
US 20120050300A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0050300 A1

Chun et al. (43) Pub. Date: Mar. 1, 2012

(54) ARCHITECTURE FOR RENDERING (60) Provisional application No. 60/586,327, filed on Jul. 8,
GRAPHICS ON OUTPUT DEVICES OVER 2004.
DVERSE CONNECTIONS

(75) Inventors: Won-Suk Chun, Cambridge, MA Publication Classification
(US); Joshua Napoli, Arlington, (51) Int. Cl.
MA (US); Thomas J. Purtel, II, G06T I/O (2006.01)
Cambridge, MA (US)

(52) U.S. Cl. .. 34.5/522
(73) Assignee: Stragent, LLC, Longview, TX

(US) (57) ABSTRACT

(21) Appl. No.: 13/292,066 A system for displaying graphical information. The system
includes an asset server for storing information and a render

(22) Filed: Nov. 8, 2011 ing server in communication with the asset server. The ren
O O dering server receives a graphics command and renders

Related U.S. Application Data graphic display data in response to the graphics command and
(63) Continuation of application No. 11/176.482, filed on to the information. The rendering server is independently

Jul. 7, 2005. addressable from the asset server.

102 110 112 116

104.

106

108

Application Software

Spatial Visualization
Environment

Volume
Manager

Perspecta Multiview
Rendering Rendering

124 126

OpenGL
Compatibility

Rendering
Architecture

Display-Specific
Rendering Module

US 2012/0050300 A1 Mar. 1, 2012 Sheet 1 of 9 Patent Application Publication

196eue.W

US 2012/0050300 A1 Mar. 1, 2012 Sheet 2 of 9 Patent Application Publication

0
|

902

ZOZ

US 2012/0050300 A1 Mar. 1, 2012 Sheet 3 of 9

9. "SO|-

Patent Application Publication

US 2012/0050300 A1 Mar. 1, 2012 Sheet 4 of 9 Patent Application Publication

Patent Application Publication Mar. 1, 2012 Sheet 5 of 9 US 2012/0050300 A1

FIG. 5
H
+r-PipelineSystem ()
+instantiate GLAsset (in asset: GLAssetPtri)

502

trender scence(in scene: SceneProgramPir)
+swapBuffers()

PipelineSystem *clear()
finsertFence?): Fence *

Structure fbuffersProcessed): unsigned inf
trunning(): bool
terrortext(): shared ptrastd:: string>
+profileStages(): vectorgdoubles
+stageNames(). Vector-std:: string>

-name : String
-activeObect : RemoteActiveObjectVector
-running : bool

+Pipeline (in Fifo Type:Consumer, in Fifo Type:Producer)
+testFence(in id: FencelD) : bool
+finish Fence(in id: FencelD)
+profileStages(); vectorgaouble>
+stageNames(); vector-std:: string> +r-SchedulerThread()

trunning(): bool
-threadFund()

504
Thread::Fifo 1 510

+Stage()
+-Stage()
+intialize ()
+ready(): bool

506 508 texecute() tmakeCurrent()
+executeTime(): double +releasecurrent()
+deinitialize () +-RemoteActiveObject
idolnitialize ()
idoReady() : bool
#doExecute()
#doDeinitialize () 512

ser
RemotoActiveObject RemoteActiveObject

GL Context
-

514 newGLContext): GL Context
it newGL ContextinoutgNamespace: GLNamespace): GLContext
fmakeCurrent()
+releasecurrent()
+r-GLContext()
#GLContext()

VoxelBngineContext
- - -

+VoxelEngineContext(in mode: Mode = NonExclusive, inout device: MemoryArena=
VoxelBngineManager::DefaultDevice())
+r-VoxelEngineContext()
+makeCurrent()
+releasecurrent()

