1 Lys 515	Val	Ala	Gly	Met	Ile 520	Arg	Gly	Arg	Leu					
<210> S <211> L <212> T <213> O <220> F <221> N <222> L	EQ II ENGTI TYPE: RGAN EATUI IAME/I	D NO H: 88 DNA ISM: RE: KEY: ION:	11 35 Cena CDS (1)	archa	aeum 385)	sybi	losun	n							
<400> S	EQUEI	NCE :	11												
atg gag Met Glu 1	g tca 1 Ser	gcc Ala	ggt Gly 5	gag Glu	cag Gln	gca Ala	cct Pro	ggt Gly 10	gtg Val	gta Val	ctt Leu	cac His	gac Asp 15	tat Tyr	48
ctt tca Leu Ser	a aaa : Lys	ttg Leu 20	caa Gln	cag Gln	tat Tyr	tcg Ser	999 Gly 25	agg Arg	gac Asp	aca Thr	att Ile	cta Leu 30	tat Tyr	gcg Ala	96
acc aac Thr Asn	tgg Trp 35	atg Met	acg Thr	gac Asp	gaa Glu	ccg Pro 40	cat His	acg Thr	cct Pro	aat Asn	gaa Glu 45	gct Ala	ctc Leu	ata Ile	144
aca aat Thr Asn 50	: ggt h Gl y)	gac Asp	ctg Leu	tat Tyr	gga Gly 55	ttt Phe	atg Met	agg Arg	atg Met	atg Met 60	cgt Arg	gat Asp	tta Leu	aag Lys	192

act Thr 65	aaa Lys	aaa Lys	ttg Leu	gat Asp	ctg Leu 70	ata Ile	ctc Leu	cac His	agt Ser	cct Pro 75	gga Gl y	ggt Gl y	tct Ser	gcc Ala	gag Glu 80	240
tct Ser	gca Ala	gaa Glu	tcg Ser	att Ile 85	gtc Val	aca Thr	tac Tyr	ctt Leu	cat His 90	gcg Ala	aaa Lys	tat Tyr	gat Asp	gat Asp 95	att Ile	288
cgg Arg	gtc Val	atc Ile	ata Ile 100	ccg Pro	tat Tyr	gcc Ala	gca Ala	atg Met 105	tca Ser	gca Ala	gcc Ala	tcg Ser	atg Met 110	ctt Leu	gct Ala	336
tgc C y s	gca Ala	tca Ser 115	aat Asn	tcc Ser	ctg Leu	gta Val	atg Met 120	ggc Gl y	aaa Lys	cac His	tcg Ser	tct Ser 125	ata Ile	gga Gl y	ccc Pro	384
gct Ala	gat Asp 130	ccc Pro	caa Gln	ttt Phe	att Ile	ttc Phe 135	cca Pro	acc Thr	aag Lys	att Ile	ggc Gl y 140	atg Met	caa Gln	ata Ile	atg Met	432
tct Ser 145	gca Ala	cag Gln	ctt Leu	cta Leu	att Ile 150	gac Asp	gag Glu	ttg Leu	caa Gln	gaa Glu 155	gtg Val	cag Gln	gtg Val	gta Val	tct Ser 160	480
gaa Glu	aaa Lys	cat His	ccg Pro	ggc Gl y 165	agg Arg	ctt Leu	ggc Gl y	gca Ala	tgg Trp 170	ctt Leu	cca Pro	ttg Leu	tta Leu	gga Gl y 175	caa Gln	528
tat Tyr	cct Pro	cct Pro	gga Gl y 180	ctg Leu	gtt Val	caa Gln	aaa Lys	tgc C y s 185	att Ile	agc Ser	agc Ser	cag Gln	aaa Lys 190	cta Leu	gct Ala	576
gaa Glu	gtg Val	ctt Leu 195	gta Val	caa Gln	aaa Lys	tgg Trp	ctg Leu 200	gaa Glu	gac Asp	cac His	atg Met	ttt Phe 205	gct Ala	ggc Gl y	gag Glu	624
tct Ser	gat Asp 210	gcg Ala	gca Ala	gaa Glu	aaa Lys	tca Ser 215	aaa Lys	aaa Lys	ata Ile	tct Ser	gga Gl y 220	atg Met	tta Leu	gct Ala	tct Ser	672
cct Pro 225	gga Gly	aaa Lys	tat Tyr	tac Tyr	agt Ser 230	cat His	ddà dda	aga Arg	tac Tyr	ata Ile 235	tcg Ser	cga Arg	gag Glu	gag Glu	tgt Cys 240	720
agg Arg	ggc Gl y	atc Ile	ggt Gl y	ttg Leu 245	aaa Lys	ata Ile	act Thr	gat Asp	cta Leu 250	gaa Glu	gcc Ala	gac Asp	caa Gln	gaa Glu 255	ttt Phe	768
cag Gln	gat Asp	ctg Leu	aca Thr 260	ttg Leu	tcg Ser	gta Val	tct Ser	cat His 265	gca Ala	gcg Ala	gat Asp	atc Ile	ctg Leu 270	tct Ser	caa Gln	816
ttt Phe	act Thr	cca Pro 275	atc Ile	aac Asn	aaa Lys	atc Ile	atc Ile 280	gcg Ala	aat Asn	cac His	ctc Leu	ggt Gl y 285	aat Asn	tca Ser	gtt Val	864
atc Ile	agc Ser 290	aaa Lys	cca Pro	tca Ser	aca Thr	tag										885
<210 <211)> SE .> LE	Q ID NGTH	NO 1:29	12 4												
<213	3> 0F	GANI	SM:	Cena	ircha	eum	sybi	.osun	ı							
<400)> SE	QUEN	ICE :	12												
Met 1	Glu	Ser	Ala	Gly 5	Glu	Gln	Ala	Pro	Gly 10	Val	Val	Leu	His	Asp 15	Tyr	
Leu	Ser	Lys	Leu 20	Gln	Gln	Tyr	Ser	Gly 25	Arg	Asp	Thr	Ile	Leu 30	Tyr	Ala	
Thr	Asn	Trp	Met	Thr	Asp	Glu	Pro	His	Thr	Pro	Asn	Glu	Ala	Leu	Ile	

-continued

		35					40					45							
Thr	Asn 50	Gly	Asp	Leu	Tyr	Gly 55	Phe	Met	Arg	Met	Met 60	Arg	Asp	Leu	Lys				
Thr 65	Lys	Lys	Leu	Asp	Leu 70	Ile	Leu	His	Ser	Pro 75	Gly	Gly	Ser	Ala	Glu 80				
Ser	Ala	Glu	Ser	Ile 85	Val	Thr	Tyr	Leu	His 90	Ala	Lys	Tyr	Asp	Asp 95	Ile				
Arg	Val	Ile	Ile 100	Pro	Tyr	Ala	Ala	Met 105	Ser	Ala	Ala	Ser	Met 110	Leu	Ala				
Сув	Ala	Ser 115	Asn	Ser	Leu	Val	Met 120	Gly	Lys	His	Ser	Ser 125	Ile	Gly	Pro				
Ala	Asp 130	Pro	Gln	Phe	Ile	Phe 135	Pro	Thr	Lys	Ile	Gly 140	Met	Gln	Ile	Met				
Ser 145	Ala	Gln	Leu	Leu	Ile 150	Asp	Glu	Leu	Gln	Glu 155	Val	Gln	Val	Val	Ser 160				
Glu	Lys	His	Pro	Gly 165	Arg	Leu	Gly	Ala	Trp 170	Leu	Pro	Leu	Leu	Gly 175	Gln				
Tyr	Pro	Pro	Gly 180	Leu	Val	Gln	Lys	С у в 185	Ile	Ser	Ser	Gln	L y s 190	Leu	Ala				
Glu	Val	Leu 195	Val	Gln	Lys	Trp	Leu 200	Glu	Asp	His	Met	Phe 205	Ala	Gly	Glu				
Ser	Asp 210	Ala	Ala	Glu	Lys	Ser 215	Lys	Lys	Ile	Ser	Gly 220	Met	Leu	Ala	Ser				
Pro 225	Gly	Lys	Tyr	Tyr	Ser 230	His	Gly	Arg	Tyr	Ile 235	Ser	Arg	Glu	Glu	C y s 240				
Arg	Gly	Ile	Gly	Leu 245	Lys	Ile	Thr	Asp	Leu 250	Glu	Ala	Asp	Gln	Glu 255	Phe				
Gln	Asp	Leu	Thr 260	Leu	Ser	Val	Ser	His 265	Ala	Ala	Asp	Ile	Leu 270	Ser	Gln				
Phe	Thr	Pro 275	Ile	Asn	Lys	Ile	Ile 280	Ala	Asn	His	Leu	Gly 285	Asn	Ser	Val				
Ile	Ser 290	Lys	Pro	Ser	Thr														
<210 <211 <212)> SE L> LE 2> TY	Q II NGTH PE:	0 NO 1: 13 DNA	13 305 Cent	rch		umbi	06117											
<220 <221 <221)> FE L> NA 2> LC	EATUF ME/F CATI	RE: REY: ION:	CDS	•••(1	1305))	. o o u											
<400)> SE	QUEN	ICE :	13															
gtg Met 1	gat Asp	cta Leu	gag Glu	cgc Arg 5	gag Glu	tac Tyr	agg Arg	gca Ala	aag Lys 10	acc Thr	agg Arg	ggc Gly	tcg Ser	gcg Ala 15	GJ À ddd	4	8		
ata Ile	ttt Phe	gcc Ala	cgg Arg 20	tcg Ser	aga Arg	agg Arg	tac Tyr	cat His 25	gta Val	GJÀ aaa	GJÀ ∂∂∂	gtc Val	agc Ser 30	cac His	aac Asn	9	6		
ata Ile	agg Arg	tac Tyr 35	tat Tyr	gag Glu	ccg Pro	tac Tyr	ccg Pro 40	ttt Phe	gtt Val	aca Thr	agg Arg	tcg Ser 45	gcg Ala	cgc Arg	ggc Gly	14	4		
aag Lys	cac His 50	ctt Leu	gtg Val	gac Asp	gtc Val	gac Asp 55	G1 X 333	aac Asn	aag Lys	tat Tyr	acc Thr 60	gac Asp	tat Tyr	tgg Trp	atg Met	19	2		

999 Gl y 65	cac His	tgg Trp	agc Ser	ctg Leu	ata Ile 70	ctc Leu	ggc Gl y	cac His	gcg Ala	ccg Pro 75	gcg Ala	caa Gln	gta Val	agg Arg	tcg Ser 80	24	0
gca Ala	gtg Val	gag Glu	GJÀ ddd	cag Gln 85	ctg Leu	cgc Arg	cgc Arg	ggc Gly	tgg Trp 90	ata Ile	cac His	GJÀ ddd	acc Thr	gca Ala 95	aac Asn	28	8
gag Glu	ccc Pro	acc Thr	atg Met 100	cgg Arg	ctc Leu	tcg Ser	gag Glu	atc Ile 105	ata Ile	cgc Arg	GJÀ ddd	gcg Ala	gta Val 110	aag Lys	gcg Ala	33	6
gca Ala	gag Glu	aag Lys 115	ata Ile	agg Arg	tat Tyr	gtt Val	aca Thr 120	tcc Ser	ggc Gly	acg Thr	gag Glu	gcc Ala 125	gtc Val	atg Met	tat Tyr	38	4
gcg Ala	gca Ala 130	agg Arg	atg Met	gcg Ala	cgc Arg	gca Ala 135	cgc Arg	acg Thr	gga Gl y	aaa Lys	aaa Lys 140	gtg Val	ata Ile	gca Ala	aag Lys	43	2
gtc Val 145	gac Asp	ggc Gly	ggc Gly	tgg Trp	cac His 150	gga Gl y	tac Tyr	gcg Ala	tcg Ser	999 Gly 155	ctg Leu	cta Leu	aag Lys	tcg Ser	gtc Val 160	48	0
aac Asn	tgg Trp	ccg Pro	tac Tyr	gat Asp 165	gtg Val	ccc Pro	gag Glu	agc Ser	999 Gl y 170	CJÀ ddd	ctc Leu	gtc Val	gac Asp	gag Glu 175	gag Glu	52	8
cac His	acc Thr	gtg Val	tcc Ser 180	atc Ile	ccg Pro	tac Tyr	aac Asn	aat Asn 185	ctg Leu	gag Glu	gga Gly	tcc Ser	ctg Leu 190	gag Glu	gcg Ala	57	6
cta Leu	agg Arg	cgc Arg 195	gca Ala	GJÀ ddd	ggc Gly	gac Asp	ctt Leu 200	gca Ala	tgt Cys	gtc Val	ata Ile	gtc Val 205	gag Glu	ccg Pro	atg Met	62	4
ctt Leu	ggc Gl y 210	ggc Gly	ggc Gly	ggc Gly	tgc Cys	ata Ile 215	ccg Pro	gca Ala	gaa Glu	ccg Pro	gac Asp 220	tat Tyr	ctc Leu	cgc Arg	ggc Gl y	67	2
ata Ile 225	cag Gln	gag Glu	ttt Phe	gtg Val	cat His 230	tcg Ser	aag Lys	ggt Gly	gca Ala	ctg Leu 235	ttc Phe	att Ile	ctc Leu	gac Asp	gag Glu 240	72	0
ata Ile	gtc Val	acg Thr	ggg Gl y	ttc Phe 245	cgg Arg	ttc Phe	gac Asp	ttt Phe	ggc Gly 250	tgc Cys	gcg Ala	tac Tyr	aag Lys	aaa Lys 255	atg Met	76	8
GJ À 333	ctg Leu	gac Asp	ccc Pro 260	gac Asp	gtg Val	gtg Val	gcg Ala	ctg Leu 265	gga Gly	aag Lys	ata Ile	gtc Val	999 Gly 270	ggc Gl y	gga Gl y	81	6
ttc Phe	ccc Pro	ata Ile 275	ggt Gly	gtg Val	gtg Val	tgc Cys	ggc Gl y 280	aag Lys	gac Asp	gag Glu	gtg Val	atg Met 285	tgc Cys	atc Ile	tcc Ser	86	4
gat Asp	acc Thr 290	ggc Gl y	gcg Ala	cat His	gca Ala	aga Arg 295	acc Thr	gag Glu	agg Arg	gcg Ala	tac Tyr 300	att Ile	ggc Gl y	ggc Gl y	ggc Gl y	91	2
acc Thr 305	ttt Phe	tct Ser	gca Ala	aac Asn	ccc Pro 310	gcg Ala	acg Thr	atg Met	act Thr	gcg Ala 315	ggt Gly	gcc Ala	gcg Ala	gca Ala	ctc Leu 320	96	0
ggt Gl y	gca Ala	ctc Leu	agg Arg	gag Glu 325	aga Arg	agg Arg	ggc Gl y	aca Thr	cta Leu 330	tac Tyr	ccc Pro	aga Arg	ata Ile	aac Asn 335	tcc Ser	100	8
atg Met	ddd ddd	gac Asp	gac Asp 340	gca Ala	agg Arg	gcg Ala	cgg Arg	ctc Leu 345	tcg Ser	agg Arg	ata Ile	ttc Phe	gac Asp 350	ggc Gl y	agg Arg	105	6
gtt Val	gca Ala	gtg Val 355	acc Thr	ggc Gl y	agg Arg	ggc Gl y	tcg Ser 360	ctg Leu	ttc Phe	atg Met	acg Thr	cac His 365	ttt Phe	aca Thr	ccg Pro	110	4

gat gg Asp Gl 37	g gcc y Ala 0	cgc Arg	agg Arg	ata Ile	tcc Ser 375	agc Ser	gcg Ala	gca Ala	gat Asp	gct Ala 380	gcc Ala	gcc Ala	tgc Cys	gat Asp	1152	
gtg ca Val Hi 385	t ctg s Leu	ctg Leu	cac His	agg Arg 390	tac Tyr	cac His	ctg Leu	gac Asp	atg Met 395	att Ile	aca Thr	agg Arg	gac Asp	ggc Gly 400	1200	
ata tt Ile Ph	c ttt e Phe	ctg Leu	cca Pro 405	ggc Gly	aag Lys	ctg Leu	GJ À 333	gcc Ala 410	ata Ile	tct Ser	gcc Ala	gcc Ala	cac His 415	tca Ser	1248	
agg gc Arg Al	g gac a Asp	ctt Leu 420	GJÀ ddd	gcc Ala	atg Met	tat Tyr	tcg Ser 425	gcg Ala	tct Ser	gag Glu	cgc Arg	ttt Phe 430	gcg Ala	CJλ daa	1296	
gga ct Gly Le	g tga u														1305	
<210> 3 <211> 1 <212> 5 <213> 0	SEQ II LENGTI FYPE: ORGAN	D NO H: 43 PRT ISM:	14 34 Cena	archa	aem s	ymbi	osun	n								
<400>	SEQUEI	NCE :	14													
Met As 1	p Leu	Glu	Arg 5	Glu	Tyr	Arg	Ala	Lys 10	Thr	Arg	Gly	Ser	Ala 15	Gly		
Ile Ph	e Ala	Arg 20	Ser	Arg	Arg	Tyr	His 25	Val	Gly	Gly	Val	Ser 30	His	Asn		
Ile Ar	g Tyr 35	Tyr	Glu	Pro	Tyr	Pro 40	Phe	Val	Thr	Arg	Ser 45	Ala	Arg	Gly		
Lys Hi 50	s Leu	Val	Asp	Val	Asp 55	Gly	Asn	Lys	Tyr	Thr 60	Asp	Tyr	Trp	Met		
Gly Hi 65	s Trp	Ser	Leu	Ile 70	Leu	Gly	His	Ala	Pro 75	Ala	Gln	Val	Arg	Ser 80		
Ala Va	l Glu	Gly	Gln 85	Leu	Arg	Arg	Gly	Trp 90	Ile	His	Gly	Thr	Ala 95	Asn		
Glu Pr	o Thr	Met 100	Arg	Leu	Ser	Glu	Ile 105	Ile	Arg	Gly	Ala	Val 110	Lys	Ala		
Ala Gl	u Lys 115	Ile	Arg	Tyr	Val	Thr 120	Ser	Gly	Thr	Glu	Ala 125	Val	Met	Tyr		
Ala Al 13	a Arg 0	Met	Ala	Arg	Ala 135	Arg	Thr	Gly	Lys	Lys 140	Val	Ile	Ala	Lys		
Val As 145	p Gly	Gly	Trp	His 150	Gly	Tyr	Ala	Ser	Gly 155	Leu	Leu	Lys	Ser	Val 160		
Asn Tr	p Pro	Tyr	Asp 165	Val	Pro	Glu	Ser	Gly 170	Gly	Leu	Val	Asp	Glu 175	Glu		
His Th	r Val	Ser 180	Ile	Pro	Tyr	Asn	Asn 185	Leu	Glu	GIY	Ser	Leu 190	GIu	Ala		
Leu Ar	g Arg 195	Ala	Gly	Gly	Asp	Leu 200	Ala	Сув	Val	Ile	Val 205	Glu	Pro	Met		
Leu Gl	y Gly 0	Gly	Gly	Cys	Ile 215	Pro	Ala	Glu	Pro	Asp 220	Tyr	Leu	Arg	Gly		
Ile Gl: 225	n Glu	Phe	Val	His 230	Ser	Lys	Gly	Ala	Leu 235	Phe	Ile	Leu	Asp	Glu 240		
Ile Va	⊥ Thr	Gly	Phe 245	Arg	Phe	Asp	Phe	G1y 250	Сув	Ala	Tyr	Lys	Lys 255	Met		

Gly	Leu	Asp	Pro 260	Asp	Val	Val	Ala	Leu 265	Gly	Lys	Ile	Val	Gl y 270	Gly	Gly		
Phe	Pro	Ile 275	Gly	Val	Val	Сув	Gly 280	Lys	Asp	Glu	Val	Met 285	Сув	Ile	Ser		
Asp	Thr 290	Gly	Ala	His	Ala	Arg 295	Thr	Glu	Arg	Ala	Ty r 300	Ile	Gly	Gly	Gly		
Thr 305	Phe	Ser	Ala	Asn	Pro 310	Ala	Thr	Met	Thr	Ala 315	Gly	Ala	Ala	Ala	Leu 320		
Gly	Ala	Leu	Arg	Glu 325	Arg	Arg	Gly	Thr	Leu 330	Tyr	Pro	Arg	Ile	Asn 335	Ser		
Met	Gly	Asp	Asp 340	Ala	Arg	Ala	Arg	Leu 345	Ser	Arg	Ile	Phe	A sp 350	Gly	Arg		
Val	Ala	Val 355	Thr	Gly	Arg	Gly	Ser 360	Leu	Phe	Met	Thr	His 365	Phe	Thr	Pro		
Asp	Gly 370	Ala	Arg	Arg	Ile	Ser 375	Ser	Ala	Ala	Asp	Ala 380	Ala	Ala	Cys	Asp		
Val 385	His	Leu	Leu	His	Arg 390	Tyr	His	Leu	Asp	Met 395	Ile	Thr	Arg	Asp	Gly 400		
Ile	Phe	Phe	Leu	Pro 405	Gly	Lys	Leu	Gly	Ala 410	Ile	Ser	Ala	Ala	His 415	Ser		
Arg	Ala	Asp	Leu	Gly	Ala	Met	Tyr	Ser	Ala	Ser	Glu	Arg	Phe	Ala	Gly		
Gly	Leu		4∠U					420					430				
<210 <211 <212 <213 <220 <221 <221 <221	 > SE > LE > TY > OF > FE > NZ > LC 	EQ II ENGTH (PE: RGAN] EATUR AME/H DCAT]	D NO H: 8: DNA ISM: RE: RE: REY: ION:	15 L6 Cena CDS (1)	arch <i>a</i>	aeum 316)	symb	piosu	ım								
<400)> SE	EQUEI	ICE :	15													
atg Met 1	ata Ile	ctc Leu	ttc Phe	ggc Gly 5	aag Lys	agc Ser	gac Asp	ccc Pro	tcc Ser 10	gac Asp	ctg Leu	ctc Leu	cgc Arg	cag Gln 15	gcc Ala	48	
gat Asp	ctt Leu	ttg Leu	tgc Cys 20	agt Ser	GJ À ddd	aac Asn	aag Lys	tac Tyr 25	aag Lys	gcg Ala	gca Ala	gtg Val	ggc Gly 30	ctg Leu	tac Tyr	96	
agc Ser	agg Arg	ata Ile 35	ctc Leu	aag L y s	gac Asp	gac Asp	ccg Pro 40	cag Gln	aac Asn	agg Arg	atg Met	gtc Val 45	ctg Leu	cag Gln	aga Arg	144	
aag L y s	ggc Gl y 50	ctc Leu	gcc Ala	ctc Leu	aac Asn	agg Arg 55	ata Ile	aga Arg	agg Arg	tac Tyr	tct Ser 60	gat Asp	gcc Ala	ata Ile	acg Thr	192	
tgc Cys 65	ttt Phe	gat Asp	ctg Leu	ctg Leu	ctc Leu 70	gag Glu	ctg Leu	gat Asp	gat Asp	ggc Gl y 75	gac Asp	gcg Ala	cct Pro	gca Ala	tac Tyr 80	240	
aac Asn	aac Asn	aag Lys	gcc Ala	ata Ile 85	gcc Ala	cag Gln	gcc Ala	gag Glu	ctg Leu 90	ggc Gly	gat Asp	acg Thr	gca Ala	tcc Ser 95	gcc Ala	288	
ctg Leu	gag Glu	aac Asn	tat Tyr 100	ggc Gl y	agg Arg	gcc Ala	atc Ile	gaa Glu 105	gcc Ala	agc Ser	ccc Pro	agg Arg	tac Tyr 110	gcg Ala	ccg Pro	336	
gcg Ala	tac Tyr	ttt Phe	aac Asn	agg Arg	gcc Ala	gtc Val	ctg Leu	ctc Leu	gac Asp	agg Arg	ctc Leu	ggc Gly	gag Glu	cac His	gaa Glu	384	

-continued

115	120	125
gac gcg ctg ccg gac Asp Ala Leu Pro Asp 130	: ctc gac aag gcg aca agg ct) Leu Asp Lys Ala Thr Arg Le 135 14	g gac agg gac aag 432 u Asp Arg Asp Lys 0
gcc aac ccg agg tto Ala Asn Pro Arg Phe 145	tac aag ggg ata gtc ctg gg Tyr Lys Gly Ile Val Leu Gl 150 155	a aag atg ggc cgg 480 y Lys Met Gly Arg 160
cat gca gag gcg ctg His Ala Glu Ala Leu 165	f tee tge tte aag gag gtg tg 1 Ser Cys Phe Lys Glu Val Cy 5 170	c agg gcg gac cac 528 s Arg Ala Asp His 175
ggc cac gcc gac toa Gly His Ala Asp Sen 180	i cag ttc cac gtg gcg ata ga S Gln Phe His Val Ala Ile Gl 185	g gta gcc gag ctc 576 u Val Ala Glu Leu 190
ggc aaa cac gcc gaa Gly Lys His Ala Glu 195	i gcc ctc ggt gag ctt gcg gc i Ala Leu Gly Glu Leu Ala Al 200	a ctg ccc gca gag 624 a Leu Pro Ala Glu 205
tac cgc gag aac gca Tyr Arg Glu Asn Ala 210	aac gtt ctc tac gcc cgg gc Asn Val Leu Tyr Ala Arg Al 215 22	g cgc agc ctc gcc 672 a Arg Ser Leu Ala 0
ggc ctg gac agg tac Gly Leu Asp Arg Tyn 225	gac gag tcc att gca cac ct Asp Glu Ser Ile Ala His Le 230 235	g caa aag gcc gcc 720 u Gln Lys Ala Ala 240
aga aag gac tcc aag Arg Lys Asp Ser Lys 245	aca ata aaa aag tgg gcc cg Thr Ile Lys Lys Trp Ala Ar 250	c gcc gag aag gcc 768 g Ala Glu Lys Ala 255
ttt gat cat ata cgo Phe Asp His Ile Arc	g gat gat ccc agg ttc aaa aa Asp Asp Pro Arg Phe Lys Ly	g ata gcc ggg taa 816
260	265	z70
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer</pre>	archaeum symbiosum	s lie Ala Giy 270
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer. <400> SEQUENCE: 16</pre>	archaeum symbiosum	s lle Ala Giy 270
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer. <400> SEQUENCE: 16 Met Ile Leu Phe Gly 1 5</pre>	archaeum symbiosum 7 Lys Ser Asp Pro Ser Asp Le 10	u Leu Arg Gln Ala 15
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer <400> SEQUENCE: 16 Met Ile Leu Phe Gly 1 5 Asp Leu Leu Cys Ser 20</pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25	u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer. <400> SEQUENCE: 16 Met Ile Leu Phe Gly 1 5 Asp Leu Leu Cys Ser 20 Ser Arg Ile Leu Lys 35</pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25 Asp Asp Pro Gln Asn Arg Me 40	u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30 t Val Leu Gln Arg 45
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer <400> SEQUENCE: 16 Met Ile Leu Phe Gly 1 5 Asp Leu Leu Cys Ser 20 Ser Arg Ile Leu Lys 35 Lys Gly Leu Ala Leu 50</pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 S Gly Asn Lys Tyr Lys Ala Al 25 Asp Asp Pro Gln Asn Arg Me 40 Asn Arg Ile Arg Arg Tyr Se 55	u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30 t Val Leu Gln Arg 45 r Asp Ala Ile Thr
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer. <400> SEQUENCE: 16 Met Ile Leu Phe Gly 1 5 Asp Leu Leu Cys Ser 20 Ser Arg Ile Leu Lys 35 Lys Gly Leu Ala Leu 50 Cys Phe Asp Leu Leu 65</pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25 3 Asp Asp Pro Gln Asn Arg Me 40 4 Asn Arg Ile Arg Arg Tyr Se 55 60 1 Leu Glu Leu Asp Asp Gly As 70 75	u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30 t Val Leu Gln Arg 45 r Asp Ala Ile Thr p Ala Pro Ala Tyr 80
<pre></pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25 Asp Asp Pro Gln Asn Arg Me 40 Asn Arg Ile Arg Arg Tyr Se 55 1 Leu Glu Leu Asp Asp Gly As 70 2 Ala Gln Ala Glu Leu Gly As 90	u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30 t Val Leu Gln Arg 45 r Asp Ala Ile Thr p Ala Pro Ala Tyr 80 p Thr Ala Ser Ala 95
<pre></pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25 Asp Asp Pro Gln Asn Arg Me 40 Asn Arg Ile Arg Arg Tyr Se 55 Ala Gln Ala Glu Leu Gly As 90 Y Arg Ala Ile Glu Ala Ser Pr 105	<pre>u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30 t Val Leu Gln Arg 45 r Asp Ala Ile Thr p Ala Pro Ala Tyr 80 p Thr Ala Ser Ala 95 o Arg Tyr Ala Pro 110</pre>
<pre></pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25 Asp Asp Pro Gln Asn Arg Me 40 Asn Arg Ile Arg Arg Tyr Se 55 1 Leu Glu Leu Asp Asp Gly As 70 Ala Gln Ala Glu Leu Gly As 90 Y Arg Ala Ile Glu Ala Ser Pr 125 126 126 126 126 126 126 10 10 10 10 10 10 10 10 10 10	u Leu Arg Gln Ala 15 112 270 u Leu Arg Gln Ala 15 112 a Val Gly Leu Tyr 30 112 112 112 112 112 r Asp Ala Ile Thr p Ala Pro Ala Tyr 80 p Thr Ala Ser Ala 95 o Arg Tyr Ala Pro 110 112
<pre><210> SEQ ID NO 16 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cer <400> SEQUENCE: 16 Met Ile Leu Phe Gly 1 5 Asp Leu Leu Cys Ser 20 Ser Arg Ile Leu Lys 35 Lys Gly Leu Ala Leu 50 Cys Phe Asp Leu Leu 65 Asn Asn Lys Ala Ile 85 Leu Glu Asn Tyr Gly 100 Ala Tyr Phe Asn Arg 130</pre>	archaeum symbiosum Y Lys Ser Asp Pro Ser Asp Le 10 C Gly Asn Lys Tyr Lys Ala Al 25 Asp Asp Pro Gln Asn Arg Me 40 Asn Arg Ile Arg Arg Tyr Se 55 Ala Gln Ala Glu Leu Asp Asp Gly As 70 Ala Gln Ala Glu Leu Gly As 90 Ala Val Leu Leu Asp Arg Le 120 14 14 14 14 14 14 14 14 14 14	<pre>u Leu Arg Gln Ala 15 a Val Gly Leu Tyr 30 t Val Leu Gln Arg 45 r Asp Ala Ile Thr p Ala Pro Ala Tyr 80 p Thr Ala Ser Ala 95 o Arg Tyr Ala Pro 110 u Gly Glu His Glu 125 0</pre>

His	Ala	Glu	Ala	Leu 165	Ser	Cys	Phe	Lys	Glu 170	Val	Cys	Arg	Ala	A sp 175	His		
Gly	His	Ala	Asp	Ser	Gln	Phe	His	Val	Ala	Ile	Glu	Val	Ala 190	Glu	Leu		
Gly	Lys	His	Ala	Glu	Ala	Leu	Gly	Glu	Leu	Ala	Ala	Leu	Pro	Ala	Glu		
Tyr	Arg	195 Glu	Asn	Ala	Asn	Val	200 Leu	Tyr	Ala	Arg	Ala	205 Arg	Ser	Leu	Ala		
Gly	210 Leu	Asp	Arg	Tyr	Asp	215 Glu	Ser	Ile	Ala	His	220 Leu	Gln	Lys	Ala	Ala		
225 Arg	Lvs	Asp	Ser	Lvs	230 Thr	Tle	Lvs	Lvs	Tro	235 Ala	Ara	Ala	Glu	Lvs	240 Ala		
Dho		ui c	TIO	245	Acr	100	Dro		250 Dho	Turc	y	TIO		255 Clu			
Pile	Авр	птр	260	ALG	Авр	Авр	PIO	265	Pile	цув	цув	шe	270	GTÀ			
<21 <21 <21 <21 <22 <22 <22 <22	0> SI 1> LI 2> TY 3> OF 0> FI 1> NZ 2> LC	EQ II ENGTH (PE: RGANI EATUH AME/H DCATI	O NO H: 69 DNA ISM: RE: RE: REY: ION:	17 96 Cena CDS (1)	archa	aeum 596)	symb	Diosu	ım								
<40)> SI	EQUEI	ICE :	17													
gtg Met 1	act Thr	gac Asp	aag Lys	aca Thr 5	agg Arg	atc Ile	atc Ile	gtc Val	ctg Leu 10	cgc Arg	aac Asn	gcc Ala	atg Met	act Thr 15	gaa Glu	48	
cag Gln	tcc Ser	gcc Ala	cgg Arg 20	gcc Ala	atg Met	atc Ile	gag Glu	gca Ala 25	aaa Lys	aag Lys	acg Thr	GJÀ ddd	cca Pro 30	ttc Phe	agg Arg	96	
gcc Ala	atg Met	atg Met 35	agg Arg	gcg Ala	ccc Pro	cca Pro	aag Lys 40	gag Glu	gac Asp	gtc Val	cat His	gta Val 45	cat His	tcc Ser	gta Val	144	
agg Arg	ctc Leu 50	gtc Val	cac His	gag Glu	gcg Ala	ctc Leu 55	atc Ile	cgc Arg	gtc Val	tcc Ser	gcc Ala 60	cgg Arg	tac Tyr	tcg Ser	gcc Ala	192	
gac Asp 65	ttt Phe	ttc Phe	aga Arg	agg Arg	gcc Ala 70	gtg Val	cac His	ccg Pro	atc Ile	aag Lys 75	gtg Val	gat Asp	cag Gln	aac Asn	gtg Val 80	240	
atc Ile	gag Glu	gtg Val	gtg Val	ctg Leu 85	ggc Gly	gac Asp	ggc Gl y	gtc Val	ttc Phe 90	ccg Pro	ata Ile	agg Arg	tca Ser	aag Lys 95	tcg Ser	288	
cgc Arg	ata Ile	cgc Arg	aag Lys 100	acc Thr	ctg Leu	tcc Ser	gcc Ala	999 Gl y 105	cgc Arg	ggc Gl y	aag L y s	aac Asn	agg Arg 110	gtc Val	gat Asp	336	
ctg Leu	gaa Glu	ctc Leu 115	gag Glu	gag Glu	cac His	gta Val	tac Tyr 120	gcg Ala	gaa Glu	tca Ser	gag Glu	ggc Gl y 125	gtg Val	atg Met	tgc Cys	384	
ctt Leu	gac Asp 130	cgg Arg	cac His	ggc Gl y	GJ À ddd	gag Glu 135	acc Thr	ggc Gl y	ttt Phe	ccc Pro	tac Tyr 140	aag Lys	acg Thr	GJÅ ∂∂∂	acc Thr	432	
ggc Gly 145	gcg Ala	gtc Val	gag Glu	ccg Pro	tac Tyr 150	ccg Pro	cgg Arg	cgc Arg	atg Met	ctt Leu 155	gat Asp	tcg Ser	tcg Ser	gag Glu	aat Asn 160	480	
gtg Val	cgg Arg	cgc Arg	ccg Pro	gag Glu 165	ata Ile	gac Asp	acc Thr	ggg ggg	gtg Val 170	gcg Ala	ctg Leu	gaa Glu	aaa Lys	ctc Leu 175	cgg Arg	528	

gta Val	aag Lys	ctc Leu	cgc Arg 180	ggg Gl y	ccc Pro	ccg Pro	cct Pro	gac Asp 185	ggc Gly	atg Met	cgc Arg	gac Asp	ctc Leu 190	cgg Arg	gag Glu	576
gag Glu	ttt Phe	gca Ala 195	gtc Val	aga Arg	tcg Ser	gtc Val	gaa Glu 200	gaa Glu	gtg Val	tat Tyr	gcc Ala	cct Pro 205	gtc Val	tac Tyr	gag Glu	624
tcg Ser	cgg Arg 210	ctt Leu	gtg Val	GJÀ ddd	ccc Pro	aaa Lys 215	aaa Lys	aag Lys	gtc Val	cgg Arg	ata Ile 220	atg Met	cgg Arg	ata Ile	gac Asp	672
gcg Ala 225	gca Ala	aga Arg	aaa Lys	aag Lys	atg Met 230	ctg Leu	tag									696
<210 <211 <212 <212	0> SE 1> LE 2> TY 3> OF	EQ IE ENGTH PE: RGANI) NO [: 23 PRT [SM:	18 31 Cena	archa	aeum	symb	piosu	ım							
<400)> SE	QUEN	ICE :	18												
Met 1	Thr	Asp	Lys	Thr 5	Arg	Ile	Ile	Val	Leu 10	Arg	Asn	Ala	Met	Thr 15	Glu	
Gln	Ser	Ala	Arg 20	Ala	Met	Ile	Glu	Ala 25	Lys	Lys	Thr	Gly	Pro 30	Phe	Arg	
Ala	Met	Met 35	Arg	Ala	Pro	Pro	Lys 40	Glu	Asp	Val	His	Val 45	His	Ser	Val	
Arg	Leu 50	Val	His	Glu	Ala	Leu 55	Ile	Arg	Val	Ser	Ala 60	Arg	Tyr	Ser	Ala	
Asp 65	Phe	Phe	Arg	Arg	Ala 70	Val	His	Pro	Ile	L y s 75	Val	Asp	Gln	Asn	Val 80	
Ile	Glu	Val	Val	Leu 85	Gly	Asp	Gly	Val	Phe 90	Pro	Ile	Arg	Ser	Lys 95	Ser	
Arg	Ile	Arg	Lys 100	Thr	Leu	Ser	Ala	Gly 105	Arg	Gly	Lys	Asn	Arg 110	Val	Asp	
Leu	Glu	Leu 115	Glu	Glu	His	Val	Tyr 120	Ala	Glu	Ser	Glu	Gl y 125	Val	Met	Cys	
Leu	Asp 130	Arg	His	Gly	Gly	Glu 135	Thr	Gly	Phe	Pro	Tyr 140	Lys	Thr	Gly	Thr	
Gly 145	Ala	Val	Glu	Pro	T y r 150	Pro	Arg	Arg	Met	Leu 155	Asp	Ser	Ser	Glu	Asn 160	
Val	Arg	Arg	Pro	Glu 165	Ile	Asp	Thr	Gly	Val 170	Ala	Leu	Glu	Lys	Leu 175	Arg	
Val	Lys	Leu	Arg 180	Gly	Pro	Pro	Pro	Asp 185	Gly	Met	Arg	Asp	Leu 190	Arg	Glu	
Glu	Phe	Ala 195	Val	Arg	Ser	Val	Glu 200	Glu	Val	Tyr	Ala	Pro 205	Val	Tyr	Glu	
Ser	Arg 210	Leu	Val	Gly	Pro	Lys 215	Lys	Lys	Va⊥	Arg	11e 220	Met	Arg	Ile	Asp	
A1a 225	AIA	Arg	цув	цуз	Met 230	Leu										
<210 <211 <212 <212 <221 <220 <221	0> SE 1> LE 2> TY 3> OF 0> FE 1> NZ	EQ IE ENGTH PE: RGANI EATUF AME/F	O NO L: 37 DNA SM: RE: RE: CEY:	19 78 Cena CDS	archa	eum	symb	piosu	ım							

<222	2> LC	CAT	ION :	(1)	•••(3	378)											
<400)> SE	QUEN	ICE :	19													
atg Met 1	agg Arg	tca Ser	gaa Glu	gag Glu 5	agg Arg	ccg Pro	ggt Gl y	cac His	att Ile 10	gaa Glu	aag Lys	ttc Phe	cta Leu	aag Lys 15	agg Arg	48	
gcg Ala	gac Asp	aag Lys	gcg Ala 20	atc Ile	gac Asp	agc Ser	gcg Ala	gtc Val 25	gag Glu	cag Gln	ggc Gly	gtc Val	aag Lys 30	agg Arg	gcc Ala	96	
gac Asp	gag Glu	ata Ile 35	cta Leu	gac Asp	gat Asp	gca Ala	gtc Val 40	gag Glu	ctc Leu	ggc Gl y	aag Lys	att Ile 45	acg Thr	gtg Val	ggc Gl y	144	
gag Glu	gcg Ala 50	cag Gln	agg Arg	agg Arg	agc Ser	gat Asp 55	gtg Val	ctg Leu	ctc Leu	aaa Lys	cag Gln 60	gcc Ala	gag Glu	cgg Arg	gag Glu	192	
agc Ser 65	agg Arg	cgg Arg	ctc Leu	aag Lys	tcc Ser 70	aag Lys	ggc Gly	gcc Ala	aaa Lys	aag L y s 75	ctc Leu	gaa Glu	aag Lys	ggc Gly	ata Ile 80	240	
ggc Gl y	gcc Ala	gca Ala	aaa Lys	aag Lys 85	atg Met	gca Ala	gca Ala	ggc Gl y	aag Lys 90	ggc Gly	gac Asp	gcg Ala	ctc Leu	gag Glu 95	acg Thr	288	
ctc Leu	gca Ala	aag Lys	ctc Leu 100	ggc Gl y	gag Glu	ctc Leu	aga Arg	aag L y s 105	gcg Ala	GJÀ ddd	atc Ile	ata Ile	acg Thr 110	gag Glu	aaa Lys	336	
gag Glu	ttt Phe	cgc Arg 115	gcc Ala	aaa Lys	aag Lys	aaa Lys	aag L y s 120	ctc Leu	ctc Leu	gca Ala	gag Glu	atc Ile 125	tga			378	
<210 <211 <212 <212)> SE L> LE 2> TY 3> OF	Q II NGTH PE: RGANI) NO H: 12 PRT (SM:	20 25 Cena	archa	aeum	sym	piosu	1m								
<400)> SE	QUEI	ICE :	20													
Met 1	Arg	Ser	Glu	Glu 5	Arg	Pro	Gly	His	Ile 10	Glu	Lys	Phe	Leu	Lys 15	Arg		
Ala	Asp	Lys	Ala 20	Ile	Asp	Ser	Ala	Val 25	Glu	Gln	Gly	Val	Lys 30	Arg	Ala		
Asp	Glu	Ile 35	Leu	Asp	Asp	Ala	Val 40	Glu	Leu	Gly	Lys	Ile 45	Thr	Val	Gly		
Glu	Ala 50	Gln	Arg	Arg	Ser	Asp 55	Val	Leu	Leu	Lys	Gln 60	Ala	Glu	Arg	Glu		
Ser 65	Arg	Arg	Leu	Lys	Ser 70	Lys	Gly	Ala	Lys	L y s 75	Leu	Glu	Lys	Gly	Ile 80		
Gly	Ala	Ala	Lys	L y s 85	Met	Ala	Ala	Gly	L y s 90	Gly	Asp	Ala	Leu	Glu 95	Thr		
Leu	Ala	Lys	Leu 100	Gly	Glu	Leu	Arg	L y s 105	Ala	Gly	Ile	Ile	Thr 110	Glu	Lys		
Glu	Phe	Arg 115	Ala	Lys	Lys	Lys	L y s 120	Leu	Leu	Ala	Glu	Ile 125					
<210 <211 <212 <213 <220 <221 <221)> SE L> LE 2> TY 3> OF 3> FE L> NZ 2> LC	EQ II ENGTH PE: RGANI EATUH AME/H OCATI	D NO H: 60 DNA [SM: RE: RE: RE: RE: RE:	21 00 Cena CDS (1)	archa	aeum 500)	symb	piosu	1m								

