In Vivo Imaging Device, Display Device, Imaging and Displaying System and Intra-Subject Indwelling System Using the Same
The present invention relates to an in vivo imaging device, a display device, and an imaging and displaying system and an intra-subject indwelling system using the same, particularly, to an in vivo imaging device, a display device, and an imaging and displaying system and an intra-subject indwelling system using the same used when inserting an inserting unit of an endoscope detachably attached with an intra-body indwelling capsule endoscope, which serves as one example of an in vivo imaging device having an imaging function, into the subject, and placing the intra-body indwelling capsule endoscope at a desired site in the subject. Recently, a swallowable capsule endoscope has been proposed in the field of endoscopes. This capsule endoscope is provided with an imaging function and a wireless communication function. The capsule endoscope moves inside the body cavity, for example, the organs such as stomach and small intestine according to the peristaltic movement thereof, and functions to image the image of the inside of the subject at an interval of 0.5 seconds and the like, and to wirelessly transmit the captured image of the inside of the subject to an external receiving device during the period of after swallowed from the mouth of the subject for observation (examination) until naturally excreted. Doctors, nurses etc. diagnose the subject by displaying the image of the inside of the subject stored in the receiving device on the display. The system for introducing the capsule endoscope into the subject may be that of introducing the capsule endoscope inside the subject, for example, gastrointestinal duct by detachably arranging the capsule endoscope to the distal end of the inserting unit of the endoscope to be inserted to the subject, and inserting the inserting unit of the endoscope into the subject along with the capsule endoscope (see e.g., Patent Document 1). An intra-intra-body indwelling capsule endoscope to which a configuration to be placed inside the subject is added is proposed with regards to such capsule endoscope. The intra-body indwelling capsule endoscope is placed at the desired site in the subject by medical clips and the like after being introduced into the subject. The intra-body indwelling capsule endoscope placed in this manner captures the image of the desired site at a predetermined interval and wirelessly transmits the captured image to the external receiving device. Patent Document 1: PCT National Publication No. 2001-526072 The endoscope inserted into the subject in the above manner generally incorporates an imaging mechanism in the vicinity of the distal end of the inserting unit, and continuously images the image of the inside of the subject by means of the imaging mechanism. The images of the inside of the subject captured in this manner are continuously displayed on the display device of the endoscope system including the relevant endoscope. Doctors, nurses etc. can easily insert the inserting unit of the endoscope into the subject by operating the inserting unit of the endoscope while visually checking the image of the inside of the subject continuously displayed on the display device. However, in the conventional system for introducing the above described capsule endoscope into the subject, the visual field of the endoscope is blocked by the intra-body indwelling capsule endoscope arranged at the distal end of the inserting unit, and thus becomes difficult to continuously display on the display device a series of images of the inside of the subject from when the intra-body indwelling capsule endoscope is introduced into the subject until the intra-body indwelling capsule endoscope is placed at the desired site in the subject, whereby introduction and placement of the intra-body indwelling capsule endoscope at the desired site in the subject become difficult. It is an object of the present invention to, in view of the above situations, provide an in vivo imaging device, a display device, and an imaging and displaying system and an intra-subject indwelling system using the same, for continuously displaying on the display device a series of images of the inside of the subject until the intra-body indwelling capsule endoscope is placed at the desired site in the subject, and easily placing the intra-body indwelling capsule endoscope at the desired site of the subject. An intra-subject indwelling system according to one aspect of the present invention includes an endoscope device that includes an inserting unit to be inserted into a subject, captures a first image of an inside of the subject from a distal end of the inserting unit, and outputs the captured first image; an intra-body indwelling capsule endoscope that is detachably arranged at the distal end of the inserting unit, detects a separation from the inserting unit, transmits a separation detection result notifying the separation to an outside of the subject, captures a second image of the inside of the subject, and transmits the captured second image to the outside of the subject; an in vitro receiving device that receives one of the separation detection result and the second image transmitted to the outside of the subject, and outputs one of the received separation detection result and the second image; a monitor that displays one of the first image and the second image; and an image switching device that