516

Patent Application Publication Mar. 1, 2012 Sheet 6 of 9 US 2012/0050300 A1

114
GLAS Extended 12

Stub

GLAS Translation 2

308

310

122

endering 312 Core Rendering Software Core R
Client

Spatial Transport 314
ProtoCO

Core Rendering 604
Server

Voxel Engine 610
Driver

Spatial Frame- 611

Patent Application Publication Mar. 1, 2012 Sheet 7 of 9 US 2012/0050300 A1

FIG. 7

SpatialGL Internet

Client Client

Patent Application Publication Mar. 1, 2012 Sheet 8 of 9 US 2012/0050300 A1

FIG. 8
Dedicated ASSet Server

ASSet Server

Request Spatial Asset s 802

Thin Client SpatialGL Commands SpatialGLData

806-Loy N
S- - 80
Rendered Scenes Rendering Server

FIG. 9
Remote Rendering

SpatialGL Commands 804

u- N. ?t Rendering Server

Rendered Scenes

Thin Client

806

Patent Application Publication Mar. 1, 2012 Sheet 9 of 9 US 2012/0050300 A1

FIG. 1 O
Distributed Rendering

Client
1002

702 - Oy Display
Commands\ Scenes/

Client
-N l--all Display

702 Commands Scenes

Commands/ Scenes 5- 1004
702 -- Rendering Cluster

Client

US 2012/0050300 A1

ARCHITECTURE FORRENDERING
GRAPHCS ON OUTPUT DEVICES OVER

DIVERSE CONNECTIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 11/176,482, filed Jul. 7, 2005, which
claims the benefit of the filing date of U.S. Provisional Patent
Application No. 60/586,327, filed Jul. 8, 2004, the contents of
which are herein incorporated by reference.

BACKGROUND

0002 The present disclosure relates generally to imaging
and visualization, and, more particularly, to an architecture
for rendering graphics on output devices over diverse connec
tions. Example output devices are two-dimensional displays,
three-dimensional displays Such as Volumetric, multi-view,
and holographic displays, and two- and three-dimensional
printers.
0003. Three-dimensional (3-D) information is used in a
variety of tasks, such as radiation treatment planning,
mechanical computer-aided design, computational fluid
dynamics, and battlefield visualization. As computational
power and the capability of sensors improve, the user is
forced to comprehend more information in less time. For
example, a rescue team has limited time to discover a cata
strophic event, map the structure of the context (i.e., a sky
scraper), and deliver accurate instructions to team members.
Just as an interactive computer screen is better than a paper
map, a spatial 3-D display offers rescue planners the ability to
see the entire scenario at once. The 3-D locations of the
injured are more intuitively known from a spatial display than
from a flat screen, which would require rotating the “perspec
tive view' in order to build a mental model of the situation.
0004 Display technologies now exist which are designed
to cope with these large datasets. Spatial 3-D displays (e.g.,
Actuality Systems Inc.'s Perspecta.RTM. Spatial 3-D Dis
play) create imagery that fills a Volume of space—such as
inside a transparent dome—and that appears 3-D without any
cumbersome headwear.
0005. It is expected that a variety of spatial displays will
come into existence in the near future. Furthermore, software
applications will emerge that will exploit the unique proper
ties of spatial displays. In order to allow every type of display
to be compatible with every application, a standard is needed
which dictates how (electronically and with what protocol)
spatial 3-D information is transmitted to the display device. In
addition, Software applications and display devices that are
not specialized for spatial 3-D rendering will continue to be
utilized. Many customer computer environments will contain
a mix of 3-D and non-3-D display devices and software
applications. It would be desirable for application program
mers to be able to write and execute a single application
program to produce graphics on a variety of 3-D and non-3-D
displays.
0006 Further, modern graphics environments must solve
the problem that the application Software generally runs on
separate hardware from the rendering algorithms. Since off
the-shelf personal computers (PCs) are not yet specialized for
spatial 3-D rendering, the process separation is generally
more complicated than sending the data across the peripheral
component interface (PCI)-express bus. The Chromium

Mar. 1, 2012

architecture is a prior attempt to solve this problem. Chro
mium abstracts a graphical execution environment. However,
the binding between an application, rendering resource and
display is statically determined by a configuration file. There
fore, applications cannot address specific rendering
resources. Current 3-D display architectures and applications
cannot address remote or distributed resources. Such
resources are necessary for displays where ready-made ren
dering hardware is not available for PCs.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 Referring now to the figures, which are exemplary
embodiments and wherein like elements are numbered alike:
0008 FIG. 1 depicts an overview of an architecture that
may be implemented by exemplary embodiments of the
present invention;
0009 FIG. 2 depicts an more detailed view of an architec
ture that may be implemented by exemplary embodiments of
the present invention;
0010 FIG. 3 is a block diagram of an exemplary spatial
graphics language implementation;
0011 FIG. 4 is a block diagram of an exemplary compat
ibility module structure;
0012 FIG. 5 is a block diagram of an exemplary rendering
module;
0013 FIG. 6 is an exemplary process flow diagram for
processing a command from a ported application;
0014 FIG.7 depicts a system that may be implemented by
exemplary embodiments of the present invention;
0015 FIG. 8 depicts a system that may be implemented by
exemplary embodiments of the present invention;
0016 FIG.9 depicts a system that may be implemented by
exemplary embodiments of the present invention; and
0017 FIG. 10 depicts a system that may be implemented
by exemplary embodiments of the present invention.