<400)> SE	QUEN	ICE :	21												
atg Met 1	tcc Ser	cag Gln	acg Thr	ggg Gly 5	gcc Ala	ccg Pro	ggc Gl y	GJ À ddd	cat His 10	gcc Ala	tgc C y s	acg Thr	cca Pro	tac Tyr 15	acg Thr	48
cac His	gat Asp	cac His	gcc Ala 20	tcg Ser	atc Ile	gag Glu	ctc Leu	aag Lys 25	gac Авр	gcg Ala	tgg Trp	gcc Ala	tcg Ser 30	tcg Ser	agg Arg	96
aac Asn	gtc Val	cgc Arg 35	gag Glu	atg Met	tac Tyr	ttt Phe	gtg Val 40	acc Thr	gcc Ala	acg Thr	ttc Phe	tcg Ser 45	tcc Ser	gag Glu	agc Ser	144
cag Gln	ccg Pro 50	tac Tyr	ttt Phe	gca Ala	ccg Pro	cag Gln 55	gcc Ala	aac Asn	cac His	tac Tyr	ctg Leu 60	ctg Leu	gca Ala	agg Arg	ttc Phe	192
aag Lys 65	gac Asp	gcc Ala	ccc Pro	aga Arg	atg Met 70	atc Ile	aag Lys	gcg Ala	gtg Val	ggc Gl y 75	cgg Arg	GJ À ddd	gag Glu	ggc Gl y	gca Ala 80	240
tcc Ser	tat Tyr	gtg Val	ttt Phe	agc Ser 85	atg Met	gac Asp	gag Glu	gac Asp	ata Ile 90	ttc Phe	gag Glu	agg Arg	gag Glu	tcc Ser 95	ccc Pro	288
сј λ ааа	gtg Val	agc Ser	tat Tyr 100	gta Val	tcg Ser	gtg Val	tac T y r	tat Tyr 105	ctg Leu	gag Glu	tac Tyr	ggc Gl y	gat Asp 110	tcc Ser	gag Glu	336
gag Glu	gac Asp	ata Ile 115	tgc Cys	gag Glu	gtg Val	gcg Ala	tcc Ser 120	gtg Val	gtg Val	GJÅ ∂∂∂	aga Arg	aag L y s 125	gag Glu	aag Lys	ata Ile	384
ggc Gl y	agg Arg 130	gcg Ala	gga Gly	ata Ile	GJÀ ddd	cgc Arg 135	atg Met	дас Авр	gtc Val	tgc Cys	tcg Ser 140	agg Arg	gtg Val	ccg Pro	cca Pro	432
aag Lys 145	ttt Phe	gcc Ala	ttt Phe	ccg Pro	tac Tyr 150	agc Ser	GJÅ ∂∂∂	aac Asn	ata Ile	ata Ile 155	gtc Val	ctc Leu	gag Glu	gtc Val	tcc Ser 160	480
agc Ser	gag Glu	aag Lys	agc Ser	tac Tyr 165	cag Gln	agc Ser	gtc Val	aac Asn	aag L y s 170	tac Tyr	tgc Cys	gag Glu	aag Lys	acg Thr 175	cgg Arg	528
cgc Arg	gag Glu	gtc Val	atc Ile 180	cgc Arg	aag Lys	GJ À ddd	ata Ile	acg Thr 185	atg Met	acc Thr	aac Asn	ctt Leu	gtg Val 190	agc Ser	ctg Leu	576
tcc Ser	ata Ile	ctg Leu 195	gag Glu	cgg Arg	cta Leu	aag Lys	tag									600
<210 <211 <212)> SE l> LE 2> TY	Q ID NGTH	NO 1: 19 PRT	22 9			~ • • • • • •									
<400)> OF	OUEN	ICE :	22		leum	Буш	тови								
Met 1	Ser	Gln	Thr	Gly 5	Ala	Pro	Gly	Gly	His 10	Ala	Cys	Thr	Pro	Ty r 15	Thr	
His	Asp	His	Ala 20	Ser	Ile	Glu	Leu	Lys 25	Asp	Ala	Trp	Ala	Ser 30	Ser	Arg	
Asn	Val	Arg 35	Glu	Met	Tyr	Phe	Val 40	Thr	Ala	Thr	Phe	Ser 45	Ser	Glu	Ser	
Gln	Pro 50	Tyr	Phe	Ala	Pro	Gln 55	Ala	Asn	His	Tyr	Leu 60	Leu	Ala	Arg	Phe	
Lys	Asp	Ala	Pro	Arg	Met	Ile	Lys	Ala	Val	Gly	Arg	Gly	Glu	Gly	Ala	

-continued

65					70					75					80	
Ser	Tyr	Val	Phe	Ser 85	Met	Asp	Glu	Asp	Ile 90	Phe	Glu	Arg	Glu	Ser 95	Pro	
Gly	Val	Ser	Tyr 100	Val	Ser	Val	Tyr	Ty r 105	Leu	Glu	Tyr	Gly	Asp 110	Ser	Glu	
Glu	Asp	Ile 115	Сув	Glu	Val	Ala	Ser 120	Val	Val	Gly	Arg	L y s 125	Glu	Lys	Ile	
Gly	Arg 130	Ala	Gly	Ile	Gly	Arg 135	Met	Asp	Val	Сув	Ser 140	Arg	Val	Pro	Pro	
L y s 145	Phe	Ala	Phe	Pro	Tyr 150	Ser	Gly	Asn	Ile	Ile 155	Val	Leu	Glu	Val	Ser 160	
Ser	Glu	Lys	Ser	T y r 165	Gln	Ser	Val	Asn	L y s 170	Tyr	Суз	Glu	Lys	Thr 175	Arg	
Arg	Glu	Val	Ile 180	Arg	Lys	Gly	Ile	Thr 185	Met	Thr	Asn	Leu	Val 190	Ser	Leu	
Ser	Ile	Leu 195	Glu	Arg	Leu	Lys										
<210 <211 <211 <211 <221 <222 <222	0> SI 1> LI 2> TY 3> OF 0> FI 1> NA 2> LC	EQ II ENGTH (PE: RGAN) EATUH AME/H DCAT)	O NO I: 81 DNA ISM: RE: RE: REY: ION:	23 LO Cena CDS (1)	archa	aeum 310)	symt	piosu	ım							
<40	0> SI	EQUEN	ICE :	23												
ttg Met 1	gct Ala	cgg Arg	cgc Arg	tac Tyr 5	aag Lys	ccc Pro	cgg Arg	ata Ile	aag Lys 10	cag Gln	gtc Val	cta Leu	cgc Arg	gag Glu 15	gtg Val	48
ccc Pro	ctc Leu	aag Lys	aac Asn 20	gtg Val	cac His	gtg Val	tgg Trp	aag Lys 25	gac Asp	gcg Ala	cag Gln	gca Ala	agg Arg 30	agg Arg	ctg Leu	96
gac Asp	agg Arg	tcc Ser 35	agg Arg	gtg Val	agg Arg	gag Glu	att Ile 40	gca Ala	aag Lys	tcg Ser	atc Ile	agg Arg 45	tcc Ser	gag Glu	ggc Gly	144
ctg Leu	cag Gln 50	aac Asn	ccg Pro	ccc Pro	gta Val	ata Ile 55	cag Gln	agg Arg	ggc Gly	ggc Gl y	agg Arg 60	ggg ggg	ctg Leu	tac Tyr	ctg Leu	192
ctc Leu 65	ata Ile	tcg Ser	GJÀ ddd	aac Asn	cac His 70	agg Arg	ctt Leu	gcg Ala	gcc Ala	cta Leu 75	aag L y s	cat His	ctg Leu	ggc Gly	gca Ala 80	240
aaa Lys	aag Lys	tcc Ser	aag Lys	ttt Phe 85	ctt Leu	gtg Val	ata Ile	acc Thr	aag Lys 90	gat Asp	acg Thr	gag Glu	tac Tyr	ggc Gly 95	ctg Leu	288
gag Glu	gac Asp	gca Ala	aag L y s 100	gcg Ala	gca Ala	tcg Ser	gtc Val	gtg Val 105	gag Glu	aac Asn	ctg Leu	cac His	cgg Arg 110	atg Met	cag Gln	336
atg Met	agc Ser	ccc Pro 115	cgg Arg	gag Glu	ctc Leu	gcc Ala	gac Asp 120	gcg Ala	tgc C y s	agg Arg	ttt Phe	ctc Leu 125	gcc Ala	gag Glu	cag Gln	384
atg Met	acc Thr 130	cgc Arg	gcc Ala	gag Glu	gcc Ala	gca Ala 135	agg Arg	aag Lys	ctc Leu	ggc Gl y	atg Met 140	tcg Ser	atg Met	ccc Pro	acg Thr	432
ttc Phe 145	aaa Lys	aag Lys	tac Tyr	cac His	ggc Gl y 150	ttt Phe	gcg Ala	ggc Gly	gtg Val	ccg Pro 155	gag Glu	aag Lys	atc Ile	aag Lys	gcg Ala 160	480

cta Leu	gtc Val	ccc Pro	ddd ddd	acc Thr 165	ata Ile	tcc Ser	cgg Arg	gac Asp	gag Glu 170	gcg Ala	aca Thr	aag Lys	ctg Leu	tac Tyr 175	cag Gln	528
gcc Ala	gtc Val	ccg Pro	acc Thr 180	gtc Val	tcc Ser	cag Gln	gcg Ala	ctc Leu 185	aag Lys	gtg Val	gcg Ala	ctg Leu	aac Asn 190	ata Ile	tca Ser	576
agg Arg	ctt Leu	gat Asp 195	cgg Arg	ccg Pro	tcg Ser	agg Arg	cgg Arg 200	atc Ile	tac Tyr	ctg Leu	agg Arg	ctg Leu 205	cta Leu	gcc Ala	cag Gln	624
agc Ser	ccc Pro 210	cgc Arg	tcg Ser	ggc Gl y	cac His	agg Arg 215	atc Ile	ctg Leu	cta Leu	aag Lys	agg Arg 220	gtg Val	cgc Arg	aag Lys	acg Thr	672
ggc Gl y 225	gtc Val	agg Arg	aag Lys	aag Lys	atc Ile 230	ccc Pro	ata Ile	gag Glu	ctc Leu	ggc Gl y 235	aag Lys	aac Asn	ggc Gl y	gca Ala	aga Arg 240	720
aag Lys	ctt Leu	gcc Ala	cgg Arg	gtg Val 245	gcc Ala	gag Glu	cgc Arg	gag Glu	ggc Gl y 250	acc Thr	gac Asp	gag Glu	acc Thr	cgg Arg 255	ctt Leu	768
gcc Ala	aac Asn	agg Arg	ata Ile 260	gtc Val	cgg Arg	gag Glu	tac Tyr	ctg Leu 265	agg Arg	aag L y s	cag Gln	cga Arg	tga			810
<210 <211 <212 <213)> SE l> LE 2> TY 3> OF	Q ID NGTH PE: GANI) NO [: 26 PRT [SM:	24 59 Cena	archa	eum	symb	oiosu	ım							
<400)> SE	QUEN	ICE :	24												
Met 1	Ala	Arg	Arg	Tyr 5	Lys	Pro	Arg	Ile	Lys 10	Gln	Val	Leu	Arg	Glu 15	Val	
Pro	Leu	Lys	Asn 20	Val	His	Val	Trp	Lys 25	Asp	Ala	Gln	Ala	Arg 30	Arg	Leu	
Asp	Arg	Ser 35	Arg	Val	Arg	Glu	Ile 40	Ala	Lys	Ser	Ile	Arg 45	Ser	Glu	Gly	
Leu	Gln 50	Asn	Pro	Pro	Val	Ile 55	Gln	Arg	Gly	Gly	Arg 60	Gly	Leu	Tyr	Leu	
Leu 65	Ile	Ser	Gly	Asn	His 70	Arg	Leu	Ala	Ala	Leu 75	Lys	His	Leu	Gly	Ala 80	
Lys	Lys	Ser	Lys	Phe 85	Leu	Val	Ile	Thr	Lys 90	Asp	Thr	Glu	Tyr	Gly 95	Leu	
Glu	Asp	Ala	Lys 100	Ala	Ala	Ser	Val	Val 105	Glu	Asn	Leu	His	Arg 110	Met	Gln	
Met	Ser	Pro 115	Arg	Glu	Leu	Ala	Asp 120	Ala	Cys	Arg	Phe	Leu 125	Ala	Glu	Gln	
Met	Thr 130	Arg	Ala	Glu	Ala	Ala 135	Arg	Lys	Leu	Gly	Met 140	Ser	Met	Pro	Thr	
Phe 145	Lys	Lys	Tyr	His	Gly 150	Phe	Ala	Gly	Val	Pro 155	Glu	Lys	Ile	Lys	Ala 160	
Leu																
	Val	Pro	Gly	Thr 165	Ile	Ser	Arg	Asp	Glu 170	Ala	Thr	Lys	Leu	Tyr 175	Gln	
Ala	Val Val	Pro Pro	Gly Thr 180	Thr 165 Val	Ile Ser	Ser Gln	Arg Ala	Asp Leu 185	Glu 170 Lys	Ala Val	Thr Ala	Lys Leu	Leu Asn 190	Tyr 175 Ile	Gln Ser	
continued

											_	con	CTII	ueu			
Ser Pi 21	ro A 10	rg S	Ser	Gly	His	Arg 215	Ile	Leu	Leu	Lys	Arg 220	Val	Arg	Lys	Thr		
Gly Va 225	al A	rg I	ys	Lys	Ile 230	Pro	Ile	Glu	Leu	Gly 235	Lys	Asn	Gly	Ala	Arg 240		
Lys Le	eu A	la A	Arg	Val 245	Ala	Glu	Arg	Glu	Gly 250	Thr	Asp	Glu	Thr	Arg 255	Leu		
Ala As	sn A	rg I 2	11e 260	Val	Arg	Glu	Tyr	Leu 265	Arg	Lys	Gln	Arg					
<210><211><212><212><213><220><221><221><221><222>	SEQ LENG TYPI ORG FEA NAMI LOC	ID GTH: D E: D ANIS TURE E/KE ATIO	NO 83 DNA SM: SM: SM: SM: SM: SM: SM: SM: SM: SM:	25 7 Cena CDS (1).	arch <i>a</i>	aeum 337)	symb	oiosu	ım								
<400>	SEQU	JENC	:E:	25	aat		+++	a+ a			a++	200	++ >	a = +		10	
Met Le	eu T	hr V	7al	Phe 5	Gly	aay Lys	Phe	Ile	Thr 10	Thr	Ile	Arg	Leu	Asp 15	Arg	40	
gct gt Ala Va	tt c al P	cc c ro F	cg Pro 20	cag Gln	gcc Ala	ccc Pro	gtg Val	cac His 25	gta Val	ctc Leu	tat Tyr	cgc Arg	gca Ala 30	gcc Ala	ccc Pro	96	
cgg gg Arg G]	gg a ly Ti	ca g hr A 35	gcc Ala	gga Gl y	acc Thr	GJ À ddd	ggc Gly 40	tgc Cys	cgg Arg	ggc Gl y	GJÀ ddd	atc Ile 45	ccg Pro	ggc Gl y	gtc Val	144	
gat ag Asp Ar 5	ga a rg I 50	ta a le A	aat Asn	acg Thr	cgc Arg	999 Gly 55	gcc Ala	gcg Ala	gtg Val	cga Arg	tcg Ser 60	ccc Pro	gtg Val	ctg Leu	ata Ile	192	
ata aa Ile Aa 65	ac t sn C	gc a ys I	aaa Jys	aac Asn	tat Tyr 70	gag Glu	gag Glu	gcc Ala	gcc Ala	ggc Gl y 75	ggc Gly	agg Arg	atc Ile	cgc Arg	80 GJ À AAA	240	
ctg go Leu Al	ca g la A	at g sp A	gcc Ala	gcg Ala 85	gcc Ala	ggg Gl y	gct Ala	gcc Ala	gcc Ala 90	agg Arg	tac Tyr	ggc Gly	gtc Val	agg Arg 95	ata Ile	288	
gcg at Ala Il	ta g le A	cc c la F 1	ro 2ro	ccg Pro	cag Gln	cac His	ctg Leu	ctg Leu 105	ggc Gly	att Ile	ata Ile	gca Ala	ggc Gl y 110	cgg Arg	gat Asp	336	
ctt go Leu Gl	gc g ly V 1	tg c al I 15	tg Leu	gcc Ala	cag Gln	cat His	gtc Val 120	gac Asp	gac Asp	aag Lys	GJÀ ∂∂∂	acg Thr 125	GJÀ ∂∂∂	agc Ser	acc Thr	384	
aca go Thr Gl 13	gg t l y T 30	at g yr V	gtc 7al	gtc Val	ccg Pro	gag Glu 135	ctg Leu	cta Leu	aaa Lys	cag Gln	tcg Ser 140	GJÀ ddd	gtc Val	tcc Ser	ggg ggg	432	
gcc at Ala Il 145	ta a le I	tc a le A	aac Asn	cac His	agc Ser 150	gag Glu	cac His	cgc Arg	gta Val	ccc Pro 155	gcg Ala	gac Asp	cag Gln	gtg Val	gcg Ala 160	480	
ggc ct Gly Le	tg g eu V	ta c al F	ca Pro	agg Arg 165	ctc Leu	agg Arg	ggc Gly	ctt Leu	ggc Gl y 170	atg Met	gtc Val	tcg Ser	gtg Val	gtc Val 175	tgc Cys	528	
gtc ag Val An	gg g rg A	at c sp F 1	cc Pro 180	gcc Ala	gag Glu	gcc Ala	gcc Ala	gat Asp 185	ctc Leu	tcc Ser	cgg Arg	tat Tyr	tgc Cys 190	ccc Pro	gac Asp	576	
tac at Tyr Il	ta g le A 1	cg a la I 95	ata Ile	gag Glu	cct Pro	ccc Pro	gag Glu 200	ctg Leu	ata Ile	ggt Gl y	tcc Ser	ggc Gl y 205	agg Arg	tcc Ser	gtc Val	624	
tcg ac	ca g	ag a	ıgg	ccc	cag	gtc	ata	caa	gag	gcc	gca	gag	gcc	atc	agg	672	

continued

											-	con	τın	uea		
Ser	Thr 210	Glu	Arg	Pro	Gln	Val 215	Ile	Gln	Glu	Ala	Ala 220	Glu	Ala	Ile	Arg	
999 Gl y 225	gct Ala	ggc Gl y	ggc Gly	gta Val	aag L y s 230	ctg Leu	ctc Leu	tgc Cys	GJ À ddd	gcg Ala 235	ggc Gl y	ata Ile	acc Thr	tcc Ser	999 Gly 240	720
gcg Ala	gac Asp	gtg Val	cgc Arg	agg Arg 245	gcc Ala	ctc Leu	gag Glu	ctt Leu	ggc Gl y 250	tcc Ser	gag Glu	ggc Gl y	att Ile	ctt Leu 255	gtg Val	768
gca Ala	agc Ser	ggg ggg	gtc Val 260	gta Val	aag Lys	tcg Ser	gca Ala	gac Asp 265	ccc Pro	gca Ala	ggg ggg	gcc Ala	atc Ile 270	GJÀ ddd	gag Glu	816
ctt Leu	gcc Ala	cgg Arg 275	gcc Ala	atg Met	tcc Ser	tga										837
<210 <213 <213)> SE L> LE 2> TY	EQ II ENGTH	NO N: 27 PRT	26 78												
<21.	3> UF	GANI	.SM :	Cena	arena	aeum	synu	losu	ım							
<400)> SE	QUEN	ICE :	26												
Met 1	Leu	Thr	Val	Phe 5	Gly	Lys	Phe	Ile	Thr 10	Thr	Ile	Arg	Leu	Asp 15	Arg	
Ala	Val	Pro	Pro 20	Gln	Ala	Pro	Val	His 25	Val	Leu	Tyr	Arg	Ala 30	Ala	Pro	
Arg	Gly	Thr 35	Ala	Gly	Thr	Gly	Gly 40	Cys	Arg	Gly	Gly	Ile 45	Pro	Gly	Val	
Asp	Arg 50	Ile	Asn	Thr	Arg	Gly 55	Ala	Ala	Val	Arg	Ser 60	Pro	Val	Leu	Ile	
Ile 65	Asn	Cys	Lys	Asn	T y r 70	Glu	Glu	Ala	Ala	Gly 75	Gly	Arg	Ile	Arg	Gly 80	
Leu	Ala	Asp	Ala	Ala 85	Ala	Gly	Ala	Ala	Ala 90	Arg	Tyr	Gly	Val	Arg 95	Ile	
Ala	Ile	Ala	Pro 100	Pro	Gln	His	Leu	Leu 105	Gly	Ile	Ile	Ala	Gl y 110	Arg	Asp	
Leu	Gly	Val 115	Leu	Ala	Gln	His	Val 120	Asp	Asp	Lys	Gly	Thr 125	Gly	Ser	Thr	
Thr	Gly 130	Tyr	Val	Val	Pro	Glu 135	Leu	Leu	Lys	Gln	Ser 140	Gly	Val	Ser	Gly	
Ala 145	Ile	Ile	Asn	His	Ser 150	Glu	His	Arg	Val	Pro 155	Ala	Asp	Gln	Val	Ala 160	
Gly	Leu	Val	Pro	Arg 165	Leu	Arg	Gly	Leu	Gly 170	Met	Val	Ser	Val	Val 175	Сув	
Val	Arg	Asp	Pro 180	Ala	Glu	Ala	Ala	A sp 185	Leu	Ser	Arg	Tyr	Сув 190	Pro	Asp	
Tyr	Ile	Ala 195	Ile	Glu	Pro	Pro	Glu 200	Leu	Ile	Gly	Ser	Gly 205	Arg	Ser	Val	
Ser	Thr 210	Glu	Arg	Pro	Gln	Val 215	Ile	Gln	Glu	Ala	Ala 220	Glu	Ala	Ile	Arg	
Gly 225	Ala	Gly	Gly	Val	L y s 230	Leu	Leu	Сув	Gly	Ala 235	Gly	Ile	Thr	Ser	Gly 240	
Ala	Asp	Val	Arg	Arg 245	Ala	Leu	Glu	Leu	Gly 250	Ser	Glu	Gly	Ile	Leu 255	Val	
Ala	Ser	Gly	Val	Val	Lys	Ser	Ala	Asp	Pro	Ala	Gly	Ala	Ile	Gly	Glu	

												con	tin	ued					
			260					265					270						
Leu	Ala	Arg 275	Ala	Met	Ser														
<21 <21 <21 <21 <22 <22 <22 <22	0> SE 1> LE 2> TY 3> OF 0> FE 1> NZ 2> LC	EQ II ENGTH PE: RGANJ EATUH AME/H OCATJ	D NO H: 54 DNA SM: SM: RE: KEY: ION:	27 49 Cena CDS (1)	archa	aeum 549)	sym	oiosı	ım										
<40	0> SE	QUEI	ICE :	27															
atg Met 1	ctg Leu	gat Asp	cca Pro	agg Arg 5	aaa Lys	cgg Arg	ccc Pro	agg Arg	gtg Val 10	gtc Val	aac Asn	gtt Val	gtg Val	agt Ser 15	acc Thr	48			
gcc Ala	gac Asp	ctg Leu	ggc Gly 20	cgg Arg	agg Arg	gtg Val	ggc Gl y	gca Ala 25	aaa Lys	aag Lys	atg Met	gcc Ala	gcc Ala 30	atg Met	cca Pro	96			
tgc C y s	tgc Cys	atg Met 35	tac Tyr	gac Asp	gag Glu	gcg Ala	gta Val 40	tac Tyr	ggc Gly	ggc Gl y	agg Arg	tgc Cys 45	ggc Gly	tat Tyr	atc Ile	144			
aaa Lys	aca Thr 50	ccc Pro	ggc Gly	atg Met	cgg Arg	999 Gly 55	cgc Arg	gtg Val	acg Thr	gtg Val	ttt Phe 60	ctc Leu	tcg Ser	ggc Gl y	aag Lys	192			
atg Met 65	ata Ile	tcc Ser	gtc Val	ggc Gl y	gcc Ala 70	agc Ser	tcc Ser	gtg Val	agg Arg	gca Ala 75	tcg Ser	ttt Phe	gcg Ala	cag Gln	ctg Leu 80	240			
cac His	gag Glu	gcc Ala	cgg Arg	ctg Leu 85	cac His	ctg Leu	ttc Phe	cgg Arg	aac Asn 90	GJÀ ddd	gcg Ala	gcg Ala	gcc Ala	ggc Gly 95	GJ À ddd	288			
tgt Cys	aca Thr	agg Arg	ccc Pro 100	gtc Val	gta Val	cgc Arg	aat Asn	atg Met 105	gtg Val	gcg Ala	aca Thr	gtg Val	gat Asp 110	gca Ala	gga Gly	336			
cgg Arg	act Thr	gtt Val 115	ccc Pro	ata Ile	gac Asp	agg Arg	ata Ile 120	tcg Ser	tcg Ser	cgg Arg	ata Ile	ccc Pro 125	ggc Gl y	gcg Ala	gtg Val	384			
tac Tyr	gac Asp 130	ccg Pro	GJÀ ddd	tcg Ser	ttt Phe	ccc Pro 135	ggc Gl y	atg Met	ata Ile	cta Leu	aag Lys 140	GJÀ ddd	ctg Leu	ggc Gl y	agc Ser	432			
tgc C y s 145	agc Ser	ttc Phe	ctt Leu	gtg Val	ttt Phe 150	gcg Ala	tcg Ser	gga Gl y	aag L y s	gtg Val 155	gtg Val	ata Ile	gcg Ala	ggc Gl y	gcc Ala 160	480			
cgg Arg	tcg Ser	cca Pro	ggc Gly	gag Glu 165	cta Leu	tac Tyr	agg Arg	tcg Ser	tcg Ser 170	ttt Phe	gac Asp	ctg Leu	ctg Leu	gcg Ala 175	cgc Arg	528			
ctc Leu	aac Asn	ggc Gly	gcg Ala 180	ggc Gly	gcc Ala	tag										549			
<21 <21 <21 <21	0> SE 1> LE 2> TY 3> OF	EQ II ENGTH PE: RGANI) NO H: 18 PRT [SM:	28 32 Cena	archa	aeum	symł	pios	1m										
<40	0> SE	QUEI	ICE :	28															
Met 1	Leu	Asp	Pro	Arg 5	Lys	Arg	Pro	Arg	Val 10	Val	Asn	Val	Val	Ser 15	Thr				
Ala	Asp	Leu	Gly	Arg	Arg	Val	Gly	Ala	Lys	Lys	Met	Ala	Ala	Met	Pro				

-continued

			20					25					30				
Сув	Cys	Met 35	Tyr	Asp	Glu	Ala	Val 40	Tyr	Gly	Gly	Arg	С у в 45	Gly	Tyr	Ile		
Lys	Thr 50	Pro	Gly	Met	Arg	Gly 55	Arg	Val	Thr	Val	Phe 60	Leu	Ser	Gly	Lys		
Met 65	Ile	Ser	Val	Gly	Ala 70	Ser	Ser	Val	Arg	Ala 75	Ser	Phe	Ala	Gln	Leu 80		
His	Glu	Ala	Arg	Leu 85	His	Leu	Phe	Arg	Asn 90	Gly	Ala	Ala	Ala	Gly 95	Gly		
Cys	Thr	Arg	Pro 100	Val	Val	Arg	Asn	Met 105	Val	Ala	Thr	Val	A sp 110	Ala	Gly		
Arg	Thr	Val 115	Pro	Ile	Asp	Arg	Ile 120	Ser	Ser	Arg	Ile	Pro 125	Gly	Ala	Val		
Tyr	Asp 130	Pro	Gly	Ser	Phe	Pro 135	Gly	Met	Ile	Leu	Lys 140	Gly	Leu	Gly	Ser		
Cys 145	Ser	Phe	Leu	Val	Phe 150	Ala	Ser	Gly	Lys	Val 155	Val	Ile	Ala	Gly	Ala 160		
Arg	Ser	Pro	Gly	Glu 165	Leu	Tyr	Arg	Ser	Ser 170	Phe	Asp	Leu	Leu	Ala 175	Arg		
Leu	Asn	Gly	Ala 180	Gly	Ala												
<21 <21 <21 <22 <22 <22 <22	1> LF 2> TY 3> OF 0> FF 1> NZ 2> LC	ENGTH (PE: RGAN] EATUF AME/F DCAT]	I: 25 DNA SM: ESM: XEY: ION:	Cena CDS (1)	archa	aeum 2535;	symb)	piosu	ım								
140	<i>// 01</i>	100PL		27													
gtg Met 1	acg Thr	gtg Val	caa Gln	gat Asp 5	gcc Ala	gta Val	gag Glu	ata Ile	ccc Pro 10	ccg Pro	tcg Ser	ctg Leu	ctg Leu	gta Val 15	tct Ser	48	
gca Ala	aca Thr	tac Tyr	gac Asp 20	agc Ser	cag Gln	gca Ala	GJÀ ddd	gcg Ala 25	gtc Val	gtc Val	ctc Leu	aag Lys	ttt Phe 30	tac Tyr	gag Glu	96	
ccg Pro	gaa Glu	tca Ser 35	caa Gln	aag L y s	atc Ile	gta Val	cac His 40	tgg Trp	acg Thr	gac Asp	aat Asn	acg Thr 45	GJÀ ddd	cac His	aag Lys	144	
ccc Pro	tac Tyr 50	tgc Cys	tat Tyr	acg Thr	agg Arg	cag Gln 55	ccc Pro	ccc Pro	tcc Ser	gag Glu	ctt Leu 60	ej λ aaa	gag Glu	ctt Leu	gaa Glu	192	
ggc Gl y 65	agg Arg	gag Glu	gat Asp	gtg Val	cta Leu 70	gga Gly	acg Thr	gag Glu	cag Gln	gtc Val 75	atg Met	cgg Arg	cac His	gac Asp	ctg Leu 80	240	
ata Ile	gcc Ala	gac Asp	aag Lys	gat Asp 85	gtg Val	ccc Pro	gtc Val	acc Thr	aag Lys 90	ata Ile	act Thr	gtg Val	gcc Ala	gac Asp 95	ccc Pro	288	
ctt Leu	gcc Ala	ata Ile	ggc Gly 100	GJÀ ddd	acc Thr	aac Asn	tcg Ser	gag Glu 105	aag Lys	agc Ser	atc Ile	cgc Arg	aac Asn 110	atc Ile	atg Met	336	
gac Asp	acg Thr	tgg Trp 115	gaa Glu	tcc Ser	gac Asp	ata Ile	aag Lys 120	tac Tyr	tat Tyr	gag Glu	aac Asn	tat Tyr 125	ctg Leu	tac Tyr	gac Asp	384	
aag	agc	ctg	gtc	gtg	ggc	agg	tac	tat	tcg	gta	tcc	ggc	ggc	aag	gta	432	

-continued

Lys	Ser 130	Leu	Val	Val	Gly	Arg 135	Tyr	Tyr	Ser	Val	Ser 140	Gly	Gly	Lys	Val	
atc Ile 145	ccg Pro	cat His	gac Asp	atg Met	ccc Pro 150	ata Ile	tcc Ser	gac Asp	gag Glu	gta Val 155	aag L y s	ctg Leu	gcc Ala	ctc Leu	aag L y s 160	480
agc Ser	ctc Leu	ctc Leu	tgg Trp	gac Asp 165	aag Lys	gtt Val	gta Val	gac Asp	gag Glu 170	ggc Gly	atg Met	gcg Ala	gac Asp	aga Arg 175	aaa Lys	528
gag Glu	ttc Phe	cgc Arg	gag Glu 180	ttc Phe	ata Ile	gcg Ala	GJÀ ∂∂∂	tgg Trp 185	gcg Ala	gac Asp	ctg Leu	ctc Leu	aac Asn 190	cag Gln	ccc Pro	576
ata Ile	ccc Pro	agg Arg 195	ata Ile	cgg Arg	cgc Arg	ctc Leu	agc Ser 200	ttt Phe	gat Asp	atc Ile	gag Glu	gtg Val 205	gat Asp	tca Ser	gag Glu	624
gag Glu	ggc Gly 210	agg Arg	atc Ile	ccc Pro	gac Asp	ccc Pro 215	aag Lys	ata Ile	tcc Ser	gac Asp	agg Arg 220	agg Arg	gtt Val	acg Thr	gcg Ala	672
gtg Val 225	GJÀ ddd	ttt Phe	gcc Ala	gcc Ala	acc Thr 230	gac Asp	ggc Gl y	cta Leu	aaa Lys	cag Gln 235	gta Val	ttc Phe	gtc Val	ctg Leu	agg Arg 240	720
agc Ser	ggc Gl y	gca Ala	gaa Glu	gag Glu 245	ggc Gly	gag Glu	aac Asn	ggc Gl y	gtg Val 250	acc Thr	ccc Pro	ggt Gl y	gtc Val	gag Glu 255	gtg Val	768
gta Val	ttc Phe	tac Tyr	gac Asp 260	aag L y s	gaa Glu	gct Ala	gac Asp	atg Met 265	atc Ile	cgc Arg	gac Asp	gcg Ala	cta Leu 270	tcg Ser	gta Val	816
ata Ile	ggc Gly	tcg Ser 275	tac Tyr	ccg Pro	ttt Phe	gtt Val	ctg Leu 280	acg Thr	tac Tyr	aac Asn	ggc Gly	gac Asp 285	gac Asp	ttt Phe	gac Asp	864
atg Met	ccg Pro 290	tac Tyr	atg Met	ctc Leu	aac Asn	agg Arg 295	gca Ala	cgg Arg	cgc Arg	ctc Leu	gga Gly 300	gta Val	tct Ser	gac Asp	tct Ser	912
gac Asp 305	att Ile	cct Pro	ttg Leu	tac Tyr	atg Met 310	atg Met	cgg Arg	gat Asp	tct Ser	gcc Ala 315	acg Thr	ctc Leu	cgg Arg	cac His	gga Gl y 320	960
gtc Val	cac His	ctg Leu	gac Asp	ctg Leu 325	tac Tyr	agg Arg	acc Thr	ttc Phe	tcg Ser 330	aac Asn	agg Arg	tca Ser	ttc Phe	cag Gln 335	ctg Leu	1008
tac Tyr	gcc Ala	ttt Phe	gcg Ala 340	gca Ala	aag Lys	tac Tyr	acg Thr	gac Asp 345	tat Tyr	tcc Ser	ctt Leu	aac Asn	agc Ser 350	gtc Val	aca Thr	1056
aag L y s	gcg Ala	atg Met 355	ctc Leu	ggc Gly	gag Glu	ggc Gly	aag Lys 360	gtc Val	gac Asp	tat Tyr	GJÀ aaa	gtc Val 365	aaa Lys	ctg Leu	GJ À 333	1104
gat Asp	ctc Leu 370	acc Thr	tta Leu	tac Tyr	cag Gln	act Thr 375	gca Ala	aac Asn	tat Tyr	tgc C y s	tat Tyr 380	cac His	gac Asp	gcg Ala	cgc Arg	1152
ctg Leu 385	acg Thr	ctc Leu	gag Glu	ctt Leu	agc Ser 390	acc Thr	ttt Phe	ggc Gl y	aac Asn	gag Glu 395	ata Ile	ctc Leu	atg Met	gac Asp	ctg Leu 400	1200
ctg Leu	gtg Val	gtg Val	acc Thr	agc Ser 405	aga Arg	ata Ile	gcc Ala	cgg Arg	atg Met 410	ccc Pro	atc Ile	gat Asp	gac Asp	atg Met 415	tcc Ser	1248
cgc Arg	atg Met	ggc Gly	gtc Val 420	tcg Ser	cag Gln	tgg Trp	ata Ile	cgc Arg 425	agc Ser	ctg Leu	ctg Leu	tac Tyr	tat Tyr 430	gag Glu	cac His	1296
aga	cag	cga	aac	gcg	ctc	ata	ccg	cgg	agg	gac	gag	ctg	gag	ggc	agg	1344

-continued

Arg	Gln	Arg 435	Asn	Ala	Leu	Ile	Pro 440	Arg	Arg	Asp	Glu	Leu 445	Glu	Gly	Arg				
tcg Ser	cgc Arg 450	gag Glu	gtg Val	agc Ser	aac Asn	gac Asp 455	gcg Ala	gta Val	ata Ile	aag Lys	gat Asp 460	aaa Lys	aag Lys	ttc Phe	cgc Arg	1392			
999 Gly 465	ggc Gly	ctt Leu	gtc Val	gtc Val	gag Glu 470	cct Pro	gaa Glu	gag Glu	ggc Gly	ata Ile 475	cac His	ttt Phe	gat Asp	gtt Val	acg Thr 480	1440			
gtg Val	atg Met	gac Asp	ttt Phe	gcg Ala 485	agc Ser	ctg Leu	tat Tyr	ccc Pro	agt Ser 490	atc Ile	ata Ile	aag Lys	gtg Val	agg Arg 495	aac Asn	1488			
ctc Leu	tcg Ser	tac Tyr	gag Glu 500	acc Thr	gtc Val	cgg Arg	tgc Cys	gtg Val 505	cat His	gca Ala	gaa Glu	tgc Cys	aaa Lys 510	aag Lys	aac Asn	1536			
acc Thr	atc Ile	ccc Pro 515	gat Asp	acc Thr	aac Asn	cac His	tgg Trp 520	gta Val	tgt Cys	aca Thr	aaa Lys	aac Asn 525	aac Asn	ggc Gly	ctg Leu	1584			
aca Thr	tcg Ser 530	atg Met	ata Ile	atc Ile	ggc Gly	tcg Ser 535	ctg Leu	cgg Arg	gac Asp	ctg Leu	cgc Arg 540	gtc Val	aac Asn	tat Tyr	tac Tyr	1632			
aag Lys 545	agc Ser	ctc Leu	tca Ser	aag L y s	agc Ser 550	aca Thr	tcc Ser	att Ile	acg Thr	gag Glu 555	gag Glu	cag Gln	cgg Arg	cag Gln	cag Gln 560	1680			
tat Tyr	acc Thr	gta Val	atc Ile	agc Ser 565	cag Gln	gcc Ala	ctc Leu	aag Lys	gtc Val 570	gtg Val	ctc Leu	aac Asn	gca Ala	agc Ser 575	tac Tyr	1728			
ggc Gl y	gtg Val	atg Met	ggc Gl y 580	gcc Ala	gag Glu	ata Ile	ttc Phe	ccg Pro 585	ctg Leu	tac Tyr	ttt Phe	tta Leu	ccc Pro 590	gcg Ala	gca Ala	1776			
gag Glu	gcc Ala	acc Thr 595	act Thr	gct Ala	gtc Val	GJÀ ddd	cgc Arg 600	tat Tyr	atc Ile	atc Ile	atg Met	cag Gln 605	acg Thr	ata Ile	tcg Ser	1824			
cac His	tgc Cys 610	gag Glu	cag Gln	atg Met	gga Gly	gtg Val 615	agg Arg	gtg Val	ctg Leu	tac Tyr	999 Gly 620	gac Asp	acc Thr	gat Asp	tct Ser	1872			
ctg Leu 625	ttc Phe	ata Ile	aag Lys	gat Asp	ccc Pro 630	gaa Glu	gag Glu	agg Arg	cag Gln	atc Ile 635	cac His	gag Glu	ata Ile	gtc Val	gag Glu 640	1920			
cat His	gca Ala	aag Lys	aag Lys	gag Glu 645	cac His	ggt Gl y	gtg Val	gag Glu	ctc Leu 650	gaa Glu	gtg Val	gac Asp	aaa Lys	gag Glu 655	tac Tyr	1968			
agg Arg	tat Tyr	gtc Val	gtg Val 660	cta Leu	tcc Ser	aac Asn	agg Arg	aaa Lys 665	aaa Lys	aac Asn	tat Tyr	ttc Phe	999 Gly 670	gtg Val	acc Thr	2016			
cgg Arg	gca Ala	ggc Gl y 675	aag Lys	gtc Val	gac Asp	gtc Val	aag Lys 680	GJÀ ddd	ctg Leu	acg Thr	ggc Gl y	aaa L y s 685	aag Lys	tcg Ser	cac His	2064			
acg Thr	ccc Pro 690	ccg Pro	ttc Phe	ata Ile	aag Lys	gag Glu 695	ctc Leu	ttc Phe	tac Tyr	tcg Ser	ctg Leu 700	ctc Leu	gac Asp	ata Ile	ctc Leu	2112			
tca Ser 705	gga Gly	gtc Val	gag Glu	agc Ser	gag Glu 710	gac Asp	gag Glu	ttc Phe	gag Glu	tca Ser 715	gcc Ala	aag Lys	atg Met	agg Arg	atc Ile 720	2160			
tca Ser	aag Lys	gcg Ala	atc Ile	gcc Ala 725	gcg Ala	tgc C y s	ggc Gly	aag Lys	agg Arg 730	ctc Leu	gag Glu	gag Glu	agg Arg	cag Gln 735	atc Ile	2208			
ccc	ctc	gtg	gac	ctg	gcg	ttc	aat	gtg	atg	ata	agc	aag	gcg	ccc	tcc	2256			

