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(57) ABSTRACT 

In a method for producing at least one surface on a workpiece 
by a material removal tool and a corresponding material 
removal device, the Surface is produced quickly and at low 
cost. Based on any surface to be produced, a movement path 
of the material removal tool is controlled to produce a ruled 
Surface approximating to the Surface, the movement path 
being provided in the form of a curve on a dual unit sphere, 
wherein a curve point corresponds to a location and an ori 
entation of the removal tool. The curve can be produced based 
on ruling lines, which are converted into points, interpolated 
by a dual sphere spline interpolation algorithm, on the dual 
unit sphere by mathematical transformations. The curve can 
then be transformed back or can be used directly to follow the 
material removal tool. Likewise, directrix curves can be 
determined by the dual sphere spline interpolation algorithm. 
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KNEMATIC APPROXMLATION 
ALGORTHMI HAVING ARULED SURFACE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a U.S. National Stage Applica 
tion of International Application No. PCT/EP2010/055120 
filed Apr. 19, 2010, which designates the United States of 
America, and claims priority to German Application No. 10 
2009 019443.6 filed Apr. 29, 2009. The contents of which are 
hereby incorporated by reference in their entirety. 

TECHNICAL FIELD 

0002 The present invention relates to a method for pro 
ducing at least one Surface on a workpiece by means of a 
material-removing tool and a corresponding material removal 
device. 

BACKGROUND 

0003 Workpieces can be, for example, components of 
technical machines, in particular turbomachines Such as pro 
pellers, impellers of centrifugal compressors, rotors of 
pumps, gas turbines or turbochargers. Workpieces can be 
general parts to be machined. 
0004 Conventionally, the geometry design process and 
the manufacturing process are separate. During the design 
phase, engineers construct a ruled Surface and deliver the 
surface to the manufacturing facility. A ruled surface can be 
optimized approximated to a free-form surface or optimized 
according to design requirements. In the manufacturing 
phase, particular methods for producing the ruled surface are 
applied. For example, five-axis flank milling involves the 
following steps: firstly, the milling tool contact paths are 
generated from the input Surface data. Then, the milling tool 
positioning data is obtained from the milling tool contact 
data. Based on the milling tool positioning data, movement 
sequences for material-removing tools are planned. Finally, 
certain finishing operations are applied to obtain a numerical 
control code. 
0005. The prior art suffers from the following disadvan 
tages: there is no global guarantee of continuity, several opti 
mization loops are required, a loop calculation is costly, the 
time requirement is considerable, tool positioning data can 
contain local errors and adequate tool positioning data is 
required. 

SUMMARY 

0006. According to various embodiments, a method for 
creating an arbitrary Surface on a workpiece can be created 
Such that the Surface is generated rapidly and economically. 
Any errors between an arbitrary surface to be created and a 
generated ruled Surface must be small. 
0007 According to an embodiment, in a method for pro 
ducing a Surface on a workpiece by means of a material 
removal too, based on an arbitrary Surface to be created, a 
movement path of the material removal tool is controlled to 
create a ruled Surface approximating to said arbitrary Surface, 
wherein the movement path is provided in the form of a curve 
on a dual unit sphere, wherein a point on the curve corre 
sponds to a location and an orientation of the material 
removal tool. 
0008 According to a further embodiment, the curve on the 
dual unit sphere can be defined as a continuous, Smooth dual 
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sphere spline curve. According to a further embodiment, the 
method may comprise providing a sequence of discrete 
rulings approximating to an arbitrary Surface to be created:— 
transforming coordinates of each discrete ruling in three 
dimensional Euclidean space into coordinates of a discrete 
point on the dual unit sphere by means of a Klein mapping 
algorithm and thereafter, by means of a Study mapping algo 
rithm—interpolating the discrete points by generating a dual 
sphere spline curve having the discrete points using a dual 
sphere spline interpolation algorithm. According to a further 
embodiment, a ruling corresponds to the equation X(u,v)= 
(1-v)p(uo)+vd(uo); the dual sphere spline interpolation algo 
rithm comprises the following equations: S(u) 2, "f(u)p, 
as the equation of the dual sphere spline curve, whereinf, are 
basis functions and p, are control points on the dual unit 
sphere in ID, and 

f(u)20, Wi, wherein weighted averages on the dual unit 
sphere correspond to the following equation: d 2, o'cop, 

Xoi = 1, 0, 20, 
i 

where co,20, wherein in order to generate the dual sphere 
spline curve, minimization can be carried out according to the 
following formula: 

r 1 

f(a) = Xo, dist (a. pp. 

0009. According to a further embodiment, calculation of 
the sequence of discrete rulings approximating to the arbi 
trary Surface can be made by means of mathematical least 
squares minimization of distances from the arbitrary Surface. 
According to a further embodiment, the curve can be trans 
formed, by means of an inverse Study mapping algorithm and 
thereafter by means of an inverse Klein mapping algorithm, 
into the ruled Surface in three-dimensional Euclidean space. 
According to a further embodiment, the control points can be 
used as parameters for the approximation of the ruled Surface 
to the arbitrary surface to be created. According to a further 
embodiment, the individual parameter u can be a feed rate or 
a time in relation to a displacement of the material removal 
tool. According to a further embodiment, based on the arbi 
trary Surface to be created and the discrete rulings, in addition 
to each of the discrete rulings, a first and a second discrete 
reference straight line are determined, wherein a first discrete 
reference straight line extends through an intersection point 
of the discrete rulings with a first directrix curve to be deter 
mined and a second reference Straight line extends through an 
intersection point of the rulings with a second directrix curve 
to be determined, and the orientations of said reference 
straight lines each correspond to the Surface normals to the 
Surface to be created at the intersection points, wherein a 
separation of the two intersection points of each discrete 
ruling corresponds to the length of the material removal tool; 
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transforming the coordinates of each discrete reference 
straight line in three-dimensional Euclidean space into coor 
dinates of a discrete point on the dual unit sphere by means of 
a Klein mapping algorithm and thereafter by means of a Study 
mapping algorithm, wherein a first discrete point sequence is 
generated for the first reference straight line sequence and for 
the second reference straight line sequence a second discrete 
point sequence is generated; interpolating the two discrete 
point sequences by generating two further dual sphere spline 
curves having the respective discrete point sequences by 
applying a dual sphere spline interpolation algorithm; con 
Verting all three dual sphere spline curves by means of an 
inverse Study mapping algorithm and then an inverse Klein 
mapping algorithm into three ruled Surfaces in three-dimen 
sional Euclidean space, wherein the two intersection lines of 
the two ruled surfaces of the first and second reference 
straight lines each define with the ruled surface of the rulings 
the first and second Smooth and continuous directrix curve of 
the ruled surface of the rulings, and wherein the two directrix 
curves are mathematically described by p(u) and q(u) in the 
equation X(u,v)=(1-v)p(u)+va(u). 
0010. According to a further embodiment, the method 
may comprise checking whether the movement pathis within 
a working space of the material removal tool, making use of 
the kinematic properties of a required movement and making 
use of a robotic analysis. According to a further embodiment, 
the method can be used for a form design and/or for optimi 
zation of the form of the workpiece. According to a further 
embodiment, the material removal tool can be a component of 
a CNC (Computer Numerical Control) milling machine, and 
a wire-cut electric discharge machining apparatus or a laser 
cutting machine. According to a further embodiment, the 
workpiece can be a component of a turbomachine, for 
example, a propeller or a rotor. 
0011. According to another embodiment, in a device for 
carrying out a method as described above, a control device 
controls a material removal tool according to a method 
described above, wherein a computer device calculates a 
movement path of the material removal tool. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0012. The present invention will now be described in 
greater detail on the basis of exemplary embodiments illus 
trated by the drawings, in which: 
0013 FIG. 1 is an exemplary embodiment of a ruled sur 
face; 
0014 FIG. 2 is an exemplary embodiment of a product 
with ruled surfaces; 
0015 FIG. 3 is an exemplary embodiment of a method; 
0016 FIGS. 4a to 4d are a further exemplary embodiment 
of a method. 