SUMMARY OF THE INVENTION

00.18 Exemplary embodiments of the present invention
are directed to a system for displaying graphical information.
The system includes an asset server for storing information
and a rendering server in communication with the asset
server. The rendering server receives a graphics command
and renders graphic display data in response to the graphics
command and to the information. The rendering server is
independently addressable from the asset server.
0019. Other exemplary embodiments of the present inven
tion are directed to a method for displaying graphical infor
mation. The method includes receiving a graphics command
at a rendering server. Information responsive to the graphics
command is accessed. The information is located in an asset
server that is separately addressable from the rendering
server. Graphic display data is rendered in response to the
graphics command and the information.
0020. Further exemplary embodiments of the present
invention are directed to an architecture for displaying
graphical information. The architecture includes an asset
resource layer for storing information and a rendering layer.
The rendering layer receives a graphics command and renders
graphic display data in response to the graphics command and
to the information. The communication server is indepen
dently addressable from the asset resource layer.
0021 Still further exemplary embodiments of the present
invention include a computer program product for displaying

US 2012/0050300 A1

graphical information. The computer program product
includes a storage medium readable by a processing circuit
for performing a method. The method includes receiving a
graphics command at a rendering server. Information respon
sive to the graphics command is accessed. The information is
located in an asset server that is separately addressable from
the rendering server. Graphic display data is rendered in
response to the graphics command and the information.

DETAILED DESCRIPTION

0022 Exemplary embodiments of the present invention
include a spatial 3-D architecture to Support separate asset
servers and rendering servers in a graphics environment. The
architecture also has a spatial visualization environment
(SVE), that includes a 3-D rendering API and a display vir
tualization layer that enables application developers to uni
versally exploit the unique benefits (such as true volumetric
rendering) of 3-D displays. SVE supports the cooperative
execution of multiple Software applications. As part of the
SVE, a new API is defined, referred to herein as the spatial
graphics language (SpatialGL), to provide an optional, dis
play-agnostic interface for 3-D rendering. SpatialGL is a
graphical language that facilitates access to remote displays
and graphical data (e.g., rendering modules and assets). The
architecture further has core rendering software which
includes a collection of high-performance rendering algo
rithms for a variety of 3-D displays. The architecture also
includes core rendering electronics including a motherboard
that combines a graphics processing unit (GPU) with a 64-bit
processor and double-buffered video memory to accelerate
3-D rendering for a variety of high-resolution, color, multi
planar and/or multiview displays. Many of today's 3-D soft
ware applications use the well-known OpenGL API. To pro
vide compatibility with those applications, exemplary
embodiments of the present invention include an OpenGL
driver for the Actuality Systems, Incorporated Perspecta Spa
tial 3-D Display product. Embodiments of the Perspecta Spa
tial 3-D Display product are described in U.S. Pat. No. 6,554,
430 to Dorval et al., of common assignment herewith.
0023 Currently, a volume manager is available to manage
cooperative access to display resources from one or more
simultaneous Software applications (see for example, U.S.
Patent Application No. 2004/0135974A1 to Favalora et al., of
common assignment herewith). Current implementations of
the Volume manager have asset and rendering resources that
are not abstracted separately from the display. The display
rendering and storage system are considered as a single con
cept. Therefore, the display and rendering system must be
designed together. Effectively, the display must be designed
with the maximum image complexity in mind. Exemplary
embodiments of the SVE, as described herein, remove this
restriction by providing separately named asset, computation
(rendering), and display resources. Unlike other rendering
systems, the application has the flexibility to combine these
resources by addressing each one independently. These
resources may be independently addressed, and therefore
may be located in one or more servers and accessed via one or
more networks. In addition, these resources (e.g., two or more
computation resources) may be combined to create output for
a single graphics display. The resources may also be located
in different geographic locations (e.g., different rooms in the
same building, different cities, different countries) and in
communication via a network.