receives the first image and the second image, and switches an image to be displayed on the monitor from the second image to the first image when receiving the separation detection result. In the intra-subject indwelling system according to the present invention, the image switching device may make the second image an image to be displayed on the monitor for an initial state of the case where the intra-body indwelling capsule endoscope is arranged at the distal end of the inserting unit. An imaging and displaying system according to another aspect of the present invention includes a capsule endoscope that includes a second imaging unit which captures a second image; an endoscope device that includes an inserting unit to be inserted to an inside of a subject, a retaining unit which detachably retains the capsule endoscope at the inserting unit, and a first imaging unit which captures a first image; and a display device that displays the second image captured by the capsule endoscope in a retention state where the retaining unit retains the capsule endoscope, and displays the first image captured by the endoscope device when receiving a retention release result notifying a release of the retention state. A display device according to still another aspect of the present invention includes a monitor that displays a first image captured by a first imaging device, and a second image captured by a second imaging device which has an imaging unit, separately from the first imaging device; an in vitro receiving device that receives a command signal for switching an image to be displayed on the monitor from the second image to the first image from one of the first imaging device and the second imaging device; and an image switching device that switches the image to be displayed on the monitor from the second image to the first image when receiving the command signal from the in vitro receiving device. An in vivo imaging device according to still another aspect of the present invention includes a first imaging unit that captures a first image; and a signal transmitting unit that transmits a command signal notifying to switch an image to be displayed on an external monitor from the first image to a second image captured by a second imaging unit separate from the first imaging unit. According to the present invention, a series of images of the inside of the subject from when the inserting unit of the endoscope arranged with the intra-body indwelling capsule endoscope at the distal end is inserted to the inside of the subject until the intra-body indwelling capsule endoscope is placed at a desired site in the subject are captured and continuously displayed on the display device, and thus an advantage in that the intra-body indwelling capsule endoscope can be easily introduced and placed at the desired site in the subject is obtained. The preferred embodiments of an in vivo imaging device, a display device, an imaging and displaying system and an intra-subject indwelling system using the same will now be described in detail with reference to drawings. It is to be noted that the present invention is not limited to the present embodiment. The intra-body indwelling capsule 2 has a function serving as an imaging device for imaging the image of the inside of the subject by being introduced into the subject, serving as one example of an in vivo imaging device in the Claims. Specifically, the intra-body indwelling capsule 2 is realized using a capsule endoscope main body (hereinafter referred to as capsule main body) 3 including an imaging function and a wireless communication function inside a capsule shaped housing, and a indwelling unit 4 including a device placing the capsule main body 3 at a desired site in the subject. When introduced into the subject, the capsule main body 3 images the image of the inside of the subject at a predetermined interval, for example, at an interval of 0.5 seconds, and transmits a wireless signal containing the captured image, that is, the capsule image to the monitor device 12 exterior to the subject. The indwelling unit 4 is attached to the back end side and the like of the capsule main body 3. The indwelling unit 4 includes a medical clip 15 The endoscope device 14 has a function serving as an imaging device for imaging the image of the inside of the subject and is used to introduce the intra-body indwelling capsule 2 into the subject and place the intra-body indwelling capsule 2 at the desired site in the subject. Specifically, the endoscope device 14 includes an inserting unit 5 to be inserted into the subject, an imaging mechanism 6 for imaging the image of the inside of the subject and the like from the distal end of the inserting unit 5, and an operation device 7 for operating the relevant inserting unit 5 and the imaging mechanism 6. The endoscope device 14 further includes a light source device 8 for illuminating the imaging visual field of the imaging mechanism 6, and an image processor 9 for generating the endoscope image based on the image signal from the imaging mechanism 6. The inserting unit 5 is an elongate tubular member suited for the insertion into the body cavity of the subject and also has flexibility. The inserting unit 5 has the imaging mechanism 6 incorporated in the vicinity of the distal end (side to be inserted into the subject), and the operation device 7 arranged at the basal end. Furthermore, forceps channels 5 A tubular retaining member 16 functioning as a retaining unit