DETAILED DESCRIPTION 

0017. A “ruled surface' is a surface that can be generated 
by moving a straight line in three-dimensional Euclidean 
space. In this way, a ruled Surface can be easily created by 
material removal along a moved straight line. A straight line 
of a ruled surface can be designated a “ruling. The material 
removal can be carried out, for example, by flank milling with 
a CNC (Computer Numerical Control) machine, wire-cut 
electric discharge machining or by laser machining. 
0018. According to a first aspect, a surface is created on a 
workpiece by means of a material removal tool wherein, 
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based on an arbitrary Surface to be created, a movement path 
of the material removal tool is controlled to create a ruled 
Surface approximating to said arbitrary Surface, wherein the 
movement path is provided in the form of a curve on a dual 
unit sphere, wherein a point on the curve corresponds to a 
location and an orientation of the material removal tool. A 
Smoothed single-parameter path representation can be pre 
pared relating to a displacement of the tool. This is an exact 
representation of the operation of a material removal device 
system. An analytical representation of the movement path of 
the material removal tool can be prepared, so that global error 
control is enabled for the production process. The theories of 
ruled surfaces are combined with screw theory and dual num 
beralgebra. Using the algorithm, any given Surface or discrete 
straight line sequence, that is, milling tool positioning data, 
can be approximated by a ruled surface. The arbitrary surface 
to be created can be provided as a free-form surface or as 
discrete material removal tool positioning data. The arbitrary 
Surface to be created can be, for example, aerodynamically 
optimized. 
0019. The advantages of a method according to various 
embodiments are: a Smooth single parameter path represen 
tation with a curve on a dual unit sphere, in particular a dual 
sphere spline curve; a compact data structure for 5-axis mill 
ing with regard to position and orientation; continuity and 
convexity; simple judgment as to whether the tool lies within 
the working space or not; real time operation; global error 
checking and small kinematic errors: small quantity of cut 
ting position data (CL data; cutter location data); Suitable for 
various manufacturing processes. 
0020. According to a second aspect, a material removal 
device for carrying out a method according to various 
embodiments has a computer apparatus, a control device and 
the material removal tool. The material removal tool is con 
trolled by means of the control device, specifically on the 
basis of the movement path calculated by the computer appa 
ratuS. 

0021. According to an embodiment, the curve can be 
defined on the dual unit sphere as a continuous, Smooth spline 
curve. The spline curve can be designated a dual sphere spline 
curve. The curve can be defined on the dual unit sphere as a 
dual sphere spline. The continuity property of the spline 
avoids the need for a connection calculation in the conven 
tional movement path representation. The calculation algo 
rithm of the spline is fast enough for real time applications. A 
new type of spline is defined and designated a "dual sphere 
spline'. A ruled surface is represented as a dual sphere spline 
on the dual unit sphere. This spline has advantageous prop 
erties with regard to continuity and convexity. A point on this 
spline corresponds to a position and an orientation of a 
straight line in Euclidean space. The calculation of this spline 
is very rapid, so that a real-time requirement is fulfilled. This 
spline lessens the number of parameters to a third compared 
with conventional parameterization methods for ruled Sur 
faces, such as, for example, the tensor-product B-spline Sur 
face. 

0022. According to a further embodiment, the following 
steps can be carried out to prepare the curve: 

0023 providing a sequence of discrete rulings approxi 
mating to an arbitrary Surface to be created; 

0024 transforming coordinates of each discrete ruling 
in three-dimensional Euclidean space into coordinates 
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of a discrete point on the dual unit sphere by means of a 
Klein mapping algorithm and thereafter by means of a 
Study mapping algorithm; 

0025 interpolating the discrete points by generating the 
spline curve having the discrete points using a dual 
sphere spline interpolation algorithm. 

0026. Based on the new type of spline, a series of algo 
rithms for interpolating and calculating a dual sphere spline 
on the dual unit sphere is developed. Consequently, a kine 
matic ruled Surface approximation algorithm is developed. 
0027. According to a further embodiment, 
0028 a ruling can correspond to the equation 

x(uov)=(1-v)p(uo)+vg(uo); 

0029 the dual sphere spline interpolation algorithm can 
comprise the following equations: 
S(u)=2, f(t)f, 

as the equation of the spline curve, wherein f, can be basis 
functions and p, can be control points on the dual unit sphere 
in ID, with 

wherein 

weighted averages on the dual unit sphere can represent the 
following equation: 

d = So?op; where Xo, = 1, co; 2 0. (17) 

wherein 

in order to generate the spline curve, minimization can be 
carried out according to the following formula: 

r 1 18 
f(t) = iXo dist (3. p;). (18) 

0030. According to a further embodiment, calculation of 
the sequence of discrete rulings approximating to the arbi 
trary Surface can be made by means of mathematical least 
squares minimization of distances from the arbitrary Surface. 
0031. According to a further embodiment, the curve can 
be transformed, by means of an inverse Study mapping algo 
rithm and thereafter by means of an inverse Klein mapping 
algorithm, into the ruled surface in three-dimensional Euclid 
ean space. This transformation is not required if a material 
machining device is able to convert the data of the curve 
directly into a movement path of the material removal tool. 
0032. According to a further embodiment, the control 
points can be used as parameters for the approximation of the 
ruled surface to the arbitrary surface to be created. A dual 
sphere spline can be defined by means of a plurality of control 
points. The spline can be determined by a plurality of control 
points. The control points can be used as parameters for an 
optimization. 
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0033 According to a further embodiment, the individual 
parameter u can be a feed rate or a time in relation to a 
displacement of the material removal tool. 
0034. According to a further embodiment, the following 
steps can also be performed for determining directrix curves 
of the ruled surface defined on the basis of the rulings: 

0035 based on the arbitrary surface to be created and 
the discrete rulings, in addition to each of the discrete 
rulings, a first and a second discrete reference straight 
line are determined, wherein a first discrete reference 
straight line extends through an intersection of the dis 
crete rulings with a first directrix curve to be determined 
and a second reference straight line extends through an 
intersection of the rulings with a second directrix curve 
to be determined, and the orientations of said reference 
straight lines each correspond to the Surface normals to 
the surface to be created at the intersections, wherein a 
distance of the two intersection points of each discrete 
ruling corresponds to the length of the material removal 
tool; 