Mar. 1, 2012

0024 FIG. 1 depicts an overview of an architecture that
may be implemented by exemplary embodiments of the
present invention. One or more means is also provided for
interfacing one or more central applications with a local,
remote or distributed rendering or display systems and for
interfacing external databases with a rendering system.
(0025. The architecture depicted in FIG. 1 includes four
layers, an application software layer 102, an SVE layer 104,
a rendering architecture layer 106 and a display-specific ren
dering module layer 108. The application software layer 102
includes legacy applications 110, ported applications 112 and
native applications 116. The legacy applications 110 and the
ported applications 112 are written to the OpenGL API and
converted into the SpatialGL API 118 by the OpenGL com
patibility module 114 in the SVE layer 104. OpenGL and
SpatialGL are examples of API types. Exemplary embodi
ments are not limited to these two types of APIs and may be
extended to support any graphics APIs such as the Direct3D
API. The native applications 116 are written to the SpatialGL
API 118 which is in communication with the volume manager
120. The rendering architecture layer 106 depicted in FIG. 1
includes core rendering software (CRS) 122, which is a
device independent management layer for performing com
putations/renderings based on commands received from the
SpatialGL API 118 and data in the volume manager 120. The
display-specific rendering module layer 108 includes a Per
specta rendering module 124 for converting data from the
CRS 122 for output to a Perspecta Spatial 3-D Display and a
multiview rendering module 126 for converting data from the
CRS 122 into output to other 3-D and 2-D display devices.
0026. Unlike priorarchitectures, the architecture depicted
in FIG. 1 transforms commands (e.g., graphics commands)
from several API types into a single graphical language, Spa
tialGL. This permits the architecture to provide consistent
access to display and rendering resources to both legacy and
native application software. This is contrasted with the cur
rently utilized device-specific rendering drivers. Each driver
manages rendering hardware, visual assets (display lists, tex
tures, vertex buffers, etc.), and display devices. The architec
ture depicted in FIG. 1 includes a rendering architecture layer
106 that is a device-independent management layer that with
core rendering software 122. This rendering architecture
layer 106 gives the graphics language (SpatialGL118) access
to diverse, high-level resources, such as multiple display
geometries, rendering clusters and image databases. Each
class of resources: asset (e.g., Volume manager 120); compu
tational (e.g., core rendering software 122); and display (e.g.,
Perspecta rendering 124 and multiview rendering 126) is
enabled by an independent module.
0027 FIG. 2 depicts a more detailed view of an architec
ture that may be implemented by exemplary embodiments of
the present invention. The SVE layer 104 includes a collec
tion of compatibility strategies between emerging displays
and application software. One aspect of SVE provides com
patibility with software applications to diverse display types
through SpatialGL APIs and OpenGL APIs. The SVE con
cept extends in three additional directions: application soft
ware development can be accelerated by producing higher
level graphical programming toolkits; a spatial user interface
(UI) library can provide applications with a consistent and
intuitive UI that works well with 3-D displays; and a stream
ing content library allows the SVE to work with stored or
transmitted content. This may be utilized to enable “appli
ance' applications and “dumb terminals.”

US 2012/0050300 A1

0028. In addition, the SVE is a display-agnostic and poten
tially remote-rendering architecture. The SVE can commu
nicate with 2-D and very different 3-D displays (multiplanar,
view-sequential, lenticular, Stereoscopic, holographic). The
rendering server does not need to be local to the display(s).
0029. The CRS 122 is a collection of rendering strategies.
The cost of implementing a rendering engine for a new dis
play geometry breaks down into a system integration effort
and an algorithm implementation effort. CRS 122 eliminates
the system integration effort by providing a portable commu
nication framework to bridge the client and server domains
and by abstracting computation assets. The CRS 122 creates
output for a Perspecta rendering module 124, a multiview
rendering module 126 and can be tailored to create output for
future rendering modules 206. In addition, the architecture
depicted in FIG.2 may be utilized to support future graphics
display architectures and third-party architectures 210.
0030 The spatial transport protocol (STP) describes the
interaction between the Spatial Visualization Environment
and Core Rendering Software. The spatial transport protocol
comprises a set of commands. The STP may optionally com
prise a physical definition of the bus used to communicate
STP-formatted information. The STP commands are divided
into several groups. One group of commands is for operating
the rendering hardware, and frame buffer associated with the
display. Another group of commands is for synchronizing the
STP command stream with events on the host device, render
ing hardware and frame buffer. Another group of commands
is for operating features specific to the display hardware, such
as changing to a low power mode or reading back diagnostic
information.