for retaining the intra-body indwelling capsule 2 at the distal end of the inserting unit 5 is inserted to the forceps channel 5 A clip operation device 17 for operating the clip 15 A tubular cap 5 The imaging mechanism 6 functions as the imaging part of the endoscope device 14, and images the image of the inside of the subject seen from the distal end of the inserting unit 5. Specifically, the imaging mechanism 6 is achieved using the optical system of lens or the like, and the imaging elements of CCD, CMOS or the like, and has a predetermined imaging visual field that widens towards the outside of the inserting unit 5 from the distal end of the inserting unit 5. When the imaging visual field is illuminated by the light source device 8, the imaging mechanism 6 receives the reflected light from the imaging visual field, and photoelectric transfers the received reflected light. In this manner, the imaging mechanism 6 images the image of the imaging visual field, for example, the image of the inside of the subject, and generates an image signal containing the obtained image data. The relevant image signal is input to the image processor 9 via the inserting unit 5 and the operation device 7. The operation device 7 performs a curving operation of the inserting unit 5, an imaging operation start or terminating operation by the imaging mechanism 6. Specifically, the operation device 7 is provided with various operation switches etc., and is gripped and operated by doctors etc. when operating the endoscope device 14. For example, doctors etc. can insert the inserting unit 5 into the subject, perform the bending operation of the distal end of the inserting unit 5, and image the images of the inside of the subject by gripping and operate the relevant operation device 7. The light source device 8 illuminates the imaging visual field of the imaging mechanism 6. Specifically, the light source device 8 outputs the illumination light to the imaging visual field of the imaging mechanism 6 via the operation device 7 and a light guide (not shown) arranged in the inserting unit 5 when the operation switch of the operation device 7 is turned ON, and illuminates the imaging visual field. The image processor 9 generates the image captured by the imaging mechanism 6, that is, the endoscope image. Specifically, the image processor 9 receives the image signal from the imaging mechanism 6 via the inserting unit 5 and the operation device 7, and performs a predetermined image process on the received image signal to generate the endoscope image. The image processor 9 transmits the generated endoscope image to the image switching device 10 as an endoscope image signal S1. Furthermore, the image processor 9 includes a control unit 9 The monitor device 12 receives the capsule image from the intra-body indwelling capsule 2 via a predetermined electric wave, and displays on the monitor the received capsule image in real time, serving as one example of an in vitro receiving device in the Claims. Specifically, the monitor device 12 includes an operating unit 12 The receiving unit 12 The receiving device 13 receives the separation detection result of the intra-body indwelling capsule 2 via the predetermined electric wave, and outputs the received separation detection result to the image switching device 10, serving as one example of the in vitro receiving device in the Claims. Specifically, the receiving device 13 includes a receiving antenna for receiving the wireless signal from the indwelling unit 4 via the predetermined electric wave, and performs demodulation process and the like on the wireless signal received using the receiving antenna and acquires the separation detection result based on the relevant wireless signal. The receiving device 13 transmits the acquired separation detection result to the image switching device 10 as the separation detection signal S3. The frequency band of the electric wave transmitted and received between the receiving device 13 and the indwelling unit 4 is preferably different from the frequency band of the electric wave transmitted and received between the receiving unit 12 The monitor 11 displays the above described endoscope image and the capsule image. Specifically, the monitor 11 displays the endoscope image based on the endoscope image signal S1 when receiving the endoscope image signal S1 via the image switching device 10, and displays the capsule image based on the capsule image signal S2 when receiving the capsule image signal S2 via the image switching device 10. Therefore, the monitor 11 switches the display image between the endoscope image or the capsule image as the image signal input via the image switching device 10 is switched. The image switching device 10 switches the display image of the monitor 11 between the endoscope image and the capsule image described above. Specifically, the image switching device 10 includes a reset button 10 The switching circuit 10 The control unit 10 The control unit 10 The display device for switching and displaying the endoscope image and the capsule image is achieved by combining the monitor 11, the image switching device 10, and the receiving device 13. Such display device functions to display the capsule image in a state (retention state) where the retaining member 16 retains the intra-body indwelling capsule 2 at the distal end of the inserting unit 5, and switching from the capsule image to the endoscope image and displaying the same when receiving the