0.036 transforming the coordinates of each discrete ref 
erence straight line in three-dimensional Euclidean 
space into coordinates of a discrete point on the dual unit 
sphere by means of a Klein mapping algorithm and 
thereafter, a Study mapping algorithm, wherein a first 
discrete point sequence is generated for the first refer 
ence Straight line sequence and, for the second reference 
straight line sequence, a second discrete point sequence 
is generated; 

0037 interpolating the two discrete point sequences by 
generating two further dual sphere spline curves having 
the respective discrete point sequences by applying a 
dual sphere spline interpolation algorithm; 

0.038 converting all three spline curves by means of an 
inverse Study mapping algorithm and then an inverse 
Klein mapping algorithm into three ruled surfaces in 
three-dimensional Euclidean space, wherein the two 
intersection lines of the two ruled surfaces of the first and 
second referencestraight lines each define with the ruled 
Surface of the rulings the first and second Smooth and 
continuous directrix curve of the ruled surface of the 
rulings, and wherein the two directrix curves are math 
ematically described by p(u) and q(u) in the equation 

0039. According to a further embodiment, checking can 
be carried out of whether the movement path is within a 
working space of the material removal tool, making use of the 
kinematic properties of a required movement and making use 
of a robotic analysis. 
0040. According to a further embodiment, the method can 
be used for a form design and form optimization. Based on the 
reduction of the number of parameters compared with the 
prior art, the algorithm is preferably suitable for a use of this 
type. 
0041 According to a further embodiment, the material 
removal tool can be a component of a CNC (Computer 
Numerical Control) milling machine, a wire-cut electric dis 
charge machining apparatus or a laser cutting machine. 
0042. According to a further embodiment, the workpiece 
can be a component of a turbomachine, for example, a pro 
peller or a rotor. 
0043 FIG. 1 shows an exemplary embodiment of a ruled 
surface. A ruled surface is defined in that the surface can be 
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swept out by moving a straight line in Euclidean space. Ruled 
Surfaces are simple and economical to generate and occur in 
many manufacturing processes. 
0044) A ruled surface is a preferred choice for production. 
A ruled Surface is a special type of Surface which can be 
created by moving a straight line in space. Ruled Surfaces 
occur in various applications, such as wire-cut electric dis 
charge machining (EDM) and laser cutting, which control the 
cutting tool as a moving straight line. It is also known that a 
ruled Surface can be effectively created using a flank milling 
process with CNC-processing. In order to reduce the produc 
tion costs, it is a typical design strategy to approximate a 
free-form surface as a ruled Surface. There is consequently a 
need in industry for an effective ruled Surface approximation 
algorithm. 
0045. A ruled surface is a simple object in geometric mod 
eling. In the Euclidean space IR, a ruled surfaced has the 
following parametric representation: 

0046 Wherea(u) is designated the directrix curve and r(u) 
is a generation vector. Alternatively, a ruled surfaced can be 
parameterized by two directrix curves p(u) and q(u): 

0047. The straight line defined as x(u,v)=(1-v)p(uo)+vd 
(uo) is designated a ruling. A ruled Surface is a totality of 
straight one-parameter lines. 
0048 Although ruled surfaces have been intensively stud 
ied in classical geometry, they are not fully used for applica 
tions in geometrical design and production. The concepts of 
Bezier curves and surface design have been used for the 
construction of a ruled surface. The properties of ruled sur 
faces in line geometry have been studied in detail. In line 
geometry, a ruled Surface is defined as a curve in a quadric in 
P-space. On the basis of these properties, according to vari 
ous embodiments, algorithms have been developed for the 
interpolation and approximation of ruled Surfaces. 
0049 FIG. 2 shows an exemplary embodiment of a prod 
uct with Surfaces that can be approximated by means of ruled 
Surfaces. Such surfaces can be, for example, Surfaces of the 
blades of a turbine. Other products can be, for example, a 
propeller or a turbocharger. 
0050 FIG. 3 shows an exemplary embodiment of a 
method. A sequence of discrete rulings approximating to an 
arbitrary surface to be created is provided. This is followed, in 
each case, by transformation of coordinates of a discrete 
ruling in three-dimensional Euclidean space into coordinates 
of a discrete point on the dual unit sphere by means of a Klein 
mapping algorithm and thereafter a Study mapping algo 
rithm. This is followed by interpolation of the discrete points 
by generation of the dual sphere spline curve comprising the 
discrete points by applying a dual sphere spline interpolation 
algorithm: 
0051 Dual Sphere Spline and the Application thereof in a 
Ruled Surface Approximation 
0052. Using dual numbers to represent straight lines, a 
ruled Surface is defined as a curve on a dual unit sphere 
(DUS). A method for calculating weighted averages on the 
DUS will be described, based on minimizing using a least 
squares method. 
0053. The presence, uniqueness, continuity and convexity 
properties of the weighted averages on the DUS will be dis 
cussed. This leads to a novel definition of a dual sphere spline 
on the DUS. A faster iterative algorithm for a dual sphere 
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spline interpolation will be developed. On the basis of this 
algorithm, a kinematic ruled Surface approximation algo 
rithm will be established which approximates a free-form 
surface with a ruled surface. This method can be used for 
designing ruled Surfaces and for approximating and planning 
a movement path of a tool, for example, for a computer 
numerical control (CNC) machine. 
0054 Conventionally, line geometry is used in kinematics 
together with screw theory in order to describe geometrical 
properties of the screw axis of a moving rigid body, and this 
then defines the production process for ruled surfaces. Mak 
ing use of dual numbers, a ruled Surface is described anew as 
a curve on a dual unit sphere (DUS). The kinematically gen 
erated ruled Surface connects the path and the physical move 
ment of the tool. An approximation algorithm based on this 
representation is not yet available. The key algorithm is based 
on linear interpolation of a general dual quaternion. It is the 
aim to approximate a given ruled Surface with a cylindrical 
tool movement curve. 
0055 According to the present application, a new kine 
matic ruled surface approximation algorithm is introduced. 
This algorithm has been developed based on the dual number 
representation of a ruled surface. The problem of the approxi 
mation of the ruled Surface in Euclidean space is converted 
into a curve approximation problem on the dual unit sphere. 
The difficulty of the curve approximation problem on the dual 
unit sphere is the non-linearity of the space. Conventional 
linear interpolation methods are not applicable in the space of 
the dual unit sphere. 
0056 Starting from the definition of the weighted average 
in real spherical space, firstly a weighted average on the dual 
unit sphere is defined. The weighted average on the dual unit 
sphere is defined as the result of minimizing according to the 
least squares method. This enables a novel method for defin 
ing Bezier and spline curves on the dual unit sphere. It has 
been shown that the problem of minimizing using the least 
squares method has a unique Solution if the input points are 
situated on a dual hemisphere. The continuity and convexity 
properties of the dual sphere spline are also discussed. 
0057 Based on these definitions, a kinematic ruled sur 
face approximation algorithm is developed. The essence of 
said algorithm is a fast algorithm for a dual sphere spline 
interpolation on the dual unit sphere. Said algorithm can be 
used for designing Surfaces in different fields, in particular for 
turbomachines, such as propellers, the impeller of a centrifu 
gal compressor, a gas turbine or a turbocharger. Said algo 
rithm can also be used for designing the movement path and 
for planning tool movements in CNC machines. 
0058. The theoretical background to this approximation 
will now be described. Furthermore, novel definitions of a 
weighted average on the dual unit sphere, of a dual sphere 
Bezier curve and of a B-spline are proposed. In addition, an 
algorithm for calculating the weighted average on the dual 
unit sphere and a fast, iterative algorithm for dual sphere 
spline interpolation are provided. Furthermore, a kinematic 
ruled Surface approximation algorithm for approximating a 
free-form surface with a ruled surface is proposed. Finally, a 
conclusion follows. 