0031. Different streams of graphics commands from dif
ferent applications may proceed through the architecture to
be merged into a single STP stream. Due to multitasking, the
STP is able to coherently communicate overlapping streams
of graphics commands. STP Supports synchronization
objects between the applications (or any layer below the
application) and the display hardware. The application level
of the system typically generates sequential operations for the
display drivers to process. Graphics commands may be com
municated with a commutative language. For efficiency, the
display hardware completes the commands out of order.
Occasionally, order is important; one graphics operation may
refer to the output of a previous graphics operation, or an
application may read information back from the hardware,
expecting to receive a result from a sequence of graphics
operations. Application Layer
0032 Exemplary embodiments of the SVE include a 3-D
rendering API and display virtualization layer that enables
application developers to universally exploit the unique ben
efits (such as true volumetric rendering) of 3-D displays. It
consists of several subsystems: SpatialGL 118, OpenGL
compatibility module 114, Streaming content library and Vol
ume manager 120. Future development may expand SVE to
include scene-graph, rendering engine and application-spe
cific plug-in subsystems.

SpatialGL

0033. Just as OpenGL API implementations are video
card-specific, implementations of the SpatialGL API 118 are
display, or output-device-specific. Examples of “targets' for
SpatialGL implementations are: 2-D displays, Volumetric
displays, view-sequential displays, and lenticular multi-view

Mar. 1, 2012

displays. Exemplary embodiments of the SVE can commu
nicate with a broad range of output devices whose underlying
physics are quite different.
0034 FIG. 3 is a block diagram of an exemplary Spa
tialGL implementation that may be utilized by exemplary
embodiments of the present invention. The blocks include a
NativeApp block 116 which is written to take full advantage
of spatial displays by using the SpatialGL API. The Native
App block 116 may transmit data to the client 308, Spa
tialEngine 304, SceneGraph 306 and the volume manager
310. In alternate exemplary embodiments, applications can
also take advantage of higher level APIs such as SceneGraph
306 and SpatialEngine 304 from Actuality Systems, Incorpo
rated. SceneGraph 306 provides an interface for encoding
scene graphs in SpatialGL. SceneGraph 306 implements fea
tures Such as: assemble shapes into objects; transform the
positions of an objects; and animation node. The Spa
tialEngine 304 implements high level functions such as draw
Volume and overlaying a scene-graph. SpatialEngine 304 is
extensible. For example, an Oil Toolkit can be added, which
adds functions such as: draw porosity Volume, overlay drill
path and animate path plan.
0035. As depicted in FIG. 3, SpatialGL is input to the
client 308. In exemplary embodiments of the present inven
tion, the native API, or SpatialGL API, provides an object
oriented front-end to the STP byte code. The SpatialGL API
exposes features such as, but not limited to: define fragment
program, define vertex program, bind geometry Source, bind
texture source, swap buffer and synchronize. The client 308
sends SpatialGL commands to the volume manager 310. The
SpatialGL commands may include commands for retrieving
persistent objects to be displayed on a graphical display
device. The persistent objects include, but are not limited to,
2-D and 3-D textures and vertex buffers. The persistent
objects may be stored on one or more of a database, a storage
medium and a memory buffer. In addition, the SpatialGL
commands may include commands for retrieving display
nodes to be displayed on a graphical display device. Display
nodes refer to an instance of any display that can be individu
ally referenced (e.g., a Perspecta display, a 2-D display). STP
commands from the volume manger 310 are sent to the core
rendering client 312. The core rendering client 312 is the first
computation resource available to the STP execution environ
ment. Early data reducing filter stages can also execute here.
Stream compression and Volume overlay are processes that
may be assigned computation resources at this point. The core
rendering client 312 formats the remainder of the filter graph
to take into account the physical transport 314 layer between
the core rendering client 312 and the core rendering server. At
the STP interpreter block 316, API calls are converted into
STP. Each STP node is a computation resource. STP proce
dures get bound to STP nodes as the program is processed.
The node executes any procedure that has been bound to it by
a previous node.
0036 Spatial Transport Protocol may be converted for
persistent storage and written to a disk. This can be accom
plished by storing the serialized Spatial Transport Protocol
byte code to disk, along with a global context table. The
global context table allows context-specific assets to be
resolved when the STP file is later read back from disk. The
global context table establishes correspondences between
local context handles referenced by the STP byte code and
persistent forms of the referenced data. For example, a STP
byte code may reference texture image number 5. The texture

US 2012/0050300 A1

image number is associated with specific data in the original
local context of the byte code. When saved to disk, texture
image number 5 is associated with a particular texture image
by the local context table. This can be accomplished by stor
ing in table position 5, a copy of the texture image, or by
storing a GUID or URL that identifies a persistent source for
the texture image.