separation detection result indicating that the retention state has been released, or that the intra-body indwelling capsule 2 has separated from the distal end of the inserting unit 5. The configuration of the intra-body indwelling capsule 2 will now be described in detail. As shown in The capsule main body 3 includes an imaging mechanism 3 The imaging mechanism 3 The image processing section 3 The transmitting unit 3 The control unit 3 The indwelling unit 4 incorporates a pressure sensor 4 The pressure sensor 4 The control unit 4 The transmitting unit 4 The intra-subject indwelling system 1 having the above configuration includes the intra-body indwelling capsule 2, the endoscope device 14, and the display device formed by combining the monitor 11, the image switching device 10 and the receiving device 13, and thus has a function serving as an imaging and displaying system of imaging the image of the inside of the subject by the intra-body indwelling capsule 2 or the endoscope device 14, and switching and displaying the captured image of the inside of the subject, that is, the capsule image and the endoscope image on the monitor 11 of the display device. The intra-subject indwelling system 1 has a function serving as the imaging and displaying system even if the capsule endoscope not equipped with the device for placement in the subject is arranged in place of the intra-body indwelling capsule 2. The operation of the image switching device 10 of switching the display image of the monitor 11 when the intra-body indwelling capsule 2 is separated from the distal end of the inserting unit 5 will now be described. As shown in The image switching device 10 then monitors the presence of the information input by the input operation of the reset button 10 Subsequently, the image switching device 10 monitors the presence of the separation detection result acquired from the intra-body indwelling capsule 2 via the receiving device 13, for example, the separation detection result notifying that the intra-body indwelling capsule 2 has separated from the endoscope device 14 (specifically, inserting unit 5) (step S204), and the processing procedures of step S204 are repeated if the relevant separation detection result is not received (step S204, No). The image switching device 10 repeats the processing procedures of step S202 if the reset instruction is not detected in step S202 (step S202, No). The intra-body indwelling capsule 2 is detachably arranged at the distal end of the inserting unit 5 of the endoscope device 14, as described above. The indwelling unit 4 of the intra-body indwelling capsule 2 monitors whether or not the intra-body indwelling capsule 2 has separated from the inserting unit 5 (step S101). When detecting the separation of the intra-body indwelling capsule 2 from the relevant inserting unit 5 (step S101, YES), the indwelling unit 4 transmits the wireless signal containing the separation detection result to the receiving device 13 (step S102). Specifically, the control unit 4 When receiving the separation detection result from the indwelling unit 4 via the receiving device 13, as described above (step 104, Yes), the image switching device 10 switches the display image of the monitor 11 to the endoscope image (step S205). Specifically, the control unit 10 In this case, the monitor 11 displays the endoscope image by the endoscope device 14 after separation of the intra-body indwelling capsule 2 in continuation to the capsule image by the intra-body indwelling capsule 2 arranged at the distal end of the inserting unit 5. Thus, doctors, nurses, etc. are able to check the insertion path in the subject by visually checking the capsule image displayed on the monitor 11 while the inserting unit 5 with the intra-body indwelling capsule 2 arranged at the distal end inserted in the subject, and check the inside of the subject and the separated intra-body indwelling capsule 2 by visually checking the endoscope image displayed on the monitor 11 in place of the relevant capsule image after the intra-body indwelling capsule 2 is separated from the inserting unit 5. The operation of the image switching device 10 of switching the display image of the monitor 11 will now be described by illustrating the case of introduction and placement of the intra-body indwelling capsule 2 to a desired site, for example, the stomach in the subject. As shown in The intra-body indwelling capsule 2 reaches the stomach of the subject 100 with the inserting unit 5 by the insertion operation of doctors, nurses, etc., as shown in The intra-body indwelling capsule 2 that has reached the stomach of the subject 100 has the retaining member 16 taken out from the indwelling unit 4 by the take-out operation of the retaining member 16 by doctors, nurses, etc. In this case, the intra-body indwelling capsule 2 separates from the distal end of the inserting unit 5, as shown in The separated intra-body indwelling capsule 2 is visually checked in the endoscope image displayed on the monitor 11, and the intra-body indwelling capsule 2 is easily placed in the stomach of the subject 100 by operating the clip operation device 17 while visually checking the relevant endoscope image. The intra-body indwelling capsule 2 wirelessly transmits the capsule image captured at a predetermined interval to the monitor device 12 even after being separated from the inserting unit 5. The image switching device 10 switches the display image of the monitor 11 to the capsule image or