-continued

Pro	Leu	Val	Asp 740	Leu	Ala	Phe	Asn	Val 745	Met	Ile	Ser	Lys	Ala 750	Pro	Ser	
gaa Glu	tat Tyr	gtc Val 755	aag L y s	acc Thr	gtc Val	ccg Pro	cag Gln 760	cac His	ata Ile	cgg Arg	gcg Ala	gca Ala 765	agg Arg	ctg Leu	ctg Leu	2304
gag Glu	aac Asn 770	gca Ala	agg Arg	gag Glu	gtc Val	aaa L y s 775	aag Lys	ggc Gly	gac Asp	ata Ile	ata Ile 780	tcg Ser	tac Tyr	gta Val	aag Lys	2352
gtg Val 785	atg Met	aac Asn	aag Lys	acc Thr	ggc Gly 790	gtc Val	aag Lys	ccg Pro	gtg Val	gag Glu 795	atg Met	gcc Ala	cgg Arg	gca Ala	ggc Gly 800	2400
gag Glu	gtg Val	gac Asp	acg Thr	tca Ser 805	aag Lys	tac Tyr	ctc Leu	gag Glu	ttc Phe 810	atg Met	gag Glu	tcg Ser	acg Thr	ctc Leu 815	gac Asp	2448
cag Gln	ctc Leu	acc Thr	tcg Ser 820	tcc Ser	atg Met	ggc Gly	ctt Leu	gac Asp 825	ttt Phe	gac Asp	gag Glu	ata Ile	ctc Leu 830	ggc Gly	aag Lys	2496
cca Pro	aag Lys	cag Gln 835	acc Thr	ggc Gly	atg Met	gag Glu	cag Gln 840	ttc Phe	ttt Phe	ttc Phe	aaa Lys	tga				2535
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	EQ II ENGTH PE: RGANI	D NO H: 84 PRT ISM:	30 14 Cena	archa	aeum	sym	piosu	ım							
<400)> SE	QUEN	NCE :	30												
Met 1	Thr	Val	Gln	Asp 5	Ala	Val	Glu	Ile	Pro 10	Pro	Ser	Leu	Leu	Val 15	Ser	
Ala	Thr	Tyr	Asp 20	Ser	Gln	Ala	Gly	Ala 25	Val	Val	Leu	Lys	Phe 30	Tyr	Glu	
Pro	Glu	Ser 35	Gln	Lys	Ile	Val	His 40	Trp	Thr	Asp	Asn	Thr 45	Gly	His	Lys	
Pro	Tyr 50	Cys	Tyr	Thr	Arg	Gln 55	Pro	Pro	Ser	Glu	Leu 60	Gly	Glu	Leu	Glu	
Gly 65	Arg	Glu	Asp	Val	Leu 70	Gly	Thr	Glu	Gln	Val 75	Met	Arg	His	Asp	Leu 80	
Ile	Ala	Asp	Lys	Asp 85	Val	Pro	Val	Thr	Lys 90	Ile	Thr	Val	Ala	Asp 95	Pro	
Leu	Ala	Ile	Gly 100	Gly	Thr	Asn	Ser	Glu 105	Lys	Ser	Ile	Arg	Asn 110	Ile	Met	
Asp	Thr	Trp 115	Glu	Ser	Asp	Ile	L y s 120	Tyr	Tyr	Glu	Asn	T y r 125	Leu	Tyr	Asp	
Lys	Ser 130	Leu	Val	Val	Gly	Arg 135	Tyr	Tyr	Ser	Val	Ser 140	Gly	Gly	Lys	Val	
Ile 145	Pro	His	Asp	Met	Pro 150	Ile	Ser	Asp	Glu	Val 155	Lys	Leu	Ala	Leu	Lys 160	
Ser	Leu	Leu	Trp	Asp 165	Lys	Val	Val	Asp	Glu 170	Gly	Met	Ala	Asp	Arg 175	Lys	
Glu	Phe	Arg	Glu 180	Phe	Ile	Ala	Gly	Trp 185	Ala	Asp	Leu	Leu	Asn 190	Gln	Pro	
Ile	Pro	Arg 195	Ile	Arg	Arg	Leu	Ser 200	Phe	Asp	Ile	Glu	Val 205	Asp	Ser	Glu	
Glu	Gly 210	Arg	Ile	Pro	Asp	Pro 215	Lys	Ile	Ser	Asp	Arg 220	Arg	Val	Thr	Ala	

109

Val Gly Phe Ala Ala Thr Asp Gly Leu Lys Gln Val Phe Val Leu Arg 225 230 235 Ser Gly Ala Glu Glu Gly Glu Asn Gly Val Thr Pro Gly Val Glu Val 245 250 Val Phe Tyr Asp Lys Glu Ala Asp Met Ile Arg Asp Ala Leu Ser Val 260 265
 Ile Gly Ser Tyr Pro Phe Val Leu Thr Tyr Asn Gly Asp Asp Phe Asp

 275
 280
 285
 280 Met Pro Tyr Met Leu Asn Arg Ala Arg Arg Leu Gly Val Ser Asp Ser 290 295 300 Asp Ile Pro Leu Tyr Met Met Arg Asp Ser Ala Thr Leu Arg His Gly 305 310 315 320 Val His Leu Asp Leu Tyr Arg Thr Phe Ser Asn Arg Ser Phe Gln Leu 325 330 335 Tyr Ala Phe Ala Ala Lys Tyr Thr Asp Tyr Ser Leu Asn Ser Val Thr 340 345 350 Lys Ala Met Leu Gly Glu Gly Lys Val Asp Tyr Gly Val Lys Leu Gly 355 360 365 Asp Leu Thr Leu Tyr Gln Thr Ala Asn Tyr Cys Tyr His Asp Ala Arg 370 375 380 Leu Thr Leu Glu Leu Ser Thr Phe Gly Asn Glu Ile Leu Met Asp Leu 385 390 395 400 Leu Val Val Thr Ser Arg Ile Ala Arg Met Pro Ile Asp Asp Met Ser 405 410 Arg Met Gly Val Ser Gln Trp Ile Arg Ser Leu Leu Tyr Tyr Glu His 420 425 Arg Gln Arg Asn Ala Leu Ile Pro Arg Arg Asp Glu Leu Glu Gly Arg 440 445 Ser Arg Glu Val Ser Asn Asp Ala Val Ile Lys Asp Lys Lys Phe Arg 450 455 460 455 460 450 Gly Gly Leu Val Val Glu Pro Glu Glu Gly Ile His Phe Asp Val Thr 465 470 475 480 Val Met Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile Lys Val Arg Asn 490 485 495 Leu Ser Tyr Glu Thr Val Arg Cys Val His Ala Glu Cys Lys Asn 500 505 510 Thr Ile Pro Asp Thr Asn His Trp Val Cys Thr Lys Asn Asn Gly Leu 515 520 525 Thr Ser Met Ile Ile Gly Ser Leu Arg Asp Leu Arg Val Asn Tyr Tyr 530 535 540 Lys Ser Leu Ser Lys Ser Thr Ser Ile Thr Glu Glu Gln Arg Gln Gln545550555560 Tyr Thr Val Ile Ser Gln Ala Leu Lys Val Val Leu Asn Ala Ser Tyr 565 570 575 Gly Val Met Gly Ala Glu Ile Phe Pro Leu Tyr Phe Leu Pro Ala Ala 580 585 590 Glu Ala Thr Thr Ala Val Gly Arg Tyr Ile Ile Met Gln Thr Ile Ser 595 600 605 His Cys Glu Gln Met Gly Val Arg Val Leu Tyr Gly Asp Thr Asp Ser 610 615 620

```
-continued
```

												0011	C T II	ucu		
Leu 625	Phe	Ile	Lys	Asp	Pro 630	Glu	Glu	Arg	Gln	Ile 635	His	Glu	Ile	Val	Glu 640	
His	Ala	Lys	Lys	Glu 645	His	Gly	Val	Glu	Leu 650	Glu	Val	Asp	Lys	Glu 655	Tyr	
Arg	Tyr	Val	Val 660	Leu	Ser	Asn	Arg	Lys 665	Lys	Asn	Tyr	Phe	Gly 670	Val	Thr	
Arg	Ala	Gly 675	Lys	Val	Asp	Val	Lys 680	Gly	Leu	Thr	Gly	L y s 685	Lys	Ser	His	
Thr	Pro 690	Pro	Phe	Ile	Lys	Glu 695	Leu	Phe	Tyr	Ser	Leu 700	Leu	Asp	Ile	Leu	
Ser 705	Gly	Val	Glu	Ser	Glu 710	Asp	Glu	Phe	Glu	Ser 715	Ala	Lys	Met	Arg	Ile 720	
Ser	Lys	Ala	Ile	Ala 725	Ala	Сув	Gly	Lys	Arg 730	Leu	Glu	Glu	Arg	Gln 735	Ile	
Pro	Leu	Val	Asp 740	Leu	Ala	Phe	Asn	Val 745	Met	Ile	Ser	Lys	Ala 750	Pro	Ser	
Glu	Tyr	Val 755	Lys	Thr	Val	Pro	Gln 760	His	Ile	Arg	Ala	Ala 765	Arg	Leu	Leu	
Glu	Asn 770	Ala	Arg	Glu	Val	L y s 775	Lys	Gly	Asp	Ile	Ile 780	Ser	Tyr	Val	Lys	
Val 785	Met	Asn	Lys	Thr	Gly 790	Val	Lys	Pro	Val	Glu 795	Met	Ala	Arg	Ala	Gl y 800	
Glu	Val	Asp	Thr	Ser 805	Lys	Tyr	Leu	Glu	Phe 810	Met	Glu	Ser	Thr	Leu 815	Asp	
Gln	Leu	Thr	Ser 820	Ser	Met	Gly	Leu	A sp 825	Phe	Asp	Glu	Ile	Leu 830	Gly	Lys	
Pro	Lys	Gln 835	Thr	Gly	Met	Glu	Gln 840	Phe	Phe	Phe	Lys					
<210 <211 <211 <211 <221 <221 <221 <221	0> SH 1> LH 2> TY 3> OF 0> FH 1> NH 2> LC	EQ II ENGTH (PE: RGANI EATUH AME/H DCATI	O NO H: 55 DNA SM: SM: RE: KEY: ION:	31 55 Cena CDS (1)	arch <i>a</i>	aeum	symb	biosu	ım							
<400)> SE	EQUEI	ICE :	31												
atg Met 1	ccg Pro	ggc Gl y	GJÀ ddd	ggc Gly 5	agg Arg	ctg Leu	ccc Pro	gtg Val	agc Ser 10	ggc Gly	ttt Phe	gag Glu	cgc Arg	cct Pro 15	acc Thr	48
tgg Trp	gat Asp	gaa Glu	tat Tyr 20	ttc Phe	atg Met	ctg Leu	cag Gln	gcg Ala 25	gag Glu	ctt Leu	gca Ala	aag L y s	ctc Leu 30	cga Arg	tcc Ser	96
aac Asn	tgt Cys	ata Ile 35	gtc Val	cgc Arg	aag L y s	gtg Val	999 Gly 40	gcc Ala	gta Val	ata Ile	gtg Val	agg Arg 45	gac Asp	cac His	cgg Arg	144
cag Gln	ctc Leu 50	gcc Ala	aca Thr	GJÀ aaa	tat Tyr	aac Asn 55	GJÀ ddd	acg Thr	cct Pro	cct Pro	ggc Gly 60	gtc Val	aag Lys	aac Asn	tgc C y s	192
tac Tyr 65	gag Glu	ggc Gly	ggc Gly	tgc C y s	gag Glu 70	agg Arg	tgt Cys	gcc Ala	gag Glu	cgc Arg 75	atc Ile	gag Glu	ggc Gl y	agg Arg	atc Ile 80	240
aag Lys	tca Ser	ggc Gly	gag Glu	gcc Ala 85	ctg Leu	gac Asp	cgg Arg	tgc Cys	ctg Leu 90	tgc Cys	aac Asn	cat His	gca Ala	gag Glu 95	gcc Ala	288

aac gct ata atg cac tgt gcg ata ctc ggg ata ggc gcg ggg ggc ggg Asn Ala Ile Met His Cys Ala Ile Leu Gly Ile Gly Ala Gly Gly Gly 336 100 105 110 ggg gcc acc atg tac acc acg ttc tcg ccg tgt ctg gag tgt acc aag Gly Ala Thr Met Tyr Thr Thr Phe Ser Pro Cys Leu Glu Cys Thr Lys 384 115 120 atg gcc gta acg ata ggg atc agg cgg ttt gtc tgc ctt gat acc tac Met Ala Val Thr Ile Gly Ile Arg Arg Phe Val Cys Leu Asp Thr Tyr 432 130 135 ccc gag aac acc tcc cgg ctg gta aaa gag aca tcc tcc gag ata acc Pro Glu Asn Thr Ser Arg Leu Val Lys Glu Thr Ser Ser Glu Ile Thr 480 145 150 155 160 atg atg gac aag gaa aag atc tcg tac tgg gcg tca agg atg ccc gga Met Met Asp Lys Glu Lys Ile Ser Tyr Trp Ala Ser Arg Met Pro Gly 528 165 170 175 ggc agc aag gag gtg ccg gtg cgg tga Gly Ser Lys Glu Val Pro Val Arg 555 180 <210> SEQ ID NO 32 <211> LENGTH: 184 <212> TYPE: PRT <213> ORGANISM: Cenarchaeum symbiosum <400> SEQUENCE: 32 Met Pro Gly Gly Gly Arg Leu Pro Val Ser Gly Phe Glu Arg Pro Thr 1 5 10 15 Trp Asp Glu Tyr Phe Met Leu Gln Ala Glu Leu Ala Lys Leu Arg Ser20 25 30 Asn Cys Ile Val Arg Lys Val Gly Ala Val Ile Val Arg Asp His Arg 35 40 45 Gln Leu Ala Thr Gly Tyr Asn Gly Thr Pro Pro Gly Val Lys Asn Cys 50 55 60 Tyr Glu Gly Gly Cys Glu Arg Cys Ala Glu Arg Ile Glu Gly Arg Ile 65 70 75 Lys Ser Gly Glu Ala Leu Asp Arg Cys Leu Cys Asn His Ala Glu Ala 90 85 Asn Ala Ile Met His Cys Ala Ile Leu Gly Ile Gly Ala Gly Gly Gly 105 100 Gly Ala Thr Met Tyr Thr Thr Phe Ser Pro Cys Leu Glu Cys Thr Lys 120 115 125 Met Ala Val Thr Ile Gly Ile Arg Arg Phe Val Cys Leu Asp Thr Tyr 130 135 140 Pro Glu Asn Thr Ser Arg Leu Val Lys Glu Thr Ser Ser Glu Ile Thr 155 145 150 160 Met Met Asp Lys Glu Lys Ile Ser Tyr Trp Ala Ser Arg Met Pro Gly 165 170 175 Gly Ser Lys Glu Val Pro Val Arg 180 <210> SEQ ID NO 33 <211> LENGTH: 1509 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS

<222	2> LC	CATI	ION:	(1)	(1	1509)									
<400)> SH	EQUEN	ICE :	33												
gtg Met 1	gag Glu	act Thr	GJÀ ddd	cac His 5	ata Ile	acg Thr	ggc Gly	agg Arg	tac Tyr 10	atc Ile	gag Glu	ccc Pro	ggt Gly	gcc Ala 15	gtc Val	48
gag Glu	agg Arg	cgc Arg	gac Asp 20	tac Tyr	cag Gln	gtg Val	ggc Gly	ctg Leu 25	gcg Ala	gaa Glu	cag Gln	gcc Ala	ata Ile 30	cgg Arg	gag Glu	96
aac Asn	tgt Cys	atc Ile 35	gtg Val	gtg Val	ctc Leu	ccg Pro	acg Thr 40	ggc Gly	ctc Leu	ggc Gly	aag Lys	act Thr 45	gcc Ala	gtc Val	gcc Ala	144
ctc Leu	cag Gln 50	gtg Val	atc Ile	gcc Ala	cac His	tat Tyr 55	ctc Leu	gac Asp	gag Glu	ggc Gly	cgc Arg 60	ggg Gly	gcg Ala	ctc Leu	ttc Phe	192
ctt Leu 65	gcc Ala	cct Pro	aca Thr	agg Arg	gtc Val 70	ctg Leu	gta Val	aac Asn	cag Gln	cac His 75	cgc Arg	cag Gln	ttc Phe	ctg Leu	ggc Gl y 80	240
agg Arg	gcc Ala	ctt Leu	acc Thr	ata Ile 85	tcc Ser	gat Asp	att Ile	aca Thr	ctg Leu 90	gtc Val	acg Thr	gga Gly	gag Glu	gac Asp 95	acc Thr	288
att Ile	ccc Pro	cgg Arg	cgc Arg 100	aaa Lys	aag Lys	gcg Ala	tgg Trp	gga Gl y 105	ggc Gly	agc Ser	gtg Val	atc Ile	tgc C y s 110	gcc Ala	acg Thr	336
ccc Pro	gag Glu	ata Ile 115	gca Ala	aga Arg	aat Asn	gat Asp	ata Ile 120	gag Glu	cgc Arg	ggc Gly	ctg Leu	gtc Val 125	ccg Pro	ctc Leu	gaa Glu	384
cag Gln	ttc Phe 130	ggc Gly	ctg Leu	gtc Val	ata Ile	ttc Phe 135	gac Asp	gag Glu	gcc Ala	cac His	agg Arg 140	gcg Ala	gtg Val	ggc Gly	gac Asp	432
tat Tyr 145	gcc Ala	tat Tyr	tct Ser	tcc Ser	ata Ile 150	gcg Ala	cgg Arg	gcg Ala	gta Val	999 Gly 155	gat Asp	aac Asn	tcc Ser	agg Arg	atg Met 160	480
gtg Val	ggc Gly	atg Met	act Thr	gcg Ala 165	acg Thr	ctt Leu	ccc Pro	agc Ser	gag Glu 170	agg Arg	gag Glu	aag Lys	gca Ala	gac Asp 175	gag Glu	528
ata Ile	atg Met	ggc Gl y	acc Thr 180	ctg Leu	ctc Leu	tcc Ser	agg Arg	agc Ser 185	ata Ile	gcc Ala	cag Gln	agg Arg	aca Thr 190	gaa Glu	gac Asp	576
gac Asp	ccg Pro	gac Asp 195	gta Val	aag L y s	ccc Pro	tat Tyr	gta Val 200	cag Gln	gag Glu	act Thr	gcc Ala	acc Thr 205	gag Glu	tgg Trp	ata Ile	624
aag L y s	gtg Val 210	gat Asp	ctt Leu	ccc Pro	ccc Pro	gag Glu 215	atg Met	aag Lys	gag Glu	ata Ile	cag Gln 220	agg Arg	ctc Leu	ctc Leu	aag L y s	672
ctg Leu 225	gcc Ala	ctc Leu	gac Asp	gag Glu	agg Arg 230	tat Tyr	tcc Ser	tcc Ser	ctc Leu	aag Lys 235	agg Arg	tgc Cys	GJÅ ∂∂∂	tac Tyr	gat Asp 240	720
ctt Leu	ggc Gl y	tcg Ser	aac Asn	agg Arg 245	tcg Ser	ctc Leu	tcg Ser	gcg Ala	ctg Leu 250	ctc Leu	cgg Arg	ctg Leu	cgc Arg	atg Met 255	gtg Val	768
gtg Val	ctt Leu	ggc Gly	ggc Gly 260	aac Asn	agg Arg	cgc Arg	gcg Ala	gcc Ala 265	aag Lys	ccg Pro	ctg Leu	ttc Phe	act Thr 270	gcg Ala	ata Ile	816
cgc Arg	ata Ile	acg Thr 275	tac Tyr	gcg Ala	cta Leu	aac Asn	ata Ile 280	ttc Phe	gag Glu	gcg Ala	cac His	999 Gly 285	gtc Val	acg Thr	ccc Pro	864

-continued

tt t t t ag t t t t t t t t t t t t t t																		
gog got tt tt gas cog got cog goa gt tt got got ct got got got tt got got got got got got	ttt o Phe I 2	cta Leu 290	aag Lys	ttc Phe	tgc Cys	gag Glu	agg Arg 295	acc Thr	tcc Ser	aag L y s	aaa Lys	aag Lys 300	ggc Gly	gtc Val	ggc Gly	gtg Val	912	
gen ag goc goc goc goc goc goc goc goc goc go	gcg q Ala (305	gag Glu	ctg Leu	ttc Phe	gaa Glu	cag Gln 310	gac Asp	cgg Arg	aac Asn	ttt Phe	aca Thr 315	dda dda	gcc Ala	atc Ile	gcg Ala	cgc Arg 320	960	
<pre>ctc gag gat gat goc gtc egg ggg cc ggg gga asg geg ctg gtc ttt acg leu Gh Ap Ai Val Arg Gly Al A Ag Gly Lys Ala Leu Val Phe Thr 340 ago tat cgt gat tct gtc gac cto ata cac tca aga cto aag geg ca line His Ser Ay Jee Lys Ala Ala 355 ago tat aco tcg ggo ato ctg ata gga aag gog gga gaa aag ggo ta 1104 375 ago tat aco tcg ggo ato ctg ata gga aag gog gga gaa aag ggo ta ago cag aga aaa cag gtg gaa at gga gaa ag gog gga gaa ag ggo gg 355 ago tat ggt ggt ato ttg at ang aco gtg go ca dt gtg goa aag ggo ta 355 ago cat ago aaa aag sgt gag ato ttg go aa ag tc ggo gag gag gg gg tc gac ta 375 ago cat ago aaa aag sgt gga ga at gga gga gg gg gg tc gac ta 375 ago cat ago aga aaa cg gtg gga gaa acg gg ggg gg gg gg tc gac ata 375 ago cat ago aaa ag gg gg ag at tt ta 375 ago cat ago aaa ag gg gg ag gg gg gg da gag gg gg tc gac ata 375 ago cat ago aga ago ggg gga ga acg gg gg gg gg ag ag gg gg tc gac ata 375 ago gag gtc acc ctg gtg ata tto tat gac aat gtg cca ago tcg at ctg atc 405 ar clu val An ac val II = Phe 475 420 as val II = Phe 475 420 ag ta gta gga gg ag ago gga gag ago gaa ag ggo gaa ta tgg 435 af gta gta gaa gga gga gg acg ata gac gga gaa gag gga ta 455 at ggt cg gg cas as dag ggg acg ata gac gag gga ta 455 at gga cg cg cas as dg ggg acg ata gac gag gaa ta 455 at gga cg cg cas as dag ggg cg cg ca cas ag ggo ca tac tat tgg 450 455 at gga cg cas as dag gg gg cg cg cc aag gc gc cg cc aaag 455 abo ag tag ta tt da tg goa agg ggg cg cg cg ca agg gga cg ta cac tat tgg 455 450 455 at gab ag ga gg gg tac ttt tag 455 450 aga ctc gag ggg tac ttt tag 455 450 aga ctc gag ggg tac ttt tag 450 aaa ca gg tog ct gc ga gga gg gd cg cg cc aaag ca cg ca aga 455 450 aga ctc gag ggg tac ttt tag 451 ab ab a</pre>	gca a Ala I	aag Lys	gcc Ala	gcg Ala	cag Gln 325	gcg Ala	gca Ala	ggc Gly	atg Met	gag Glu 330	cat His	ccc Pro	aag Lys	ata Ile	cca Pro 335	aag Lys	1008	
age tat egt gat tet gte gae etc ata eac etc aag geg gec 1104 age tat egt gat et gte gae etc et ata ga aag geg gag aaa aag geg eta aag ige eta 1152 igi ji ia Aan ser ely ji e leu ii e ciy iya ka gij elu iya ely leu 1375 aag eag aga aaa eag gtg gag aat gtg gea aag te egt geg egg geg geg geg 1200 aag eag etg etg gta teg aeg agg gte gge gag gag eta gae gee geg geg 1200 atae gae gtg etg gta teg aeg agg gte gge gag gag et gee esa eta 1248 ter gae gtg etg gta teg aeg agg gte gge gag gag et gee gae gag geg et gee ata 1248 ter gae etg etg etg gta at tet et te gae aag gte et gee aag etc ega ata 1248 ter gae etg etg etg ata et et te val ser thr arg val ely gi ul elu ely leu als for an elev val ely also et te val ely also et val ely also et te val ely also et val ely ely ely ely ely ely ely ely ely el	ctc q Leu (gag Glu	gat Asp	gcc Ala 340	gtc Val	cgc Arg	GJ À ddd	gcc Ala	cgg Arg 345	gga Gly	aag Lys	gcg Ala	ctg Leu	gtc Val 350	ttt Phe	acg Thr	1056	
ggg gt at act trig gcg atc trig gcg atg ggg ggg ggg ggg ggg ggg ggg ggg gg	agc t Ser 5	tat Tyr	cgt Arg 355	gat Asp	tct Ser	gtc Val	gac Asp	ctc Leu 360	ata Ile	cac His	tca Ser	aga Arg	ctc Leu 365	aag Lys	gcg Ala	gcc Ala	1104	
aag cag aga aaa cag gtg gag act gtg gag act gtg gag agg gtg gag gag ggg ggg gag ga	ggg Gly I	ata Ile 370	aac Asn	tcg Ser	ggc Gly	atc Ile	ctg Leu 375	ata Ile	gga Gly	aag L y s	gcg Ala	gga Gly 380	gaa Glu	aag Lys	ggc Gly	cta Leu	1152	
tac gac gtg ctg gta tog acg agg gto ggc gag gag ggg gt ct gac ata his have have have have have have have have	aag (Lys (385	cag Gln	aga Arg	aaa Lys	cag Gln	gtg Val 390	gag Glu	act Thr	gtg Val	gca Ala	aag Lys 395	ttc Phe	cgt Arg	gac Asp	ggc Gl y	999 Gl y 400	1200	
tog gag gto ser Glu Val Aan Leu ValiePhe Tyr Ap Ap ApAp Ap Ap ApNul Pro Ser Ser Ile1296agg tac 420dtg cag agg agg gg ag 435aca gg agg agg agg agg agg agg agg agg aca 440aca gg agg agg agg agg agg agg aca 440aca gg agg agg agg agg agg agg agg agg agg	tac q Tyr A	gac Asp	gtg Val	ctg Leu	gta Val 405	tcg Ser	acg Thr	agg Arg	gtc Val	ggc Gly 410	gag Glu	gag Glu	GJ À ddd	ctc Leu	gac Asp 415	ata Ile	1248	
agg tac Arg Tyr 435cdg agg agg agg agg agg agg acd aca 440ggc agg agg agg agg acg acg gg agg acg ac	tcg o Ser (gag Glu	gtc Val	aac Asn 420	ctg Leu	gtg Val	ata Ile	ttc Phe	tat Tyr 425	gac Asp	aat Asn	gtg Val	cca Pro	agc Ser 430	tcg Ser	atc Ile	1296	
ctu ata gta ttg atg gta agg gga acg ata gac gat gac gat tac tat tgg 1392 att ggt cgg cgc aag atg gc gc gc gac gc gc gac gc gc ala la la lys dry	agg t Arg 1	tac Tyr	gtg Val 435	cag Gln	agg Arg	agg Arg	GJÀ ddd	aga Arg 440	aca Thr	ggc Gly	aga Arg	aag Lys	gac Asp 445	gcc Ala	ggc Gly	agg Arg	1344	
att ggt cgg cgg cgg ag atg ag ggc ggg ggl	ctg a Leu I	ata Ile 450	gta Val	ttg Leu	atg Met	gca Ala	aag Lys 455	ddd ddd	acg Thr	ata Ile	gac Asp	gag Glu 460	gca Ala	tac Tyr	tat Tyr	tgg Trp	1392	
aac cgg tog tog gog gog gog ggg got got got g	att o Ile (465	ggt Gl y	cgg Arg	cgc Arg	aag Lys	atg Met 470	agc Ser	gcc Ala	gcc Ala	aag Lys	ggc Gl y 475	atg Met	ggt Gly	gag Glu	agg Arg	atg Met 480	1440	
gig ctc gag ggg tac ttt tag 1509 <210> SEQ ID NO 34 <211> LENGTH: 502 <212> TYPE: PRT <213> ORGANISM: Cenarchaeum symbiosum <400> SEQUENCE: 34 Met Glu Thr Gly His Ile Thr Gly Arg Tyr Ile Glu Pro Gly Ala Val Glu Arg Arg Asp Tyr Gln Val Gly Leu Ala Glu Gln Ala Jle Arg Glu Asn Cys Jle Val Val Leu Pro Thr Gly Leu Gly Lys Thr Ala Val Ala Leu Gln Val Ile Ala His Tyr Leu Asp Glu Gly Arg Gly Ala Leu Phe	aac d Asn A	cgg Arg	tcg Ser	ctg Leu	gcg Ala 485	gca Ala	ggc Gl y	GJÀ ddd	gct Ala	gct Ala 490	gcc Ala	aag Lys	gcc Ala	gct Ala	cca Pro 495	aag Lys	1488	
<pre><210> SEQ ID NO 34 <211> LENGTH: 502 <212> TYPE: PRT <213> ORGANISM: Cenarchaeum symbiosum <400> SEQUENCE: 34 Met Glu Thr Gly His Ile Thr Gly Arg Tyr Ile Glu Pro Gly Ala Val 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	gga d Gly I	ctc Leu	gag Glu	999 Gly 500	tac Tyr	ttt Phe	tag										1509	
<pre><400> SEQUENCE: 34 Met Glu Thr Gly His Ile Thr Gly Arg Tyr Ile Glu Pro Gly Ala Val 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1</pre>	<210><211><212><212><213>	> SE > LE > TY > OR	Q II NGTH PE: GANI) NO [: 5(PRT [SM:	34)2 Cena	archa	aeum	symb	Diosu	1m								
MetGluThrGlyHisIleThrGlyArgTyrIleGluProGlyAlaVal11ArgArgArgArgArgTyrGluValGlyLeuGluGluGluAlaIleArgGluGluArgArgArgCysTyrGluValCluGlyLeuGlyLeuGlyAlaGluAlaSloProAlaAsnCysIleValLeuProThrGlyLeuGlyLeyGlyThrAlaValAlaLeuGluValIleAlaTyrLeuAspGluGluGlyArgGlyAlaLeuPheGluValIleAlaHisTyrLeuAspGluGluGlyArgGlyAlaLeuPheGluValIleAlaHisTyrLeuAspGluGluGlyAlaLeuPheGluValIleAlaHisTyrLeuAspGluGluAlaFilaValAlaLeuSoValKasSoGluGluGluAlaLeuPhe	<400;	> SE	QUEN	ICE :	34													
Glu Arg Arg Asp Tyr Gln Val Gly Leu Ala Glu Gln Ala Ile Arg Glu Asn Cys Ile Val Val Leu Pro Thr Gly Leu Gly Lys Thr Ala Val Ala Asn Cys Ile Val Val Leu Pro Thr Gly Leu Gly Lys Thr Ala Val Ala Glu Gln Val Ile Ala His Tyr Leu Asp Glu Gly Arg Gly Ala Leu Phe Glo Ha	Met (1	Glu	Thr	Gly	His 5	Ile	Thr	Gly	Arg	Ty r 10	Ile	Glu	Pro	Gly	Ala 15	Val		
Asn Cys Ile Val Val Leu Pro Thr Gly Leu Gly Lys Thr Ala Val Ala 35 40 45 Leu Gln Val Ile Ala His Tyr Leu Asp Glu Gly Arg Gly Ala Leu Phe 50 55 60	Glu A	Arg	Arg	Asp 20	Tyr	Gln	Val	Gly	Leu 25	Ala	Glu	Gln	Ala	Ile 30	Arg	Glu		
Leu Gln Val Ile Ala His Tyr Leu Asp Glu Gly Arg Gly Ala Leu Phe 50 55 60	Asn (Сув	Ile 35	Val	Val	Leu	Pro	Thr 40	Gly	Leu	Gly	Lys	Thr 45	Ala	Val	Ala		
	Leu (Gln 50	Val	Ile	Ala	His	Tyr 55	Leu	Asp	Glu	Gly	Arg 60	Gly	Ala	Leu	Phe		

Leu 65	Ala	Pro	Thr	Arg	Val 70	Leu	Val	Asn	Gln	His 75	Arg	Gln	Phe	Leu	Gly 80
Arg	Ala	Leu	Thr	Ile 85	Ser	Asp	Ile	Thr	Leu 90	Val	Thr	Gly	Glu	Asp 95	Thr
Ile	Pro	Arg	Arg 100	Lys	Lys	Ala	Trp	Gly 105	Gly	Ser	Val	Ile	Cys 110	Ala	Thr
Pro	Glu	Ile 115	Ala	Arg	Asn	Asp	Ile 120	Glu	Arg	Gly	Leu	Val 125	Pro	Leu	Glu
Gln	Phe 130	Gly	Leu	Val	Ile	Phe 135	Asp	Glu	Ala	His	Arg 140	Ala	Val	Gly	Asp
Tyr 145	Ala	Tyr	Ser	Ser	Ile 150	Ala	Arg	Ala	Val	Gly 155	Asp	Asn	Ser	Arg	Met 160
Val	Gly	Met	Thr	Ala 165	Thr	Leu	Pro	Ser	Glu 170	Arg	Glu	Lys	Ala	Asp 175	Glu
Ile	Met	Gly	Thr	Leu	Leu	Ser	Arg	Ser	Ile	Ala	Gln	Arg	Thr	Glu	Asp
Asp	Pro	Asp	Val	Lys	Pro	Tyr	Val	Gln	Glu	Thr	Ala	Thr	Glu	Trp	Ile
Lys	Val	Asp	Leu	Pro	Pro	Glu	200 Met	Lys	Glu	Ile	Gln	205 Arg	Leu	Leu	Lys
Leu	210 Ala	Leu	Asp	Glu	Arg	215 Tyr	Ser	Ser	Leu	Lys	220 Arg	Cys	Gly	Tyr	Asp
225 Leu	Glv	Ser	Asn	Arq	230 Ser	Leu	Ser	Ala	Leu	235 Leu	Arq	Leu	Arq	Met	240 Val
Val	Ler	61	<u> </u>	245	 2 ~ ~ ~	220	 مام	<u>م</u> ا م	250	Dro	Ler	Dhe	- J Thr	255	
vai	Leu	GIY	260	ABII	ALA	Ary	AIA	265	цуб	P10	Leu	Pile	270	A14	TIG
Arg	Ile	Thr 275	Tyr	Ala	Leu	Asn	11e 280	Phe	Glu	Ala	His	G1 y 285	Val	Thr	Pro
Phe	Leu 290	Lys	Phe	Суз	Glu	Arg 295	Thr	Ser	Lys	Lys	L y s 300	Gly	Val	Gly	Val
Ala 305	Glu	Leu	Phe	Glu	Gln 310	Asp	Arg	Asn	Phe	Thr 315	Gly	Ala	Ile	Ala	A rg 320
Ala	Lys	Ala	Ala	Gln 325	Ala	Ala	Gly	Met	Glu 330	His	Pro	Lys	Ile	Pro 335	Lys
Leu	Glu	Asp	Ala 340	Val	Arg	Gly	Ala	A rg 345	Gly	Lys	Ala	Leu	Val 350	Phe	Thr
Ser	Tyr	Arg 355	Asp	Ser	Val	Asp	Leu 360	Ile	His	Ser	Arg	Leu 365	Lys	Ala	Ala
Gly	Ile 370	Asn	Ser	Gly	Ile	Leu 375	Ile	Gly	Lys	Ala	Gly 380	Glu	Lys	Gly	Leu
Lys 385	Gln	Arg	Lys	Gln	Val 390	Glu	Thr	Val	Ala	Lys 395	Phe	Arg	Asp	Gly	Gly 400
Tyr	Asp	Val	Leu	Val	Ser	Thr	Arg	Val	Gly	Glu	Glu	Gly	Leu	Asp	Ile
Ser	Glu	Val	Asn	Leu	Val	Ile	Phe	Tyr	Asp	Asn	Val	Pro	Ser	Ser	Ile
Arg	Tyr	Val	420 Gln	Arg	Arg	Gly	Arg	425 Thr	Gly	Arg	Lys	Asp	430 Ala	Gly	Arg
Leu	Ile	435 Val	Leu	Met	Ala	Lys	440 Gly	Thr	Ile	Asp	Glu	445 Ala	Tyr	Tyr	Trp
Ile	450 Gly	Arg	Arg	Lys	Met	455 Ser	Ala	Ala	Lys	Gly	460 Met	Gly	Glu	Arq	Met

465	470	475 480	
Asn Arg Ser Leu Ala	a Ala Gly Gly Ala Ala	Ala Lys Ala Ala Pro Lys	
48	5 490	495	
Gly Leu Glu Gly Ty 500	r Phe		
<pre><210> SEQ ID NO 35 <211> LENGTH: 402 <212> TYPE: DNA <213> ORGANISM: Cer <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)</pre>	archaeum symbiosum ; (402)		
<400> SEQUENCE: 35			
gtg tca tcg tac tt	acc ata aag acc gcc	aac ctg gcc ctg ccc gac	48
Met Ser Ser Tyr Phe	Thr Ile Lys Thr Ala	Asn Leu Ala Leu Pro Asp	
1 5	10	15	
gtg gtc aaa aag tad	aac cac gtc ctg gca	tgc aag agc gag gtg atg	96
Val Val Lys Lys Ty:	Asn His Val Leu Ala	Cys Lys Ser Glu Val Met	
20	25	30	
agg gcc gag aag cag	g atc cag acg tcc atc	tcc tcg tct agc ggg ctc	144
Arg Ala Glu Lys Glu	n Ile Gln Thr Ser Ile	Ser Ser Ser Ser Gly Leu	
35	40	45	
gac aag tac tcg gag	g ctc aag caa cag ttc	aac tcc cgg ata acc gag	192
Asp Lys Tyr Ser Glu	1 Leu Lys Gln Gln Phe	Asn Ser Arg Ile Thr Glu	
50	55	60	
ttc tac cgc tcg ata	a gaa gag ctg gaa aag	acc ggt gcg gtg gtc aag	240
Phe Tyr Arg Ser Ila	9 Glu Glu Leu Glu Lys	Thr Gly Ala Val Val Lys	
65	70	75 80	
agc ata gac gag gg	c ctg ctg gac ttt ccc	gca aag cgc ttt ggg gac	288
Ser Ile Asp Glu Gl	7 Leu Leu Asp Phe Pro	Ala Lys Arg Phe Gly Asp	
8	5 90	95	
gac atc tgg ctg tg	c tgg aag aca ggc gag	cgc gag atc aag ttc tgg	336
Asp Ile Trp Leu Cy	s Trp Lys Thr Gly Glu	Arg Glu Ile Lys Phe Trp	
100	105	110	
cat gaa aag gac to	t ggt ttt ggc gga aga	aag ccc ata gag gta agt	384
His Glu Lys Asp Se	Gly Phe Gly Gly Arg	L y s Pro Ile Glu Val Ser	
115	120	125	
gac gag tca cta gto Asp Glu Ser Leu Va 130	g tag L		402
<210> SEQ ID NO 36 <211> LENGTH: 133 <212> TYPE: PRT	archaeum cumbiocum		
<400> SEQUENCE: 36	archaean synbrosan		
Met Ser Ser Tyr Pho	e Thr Ile Lys Thr Ala	Asn Leu Ala Leu Pro Asp	
1 5	10	15	
Val Val Lys Lys Ty	r Asn His Val Leu Ala	Cys Lys Ser Glu Val Met	
20	25	30	
Arg Ala Glu Lys Glu	n Ile Gln Thr Ser Ile	Ser Ser Ser Ser Gl y Leu	
35	40	45	
Asp Lys Tyr Ser Glu	ı Leu Lys Gln Gln Phe	Asn Ser Arg Ile Thr Glu	
50	55	60	
Phe Tyr Arg Ser Ile	e Glu Glu Leu Glu Lys	Thr Gly Ala Val Val Lys	

continued

												con	CTIL	ueu		
65					70					75					80	
Ser	Ile	Asp	Glu	Gly 85	Leu	Leu	Asp	Phe	Pro 90	Ala	Lys	Arg	Phe	Gly 95	Asp	
Asp	Ile	Trp	Leu 100	Cys	Trp	Lys	Thr	Gly 105	Glu	Arg	Glu	Ile	Lys 110	Phe	Trp	
His	Glu	L y s 115	Asp	Ser	Gly	Phe	Gl y 120	Gly	Arg	Lys	Pro	Ile 125	Glu	Val	Ser	
Asp	Glu 130	Ser	Leu	Val												
<210 <211 <212 <212 <221 <220 <221 <221)> SH L> LH 2> TY 3> OH D> FH L> NH 2> LC	EQ II ENGTH PE: RGANI EATUH AME/H	D NO I: 87 DNA SM: RE: RE: REY:	37 79 Cena CDS	archa	aeum 879)	sym	piosu	ım							
<400)> SI	QUE	ICE :	37	(,										
atg Met 1	ctc Leu	tcc Ser	gcc Ala	tgg Trp 5	ttg Leu	cgc Arg	gta Val	ata Ile	cgc Arg 10	gtc Val	cgc Arg	ttc Phe	ctg Leu	ctc Leu 15	gcg Ala	48
tcg Ser	gtg Val	ata Ile	gcc Ala 20	gtc Val	tcg Ser	gcg Ala	ggc Gl y	ctc Leu 25	gcc Ala	ctc Leu	tcc Ser	tgg Trp	tgg Trp 30	cac His	ggc Gl y	96
cac His	gaa Glu	ata Ile 35	gac Asp	gca Ala	ttc Phe	tcc Ser	gcc Ala 40	gcg Ala	ctc Leu	acc Thr	atg Met	gcc Ala 45	ggc Gly	gtg Val	gcc Ala	144
gcg Ala	ctc Leu 50	cac His	gca Ala	agc Ser	gtg Val	gac Asp 55	atg Met	ctc Leu	aac Asn	gat Asp	tat Tyr 60	tcg Ser	gac Asp	tac Tyr	aag L y s	192
cgc Arg 65	ggc Gly	ata Ile	gat Asp	acc Thr	ata Ile 70	acc Thr	aag Lys	agg Arg	acc Thr	ccg Pro 75	atg Met	agc Ser	ggc Gly	gga Gly	aca Thr 80	240
GJÀ ddd	gtg Val	ctg Leu	cca Pro	gaa Glu 85	ggc Gly	ctg Leu	ctt Leu	acc Thr	ccc Pro 90	ggc Gly	cag Gln	gtg Val	cac His	cgc Arg 95	gcc Ala	288
ggc Gl y	atc Ile	ata Ile	tcg Ser 100	ctg Leu	gtc Val	ctg Leu	ggc Gl y	tct Ser 105	gct Ala	gtc Val	ggc Gly	gcg Ala	tac Tyr 110	ttt Phe	gtg Val	336
gtc Val	aca Thr	acg Thr 115	GJÀ ddd	ccc Pro	gtc Val	ata Ile	gcc Ala 120	atg Met	ata Ile	ctc Leu	ggc Gl y	ttt Phe 125	gcc Ala	gta Val	gtc Val	384
tcg Ser	ata Ile 130	tac Tyr	ttt Phe	tac Tyr	tcg Ser	acg Thr 135	agg Arg	att Ile	gta Val	gac Asp	tcg Ser 140	ggc Gl y	ctc Leu	tcc Ser	gag Glu	432
gtc Val 145	ttt Phe	gtg Val	gcc Ala	gtc Val	aag Lys 150	GJÀ ddd	gcg Ala	atg Met	atc Ile	gtc Val 155	ctt Leu	ggc Gly	gcc Ala	tac Tyr	tac Tyr 160	480
ata Ile	cag Gln	gcg Ala	ccc Pro	gag Glu 165	ata Ile	acg Thr	cct Pro	gcc Ala	gcc Ala 170	gtt Val	ctg Leu	gtg Val	GJÀ ∂∂∂	gcg Ala 175	gcc Ala	528
gtg Val	ggc Gly	gcc Ala	ctc Leu 180	tcg Ser	tcg Ser	gcg Ala	gtc Val	ctc Leu 185	ttt Phe	gtg Val	gcg Ala	tcg Ser	ttt Phe 190	cca Pro	gac Asp	576
cac His	gat Asp	gcg Ala 195	gac Asp	aag Lys	tcc Ser	cgc Arg	ggc Gl y 200	aga Arg	aag Lys	acg Thr	ctt Leu	gtt Val 205	ata Ile	atc Ile	ctg Leu	624

ggc Gly	aag Lys 210	gag Glu	agg Arg	gcc Ala	tcg Ser	cgg Arg 215	atc Ile	ctc Leu	tgg Trp	gtg Val	ttc Phe 220	ccc Pro	gca Ala	gtg Val	gca Ala	672	
tac Tyr 225	tcg Ser	tcc Ser	gtt Val	ata Ile	acg Thr 230	ggg Gl y	gtc Val	atc Ile	ctg Leu	cag Gln 235	ttc Phe	ctg Leu	ccg Pro	gtg Val	cat His 240	720	
gca Ala	cta Leu	acc Thr	atg Met	ctg Leu 245	ctt Leu	gca Ala	gcc Ala	ccc Pro	ctt Leu 250	gca Ala	gta Val	att Ile	gcg Ala	gca Ala 255	aaa Lys	768	
ggc Gl y	ctt Leu	gcc Ala	agg Arg 260	gag Glu	tac Tyr	ggc Gl y	ddd ddd	gac Asp 265	ddd Gl i	atc Ile	ata Ile	cgg Arg	gtc Val 270	atg Met	cgc Arg	816	
ggc Gly	acg Thr	ctg Leu 275	cgg Arg	ttt Phe	agc Ser	agg Arg	gtt Val 280	gca Ala	ggc Gly	gcc Ala	ctg Leu	ctg Leu 285	gtg Val	ttg Leu	ggc Gly	864	
att Ile	ctg Leu 290	ttg Leu	ggc Gl y	tga												879	
<210)> SE	Q II	NO NO	38													
<21: <21: <21:	l> LE 2> TY 3> OF	NGTH PE: GANI	1: 29 PRT SM:	2 Cena	archa	aeum	symb	oiosu	ım								
<400)> SE	QUEN	ICE :	38													
Met 1	Leu	Ser	Ala	Trp 5	Leu	Arg	Val	Ile	Arg 10	Val	Arg	Phe	Leu	Leu 15	Ala		
Ser	Val	Ile	Ala 20	Val	Ser	Ala	Gly	Leu 25	Ala	Leu	Ser	Trp	Trp 30	His	Gly		
His	Glu	Ile 35	Asp	Ala	Phe	Ser	Ala 40	Ala	Leu	Thr	Met	Ala 45	Gly	Val	Ala		
Ala	Leu 50	His	Ala	Ser	Val	Asp 55	Met	Leu	Asn	Asp	Tyr 60	Ser	Asp	Tyr	Lys		
Arg 65	Gly	Ile	Asp	Thr	Ile 70	Thr	Lys	Arg	Thr	Pro 75	Met	Ser	Gly	Gly	Thr 80		
Gly	Val	Leu	Pro	Glu 85	Gly	Leu	Leu	Thr	Pro 90	Gly	Gln	Val	His	Arg 95	Ala		
Gly	Ile	Ile	Ser 100	Leu	Val	Leu	Gly	Ser 105	Ala	Val	Gly	Ala	Tyr 110	Phe	Val		
Val	Thr	Thr 115	Gly	Pro	Val	Ile	Ala 120	Met	Ile	Leu	Gly	Phe 125	Ala	Val	Val		
Ser	Ile 130	Tyr	Phe	Tyr	Ser	Thr 135	Arg	Ile	Val	Asp	Ser 140	Gly	Leu	Ser	Glu		
Val 145	Phe	Val	Ala	Val	L y s 150	Gly	Ala	Met	Ile	Val 155	Leu	Gly	Ala	Tyr	Tyr 160		
Ile	Gln	Ala	Pro	Glu 165	Ile	Thr	Pro	Ala	Ala 170	Val	Leu	Val	Gly	Ala 175	Ala		
Val	Gly	Ala	Leu 180	Ser	Ser	Ala	Val	Leu 185	Phe	Val	Ala	Ser	Phe 190	Pro	Asp		
His	Asp	Ala 195	Asp	Lys	Ser	Arg	Gly 200	Arg	Lys	Thr	Leu	Val 205	Ile	Ile	Leu		
Gly	L y s 210	Glu	Arg	Ala	Ser	Arg 215	Ile	Leu	Trp	Val	Phe 220	Pro	Ala	Val	Ala		
Tyr	Ser	Ser	Val	Ile	Thr	Gly	Val	Ile	Leu	Gln	Phe	Leu	Pro	Val	His		