Compatibility Module Structure
0037 FIG. 4 is a block diagram of an exemplary compat

ibility module structure. Ported applications 112 and/or
legacy applications 110 can provide input to the compatibility
module structure depicted in FIG. 4. Ported applications 112
are applications originally written using OpenGL, but have
been extended by programmers to interface with spatial dis
plays. Legacy applications 110 are applications written with
no knowledge of spatial displays or vendor APIs (e.g., Actu
ality Systems, Incorporated APIs). OpenGL support is pro
vided through two dynamic link libraries. The main library is
called the GLAS library 412. It provides drawing methods
similar to the industry-standard OpenGL API, and also con
tains specialized initialization and State management routines
for spatial displays. The GLAS library 412 converts OpenGL
API calls into SpatialGL 118 calls. SpatialGL 118 is a low
level graphics language utilized by exemplary embodiments
of the present invention. The OGLStub library 414 exports an
interface similar to the OpenGL32.dll system library 408. The
behavior of the library can be customized on a per-application
basis. The OGLStub library 414 intercepts and redirects
OpenGL API calls in a customizable manner. Calls are
optionally forwarded to the OpenGL32.dll system library 408
and/or the GLAS library 412 for translation.
0038 OpenGL is an industry standard low-level 3-D
graphics API for, Scientific and computer aided design (CAD)
applications. OpenGL Supplies a language that expresses
static information. The application must explicitly break
down dynamic scenes into discrete frames and render each
one. OpenGL expresses commands Such as: input a vertex;
draw a triangle; apply a texture; engage a lighting model; and
show the new rendering.
0039 Referring to FIG.3, OpenGL calls are duplicated for
both the system library 408 (to render on the 2-D monitor) and
for the GLAS library 412. By default, the first scene is ana
lyzed to determine the depth center of the application's
implied coordinate system. Since the depth center is not
known until the first swap-buffers call, it may take until the
second scene for the image in Perspecta to render properly.
0040. The first scene is analyzed to determine the depth
center of the application's coordinate system. Once the depth
center is calculated, a fix-up transform is calculated. This
transform is applied consistently to the projection specified
by the application, so that the application's further transfor
mations the projection (such as Scaling and Zooming) are
reflected properly in the spatial rendering. After the depth
center is determined, the Stub library 414 issues a redraw call
to the application to ensure that the first scene is drawn prop
erly in Perspecta.
0041. The two main configurations are “ghost mode 406
and “extended mode 410. Ghost mode 406 automatically
duplicates OpenGL calls for both the system library 408 and
for the GLAS library 412. In ghost mode 406, depth centering
is based on Xandy Scale and centered to get the majority of the
vertices within the display. Ghost mode 406 provides an
unextended OpenGL interface and attempts to make a spatial

Mar. 1, 2012

display appear as a 2-D display to the application. Extended
mode 410 allows the application to control the call forward
ing behavior. Extended mode 410 exposes an extended
OpenGL interface. A few commands are added to help the
application control a spatial display separately from a 2-D
display. Example commands include: create a context for a
spatial display and draw to a spatial display context. Output
from the GLAS library 412, in SpatialGL, is sent to the client
308 and then to the volume manager 310. The volume man
ager 310 assigns display resources. It filters the STP stream to
reformat the data according to the display resource assigned
to the given context. The core rendering block 312, which
contains the mechanisms for decoding and executing proce
dures in the STP language, receives STP commands.
0042. The configuration is controllable for each applica
tion, based on a central control repository. Parameters that
may configured include, but are not limited to: context selec
tion strategy (allows the controller to change the context
selection while the application is running); projection fix-up
strategy that overrides the projection that that application
specifies, in order to fit the image in the actual display geom
etry; texture processing strategy; context STP preamble (e.g.,
resolution hints); and scene STP preamble.
0043. Some spatial displays physically realize view-de
pendent lighting effects. In this case, lighting is calculated
based on the actual view directions, rather than the master
direction given by the projection matrix.
0044 Specific rasterization constraints and rules can only
be specified relative to the unique geometry of each display
type. In general, only fragments that intersect the projection
of an element into the display's native coordinate system may
be lit. When rendering polygons, elements must not contain
holes. When rendering connected polygons where exact ver
tex positions are shared, the rendered figure must not contain
holes.
0045. When anti-aliasing is used, the partial ordering of
the color value of the fragments must agree with the partial
ordering of the intersection (area or length) between the frag
ment and pixels of the display's native coordinate system,
when normalized for variation in area or volume of the pixels.