the endoscope image each time the switching instruction is input by the switch button 10 The clip operation device 17 may be operated with such intra-body indwelling capsule 2 arranged at the distal end of the inserting unit 5, and the clip 15 The intra-body indwelling capsule 2 placed at the desired site (e.g., stomach) of the subject 100 sequentially captures the image of the desired image at a predetermined interval, and sequentially transmits the wireless signal containing the captured image of the desired site, that is, the capsule image to the outside. As shown in The intra-body indwelling capsule 2 inside the subject 100 images the image of the desired site, for example, the operative scar P at a predetermined interval, and transmits the wireless signal containing the captured image of the operative scar P (i.e., capsule image) to the outside. The receiving device 50 receives the wireless signal from the intra-body indwelling capsule (specifically, capsule main body 3) via the receiving antenna 50 In the first embodiment of the present invention, the take-out of the retaining member 16 has been detected based on the change in pressure that occurs at the inner wall of the opening B when taking out the retaining member 16 from the indwelling unit 4, but the present invention is not limited thereto, and a magnet may be arranged at the distal end of the retaining member 16, and the take-out of the retaining member 16 may be detected based on the change in strength of the magnetism that occurs when taking out the relevant retaining member 16. Specifically, the indwelling unit 4 includes a magnetic sensor 4 In the first embodiment of the present invention, the separation of the intra-body indwelling capsule 2 has been detected by detecting the take-out of the retaining member 16 from the indwelling unit 4, but the present invention is not limited thereto, and the separation of the intra-body indwelling capsule 2 may be detected by detecting that the indwelling unit 4 has separated from the distal end of the inserting unit 5 by greater than or equal to a predetermined distance. Specifically, as shown in Furthermore, the endoscope device 14 formed with two forceps channels is used in the first embodiment of the invention, but the present invention is not limited thereto, and an endoscope formed with one or more forceps channel may be applied. In the first embodiment of the present invention, the capsule image is transmitted and received between the capsule main body 3 and the monitor device 12, and the separation detection result of the intra-body indwelling capsule 2 is transmitted and received between the indwelling unit 4 and the receiving device 13, but the present invention is not limited thereto, and the capsule image and the separation detection result may be transmitted to the monitor device 12. In this case, the receiving unit 12 The function (separation detecting and transmitting function) of detecting the retention state release or the separation of the intra-body indwelling capsule 2 and wirelessly transmitting the separation detection result is arranged on the intra-body indwelling capsule 2 side (specifically, indwelling unit 4) in the first embodiment of the present invention, but the present invention is not limited thereto, and such separation detecting and transmitting function may be incorporated on the endoscope device 14 side, that is, in the vicinity of the distal end of the inserting unit 5. In this case, the endoscope device 14 having the separation detecting and transmitting function includes the imaging mechanism 6 for imaging the endoscope image, and a signal transmitting unit of the relevant separation detecting and transmitting function, and thus has a function serving as one example of the in vivo imaging device in the Claims. The monitor device 12 or the receiving device 13 receives the wireless signal of the separation detection result from the inserting unit 5 having such separation detecting and transmitting function. In the first embodiment of the present invention, the image (endoscope image) captured by the endoscope or the image (capsule image) captured by the intra-body indwelling capsule is displayed on the display device, where the capsule image is displayed on the display device when the intra-body indwelling capsule is arranged at the distal end of the inserting unit of the endoscope, and the display image of the display device is switched from the capsule image to the endoscope image when the separation of the intra-body indwelling capsule from the inserting unit is detected, as described above. Therefore, an intra-subject indwelling system which has the function serving as the imaging and displaying system of switching between the captured capsule image and the endoscope image and displaying the same on the display device, and furthermore, continuously displays on the display device a series of images of the inside of the subject from when the inserting unit of the endoscope arranged with the intra-body indwelling capsule at the distal end is inserted into the subject until the intra-body indwelling capsule is placed at the desired site of the subject, easily introduces the intra-body indwelling capsule at the desired site in the subject, and places the same is realized. In continuation to the series of images of the inside of the relevant subject, the take-out path in the subject until the inserting unit of after the intra-body indwelling capsule is separated is taken