Theoretical Background 

0059) Plücker Coordinates of a Straight Line 
0060. In homogeneous Cartesian coordinate systems, a 
straight line L can be represented algebraically with two 
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different points: X=(XXXX)R (XX)R and Y-(yoyy, 
y)R (yoy)R on the straight line: 

0061 Similarly, a straight line L can be represented in 
projective 3D-space P by the exterior product of two points 
XY, which is designated the homogeneous Plücker vector 
coordinates) LIR=(1,1)IR: 

0062. In Euclidean space, i.e. Xo yo-1, the Plücker coor 
dinates have a geometrical interpolation, wherein l r y-X 
and 1=x r=xy. These are the Plücker coordinates of an ori 
ented straight line in E. Clearly, these coordinate elements 
are not independent. Said coordinate elements satisfy the 
Plücker relation: 

0063. The homogeneous Plücker coordinates 1.1 define a 
point in P. The length of the vector 1 is arbitrary and can be 
unified: 

= 1 (6) 

0064. Not every point in P is a Plücker coordinate. Only 
the points which satisfy the Plücker relation Equation 5 are 
Plücker coordinates. Equation 5 defines a quadratic manifold 
in P, which is designated the Klein quadric M. In this way, 
the bijection representation y; L->M, can be established 
between straight lines LeP and points LIReM. Said rep 
resentation is designated “map' or “depiction'. 

Dual Number Representation of a Straight Line 
0065. A straight line can also be represented in a compact 
manner using dual numbers. A dual number can be written in 
the form a-a+ea, where a, aeR and e is the dual element 
such that e=0. Dual numbers can be expanded in the vector 
space, the space ID being defined as the set of all pairs of 
Vectors: 

0066 Given two dual vectors, x=x--ex and y=y+ey, the 
inner product in ID is defined as follows: 

if=xy+e(xy+xy) (8) 

0067 Consequently, the length of a dual vector is defined 
aS 

R = (x-x} + c (9) 

0068 A dual vector of length 1 is designated a dual unit 
vector. Clearly, a dual unit vector satisfies the following equa 
tions: 

X x = 1 (10) 

{ x = 0 

0069. With regard to Equations 5 and 6, it is possible to 
obtain a more compact representation of a straight line: the 
dual number representation of a straight line is simply the 
Plücker coordinates written as a dual unit vector. The problem 
of calculating points on a quadric in P is reduced to a problem 
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in a dual form of a spherical geometry. This representation or 
'map' is designated a Study map or Study depiction. 

Dual Number Representation of a Ruled Surface 

10070 Dual unit vectors define points on a sphere in ID. 
Said sphere is designated the dual unit sphere (DUS). In this 
form, a ruled surface that has been defined by Equation 1 is 
written as a curve on the dual unit sphere: 

r r(u) a(u)x r(ii) (11) L(t) = 1 1(ii) = (a) = 1(a) + el'(a) = + 8-1 

0071. A dual number representation of a ruled surface can 
be converted into an algebraic form: 

0072. Now a transformation construction is established 
between a ruled Surface representation in Euclidean space 
and a curve representation on the dual unit sphere. In place of 
the Solution of a surface approximation problem in Euclidean 
space, a curve approximation problem on the dual unit sphere 
is solved. 

Dual Sphere Spline 

Weighted Average and Spline on a Real Sphere. 

0073 A weighted average on a real sphere is defined, 
based on a minimization, according to the least squares 
method. Given that p, . . . , p, are points on a d-dimensional 
unit sphere S in IR'', a weighted average of these n points 
uses weighting values (), ... , (), Such that each (0,20 and 

Xol = 1, 

the weighted average value is defined as: 
C=S-oop, (13) 

0074 The weighted average value in Equation 13 is not 
simply a linear combination of the points p,...,p, but rather 
the result of minimizing according to the least squares 
method, specifically as the point C on S', which minimizes 
the following value: 

f(C) = i). dists (C, pi), (14) 

where dist (C. p.) is the sphere separation between C and p. 
The function f reaches a clear minimum if the following 
condition is satisfied: 
0075. Theorem 1. Assuming the points p, ...,p, all lie in 
a hemisphere H of S, with at least one point p, in the interior 
of H with co,20. Then the function f has a single critical point 
C in H, wherein this point C is the global minimum off. 
0076. It can be shown that the newly defined weighted 
average has advantageous properties. Based on the definition 
of a weighted average on a real sphere, the spline functions 
which assume values on the unit-d-sphere S, can be defined 
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similarly. Now, given that p1, ... , p, are the points on S and 
that f(u), . . . . f(u) are basis functions which fulfill the 
following property: 

for u in the interval a, b). The spline curve s(u) which 
assumes the values on the unit sphere is defined as: 

0077. The commonest applications of splines use 
B-splines with the basis functions f(u), which are partially 
cubic curves with continuous second-order derivatives. It is 
known from a continuity theorem that if the basis functions f 
have continuous k-t derivatives, the spline curve also has k-t 
derivatives. In said case, the sphere spline points S(t) are 
sufficiently well defined, provided that each of four succes 
sive control points lies in a hemisphere. 

Weighted Average on the Dual Unit Sphere 

0078. The transfer principle of dual unit vectors simply 
states that for each operation that is defined for a real vector 
space, a dual version with the same interpretation exists. 
Based on these transfer principles for dual unit vectors, a 
similar definition of a weighted average on the dual unit 
sphere can be derived. Since only the case of the dual unit 
sphere in ID is of interest, the definition can be narrowed 
down as follows: 

I0079 Definition 1. There exist p, ... , p, on the dual unit 
sphere S in ID. A weighted average of these n points using 
real weighting Values (). . . . , (), so that each (), 20 and 
X,c), 1, the weighted average of these n points is given by: 

ti-So'op, (17) 

0080. It is defined as the result of minimizing using the 
least squares method, specifically as the point q on S, which 
minimizes the following value: 

(18) 

where dists (d.p.) is the dual sphere spacing between dandp, 
0081. The spacing between two points on the dual unit 
sphere is defined by a dual angle between two straight lines. 
This has the form 6-0+ed, where 0 is the angle between the 
straight lines and d is the minimum spacing along the com 
mon perpendicular. For two points x and y on the dual unit 
sphere, the following equation results: 

if=cos 6 (19) 

0082. The dual arccosine function is defined as: 

8 = cost (x + ex') = cos(x) - 'V's (20) 

0083. Similarly, the theorem exists for the presence and 
uniqueness of the definition. 
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I0084. Theorem 2: it is assumed that the points p, ..., p. 
all lie on a dual hemisphere H of S, with at least one pointp, 
in the interior of H where (),z0. Then the function f has a 
single critical point q in H, wherein said point q is the global 
minimum off. 