Streaming Content Library
0046. The streaming content library permits spatial stream
assets. A spatial stream asset is a time-varying source of
spatial imagery. Optionally, the spatial stream may be Syn
chronized with one or more audio streams. A spatial stream
may either consist of a real-time stream, a recorded stream, or
a dynamically generated Stream. An example of a ream-time
spatial stream is a multi-view stream that is fed from an array
of cameras. An example of a recorded stream is a spatial
movie stored on a removable disk. An example of a dynami
cally generated stream is a sequence of dynamically rendered
3-D reconstructions from a PACS database.
0047. Each stream is associated with a spatial codec. The
intended interpretation of the stream is determined by the
associated spatial codec. The spatial codec is comprised of a
stream encoding specification and a reconstruction specifica
tion. The stream encoding specification determines the map
ping from the raw binary stream to a time-varying series of
pixel arrays. The stream encoding specification may also
identify an audio stream, synchronized with the pixel arrays.
The reconstruction specification determines the intended
mapping from pixel arrays to physical light fields. Examples
of stream encoding specifications include MPEG coded rep

US 2012/0050300 A1

resentations. The reconstruction specification can be defined
using the persistent form of Spatial Transport Protocol.
0048. A client of the streaming content library receives the
raw binary stream and the spatial codec. The client proceeds
to reconstruct an approximation of the intended physical light
field, by calculating pixel arrays using the stream encoding
specification. At each time step, the client consumes one or
more pixel arrays and interprets an intended light field, using
the reconstruction specification. The intended light field is
rendered into the local display's specific geometry, using
Core Rendering Software. Finally, Core Rendering Software
moves the rendered image into the spatial frame buffer, caus
ing the display to generate a physical manifestation of a light
field.
0049. The streaming content library includes spatial
stream asset servers. Each spatial stream asset is published by
a spatial asset server. An asset server may publish one or more
streams, each with a unique URL. A Software application
using SpatialGL (Such as a spatial media player) can call up a
particular spatial stream asset using its associated URL.
0050 Spatial stream assets may be transmitted with uni
directional signaling: for example several TV channels may
be jointly used to transmit a multi-view recording. In this
case, the spatial codec can be continuously or periodically
transmitted. Spatial content may also be broadcast with bidi
rectional signaling: for example, a spatial movie may be
downloaded from an Internet-based asset server and viewed
using a spatial media player using SpatialGL. In this case, the
client could potentially negotiate an optimal spatial codec to
match the client's display geometry. Bidirectional signaling
can also be used to allow a client to remotely control a
dynamically generated stream. For example, a client may
continuously send updates to a server about the desired view
direction and region of interest, while the server continuously
returns rendered images to the client through the streaming
library. Alternately, a client may receive notifications from
the spatial stream asset server when new data is available.
Based on the notifications, the client may choose to download
and render the new data or else the client may skip the new
data. When receiving a notification, the client may decide
whether to download or skip the new data, based on factors
Such as the currently available buffer space, communication
bandwidth, processing power, or desired level of image qual

Pseudo-Code Reconstruction Specification for a Multi-View
Stream

0051 Define in views V. Sub.1, ...V.Sub.n, each comprised
of a projection P. Sub.i and an aperture Q. Sub.i
For each time step t
0052 For each view V. Sub.i.
0053 Render a plane, textured with pixel array tin--i,
using projection P. Sub.i