-continued

_																
225					230					235					240	
Ala	Leu	Thr	Met	Leu 245	Leu	Ala	Ala	Pro	Leu 250	Ala	Val	Ile	Ala	Ala 255	Lys	
Gly	Leu	Ala	Arg 260	Glu	Tyr	Gly	Gly	A sp 265	Gly	Ile	Ile	Arg	Val 270	Met	Arg	
Gly	Thr	Leu 275	Arg	Phe	Ser	Arg	Val 280	Ala	Gly	Ala	Leu	Leu 285	Val	Leu	Gly	
Ile	Leu 290	Leu	Gly													
<210 <211 <211 <211 <211 <220 <221)> SI L> LI 2> TY 3> OF 0> FI L> NA 2> LC	EQ II ENGTH PE: RGANI EATUH AME/H	D NO I: 11 DNA SM: RE: RE: REY: TON:	39 119 Cena CDS	archa	aeum	symb	piosu	ım							
<400)> SH	QUEN	ICE:	39	•••(,									
atg Met 1	atc Ile	agc Ser	dda dda	cac His 5	gcc Ala	acg Thr	gcc Ala	gag Glu	ggt Gl y 10	aca Thr	cgc Arg	agg Arg	ata Ile	gcc Ala 15	gag Glu	48
atg Met	tcg Ser	ggc Gly	gcc Ala 20	cat His	atc Ile	gac Asp	aac Asn	tac Tyr 25	aag L y s	atg Met	gtc Val	gac Asp	30 GJ À AAA	ctg Leu	cac His	96
ctc Leu	tcc Ser	aac Asn 35	gtg Val	GJÀ ∂∂∂	atg Met	ggc Gly	acc Thr 40	tac Tyr	ctt Leu	ggc Gl y	gac Asp	gcg Ala 45	gat Asp	gac Asp	gcc Ala	144
acc Thr	gac Asp 50	agg Arg	gcc Ala	gtc Val	acg Thr	gac Asp 55	gca Ala	gtc Val	aag L y s	agg Arg	tcc Ser 60	gtc Val	aaa Lys	aca Thr	ggc Gly	192
ata Ile 65	aac Asn	gtc Val	ata Ile	gat Asp	acg Thr 70	gcg Ala	ata Ile	aac Asn	tac Tyr	cgc Arg 75	ctc Leu	cag Gln	agg Arg	gcc Ala	gag Glu 80	240
cgc Arg	tct Ser	gtc Val	ggc Gly	agg Arg 85	gcc Ala	gtc Val	acg Thr	gag Glu	ctc Leu 90	tca Ser	gaa Glu	gag Glu	GJÀ ddd	ctc Leu 95	gta Val	288
tca Ser	agg Arg	gac Asp	caa Gln 100	ata Ile	ttc Phe	ata Ile	tcg Ser	aca Thr 105	aag Lys	gcg Ala	ggc Gly	tat Tyr	gta Val 110	aca Thr	aac Asn	336
gac Asp	tcc Ser	gag Glu 115	gtc Val	tcg Ser	ctt Leu	gac Asp	ttt Phe 120	tgg Trp	gag Glu	tat Tyr	gtg Val	aaa L y s 125	aaa Lys	gag Glu	tac Tyr	384
gtc Val	999 Gly 130	ggc Gly	ggc Gly	gtg Val	atc Ile	cag Gln 135	gca Ala	ggc Gl y	gac Asp	ata Ile	tcc Ser 140	tcc Ser	gga Gl y	tac Tyr	cac His	432
tgc C y s 145	atg Met	aag Lys	ccc Pro	gcc Ala	tat Tyr 150	cta Leu	gag Glu	gac Asp	cag Gln	ctg Leu 155	aag Lys	agg Arg	agc Ser	ctt Leu	gca Ala 160	480
aac Asn	atg Met	ggc Gly	ctc Leu	gac Asp 165	tgt Cys	atc Ile	gac Asp	ctt Leu	gtc Val 170	tac Tyr	gtg Val	cac His	aac Asn	ccc Pro 175	gtc Val	528
gag Glu	GJÀ ddd	cag Gln	atc Ile 180	aag L y s	gac Asp	cgc Arg	ccc Pro	ata Ile 185	ccg Pro	gag Glu	atc Ile	ctc Leu	gac Asp 190	tgt Cys	ata Ile	576
gga Gly	gag Glu	gcc Ala 195	ttt Phe	gcc Ala	atg Met	tac Tyr	gag Glu 200	aag Lys	gca Ala	agg Arg	gag Glu	gat Asp 205	ggc Gly	cgc Arg	atc Ile	624

aga Arg	tac Tyr 210	tat Tyr	GJÀ ddd	ctc Leu	gcc Ala	acg Thr 215	tgg Trp	gag Glu	tgc Cys	ttt Phe	cgt Arg 220	gtt Val	gca Ala	GJÀ dàd	gac Asp	672
aac Asn 225	ccg Pro	cag Gln	aat Asn	gtc Val	cag Gln 230	ctc Leu	gaa Glu	gac Asp	gtt Val	gta Val 235	aag Lys	aag Lys	gcc Ala	aaa Lys	gac Asp 240	720
gca Ala	ggc Gl y	GJÀ ddd	gac Asp	aac Asn 245	cac His	gga Gl y	ttc Phe	aag Lys	ttc Phe 250	ata Ile	cag Gln	ctg Leu	ccc Pro	ttc Phe 255	aac Asn	768
cag Gln	tac Tyr	ttt Phe	gac Asp 260	cag Gln	gct Ala	tac Tyr	atg Met	cta Leu 265	aag Lys	aac Asn	cag Gln	acg Thr	gtg Val 270	gac Asp	ggc Gl y	816
aga Arg	aag Lys	ctg Leu 275	tcc Ser	ata Ile	ctg Leu	gat Asp	gcg Ala 280	gca Ala	gta Val	tcc Ser	ctt Leu	ggc Gly 285	gtc Val	ggt Gl y	gtg Val	864
ttc Phe	acg Thr 290	agt Ser	gtc Val	ccg Pro	ttc Phe	atg Met 295	caa Gln	ggc Gl y	aag Lys	ctg Leu	ctc Leu 300	gag Glu	cct Pro	ggc Gl y	ctg Leu	912
ctg Leu 305	ccg Pro	gag Glu	ttt Phe	ggc Gl y	ggg Gly 310	ctc Leu	tcc Ser	ccc Pro	gcc Ala	ctg Leu 315	cga Arg	tcc Ser	ctg Leu	cag Gln	ttt Phe 320	960
atc Ile	agg Arg	tct Ser	aca Thr	cca Pro 325	ggc Gl y	gtg Val	ctt Leu	gcc Ala	ccc Pro 330	ctg Leu	ccg Pro	ggg ggg	cac His	aac Asn 335	tca Ser	1008
gct Ala	gcg Ala	cat His	aca Thr 340	gac Asp	gag Glu	aac Asn	ctc Leu	aag Lys 345	atc Ile	atg Met	ggc Gl y	gtg Val	ccc Pro 350	ccc Pro	atc Ile	1056
ccg Pro	cct Pro	gac Asp 355	aag Lys	ttc Phe	ggg ggg	gag Glu	ctt Leu 360	gtg Val	gcc Ala	agc Ser	ctc Leu	acc Thr 365	tcg Ser	tgg Trp	tcg Ser	1104
ccc Pro	ggt Gl y 370	cag Gln	aaa Lys	tag												1119
<210 <211 <212 <213)> SE l> LE 2> TY 3> OR	Q ID NGTH PE: GANI) NO [: 37 PRT [SM:	40 2 Cena	ircha	eum	symb	oiosu	ım							
<400)> SE	QUEN	ICE :	40												
Met 1	Ile	Ser	Gly	His 5	Ala	Thr	Ala	Glu	Gly 10	Thr	Arg	Arg	Ile	Ala 15	Glu	
Met	Ser	Gly	Ala 20	His	Ile	Asp	Asn	Tyr 25	Lys	Met	Val	Asp	Gly 30	Leu	His	
Leu	Ser	Asn 35	Val	Gly	Met	Gly	Thr 40	Tyr	Leu	Gly	Asp	Ala 45	Asp	Asp	Ala	
Thr	Asp 50	Arg	Ala	Val	Thr	Asp 55	Ala	Val	Lys	Arg	Ser 60	Val	Lys	Thr	Gly	
Ile 65	Asn	Val	Ile	Asp	Thr 70	Ala	Ile	Asn	Tyr	Arg 75	Leu	Gln	Arg	Ala	Glu 80	
Arg	Ser	Val	Gly	Arg 85	Ala	Val	Thr	Glu	Leu 90	Ser	Glu	Glu	Gly	Leu 95	Val	
Ser	Arg	Asp	Gln 100	Ile	Phe	Ile	Ser	Thr 105	Lys	Ala	Gly	Tyr	Val 110	Thr	Asn	
Asp	Ser	Glu 115	Val	Ser	Leu	Asp	Phe 120	Trp	Glu	Tyr	Val	L ys 125	Lys	Glu	Tyr	

```
-continued
```

Val Gly Gly Gly Val Ile Gln Ala Gly Asp Ile Ser Ser Gly Tyr His Cys Met Lys Pro Ala Tyr Leu Glu Asp Gln Leu Lys Arg Ser Leu Ala Asn Met Gly Leu Asp Cys Ile Asp Leu Val Tyr Val His Asn Pro Val Glu Gly Gln Ile Lys Asp Arg Pro Ile Pro Glu Ile Leu Asp Cys Ile Gly Glu Ala Phe Ala Met Tyr Glu Lys Ala Arg Glu Asp Gly Arg Ile 195 200 205 Arg Tyr Tyr Gly Leu Ala Thr Trp Glu Cys Phe Arg Val Ala Gly Asp210215220 Asn Pro Gln Asn Val Gln Leu Glu Asp Val Val Lys Lys Ala Lys Asp Ala Gly Gly Asp Asn His Gly Phe Lys Phe Ile Gln Leu Pro Phe Asn Gln Tyr Phe Asp Gln Ala Tyr Met Leu Lys Asn Gln Thr Val Asp Gly Arg Lys Leu Ser Ile Leu Asp Ala Ala Val Ser Leu Gly Val Gly Val275280285 Phe Thr Ser Val Pro Phe Met Gl
n Gly Lys Leu Leu Glu Pro Gly Leu Leu Pro Glu Phe Gly Gly Leu Ser Pro Ala Leu Arg Ser Leu Gln Phe Ile Arg Ser Thr Pro Gly Val Leu Ala Pro Leu Pro Gly His Asn Ser Ala Ala His Thr Asp Glu Asn Leu Lys Ile Met Gly Val Pro Pro Ile Pro Pro Asp Lys Phe Gly Glu Leu Val Ala Ser Leu Thr Ser Trp Ser Pro Gly Gln Lys <210> SEQ ID NO 41 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)...(1107) <400> SEQUENCE: 41 atg gca cgg ggg cct atc ttg agt gaa aag ttc cag ata ctg cag ggc Met Ala Arg Gly Pro Ile Leu Ser Glu Lys Phe Gln Ile Leu Gln Gly 1 5 10 15 gac gcc cgg gag gtg ctg ccg cgg ctg gca aag aat aca gcc gag cgc Asp Ala Arg Glu Val Leu Pro Arg Leu Ala Lys Asn Thr Ala Glu Arg ggc agg tac aga ctg gcg gta aca tcc cct ccc tat tac ggg cac aga Gly Arg Tyr Arg Leu Ala Val Thr Ser Pro Pro Tyr Tyr Gly His Arg aag tac ggg tcg gag ccc tcc gag ctg ggc cag gaa aag acg cca gac Lys Tyr Gly Ser Glu Pro Ser Glu Leu Gly Gln Glu Lys Thr Pro Asp

-continued

gag Glu 65	ttc Phe	atc Ile	gag Glu	gag Glu	ctg Leu 70	gca Ala	gga Gly	gta Val	ttc Phe	aag Lys 75	agc Ser	tgc Cys	atg Met	gac Asp	ctg Leu 80	240
cta Leu	aca Thr	gac Asp	gac Asp	999 Gly 85	agc Ser	ctc Leu	ttc Phe	ata Ile	gtg Val 90	ata Ile	ggt Gl y	gat Asp	acc Thr	agg Arg 95	agg Arg	288
cgg Arg	cgc Arg	cac His	aag Lys 100	ctg Leu	atg Met	gtc Val	ccg Pro	cac His 105	cgg Arg	ctc Leu	gcg Ala	cta Leu	agg Arg 110	ctg Leu	gtg Val	336
gat Asp	ctt Leu	999 Gly 115	tac Tyr	cat His	ttc Phe	cag Gln	gag Glu 120	gat Asp	ata Ile	atc Ile	tgg Trp	tac Tyr 125	aag Lys	cga Arg	aac Asn	384
gcc Ala	atc Ile 130	tcg Ser	caa Gln	agc Ser	tcg Ser	cgg Arg 135	caa Gln	aac Asn	ctg Leu	acg Thr	cag Gln 140	gcg Ala	tac Tyr	gag Glu	ttt Phe	432
gtt 7al 145	ctg Leu	gtc Val	ctc Leu	tca Ser	aag Lys 150	tcg Ser	gat Asp	acc Thr	ccc Pro	gcc Ala 155	tat Tyr	gac Asp	ata Ile	aac Asn	ccg Pro 160	480
ata [le	cgc Arg	gtc Val	cag Gln	ggc Gl y 165	aac Asn	gag Glu	gcc Ala	ctg Leu	agc Ser 170	gga gga	ata Ile	aac Asn	agc Ser	aaa Lys 175	ccc Pro	528
jca Ala	aat Asn	gac Asp	cgg Arg 180	ctg Leu	cag Gln	ttc Phe	gcc Ala	ccc Pro 185	GJ À ddd	aag L y s	agg Arg	gat Asp	ccc Pro 190	gag Glu	gca Ala	576
le le	GJÀ ddd	agg Arg 195	att Ile	gca Ala	gcc Ala	gtg Val	ata Ile 200	cac His	ggc Gly	tca Ser	acg Thr	cct Pro 205	ggt Gly	acg Thr	ccg Pro	624
tt?he	gac Asp 210	gag Glu	ctg Leu	cca Pro	acc Thr	acc Thr 215	GJ À ddd	gaa Glu	ata Ile	tca Ser	tgg Trp 220	gcc Ala	cac His	ggc Gl y	tat Tyr	672
gac Asp 225	ccc Pro	gaa Glu	aag Lys	tac Tyr	tgc Cys 230	ccc Pro	acg Thr	tgc Cys	tat Tyr	cgc Arg 235	aag Lys	ttc Phe	cgg Arg	agg Arg	cat His 240	720
jcg Ala	acg Thr	cgc Arg	aag Lys	agg Arg 245	ata Ile	dda dda	ggc Gl y	cac His	gag Glu 250	cac His	tat Tyr	ccg Pro	ata Ile	ttt Phe 255	gcc Ala	768
jca la	tgc Cys	aac Asn	ccg Pro 260	cgg Arg	ggc Gly	aag Lys	aac Asn	ccg Pro 265	GJÀ ddd	aac Asn	gtc Val	tgg Trp	gag Glu 270	ata Ile	tcc Ser	816
ıca 'hr	aag Lys	gcg Ala 275	cac His	cat His	gga Gly	aac Asn	gag Glu 280	cac His	ttt Phe	gcg Ala	gta Val	ttc Phe 285	cca Pro	gaa Glu	gac Asp	864
ett Jeu	gta Val 290	tcc Ser	agg Arg	ata Ile	gta Val	aag L y s 295	ttt Phe	gcc Ala	aca Thr	aaa Lys	gag Glu 300	ggc Gly	gat Asp	tac Tyr	gtg Val	912
tg Leu 805	gac Asp	ccg Pro	ttt Phe	gca Ala	ggc Gly 310	agg Arg	GJÀ ddd	acc Thr	acg Thr	gga Gl y 315	ata Ile	gtc Val	tct Ser	gca Ala	tgc Cys 320	960
tc Jeu	aag Lys	agg Arg	ggc Gl y	ttt Phe 325	acc Thr	GJ À ddd	ata Ile	gac Asp	ctg Leu 330	tat Tyr	cct Pro	gcc Ala	aac Asn	gtg Val 335	gca Ala	1008
igg irg	gcc Ala	cgg Arg	cgc Arg 340	aac Asn	gtg Val	cag Gln	gat Asp	tcc Ser 345	gcc Ala	gat Asp	tca Ser	cgg Arg	ctc Leu 350	tca Ser	aaa Lys	1056
ıag ₁ys	gtg Val	ctc Leu 355	gac Asp	cag Gln	ata Ile	atg Met	ccc Pro 360	gag Glu	agg Arg	cag Gln	ctg Leu	acc Thr 365	ggc Gly	tat Tyr	ttc Phe	1104

tga	1107
<210> SEQ ID NO 42 <211> LENGTH: 368 <212> TYPE: PRT	
<213> ORGANISM: Cenarchaeum symbiosum	
<400> SEQUENCE: 42	
Met Ala Arg Gly Pro Ile Leu Ser Glu Lys Phe Gln Ile Leu Gln Gly151015	
Asp Ala Arg Glu Val Leu Pro Arg Leu Ala Lys Asn Thr Ala Glu Arg 20 25 30	
Gly Arg Tyr Arg Leu Ala Val Thr Ser Pro Pro Tyr Tyr Gly His Arg 35 40 45	
Lys Tyr Gly Ser Glu Pro Ser Glu Leu Gly Gln Glu Lys Thr Pro Asp 50 55 60	
Glu Phe Ile Glu Glu Leu Ala Gly Val Phe Lys Ser Cys Met Asp Leu65707580	
Leu Thr Asp Asp Gly Ser Leu Phe Ile Val Ile Gly Asp Thr Arg Arg 85 90 95	
Arg Arg His Lys Leu Met Val Pro His Arg Leu Ala Leu Arg Leu Val 100 105 110	
Asp Leu Gly Tyr His Phe Gln Glu Asp Ile Ile Trp Tyr Lys Arg Asn 115 120 125	
Ala Ile Ser Gln Ser Ser Arg Gln Asn Leu Thr Gln Ala Tyr Glu Phe 130 135 140	
Val Leu Val Leu Ser Lys Ser Asp Thr Pro Ala Tyr Asp Ile Asn Pro 145 150 155 160	
Ile Arg Val Gln Gly Asn Glu Ala Leu Ser Gly Ile Asn Ser Lys Pro 165 170 175	
Ala Asn Asp Arg Leu Gln Phe Ala Pro Gly Lys Arg Asp Pro Glu Ala 180 185 190	
Ile Gly Arg Ile Ala Ala Val Ile His Gly Ser Thr Pro Gly Thr Pro 195 200 205	
Phe Asp Glu Leu Pro Thr Thr Gly Glu Ile Ser Trp Ala His Gly Tyr 210 215 220	
Asp Pro Glu Lys Tyr Cys Pro Thr Cys Tyr Arg Lys Phe Arg Arg His 225 230 235 240	
Ala Thr Arg Lys Arg Ile Gly Gly His Glu His Tyr Pro Ile Phe Ala 245 250 255	
Ala Cys Asn Pro Arg Gly Lys Asn Pro Gly Asn Val Trp Glu Ile Ser	
Thr Lys Ala His His Gly Asn Glu His Phe Ala Val Phe Pro Glu Asp	
Leu Val Ser Arg Ile Val Lys Phe Ala Thr Lys Glu Gly Asp Tyr Val	
Leu Asp Pro Phe Ala Gly Arg Gly Thr Thr Gly Ile Val Ser Ala Cys	
SUD SID SID SID SID	
Leu Lys Arg Giy Pne Thr Giy He Asp Leu Tyr Pro Ala Ash Val Ala 325 330 335	
Arg Ala Arg Arg Asn Val Gln Asp Ser Ala Asp Ser Arg Leu Ser Lys340345350	

-continued

Lys Val Leu Asp Gln I	e Met Pro Glu Arg 0.	In Leu Thr Gly Tyr Phe	
355	360	365	
<pre><210> SEQ ID NO 43 <211> LENGTH: 933 <212> TYPE: DNA <213> ORGANISM: Cenar <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)</pre>	haeum symbiosum (933)		
<400> SEQUENCE: 43			
atg cct agt tac gca g	aa ata gca aac gac g	yta ctt cga cta atg gag	48
Met Pro Ser Tyr Ala G	u Ile Ala Asn Asp V	Val Leu Arg Leu Met Glu	
1 5	10	15	
tca gtc ggt gag cag g	a cct ggt gta gta c	ett cac gac tat ctt tca	96
Ser Val Gly Glu Gln A	.a Pro Gly Val Val I	Leu His Asp Tyr Leu Ser	
20	25	30	
aaa ttg caa cag tat t	ng ggg agg gat aca a	ta ctg tat gcg acc aac	144
Lys Leu Gln Gln Tyr S	er Gly Arg Asp Thr 1	le Leu Tyr Ala Thr Asn	
35	40	45	
tgg ata acg gac gaa g	g cat acg tct aat g	aa gct ctc ata aca aat	192
Trp Ile Thr Asp Glu A	a His Thr Ser Asn G	lu Ala Leu Ile Thr Asn	
50	55	60	
ggt gac ctg tat gga t	t atg agg atg atg o	gt gat tta aag act aag	240
Gly Asp Leu Tyr Gly P	ne Met Arg Met Met A	ng Asp Leu Lys Thr Lys	
65	70	75 80	
aaa tta gat tta ata c	c cac agt ccg ggg g	ggc tcc gtc gag tcc acc	288
Lys Leu Asp Leu Ile L	eu His Ser Pro Gl y C	ly Ser Val Glu Ser Thr	
85	90	95	
gaa gca atc gtc tca t	ac ata cgt gca aaa t	tt aaa aat gtc cgg atc	336
Glu Ala Ile Val Ser T	rr Ile Arg Ala Lys I	Yhe Lys Asn Val Arg Ile	
100	105	110	
att atc cca tat gcc g	eg atg teg gea get g	gog atg ott goa tgo toa	384
Ile Ile Pro Tyr Ala A	a Met Ser Ala Ala A	la Met Leu Ala Cys Ser	
115	120	125	
tcg aat tgc ctg gta a	g ggt aaa cac tca t	ccg ata ggt ccc acc gac	432
Ser Asn Cys Leu Val M	et Gly Lys His Ser S	Ser Ile Gly Pro Thr Asp	
130	135	140	
ccc caa ttt att att c	a acc agg acc ggc a	tg cac ata atg tct gca	480
Pro Gln Phe Ile Ile P	to Thr Arg Thr Gly M	Met His Ile Met Ser Ala	
145 1	60 1	55 160	
cag ttt cta att agc g	ng ttt caa gaa gca c	ag tcg gtg tca gaa aaa	528
Gln Phe Leu Ile Ser G	.u Phe Gln Glu Ala C	In Ser Val Ser Glu Lys	
165	170	175	
cac ccg ggg agg ctc g	gc gca tgg ctt cca c	tg tta ggg caa tat cct	576
His Pro Gly Arg Leu G	y Ala Trp Leu Pro I	eu Leu Gly Gln Tyr Pro	
180	185	190	
ccc ggg cta att caa a	a tgc att agc agc o	ag aag cta agt gtg gaa	624
Pro Gly Leu Ile Gln L	rs Cys Ile Ser Ser 0	In Lys Leu Ser Val Glu	
195	200	205	
ctt gta caa aaa tgg c	g gct aga tac atg t	tt gag aac gag tct gca	672
Leu Val Gln Lys Trp L	au Ala Arg Tyr Met E	Phe Glu Asn Glu Ser Ala	
210	215	220	
gcg gta aaa aag tca a	aa aaa ata tca gaa a	tta atg tct tcc tct aaa	720
Ala Val Lys Lys Ser L	75 Lys Ile Ser Glu]	Ele Met Ser Ser Ser Lys	
225 2	80 2	235 240	
aaa tat cac agt cat g	ga agg cgc ata tcg a	nga gaa gaa tgt aaa agg	768
Lys Tyr His Ser His G	y Arg Arg Ile Ser A	Arg Glu Glu Cys Lys Arg	

-continued

245	250	255
att ggc tta aaa gta act g Ile Gly Leu Lys Val Thr 2 260	at ctg gaa gat gaa caa g sp Leu Glu Asp Glu Gln G 265	aa ttt caa gat 816 Lu Phe Gln Asp 270
ctg gtg ctg tca gta ttt o Leu Val Leu Ser Val Phe B 275	at gcg gca aat acc atg t is Ala Ala Asn Thr Met Pl 280 23	rt cag tat act 864 ne Gln Tyr Thr 35
cca gtc aac aaa att atc a Pro Val Asn Lys Ile Ile 1 290 2	tg aat cac ctc ggt aat a et Asn His Leu Gly Asn T 95 300	nr Val Glu
aca ctg cca aca cca cgg f Thr Leu Pro Thr Pro Arg 305 310	aa	933
<210> SEQ ID NO 44 <211> LENGTH: 310 <212> TYPE: PRT		
<213> ORGANISM: Cenarchae	im sympiosum	
Met Pro Ser Tyr Ala Glu :	le Ala Asn Asp Val Leu A	rg Leu Met Glu
1 5 Ser Val Gly Glu Gln Ala I	10 ro Gly Val Val Leu His A	15 sp Tyr Leu Ser
20	25	30
Lys Leu Gin Gin Tyr Ser (35	40 41 41	r Ala Inr Asn
Trp Ile Thr Asp Glu Ala I 50	is Thr Ser Asn Glu Ala Lo 5 60	eu Ile Thr Asn
Gly Asp Leu Tyr Gly Phe M 65 70	et Arg Met Met Arg Asp L 75	eu Lys Thr Lys 80
Lys Leu Asp Leu Ile Leu B 85	is Ser Pro Gly Gly Ser Va 90	al Glu Ser Thr 95
Glu Ala Ile Val Ser Tyr 1 100	le Arg Ala Lys Phe Lys A 105	sn Val Arg Ile 110
Ile Ile Pro Tyr Ala Ala M 115	et Ser Ala Ala Ala Met Lu 120 1:	eu Ala Cys Ser 25
Ser Asn Cys Leu Val Met (130	l y L y s His Ser Ser Ile G. 35 140	y Pro Thr Asp
Pro Gln Phe Ile Ile Pro 5 145 150	hr Arg Thr Gly Met His I. 155	le Met Ser Ala 160
Gln Phe Leu Ile Ser Glu I	he Gln Glu Ala Gln Ser V 170	al Ser Glu Lys
His Pro Gly Arg Leu Gly A	la Trp Leu Pro Leu Leu G	ly Gln Tyr Pro
180 Pro Gly Leu Ile Gln Lys (185 ys Ile Ser Ser Gln Lys L	190 Bu Ser Val Glu
195	200 2)5 sm Glu Ser Ala
210 2	15 220	W OLA OOL MEA
Ala Val Lys Lys Ser Lys 1 225 230	ys Ile Ser Glu Ile Met Se 235	er Ser Ser Lys 240
Lys Tyr His Ser His Gly 1 245	rg Arg Ile Ser Arg Glu G 250	lu Cys Lys Arg 255
Ile Gly Leu Lys Val Thr A 260	sp Leu Glu Asp Glu Gln G. 265	Lu Phe Gln Asp 270

Leu Val Leu Ser Val Phe His Ala Ala Asn Thr Met Phe Gln Tyr Thr Pro Val Asn Lys Ile Ile Met Asn His Leu Gly Asn Thr Val Val Glu Thr Leu Pro Thr Pro Arg <210> SEQ ID NO 45 <211> LENGTH: 1305 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)...(1305) <400> SEOUENCE: 45 gtg gat ctg gaa cgc gag tac agg gca aag acc ggc ggc tcg gcc cgg Met Asp Leu Glu Arg Glu Tyr Arg Ala Lys Thr Gly Gly Ser Ala Arg atc ttt gcc agg tcg aaa aag tac cac gtc ggc ggg gtc agc cac aac Ile Phe Ala Arg Ser Lys Lys Tyr His Val Gly Gly Val Ser His Asn ata agg ttc tac gag ccg tat ccg ttt gtg aca agg tcc gcg agc ggc Ile Arg Phe Tyr Glu Pro Tyr Pro Phe Val Thr Arg Ser Ala Ser Gly aag cac ctc gtc gac gtg gac ggg aac aag tat gta gac tac tgg atg Lys His Leu Val Asp Val Asp Gly Asn Lys Tyr Val Asp Tyr Trp Met ggg cac tgg agc ctg ata ctg ggg cac gcg ccg gcg cca gtc agg tcg Gly His Trp Ser Leu Ile Leu Gly His Ala Pro Ala Pro Val Arg Ser gca gta gag ggg cag ctt cgc cgc ggc tgg atc cac ggg acc gtc aac Ala Val Glu Gly Gln Leu Arg Arg Gly Trp Ile His Gly Thr Val Asn gag cag acg atg aat ctc tcg gag ata ata cgc ggc gcg gta agc gtg Glu Gln Thr Met Asn Leu Ser Glu Ile Ile Arg Gly Ala Val Ser Val gca gaa aag aca agg tac gtc acg tcg ggg acg gag gcc gtc atg tat Ala Glu Lys Thr Arg Tyr Val Thr Ser Gly Thr Glu Ala Val Met Tyr gcg gca agg ctg gcg cgc gcg cat acg ggc aga aaa ata ata gca aag Ala Ala Arg Leu Ala Arg Ala His Thr Gly Arg Lys Ile Ile Ala Lys gcg gac ggc ggc tgg cac ggg tac gcg tcg ggg ctg ctc aag tcg gtc Ala Asp Gly Gly Trp His Gly Tyr Ala Ser Gly Leu Leu Lys Ser Val aac tgg ccg tat gat gtg ccc gag agc ggg ggg ctc gtc gac gaa gag Asn Trp Pro Tyr Asp Val Pro Glu Ser Gly Gly Leu Val Asp Glu Glu cac tct ata tcc att ccg tac aac gat ctt gaa ggt tcc ctg gat gtt His Ser Ile Ser Ile Pro Tyr Asn Asp Leu Glu Gly Ser Leu Asp Val ctt ggg cgc gca ggc gac gac ttg gca tgc gtg ata atc gag ccg ctg Leu Gly Arg Ala Gly Asp Asp Leu Ala Cys Val Ile Ile Glu Pro Leu ctg ggc ggc ggc ggc tgc ata ccg gcg gat gag gac tat ctg cgc ggc Leu Cly Gly Gly Gly Cys Ile Pro Ala Asp Glu Asp Tyr Leu Arg Gly

ata Ile 225	cag Gln	gag Glu	ttt Phe	gtg Val	cat His 230	tca Ser	agg Arg	ggc Gl y	gcg Ala	ctg Leu 235	ctt Leu	gtc Val	ctc Leu	gac Asp	gag Glu 240	720
ata Ile	gtg Val	aca Thr	GJÀ dàd	ttc Phe 245	cgg Arg	ttt Phe	agg Arg	ttt Phe	ggc Gly 250	tgc Cys	gcg Ala	tat Tyr	gct Ala	gca Ala 255	gca Ala	768
GJ À ddd	ctg Leu	gac Asp	ccc Pro 260	gat Asp	ata Ile	gtg Val	gcg Ala	ctc Leu 265	ggc Gly	aag Lys	ata Ile	gtc Val	999 Gly 270	ggc Gl y	gga Gl y	816
ttc Phe	ccc Pro	ata Ile 275	GJ À ddd	gtg Val	ata Ile	tgc Cys	ggc Gly 280	aag Lys	gac Asp	gag Glu	gtg Val	atg Met 285	gaa Glu	atc Ile	tcc Ser	864
aac Asn	act Thr 290	ata Ile	tcg Ser	cat His	gca Ala	aag Lys 295	tcc Ser	gac Asp	agg Arg	gcg Ala	tac Tyr 300	atc Ile	ggc Gl y	ggc Gl y	ggc Gly	912
aca Thr 305	ttc Phe	tct Ser	gca Ala	aac Asn	ccc Pro 310	gcc Ala	acg Thr	atg Met	aca Thr	gcg Ala 315	ggc Gl y	gcg Ala	gca Ala	gcg Ala	ctc Leu 320	960
GJ À 333	gag Glu	ctc Leu	aaa Lys	aag Lys 325	aga Arg	aag Lys	ggc Gl y	aca Thr	ata Ile 330	tac Tyr	ccg Pro	agg Arg	ata Ile	aac Asn 335	tcc Ser	1008
atg Met	GJ À ddd	gac Asp	gac Asp 340	gca Ala	agg Arg	gac Asp	aag Lys	ctc Leu 345	tca Ser	aag Lys	ata Ile	ttt Phe	999 Gly 350	aac Asn	agg Arg	1056
gta Val	tcc Ser	gtg Val 355	acc Thr	gga Gl y	agg Arg	ggc Gly	tcg Ser 360	ctg Leu	ttc Phe	atg Met	act Thr	cac His 365	ttt Phe	gtt Val	caa Gln	1104
gat Asp	ggc Gl y 370	gcc Ala	ggc Gl y	agg Arg	gtc Val	tca Ser 375	aat Asn	gct Ala	gca Ala	gat Asp	gcg Ala 380	gca Ala	gcc Ala	tgc Cys	gat Asp	1152
gtt Val 385	gag Glu	ctg Leu	ctg Leu	cac His	agg Arg 390	tac Tyr	cac His	ctg Leu	gac Asp	atg Met 395	atc Ile	acc Thr	cgg Arg	gac Asp	ggc Gl y 400	1200
ata Ile	ttc Phe	ttt Phe	ctg Leu	ccg Pro 405	ggc Gly	aag Lys	ctg Leu	GJ À ddd	gcc Ala 410	ata Ile	tcg Ser	gcg Ala	gcg Ala	cac His 415	tca Ser	1248
aag Lys	gcc Ala	gac Asp	ctc Leu 420	aag Lys	acc Thr	atg Met	tat Tyr	tcc Ser 425	gca Ala	tca Ser	gag Glu	cgc Arg	ttt Phe 430	gca Ala	gaa Glu	1296
ggc Gl y	cta Leu	tga														1305
<210 <211 <212 <213)> SE .> LE ?> TY ?> OF	Q ID NGTH PE: GANI	NO 1: 43 PRT 2SM:	46 4 Cena	ırcha	eum	symb	oiosu	m							
<400)> SE	QUEN	ICE :	46												
Met 1	Asp	Leu	Glu	Arg 5	Glu	Tyr	Arg	Ala	Lys 10	Thr	Gly	Gly	Ser	Ala 15	Arg	
Ile	Phe	Ala	Arg 20	Ser	Lys	Lys	Tyr	His 25	Val	Gly	Gly	Val	Ser 30	His	Asn	
Ile	Arg	Phe 35	Tyr	Glu	Pro	Tyr	Pro 40	Phe	Val	Thr	Arg	Ser 45	Ala	Ser	Gly	
Lys	His 50	Leu	Val	Asp	Val	Asp 55	Gly	Asn	Lys	Tyr	Val 60	Asp	Tyr	Trp	Met	

```
continued
```

											-	con	τın	uea						
Gly 65	His	Trp	Ser	Leu	Ile 70	Leu	Gly	His	Ala	Pro 75	Ala	Pro	Val	Arg	Ser 80					
Ala	Val	Glu	Gly	Gln 85	Leu	Arg	Arg	Gly	Trp 90	Ile	His	Gly	Thr	Val 95	Asn					
Glu	Gln	Thr	Met 100	Asn	Leu	Ser	Glu	Ile 105	Ile	Arg	Gly	Ala	Val 110	Ser	Val					
Ala	Glu	Lys 115	Thr	Arg	Tyr	Val	Thr 120	Ser	Gly	Thr	Glu	Ala 125	Val	Met	Tyr					
Ala	Ala 130	Arg	Leu	Ala	Arg	Ala 135	His	Thr	Gly	Arg	L y s 140	Ile	Ile	Ala	Lys					
Ala 145	Asp	Gly	Gly	Trp	His 150	Gly	Tyr	Ala	Ser	Gly 155	Leu	Leu	Lys	Ser	Val 160					
Asn	Trp	Pro	Tyr	Asp 165	Val	Pro	Glu	Ser	Gl y 170	Gly	Leu	Val	Asp	Glu 175	Glu					
His	Ser	Ile	Ser 180	Ile	Pro	Tyr	Asn	As p 185	Leu	Glu	Gly	Ser	Leu 190	Asp	Val					
Leu	Gly	Arg 195	Ala	Gly	Asp	Asp	Leu 200	Ala	Cys	Val	Ile	Ile 205	Glu	Pro	Leu					
Leu	Gly 210	Gly	Gly	Gly	Cys	Ile 215	Pro	Ala	Asp	Glu	Asp 220	Tyr	Leu	Arg	Gly					
Ile 225	Gln	Glu	Phe	Val	His 230	Ser	Arg	Gly	Ala	Leu 235	Leu	Val	Leu	Asp	Glu 240					
Ile	Val	Thr	Gly	Phe 245	Arg	Phe	Arg	Phe	Gly 250	Суз	Ala	Tyr	Ala	Ala 255	Ala					
Gly	Leu	Asp	Pro 260	Asp	Ile	Val	Ala	Leu 265	Gly	Lys	Ile	Val	Gly 270	Gly	Gly					
Phe	Pro	Ile 275	Gly	Val	Ile	Cys	Gly 280	Lys	Asp	Glu	Val	Met 285	Glu	Ile	Ser					
Asn	Thr 290	Ile	Ser	His	Ala	Lys 295	Ser	Asp	Arg	Ala	Ty r 300	Ile	Gly	Gly	Gly					
Thr 305	Phe	Ser	Ala	Asn	Pro 310	Ala	Thr	Met	Thr	Ala 315	Gly	Ala	Ala	Ala	Leu 320					
Gly	Glu	Leu	Lys	L y s 325	Arg	Lys	Gly	Thr	Ile 330	Tyr	Pro	Arg	Ile	Asn 335	Ser					
Met	Gly	Asp	Asp 340	Ala	Arg	Asp	Lys	Leu 345	Ser	Lys	Ile	Phe	Gly 350	Asn	Arg					
Val	Ser	Val 355	Thr	Gly	Arg	Gly	Ser 360	Leu	Phe	Met	Thr	His 365	Phe	Val	Gln					
Asp	Gly 370	Ala	Gly	Arg	Val	Ser 375	Asn	Ala	Ala	Asp	Ala 380	Ala	Ala	Cys	Asp					
Val 385	Glu	Leu	Leu	His	Arg 390	Tyr	His	Leu	Asp	Met 395	Ile	Thr	Arg	Asp	Gly 400					
Ile	Phe	Phe	Leu	Pro 405	Gly	Lys	Leu	Gly	Ala 410	Ile	Ser	Ala	Ala	His 415	Ser					
Lys	Ala	Asp	Leu 420	Lys	Thr	Met	Tyr	Ser 425	Ala	Ser	Glu	Arg	Phe 430	Ala	Glu					
Gly	Leu																			