Presence (Existence) and Uniqueness 
I0085. Theorem 2 will now be proved. Before the proof, the 
exponential and logarithmic functions for the dual vectors 
will be defined. These functions are useful for the proof and 
for the development of the algorithm. 

Exponential and Logarithmic Functions 

I0086) Firstly a subspace of ID will be defined, which is 
expressed as follows: 

T:= x|x=(x1,i,0): i.e.ID} (21) 

I0087. The subspace T is clearly a linear space. The norm 
defined in Equation 9 is also valid for calculating the separa 
tion between two points in the Subspace. This Subspace can be 
taken to be a tangential hyperplane with respect to a point don 
the dual unit sphere. Without loss of generality, a point 
d:=(0,0,1) is selected, wherein the points on the tangential 
plane of point d can be written as x:=(xx.1). On the 
assumption that the point q is the origin of T, what is 
obtained is precisely the subspace T. Then, the distance 
between d and p, on the hyperplane can be calculated as 
follows: 

I0088. The exponential representation at d is defined with 
the depiction of points from the tangential hyperplane Tonto 
the dual unit sphere, which preserves angles and distances of 
d. The exponential representation is designated exp d(). In 
this case a function is given which represents a point phaving 
the coordinates (x1, x2, 1) on a point exp(p)=(X'X'X's). 
I0089. The following conditions should be fulfilled in order 
to preserve the distance: 

x'=cos(f) (23) 

where f is defined by Equation 22. Since exp(p) is localized 
on the dual unit sphere, assuming the property sin(r)+cos( 
r)=1, the following is defined: 

a . sin(i) (24) 

0090. In the case that r=0, the dual divisor is not defined, so 
that xx and x' x are assigned. 
0091. The logarithmic function is the inverse function of 
the exponential representation, which maps a point P=(&, 
X'X') on the dual unit sphere onto a point (x1, x2, 1) on the 
tangential hyperplane T. provided that p' is not antipodal to q. 
We denote the logarithmic function as 1() and exp(1, 
appies. Consequently the reverse mapping is defined as foliows: 

6 (25) 
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wherein 6-cos(x,) is the dual angle between p' and q. It is 
assumed herein that the principal part of 0 fulfills the follow 
ing inequality: 0s 0<L. In the case of 0=0, x, x', for i=1, 2. 

Proof of Existence 

0092. Since f is a continuous function on the compact 
space S, freaches the minimum value at least at point q. It 
can be shown that d lies in the interior of the hemisphere H. 
0093 Under the assumption that d is the minimum of 
Equation 18 and lies completely outside H, a point d' can be 
found in the interior of H, specifically by reflection of qin the 
edge of H. Clearly for the point P, within the hemisphere, the 
distance between P, and q is smaller than the distance 
between P, and q. For points P, on the edge of H the distances 
are the same. The value of f(q)<f(q) contradicts the assump 
tion. Therefore the minimum d cannot lie outside of H. 
0094. Next, it will be shown that the minimum d also 
cannot lie on the edge of H. It is equally to be shown that the 
gradient off on the edge is always unequal to 0 and points out 
of H. Using the above mapping, F(s)=f(exp(S) applies for the 
points S on the tangential hyperplane T. The axes x, x are 
selected for T and then the first derivatives of fare defined 
with 

it. iS - . 9tlas, 

The best description of the derivative of f is the gradient 
vector Vf, which is a tangent vector to the dual sphere at d: 

W (). (). (26) -- - - 

-e -e 

where u and u2 are the unit vectors oriented in the direction 
of the axes x and x. For the proof of uniqueness, it is 
necessary to verify that the second derivative off is positive at 
the point d. The second derivatives at d are equal to 

32 ft 

03:03, ), 

For the rest of the proof, screw theory calculations are used. 

Screw Theory 

0095. In the context of rigid body movements, a screw is 
one possibility for describing a displacement. The displace 
ment can be considered to be a rotation about an axis and a 
translation along the same axis. A general Screw S consists of 
two parts, a real 3-vector S, which gives the direction of the 
screw, and a true 3-vector S, which, by describing the 
moment of the screw about the origin, localizes S. In this 
regard, a screw is represented as a dual vector: 

where p is the “pitch' of the screw and So is the moment of the 
straight line of the screw about the origin. So is derived from 
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the origin radius Vector R, or more generally, from each point 
V of the sphere with So-RxS=VxS. So is perpendicular to 
S(SS=O). 
0096. Evidently, a straight line is a screw in which the 
thread pitch is 0, i.e. p=0. Therefore screw calculations can be 
used to analyze the partial derivatives of the function fat the 
point don the dual unit sphere. f is a dual scalar function of the 
screw S, which has the following form: 

0097. The argument with regard to the dual vectors is 
expressed, in an orthogonal coordinate system, with the ori 
gin point as 0, wherein the formulae are applied for a dual 
number argument. The dual coordinates of the screw are as 
follows: 

S.S.--es,.S. shes.S. =s+es, (29) 
O O O where S, s. s.s., s, , s are six real elements of a Plücker 

coordinate. Using the differential rules for dual number func 
tions, the following is obtained: 

r of , of , of 
= f(Sr, Sy; so-2 tsa, +sa, 

0098. The function f is real if all the variables are real, so 
that f(sss)=f(S., S.S.) applies. Following conversion into as as is 

the vector notation, the following is obtained: 
f(S)-f(s)+es-Vfts) f(s)+e(s-V)f(s) (31) 

0099. If the above equation is analyzed, it becomes appar 
ent that the screw function f(S) is completely defined by a 
function from the principal part thereof f(s). Resulting there 
from, is the following property: it is known that two dual 
vector functions F(x) and p(x) fulfill the following equation: 

01.00 The following identity can be deduced: 

0101. As proof that the gradient off at the edge is always 
unequal to 0 and is directed outwardly from H, it is equally to 
be proved that the real vector function f(x) at the edge is 
always unequal to Zero and is directed out of the real hemi 
sphere H. This has already been shown in the literature. More 
generally, the following theorem is derived: 
0102 Theorem 3. All the formulae and all the theorems of 
vector analysis remain in effect in the field of screws. 
0103. It follows from the above that a screw analysis can 
be created by replacing screws in vectors. The relationship 
between geometrical objects, which was explained above, 
clearly remains: the dual “modulus' amount of the screw 
corresponds to the amount of the vector and the dual angle 
between the axes of the screws corresponds to the angle 
between vectors. 

0104. In place of the proof that the dual vector function f( 
x) has a clear minimum, it is shown that the main or “princi 
pal part of f(x) has a clear minimum. Precisely the same 
sequence is followed as for the proof of the uniqueness of a 
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weighted average on the real sphere. The proof will not be 
repeated here; the details can be found in the relevant litera 
ture. 

Continuity and Convexity Properties 

0105. It has been shown that the derivative property of a 
screw function is entirely determined by the principal part 
thereof. Consequently, the same continuity theorem is used as 
in the case of the real sphere: 
0106 Theorem 4. The values for p ...,p, and co,..., (), 
and dare chosen such that said values fulfill the hypotheses of 
Theorem 2. From this follows a neighborhood of in which the 
weighted average dis a C-function of p1, ..., p. (),..., (), 
0107. It can also be shown that the points d, which can be 
written as a weighted average of p ..., p. generate a convex 
set. They generate precisely the convex surface of the points 
P1 . . . . Pi. 