out from the subject is continuously displayed on the display device, and thus the inserting unit can be easily taken out from the subject. Furthermore, since the detection unit for detecting the separation of the intra-body indwelling capsule from the inserting unit of the endoscope, and a wireless transmitting unit for transmitting the wireless signal containing the separation detection result are incorporated in the indwelling unit of the intra-body indwelling capsule, a multi-purpose capsule endoscope can be used as a capsule main body to be attached to the indwelling unit, whereby the time and effort necessary for realizing the intra-body indwelling capsule are reduced. According to the present invention, the endoscope image captured by the endoscope and the capsule image captured by the intra-body indwelling capsule are switched and displayed on the display device of the endoscope system for observing (examining) the inside of the subject by inserting the inserting unit of the endoscope into the subject. Therefore, doctors, nurses, etc. are able to insert the inserting unit arranged with the intra-body indwelling capsule at the distal end to the desired site inside the subject while visually checking the display image of the display device, and place the relevant intra-body indwelling capsule at the desired site in the subject, similar to the method of working the usual endoscope examination. Furthermore, after placing the intra-body indwelling capsule at the desired site in the subject, doctors, nurses, etc. are able to take out the inserting unit from the subject while visually checking the display image of the display device, similar to the method of working the usual endoscope examination. A second embodiment of the present invention will now be described. The separation detecting function of detecting the separation of the intra-body indwelling capsule 2 from the inserting unit 5 and the wireless transmitting function of transmitting the wireless signal containing the separation detection result of the intra-body indwelling capsule 2 have been incorporated in the indwelling unit 4 in the first embodiment, but the relevant separation detecting function and the wireless transmitting function are incorporated in the capsule main body of the intra-body indwelling capsule in the second embodiment. The intra-body indwelling capsule 22 is realized by attaching the indwelling unit 24 to the capsule main body 23. The capsule main body 23 has the function similar to the capsule main body 3 in the first embodiment described above, and further has a detecting function for detecting that the intra-body indwelling capsule 22 is separated from the inserting unit 5 or that the retention state is released, and the wireless transmitting function of transmitting the wireless signal containing the separation detection result notifying that the intra-body indwelling capsule 22 has separated to the outside of the subject. On the other hand, the indwelling unit 24 includes the clip 15 The monitor device 32 functions as one example of the in vitro device in the Claims, and has a function similar to the monitor device 12 of the first embodiment described above, and further has a function of receiving the separation detection result from the capsule main body 23 via a predetermined electric wave and outputting the received separation detection result to the control unit 10 The control unit 32 The display device for switching between the endoscope image and the capsule image and displaying the same is realized by combining the monitor device 32, the monitor 11, and the image switching device 10. Such display device functions to display the capsule image when the retaining member 16 is retaining the intra-body indwelling capsule 22 at the distal end of the inserting unit 5 (retention state), and switches from the capsule image to the endoscope image and displays the same when receiving the separation detection result notifying that the retention state is released or is separated from the distal end of the inserting unit 5. The configuration of the intra-body indwelling capsule 22 will now be described in detail. The indwelling unit 24 is formed with a concave part that engages the back end of the housing the capsule main body 23 and is attached to the back end of the capsule main body 23, similar to the indwelling unit 4 of the first embodiment described above. An opening B to be detachably fitted with the retaining member 16 is formed at the back end of the indwelling unit 24. The intra-body indwelling capsule 22 is retained by the retaining member 16 fitted to the opening B, and is detachably arranged at the distal end of the inserting unit 5. The capsule main body 23 includes a control unit 23 The control unit 23 The separation of the intra-body indwelling capsule 22 is detected by detecting the take-out of the retaining member 16 from the indwelling unit 24 in the second embodiment of the present embodiment, but the present invention is not limited thereto, and the separation of the intra-body indwelling capsule 22 may be detected by detecting that the capsule main body 23 has separated from the distal end of the inserting unit 5 by greater than or equal to a predetermined distance. Specifically, as shown in The take-out of the retaining member 16 is detected based on the decreasing change in the magnetic field strength that occurs when the retaining member 16 is taken out from the opening B of the indwelling unit 24 in the