<210> SEQ ID NO 47 <211> LENGTH: 807 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum

ഹറ	nt	п.	nı	10	a

											-	con	tin	ued					
<220 <223 <223)> FH L> NA 2> LC	EATUF AME/F CATI	RE: KEY: LON:	CDS (1)	•••(8	307)													
<400)> SI	EQUEN	ICE :	47															
atg Met 1	ata Ile	ctc Leu	ttc Phe	ggc Gly 5	aag Lys	agc Ser	gac Asp	ccc Pro	gcc Ala 10	gag Glu	ctg Leu	gtg Val	cgc Arg	cag Gln 15	gcg Ala	48			
gac Asp	ctc Leu	ctg Leu	tgc Cys 20	agc Ser	aag Lys	aac Asn	cag Gln	ttc Phe 25	agg Arg	gcg Ala	gca Ala	ata Ile	ggc Gly 30	ctg Leu	tac Tyr	96			
GJÀ ddd	aaa Lys	atc Ile 35	ctc Leu	aag Lys	gac Asp	gac Asp	ccg Pro 40	cag Gln	aac Asn	agg Arg	ggc Gly	gtc Val 45	ctg Leu	cac His	aaa Lys	144			
aag L y s	999 Gly 50	ctg Leu	gcc Ala	cag Gln	aac Asn	agg Arg 55	gca Ala	aaa Lys	aag Lys	tac Tyr	tct Ser 60	gat Asp	gcg Ala	atc Ile	acg Thr	192			
tgc Cys 65	ttt Phe	gac Asp	cgg Arg	ctg Leu	ctc Leu 70	gag Glu	ctt Leu	gac Asp	aac Asn	aag Lys 75	gac Asp	gcg Ala	ccc Pro	gcg Ala	tac Tyr 80	240			
aac Asn	aac Asn	aag L y s	gcc Ala	ata Ile 85	gcc Ala	cag Gln	gcc Ala	gag Glu	ctc Leu 90	gga Gl y	gac Asp	acg Thr	gca Ala	tcc Ser 95	gcg Ala	288			
ctg Leu	gaa Glu	aac Asn	tac Tyr 100	ggc Gly	agg Arg	gcc Ala	atc Ile	gag Glu 105	gcc Ala	gac Asp	ccg Pro	cgg Arg	tac Tyr 110	gcg Ala	ccg Pro	336			
gcg Ala	cgc Arg	ttc Phe 115	aac Asn	agg Arg	gcc Ala	gtg Val	ctg Leu 120	ctc Leu	gac Asp	agg Arg	ctg Leu	ggc Gl y 125	gag Glu	cat His	gag Glu	384			
gag Glu	gcg Ala 130	ctg Leu	ccg Pro	gac Asp	ctc Leu	gac Asp 135	agg Arg	gca Ala	gcc Ala	gag Glu	ctg Leu 140	gac Asp	cga Arg	cgc Arg	aag Lys	432			
ccg Pro 145	aac Asn	ccg Pro	agg Arg	ttc Phe	tac Tyr 150	aag Lys	ddd ddd	ata Ile	gtg Val	ctc Leu 155	ggc Gl y	aag Lys	atg Met	ggc Gly	agg Arg 160	480			
cac His	gaa Glu	gag Glu	gcg Ala	ctg Leu 165	gcc Ala	tgc Cys	ttc Phe	aag Lys	ggc Gl y 170	gtg Val	tgc Cys	aag Lys	agg Arg	cat His 175	ccc Pro	528			
ggc Gl y	cac His	gcc Ala	gac Asp 180	tca Ser	cag Gln	ttc Phe	cac His	gtg Val 185	ggg ggg	ata Ile	gag Glu	ctt Leu	acc Thr 190	gag Glu	ctt Leu	576			
ggc Gl y	agg Arg	cac His 195	gcc Ala	gag Glu	gcc Ala	ctc Leu	G1 y G1 y 333	gag Glu	ctt Leu	gca Ala	tca Ser	ctg Leu 205	ccc Pro	gcg Ala	gag Glu	624			
cac His	cgc Arg 210	gag Glu	aac Asn	gcc Ala	aat Asn	gta Val 215	ttg Leu	tat Tyr	gcc Ala	agg Arg	gcg Ala 220	cgc Arg	agc Ser	ctc Leu	tcg Ser	672			
ggc Gl y 225	ctt Leu	ggc Gl y	agg Arg	gag Glu	gac Asp 230	gaa Glu	tcc Ser	ata Ile	gcg Ala	cac His 235	ctg Leu	caa Gln	aag Lys	gcg Ala	gcc Ala 240	720			
aaa Lys	aaa Lys	gat Asp	tcc Ser	aag L y s 245	acg Thr	ata Ile	aaa Lys	aag Lys	tgg Trp 250	gcc Ala	cgc Arg	gca Ala	gaa Glu	aag Lys 255	gcc Ala	768			
ttt Phe	gac Asp	gga Gly	ata Ile 260	cgg Arg	gac Asp	gat Asp	ccc Pro	ggt Gly 265	tca Ser	aaa Lys	aga Arg	tag				807			

<210> SEQ ID NO 48

<211	> LE > TY	NGTH	I: 26 PRT	58													
<213	> OR	GANI	SM:	Cena	archa	aeum	symb	oiosu	ım								
<400	> SE	QUEN	ICE :	48													
Met 1	Ile	Leu	Phe	Gly 5	Lys	Ser	Asp	Pro	Ala 10	Glu	Leu	Val	Arg	Gln 15	Ala		
Asp	Leu	Leu	C y s 20	Ser	Lys	Asn	Gln	Phe 25	Arg	Ala	Ala	Ile	Gly 30	Leu	Tyr		
Gly	Lys	Ile 35	Leu	Lys	Asp	Asp	Pro 40	Gln	Asn	Arg	Gly	Val 45	Leu	His	Lys		
Lys	Gly 50	Leu	Ala	Gln	Asn	Arg 55	Ala	Lys	Lys	Tyr	Ser 60	Asp	Ala	Ile	Thr		
С у в 65	Phe	Asp	Arg	Leu	Leu 70	Glu	Leu	Asp	Asn	L y s 75	Asp	Ala	Pro	Ala	T y r 80		
Asn	Asn	Lys	Ala	Ile 85	Ala	Gln	Ala	Glu	Leu 90	Gly	Asp	Thr	Ala	Ser 95	Ala		
Leu	Glu	Asn	Tyr 100	Gly	Arg	Ala	Ile	Glu 105	Ala	Asp	Pro	Arg	Tyr 110	Ala	Pro		
Ala	Arg	Phe 115	Asn	Arg	Ala	Val	Leu 120	Leu	Asp	Arg	Leu	Gly 125	Glu	His	Glu		
Glu	Ala 130	Leu	Pro	Asp	Leu	Asp 135	Arg	Ala	Ala	Glu	Leu 140	Asp	Arg	Arg	Lys		
Pro 145	Asn	Pro	Arg	Phe	Ty r 150	Lys	Gly	Ile	Val	Leu 155	Gly	Lys	Met	Gly	A rg 160		
His	Glu	Glu	Ala	Leu 165	Ala	Сув	Phe	Lys	Gly 170	Val	Cys	Lys	Arg	His 175	Pro		
Gly	His	Ala	Asp 180	Ser	Gln	Phe	His	Val 185	Gly	Ile	Glu	Leu	Thr 190	Glu	Leu		
Gly	Arg	His 195	Ala	Glu	Ala	Leu	Gly 200	Glu	Leu	Ala	Ser	Leu 205	Pro	Ala	Glu		
His	Arg 210	Glu	Asn	Ala	Asn	Val 215	Leu	Tyr	Ala	Arg	Ala 220	Arg	Ser	Leu	Ser		
Gly 225	Leu	Gly	Arg	Glu	Asp 230	Glu	Ser	Ile	Ala	His 235	Leu	Gln	Lys	Ala	Ala 240		
Lys	Lys	Asp	Ser	L y s 245	Thr	Ile	Lys	Lys	Trp 250	Ala	Arg	Ala	Glu	Lys 255	Ala		
Phe	Asp	Gly	Ile 260	Arg	Asp	Asp	Pro	Gly 265	Ser	Lys	Arg						
<210	> SE	Q II) NO	49													
<211 <212	> LE > TY	NGTH PE:	H: 70 DNA	8													
<213 <220	> OR > FE	GANI	SM: RE:	Cena	archa	aeum	symb	piosu	ım								
<221 <222	> NA > LC	ME/K CATI	XEY:	CDS (1).	(7	708)											
<400	> SE	QUEN	ICE :	49	•												
gtg	cgg	cag	aaa	atg	act	gga	aag	acc	agg	acg	gcg	gtc	ctg	cgg	aac	48	
Met 1	Arg	Gín	Gly	Met 5	Thr	G⊥y	Lys	Thr	Arg 10	Thr	Ala	Val	Leu	Arg 15	Asn		
gcc Ala	atg Met	act Thr	gag Glu	gag Glu	tcg Ser	gct Ala	cgg Arg	gcc Ala	atg Met	ata Ile	gag Glu	gca Ala	aag Lys	aag Lys	acg Thr	96	

											-	con	tin	ued			
ggt Gl y	gcc Ala	ttt Phe 35	agg Arg	gcc Ala	ctt Leu	atg Met	agg Arg 40	gcc Ala	ccg Pro	cgg Arg	aaa Lys	gaa Glu 45	gac Asp	gtc Val	cat His	144	
gtg Val	cat His 50	tct Ser	gta Val	aag L y s	ctg Leu	gtc Val 55	cac His	gag Glu	gcg Ala	ctg Leu	atc Ile 60	cgg Arg	gtc Val	tcc Ser	gcc Ala	192	
agg Arg 65	tac Tyr	tct Ser	gcg Ala	gat Asp	ttt Phe 70	ttc Phe	aga Arg	aag Lys	gcg Ala	gtt Val 75	cac His	ccg Pro	atc Ile	aag Lys	gtg Val 80	240	
gac Asp	cag Gln	aac Asn	gtg Val	atc Ile 85	gag Glu	gtg Val	gtg Val	cta Leu	ggc Gly 90	gac Asp	ggc Gly	gtc Val	ttt Phe	ccc Pro 95	ata Ile	288	
agg Arg	tcc Ser	aag Lys	tcg Ser 100	cgc Arg	ata Ile	cac His	aag Lys	acg Thr 105	ctc Leu	tcg Ser	gca Ala	GJÀ ddd	ctc Leu 110	ggc Gly	aag Lys	336	
aac Asn	agg Arg	gtc Val 115	gac Asp	ctc Leu	gag Glu	cta Leu	gaa Glu 120	gag Glu	cat His	gtc Val	ttt Phe	gcg Ala 125	gaa Glu	tca Ser	gaa Glu	384	
GJ À ddd	atg Met 130	atg Met	tgc C y s	ctt Leu	gac Asp	cgg Arg 135	cac His	ggc Gl y	ggc Gl y	gag Glu	acg Thr 140	gac Asp	ttt Phe	ccc Pro	tac Tyr	432	
aag L y s 145	acg Thr	ej λ ddd	ccc Pro	ggc Gl y	gcg Ala 150	gtg Val	gag Glu	ccg Pro	tac Tyr	ccg Pro 155	cgg Arg	agg Arg	ata Ile	ctc Leu	gat Asp 160	480	
gcg Ala	tca Ser	gag Glu	aat Asn	gtg Val 165	cgg Arg	agc Ser	ccc Pro	gag Glu	gtg Val 170	gag Glu	aca Thr	gaa Glu	gag Glu	gcg Ala 175	ctc Leu	528	
tca Ser	aaa Lys	cta Leu	aaa Lys 180	gag Glu	aag Lys	ctg Leu	cgc Arg	999 Gly 185	ccc Pro	ccg Pro	cct Pro	gac Asp	ggc Gly 190	atg Met	cgc Arg	576	
gac Asp	ctg Leu	cgg Arg 195	gag Glu	gag Glu	ttt Phe	gcc Ala	gca Ala 200	aag Lys	gcg Ala	gtg Val	gag Glu	gtg Val 205	gtc Val	tat Tyr	gta Val	624	
cca Pro	gtc Val 210	tat Tyr	gaa Glu	tcg Ser	cga Arg	ctt Leu 215	gtg Val	ddd ddd	ccc Pro	aaa Lys	aaa L y s 220	aag Lys	gtc Val	cgc Arg	atg Met	672	
atg Met 225	cgg Arg	att Ile	gac Asp	gcg Ala	gca Ala 230	aga Arg	aaa Lys	aag Lys	atc Ile	ctc Leu 235	tag					708	
<210 <211 <212 <212)> SE L> LE 2> TY 3> OF	Q II NGTH PE:) NO H: 23 PRT [SM:	50 35 Cena	archa	aeum	symb	piosu	1m								
<400)> SE	QUEN	ICE :	50													
Met 1	Arg	Gln	Gly	Met 5	Thr	Gly	Lys	Thr	Arg 10	Thr	Ala	Val	Leu	Arg 15	Asn		
Ala	Met	Thr	Glu 20	Glu	Ser	Ala	Arg	Ala 25	Met	Ile	Glu	Ala	Lys 30	Lys	Thr		
Gly	Ala	Phe 35	Arg	Ala	Leu	Met	Arg 40	Ala	Pro	Arg	Lys	Glu 45	Asp	Val	His		
Val	His 50	Ser	Val	Lys	Leu	Val 55	His	Glu	Ala	Leu	Ile 60	Arg	Val	Ser	Ala		
Arg 65	Tyr	Ser	Ala	Asp	Phe 70	Phe	Arg	Lys	Ala	Val 75	His	Pro	Ile	Lys	Val 80		
Asp	Gln	Asn	Val	Ile	Glu	Val	Val	Leu	Gly	Asp	Gly	Val	Phe	Pro	Ile		

-continued

				85					90					95		
Arg	Ser	Lys	Ser 100	Arg	Ile	His	Lys	Thr 105	Leu	Ser	Ala	Gly	Leu 110	Gly	Lys	
Asn	Arg	Val 115	Asp	Leu	Glu	Leu	Glu 120	Glu	His	Val	Phe	Ala 125	Glu	Ser	Glu	
Gly	Met 130	Met	Cys	Leu	Asp	Arg 135	His	Gly	Gly	Glu	Thr 140	Asp	Phe	Pro	Tyr	
L y s 145	Thr	Gly	Pro	Gly	Ala 150	Val	Glu	Pro	Tyr	Pro 155	Arg	Arg	Ile	Leu	Asp 160	
Ala	Ser	Glu	Asn	Val 165	Arg	Ser	Pro	Glu	Val 170	Glu	Thr	Glu	Glu	Ala 175	Leu	
Ser	Lys	Leu	Lys 180	Glu	Lys	Leu	Arg	Gly 185	Pro	Pro	Pro	Asp	Gly 190	Met	Arg	
Asp	Leu	Arg 195	Glu	Glu	Phe	Ala	Ala 200	Lys	Ala	Val	Glu	Val 205	Val	Tyr	Val	
Pro	Val 210	Tyr	Glu	Ser	Arg	Leu 215	Val	Gly	Pro	Lys	L y s 220	Lys	Val	Arg	Met	
Met 225	Arg	Ile	Asp	Ala	Ala 230	Arg	Lys	Lys	Ile	Leu 235						
<211 <212 <213 <220 <221 <222	> LE > TY > OF > FE > NA > LC	NGTH PE: GANJ ATUF ME/F OCATJ	I: 37 DNA SM: RE: RE: REY: ION:	78 Cena CDS (1)	archa	aeum 378)	sym	piosu	ım							
<400	> SE	QUEN	ICE :	51												
atg Met 1	agg Arg	tcg Ser	gag Glu	ggc Gly 5	agg Arg	ccc Pro	gga Gly	tac Tyr	atc Ile 10	gaa Glu	aag Lys	ttc Phe	cta Leu	aag Lys 15	agg Arg	48
gcg Ala	gac Asp	aag Lys	gcg Ala 20	ata Ile	gac Asp	aat Asn	gca Ala	gtc Val 25	gag Glu	cag Gln	ggc Gly	gtc Val	aag Lys 30	agg Arg	gca Ala	96
gac Asp	gag Glu	ata Ile 35	cta Leu	gat Asp	gac Asp	gca Ala	gtc Val 40	gag Glu	ctc Leu	ggc Gl y	aag L y s	atc Ile 45	acc Thr	gtg Val	ggc Gl y	144
gag Glu	gcg Ala 50	caa Gln	aaa Lys	aga Arg	agc Ser	gat Asp 55	gtg Val	ctg Leu	ctc Leu	aag L y s	cag Gln 60	gcc Ala	gag Glu	cgg Arg	gag Glu	192
agc Ser 65	aag L y s	cgg Arg	ctc Leu	aag Lys	tca Ser 70	agg Arg	ggc Gl y	gcc Ala	aaa Lys	aag Lys 75	ctc Leu	gaa Glu	aag Lys	ggc Gl y	ata Ile 80	240
GJÀ ddd	gcg Ala	gca Ala	aaa Lys	aag Lys 85	atg Met	gca Ala	gcc Ala	ggc Gl y	aag Lys 90	ggc Gl y	gac Asp	gcg Ala	cta Leu	gag Glu 95	acc Thr	288
ctg Leu	gca Ala	aag Lys	ctc Leu 100	ggc Gl y	gag Glu	ctg Leu	aga Arg	aag L y s 105	gcg Ala	GJÀ ddd	atc Ile	ata Ile	acg Thr 110	gag Glu	aag L y s	336
gag Glu	ttt Phe	cgc Arg 115	gcc Ala	aag Lys	aaa Lys	aag Lys	aag L y s 120	ctt Leu	ctc Leu	gcg Ala	gag Glu	atc Ile 125	tga			378
<210 <211	> SE > LE	Q II NGTH) NO 1: 12	52 25												

<212> TYPE: PRT

```
-continued
```

<213	3> OF	GANI	ISM:	Cena	archa	aeum	symb	piosu	ım											
<400)> SE	QUEN	ICE :	52																
Met 1	Arg	Ser	Glu	Gly 5	Arg	Pro	Gly	Tyr	Ile 10	Glu	Lys	Phe	Leu	L y s 15	Arg					
Ala	Asp	Lys	Ala 20	Ile	Asp	Asn	Ala	Val 25	Glu	Gln	Gly	Val	Lys 30	Arg	Ala					
Asp	Glu	Ile 35	Leu	Asp	Asp	Ala	Val 40	Glu	Leu	Gly	Lys	Ile 45	Thr	Val	Gly					
Glu	Ala 50	Gln	Lys	Arg	Ser	Asp 55	Val	Leu	Leu	Lys	Gln 60	Ala	Glu	Arg	Glu					
Ser 65	Lys	Arg	Leu	Lys	Ser 70	Arg	Gly	Ala	Lys	L y s 75	Leu	Glu	Lys	Gly	Ile 80					
Gly	Ala	Ala	Lys	L y s 85	Met	Ala	Ala	Gly	Lys 90	Gly	Asp	Ala	Leu	Glu 95	Thr					
Leu	Ala	Lys	Leu 100	Gly	Glu	Leu	Arg	L y s 105	Ala	Gly	Ile	Ile	Thr 110	Glu	Lys					
Glu	Phe	Arg 115	Ala	Lys	Lys	Lys	L y s 120	Leu	Leu	Ala	Glu	Ile 125								
<210 <211 <211 <211 <211 <220 <221 <221)> SE 1> LE 2> TY 3> OF 3> FE 1> NA 2> LC	Q II NGTH PE: GANJ ATUF ME/H OCATJ	O NO H: 60 DNA ISM: RE: RE: REY: ION:	53 06 Cena CDS (1)	archa	aeum 506)	symt	piosu	ım											
<400)> SE	QUEN	ICE :	53																
atg Met 1	tcc Ser	aag Lys	acg Thr	gag Glu 5	gcc Ala	tcc Ser	ccg Pro	ggg Gly	gga Gly 10	tat Tyr	gcc Ala	tgc C y s	acg Thr	cca Pro 15	tac Tyr	48				
acg Thr	cac His	gac Asp	cat His 20	gcc Ala	tcg Ser	ata Ile	gag Glu	ctc Leu 25	aag Lys	gag Glu	gaa Glu	tgg Trp	tcc Ser 30	tcg Ser	tcg Ser	96				
agg Arg	aac Asn	gta Val 35	ggc Gly	gag Glu	atg Met	tac Tyr	ttt Phe 40	gtg Val	acc Thr	gcc Ala	act Thr	ttc Phe 45	tcg Ser	tcc Ser	aaa Lys	144				
agc Ser	aag Lys 50	ccg Pro	tac Tyr	ttt Phe	gag Glu	cag Gln 55	cag Gln	gcc Ala	agc Ser	cac His	tac Tyr 60	ctg Leu	ctg Leu	gca Ala	agg Arg	192				
ttc Phe 65	aaa Lys	aac Asn	ggc Gly	ccc Pro	aaa Lys 70	atg Met	ata Ile	aag Lys	gcg Ala	gtg Val 75	gag Glu	ggc Gly	cgc Arg	GJÀ ddd	ggc Gly 80	240				
ggc Gl y	cct Pro	tcc Ser	tat Tyr	tta Leu 85	ttc Phe	agc Ser	atg Met	gac Asp	gag Glu 90	gag Glu	ata Ile	ttc Phe	gaa Glu	agg Arg 95	gaa Glu	288				
tcc Ser	ccc Pro	GJ À 333	atg Met 100	agc Ser	tat Tyr	gta Val	tcc Ser	atg Met 105	tac Tyr	tat Tyr	ctg Leu	gaa Glu	tac Tyr 110	gga Gly	gat Asp	336				
tcc Ser	gag Glu	gag Glu 115	gac Asp	ata Ile	cgc Arg	gag Glu	gtg Val 120	gcg Ala	tcg Ser	gta Val	gtg Val	gca Ala 125	aga Arg	aag Lys	gag Glu	384				
aag Lys	ata Ile 130	ggc Gly	agg Arg	gcg Ala	gga Gly	ata Ile 135	GJÀ ddd	cgc Arg	atg Met	gat Asp	gta Val 140	tgc C y s	tcg Ser	agg Arg	att Ile	432				
ccg	cca	aag	ttt	gcc	ttc	ccg	tac	agc	ddd	aac	att	gtg	gtg	ctc	gag	480				

Pro 145	Pro	Lys	Phe	Ala	Phe 150	Pro	Tyr	Ser	Gly	Asn 155	Ile	Val	Val	Leu	Glu 160	
gta Val	tcc Ser	agc Ser	gaa Glu	aag L y s 165	agc Ser	cac His	cag Gln	agc Ser	gtc Val 170	aac Asn	aag L y s	tac Tyr	tgc C y s	gaa Glu 175	aag Lys	528
act Thr	aga Arg	agg Arg	gaa Glu 180	gtg Val	atc Ile	cgc Arg	aag Lys	999 Gl y 185	ata Ile	acg Thr	atg Met	acc Thr	aac Asn 190	ctt Leu	gta Val	576 -
agc Ser	ctg Leu	tcg Ser 195	ata Ile	ctg Leu	gag Glu	agg Arg	ctc Leu 200	aaa Lys	taa							606
<210 <211 <212 <212)> SE L> LE 2> TY 3> OF	Q II INGTH PE: RGANI) NO H: 20 PRT ISM:	54)1 Cena	archa	aeum	symb	oiosu	ım							
<400)> SE	QUEN	ICE :	54												
Met 1	Ser	Lys	Thr	Glu 5	Ala	Ser	Pro	Gly	Gly 10	Tyr	Ala	Суз	Thr	Pro 15	Tyr	
Thr	His	Asp	His 20	Ala	Ser	Ile	Glu	Leu 25	Lys	Glu	Glu	Trp	Ser 30	Ser	Ser	
Arg	Asn	Val 35	Gly	Glu	Met	Tyr	Phe 40	Val	Thr	Ala	Thr	Phe 45	Ser	Ser	Lys	; ;
Ser	L y s 50	Pro	Tyr	Phe	Glu	Gln 55	Gln	Ala	Ser	His	Ty r 60	Leu	Leu	Ala	Arg	ſ
Phe 65	Lys	Asn	Gly	Pro	L y s 70	Met	Ile	Lys	Ala	Val 75	Glu	Gly	Arg	Gly	Gly 80	,
Gly	Pro	Ser	Tyr	Leu 85	Phe	Ser	Met	Asp	Glu 90	Glu	Ile	Phe	Glu	Arg 95	Glu	I.
Ser	Pro	Gly	Met 100	Ser	Tyr	Val	Ser	Met 105	Tyr	Tyr	Leu	Glu	Tyr 110	Gly	Asp	
Ser	Glu	Glu 115	Asp	Ile	Arg	Glu	Val 120	Ala	Ser	Val	Val	Ala 125	Arg	Lys	Glu	L Contraction of the second
Lys	Ile 130	Gly	Arg	Ala	Gly	Ile 135	Gly	Arg	Met	Asp	Val 140	Суз	Ser	Arg	Ile	
Pro 145	Pro	Lys	Phe	Ala	Phe 150	Pro	Tyr	Ser	Gly	Asn 155	Ile	Val	Val	Leu	Glu 160	
Val	Ser	Ser	Glu	L y s 165	Ser	His	Gln	Ser	Val 170	Asn	Lys	Tyr	Суз	Glu 175	Lys	i
Thr	Arg	Arg	Glu 180	Val	Ile	Arg	Lys	Gl y 185	Ile	Thr	Met	Thr	Asn 190	Leu	Val	
Ser	Leu	Ser 195	Ile	Leu	Glu	Arg	Leu 200	Lys								
<210 <211 <211 <211 <221 <220 <221 <222)> SH l> LH 2> TY 3> OF 3> FH l> NH 2> LC	EQ II ENGTH PE: RGANI EATUF AME/F DCATI	D NO H: 82 DNA ISM: RE: KEY: ION:	55 22 Cena CDS (1)	archa	aeum 322)	symb	oiosu	ım							
<400)> SE	QUEN	ICE :	55												
ttg Met 1	aaa Lys	agt Ser	acg Thr	ttg Leu 5	gtt Val	cgg Arg	cgc Arg	tac Tyr	aag Lys 10	ccc Pro	aag Lys	ata Ile	aag Lys	cag Gln 15	acc Thr	48

ctc Leu	cgc Arg	gag Glu	gtg Val 20	ccc Pro	ctc Leu	aaa Lys	aat Asn	gtg Val 25	cat His	gtg Val	tgg Trp	aag Lys	gag Glu 30	gcg Ala	cag Gln	96	
gca Ala	agg Arg	agg Arg 35	ctg Leu	gac Asp	agg Arg	tcc Ser	cgg Arg 40	gtg Val	cgg Arg	gat Asp	atc Ile	gca Ala 45	aag Lys	tcg Ser	atc Ile	144	
aga Arg	tca Ser 50	gag Glu	GJÀ ddd	ctg Leu	cag Gln	aac Asn 55	ccg Pro	ccc Pro	gtc Val	ata Ile	cag Gln 60	agg Arg	ggc Gly	ggc Gl y	agg Arg	192	
999 Gl y 65	ctg Leu	tac Tyr	ctc Leu	ctc Leu	ata Ile 70	tcg Ser	GJ À ddd	cac His	cac His	cgg Arg 75	ctt Leu	gcg Ala	gcc Ala	ctc Leu	aag Lys 80	240	
tac Tyr	ctg Leu	ggc Gl y	gca Ala	aaa Lys 85	aag Lys	tcc Ser	aag Lys	ttt Phe	ctg Leu 90	gtg Val	ata Ile	acc Thr	aag Lys	gat Asp 95	aca Thr	288	
gag Glu	tac Tyr	ggc Gl y	ctg Leu 100	gat Asp	gat Asp	gca Ala	aag Lys	gcc Ala 105	gca Ala	tcg Ser	gtt Val	gta Val	gag Glu 110	aac Asn	ctg Leu	336	
cac His	cgt Arg	ctc Leu 115	cag Gln	atg Met	agc Ser	ccg Pro	cgg Arg 120	gag Glu	ctt Leu	gca Ala	gac Asp	gca Ala 125	tgc Cys	aag Lys	ttc Phe	384	
ctg Leu	gcc Ala 130	gag Glu	cag Gln	acg Thr	aca Thr	aaa Lys 135	tcc Ser	gag Glu	gcc Ala	gca Ala	aaa Lys 140	aag Lys	ctc Leu	ggc Gl y	atg Met	432	
tcg Ser 145	atg Met	ccc Pro	acg Thr	ttc Phe	aag Lys 150	aaa Lys	tac Tyr	cac His	ggc Gly	ttt Phe 155	gcg Ala	ggc Gly	gta Val	ccg Pro	gac Asp 160	480	
aag Lys	atc Ile	aag Lys	gcg Ala	atg Met 165	gta Val	ccg Pro	ggc Gl y	acc Thr	ata Ile 170	tcc Ser	cgg Arg	gac Asp	gag Glu	gcg Ala 175	aca Thr	528	
agg Arg	ctc Leu	tac Tyr	cag Gln 180	gcg Ala	gtg Val	ccg Pro	acc Thr	ata Ile 185	tcc Ser	cag Gln	gcg Ala	ctc Leu	aag Lys 190	gtg Val	gta Val	576	
tca Ser	aag Lys	ata Ile 195	gca Ala	aag Lys	ctc Leu	gac Asp	agg Arg 200	ccg Pro	tcg Ser	agg Arg	cgg Arg	atc Ile 205	tac Tyr	ctg Leu	agg Arg	624	
ttg Leu	ctt Leu 210	gcc Ala	cag Gln	agc Ser	ccc Pro	cgc Arg 215	tcc Ser	ggc Gly	cac His	aag Lys	ata Ile 220	ata Ile	cta Leu	aag Lys	agg Arg	672	
atg Met 225	cgc Arg	aag Lys	gtg Val	ggc Gl y	atc Ile 230	aag Lys	aaa Lys	aag Lys	ata Ile	cca Pro 235	ata Ile	gag Glu	ctg Leu	ggc Gl y	aag Lys 240	720	
aac Asn	ggc Gl y	gca Ala	aga Arg	aag Lys 245	ctc Leu	tcc Ser	agg Arg	ctg Leu	gcc Ala 250	gag Glu	cgc Arg	gag Glu	ddd ddd	aca Thr 255	gac Asp	768	
gag Glu	acc Thr	cgg Arg	ctt Leu 260	gcc Ala	aac Asn	agg Arg	ata Ile	gtc Val 265	cgg Arg	gaa Glu	tac Tyr	ctg Leu	agg Arg 270	aag Lys	cgg Arg	816	
cga Arg	tga															822	
<210 <211)> SE .> LE ?> TY	Q ID NGTH	NO 27 28 T	56 3													

<213> ORGANISM: Cenarchaeum symbiosum

<400> SEQUENCE: 56

```
-continued
    -
```

Met 1	Lys	Ser	Thr	Leu 5	Val	Arg	Arg	Tyr	Lys 10	Pro	Lys	Ile	Lys	Gln 15	Thr	
Leu	Arg	Glu	Val 20	Pro	Leu	Lys	Asn	Val 25	His	Val	Trp	Lys	Glu 30	Ala	Gln	
Ala	Arg	Arg 35	Leu	Asp	Arg	Ser	Arg 40	Val	Arg	Asp	Ile	Ala 45	Lys	Ser	Ile	
Arg	Ser 50	Glu	Gly	Leu	Gln	Asn 55	Pro	Pro	Val	Ile	Gln 60	Arg	Gly	Gly	Arg	
Gly 65	Leu	Tyr	Leu	Leu	Ile 70	Ser	Gly	His	His	Arg 75	Leu	Ala	Ala	Leu	L y s 80	
Tyr	Leu	Gly	Ala	L y s 85	Lys	Ser	Lys	Phe	Leu 90	Val	Ile	Thr	Lys	Asp 95	Thr	
Glu	Tyr	Gly	Leu 100	Asp	Asp	Ala	Lys	A la 105	Ala	Ser	Val	Val	Glu 110	Asn	Leu	
His	Arg	Leu 115	Gln	Met	Ser	Pro	Arg 120	Glu	Leu	Ala	Asp	Ala 125	Cys	Lys	Phe	
Leu	Ala 130	Glu	Gln	Thr	Thr	Lys 135	Ser	Glu	Ala	Ala	L y s 140	Lys	Leu	Gly	Met	
Ser 145	Met	Pro	Thr	Phe	L y s 150	Lys	Tyr	His	Gly	Phe 155	Ala	Gly	Val	Pro	Asp 160	
Lys	Ile	Lys	Ala	Met 165	Val	Pro	Gly	Thr	Ile 170	Ser	Arg	Asp	Glu	Ala 175	Thr	
Arg	Leu	Tyr	Gln 180	Ala	Val	Pro	Thr	Ile 185	Ser	Gln	Ala	Leu	Lys 190	Val	Val	
Ser	Lys	Ile 195	Ala	Lys	Leu	Asp	Arg 200	Pro	Ser	Arg	Arg	Ile 205	Tyr	Leu	Arg	
Leu	Leu 210	Ala	Gln	Ser	Pro	Arg 215	Ser	Gly	His	Lys	Ile 220	Ile	Leu	Lys	Arg	
Met 225	Arg	Lys	Val	Gly	Ile 230	Lys	Lys	Lys	Ile	Pro 235	Ile	Glu	Leu	Gly	Lys 240	
Asn	Gly	Ala	Arg	L y s 245	Leu	Ser	Arg	Leu	Ala 250	Glu	Arg	Glu	Gly	Thr 255	Asp	
Glu	Thr	Arg	Leu 260	Ala	Asn	Arg	Ile	Val 265	Arg	Glu	Tyr	Leu	Arg 270	Lys	Arg	
Arg																
<210 <211 <211 <211 <221 <220 <221 <221)> SE L> LE 2> TY 3> OF 0> FE L> NZ 2> LC	EQ II ENGTH PE: RGANI EATUH AME/H OCATI	D NO H: 66 DNA ISM: RE: RE: RE: RE:	57 59 Cena CDS (1)	archa	aeum 669)	symb	piosu	ım							
<400)> SE	QUEI	ICE :	57												
gtg Met 1	gcg Ala	cga Arg	tcg Ser	ccc Pro 5	gtg Val	ctg Leu	ata Ile	ata Ile	aac Asn 10	tgc Cys	aaa Lys	aac Asn	tac Tyr	aag Lys 15	gag Glu	48
gcg Ala	gcc Ala	ggc Gly	ggc Gly 20	aga Arg	att Ile	gac Asp	agc Ser	cta Leu 25	gcg Ala	gcg Ala	gca Ala	gcc Ala	gcc Ala 30	GJÀ ddd	gcg Ala	96
gcc Ala	gca Ala	aaa Lys 35	tac Tyr	ggc Gly	gtc Val	agg Arg	ata Ile 40	gct Ala	ctt Leu	gcc Ala	ccg Pro	ccg Pro 45	cag Gln	cac His	ctg Leu	144

ctg Leu	ggc Gly 50	gca Ala	gta Val	aag L y s	GJ À ddd	gaa Glu 55	gat Asp	ctt Leu	aca Thr	gtt Val	ctg Leu 60	gcg Ala	cag Gln	cat His	ata Ile	192	
gac Asp 65	gac Asp	aag Lys	GJÀ ddd	gtt Val	gga Gly 70	agc Ser	acc Thr	aca Thr	gga Gly	tat Tyr 75	gtc Val	gtg Val	ccg Pro	gag Glu	ctg Leu 80	240	
ctg Leu	gga Gly	gaa Glu	tcc Ser	ggc Gly 85	gtc Val	tct Ser	ggc Gl y	gcg Ala	ctc Leu 90	atc Ile	aac Asn	cac His	agc Ser	gag Glu 95	cac His	288	
cgc Arg	gta Val	tca Ser	gct Ala 100	gac Asp	cag Gln	gtg Val	gca Ala	agc Ser 105	ctt Leu	gtg Val	ccc Pro	agg Arg	ctc Leu 110	agg Arg	ggt Gl y	336	
ctg Leu	gat Asp	atg Met 115	atc Ile	tcc Ser	gtg Val	gtc Val	tgt C y s 120	gta Val	aag Lys	gat Asp	tcc Ser	gcc Ala 125	gag Glu	gcg Ala	gca Ala	384	
aat Asn	ctc Leu 130	tcc Ser	cgg Arg	cac His	cgg Arg	ccc Pro 135	gac Asp	tac Tyr	ata Ile	gct Ala	atc Ile 140	gag Glu	cct Pro	ccc Pro	gag Glu	432	
ctg Leu 145	ata Ile	ggc Gl y	tcg Ser	ggc Gl y	agg Arg 150	tcc Ser	gtc Val	tca Ser	tcg Ser	gag Glu 155	agg Arg	ccc Pro	gag Glu	ctg Leu	ata Ile 160	480	
GJÀ ddd	gag Glu	gca Ala	gca Ala	gag Glu 165	gcc Ala	atc Ile	agg Arg	ddd ddd	gcg Ala 170	gat Asp	gga Gl y	aca Thr	aag L y s	ctg Leu 175	ctc Leu	528	
tgc Cys	GJÀ ddd	gcg Ala	ggc Gly 180	ata Ile	aca Thr	tca Ser	ggc Gl y	gct Ala 185	gat Asp	gtg Val	cgc Arg	aag Lys	gcc Ala 190	ctc Leu	gag Glu	576	
ctc Leu	ggc Gly	tcc Ser 195	aag Lys	GJÀ ddd	atc Ile	ctc Leu	gtg Val 200	gca Ala	agc Ser	ggg ggg	gtg Val	gta Val 205	aaa Lys	tca Ser	tca Ser	624	
gac Asp	ccc Pro 210	gct Ala	gcg Ala	gcc Ala	ata Ile	gcc Ala 215	gag Glu	ctg Leu	gca Ala	cag Gln	gcc Ala 220	atg Met	tcc Ser	tga		669	
<21 <21 <21 <21	0> SE 1> LE 2> TY 3> OF	EQ II ENGTH (PE: RGAN]) NO H: 22 PRT (SM:	58 22 Cena	archa	aeum	symb	piosu	1m								
<40	0> SE	EQUEI	ICE :	58													
Met 1	Ala	Arg	Ser	Pro 5	Val	Leu	Ile	Ile	Asn 10	Сув	Lys	Asn	Tyr	L y s 15	Glu		
Ala	Ala	Gly	Gly 20	Arg	Ile	Asp	Ser	Leu 25	Ala	Ala	Ala	Ala	Ala 30	Gly	Ala		
Ala	Ala	L y s 35	Tyr	Gly	Val	Arg	Ile 40	Ala	Leu	Ala	Pro	Pro 45	Gln	His	Leu		
Leu	Gly 50	Ala	Val	Lys	Gly	Glu 55	Asp	Leu	Thr	Val	Leu 60	Ala	Gln	His	Ile		
Asp 65	Asp	Lys	Gly	Val	Gly 70	Ser	Thr	Thr	Gly	Ty r 75	Val	Val	Pro	Glu	Leu 80		
Leu	Gly	Glu	Ser	Gly 85	Val	Ser	Gly	Ala	Leu 90	Ile	Asn	His	Ser	Glu 95	His		
Arg	Val	Ser	Ala 100	Asp	Gln	Val	Ala	Ser 105	Leu	Val	Pro	Arg	Leu 110	Arg	Gly		
Leu	Asp	Met 115	Ile	Ser	Val	Val	C y s 120	Val	Lys	Asp	Ser	Ala 125	Glu	Ala	Ala		