Definition of Dual Sphere Splines 

0108 Based on the definition of a weighted average on the 
dual unit spheres in ID, the spline functions which assume 
values on the dual unit sphere can be defined similarly. 
Exactly as with the definition of splines on a real sphere, the 
basis functions must always satisfy the following property: 

(34) 

for u in the interval a,b. 
0109 Since Bernstein polynomials and B-spline basis 
functions both fulfill this requirement, the dual sphere Bezier 
curve or B-spline curve s(t) which assume values on the dual 
unit sphere are defined as follows: 

S(u)=x ?(u)f, (35) 

p1, ... , p, are points on the dual unit sphere in ID. 
0110. In order to meet the uniqueness requirement, for 
each value of the parameteru, the set of control points p, for 
which f(u)z0, is contained withina dual hemisphere. At least, 
each value is mostly contained within a hemisphere to fulfill 
the uniqueness conditions. 

Interpolation of Dual Sphere Splines 

Algorithm for Calculating Weighted Average Values on the 
Dual Unit Sphere. 

0111. A new algorithm for calculating the weighted aver 
age value on the dual unit sphere will now be proposed. The 
fundamental concept of the algorithm lies in the use of the 
logarithmic representation, which maps all the points p, on the 
dual unit sphere on the tangential hyperplane at d, then the 
weighted average thereof in the hyperplane is calculated and 
this result is mapped back onto the dual unit sphere by the 
exponential transformation. The exponential transformation 
is defined by Equations (23) and (24). The logarithmic trans 
formation is defined by Equation (25). All the calculation 
rules are based on rules defined in the dual vector space ID. 
0112 Since the exponential transformation and the loga 
rithmic transformation are defined only with d(0,0,1), for a 
general point d on the dual unit sphere, the coordinate frame 
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must be moved so as to fit to the representation. The matrix for 
moving a point x, to a point x on the dual unit sphere is given 
by the following formula: 

32 = Ri (36) 

where (37) 

() determines the dual angle between the points x, and X: 
six-cos 0-x+ex (38) 

and the screw axis g is selected so that said axis is perpen 
dicular to both the points x and X: 

& X v2 (39) 
1 x 32 

0113 
0114 Algorithm for calculating weighted averages on 
the dual unit sphere. 

The result is the following algorithm: 

0115 Input: p. . . . , p, on the dual unit sphere and 
non-negative direction factors (), ... (), having a Sum of 
1; 

0116 Output: the weighted average of the input values: 
0117 Initialization: set d: X', 'cop/IX', 'cop',: 
0118 Main loop: 

0119 for i=1: ...; n, 
(0120 set p.-1.(p), 
I0121 set th:=X, "c) (p-d) 
I0122) set q-exp(G+G). 

if the main value of this sufficiently small, output d and stop, 
otherwise continue the loop. 
(0123. Here 1(p,) is the transformation which maps the 
points to the tangential hyperplane at q and exp(q+(i) trans 
forms the result back to the dual unit sphere. 

Algorithm for Spline Interpolation on the Dual Unit Sphere 

0.124. Using the dual sphere spline defined in Equation 
(35), the dual sphere spline interpolation problem can be 
solved. Proceeding from the given points c. . . . . e., on the 
dual unit sphere and from parameters usus . . . <u, a 
Smoothing curve is to be found on the dual unit sphere, that is 
parameterized by u, specifically such that s(u)=c, for alli. The 
underlying problem is the selection of additional node posi 
tions and control points p, that define a sphere spline curve 
according to Equation (35) and fulfill said conditions. f(u) is 
selected here as a cubic B-spline basis function and an itera 
tive method for solving for the control points p, is used. This 
can easily be expanded to B-splines of higher order. 
0.125. According to the definition, there are n+2 control 
points for ninput points. Letpip and p, p.2, wherein C, 
B, Y, denote the elements in a basis matrix that are not 0. 
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Basis Matrix: 

0126 

1 O O ... O O (40) 

C2 A32 y2 O O 

() as f33 y3 () 
O 

O ... O an-1 f3–1 y-1 
O ... O O 1 

0127. The dual sphere cubic B-spline interpolation algo 
rithm can be described as follows: 

Algorithm for Interpolation of Dual Sphere Cubic B-Splines: 
I0128. Input: points c. . . . ; c, and real coefficients 

0129. C., f, Y, (osisn); 
0.130 Control points p, 
I0131 Initialization: set p,-c, for i=1,... n; 
(0132) Main loop: 

0.133 for i=1: ...; n 

(0135) set 8,-Ip*-l(p, 
10136) setp:-exps (p*), 
0.137 set pp. and p, p. 

if the sum of the principal values 8, of 8, is sufficiently small, 
then the process is stopped; otherwise, running of the loop is 
continued. 
0.138. When the control points are derived, the dual sphere 
spline is to be calculated as a weighted average of the control 
points. The running time of the weighted average algorithm is 
one order of magnitude Smaller than the running time of the 
interpolation algorithm, so that the time for calculation of a 
large number of points along the curve dominates the time 
needed for calculation of the control points. 

Simulation Results 

0.139. The algorithm was tested with different input val 
ues. The input line sequence is given in the form of dual 
vectors i-lel, where i-1,..., n. A point on the dual unit 
sphere corresponds to an infinite straight line in Euclidean 
space. To display the input straight line sequence, the dual 
vector representation of straight lines is transformed into the 
algebraic representation of straight lines: 

l, (v)=lxi+vil, for i=1,..., 2 (41) 

V can be an element of the region 0.1. In order to apply the 
interpolation algorithm for dual sphere cubic B-splines, the 
parameter sequence and node sequence must be determined. 
The chord length was selected for definition of the param 
eters: If d is the chord length between two given points d-1, 
1, , i=1,..., n, then the overall chord length is calculated 
with d-X, "d. Sinced, is a dual number, the principal part 
Von d is used as d, and the parameters are calculated as 
follows: 

uto = 0 (42) 

di 1 i = u-1 + , t = ... it - 
ut, - 1 
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0140. This dual sphere spline allows the use of arbitrary 
node positions. For simplification, the node sequence is 
selected according to the parameters. 
0.141. The algorithm converges rapidly and the interpola 
tion error is Small. The final result is given as a cubic dual 
sphere B-spline: 

which satisfies the conditions(u)=1,. The dual cubic B-spline 
can be represented as a ruled Surface, given by Equation 12, 
wherein W60.1. The input line sequence and the points can 
be represented on the interpolated spline, given by S(u,). The 
algorithm was able to be verified. 