second embodiment of the present embodiment, but the present invention is not limited thereto, and the take-out of the retaining member 16 may be detected based on the change in pressure that occurs when taking out the retaining member 16 from the indwelling unit 24. In this case, the opening B of the indwelling unit 24 is made into a pass through hole, and the retaining member 16 is pushed into the pass through hole so that the distal end of the retaining member 16 is pressed against the back end of the capsule main body 23 engaged to the indwelling unit 24. A pressure sensor is incorporated in the capsule main body 23 in place of the magnetic sensor 23 The endoscope device 14 formed with two forceps channels is used in the second embodiment of the present invention, but the present invention is not limited thereto, and an endoscope formed with one or more forceps channel may be applied. The separation detecting and transmitting function of detecting the retention state release or the separation of the intra-body indwelling capsule 22 and wirelessly transmitting the separation detection result has been arranged on the intra-body indwelling capsule 22 side (specifically, in the capsule main body 23) in the second embodiment of the present invention, but the present invention is not limited thereto, and the separation detecting and transmitting function may be incorporated on the endoscope device 14 side, that is, in the vicinity of the distal end of the inserting unit 5. In this case, the endoscope device 14 having the relevant separation detecting and transmitting function includes the imaging mechanism 6 for imaging the endoscope image and the signal transmitting unit of the separation detecting and transmitting function, and thus has a function serving as one example of the in vivo imaging device in the Claims. The monitor device 32 receives the wireless signal of the separation detection result from the inserting unit 5 having the separation detecting and transmitting function. As described above, in the second embodiment of the present invention, the endoscope image or the capsule image is displayed on the display device, where the capsule image is displayed on the display device when the intra-body indwelling capsule is arranged at the distal end of the inserting unit of the endoscope, and the display image of the display device is switched from the capsule image to the endoscope image when the separation of the intra-body indwelling capsule from the inserting unit is detected, similar to the first embodiment described above. The separation detecting function of the intra-body indwelling capsule is incorporated in the capsule main body, and the capsule image or the separation detection result is wirelessly transmitted using the wireless transmitting function of the capsule main body. Therefore, the separation detection result is received by the image receiving device (e.g., monitor device 32) for receiving the capsule image from the capsule main body without arranging a dedicated receiving device for receiving the wireless signal containing the separation detection result, thereby benefiting the effect of the first embodiment described above, and realizing the intra-subject indwelling system that promotes miniaturization of the system scale. The in vivo imaging device, the display device, the imaging and displaying system using the same, and the intra-subject indwelling system are effective in imaging and observing a desired site (e.g., affected area, operative scar etc.) inside the subject such as a patient, and in particular, is suited for a, medical system for introducing and placing the intra-body indwelling capsule at the desired site of the subject. An object of the present invention is to continuously display a series of images of the inside of the subject until the intra-body indwelling capsule is placed at the desired site in the subject, and to easily place the intra-body indwelling capsule endoscope at the desired site. The intra-subject indwelling system 1 according to the present invention includes an endoscope device 14 for imaging a first image of the inside of the subject; an intra-body indwelling capsule 2, for imaging a second image of the inside of the subject; a monitor device 12 for receiving the second image; a receiving device 13, a monitor 11 for displaying the first image or the second image; and an image switching device 10. The intra-body indwelling capsule 2 is arranged at the distal end of the inserting unit 5, and the separation from the inserting unit 5 is detected and the separation detection result is transmitted. The receiving device 13 receives the separation detection result. The image switching device 10 receives the first image from the endoscope device 14 and the second image from the monitor device 12, and switches the display image of the monitor 11 from the second image to the first image when receiving the separation detection result from the receiving device 13. 1. An intra-subject indwelling system comprising:
an endoscope device that includes an inserting unit to be inserted into a subject, captures a first image of an inside of the subject from a distal end of the inserting unit, and outputs the captured first image; an intra-body indwelling capsule endoscope that is detachably arranged at the distal end of the inserting unit, detects a separation from the inserting unit, transmits a separation detection result notifying the separation to an outside of the subject, captures a second image of the inside of the subject, and transmits the captured second image to the outside of the subject; an in vitro receiving device that receives one of the separation detection result and the second image transmitted to the outside of the subject, and outputs one of the received separation detection result and the second image; a monitor that displays one of the first image and the second image; and an image switching device that receives the first image and the second image, and switches an image to be displayed on the monitor from the second image to the first image when receiving the separation detection result. 2. The intra-subject indwelling system according to 3. An imaging and displaying system comprising:
a capsule endoscope that includes a second imaging unit which captures a second image; an endoscope device that includes an inserting unit to be inserted to an inside of a subject, a retaining unit which detachably retains the capsule endoscope at the inserting unit, and a first imaging unit which captures a first image; and a display device that displays the second image captured by the capsule endoscope in a retention state where the retaining unit retains the capsule endoscope, and displays the first image captured by the endoscope device when receiving a retention release result notifying a release of the retention state. 4. A display device comprising:
a monitor that displays a first image captured by a first imaging device, and a second image captured by a second imaging device which has an imaging unit, separately from the first imaging device; an in vitro receiving device that receives a command signal for switching an image to be displayed on the monitor from the second image to the first image from one of the first imaging device and the second imaging device; and an image switching device that switches the image to be displayed on the monitor from the second image to the first image when receiving the command signal from the in vitro receiving device. 5. An in vivo imaging device comprising:
a first imaging unit that captures a first image; and a signal transmitting unit that transmits a command signal notifying to switch an image to be displayed on an external monitor from the first image to a second image captured by a second imaging unit separate from the first imaging unit. 6. A method comprising:
capturing a first image of an inside of a subject to output the captured first image from the endoscope device by an endoscope device, the endoscope device including an inserting unit to be inserted into the subject, the first image being captured from a distal end of the inserting unit; detecting a separation from the inserting unit by an intra-body indwelling capsule endoscope, the intra-body indwelling capsule endoscope being detachably arranged at the distal end of the inserting unit; transmitting a separation detection result notifying the separation to an outside of the subject by the intra-body indwelling capsule endoscope; capturing a second image of the inside of the subject to transmit the captured second image to the outside of the subject by the intra-body indwelling capsule endoscope; receiving one of the separation detection result and the second image transmitted to the outside of the subject to output one of the received separation detection result and the second image by an in vitro receiving device; displaying one of the first image and the second image on a monitor; receiving the first image and the second image by an image switching device; and switching an image to be displayed on the monitor from the second image to the first image when receiving the separation detection result, by the image switching device. 7. The method according to 8. An imaging and displaying method, comprising:
displaying a second image captured by a capsule endoscope on a display device in a state where a retaining unit of an endoscope device detachably retains the capsule endoscope at an inserting unit of the endoscope device, the inserting unit being inserted to an inside of a subject; and displaying a first image captured by the endoscope device on the display device, when the retaining unit releases the capsule endoscope. 9. A display method comprising:
displaying on a monitor a first image captured by a first imaging device, and a second image captured by a second imaging device, the second imaging device having an imaging unit separate from the first imaging device; receiving a command signal for switching an image to be displayed on the monitor from the second image to the first image, by an in vitro receiving device from one of the first imaging device and the second imaging device; and switching the image to be displayed on the monitor from the second image to the first image when receiving the command signal from the in vitro receiving device, by an image switching device. 10. An in vitro imaging method comprising:
transmitting a command signal notifying to switch an image to be displayed on an external monitor from a first image captured by a first imaging unit to a second image captured by a second imaging unit separate from the first imaging unit.TECHNICAL FIELD
BACKGROUND ART
DISCLOSURE OF INVENTION
PROBLEM TO BE SOLVED BY THE INVENTION
MEANS FOR SOLVING PROBLEM
EFFECT OF THE INVENTION
BRIEF DESCRIPTION OF DRAWINGS
EXPLANATIONS OF LETTERS OR NUMERALS
BEST MODE(S) FOR CARRYING OUT THE INVENTION
First Embodiment
Second Embodiment
INDUSTRIAL APPLICABILITY