-continued

Asn	Leu 130	Ser	Arg	His	Arg	Pro 135	Asp	Tyr	Ile	Ala	Ile 140	Glu	Pro	Pro	Glu	
Leu 145	Ile	Gly	Ser	Gly	Arg 150	Ser	Val	Ser	Ser	Glu 155	Arg	Pro	Glu	Leu	Ile 160	
Gly	Glu	Ala	Ala	Glu 165	Ala	Ile	Arg	Gly	Ala 170	Asp	Gly	Thr	Lys	Leu 175	Leu	
Cys	Gly	Ala	Gly 180	Ile	Thr	Ser	Gly	Ala 185	Asp	Val	Arg	Lys	Ala 190	Leu	Glu	
Leu	Gly	Ser 195	Lys	Gly	Ile	Leu	Val 200	Ala	Ser	Gly	Val	Val 205	Lys	Ser	Ser	
Asp	Pro 210	Ala	Ala	Ala	Ile	Ala 215	Glu	Leu	Ala	Gln	Ala 220	Met	Ser			
<21 <21 <21 <22 <22 <22 <22	0> SI 1> LH 2> TY 3> OF 0> FI 1> NH 2> LC	EQ II ENGTH (PE: RGAN] EATUH AME/H DCAT]) NO H: 54 DNA [SM: [SM: [SM: [SM: [ON:	59 19 Cena CDS (1)	archa	aeum 548)	symb	Diosu	ım							
<40	0> SI	EQUEN	ICE :	59												
atg Met 1	ctg Leu	gat Asp	ccc Pro	cgg Arg 5	acg Thr	cgg Arg	ccc Pro	cgg Arg	gtc Val 10	gtc Val	aat Asn	gtc Val	gtc Val	agc Ser 15	aca Thr	48
tca Ser	gac Asp	ctt Leu	gta Val 20	caa Gln	agg Arg	gtg Val	agc Ser	gca Ala 25	aaa Lys	aag Lys	atg Met	gcc Ala	gcc Ala 30	atg Met	ccg Pro	96
tgc Cys	tgc C y s	atg Met 35	tat Tyr	gat Asp	gag Glu	gcc Ala	gta Val 40	tac Tyr	ggc Gl y	ggc Gl y	agg Arg	tgc Cys 45	ggc Gly	tac Tyr	ata Ile	144
aag Lys	acg Thr 50	ccc Pro	ggc Gly	atg Met	cag Gln	999 Gly 55	agg Arg	gtg Val	act Thr	gta Val	ttc Phe 60	att Ile	tct Ser	ggc Gly	aag Lys	192
atg Met 65	ata Ile	tcc Ser	gtc Val	ggc Gly	gcc Ala 70	aga Arg	tcc Ser	gtg Val	agg Arg	gcc Ala 75	tcg Ser	ttt Phe	GJÀ ddd	cag Gln	ctg Leu 80	240
cac His	gag Glu	gcg Ala	cgg Arg	ctc Leu 85	cac His	ctg Leu	gtg Val	cgc Arg	aac Asn 90	GJÀ ddd	gct Ala	gcc Ala	ggc Gly	gac Asp 95	tgc Cys	288
aag Lys	ata Ile	agg Arg	ccc Pro 100	gtc Val	gtg Val	cgc Arg	aat Asn	att Ile 105	gta Val	gcc Ala	acg Thr	gtg Val	gat Asp 110	gcc Ala	ggt Gly	336
agg Arg	aat Asn	gtt Val 115	ccc Pro	ata Ile	gac Asp	agg Arg	ata Ile 120	tcg Ser	tcg Ser	cgc Arg	atg Met	cct Pro 125	ggc Gly	gct Ala	gta Val	384
tat Tyr	gat Asp 130	ccc Pro	GJ À 333	tcg Ser	ttt Phe	ccc Pro 135	GJÀ ∂∂∂	atg Met	ata Ile	ctc Leu	aag Lys 140	GJÀ ∂∂∂	ctg Leu	gac Asp	agc Ser	432
tgc Cys 145	agc Ser	ttt Phe	cta Leu	gtc Val	ttt Phe 150	gcg Ala	tcg Ser	gga Gl y	aag Lys	atg Met 155	gtg Val	ata Ile	gcg Ala	ggc Gl y	gcc Ala 160	480
aag Lys	tcg Ser	ccg Pro	gat Asp	gag Glu 165	ctg Leu	cgc Arg	agg Arg	tcg Ser	tcg Ser 170	ttt Phe	gac Asp	ctg Leu	ctg Leu	acg Thr 175	cgc Arg	528
ctc Leu	aat Asn	aac Asn	gcg Ala 180	GJÀ ddd	gcc Ala	ta	a									549
<210> SEQ ID NO 60 <211> LENGTH: 182 <212> TYPE: PRT <213> ORGANISM: Cenarchaeum symbiosum <400> SEQUENCE: 60 Met Leu Asp Pro Arg Thr Arg Pro Arg Val Val Asn Val Val Ser Thr 1 5 10 15 Ser Asp Leu Val Gln Arg Val Ser Ala Lys Lys Met Ala Ala Met Pro 20 25 30 Cys Cys Met Tyr Asp Glu Ala Val Tyr Gly Gly Arg Cys Gly Tyr Ile 40 35 45 Lys Thr Pro Gly Met Gln Gly Arg Val Thr Val Phe Ile Ser Gly Lys 55 50 60 Met Ile Ser Val Gly Ala Arg Ser Val Arg Ala Ser Phe Gly Gln Leu 65 70 75 80 His Glu Ala Arg Leu His Leu Val Arg Asn Gly Ala Ala Gly Asp Cys 85 90 95 Lys Ile Arg Pro Val Val Arg Asn Ile Val Ala Thr Val Asp Ala Gly 100 105 Arg Asn Val Pro Ile Asp Arg Ile Ser Ser Arg Met Pro Gly Ala Val 115 120 125 Tyr Asp Pro Gly Ser Phe Pro Gly Met Ile Leu Lys Gly Leu Asp Ser 135 130 140 Cys Ser Phe Leu Val Phe Ala Ser Gly Lys Met Val Ile Ala Gly Ala 150 155 Lys Ser Pro Asp Glu Leu Arg Arg Ser Ser Phe Asp Leu Leu Thr Arg 165 170 175 Leu Asn Asn Ala Gly Ala 180 <210> SEQ ID NO 61 <211> LENGTH: 2538 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)...(2538) <400> SEQUENCE: 61 ctg act gca cag gat gaa gag att ccc ccg tca ctg ctt gta tct gca 48 Met Thr Ala Gln Asp Glu Glu Ile Pro Pro Ser Leu Leu Val Ser Ala 1 5 10 15 acc tat gat ggc cag gca agg gcc gtg gtc ctc aag ttc tac gag tcg Thr Tyr Asp Gly Gln Ala Arg Ala Val Val Leu Lys Phe Tyr Glu Ser 20 25 30 96 20 25 gaa tog caa aag ato ato cao tgg acg gac aac acg ggg cac aag coo Glu Ser Gln Lys Ile Ile His Trp Thr Asp Asn Thr Gly His Lys Pro 14440 35 45 tac tgt tat acg agg ctg ccg ccc tcc gag ctc ggc ttt ctt ggg ggc Tyr Cys Tyr Thr Arg Leu Pro Pro Ser Glu Leu Gly Phe Leu Gly Gly 192 50 55 60 agg gag gac gtg ctc ggg ata gag cag gtc atg cgg cac gac ctg ata Arg Glu Asp Val Leu Gly Ile Glu Gln Val Met Arg His Asp Leu Ile 65 70 75 80 240

JCC	gac	aag	gag	gtg	ccc	gtc	tcc	aag	ata	acc	gtc	tct	gat	cct	ctt	288		
AIA	Авр	цуз	GIU	85 vai	Pro	vai	Ser	цув	90	Thr	vai	Ser	Asp	95	Leu			
gcg Ala	ata Ile	ggc Gly	999 Gl y 100	acc Thr	cac His	tcg Ser	gag Glu	aag Lys 105	agc Ser	atc Ile	aga Arg	aac Asn	gtg Val 110	ata Ile	дас Авр	336		
acg Thr	tgg Trp	gaa Glu 115	tcc Ser	gac Asp	ata Ile	aag Lys	tat Tyr 120	tac Tyr	gag Glu	aac Asn	tat Tyr	ctg Leu 125	tat Tyr	gac Asp	gcg Ala	384		
ggc Gl y	ctg Leu 130	gta Val	gtg Val	ggc Gly	agg Arg	tac Tyr 135	tat Tyr	tcg Ser	gta Val	tca Ser	ggc Gly 140	ggg Gly	gag Glu	gtg Val	att Ile	432		
ccg Pro 145	cat His	gac Asp	atg Met	cca Pro	ata Ile 150	tcc Ser	gac Asp	gag Glu	gta Val	aaa Lys 155	ctg Leu	gcc Ala	ctc Leu	aag Lys	agc Ser 160	480		
ctt Leu	ctc Leu	tgg Trp	gac Asp	aag L y s 165	ctc Leu	ata Ile	gac Asp	gag Glu	ggc Gl y 170	atg Met	gcc Ala	gac Asp	agg Arg	aaa Lys 175	gag Glu	528		
ttc Phe	cgc Arg	gag Glu	ttc Phe 180	ata Ile	gcg Ala	djà dàd	tgg Trp	gcg Ala 185	gac Asp	ctg Leu	ctc Leu	aac Asn	cag Gln 190	ccc Pro	ata Ile	576		
ccc Pro	cgg Arg	ata Ile 195	agg Arg	cgc Arg	ctc Leu	agc Ser	ttt Phe 200	gac Asp	atc Ile	gag Glu	gtg Val	gat Asp 205	tca Ser	gag Glu	gag Glu	624		
ggc Gl y	agg Arg 210	atc Ile	ccc Pro	gat Asp	gcc Ala	aag L y s 215	atc Ile	tcg Ser	gac Asp	agg Arg	agg Arg 220	gtc Val	aca Thr	gca Ala	gtg Val	672		
ggg Gl y 225	ttt Phe	gcc Ala	gcc Ala	acc Thr	gac Asp 230	ggc Gly	ctc Leu	aga Arg	aag Lys	gtc Val 235	ctt Leu	gtc Val	ctg Leu	aag Lys	agc Ser 240	720		
ggc Gl y	gcg Ala	gac Asp	gag Glu	ggc Gly 245	gca Ala	aac Asn	gat Asp	gtg Val	acc Thr 250	ccc Pro	ddd ddd	gtc Val	gag Glu	gtg Val 255	gtg Val	768		
ttc Phe	tac Tyr	gac Asp	gag Glu 260	gac Asp	aag Lys	gag Glu	gcg Ala	gac Asp 265	atg Met	atc Ile	cgc Arg	gac Asp	gcg Ala 270	cta Leu	gca Ala	816		
ata Ile	ata Ile	ggc Gl y 275	tcg Ser	tac Tyr	ccg Pro	ttt Phe	gtg Val 280	ctt Leu	aca Thr	tac Tyr	aac Asn	ggg Gl y 285	gac Asp	gac Asp	ttt Phe	864		
gac Asp	atg Met 290	ccg Pro	tac Tyr	atg Met	tac Tyr	aat Asn 295	cgg Arg	gcc Ala	cgg Arg	cgc Arg	ctc Leu 300	ggc Gl y	gtg Val	gcg Ala	gat Asp	912		
tcc Ser 305	gac Asp	ata Ile	ccc Pro	ctg Leu	tac Tyr 310	atg Met	atg Met	cgg Arg	gat Asp	tcg Ser 315	gcc Ala	acg Thr	ctc Leu	cgg Arg	cac His 320	960		
ggc Gl y	gtc Val	cat His	ctg Leu	gac Asp 325	ctg Leu	tac Tyr	agg Arg	acc Thr	ttc Phe 330	tcg Ser	aac Asn	agg Arg	tcg Ser	ttc Phe 335	cag Gln	1008		
ctg Leu	tat Tyr	gca Ala	ttt Phe 340	gcg Ala	gca Ala	aag Lys	tat Tyr	aca Thr 345	gat Asp	tac Tyr	tcc Ser	ctg Leu	aac Asn 350	agc Ser	gtg Val	1056		
tcc Ser	aag Lys	gcg Ala 355	atg Met	ctc Leu	ggc Gly	gag Glu	ggc Gly 360	aag Lys	gtc Val	gat Asp	tat Tyr	ggc Gl y 365	gtg Val	tct Ser	ctc Leu	1104		
ej λ ddd	gat Asp 370	ctc Leu	act Thr	cta Leu	tac Tyr	cag Gln 375	act Thr	gca Ala	aac Asn	tat Tyr	tgc Cys 380	tat Tyr	cat His	gac Asp	gcg Ala	1152		

140

											-	con	tin	ued					
cgc Arg 385	ctg Leu	acg Thr	ctg Leu	gag Glu	ctt Leu 390	agc Ser	acc Thr	ttt Phe	GJÀ ddd	aac Asn 395	gag Glu	ata Ile	ctg Leu	atg Met	gac Asp 400	1200			
ctc Leu	ctg Leu	gtg Val	gtg Val	acc Thr 405	agc Ser	agg Arg	att Ile	gcc Ala	cgg Arg 410	atg Met	ccc Pro	atc Ile	gat Asp	gat Asp 415	atg Met	1248			
tcc Ser	cgc Arg	atg Met	ggc Gly 420	gtc Val	tcg Ser	cag Gln	tgg Trp	ata Ile 425	agg Arg	agc Ser	ctg Leu	ctg Leu	tac Tyr 430	tat Tyr	gag Glu	1296			
cac His	agg Arg	cag Gln 435	cgc Arg	aac Asn	gcg Ala	ctg Leu	ata Ile 440	ccc Pro	cgc Arg	agg Arg	gac Asp	gag Glu 445	ctg Leu	gaa Glu	aag Lys	1344			
agg Arg	tct Ser 450	caa Gln	cag Gln	gta Val	agc Ser	aac Asn 455	gac Asp	gcc Ala	gta Val	atc Ile	aag Lys 460	gac Asp	aaa Lys	aag Lys	ttc Phe	1392			
cgc Arg 465	ggt Gl y	ggt Gly	ctc Leu	gta Val	gtc Val 470	gag Glu	cct Pro	gaa Glu	gag Glu	ggc Gl y 475	ata Ile	cac His	ttt Phe	gat Asp	gtt Val 480	1440			
aca Thr	gtt Val	atg Met	gat Asp	ttt Phe 485	gca Ala	agc Ser	ctg Leu	tat Tyr	cct Pro 490	agc Ser	ata Ile	ata Ile	aag Lys	gtg Val 495	cga Arg	1488			
aac Asn	ctc Leu	tcg Ser	tac Tyr 500	gag Glu	acc Thr	gtc Val	agg Arg	tgc Cys 505	gtt Val	cat His	ccc Pro	gaa Glu	tgc C y s 510	aga Arg	aag Lys	1536			
aac Asn	acc Thr	atc Ile 515	ccc Pro	gat Asp	acc Thr	aac Asn	cac His 520	tgg Trp	gta Val	tgc C y s	acg Thr	aaa Lys 525	aac Asn	aac Asn	GJÀ ddd	1584			
ctt Leu	aca Thr 530	tcg Ser	atg Met	ata Ile	ata Ile	gga Gly 535	tcg Ser	ctc Leu	cgc Arg	gac Asp	ctg Leu 540	cgc Arg	gtc Val	aac Asn	tat Tyr	1632			
tac Tyr 545	aag Lys	agc Ser	ctc Leu	tca Ser	aag Lys 550	agc Ser	cag Gln	tct Ser	ata Ile	acg Thr 555	gag Glu	gag Glu	cag Gln	cgg Arg	cag Gln 560	1680			
cag Gln	tat Tyr	act Thr	gtg Val	atc Ile 565	agc Ser	cag Gln	gcc Ala	ctc Leu	aag L y s 570	gtg Val	gtg Val	cta Leu	aac Asn	gca Ala 575	agc Ser	1728			
tac Tyr	GJ À 333	gtg Val	atg Met 580	ggc Gl y	gcc Ala	gag Glu	ata Ile	ttc Phe 585	ccg Pro	ctg Leu	tac Tyr	ttt Phe	ctg Leu 590	cct Pro	gcc Ala	1776			
gcc Ala	gag Glu	gcc Ala 595	acc Thr	acg Thr	gcg Ala	gtc Val	999 Gl y 600	cgc Arg	tat Tyr	atc Ile	atc Ile	atg Met 605	cag Gln	acc Thr	ata Ile	1824			
tcg Ser	cac His 610	tgc Cys	gag Glu	cag Gln	atg Met	ggc Gl y 615	gta Val	aag Lys	gtg Val	ctg Leu	tac Tyr 620	GJÀ ddd	gac Asp	acc Thr	gat Asp	1872			
tcg Ser 625	ctg Leu	ttc Phe	ata Ile	aag L y s	aat Asn 630	cca Pro	gag Glu	gag Glu	cgg Arg	cag Gln 635	atc Ile	cat His	gat Asp	ata Ile	gtc Val 640	1920			
gag Glu	cac His	gcc Ala	aaa Lys	aag Lys 645	gag Glu	cac His	ggc Gly	gtc Val	gag Glu 650	ctc Leu	gag Glu	gtg Val	gac Asp	aaa Lys 655	gag Glu	1968			
tac Tyr	agg Arg	tat Tyr	gtc Val 660	gtg Val	cta Leu	tct Ser	aac Asn	agg Arg 665	aag Lys	aaa Lys	aac Asn	tat Tyr	ttc Phe 670	GJÀ ddd	gtg Val	2016			
aca Thr	aag Lys	tcc Ser 675	ggc Gly	aag Lys	gtc Val	gac Asp	gtc Val 680	aag Lys	ggc Gly	ctg Leu	acg Thr	999 Gly 685	aaa Lys	aag Lys	tcg Ser	2064			

-continued

cac acg c His Thr F 690	ccc ccg Pro Pro	ttc Phe	ata Ile	aag Lys 695	gag Glu	ctg Leu	ttc Phe	tat Tyr	tcg Ser 700	ctg Leu	ctc Leu	gac Asp	ata Ile	2112
ctg tcg g Leu Ser A 705	gct gta Ala Val	cag Gln	acc Thr 710	gag Glu	gac Asp	gag Glu	ttt Phe	gaa Glu 715	tcg Ser	gca Ala	aag Lys	cta Leu	aag Lys 720	2160
atc tca a Ile Ser I	aag gcc Lys Ala	ata Ile 725	gcg Ala	gca Ala	tcc Ser	GJÀ ddd	aag Lys 730	agg Arg	ctg Leu	gag Glu	gag Glu	agg Arg 735	gjà dàà	2208
gtc ccg c Val Pro I	ctg gcg Leu Ala 740	gat Asp	ctg Leu	gcg Ala	ttc Phe	aat Asn 745	gtg Val	atg Met	ata Ile	agc Ser	aag Lys 750	gcg Ala	ccc Pro	2256
tct gaa t Ser Glu I 7	tac gta Fyr Val 755	aag Lys	acc Thr	gtc Val	ccg Pro 760	cag Gln	cac His	ata Ile	cgg Arg	gcg Ala 765	gcc Ala	aga Arg	ctg Leu	2304
ctc gag a Leu Glu A 770	aac gca Asn Ala	agg Arg	gag Glu	gtc Val 775	aaa Lys	aaa Lys	ggc Gl y	gac Asp	ata Ile 780	ata Ile	tcg Ser	tac Tyr	gta Val	2352
aag gtg a Lys Val M 785	atg aac Met Asn	aag Lys	aca Thr 790	ggc Gl y	gtc Val	aag Lys	cct Pro	gtc Val 795	gag Glu	atg Met	gcc Ala	cag Gln	gca Ala 800	2400
gga gag g Gly Glu V	gtg gac /al Asp	acg Thr 805	tca Ser	aag Lys	tat Tyr	cta Leu	gag Glu 810	ttc Phe	atg Met	gag Glu	tct Ser	act Thr 815	ctg Leu	2448
gac cag c Asp Gln I	ctc acc Leu Thr 820	tcg Ser	tcc Ser	atg Met	ggc Gl y	ctt Leu 825	gac Asp	ttt Phe	gac Asp	gag Glu	atg Met 830	ctg Leu	ggc Gl y	2496
aag cca a Lys Pro I 8	aag cag Lys Gln 335	act Thr	gga Gly	atg Met	gag Glu 840	cag Gln	ttc Phe	ttt Phe	ttc Phe	aaa Lys 845	tga			2538
<210> SEQ <211> LEN <212> TYP <213> ORG	2 ID NO NGTH: 84 PE: PRT GANISM:	62 45 Cena	ircha	aeum	symb	oiosu	ım							
<400> SEQ	UENCE :	62												
Met Thr A 1	Ala Gln	Asp 5	Glu	Glu	Ile	Pro	Pro 10	Ser	Leu	Leu	Val	Ser 15	Ala	
Thr Tyr A	Asp Gly 20	Gln	Ala	Arg	Ala	Val 25	Val	Leu	Lys	Phe	Tyr 30	Glu	Ser	
Glu Ser G 3	3ln Lys 35	Ile	Ile	His	Trp 40	Thr	Asp	Asn	Thr	Gly 45	His	Lys	Pro	
Tyr Cys I 50	fyr Thr	Arg	Leu	Pro 55	Pro	Ser	Glu	Leu	Gly 60	Phe	Leu	Gly	Gly	
Arg Glu A 65	Asp Val	Leu	Gly 70	Ile	Glu	Gln	Val	Met 75	Arg	His	Asp	Leu	Ile 80	
Ala Asp I	Lys Glu	Val 85	Pro	Val	Ser	Lys	Ile 90	Thr	Val	Ser	Asp	Pro 95	Leu	
Ala Ile G	Gly Gly 100	Thr	His	Ser	Glu	Lys 105	Ser	Ile	Arg	Asn	Val 110	Ile	Asp	
Thr Trp G 1	Glu Ser 115	Asp	Ile	Lys	Ty r 120	Tyr	Glu	Asn	Tyr	Leu 125	Tyr	Asp	Ala	
Gly Leu V 130	7al Val	Gly	Arg	T y r 135	Tyr	Ser	Val	Ser	Gly 140	Gly	Glu	Val	Ile	
Pro His A	Asp Met	Pro	Ile	Ser	Asp	Glu	Val	Lys	Leu	Ala	Leu	Lys	Ser	

-continued

145					150					155					160
Leu	Leu	Trp	Asp	L y s 165	Leu	Ile	Asp	Glu	Gl y 170	Met	Ala	Asp	Arg	L y s 175	Glu
Phe	Arg	Glu	Phe 180	Ile	Ala	Gly	Trp	Ala 185	Asp	Leu	Leu	Asn	Gln 190	Pro	Ile
Pro	Arg	Ile 195	Arg	Arg	Leu	Ser	Phe 200	Asp	Ile	Glu	Val	Asp 205	Ser	Glu	Glu
Gly	• Arg 210	Ile	Pro	Asp	Ala	L y s 215	Ile	Ser	Asp	Arg	Arg 220	Val	Thr	Ala	Val
Gly 225	Phe	Ala	Ala	Thr	Asp 230	Gly	Leu	Arg	Lys	Val 235	Leu	Val	Leu	Lys	Ser 240
Gly	Ala	Asp	Glu	Gly 245	Ala	Asn	Asp	Val	Thr 250	Pro	Gly	Val	Glu	Val 255	Val
Phe	Tyr	Asp	Glu 260	Asp	Lys	Glu	Ala	Asp 265	Met	Ile	Arg	Asp	Ala 270	Leu	Ala
Ile	Ile	Gly 275	Ser	Tyr	Pro	Phe	Val 280	Leu	Thr	Tyr	Asn	Gly 285	Asp	Asp	Phe
Asp	Met 290	Pro	Tyr	Met	Tyr	Asn 295	Arg	Ala	Arg	Arg	Leu 300	Gly	Val	Ala	Asp
Ser 305	Asp	Ile	Pro	Leu	Ty r 310	Met	Met	Arg	Asp	Ser 315	Ala	Thr	Leu	Arg	His 320
Gly	Val	His	Leu	Asp 325	Leu	Tyr	Arg	Thr	Phe 330	Ser	Asn	Arg	Ser	Phe 335	Gln
Leu	Tyr	Ala	Phe 340	Ala	Ala	Lys	Tyr	Thr 345	Asp	Tyr	Ser	Leu	Asn 350	Ser	Val
Ser	Lys	Ala 355	Met	Leu	Gly	Glu	Gly 360	Lys	Val	Asp	Tyr	Gly 365	Val	Ser	Leu
Gly	Asp 370	Leu	Thr	Leu	Tyr	Gln 375	Thr	Ala	Asn	Tyr	C y s 380	Tyr	His	Asp	Ala
Arg 385	Leu	Thr	Leu	Glu	Leu 390	Ser	Thr	Phe	Gly	Asn 395	Glu	Ile	Leu	Met	Asp 400
Leu	Leu	Val	Val	Thr 405	Ser	Arg	Ile	Ala	Arg 410	Met	Pro	Ile	Asp	A sp 415	Met
Ser	Arg	Met	Gly 420	Val	Ser	Gln	Trp	Ile 425	Arg	Ser	Leu	Leu	Ty r 430	Tyr	Glu
His	Arg	Gln 435	Arg	Asn	Ala	Leu	Ile 440	Pro	Arg	Arg	Asp	Glu 445	Leu	Glu	Lys
Arg	Ser 450	Gln	Gln	Val	Ser	Asn 455	Asp	Ala	Val	Ile	L y s 460	Asp	Lys	Lys	Phe
Arg 465	Gly	Gly	Leu	Val	Val 470	Glu	Pro	Glu	Glu	Gly 475	Ile	His	Phe	Asp	Val 480
Thr	Val	Met	Asp	Phe 485	Ala	Ser	Leu	Tyr	Pro 490	Ser	Ile	Ile	Lys	Val 495	Arg
Asn	Leu	Ser	T y r 500	Glu	Thr	Val	Arg	C y s 505	Val	His	Pro	Glu	C y s 510	Arg	Lys
Asn	. Thr	Ile 515	Pro	Asp	Thr	Asn	His 520	Trp	Val	Cys	Thr	L y s 525	Asn	Asn	Gly
Leu	Thr 530	Ser	Met	Ile	Ile	Gly 535	Ser	Leu	Arg	Asp	Leu 540	Arg	Val	Asn	Tyr
T y r 545	Lys	Ser	Leu	Ser	L y s 550	Ser	Gln	Ser	Ile	Thr 555	Glu	Glu	Gln	Arg	Gln 560

48

96

Gln Tyr Thr Val Ile Ser Gln Ala Leu Lys Val Val Leu Asn Ala Ser 565 570 575 Tyr Gly Val Met Gly Ala Glu Ile Phe Pro Leu Tyr Phe Leu Pro Ala 580 585 590 Ala Glu Ala Thr Thr Ala Val Gly Arg Tyr Ile Ile Met Gln Thr Ile 595 600 605 Ser His Cys Glu Gln Met Gly Val Lys Val Leu Tyr Gly Asp Thr Asp 610 615 620 Ser Leu Phe Ile Lys Asn Pro Glu Glu Arg Gln Ile His Asp Ile Val 625 630 635 640 630 Glu His Ala Lys Lys Glu His Gly Val Glu Leu Glu Val Asp Lys Glu 645 650 655 Tyr Arg Tyr Val Val Leu Ser Asn Arg Lys Lys Asn Tyr Phe Gly Val 660 665 670 Thr Lys Ser Gly Lys Val Asp Val Lys Gly Leu Thr Gly Lys Lys Ser 675 680 685 680 His Thr Pro Pro Phe Ile Lys Glu Leu Phe Tyr Ser Leu Leu Asp Ile 690 695 700 Leu Ser Ala Val Gln Thr Glu Asp Glu Phe Glu Ser Ala Lys Leu Lys 705 710 715 720 710 715 705 Ile Ser Lys Ala Ile Ala Ala Ser Gly Lys Arg Leu Glu Glu Arg Gly 725 730 735 Val Pro Leu Ala Asp Leu Ala Phe Asn Val Met Ile Ser Lys Ala Pro 745 740 Ser Glu Tyr Val Lys Thr Val Pro Gln His Ile Arg Ala Ala Arg Leu 755 760 765 Leu Glu Asn Ala Arg Glu Val Lys Lys Gly Asp Ile Ile Ser Tyr Val 775 780 770 Lys Val Met Asn Lys Thr Gly Val Lys Pro Val Glu Met Ala Gln Ala 785 790 795 800 Gly Glu Val Asp Thr Ser Lys Tyr Leu Glu Phe Met Glu Ser Thr Leu 805 810 815 Asp Gln Leu Thr Ser Ser Met Gly Leu Asp Phe Asp Glu Met Leu Gly 820 825 830 Lys Pro Lys Gln Thr Gly Met Glu Gln Phe Phe Lys 835 840 845 <210> SEQ ID NO 63 <211> LENGTH: 642 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)...(642) <400> SEQUENCE: 63 ttg ccc gtt atg tgt gcg gtc tcc acg cgc ggc cct gac gcg gcc tgt Met Pro Val Met Cys Ala Val Ser Thr Arg Gly Pro Asp Ala Ala Cys 1 5 10 15 1 10 tgt ttt atg gtt tcg tac acc ggg gca tat acc ata ata tgc cgg gcg Cys Phe Met Val Ser Tyr Thr Gly Ala Tyr Thr Ile Ile Cys Arg Ala 20 25 gtg gca cca tgg ccg ttg agc ggt ttt gag cgc ccg tcc tgg gac gaa Val Ala Pro Trp Pro Leu Ser Gly Phe Glu Arg Pro Ser Trp Asp Glu 144

-continued

35 40 45	
tat ttc atg ctg cag gcg gag ctg gca aag ctc cga tcc aac tgc atg Tyr Phe Met Leu Gln Ala Glu Leu Ala Lys Leu Arg Ser Asn Cys Met 50 55 60	192
gtc aga aag gtg ggg gcc gtc ata gtc agg gat cac agg cag ctg gcc Val Arg Lys Val Gly Ala Val Ile Val Arg Asp His Arg Gln Leu Ala 65 70 75 80	240
aca gga tac aac ggg acg ccc ccc ggc gta aag aac tgc ttc gag ggc Thr Gly Tyr Asn Gly Thr Pro Pro Gly Val Lys Asn Cys Phe Glu Gly 85 90 95	288
ggg tgc gaa agg tgc ata gag cgc atg gag ggc aag atc cgc tca ggc Gly Cys Glu Arg Cys Ile Glu Arg Met Glu Gly Lys Ile Arg Ser Gly 100 105 110	336
gag ggc ctg gac cgg tgc ctg tgc aac cat gca gag gcc aac gcg ata Glu Gly Leu Asp Arg Cys Leu Cys Asn His Ala Glu Ala Asn Ala Ile 115 120 125	384
atg cac tgt gcg ata ctg gga ata ggc gca ggg gga ggc aac gcc acc Met His Cys Ala Ile Leu Gly Ile Gly Ala Gly Gly Gly Asn Ala Thr 130 135 140	432
atg tat acg acg ttc tct ccg tgt tta gag tgc aca aag atg gcg gtg Met Tyr Thr Thr Phe Ser Pro Cys Leu Glu Cys Thr Lys Met Ala Val 145 150 155 160	480
acc ata gga atc agg cgg ttt gtc tgc ctg gat aca tat ccg gag aac Thr Ile Gly Ile Arg Arg Phe Val Cys Leu Asp Thr Tyr Pro Glu Asn 165 170 175	528
gcc tcc aag ctg gta aaa gat gca tcg gcc agc ata acc atg atg gac Ala Ser Lys Leu Val Lys Asp Ala Ser Ala Ser Ile Thr Met Met Asp 180 185 190	576
aag gag aag atc aca tac tgg gcg tca agg atg ccc ggg gga aca aag Lys Glu Lys Ile Thr Tyr Trp Ala Ser Arg Met Pro Gly Gly Thr Lys 195 200 205	624
gag gtg ccg gtg cgc tga Glu Val Pro Val Arg 210	642
<210> SEQ ID NO 64 <211> LENGTH: 213 <212> TYPE: PRT <213> ORCANISM: Cenarchaeum symbiosum	
<400> SEOUENCE: 64	
Met Pro Val Met Cys Ala Val Ser Thr Arg Gly Pro Asp Ala Ala Cys 1 5 10 15	
Cys Phe Met Val Ser Tyr Thr Gly Ala Tyr Thr Ile Ile Cys Arg Ala 20 25 30	
Val Ala Pro Trp Pro Leu Ser Gly Phe Glu Arg Pro Ser Trp Asp Glu 35 40 45	
Tyr Phe Met Leu Gln Ala Glu Leu Ala Lys Leu Arg Ser Asn Cys Met 50 55 60	
Val Arg Lys Val Gly Ala Val Ile Val Arg Asp His Arg Gln Leu Ala 65 70 75 80	
Thr GLY TYR ASH GLY THR PRO PRO GLY VAL LYS ASH CYS Phe Glu GLY 85 90 95 Gly Cys Glu Arg Cys Ile Glu Arg Mot Cly Cly Lys Ile Arg Cor Cly	
Giy Cyb Giu Arg Cyb IIE Giu Arg met Giu Giy Lyb IIE Arg Ser Giy 100 105 110 Glu Gly Leu Asp Arg Cys Leu Cys Asn His Ala Clu Ala Asp Ala Tia	
mp my ore for ore men and and ore and and and the	

-continued

		115					120					125				
Met	His 130	Сув	Ala	Ile	Leu	Gly 135	Ile	Gly	Ala	Gly	Gly 140	Gly	Asn	Ala	Thr	
Met 145	Tyr	Thr	Thr	Phe	Ser 150	Pro	Сув	Leu	Glu	C y s 155	Thr	Lys	Met	Ala	Val 160	
Thr	Ile	Gly	Ile	Arg 165	Arg	Phe	Val	Cys	Leu 170	Asp	Thr	Tyr	Pro	Glu 175	Asn	
Ala	Ser	Lys	Leu 180	Val	Lys	Asp	Ala	Ser 185	Ala	Ser	Ile	Thr	Met 190	Met	Asp	
Lys	Glu	Lys 195	Ile	Thr	Tyr	Trp	Ala 200	Ser	Arg	Met	Pro	Gly 205	Gly	Thr	Lys	
Glu	Val 210	Pro	Val	Arg												
<210 <211 <211 <211 <221 <221 <221 <221)> SH L> LH 2> TY 3> OF 0> FH L> NH 2> LC	EQ II ENGTH PE: RGANI EATUF AME/F OCATI	O NO I: 15 DNA SM: E: CEY: CON:	65 512 Cena CDS (1)	archa	aeum 1512)	symt)	Diosi	ım							
<400 gtg)> SE gag	EQUEN acc	ICE: gca	65 cac	ata	acg	ggc	aaa	tac	gta	gag	ccc	ggc	gcc	gtc	48
Met 1	Glu	Thr	Ala	His 5	Ile	Thr	Gly	Lys	Ty r 10	Val	Glu	Pro	Gly	Ala 15	Val	
gag Glu	agg Arg	cgc Arg	gac Asp 20	tac Tyr	cag Gln	gtg Val	ggc Gl y	ctt Leu 25	gcc Ala	gag Glu	cag Gln	gcc Ala	ata Ile 30	cgg Arg	gaa Glu	96
aac Asn	tgc Cys	ata Ile 35	gtg Val	gtg Val	ctg Leu	cct Pro	acc Thr 40	ggc Gl y	ctc Leu	ggc Gl y	aag Lys	acg Thr 45	gcc Ala	gtg Val	gcc Ala	144
ctg Leu	cag Gln 50	gtg Val	atc Ile	tcc Ser	cac His	tat Tyr 55	ttg Leu	gac Asp	gaa Glu	ggc Gl y	agg Arg 60	GJÀ ddd	gct Ala	ctc Leu	ttc Phe	192
ctt Leu 65	gcg Ala	ccg Pro	aca Thr	agg Arg	gtg Val 70	ctg Leu	gta Val	aac Asn	cag Gln	cac His 75	cgc Arg	cag Gln	ttc Phe	ctg Leu	ggc Gl y 80	240
agg Arg	gcc Ala	ctt Leu	acc Thr	ata Ile 85	tcc Ser	gat Asp	att Ile	acc Thr	ctg Leu 90	gtc Val	aca Thr	ggc Gly	gag Glu	gac Asp 95	acc Thr	288
gtc Val	ccg Pro	agg Arg	cgc Arg 100	aaa Lys	aaa Lys	gct Ala	tgg Trp	ggc Gl y 105	ggc Gly	agc Ser	gtg Val	atc Ile	tgc Cys 110	gcc Ala	acc Thr	336
ccc Pro	gag Glu	ata Ile 115	aca Thr	aga Arg	aac Asn	gac Asp	ata Ile 120	gcg Ala	cgc Arg	gga Gly	atg Met	gtc Val 125	ccg Pro	ctc Leu	gaa Glu	384
cag Gln	ttc Phe 130	ggc Gly	ctg Leu	gtt Val	gtg Val	ttc Phe 135	gac Asp	gag Glu	gcc Ala	cac His	agg Arg 140	gcg Ala	gtg Val	ggc Gly	gac Asp	432
tat Tyr 145	gcc Ala	tat Tyr	tcc Ser	gca Ala	ata Ile 150	gcg Ala	cgt Arg	gca Ala	gtg Val	999 Gly 155	gag Glu	aac Asn	tct Ser	aga Arg	atg Met 160	480
atc Ile	ggc Gly	atg Met	act Thr	gcg Ala 165	acc Thr	ctt Leu	cca Pro	agc Ser	gag Glu 170	agg Arg	gag Glu	aaa Lys	gcc Ala	gac Asp 175	gag Glu	528
ata	atg	ggc	act	ctt	ctc	tca	aag	agc	ata	gca	caa	agg	acc	gaa	gac	576

Ile	Met	Gly	Thr 180	Leu	Leu	Ser	Lys	Ser 185	Ile	Ala	Gln	Arg	Thr 190	Glu	Asp	
gac Asp	ccg Pro	gat Asp 195	gta Val	aag Lys	ccc Pro	tac Tyr	gtg Val 200	cag Gln	gag Glu	acc Thr	gaa Glu	act Thr 205	gaa Glu	tgg Trp	ata Ile	624
aag Lys	gtg Val 210	gag Glu	ctg Leu	ccc Pro	ccg Pro	gag Glu 215	atg Met	aag Lys	gag Glu	atc Ile	caa Gln 220	aag Lys	ctc Leu	ctg Leu	aag L y s	672
atg Met 225	gcc Ala	ctc Leu	gac Asp	gaa Glu	aga Arg 230	tat Tyr	gcg Ala	gcc Ala	ctc Leu	aag L y s 235	agg Arg	tgc Cys	ggc Gly	tat Tyr	gat Asp 240	720
ctc Leu	ggc Gly	tcg Ser	aac Asn	agg Arg 245	tcg Ser	ctc Leu	tcg Ser	gct Ala	ctg Leu 250	ctc Leu	cgc Arg	ctt Leu	cgc Arg	atg Met 255	gtc Val	768
gtt Val	cta Leu	agc Ser	ggc Gly 260	aac Asn	agg Arg	cgg Arg	gcg Ala	gca Ala 265	aag Lys	cct Pro	ttg Leu	ttt Phe	act Thr 270	gcg Ala	ata Ile	816
cgc Arg	atc Ile	aca Thr 275	tac Tyr	gcg Ala	ctc Leu	aac Asn	ata Ile 280	ttc Phe	gag Glu	gcc Ala	cac His	999 Gl y 285	gtc Val	acg Thr	ccg Pro	864
ttt Phe	cta Leu 290	aag Lys	ttc Phe	tgc C y s	gag Glu	agg Arg 295	acc Thr	gtc Val	aag L y s	aaa Lys	aag L y s 300	ggc Gly	gcc Ala	ggt Gl y	gtt Val	912
gca Ala 305	gag Glu	ctg Leu	ttc Phe	gag Glu	gag Glu 310	gac Asp	aga Arg	aac Asn	ttt Phe	aca Thr 315	GJÀ ddd	gcc Ala	atg Met	gcg Ala	cgc Arg 320	960
gca Ala	aag Lys	gcg Ala	gcg Ala	cag Gln 325	gca Ala	gcc Ala	ggc Gly	atg Met	gag Glu 330	cat His	cca Pro	aag Lys	ata Ile	cca Pro 335	aag Lys	1008
ttg Leu	gaa Glu	gag Glu	gct Ala 340	gtg Val	cgc Arg	GJÅ ∂∂∂	gcc Ala	aaa Lys 345	GJÀ ddd	aag Lys	gcg Ala	ctg Leu	gtc Val 350	ttt Phe	aca Thr	1056
agc Ser	tac Tyr	agg Arg 355	gac Asp	tct Ser	gtc Val	gat Asp	tta Leu 360	ata Ile	cac His	tca Ser	aag Lys	ctg Leu 365	cag Gln	gct Ala	gcc Ala	1104
GJÀ ddd	ata Ile 370	aac Asn	tcg Ser	GJ À ddd	atc Ile	ctc Leu 375	ata Ile	gga Gly	aag Lys	gcg Ala	gga Gly 380	gaa Glu	aag Lys	ggc Gly	ctc Leu	1152
aag L y s 385	cag Gln	aaa Lys	aaa Lys	cag Gln	gta Val 390	gag Glu	act Thr	gtc Val	gcc Ala	aag Lys 395	ttc Phe	cgc Arg	gac Asp	GJ À ddd	gga Gl y 400	1200
tac Tyr	gac Asp	gtg Val	ctc Leu	gta Val 405	tct Ser	aca Thr	aga Arg	gtg Val	ggc Gl y 410	gag Glu	gag Glu	ggc Gly	ctc Leu	gac Asp 415	ata Ile	1248
tcg Ser	gag Glu	gta Val	aac Asn 420	ctt Leu	gtg Val	gta Val	ttc Phe	tat Tyr 425	gac Asp	aat Asn	gtc Val	cca Pro	agc Ser 430	tcg Ser	ata Ile	1296
agg Arg	tat Tyr	gtg Val 435	cag Gln	aga Arg	agg Arg	ggc Gly	agg Arg 440	acc Thr	ggc Gly	agg Arg	aag Lys	gac Asp 445	gcg Ala	ggc Gly	aag Lys	1344
ctg Leu	gtg Val 450	gta Val	ctg Leu	atg Met	gca Ala	aag Lys 455	dda dda	act Thr	ata Ile	gac Asp	gag Glu 460	gca Ala	tac Tyr	tac Tyr	tgg Trp	1392
ata Ile 465	ggc Gl y	cgg Arg	cgc Arg	aag Lys	att Ile 470	act Thr	gcc Ala	gcc Ala	agg Arg	ggc Gl y 475	atg Met	dda dda	gac Asp	agg Arg	atg Met 480	1440
aac	aag	tcg	ctt	gca	gcg	aaa	ggc	cct	gcg	cca	aag	gca	gcc	cca	aaa	1488