Kinematic Ruled Surface Approximation and Use Thereof 
0142. The dual sphere spline interpolation algorithm can 
be used to approximate a given free-form Surface to a ruled 
Surface. For the ruled Surface approximation algorithm, the 
first step is finding a discrete system of rulings close to the 
given Surface. Then this sequence of rulings which was 
derived in the first step is written in the form of dual vectors 
which correspond to points on the dual unit sphere. Then the 
dual sphere spline interpolation algorithm can be applied to 
derive a cubic B-spline curve on the dual unit sphere, corre 
sponding to a ruled surface in Euclidean space. Said curve can 
be mapped back, based on Equation 12, to a ruled Surface in 
Euclidean space. Two directrix curves on a ruled Surface can 
be written as follows: 

0143. This representation contains two additional param 
eters v and v. So that additional information is needed to 
determine the edges of the ruled surface. For different appli 
cations, a plurality of methods can be used. Herein a kine 
matic ruled Surface approximation algorithm is proposed 
which is Suitable, for example, for the design and production 
of centrifugal compressor blades. 
0144. In line geometry, a point can be interpreted as an 
intersection of two straight lines. A point on the edge of a 
ruled surface is defined by the intersection of a ruling with a 
reference straight line. More precisely, the reference straight 
line is defined in that said line extends through a point on a 
directrix curve and the orientation of the reference straight 
line agrees with the surface normals at this point. This defi 
nition of the reference straight line is inspired by the produc 
tion process wherein the ruling, the normals to the area and/or 
Surface and a unit vector perpendicular to the ruling and to the 
normals form a local coordinate system for the moving mill 
ing tool. Clearly, the movement of the reference straight line 
also generates a reference Surface. Thus the dual sphere spline 
interpolation algorithm can be used as an input, making use of 
the reference straight line. A directrix curve is derived by 
intersecting the two ruled Surfaces. Equally, the other direc 
trix curve can be derived by repeating the above procedure. 
0145 The following steps can be performed for determin 
ing directrix curves of the ruled surface determined on the 
basis of the rulings: 

0146 starting from the arbitrary surface to be created 
and the discrete rulings, in addition to each discrete 
ruling, a first and a second reference straight line is 
determined, wherein a first discrete reference straight 
line extends through an intersection point of the discrete 
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rulings with a first directrix curve to be determined and 
a second reference straight line through an intersection 
point of the reference straight line with a second direc 
trix curve to be determined, and the orientations of each 
of said reference straightlines corresponds to the Surface 
normals to the surface to be created at the intersection 
points, wherein a separation of the two intersection 
points of each of the discrete rulings corresponds to the 
length of the material removal tool; 

0147 transforming the coordinates of a discrete refer 
ence straight line in three-dimensional Euclidean space 
into coordinates, in each case, of a discrete point on the 
dual unit sphereby means of a Klein mapping algorithm 
and thereafter by means of a Study mapping algorithm, 
wherein a first discrete point sequence is generated for 
the first reference straight line sequence and a second 
discrete point sequence is generated for a second refer 
ence straight line sequence; 

0148 interpolating the two discrete point sequences by 
creating two further spline curves comprising the respective 
discrete point sequences by using a dual sphere spline inter 
polation algorithm; 

0149 converting all three spline curves by means of an 
inverse Study mapping algorithm followed by an inverse 
Klein mapping algorithm in three ruled Surfaces in 
three-dimensional Euclidean space, wherein the two 
intersection lines of the two ruled surfaces of the first and 
second reference straight lines with the ruled surface of 
the rulings determine the first and second smooth and 
continuous directrix curve of the ruled surface of the 
rulings, and wherein the two directriX curves are math 
ematically described by p(u) and q(u) in the equation 

0150. In other words, the two directrix curves of the ruled 
Surface assigned to the rulings are determined as follows, by 
way of example. A framework for the kinematic ruled surface 
approximation algorithm is obtained: 
0151 Step S1. Extraction of the rulings from the given 
Surface and determination of the reference Straight lines 
according to two directriX curves; 
0152 Step S2. Transformation of the coordinates of the 
three straight line sequences into the coordinates of the points 
on the dual unit sphere; transformation of coordinates of a 
discrete straight line in three-dimensional Euclidean space 
into coordinates of a discrete point on the dual unit sphere by 
means of a Klein mapping algorithm and then by means of a 
Study mapping algorithm; 
0153 Step S3. Application of the dual sphere B-spline 
interpolation algorithm; 
0154 Step S4. Calculation of the dual sphere B-spline 
with the algorithm of the dual sphere weighted average; 
(O155 Step S5. Transformation of the dual number repre 
sentation of the ruled Surface back into Euclidean space; 
curves on the dual unit sphere can be transformed by means of 
an inverse Study mapping algorithm and then an inverse 
Klein mapping algorithm into a ruled Surface in three-dimen 
sional Euclidean space. 
0156 Step S6. Determination of the two directrix curves 
by intersecting ruled Surfaces. 
0157 FIG.3 shows the sequence of steps for determining 
a ruled Surface which approximates to an arbitrary Surface to 
be produced. 
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0158. This algorithm was used, for example, for the design 
ofblade surfaces. For verification of the algorithm, a centrifu 
gal compressor blade which was designed approximating to a 
ruled surface was selected as the input for the algorithm. A 
simulation result for the kinematic spherical Surface approxi 
mation algorithm was obtained. The original form of the 
selected blade can be imaged. Three sequences of straight 
lines which comprise one group of straight lines approximat 
ing to the given blade and two groups of normals can be 
extracted. These three groups of straight line sequences can 
be imaged. Using the dual sphere spline interpolation algo 
rithm and the straight line intersection algorithm, an approxi 
mated ruled surface is derived. The approximated ruled sur 
face can be compared with the originally given blade surface, 
from which it is apparent that the approximation error is very 
small. Said ruled surface is represented with a straight line 
path which generates the Surface, so that a close connection to 
the production process is created. 

CONCLUSION 

0159. It has been described above how a ruled surface 
approximation problem in Euclidean space was transformed 
into a curve interpolation problem on the dual unit sphere by 
use of a Klein mapping algorithm and a Study mapping algo 
rithm. A weighted average on the dual unit sphere was 
defined, which leads to the definition of a dual sphere spline 
on the dual unit sphere. Based on this definition, fast iterative 
algorithms for calculating the weighted averages and for 
interpolation of dual sphere splines on the dual unit sphere are 
proposed. These algorithms are defined with different inputs 
and are expanded into a kinematic ruled Surface algorithm. 
This novel ruled Surface algorithm can be used to approxi 
mate a free-form surface with a ruled surface. It can be used 
for designing Surfaces and for planning tool paths, for 
example in CNC machines. The kinematic ruled surface 
approximation algorithm therefore has a high value for indus 
trial production and possesses many application possibilities 
in a variety of fields. Arbitrary surfaces can be created on 
arbitrary materials. 
0160 A method according to the main claim is adequate 
for workpiece machining, since the tool has only one particu 
lar length and, in this way, a ruled Surface is created. Accord 
ing to various embodiments the directrix curves can also be 
determined. Furthermore, a material machining device can 
use the data from the dual sphere spline curve directly to 
create a ruled Surface. Material machining following trans 
formation into a ruled Surface in Euclidean space is also 
possible. The arbitrary surface to be created can be aerody 
namically optimized, determined by structural data, by 
experiment or by means of other criteria. A curved Surface can 
be produced. 
0.161 FIGS. 4a to 4d show a further embodiment of a 
method. FIGS. 4a to d show the control of a flank milling 
apparatus by means of computer numerical control (CNC). 
FIG. 4a shows, in a first step, a lower surface to be created and 
an offset surface. FIG. 4b shows, in a second step, the discrete 
positions of the material removal tool. FIG. 4c shows, in a 
third step, the movement of the material removal tools and the 
surface created. FIG. 4d shows a comparison between the 
surface produced and a defined blade as the surface to be 
produced. 
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What is claimed is: 
1. A method for producing a surface on a workpiece by 

means of a material-removal tool, comprising: 
based on an arbitrary Surface to be created, controlling a 
movement path of the material removal tool to create a 
ruled Surface approximating to said arbitrary Surface, 
wherein the movement path is provided in the form of a 
curve on a dual unit sphere, wherein a point on the curve 
corresponds to a location and an orientation of the mate 
rial removal tool. 

2. The method according to claim 1, wherein the curve on 
the dual unit sphere is defined as a continuous, Smooth dual 
sphere spline curve. 

3. The method according to claim 2, comprising providing 
a sequence of discrete rulings approximating to an arbitrary 
surface to be created; 

transforming coordinates of each discrete ruling in three 
dimensional Euclidean space into coordinates of a dis 
crete point on the dual unit sphere by means of a Klein 
mapping algorithm and thereafter, by means of a Study 
mapping algorithm; 

interpolating the discrete points by generating a dual 
sphere spline curve having the discrete points using a 
dual sphere spline interpolation algorithm. 

4. The method according to claim 3, wherein 
a ruling corresponds to the equation 

x(uov)=(1-v)p(uo)+vg(uo) 

the dual sphere spline interpolation algorithm comprises 
the following equations: 
S(u)=2, f(t)f, (35) 

as the equation of the dual sphere spline curve, wherein f. 
are basis functions and p, are control points on the dual 
unit sphere in ID, and 

wherein 
weighted averages on the dual unit sphere correspond to 

the following equation: 

a = Soco; p, where Xo, = 1, co; 2 0. 
i 

wherein 
in order to generate the dual sphere spline curve, minimi 

Zation can be carried out according to the following 
formula: 

r 1 

f(a) = Xo, dist (a, b, 

5. The method according to claim3, wherein calculation of 
the sequence of discrete rulings approximating to the arbi 
trary Surface is made by means of mathematical least-squares 
minimization of distances from the arbitrary Surface. 
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6. The method according to claim 1, wherein the curve is 
transformed, by means of an inverse Study mapping algo 
rithm and thereafter by means of an inverse Klein mapping 
algorithm, into the ruled surface in three-dimensional Euclid 
ean Space. 

7. The method according to claim 4, wherein the control 
points are used as parameters for the approximation of the 
ruled surface to the arbitrary surface to be created. 

8. The method according to claim 4, wherein the individual 
parameter u is a feed rate or a time in relation to a displace 
ment of the material removal tool. 

9. The method according to claim 3, wherein based on the 
arbitrary Surface to be created and the discrete rulings, in 
addition to each of the discrete rulings, a first and a second 
discrete reference straight line are determined, wherein a first 
discrete reference straight line extends through an intersec 
tion point of the discrete rulings with a first directrix curve to 
be determined and a second reference straight line extends 
through an intersection point of the rulings with a second 
directrix curve to be determined, and the orientations of said 
reference straight lines each correspond to the Surface nor 
mals to the Surface to be created at the intersection points, 
wherein a separation of the two intersection points of each 
discrete ruling corresponds to the length of the material 
removal tool; 

transforming the coordinates of each discrete reference 
straight line in three-dimensional Euclidean space into 
coordinates of a discrete point on the dual unit sphere by 
means of a Klein mapping algorithm and thereafter by 
means of a Study mapping algorithm, wherein a first 
discrete point sequence is generated for the first refer 
ence straight line sequence and for the second reference 
straight line sequence a second discrete point sequence 
is generated; 

interpolating the two discrete point sequences by generat 
ing two further dual sphere spline curves having the 
respective discrete point sequences by applying a dual 
sphere spline interpolation algorithm; 

converting all three dual sphere spline curves by means of 
an inverse Study mapping algorithm and then an inverse 
Klein mapping algorithm into three ruled surfaces in 
three-dimensional Euclidean space, wherein the two 
intersection lines of the two ruled surfaces of the first and 
second referencestraight lines each define with the ruled 
Surface of the rulings the first and second Smooth and 
continuous directrix curve of the ruled surface of the 
rulings, and wherein the two directrix curves are math 
ematically described by p(u) and q(u) in the equation 

10. The method according to claim 1, comprising checking 
whether the movement path is within a working space of the 
material removal tool, making use of the kinematic properties 
of a required movement and making use of a robotic analysis. 

11. The method according to claim 1, wherein the method 
is used for at least one of a form designand optimization of the 
form of the workpiece. 

12. The method according to claim 1, wherein the material 
removal tool is a component of a Computer Numerical Con 
trol (CNC) milling machine, and a wire-cut electric discharge 
machining apparatus or a laser cutting machine. 

13. The method according to claim 1, wherein the work 
piece is a component of a turbomachine or a propeller or a 
rOtOr. 
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14. A device for producing a surface on a workpiece by 
means of a material-removal tool, comprising: 

a control device operable to control a material removal 
tool, based on an arbitrary Surface to be created, to create 
a ruled Surface approximating to said arbitrary Surface, 
wherein a computer device calculates a movement path 
of the material removal tool such that a movement path 
is provided in the form of a curve on a dual unit sphere, 
wherein a point on the curve corresponds to a location 
and an orientation of the material removal tool. 

15. The device according to claim 14, wherein the curve on 
the dual unit sphere is defined as a continuous, Smooth dual 
sphere spline curve. 

16. The device according to claim 15, comprising provid 
ing a sequence of discrete rulings approximating to an arbi 
trary surface to be created; 

transforming coordinates of each discrete ruling in three 
dimensional Euclidean space into coordinates of a dis 
crete point on the dual unit sphere by means of a Klein 
mapping algorithm and thereafter, by means of a Study 
mapping algorithm; 

interpolating the discrete points by generating a dual 
sphere spline curve having the discrete points using a 
dual sphere spline interpolation algorithm. 

17. The device according to claim 16, wherein 
a ruling corresponds to the equation 

the dual sphere spline interpolation algorithm comprises 
the following equations: 

as the equation of the dual sphere spline curve, wherein f, 
are basis functions and p, are control points on the dual 
unit sphere in ID, and 
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wherein 
weighted averages on the dual unit sphere correspond to 

the following equation: 

a = Socop, where Xo, = 1, co; 2 0. 
i 

wherein 
in order to generate the dual sphere spline curve, minimi 

Zation can be carried out according to the following 
formula: 

r 1 

f(t) = 5Xo, dist, (a,p). 

18. The device according to claim 16, wherein calculation 
of the sequence of discrete rulings approximating to the arbi 
trary Surface is made by means of mathematical least-squares 
minimization of distances from the arbitrary Surface. 

19. The device according to claim 14, wherein the curve is 
transformed, by means of an inverse Study mapping algo 
rithm and thereafter by means of an inverse Klein mapping 
algorithm, into the ruled surface in three-dimensional Euclid 
ean Space. 

20. The device according to claim 17, wherein the control 
points are used as parameters for the approximation of the 
ruled surface to the arbitrary surface to be created. 

c c c c c 