147

Asn Lys Ser Leu Ala Ala Gly Gly Pro Ala Pro Lys Ala Ala Pro Lys 485 490 495 aag ggg ctc gag ggc tat ttc tag Lys Gly Leu Glu Gly Tyr Phe 1512 500 <210> SEQ ID NO 66 <211> LENGTH: 503 <212> TYPE: PRT <213> ORGANISM: Cenarchaeum symbiosum <400> SEQUENCE: 66 Met Glu Thr Ala His Ile Thr Gly Lys Tyr Val Glu Pro Gly Ala Val 1 5 10 15 5 1 Glu Arg Arg Asp Tyr Gln Val Gly Leu Ala Glu Gln Ala Ile Arg Glu 20 25 30 20 As CCys Ile Val Val Leu Pro Thr Gly Leu Gly Lys Thr Ala Val Ala 35 $$ 40 $$ 45 Leu Gln Val Ile Ser His Tyr Leu Asp Glu Gly Arg Gly Ala Leu Phe 50 55 60 Leu Ala Pro Thr Arg Val Leu Val Asn Gln His Arg Gln Phe Leu Gly 65 70 75 80 Arg Ala Leu Thr Ile Ser Asp Ile Thr Leu Val Thr Gly Glu Asp Thr859095 90 Val Pro Arg Arg Lys Lys Ala Trp Gly Gly Ser Val Ile Cys Ala Thr 100 105 110 Pro Glu Ile Thr Arg Asn Asp Ile Ala Arg Gly Met Val Pro Leu Glu 115 120 125 Gln Phe Gly Leu Val Val Phe Asp Glu Ala His Arg Ala Val Gly Asp 130 135 140 Tyr Ala Tyr Ser Ala Ile Ala Arg Ala Val Gly Glu Asn Ser Arg Met 145 150 155 160 Ile Gly Met Thr Ala Thr Leu Pro Ser Glu Arg Glu Lys Ala Asp Glu 165 170 175 Ile Met Gly Thr Leu Leu Ser Lys Ser Ile Ala Gln Arg Thr Glu Asp 180 185 190 Asp Pro Asp Val Lys Pro Tyr Val Gln Glu Thr Glu Thr Glu Trp Ile 195 200 205 Lys Val Glu Leu Pro Pro Glu Met Lys Glu Ile Gln Lys Leu Leu Lys 210 215 220 Met Ala Leu Asp Glu Arg Tyr Ala Ala Leu Lys Arg Cys Gly Tyr Asp 225 230 235 240 225 230 235 Leu Gly Ser Asn Arg Ser Leu Ser Ala Leu Leu Arg Leu Arg Met Val 245 250 255 245 250 255 Val Leu Ser Gly Asn Arg Arg Ala Ala Lys Pro Leu Phe Thr Ala Ile 260 265 270 Arg Ile Thr Tyr Ala Leu Asn Ile Phe Glu Ala His Gly Val Thr Pro 280 285 Phe Leu Lys Phe Cys Glu Arg Thr Val Lys Lys Lys Gly Ala Gly Val 295 300 290 Ala Glu Leu Phe Glu Glu Asp Arg Asn Phe Thr Gly Ala Met Ala Arg 305 310 315 Ala Lys Ala Ala Gln Ala Ala Gly Met Glu His Pro Lys Ile Pro Lys

-continued

										0011	C T II.	ucu			
		325					330					335			
Leu Glu G	lu Ala 340	Val	Arg	Gly	Ala	Lys 345	Gly	Lys	Ala	Leu	Val 350	Phe	Thr		
Ser Tyr A 3	rg Asp 55	Ser	Val	Asp	Leu 360	Ile	His	Ser	Lys	Leu 365	Gln	Ala	Ala		
Gly Ile A 370	sn Ser	Gly	Ile	Leu 375	Ile	Gly	Lys	Ala	Gly 380	Glu	Lys	Gly	Leu		
Lys Gln L 385	ys Lys	Gln	Val 390	Glu	Thr	Val	Ala	Lys 395	Phe	Arg	Asp	Gly	Gly 400		
Tyr Asp V	al Leu	Val 405	Ser	Thr	Arg	Val	Gly 410	Glu	Glu	Gly	Leu	Asp 415	Ile		
Ser Glu V	al Asn 420	Leu	Val	Val	Phe	T y r 425	Asp	Asn	Val	Pro	Ser 430	Ser	Ile		
Arg Tyr V 4	al Gln 35	Arg	Arg	Gly	Arg 440	Thr	Gly	Arg	Lys	Asp 445	Ala	Gly	Lys		
Leu Val V 450	al Leu	Met	Ala	L y s 455	Gly	Thr	Ile	Asp	Glu 460	Ala	Tyr	Tyr	Trp		
Ile Gly A 465	rg Arg	Lys	Ile 470	Thr	Ala	Ala	Arg	Gly 475	Met	Gly	Asp	Arg	Met 480		
Asn Lys S	er Leu	Ala 485	Ala	Gly	Gly	Pro	Ala 490	Pro	Lys	Ala	Ala	Pro 495	Lys		
Lys Gly L	eu Glu 500	Gly	Tyr	Phe											
<210> SEQ <211> LEN(<212> TYP) <213> ORG <220> FEA' <221> NAM <222> LOC	ID NO GTH: 2 E: DNA ANISM: TURE: E/KEY: ATION:	67 79 Cena CDS (1)	archa	aeum 279)	symb	Diosi	ım								
<400> SEQ	UENCE :	67													
atg gcg g Met Ala A 1	ac aag sp Lys	ata Ile 5	aag Lys	tgc Cys	tcg Ser	cac His	ata Ile 10	ctg Leu	gta Val	aaa Lys	aag Lys	cag Gln 15	ggc Gly	48	
gag gcg c Glu Ala L	tc gca eu Ala 20	gtg Val	caa Gln	gag Glu	cgc Arg	ctc Leu 25	aag Lys	gcg Ala	ggc Gly	gaa Glu	aag Lys 30	ttt Phe	gga Gly	96	
aag ctg g Lys Leu A	ca aag la Lys 35	gag Glu	ctc Leu	tcg Ser	ata Ile 40	gac Asp	GJ À 333	ggc Gl y	agc Ser	gca Ala 45	aag Lys	agg Arg	gac Asp	144	
ggc agc t Gl y Ser L 50	tg ggo eu Gly	tac Tyr	ttt Phe	ggc Gly 55	agg Arg	ggc Gl y	aag L y s	atg Met	gta Val 60	aag L y s	ccg Pro	ttt Phe	gag Glu	192	
gat gcc g Asp Ala A 65	cg tto la Phe	cgc Arg	ctg Leu 70	cag Gln	gta Val	ggc Gl y	gag Glu	gta Val 75	tcc Ser	gag Glu	ccg Pro	gta Val	aaa Lys 80	240	
tcc gag t Ser Glu P	tt ggo he Gly	tac Tyr 85	cac His	gtg Val	ata Ile	aag Lys	cgc Arg 90	ctg Leu	gga Gly	taa				279	
<210> SEQ <211> LEN(<212> TYP) <213> ORG	ID NO GTH: 9 E: PRT ANISM:	68 2 Cena	archa	aeum	sym	Diosu	1m								

-continued

<40	0> SE	EQUEN	NCE :	68												
Met 1	Ala	Asp	Lys	Ile 5	Lys	Сув	Ser	His	Ile 10	Leu	Val	Lys	Lys	Gln 15	Gly	
Glu	Ala	Leu	Ala 20	Val	Gln	Glu	Arg	Leu 25	Lys	Ala	Gly	Glu	L y s 30	Phe	Gly	
Lys	Leu	Ala 35	Lys	Glu	Leu	Ser	Ile 40	Asp	Gly	Gly	Ser	Ala 45	Lys	Arg	Asp	
Gly	Ser 50	Leu	Gly	Tyr	Phe	Gly 55	Arg	Gly	Lys	Met	Val 60	Lys	Pro	Phe	Glu	
Asp 65	Ala	Ala	Phe	Arg	Leu 70	Gln	Val	Gly	Glu	Val 75	Ser	Glu	Pro	Val	L y s 80	
Ser	Glu	Phe	Gly	Ty r 85	His	Val	Ile	Lys	Arg 90	Leu	Gly					
<21 <21 <21 <22 <22 <22 <22	0> SE 1> LE 2> TY 3> OF 0> FE 1> NZ 2> LC	EQ II ENGTH (PE: RGAN] EATUF AME/H DCAT]	D NO H: 40 DNA ISM: RE: KEY: ION:	69 D2 Cena CDS (1)	archa	aeum 102)	symb	Diosu	ım							
atg	tct	ttg	tat	ttt	acg Thr	ata Tlo	aag Lyrs	acg Thr	gcc Ala	aac Asn	ctg	gcc Ala	ctg	ccc Pro	gac	48
1	DCI	ЦСЦ	1 y 1	5	1111	110	цуз	1111	10	ASII	ЦСЦ	AIU	ШСЦ	15	тэр	
gtg Val	gta Val	aag L y s	agg Arg 20	tac Tyr	aac Asn	cac His	gtc Val	ctg Leu 25	gcg Ala	tgc C y s	aag L y s	agc Ser	gag Glu 30	gtg Val	atg Met	96
agg Arg	gcc Ala	gag Glu 35	aag Lys	cag Gln	atc Ile	cag Gln	gtg Val 40	tcc Ser	atc Ile	tcg Ser	tcg Ser	tcg Ser 45	ggc Gly	ggt Gly	ctg Leu	144
gac Asp	aag Lys 50	tac Tyr	gcg Ala	gag Glu	ctc Leu	aag Lys 55	cag Gln	cag Gln	ttc Phe	aac Asn	tcg Ser 60	agg Arg	ata Ile	acc Thr	gag Glu	192
ttc Phe 65	tac Tyr	cgc Arg	tcg Ser	ata Ile	gag Glu 70	gag Glu	ctg Leu	gag Glu	aag Lys	acg Thr 75	ggc Gly	gtg Val	gtg Val	gtc Val	aag Lys 80	240
agc Ser	ata Ile	gac Asp	gag Glu	999 Gly 85	ctc Leu	ctg Leu	gac Asp	ttt Phe	ccc Pro 90	gca Ala	aag L y s	cgc Arg	ttt Phe	999 Gly 95	gac Asp	288
gac Asp	atc Ile	tgg Trp	ctg Leu 100	tgc C y s	tgg Trp	aag Lys	gtg Val	ggc Gl y 105	gag Glu	cgc Arg	gag Glu	atc Ile	aag Lys 110	ttc Phe	tgg Trp	336
cat His	gaa Glu	aag Lys 115	дас Авр	tcg Ser	GJÀ ddd	ttt Phe	gac Asp 120	gga Gly	aga Arg	aag Lys	ccc Pro	ata Ile 125	gag Glu	gta Val	agt Ser	384
gac Asp	gag Glu 130	tca Ser	cta Leu	gtg Val	tag											402
<21 <21 <21 <21	0> SE 1> LE 2> TY 3> OF	EQ II ENGTH (PE: RGAN]	D NO H: 13 PRT ISM:	70 33 Cena	archa	aeum	symb	piosu	1m							
<40	0> SE	EQUEI	NCE :	70												
Met	Ser	Leu	Tyr	Phe	Thr	Ile	Lys	Thr	Ala	Asn	Leu	Ala	Leu	Pro	Asp	

-continued

													0 X III	uou		
1				5					10					15		
Val	Val	Lys	Arg 20	Tyr	Asn	His	Val	Leu 25	Ala	Cys	Lys	Ser	Glu 30	Val	Met	
Arg	Ala	Glu 35	Lys	Gln	Ile	Gln	Val 40	Ser	Ile	Ser	Ser	Ser 45	Gly	Gly	Leu	
Asp	L y s 50	Tyr	Ala	Glu	Leu	Lys 55	Gln	Gln	Phe	Asn	Ser 60	Arg	Ile	Thr	Glu	
Phe 65	Tyr	Arg	Ser	Ile	Glu 70	Glu	Leu	Glu	Lys	Thr 75	Gly	Val	Val	Val	L y s 80	
Ser	Ile	Asp	Glu	Gly 85	Leu	Leu	Asp	Phe	Pro 90	Ala	Lys	Arg	Phe	Gly 95	Asp	
Asp	Ile	Trp	Leu 100	Cys	Trp	Lys	Val	Gly 105	Glu	Arg	Glu	Ile	Lys 110	Phe	Trp	
His	Glu	Lys 115	Asp	Ser	Gly	Phe	Asp 120	Gly	Arg	Lys	Pro	Ile 125	Glu	Val	Ser	
Asp	Glu 130	Ser	Leu	Val												
<210 <211 <212 <212 <221 <220 <221 <221)> SE 1> LE 2> TY 3> OF 3> FE 1> NF 2> LC	EQ II ENGTH (PE: RGANJ EATUF AME/F DCATJ	D NO I: 87 DNA SM: RE: KEY: ION:	71 79 Cena CDS (1)	arch <i>a</i>	aeum 379)	symt	piosu	ım							
<400)> SE	EQUEN	ICE :	71												
atg Met 1	ctc Leu	tcc Ser	tcc Ser	tgg Trp 5	ctg Leu	cgc Arg	gta Val	ata Ile	cgc Arg 10	gtc Val	cgg Arg	ttc Phe	ctg Leu	ctc Leu 15	gcg Ala	48
tcg Ser	gtg Val	ata Ile	gcc Ala 20	gta Val	tca Ser	gcg Ala	ggc Gl y	ctt Leu 25	gcc Ala	ctc Leu	tcc Ser	tgg Trp	tgg Trp 30	cac His	ggc Gly	96
cac His	gga Gly	ata Ile 35	gac Asp	gcg Ala	ctc Leu	aca Thr	gcg Ala 40	gca Ala	ctc Leu	acc Thr	atg Met	gcc Ala 45	gga Gly	gtg Val	gcc Ala	144
gct Ala	ctt Leu 50	cat His	gca Ala	agc Ser	gtg Val	gac Asp 55	atg Met	ctc Leu	aac Asn	gac Asp	tac Tyr 60	tgg Trp	gac Asp	tac Tyr	aag L y s	192
cgc Arg 65	ggc Gly	ata Ile	gat Asp	acg Thr	aga Arg 70	acc Thr	aag L y s	agg Arg	acc Thr	ccg Pro 75	atg Met	agc Ser	GJÀ ∂∂∂	GJÀ aaa	aca Thr 80	240
ddd ddd	gtg Val	ctg Leu	cca Pro	gag Glu 85	ggc Gly	ctg Leu	ctg Leu	agc Ser	ccc Pro 90	cgc Arg	cag Gln	gtg Val	tac Tyr	cgc Arg 95	gcc Ala	288
ggc Gl y	atc Ile	ata Ile	tca Ser 100	ctg Leu	gtg Val	ctc Leu	GJÀ ∂∂∂	act Thr 105	gcc Ala	gcc Ala	ggc Gl y	gca Ala	tac Tyr 110	ttt Phe	gtg Val	336
atc Ile	aca Thr	acg Thr 115	GJÀ ddd	ccc Pro	gtc Val	ata Ile	gct Ala 120	gcg Ala	ata Ile	ctc Leu	ggc Gl y	ttt Phe 125	gcg Ala	gtg Val	gtc Val	384
tcg Ser	att Ile 130	tac Tyr	ttt Phe	tac Tyr	tcg Ser	aca Thr 135	agg Arg	att Ile	gtg Val	gac Asp	tcg Ser 140	ggc Gly	ctc Leu	tcc Ser	gag Glu	432
gtg Val 145	ctc Leu	gtc Val	ggg Gly	gtc Val	aag Lys 150	ggg Gly	gcg Ala	atg Met	atc Ile	gtc Val 155	ctt Leu	ggc Gly	gcc Ala	tac Tyr	tac Tyr 160	480

ata Ile	cag Gln	gcg Ala	ccc Pro	gag Glu 165	atc Ile	acg Thr	ccg Pro	gcc Ala	gcc Ala 170	ctc Leu	ctc Leu	gtc Val	ggc Gl y	gcg Ala 175	gca Ala	528	
gtg Val	GJ À ddd	gcg Ala	ctg Leu 180	tca Ser	tct Ser	gcg Ala	gtc Val	ctc Leu 185	ttt Phe	gtg Val	gcg Ala	tcg Ser	ttt Phe 190	ccg Pro	gac Asp	576	
cac His	gac Asp	gca Ala 195	gac Asp	aag Lys	gag Glu	cgc Arg	ggc Gl y 200	aga Arg	aaa Lys	acg Thr	ctg Leu	gtg Val 205	ata Ile	ata Ile	ctg Leu	624	
ggc Gl y	aaa Lys 210	aag Lys	agg Arg	gcc Ala	tcg Ser	cgc Arg 215	ata Ile	ctc Leu	tgg Trp	gtc Val	ttt Phe 220	cca Pro	gct Ala	gtg Val	gcg Ala	672	
tat Tyr 225	tca Ser	tcc Ser	gtg Val	ata Ile	gcg Ala 230	GJ À ddd	gtg Val	att Ile	atc Ile	cag Gln 235	gtg Val	ctg Leu	cca Pro	gtg Val	tac Tyr 240	720	
tcc Ser	ctc Leu	gcc Ala	atg Met	ctg Leu 245	ctt Leu	gcc Ala	gcc Ala	ccc Pro	ctt Leu 250	gcg Ala	gca Ala	ata Ile	tcg Ser	gca Ala 255	agg Arg	768	
ggc Gl y	ctt Leu	gcc Ala	aaa Lys 260	gag Glu	tat Tyr	gac Asp	GJ À ddd	gac Asp 265	agg Arg	atc Ile	ata Ile	cgg Arg	gtc Val 270	atg Met	cgc Arg	816	
ggc Gl y	acg Thr	ctg Leu 275	cgg Arg	ttc Phe	agc Ser	agg Arg	act Thr 280	gca Ala	ggc Gly	gcg Ala	ctg Leu	ctg Leu 285	gtg Val	ctg Leu	gga Gl y	864	
ata Ile	ctg Leu 290	ctt Leu	ggt Gly	tga												879	
<210 <211 <212 <213	> SE > LE > TY > OR	Q ID NGTH PE: GANI) NO 1: 29 PRT SM:	72 2 Cena	ırcha	eum	symb	iosu	ım								
<210 <211 <212 <213 <400	> SE > LE > TY > OR	Q ID NGTH PE: GANI QUEN	NO PRT SM:	72 2 Cena 72	ırcha	eum	symb	iosu	ım								
<210 <211 <212 <213 <400 Met 1	> SE > LE > TY > OR > SE Leu	Q ID NGTH PE: GANI QUEN Ser	NO PRT SM: CE: Ser	72 2 Cena 72 Trp 5	urcha Leu	eum Arg	symb Val	iosu Ile	m Arg 10	Val	Arg	Phe	Leu	Leu 15	Ala		
<210 <211 <212 <213 <400 Met 1 Ser	> SE > LE > TY > OR > SE Leu Val	Q ID NGTH PE: GANI QUEN Ser Ile	NO I: 29 PRT SSM: CE: Ser Ala 20	72 Cena 72 Trp 5 Val	Leu Ser	Arg Ala	symb Val Gly	iosu Ile Leu 25	m Arg 10 Ala	Val Leu	Arg Ser	Phe Trp	Leu Trp 30	Leu 15 His	Ala Gly		
<210 <211 <212 <213 <400 Met 1 Ser His	> SE > LE > TY > OR > SE Leu Val Gly	Q ID NGTH PE: CGANI SQUEN Ser Ile Ile 35	NO PRT SM: CE: Ser Ala 20 Asp	72 2 Cena 72 Trp 5 Val Ala	Leu Ser Leu	Arg Ala Thr	symb Val Gly Ala 40	iosu Ile Leu 25 Ala	m Arg 10 Ala Leu	Val Leu Thr	Arg Ser Met	Phe Trp Ala 45	Leu Trp 30 Gly	Leu 15 His Val	Ala Gly Ala		
<210 <211 <212 <213 <400 Met 1 Ser His Ala	> SE > LE > TY > OR Leu Gly Leu 50	Q ID NGTH PE: GANI CQUEN Ser Ile 35 His	NO SM: 29 PRT SM: CCE: Ser Ala 20 Asp Ala	72 2 Cena 72 Trp 5 Val Ala Ser	Leu Ser Leu Val	Arg Arg Ala Thr Asp 55	symb Val Gly Ala 40 Met	iosu Ile Leu 25 Ala Leu	m Arg 10 Ala Leu Asn	Val Leu Thr Asp	Arg Ser Met Tyr 60	Phe Trp Ala 45 Trp	Leu Trp 30 Gly Asp	Leu 15 His Val Tyr	Ala Gly Ala Lys		
<2110 <211 <212 <213 <400 Met 1 Ser His Ala Arg 65	> SE > LE > TY > OR Leu Gly Leu 50 Gly	Q ID NGTH PE: GANI QUEN Ser Ile Ile His Ile	NO SM: 29 PRT SM: CCE: Ser Ala 20 Asp Ala Asp	72 2 Cena 72 Trp 5 Val Ala Ser Thr	Leu Ser Leu Val Arg 70	Arg Ala Thr Asp 55 Thr	symb Val Gly Ala 40 Met Lys	iosu Ile Leu 25 Ala Leu Arg	m Arg 10 Ala Leu Asn Thr	Val Leu Thr Asp Pro 75	Arg Ser Met Tyr 60 Met	Phe Trp Ala 45 Trp Ser	Leu Trp 30 Gly Asp Gly	Leu 15 His Val Tyr Gly	Ala Gly Ala Lys Thr 80		
<210 <211 <212 <213 <400 Met 1 Ser His Ala Arg 65 Gly	> SE > LE > TY > OR > SE Leu Val Gly Leu 50 Gly Val	Q ID NGTH PE: GANI QUEN Ser Ile 35 His Ile Leu	NO Ser Ala Asp Ala Asp Pro	72 2 Cena 72 Trp 5 Val Ala Ser Thr Glu 85	Leu Ser Leu Val Arg 70 Gly	Arg Ala Thr Asp 55 Thr Leu	symb Val Gly Ala 40 Met Lys Leu	iosu Ile Leu 25 Ala Leu Arg Ser	m Arg 10 Ala Leu Asn Thr Pro 90	Val Leu Thr Asp Pro 75 Arg	Arg Ser Met Tyr 60 Met Gln	Phe Trp Ala 45 Trp Ser Val	Leu Trp 30 Gly Asp Gly Tyr	Leu 15 His Val Tyr Gly Arg 95	Ala Gly Ala Lys Thr 80 Ala		
<210 <211 <212 <213 <400 Met 1 Ser His Ala Arg 65 Gly Gly	> SE > LE > TY > OR > SE Leu Val Gly Leu 50 Gly Val Ile	Q ID NGTH PE: GANI Ser Ile 35 Ile Leu Ile	NO 29 PRT SM: CCE: Ser Ala Asp Ala Asp Pro Ser 100	72 2 Cena 72 Trp 5 Val Ala Ser Thr Glu 85 Leu	Leu Ser Leu Val Arg 70 Gly Val	Arg Ala Thr Asp 55 Thr Leu Leu	symb Val Gly Ala 40 Met Lys Leu Gly	iosu Ile Leu 25 Ala Leu Arg Ser Thr 105	m Arg 10 Ala Leu Asn Thr Pro 90 Ala	Val Leu Thr Asp Pro 75 Arg Ala	Arg Ser Met Tyr 60 Met Gln Gly	Phe Trp Ala 45 Trp Ser Val Ala	Leu Trp 30 Gly Asp Gly Tyr Tyr 110	Leu 15 His Val Tyr Gly Arg 95 Phe	Ala Gly Ala Lys Thr 80 Ala Val		
<pre><210 <211 <212 <213 <400 Met 1 Ser His Ala Arg 65 Gly Gly Ile</pre>	> SE > LE > TY > OR > SE Leu Val Gly Leu 50 Gly Val Ile Thr	Q ID NGTH PF: GANI QUEN Ser Ile 35 His Ile Leu Ile Thr 115	NO 2 NO 2 29 PRT SM: CCE: Ser Ala Asp Ala Asp Pro Ser 100 Gly	72 2 Cena 72 Trp 5 Val Ala Ser Thr Glu 85 Leu Pro	Leu Ser Leu Val Arg 70 Gly Val Val	Arg Ala Thr Asp 55 Thr Leu Leu Ile	symb Val Gly Ala 40 Met Lys Leu Gly Ala 120	iosu Ile Leu 25 Ala Leu Arg Ser Thr 105 Ala	m Arg 10 Ala Leu Asn Thr Pro 90 Ala Ile	Val Leu Thr Asp Pro 75 Arg Ala Leu	Arg Ser Met Gln Gly Gly	Phe Trp Ala 45 Trp Ser Val Ala Phe 125	Leu Trp 30 Gly Asp Gly Tyr Tyr 110 Ala	Leu 15 His Val Tyr Gly Arg 95 Phe Val	Ala Gly Ala Lys Thr 80 Ala Val		
<pre><210 <211 <212 <213 <400 Met 1 Ser His Ala Arg 65 Gly Gly Ile Ser</pre>	> SE > Lev Val Gly Leu 50 Gly Val Ile Thr Ile 130	Q ID NGTH PF: GANI QUEN Ser Ile 35 His Ile Leu Ile Thr 115 Tyr	NO 2 NO 2 29 PRT SM: CE: Ser Ala Asp Ala Asp Pro Ser 100 Gly Phe	72 2 Cena 72 Trp 5 Val Ala Ser Thr Glu 85 Leu Pro Tyr	Leu Ser Leu Val Arg 70 Gly Val Val Ser	Arg Ala Thr Asp 55 Thr Leu Leu Ile Thr 135	symb Val Gly Ala 40 Met Lys Leu Gly Ala 120 Arg	iosu Ile Leu 25 Ala Leu Arg Ser Thr 105 Ala Ile	m Arg 10 Ala Leu Asn Thr Pro 90 Ala Ile Val	Val Leu Thr Asp Pro 75 Arg Ala Leu Asp	Arg Ser Met Gln Gly Gly Ser 140	Phe Trp Ala 45 Trp Ser Val Ala Phe 125 Gly	Leu Trp 30 Gly Asp Gly Tyr Tyr 110 Ala Leu	Leu 15 His Val Tyr Gly Arg 95 Phe Val Ser	Ala Gly Ala Lys Thr 80 Ala Val Val Glu		
<pre><210 <211 <212 <213 <400 Met 1 Ser His Ala Arg 65 Gly Ile Ser Val 145</pre>	> SE > Lev > TY > OR Val Gly Leu 50 Gly Val Ile Thr Ile 130 Leu	Q ID NGTH TPE: GANI QUEN Ser Ile Ile Leu Ile Thr 115 Tyr Val	NO 2 NO 2 29 PRT SM: CE: Ser Ala Asp Ala Asp Pro Ser 100 Gly Phe Gly	72 2 Cena 72 Trp 5 Val Ala Ser Thr Glu 85 Leu Pro Tyr Val	Leu Ser Leu Val Arg 70 Gly Val Val Ser Lys 150	Arg Ala Thr Asp 55 Thr Leu Leu Ile Thr 135 Gly	symb Val Gly Ala 40 Met Lys Leu Gly Ala 120 Arg Ala	iosu Ile Leu 25 Ala Leu Arg Ser Thr 105 Ala Ile Met	m Arg 10 Ala Leu Asn Thr Pro 90 Ala Ile Val Ile	Val Leu Thr Asp Pro 75 Arg Ala Leu Asp Val 155	Arg Ser Met Gln Gly Gly Ser 140 Leu	Phe Trp Ala 45 Trp Ser Val Ala Phe 125 Gly Gly	Leu Trp 30 Gly Asp Gly Tyr Tyr 110 Ala Leu Ala	Leu 15 His Val Tyr Gly Arg 95 Phe Val Ser Tyr	Ala Gly Ala Lys Thr 80 Ala Val Val Glu Tyr 160		

-continued

													0 X III	uou		
				165					170					175		
Val	Gly	Ala	Leu 180	Ser	Ser	Ala	Val	Leu 185	Phe	Val	Ala	Ser	Phe 190	Pro	Asp	
His	Asp	Ala 195	Asp	Lys	Glu	Arg	Gly 200	Arg	Lys	Thr	Leu	Val 205	Ile	Ile	Leu	
Gly	L y s 210	Lys	Arg	Ala	Ser	Arg 215	Ile	Leu	Trp	Val	Phe 220	Pro	Ala	Val	Ala	
T y r 225	Ser	Ser	Val	Ile	Ala 230	Gly	Val	Ile	Ile	Gln 235	Val	Leu	Pro	Val	Ty r 240	
Ser	Leu	Ala	Met	Leu 245	Leu	Ala	Ala	Pro	Leu 250	Ala	Ala	Ile	Ser	Ala 255	Arg	
Gly	Leu	Ala	L y s 260	Glu	Tyr	Asp	Gly	Asp 265	Arg	Ile	Ile	Arg	Val 270	Met	Arg	
Gly	Thr	Leu 275	Arg	Phe	Ser	Arg	Thr 280	Ala	Gly	Ala	Leu	Leu 285	Val	Leu	Gly	
Ile	Leu 290	Leu	Gly													
<21 <21 <21 <22 <22 <22 <22	0> SI 1> LI 2> TY 3> OF 0> FI 1> NZ 2> LO	EQ II ENGTH YPE: RGANI EATUH AME/I DCATI	D NO H: 12 DNA ISM: RE: KEY: ION:	73 227 Cena CDS (1)	archa	aeum 1227	symt)	Diosu	ım							
<40	0> SI	EQUEI	ICE :	73												
ttg Met 1	agg Arg	ccc Pro	gcg Ala	gct Ala 5	gtg Val	cct Pro	aca Thr	gca Ala	cgg Arg 10	gat Asp	att Ile	ggc Gly	gca Ala	gaa Glu 15	cgg Arg	48
ggc Gly	aat Asn	ctc Leu	aca Thr 20	ctt Leu	tgt C y s	acc Thr	ctt Leu	cat His 25	aca Thr	cat His	aaa Lys	tcc Ser	cgc Arg 30	ttg Leu	gat Asp	96
gtg Val	cgg Arg	ctg Leu 35	cgc Arg	atg Met	atc Ile	agc Ser	999 Gly 40	cat His	gcc Ala	acg Thr	gcc Ala	gag Glu 45	ggt Gly	aca Thr	cag Gln	144
agg Arg	ata Ile 50	gcc Ala	gag Glu	atg Met	tcc Ser	ggc Gly 55	gca Ala	cac His	cat His	gac Asp	aac Asn 60	tac Tyr	aag Lys	gtg Val	gta Val	192
gac Asp 65	GJ À ddd	ctg Leu	cac His	ctc Leu	tcc Ser 70	aac Asn	gtg Val	GJ À ddd	atg Met	ggc Gly 75	acc Thr	tac Tyr	ctt Leu	ggc Gly	gac Asp 80	240
gcg Ala	gat Asp	gac Asp	gcc Ala	acc Thr 85	gac Asp	agg Arg	gcc Ala	gtc Val	aca Thr 90	gac Asp	gcg Ala	gtc Val	aag Lys	agg Arg 95	tca Ser	288
atc Ile	aag Lys	tcg Ser	999 Gl y 100	ata Ile	aac Asn	gtc Val	ata Ile	gat Asp 105	acc Thr	gcg Ala	ata Ile	aac Asn	tac Tyr 110	cgc Arg	ctc Leu	336
cag Gln	agg Arg	gcc Ala 115	gag Glu	cgt Arg	tcc Ser	gtg Val	ggc Gl y 120	agg Arg	gcc Ala	gtt Val	aca Thr	gag Glu 125	ctc Leu	tca Ser	gag Glu	384
gag Glu	999 Gl y 130	ctg Leu	gta Val	tcc Ser	agg Arg	gac Asp 135	cag Gln	ata Ile	ttc Phe	ata Ile	tcc Ser 140	aca Thr	aag Lys	gcg Ala	gga Gl y	432
tac Tyr 145	gtg Val	acc Thr	aac Asn	gat Asp	tca Ser 150	gag Glu	gtc Val	tcc Ser	ctc Leu	gac Asp 155	ttt Phe	tgg Trp	gag Glu	tat Tyr	gta Val 160	480

aaa Lys	aag Lys	gaa Glu	tac Tyr	gtc Val 165	ggt Gly	ggc Gly	ggc Gly	gtc Val	ata Ile 170	cag Gln	tcc Ser	GJÀ ddd	gac Asp	ata Ile 175	tcc Ser	528
tcg Ser	gga Gl y	tac Tyr	cac His 180	tgc C y s	atg Met	aag Lys	ccc Pro	gcg Ala 185	tat Tyr	cta Leu	gag Glu	gac Asp	cag Gln 190	cta Leu	aag Lys	576
aga Arg	agc Ser	ctt Leu 195	gca Ala	aac Asn	atg Met	aac Asn	gtc Val 200	gac Asp	tgc C y s	ata Ile	gat Asp	ctt Leu 205	gtc Val	tac Tyr	gtg Val	624
cac His	aac Asn 210	ccg Pro	gtg Val	gag Glu	ggg Gly	cag Gln 215	atc Ile	aag L y s	gac Asp	cgc Arg	ccc Pro 220	gtg Val	ccg Pro	gag Glu	atc Ile	672
ctc Leu 225	gag Glu	GJÀ dàà	ata Ile	ggc Gly	gag Glu 230	gcc Ala	ttt Phe	gcc Ala	atg Met	tac Tyr 235	gag Glu	aaa Lys	atg Met	cgg Arg	gag Glu 240	720
gct Ala	ggc Gl y	cgc Arg	ata Ile	agg Arg 245	tat Tyr	tac Tyr	ggg ggg	ctc Leu	gcc Ala 250	acg Thr	tgg Trp	gag Glu	tgc C y s	ttc Phe 255	cgg Arg	768
gtc Val	gca Ala	gag Glu	ggc Gly 260	gac Asp	ccg Pro	cag Gln	agc Ser	atg Met 265	cag Gln	ctc Leu	gaa Glu	gca Ala	gtg Val 270	gta Val	aaa Lys	816
aag Lys	gcc Ala	aag L y s 275	gat Asp	gcc Ala	ggc Gl y	GJ À ddd	gag Glu 280	aac Asn	cac His	ggc Gl y	ttt Phe	agg Arg 285	ttc Phe	ata Ile	cag Gln	864
ctg Leu	cca Pro 290	ttc Phe	aac Asn	cag Gln	tac Tyr	ttt Phe 295	gac Asp	cag Gln	gcc Ala	tac Tyr	atg Met 300	gta Val	aag Lys	aac Asn	cag Gln	912
999 305	acg Thr	ggc Gly	ggc Gly	ggc Gly	aag Lys 310	tca Ser	tcc Ser	ata Ile	ctg Leu	gag Glu 315	gcg Ala	gca Ala	gcc Ala	gcg Ala	ctg Leu 320	960
gac Asp	att Ile	ggc Gly	gtg Val	ttc Phe 325	aca Thr	agc Ser	gtc Val	ccg Pro	ttc Phe 330	atg Met	cag Gln	ggc Gly	aag Lys	ctg Leu 335	ctc Leu	1008
gag Glu	cct Pro	ggc Gly	ctg Leu 340	ctg Leu	ccg Pro	gag Glu	ttt Phe	ggc Gly 345	GJÀ ddd	ctc Leu	tcg Ser	ccc Pro	gcc Ala 350	ctg Leu	cgg Arg	1056
tcc Ser	ctg Leu	cag Gln 355	ttc Phe	atc Ile	agg Arg	tct Ser	aca Thr 360	ccg Pro	gga Gly	gtg Val	ctt Leu	gcc Ala 365	ccc Pro	ctg Leu	ccg Pro	1104
GJ À ddd	cac His 370	aag Lys	tcc Ser	agc Ser	ctg Leu	cat His 375	aca Thr	gac Asp	gag Glu	aac Asn	cta Leu 380	aag Lys	atc Ile	atg Met	ggc Gl y	1152
gtg Val 385	ccc Pro	ccc Pro	att Ile	cct Pro	cct Pro 390	gac Asp	aag L y s	ttc Phe	GJÀ ddd	gag Glu 395	ctt Leu	gtg Val	gcc Ala	agc Ser	ctt Leu 400	1200
acc Thr	tca Ser	tgg Trp	tcg Ser	ccc Pro 405	ggc Gl y	cag Gln	aaa Lys	tag								1227
<210 <211 <212)> SE .> LE ?> TY	Q ID NGTH PE:	NO 1:40 PRT	74 8	rcha	<u>م</u> 11m	symb	icer	m							
<400)> SE	QUEN	ICE :	74			-1100	u								
Met 1	Arg	Pro	Ala	Ala 5	Val	Pro	Thr	Ala	Arg 10	Asp	Ile	Gly	Ala	Glu 15	Arg	

-continued

Gly	Asn	Leu	Thr 20	Leu	Сув	Thr	Leu	His 25	Thr	His	Lys	Ser	Arg 30	Leu	Asp
Val	Arg	Leu 35	Arg	Met	Ile	Ser	Gly 40	His	Ala	Thr	Ala	Glu 45	Gly	Thr	Gln
Arg	Ile 50	Ala	Glu	Met	Ser	Gly 55	Ala	His	His	Asp	Asn 60	Tyr	Lys	Val	Val
Asp 65	Gly	Leu	His	Leu	Ser 70	Asn	Val	Gly	Met	Gly 75	Thr	Tyr	Leu	Gly	A sp 80
Ala	Asp	Asp	Ala	Thr 85	Asp	Arg	Ala	Val	Thr 90	Asp	Ala	Val	Lys	Arg 95	Ser
Ile	Lys	Ser	Gly 100	Ile	Asn	Val	Ile	A sp 105	Thr	Ala	Ile	Asn	Ty r 110	Arg	Leu
Gln	Arg	Ala 115	Glu	Arg	Ser	Val	Gly 120	Arg	Ala	Val	Thr	Glu 125	Leu	Ser	Glu
Glu	Gly 130	Leu	Val	Ser	Arg	Asp 135	Gln	Ile	Phe	Ile	Ser 140	Thr	Lys	Ala	Gly
Tyr 145	Val	Thr	Asn	Asp	Ser 150	Glu	Val	Ser	Leu	Asp 155	Phe	Trp	Glu	Tyr	Val 160
Lys	Lys	Glu	Tyr	Val 165	Gly	Gly	Gly	Val	Ile 170	Gln	Ser	Gly	Asp	Ile 175	Ser
Ser	Gly	Tyr	His 180	Cys	Met	Lys	Pro	Ala 185	Tyr	Leu	Glu	Asp	Gln 190	Leu	Lys
Arg	Ser	Leu 195	Ala	Asn	Met	Asn	Val 200	Asp	Cys	Ile	Asp	Leu 205	Val	Tyr	Val
His	Asn 210	Pro	Val	Glu	Gly	Gln 215	Ile	Lys	Asp	Arg	Pro 220	Val	Pro	Glu	Ile
Leu 225	Glu	Gly	Ile	Gly	Glu 230	Ala	Phe	Ala	Met	Ty r 235	Glu	Lys	Met	Arg	Glu 240
Ala	Gly	Arg	Ile	Arg 245	Tyr	Tyr	Gly	Leu	Ala 250	Thr	Trp	Glu	Cys	Phe 255	Arg
Val	Ala	Glu	Gly 260	Asp	Pro	Gln	Ser	Met 265	Gln	Leu	Glu	Ala	Val 270	Val	Lys
Lys	Ala	L y s 275	Asp	Ala	Gly	Gly	Glu 280	Asn	His	Gly	Phe	Arg 285	Phe	Ile	Gln
Leu	Pro 290	Phe	Asn	Gln	Tyr	Phe 295	Asp	Gln	Ala	Tyr	Met 300	Val	Lys	Asn	Gln
Gly 305	Thr	Gly	Gly	Gly	L y s 310	Ser	Ser	Ile	Leu	Glu 315	Ala	Ala	Ala	Ala	Leu 320
Asp	Ile	Gly	Val	Phe 325	Thr	Ser	Val	Pro	Phe 330	Met	Gln	Gly	Lys	Leu 335	Leu
Glu	Pro	Gly	Leu 340	Leu	Pro	Glu	Phe	Gly 345	Gly	Leu	Ser	Pro	Ala 350	Leu	Arg
Ser	Leu	Gln 355	Phe	Ile	Arg	Ser	Thr 360	Pro	Gly	Val	Leu	Ala 365	Pro	Leu	Pro
Gly	His 370	Lys	Ser	Ser	Leu	His 375	Thr	Asp	Glu	Asn	Leu 380	Lys	Ile	Met	Gly
Val 385	Pro	Pro	Ile	Pro	Pro 390	Asp	Lys	Phe	Gly	Glu 395	Leu	Val	Ala	Ser	Leu 400
Thr	Ser	Trp	Ser	Pro 405	Gly	Gln	Lys								

155

<210 <211 <212)> SE .> LE ?> TY	Q ID NGTH) NO [: 10 DNA	75)77													
<213	3> OF)> FE	GANI	SM: E:	Cena	archa	eum	symb	iosu	ım								
<221 <222	.> NA 2> LC	ME/K CATI	EY: ON:	CDS (1).	(1	.077)											
<400)> SE	QUEN	ICE :	75													
atg Met 1	aac Asn	aac Asn	cgg Arg	ttc Phe 5	cag Gln	gtt Val	atc Ile	cgg Arg	GJ X 10	gat Asp	gcc Ala	cgg Arg	gcg Ala	gtg Val 15	ctg Leu	48	
ccc Pro	agg Arg	ctt Leu	gca Ala 20	aaa Lys	aag Lys	aat Asn	ggc Gl y	gag Glu 25	cgc Arg	ggc Gly	agg Arg	tac Tyr	agg Arg 30	ctg Leu	gcc Ala	96	
gtc Val	act Thr	tcc Ser 35	ccc Pro	ccg Pro	tat Tyr	tac Tyr	999 Gl y 40	cac His	aga Arg	aag Lys	tac Tyr	ggg Gly 45	tcg Ser	gat Asp	ccc Pro	144	
tcc Ser	gag Glu 50	ctg Leu	ggc Gl y	cag Gln	gag Glu	ggg Gly 55	acg Thr	cct Pro	gat Asp	gag Glu	ttc Phe 60	gtc Val	gag Glu	gag Glu	ctg Leu	192	
gca Ala 65	GJ À ddd	gtg Val	ttc Phe	aag Lys	agc Ser 70	tgc Cys	atg Met	gac Asp	ctg Leu	ctt Leu 75	acc Thr	gac Asp	gac Asp	ggc Gl y	agc Ser 80	240	
ctc Leu	ttc Phe	ata Ile	gtg Val	ata Ile 85	ggc Gl y	gac Asp	acc Thr	cgg Arg	agg Arg 90	cgg Arg	cgc Arg	cgg Arg	aag Lys	ctg Leu 95	atg Met	288	
gtc Val	ccg Pro	cac His	cgg Arg 100	ctc Leu	gcg Ala	ctc Leu	aga Arg	ctt Leu 105	gta Val	gac Asp	ctt Leu	GJ À ddd	tac Tyr 110	cac His	ttt Phe	336	
caa Gln	gag Glu	gat Asp 115	ata Ile	gtc Val	tgg Trp	tac Tyr	aag Lys 120	aaa Lys	aac Asn	gcg Ala	cta Leu	tca Ser 125	cag Gln	agc Ser	tcg Ser	384	
aag Lys	cag Gln 130	aac Asn	ctt Leu	acg Thr	cag Gln	gcg Ala 135	tac Tyr	gag Glu	ttt Phe	gtg Val	ctg Leu 140	gtg Val	cta Leu	tca Ser	aag Lys	432	
tcg Ser 145	gaa Glu	tcc Ser	ccc Pro	gcc Ala	ttt Phe 150	gac Asp	ata Ile	gac Asp	ccg Pro	ata Ile 155	cgc Arg	gtc Val	cag Gln	ggc Gl y	aac Asn 160	480	
gag Glu	gcc Ala	ctg Leu	agc Ser	999 Gl y 165	gtc Val	aac Asn	agg Arg	aag Lys	ccg Pro 170	gag Glu	cgc Arg	gac Asp	cgg Arg	ctg Leu 175	cag Gln	528	
ttc Phe	tcc Ser	ccc Pro	999 Gl y 180	agg Arg	agg Arg	gac Asp	cct Pro	gaa Glu 185	gcc Ala	ata Ile	GJ À ddd	agg Arg	att Ile 190	gca Ala	gca Ala	576	
gtg Val	ata Ile	cac His 195	ggc Gl y	tcg Ser	tcc Ser	ccc Pro	gag Glu 200	acg Thr	ccg Pro	ttt Phe	gac Asp	gag Glu 205	ctg Leu	cca Pro	acc Thr	624	
acc Thr	gag Glu 210	gag Glu	ata Ile	tcg Ser	cgg Arg	gcc Ala 215	cac His	GJ À ddd	tat Tyr	gac Asp	ccc Pro 220	gaa Glu	aag Lys	cac His	tgc Cys	672	
ccg Pro 225	aca Thr	tgc Cys	tac Tyr	cgc Arg	aag Lys 230	ttc Phe	aaa Lys	agg Arg	cat His	gcg Ala 235	acg Thr	cgc Arg	aag Lys	cgg Arg	ata Ile 240	720	
GJ À 333	ggc Gl y	cac His	gag Glu	cac His 245	tat Tyr	ccg Pro	ata Ile	ttt Phe	gca Ala 250	gca Ala	tgc Cys	aac Asn	ccc Pro	cgg Arg 255	ggc Gl y	768	
aag Lys	aac Asn	cct Pro	ggg Gly	aac Asn	gtc Val	tgg Trp	gag Glu	ata Ile	tcc Ser	aca Thr	aag Lys	gcg Ala	cac His	cac His	ggc Gly	816	

-continued

	260					265					270			
aac gag ca Asn Glu Hi 27	c ttt s Phe 5	gcg Ala	gtg Val	ttc Phe	cca Pro 280	gaa Glu	gac Asp	ctc Leu	gta Val	tcc Ser 285	cgg Arg	ata Ile	gta Val	864
aag ttt go Lys Phe Al 290	c aca a Thr	aga Arg	gag Glu	ggc Gly 295	gac Asp	tat Tyr	gtg Val	ctg Leu	gat Asp 300	ccg Pro	ttt Phe	gcg Ala	gga Gly	912
agg ggc ac Arg Gly Th 305	a acg r Thr	GJÀ ddd	ata Ile 310	gtc Val	tcg Ser	gcg Ala	tgc Cys	ctc Leu 315	aag Lys	agg Arg	ggc Gly	ttt Phe	acg Thr 320	960
gga ata ga Gly Ile As	c ctg p Leu	tat Tyr 325	cct Pro	gcc Ala	aac Asn	gtg Val	gac Asp 330	agg Arg	acc Thr	cgg Arg	cgc Arg	aat Asn 335	gtg Val	1008
aaa gat to Lys Asp Se	t gcg r Ala 340	gac Asp	tcg Ser	aag Lys	ctg Leu	cca Pro 345	aaa Lys	aag Lys	gtg Val	cta Leu	gac Asp 350	cag Gln	ata Ile	1056
atg ccc ga Met Pro Gl 35	g gga u Gly 5	aca Thr	cgc Arg	tga										1077
<210> SEQ <211> LENG <212> TYPE <213> ORGA	ID NO TH: 3 : PRT NISM:	76 58 Cena	archa	aeum	sym	piosu	1m							
<400> SEQU	ENCE :	76												
Met Asn As 1	n Arg	Phe 5	Gln	Val	Ile	Arg	Gly 10	Asp	Ala	Arg	Ala	Val 15	Leu	
Pro Arg Le	u Ala 20	Lys	Lys	Asn	Gly	Glu 25	Arg	Gly	Arg	Tyr	Arg 30	Leu	Ala	
Val Thr Se 35	r Pro	Pro	Tyr	Tyr	Gly 40	His	Arg	Lys	Tyr	Gly 45	Ser	Asp	Pro	
Ser Glu Le 50	u Gly	Gln	Glu	Gly 55	Thr	Pro	Asp	Glu	Phe 60	Val	Glu	Glu	Leu	
Ala Gly Va 65	l Phe	Lys	Ser 70	Cys	Met	Asp	Leu	Leu 75	Thr	Asp	Asp	Gly	Ser 80	
Leu Phe Il	e Val	Ile 85	Gly	Asp	Thr	Arg	Arg 90	Arg	Arg	Arg	Lys	Leu 95	Met	
Val Pro Hi	s Arg 100	Leu	Ala	Leu	Arg	Leu 105	Val	Asp	Leu	Gly	Ty r 110	His	Phe	
Gln Glu As 11	p Ile 5	Val	Trp	Tyr	L y s 120	Lys	Asn	Ala	Leu	Ser 125	Gln	Ser	Ser	
Lys Gln As 130	n Leu	Thr	Gln	Ala 135	Tyr	Glu	Phe	Val	Leu 140	Val	Leu	Ser	Lys	
Ser Glu Se 145	r Pro	Ala	Phe 150	Asp	Ile	Asp	Pro	Ile 155	Arg	Val	Gln	Gly	Asn 160	
Glu Ala Le	u Ser	Gly 165	Val	Asn	Arg	Lys	Pro 170	Glu	Arg	Asp	Arg	Leu 175	Gln	
Phe Ser Pr	o Gly 180	Arg	Arg	Asp	Pro	Glu 185	Ala	Ile	Gly	Arg	Ile 190	Ala	Ala	
Val Ile Hi 19	s Gly 5	Ser	Ser	Pro	Glu 200	Thr	Pro	Phe	Asp	Glu 205	Leu	Pro	Thr	
Thr Glu Gl 210	u Ile	Ser	Arg	Ala 215	His	Gly	Tyr	Asp	Pro 220	Glu	Lys	His	Cys	

-continued

Pro 225	Thr	Cys	Tyr	Arg	L y s 230	Phe	Lys	Arg	His	Ala 235	Thr	Arg	Lys	Arg	Ile 240		
Gly	Gly	His	Glu	His 245	Tyr	Pro	Ile	Phe	Ala 250	Ala	Cys	Asn	Pro	Arg 255	Gly		
Lys	Asn	Pro	Gly 260	Asn	Val	Trp	Glu	Ile 265	Ser	Thr	Lys	Ala	His 270	His	Gly		
Asn	Glu	His 275	Phe	Ala	Val	Phe	Pro 280	Glu	Asp	Leu	Val	Ser 285	Arg	Ile	Val		
Lys	Phe 290	Ala	Thr	Arg	Glu	Gly 295	Asp	Tyr	Val	Leu	Asp 300	Pro	Phe	Ala	Gly		
Arg 305	Gly	Thr	Thr	Gly	Ile 310	Val	Ser	Ala	Cys	Leu 315	Lys	Arg	Gly	Phe	Thr 320		
Gly	Ile	Asp	Leu	Ty r 325	Pro	Ala	Asn	Val	Asp 330	Arg	Thr	Arg	Arg	Asn 335	Val		
Lys	Asp	Ser	Ala 340	Asp	Ser	Lys	Leu	Pro 345	Lys	Lys	Val	Leu	Asp 350	Gln	Ile		
Met	Pro	Glu 355	Gly	Thr	Arg												
<210 <211 <211 <211 <221 <221 <221 <221)> SI L> LI 2> TY 3> OF 0> FI L> NA 2> LC	EQ II ENGTH (PE: RGAN] EATUH AME/H OCATI	D NO H: 46 DNA ISM: RE: RE: REY: ION:	77 58 Cena CDS (1)	archa	aeum 468)	symb	Diosu	ım								
<400)> SI	IGUE	ICE :	77													
atg Met 1	cgg Arg	ctg Leu	ccc Pro	cgg Arg 5	cgc Arg	cga Arg	ctt Leu	aaa Lys	atc Ile 10	gtt Val	gta Val	gga Gly	tgc Cys	ggc Gly 15	gcc Ala	48	
gca Ala	gat Asp	gca Ala	ttg Leu 20	ccc Pro	gcc Ala	tta Leu	tac Tyr	acc Thr 25	gcc Ala	cgg Arg	gat Asp	cgg Arg	ccg Pro 30	cct Pro	tgc Cys	96	
agc Ser	aca Thr	cgc Arg 35	agt Ser	ata Ile	aac Asn	GJÀ ∂∂∂	ggc Gly 40	ccg Pro	ggc Gl y	ggc Gly	gcg Ala	tat Tyr 45	cac His	atg Met	tgg Trp	144	
ata Ile	aag Lys 50	gac Asp	gaa Glu	ttc Phe	ctc Leu	ggc Gly 55	ccg Pro	ggc Gly	aac Asn	aag L y s	atg Met 60	agg Arg	ctg Leu	ctc Leu	tac Tyr	192	
ctg Leu 65	ata Ile	ctg Leu	ccc Pro	atc Ile	tat Tyr 70	GJ À ddd	tat Tyr	atc Ile	ttt Phe	ctg Leu 75	gag Glu	tac Tyr	tat Tyr	ccg Pro	ttc Phe 80	240	
ttt Phe	ccc Pro	tgg Trp	atg Met	gcc Ala 85	acc Thr	tac T y r	tgg Trp	tgg Trp	tca Ser 90	gta Val	gct Ala	ctc Leu	agc Ser	ccc Pro 95	ccg Pro	288	
ata Ile	gtg Val	ccc Pro	acg Thr 100	cat His	tat Tyr	gcc Ala	GJÀ ddd	gag Glu 105	gcc Ala	ctg Leu	GJ À ddd	cgg Arg	ctg Leu 110	atc Ile	GJ À ddd	336	
gat Asp	cac His	gta Val 115	ttg Leu	ttt Phe	ggc Gly	atc Ile	acc Thr 120	aca Thr	aag Lys	tac Tyr	gtc Val	tat Tyr 125	gcg Ala	gca Ala	ata Ile	384	
tgg Trp	ctc Leu 130	ggc Gly	atg Met	gcc Ala	cat His	999 Gly 135	ata Ile	atc Ile	ctg Leu	ctg Leu	gca Ala 140	GJÀ ddd	cgc Arg	ctc Leu	cgg Arg	432	
gga Gl y	cct Pro	agg Arg	cag Gln	gcg Ala	cca Pro	cgg Arg	acg Thr	ggc Gl y	atc Ile	cca Pro	tag					468	

-c	0	n	t	i	n	u	e	d

145	150	155
<210> SEQ ID NO 78 <211> LENGTH: 155 <212> TYPE: PRT <213> ORGANISM: Cen.	archaeum symbiosum	
<400> SEQUENCE: 78		
Met Arg Leu Pro Arg	Arg Arg Leu Lys Ile	e Val Val Gly Cys Gly Ala
1 5	10	15
Ala Asp Ala Leu Pro	Ala Leu Tyr Thr Ala	a Arg Asp Arg Pro Pro Cys
20	25	30
Ser Thr Arg Ser Ile	Asn Gly Gly Pro Gly	y Gly Ala Tyr His Met Trp
35	40	45
Ile Lys Asp Glu Phe	Leu Gly Pro Gly Asn	n Lys Met Arg Leu Leu Tyr
50	55	60
Leu Ile Leu Pro Ile	Tyr Gly Tyr Ile Phe	e Leu Glu Tyr Tyr Pro Phe
65	70	75 80
Phe Pro Trp Met Ala	Thr Tyr Trp Trp Ser	r Val Ala Leu Ser Pro Pro
85	90	95
Ile Val Pro Thr His	Tyr Ala Gly Glu Ala	a Leu Gly Arg Leu Ile Gly
100	105	110
Asp His Val Leu Phe	Gly Ile Thr Thr Lys	s Tyr Val Tyr Ala Ala Ile
115	120	125
Trp Leu Gly Met Ala	His Gly Ile Ile Leu	1 Leu Ala Gly Arg Leu Arg
130	135	140
Gly Pro Arg Gln Ala	Pro Arg Thr Gly Ile	e Pro
145	150	155
<pre><210> SEQ ID NO 79 <211> LENGTH: 1779 <212> TYPE: DNA <213> ORGANISM: Cen. <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)</pre>	archaeum symbiosum (1779)	
<400> SEQUENCE: 79		
ttg aag ctg caa ggc	aag act gcc gtg atc	c acc ggc agt ggt acc ggg 48
Met Lys Leu Gln Gly	Lys Thr Ala Val Ile	e Thr Gly Ser Gly Thr Gly
1 5	10	15
atc ggg ctg gcg gtg	gca agg aaa ttt gcc	c gag aac ggg gcc agc gtg 96
Ile Gly Leu Ala Val	Ala Arg Lys Phe Ala	a Glu Asn Gly Ala Ser Val
20	25	30
gta ata ctc gga agg	aga aag gag ccc ctc	c gat gag gca gca gca gag 144
Val Ile Leu Gly Arg	Arg Lys Glu Pro Leu	1 Asp Glu Ala Ala Ala Glu
35	40	45
ctc aaa aag ata gcg	gaa tct gca ggc tgc	c ggg gcc tcg atc agg ata 192
Leu Lys Lys Ile Ala	Glu Ser Ala Gly Cys	s Gly Ala Ser Ile Arg Ile
50	55	60
ttc gcc ggg gtg gac Phe Ala Gly Val Asp	55	
65	gtg gcc gac gaa tcc Val Ala Asp Glu Ser 70	c gcg ata acg aaa atg ttc 240 r Ala Ile Thr Lys Met Phe 75 80
65 gac gag ctg tcc agc Asp Glu Leu Ser Ser 85	gtg gcc gac gaa tcc Val Ala Asp Glu Ser 70 tca ggt gta acc gtg Ser Gly Val Thr Val 90	c gcg ata acg aaa atg ttc 240 r Ala Ile Thr Lys Met Phe 75 80 g gac ata ctg gtg aac aat 288 l Asp Ile Leu Val Asn Asn 9 95

											-	con	tin	ued				
Ala	Gly	Val	Ser 100	Gly	Pro	Val	Thr	C y s 105	Phe	Ala	Asn	Asn	Asp 110	Leu	Glu			
gag Glu	ttc Phe	cgc Arg 115	ggg Gl y	gca Ala	gtc Val	gac Asp	ata Ile 120	cac His	ctg Leu	acc Thr	ggc Gl y	tcc Ser 125	ttc Phe	tgg Trp	aca Thr	384		
tcg Ser	agg Arg 130	gag Glu	gcc Ala	ctc Leu	aag Lys	gtc Val 135	atg Met	aaa Lys	aag Lys	ggc Gl y	tcc Ser 140	aag Lys	att Ile	gtc Val	acc Thr	432		
atg Met 145	act Thr	acg Thr	ttt Phe	ttt Phe	gca Ala 150	gaa Glu	gag Glu	agg Arg	cca Pro	ctc Leu 155	gag Glu	cag Gln	agg Arg	ccg Pro	tac Tyr 160	480		
agg Arg	ttc Phe	cgc Arg	gac Asp	ccg Pro 165	tat Tyr	aca Thr	acc Thr	gca Ala	cag Gln 170	ggc Gl y	gca Ala	aag Lys	aac Asn	agg Arg 175	ctc Leu	528		
gcc Ala	gag Glu	gcg Ala	atg Met 180	tcg Ser	tgg Trp	gat Asp	ctt Leu	tta Leu 185	gac Asp	cgc Arg	GJ À ddd	ata Ile	aca Thr 190	tcg Ser	ata Ile	576		
gcg Ala	acc Thr	aac Asn 195	ccc Pro	ggc Gl y	ccc Pro	gtc Val	cat His 200	tct Ser	gac Asp	agg Arg	ata Ile	tac Tyr 205	aag Lys	acg Thr	gta Val	624		
tac Tyr	ccg Pro 210	agg Arg	gcg Ala	gca Ala	ctc Leu	gag Glu 215	ttt Phe	gtc Val	agg Arg	gtt Val	tca Ser 220	ggg Gl y	ttt Phe	gag Glu	gac Asp	672		
ctg Leu 225	cag Gln	cca Pro	gaa Glu	gaa Glu	gtc Val 230	gag Glu	gtg Val	gca Ala	ggc Gl y	ggc Gl y 235	agg Arg	cta Leu	atc Ile	cac His	ctg Leu 240	720		
ctc Leu	ggc Gl y	gcg Ala	gac Asp	gac Asp 245	gat Asp	gca Ala	aga Arg	aaa Lys	aaa Lys 250	ggc Gl y	ata Ile	gca Ala	gag Glu	gcc Ala 255	gca Ala	768		
gag Glu	cac His	ttt Phe	gcc Ala 260	aag Lys	cta Leu	aag Lys	ccc Pro	gtg Val 265	gat Asp	ccc Pro	gca Ala	aag Lys	cta Leu 270	gag Glu	gcc Ala	816		
acc Thr	ctt Leu	gat Asp 275	gcc Ala	ctg Leu	ctc Leu	gca Ala	aag Lys 280	atc Ile	aag Lys	GJ À ddd	ata Ile	gcc Ala 285	gaa Glu	aag Lys	ata Ile	864		
cag Gln	gcc Ala 290	aac Asn	act Thr	gca Ala	agg Arg	atg Met 295	ata Ile	cca Pro	gac Asp	GJÀ ddd	gag Glu 300	ttt Phe	ctc Leu	tcc Ser	cag Gln	912		
gac Asp 305	cag Gln	gtg Val	gcc Ala	gag Glu	acg Thr 310	gta Val	ctc Leu	gcc Ala	ctc Leu	tgc Cys 315	gat Asp	gac Asp	aag Lys	atg Met	gcc Ala 320	960		
aag Lys	acg Thr	gta Val	aac Asn	ggc Gl y 325	cgc Arg	gta Val	atc Ile	ccc Pro	gcc Ala 330	gac Asp	agg Arg	gta Val	ttc Phe	tac Tyr 335	ccg Pro	1008		
gta Val	agg Arg	gcg Ala	cat His 340	gtg Val	gcc Ala	aat Asn	gcc Ala	gct Ala 345	ccg Pro	cgc Arg	gtg Val	ccc Pro	ccg Pro 350	cac His	gac Asp	1056		
tat Tyr	tcc Ser	999 Gl y 355	gga Gly	tgc Cys	gtc Val	cta Leu	ttc Phe 360	atg Met	ata Ile	gat Asp	gca Ala	gca Ala 365	gac Asp	gac Asp	agg Arg	1104		
gat Asp	gta Val 370	gaa Glu	agg Arg	gcg Ala	acc Thr	gcc Ala 375	ctg Leu	gca Ala	tcc Ser	cat His	gtg Val 380	gaa Glu	agc Ser	cac His	GJ À ddd	1152		
ggc Gly 385	acg Thr	gca Ala	gtc Val	tgc Cys	ata Ile 390	gtc Val	tca Ser	gaa Glu	gac Asp	tcg Ser 395	ccc Pro	cgc Arg	gcg Ala	gca Ala	aag Lys 400	1200		
gag	atg	ata	gcg	tca	aag	ttc	cac	tcg	cat	gcg	agc	cac	ata	gac	aag	1248		

-continued

-																
Glu	Met	Ile	Ala	Ser 405	Lys	Phe	His	Ser	His 410	Ala	Ser	His	Ile	Asp 415	Lys	
gta Val	gac Asp	gag Glu	ata Ile 420	aac Asn	agg Arg	tgg Trp	ctg Leu	agc Ser 425	gct Ala	gca Ala	tca Ser	aca Thr	aag L y s 430	ata Ile	ggc Gl y	1296
ccc Pro	ata Ile	tct Ser 435	gca Ala	gtg Val	gtc Val	cac His	ctg Leu 440	tcc Ser	ggc Gly	agg Arg	atg Met	cca Pro 445	aaa Lys	tcc Ser	ggc Gl y	1344
agc Ser	cta Leu 450	atg Met	gat Asp	ctc Leu	tcc Ser	aga Arg 455	aaa Lys	gaa Glu	tgg Trp	gac Asp	gcg Ala 460	ctg Leu	gtt Val	gac Asp	agg Arg	1392
ttc Phe 465	ata Ile	GJÀ ddd	acg Thr	ccg Pro	gct Ala 470	gcc Ala	gtc Val	ctg Leu	cac His	agg Arg 475	tcg Ser	ctt Leu	gag Glu	cac His	ttt Phe 480	1440
gca Ala	ccc Pro	ggc Gly	ggg ggg	cgc Arg 485	aag Lys	gac Asp	ccc Pro	cgt Arg	ttg Leu 490	ttc Phe	aag Lys	ggc Gl y	aag Lys	agc Ser 495	ggc Gly	1488
gtc Val	atc Ile	gtg Val	ata Ile 500	ata Ile	ggc Gl y	ccc Pro	gac Asp	ctg Leu 505	ccc Pro	gcg Ala	GJ À ddd	aaa Lys	aag Lys 510	gcc Ala	tcc Ser	1536
ggc Gl y	gcc Ala	gag Glu 515	agg Arg	gca Ala	agg Arg	gcg Ala	gag Glu 520	atc Ile	ttc Phe	cgg Arg	ggt Gl y	gcg Ala 525	ctc Leu	agg Arg	ccg Pro	1584
ctg Leu	acg Thr 530	act Thr	aca Thr	gtc Val	aac Asn	cag Gln 535	gag Glu	ctc Leu	agc Ser	gat Asp	gtg Val 540	cta Leu	aag Lys	tca Ser	aac Asn	1632
gtg Val 545	cgc Arg	ctg Leu	ttt Phe	acc Thr	atc Ile 550	ctt Leu	ccc Pro	ggc Gl y	agg Arg	gcg Ala 555	gac Asp	ddd ddd	ggc Gl y	gag Glu	acc Thr 560	1680
gat Asp	gat Asp	tcc Ser	cgc Arg	ata Ile 565	tct Ser	gct Ala	gca Ala	atc Ile	gac Asp 570	tac Tyr	ttt Phe	ctg Leu	acc Thr	ccc Pro 575	gag Glu	1728
gct Ala	gtc Val	tcg Ser	tcc Ser 580	ggc Gly	gag Glu	gtc Val	ata Ile	ttc Phe 585	tgc Cys	gta Val	gac Asp	gag Glu	aac Asn 590	agg Arg	ggc Gly	1776
tag																1779
<210 <211 <211 <211	0> SE 1> LE 2> TY 3> OF	EQ II ENGTH YPE: RGANI	NO N: 59 PRT SM:	80 92 Cena	archa	aeum	symb	piosu	ım							
<400)> SE	EQUEN	ICE :	80												
Met 1	Lys	Leu	Gln	Gly 5	Lys	Thr	Ala	Val	Ile 10	Thr	Gly	Ser	Gly	Thr 15	Gly	
Ile	Gly	Leu	Ala 20	Val	Ala	Arg	Lys	Phe 25	Ala	Glu	Asn	Gly	Ala 30	Ser	Val	
Val	Ile	Leu 35	Gly	Arg	Arg	Lys	Glu 40	Pro	Leu	Asp	Glu	Ala 45	Ala	Ala	Glu	
Leu	Lys 50	Lys	Ile	Ala	Glu	Ser 55	Ala	Gly	Cys	Gly	Ala 60	Ser	Ile	Arg	Ile	
Phe 65	Ala	Gly	Val	Asp	Val 70	Ala	Asp	Glu	Ser	Ala 75	Ile	Thr	Lys	Met	Phe 80	
Asp	Glu	Leu	Ser	Ser 85	Ser	Gly	Val	Thr	Val 90	Asp	Ile	Leu	Val	Asn 95	Asn	
Ala	Gly	Val	Ser	Gly	Pro	Val	Thr	Cys	Phe	Ala	Asn	Asn	Asp	Leu	Glu	

-continued

			100					105					110		
Glu	Phe	Arg 115	Gly	Ala	Val	Авр	Ile 120	His	Leu	Thr	Gly	Ser 125	Phe	Trp	Thr
Ser	Arg 130	Glu	Ala	Leu	Lys	Val 135	Met	Lys	Lys	Gly	Ser 140	Lys	Ile	Val	Thr
Met 145	Thr	Thr	Phe	Phe	Ala 150	Glu	Glu	Arg	Pro	Leu 155	Glu	Gln	Arg	Pro	Tyr 160
Arg	Phe	Arg	Asp	Pro 165	Tyr	Thr	Thr	Ala	Gln 170	Gly	Ala	Lys	Asn	Arg 175	Leu
Ala	Glu	Ala	Met 180	Ser	Trp	Asp	Leu	Leu 185	Asp	Arg	Gly	Ile	Thr 190	Ser	Ile
Ala	Thr	Asn 195	Pro	Gly	Pro	Val	His 200	Ser	Asp	Arg	Ile	Tyr 205	Lys	Thr	Val
Tyr	Pro 210	Arg	Ala	Ala	Leu	Glu 215	Phe	Val	Arg	Val	Ser 220	Gly	Phe	Glu	Asp
Leu 225	Gln	Pro	Glu	Glu	Val 230	Glu	Val	Ala	Gly	Gly 235	Arg	Leu	Ile	His	Leu 240
Leu	Gly	Ala	Asp	Asp 245	Asp	Ala	Arg	Lys	Lys 250	Gly	Ile	Ala	Glu	Ala 255	Ala
Glu	His	Phe	Ala 260	Lys	Leu	Lys	Pro	Val 265	Asp	Pro	Ala	Lys	Leu 270	Glu	Ala
Thr	Leu	А вр 275	Ala	Leu	Leu	Ala	Lys 280	Ile	Lys	Gly	Ile	Ala 285	Glu	Lys	Ile
Glr	Ala 290	Asn	Thr	Ala	Arg	Met 295	Ile	Pro	Asp	Gly	Glu 300	Phe	Leu	Ser	Gln
Asp 305	Gln	Val	Ala	Glu	Thr 310	Val	Leu	Ala	Leu	С у в 315	Asp	Asp	Lys	Met	Ala 320
Lys	Thr	Val	Asn	Gly 325	Arg	Val	Ile	Pro	Ala 330	Asp	Arg	Val	Phe	Ty r 335	Pro
Val	Arg	Ala	His 340	Val	Ala	Asn	Ala	Ala 345	Pro	Arg	Val	Pro	Pro 350	His	Asp
Tyr	Ser	Gly 355	Gly	Cys	Val	Leu	Phe 360	Met	Ile	Asp	Ala	Ala 365	Asp	Asp	Arg
Asp	Val 370	Glu	Arg	Ala	Thr	Ala 375	Leu	Ala	Ser	His	Val 380	Glu	Ser	His	Gly
Gly 385	Thr	Ala	Val	Сув	Ile 390	Val	Ser	Glu	Asp	Ser 395	Pro	Arg	Ala	Ala	Lys 400
Glu	Met	Ile	Ala	Ser 405	Lys	Phe	His	Ser	His 410	Ala	Ser	His	Ile	Asp 415	Lys
Val	Asp	Glu	Ile 420	Asn	Arg	Trp	Leu	Ser 425	Ala	Ala	Ser	Thr	L y s 430	Ile	Gly
Pro	Ile	Ser 435	Ala	Val	Val	His	Leu 440	Ser	Gly	Arg	Met	Pro 445	Lys	Ser	Gly
Ser	Leu 450	Met	Азр	Leu	Ser	Arg 455	Lys	Glu	Trp	Asp	Ala 460	Leu	Val	Asp	Arg
Phe 465	Ile	Gly	Thr	Pro	Ala 470	Ala	Val	Leu	His	Arg 475	Ser	Leu	Glu	His	Phe 480
Ala	Pro	Gly	Gly	Arg 485	Lys	Asp	Pro	Arg	Leu 490	Phe	Lys	Gly	Lys	Ser 495	Gly
Val	Ile	Val	Ile 500	Ile	Gly	Pro	Asp	Leu 505	Pro	Ala	Gly	Lys	L y s 510	Ala	Ser

Gly Ala Glu Arg Ala Arg Ala Glu Ile Phe Arg Gly Ala Leu Arg Pro 515 520 525 Leu Thr Thr Thr Val Asn Gln Glu Leu Ser Asp Val Leu Lys Ser Asn 530 535 540 Val Arg Leu Phe Thr Ile Leu Pro Gly Arg Ala Asp Gly Gly Glu Thr 545 550 555 560 Asp Asp Ser Arg Ile Ser Ala Ala Ile Asp Tyr Phe Leu Thr Pro Glu 565 570 575 Ala Val Ser Ser Gly Glu Val Ile Phe Cys Val Asp Glu Asn Arg Gly 580 585 590 <210> SEO ID NO 81 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 81 aagctagact tttaattggg atccggcggg gcggcgcatg 40 <210> SEQ ID NO 82 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 82 aagctaaact tttaattggg atccggcgag ccggcgcgtg 40 <210> SEQ ID NO 83 <211> LENGTH: 41 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 83 ggaaactttg attatacggg cgtgctgccc cggggcccat g 41<210> SEQ ID NO 84 <211> LENGTH: 41 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 84 ggaaactttg attatacggg cgtacattcc cggggcccat g 41 <210> SEQ ID NO 85 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16)

<400> SEQUENCE: 85	
aaggcaaggt aataatagcc tgccgtctgt aacggccgta tg	42
<pre><210> SEQ ID NO 86 <211> LENGTH: 42 <212> TYPE: DNA <2113> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)(16)</pre>	
<400> SEQUENCE: 86	
acggcaaggt aataatagcc tgccgtccgt acctgccgta tg	42
<pre><210> SEQ ID NO 87 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)(16)</pre>	
<400> SEQUENCE: 87	40
catygaacta gatattaaco gyttoogogy atoocatyoa ty	42
<210> SEQ ID NO 88 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)(16)	
<400> SEQUENCE: 88	
catggaacta gataataacc ggtcccgcgg gtacaatgca tg	42
<pre><210> SEQ ID NO 89 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)(16)</pre>	
<400> SEQUENCE: 89	
ataccgagaa gttatagcag ggtatggaat gtgcgcgcgc atg	43
<210> SEQ ID NO 90 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)(16)	
<400> SEQUENCE: 90	
agcacgacaa gttatagcag ggtacaaagg agcagcgcac atg	43
<210> SEQ ID NO 91 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Cenarcheaum symbiosum <220> FEATURE:	

		concinaca	
<221> <222>	NAME/KEY: LOCATION:	TATA_signal (11)(16)	
<400>	SEQUENCE :	91	
atccg	ccctg atta	aattat gggggggagcg gcctgctgcc gtg	43
<210>	SEQ ID NO	92	
<211>	LENGTH: 4	3	
<212>	TYPE: DNA		
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	FEATURE:		
<221>	NAME/KEY:	TATA_signal	
<222>	LOCATION:	(11)(16)	
<400>	SEQUENCE :	92	
atccg	gcctc atta	aattac gggggggtaca acctgctgcc gtg	43
<210>	SEQ ID NO	93	
<211>	LENGTH: 43	3	
<212>	TYPE: DNA		
<213>	ORGANISM:	Cenarchaeum symblosum	
<220>	FEATURE:		
<221>	NAME/REI:		
<2222	LOCATION:	(11)(10)	
<400>	SEQUENCE:	93	
ccttc	ataca cata	aatccc gcttggatgt gcggctgcgc atg	43
<210>	SEQ ID NO	94	
<211>	LENGTH: 4	3	
<212>	TYPE: DNA		
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	FEATURE:		
<221>	NAME/KEY:	TATA_signal	
<222>	LOCATION:	(11)(16)	
<400>	SEQUENCE :	94	
acttc	ataca cata	aateee geetgaaegg tegteegege atg	43
<210>	SEQ ID NO	95	
<211>	LENGTH: 4	3	
<212>	TYPE: DNA		
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	FEATURE:		
<221>	NAME/KEY:	TATA_signal	
<222>	LOCATION:	(10)(15)	
<400>	SEQUENCE :	95	
ggcat	atacc ataa	tatgcc gggcggtggc accatggccg ttg	43
<210>	SEQ ID NO	96	
<211>	LENGTH: 43	3	
<212>	TYPE: DNA		
<213> <220>	ORGANISM: FEATURE:	Cenarchaeum symbiosum	
<221>	NAME/KEY:	TATA_signal	
<222>	LOCATION:	(11)(16)	
<400>	SEQUENCE :	96	
ccgca	tatac cata	atatgc cgggcgggggg caggctgccc gtg	43
<210~	SEO TO NO	97	
<211>	LENGTH: 4	4	
<212>	TYPE: DNA		

		oomoimada	
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	FEATURE:		
<221>	NAME/KEY:	TATA_signal	
<222>	LOCATION:	$(11) \cdots (16)$	
<400>	SEOUENCE :	97	
tgtac	gaaac cata	aaacaa caggccgcgt cagggccgcg cgtg 4	4 4
<210>	SEO ID NO	98	
<211>	LENGTH: 43	3	
<212>	TYPE: DNA		
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	PEATORE: NAME/KEV•	TATA signal	
<222>	LOCATION:	(11)(16)	
<400>	SEQUENCE :	98	
aaataa	maaac cata		13
gggca	guude cucu	aaacaa cayyeeyeyy cayyyeyeye yey	15
<210>	SEQ ID NO	99	
<211>	TYPE: AI	2	
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	FEATURE:	-	
<221>	NAME/KEY:	TATA_signal	
<222>	LUCATION:	(9)(14)	
<400>	SEQUENCE:	99	
acacgo	cagta taaa	cggggg cccgggcggc gcgtatcaca tg 4	42
<210>	SEQ ID NO	100	
<211>	LENGTH: 43	3	
<212>	TYPE: DNA		
<213>	ORGANISM:	Cenarchaeum symbiosum	
<221>	NAME/KEY:	TATA signal	
<222>	LOCATION:	(11)(16)	
4.0.0	anounuan .	100	
<400>	SEQUENCE:	100	
atacad	cgtgg tata	aacaga ggccggacgg cgcggaccac atg	43
-210>	SEO TO NO	101	
<210>	LENGTH: 44	4	
<212>	TYPE: DNA	-	
<213>	ORGANISM:	Cenarchaeum symbiosum	
<220>	FEATURE:		
<2221>	LOCATION:	(11),(16)	
		(),()	
<400>	SEQUENCE :	101	
~~~~			
gegata	agtta ttta	aaacta ggatgeegat eaeggategt eeea 4	44
<210>	SEQ ID NO	102	
<211>	LENGTH: 44	1	
<213>	ORGANTSM.	Cenarchaeum symbiosum	
<220>	FEATURE:	June June Long and	
<221>	NAME/KEY:	TATA_signal	
<222>	LOCATION:	(11)(16)	
<400>	SEQUENCE .	102	
	- Lgonnon.		
gcgata	agtta ttta	aaacta ggatgccggg cacccgtcgt ccca 4	4 4
<210>	SEQ ID NO	103	

<211> LENGTH: 44	
<212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum	
<220> FEATURE:	
<221> NAME/KEY: TATA_signal	
<222> LOCATION: (11)(16)	
<400> SEQUENCE: 103	
	4.4
eegggeeeeg geraaatag egealgygeg galeelgale aalg	<b>1</b>
<210> SEQ 1D NO 104 <211> LENGTH: 45	
<212> TYPE: DNA	
<213> ORGANISM: Cenarchaeum symbiosum	
<220> FEATORE: <221> NAME/KEY: TATA signal	
<222> LOCATION: (11)(16)	
-400- SECUENCE: 104	
<400> SEQUENCE: 104	
ccgggccccg gttaaaatag agtgcggccg ggcaccggat caatg	45
<210> SEQ ID NO 105	
<211> LENGTH: 51	
<212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum	
<220> FEATURE:	
<221> NAME/KEY: TATA_signal	
<222> LOCATION: (11)(16)	
<400> SEQUENCE: 105	
gcgtcgatag aataaatacg cgcagggggg cccgtggcgc gatcgcccgt g	51
-210- CEO ID NO 106	
<2103 SEQ 1D NO 108 <211> LENGTH: 47	
<212> TYPE: DNA	
<213> ORGANISM: Cenarchaeum symbiosum	
<220> FEALORE: <221> NAME/KEY: TATA signal	
<222> LOCATION: (11)(16)	
<400> SEQUENCE: 106	
gcgtcgatag aataaatacg cgcggggccg cggtgcgatc gcccgtg	47
<210> SEQ ID NO 107	
<211> LENGTH: 60	
<213> ORGANISM: Cenarchaeum symbiosum	
<220> FEATURE:	
<221> NAME/KEY: TATA_signal	
<222> LOCATION: (11)(16)	
<400> SEQUENCE: 107	
atttcaacta cataaatgcc tagttacgca gaaatagcaa acgacgtact tcgactaatg	60
-210- STO ID NO 108	
<211> LENGTH: 60	
<212> TYPE: DNA	
<213> ORGANISM: Cenarchaeum symbiosum	
<221> NAME/KEY: TATA_signal	
<222> LOCATION: (11)(16)	
<400> SEQUENCE: 108	
×	
acttcaacta cataaatgcc tagctacgca gaaatatcaa acaaagtact tcgactaatg	60

<210> SEQ ID NO 109 <211> LENGTH: 67 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 109 acggcaggct attattacct tgccttgcgt tgtatagtat gccttatgcg gggtgcggca 60 ggggatg 67 <210> SEQ ID NO 110 <211> LENGTH: 66 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 110 acggcaggct attattacct tgccgtgtgt acagggcatg ccggatgagg gggcctgccg 60 ggagtg 66 <210> SEQ ID NO 111 <211> LENGTH: 121 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 111 ctacaacgat tttaagtcgg cgccggggca gccgcataga atgtgtatga cccgtaggat 60 cgcgcggccc gcctgctgcg cagatctgtc cgtccagcct gatgtggggc aggcaacatg 20 21 а <210> SEQ ID NO 112 <211> LENGTH: 98 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEQUENCE: 112 ctacaaagat tttaagacgg cgcgggtgcc gcggtacaag atgaatacga cttgtcggat 60 cgcgcagggg cagatggatg gcacgggggc ctatcttg 98 <210> SEQ ID NO 113 <211> LENGTH: 236 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)...(16) <400> SEOUENCE: 113 60 cgcttgcgat gaatgcatgg tattgtacca tattgtgatt cgctggcctc cagttacgca 20

cacagaatga gggtatgatc gaagggtcat atctgagatg tgaagattat gtgcattctg	80
ttcaattcca aaagtacaag cgtacttaac aaaaaaaaaa	36
<210> SEQ ID NO 114 <211> LENGTH: 235 <212> TYPE: DNA <213> ORGANISM: Cenarchaeum symbiosum <220> FEATURE: <221> NAME/KEY: TATA_signal <222> LOCATION: (11)(16)	
<400> SEQUENCE: 114	
ccggcgatgg tttatatgcc catggacaag gcgatccgat cgtacgtgac gcaagagcgg	60
cgcttgcgat gaagccatgg tattgtacca ttttgtgatt cgcaggcctc cagttacgca	20
cacagaatga ggatctgatc gaagggtcat atctgagatg tgaagattat gtgcattccg	80
ttcaattcca aaagtacagg cgtactttga aaaaaaaaat aatccaaata agaat	35
<210> SEQ ID NO 115 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 115	
gtgctccccc gccaattcct	20
<210> SEQ ID NO 116 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide <400> SEQUENCE: 116	
ctttccctca cggta	15
<210> SEQ ID NO 117 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 117	
ctattgccgt ctttacacc	19
<210> SEQ ID NO 118 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide <400> SEQUENCE: 118	
gaatccgccc ccgactatct t	21
<210> SEQ ID NO 119 <211> LENGTH: 18 <212> TYPE: DNA	

								- 1
- ~	$\sim$	n	+	п.	n	11	0	~
-0	~		÷	_		u	9	u

<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 119	
catggcttag tatcaatc	18
<210> SEQ ID NO 120	
<211> LENGTH: 23	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<221> NAME/KEY: modified_base	
<223> OTHER INFORMATION: I	
<221> NAME/KEY: modified_base	
<222> LOCATION: (12)(12)	
<223> OTHER INFORMATION: I	
<400> SEQUENCE: 120	
acntacaacg gngacgaytt tga	23
<210> SEQ ID NO 121	
<211> LENGTH: 21	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 121	
caccccgaar tagttyttyt t	21
<210> SEQ ID NO 122	
<211> LENGTH: 19	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 122	
acacttcaac tatttcctg	19
<210> SEQ ID NO 123	
<211> LENGTH: 19	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 123	
acactttgac tatttcgtg	19

What is claimed is:

**1**. A computer readable medium having stored thereon a sequence selected from the group consisting of a nucleic acid code of SEQID NOS. 1, 2, 5,9, 13,25,27,29, 31,33, 37,41,45, 57, 59, 61, 63, 65, 67,71, 75, 79, 3, 7, 11, 15, 17, 19,21,23, 35, 39, 43,47,49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOS. 6, 10, 14, 26,28, 30, 32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24,36,40,44,48, 50, 52, 54, 56, 70, 74, and 78.

**2**. A computer system comprising a processor and a data storage device wherein said data storage device has stored thereon a sequence selected from the group consisting of a nucleic acid code of SEQID NOS. 1,2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39,43,47,49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOS. 6, 10, 14,26,28,30, 32, 34, 38, 42,46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78.

**3**. The computer system of claim 2 further comprising a sequence comparer and a data storage device having reference sequences stored thereon.

**4**. The computer system of claim 3 wherein said sequence comparer comprises a computer program which indicates polymorphisms.

**5**. The computer system of claim 2 further comprising an identifier which identifies features in said sequence.

**6**. A method for comparing a first sequence to a reference sequence wherein said first sequence is selected from the group consisting of a nucleic acid code of SEQID NOS. 1,2, 5,9, 13,25,27,29, 31,33, 37,41,45, 57, 59, 61,63,65,67,71,75, 79, 3,7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47, 49, 51, 53, 55, 69, 73 and 77 and a polypeptide code of SEQ ID NOS. 6, 10, 14,26,28, 30, 32, 34, 38, 42,46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 comprising the steps of

reading said first sequence and said reference sequence through use of a computer program which compares sequences; and determining differences between said first sequence and

said reference sequence with said computer program. 7. The method of claim 6, wherein said step of determining differences between the first sequence and the reference sequence comprises identifying polymorphisms.

**8**. A method for identifying a feature in a sequence selected from the group consisting of a nucleic acid code of SEQID NOS. 1,2, 5, 9, 13, 25, 27, 29, 31, 33, 37, 41, 45, 57, 59, 61, 63, 65, 67, 71, 75, 79, 3, 7, 11, 15, 17, 19, 21, 23, 35, 39, 43, 47,49, 51, 53,55,69,73 and 77 and a polypeptide code of SEQ ID NOS. 6, 10, 14,26,28,30,32, 34, 38, 42, 46, 58, 60, 62, 64, 66, 68, 72, 76, 80, 4, 8, 12, 16, 18, 20, 22, 24, 36, 40, 44, 48, 50, 52, 54, 56, 70, 74, and 78 comprising the steps of:

reading said sequence through the use of a computer program which identifies features in sequences; and

identifying features in said sequence with said computer program.

* * * * *