0054 Render aperture Q subi
0055 Swap the rendered image into the active frame
buffer

Pseudo-Code Reconstruction Specification for a Volumetric
Stream

0056 Define a local 3-D texture asset T
For each time step t
0057 For each pixel array i in 1... n.

0.058 Load pixel array i into slice i of texture T
0059 Render a solid cube, textured with T

Mar. 1, 2012

0060 Swap the rendered image into the active frame
buffer

Network Layer

0061. In an exemplary embodiment of the present inven
tion, the CRS 122 has the character of a slave peripheral and
communication to the CRS 122 is limited to proprietary chan
nels. Alternate exemplary embodiments of the CRS 122 have
an expanded role as a network device. In addition, it can
communicate with a host over a network, and it supports
standard protocols for network configuration. The CRS 122
has both a client part and a server part.
0062. In exemplary embodiments of the present invention,
a host PC runs an application and is in communication with a
single multiplanar 3-D display which contains an embedded
core rendering electronics system. The client part is embod
ied on the host PC, while the server part is embodied on the
core rendering electronics. CRS 122 is distinct from the SVE
because the CRS 122 is meant primarily to provide a render
ing engine for specific display types that is compatible with
the display-independent graphical commands generated in
the SVE.

0063. The client side of the CRS 122 interfaces to the SVE
using the STP language. STP is used to package and transport
SpatialGL API calls. A core rendering client connects the
Volume manager 120 to the physical transport by acting as an
STP interpreter. The core rendering client interpreter exposes
procedures (with STP linkage) that allow an STP program to
address specific servers. Exemplary embodiments of the
present invention only function when a single server is
present. Alternate exemplary embodiments of the core ren
dering client communicate with servers over a network, and
are able to list and address the set of available servers.

0064. The client also provides a boot service. This pro
vides the boot-image used by the net-boot feature of the
servers. The boot-image is stored in a file that can be updated
by Perspecta Software Suite upgrade disks (or via web
upgrade). The boot service can be enabled and disabled by the
SVE. After the boot-image file is upgraded, the installer must
enable the boot service to allow the display to update.
0065. In the current example, in which there is one host PC
and one Perspecta display, all input to the system arrives
through the gigabit Ethernet connections. The embedded sys
tem acts as a normal Internet Protocol (IP) device. The
embedded system acts as a server, while the host PC acts as a
client. The server acts as a normal IP device. In exemplary
embodiments of the present invention, the client and server
must be directly connected. In alternate exemplary embodi
ments of the present invention, clients and servers are con
nected through a gigabit Switch. This configuration removes
the requirement that the client PC contains two Ethernet
controllers, and it allows multiple clients to connect to a
single server. The server obtains an IP address using dynamic
host configuration protocol (DHCP) (unless it has been con
figured to use a static address). Once an IP address has been
obtained, the CRS 122 and the client must be made aware of
the identity of the server. This is done by a symmetric system
where a node (client or server) broadcasts a datagram when it
starts. The node that starts first obtains the identity of the later
node. If the server is started first, and encounters a client
datagram broadcast, it opens a connection to the client to
communicate the server's identity. A client may simulta

US 2012/0050300 A1

neously communicate with multiple servers. Each server may
only communicate with a single client at a time.
0066. In alternate exemplary embodiments of the present
invention, the servers have a user interface and policy for
attaching to specific clients when more than one client is
available. The CRS 122 provides a simple network manage
ment protocol (SNMP) interface to manage the network set
tings of the server. The SNMP interface configures the IP
address, broadcast settings and security settings. The security
settings include client allow and deny lists.
0067. In exemplary embodiments of the present invention
the host and client Support a single gigabit Ethernet connec
tion. In alternate exemplary embodiments, the host and client
employ an additional protocol to support two gigabit Ethernet
connections.

0068. Once a client knows the identity of a server, the
client may open the server. The client and server communi
cate through datagrams. The server is single-threaded; the
client may only open a single connection to the server and it
is guaranteed exclusive access to the entire display resource.
Once the client has opened the server, it may begin transact
ing rendering commands. Rendering commands are moved
between the client and server using a command stream and a
remote memory protocol.
0069. Since the network graphics service is meant to com
municate only over a local network segment, a very low level
of packet loss is expected. The details of the communication
scheme can be arranged to ensure that the system degrades
gracefully under packet loss. Device allocation and context
creation must be guaranteed to operate correctly underpacket
loss. The bulk graphics data transfer is not protected, except
that a frame that is rendered without packet loss must not be
degraded by packet loss in previous frames. Persistent texture
map data is protected against packet loss by a checksum and
a failure/retry scheme.

Core Rendering Software (CRS)
0070 CRS 122 uses the STP language as a form for com
municating graphics commands and procedures. STP allows
the interfaces between the major components of the Core
Rendering Software system to be uniform. In the initial ver
sion of Core Rendering Software, STP serves as the inter
process-communication mechanism. STP is used to commu
nicate a sequence of graphics commands from the client to the
server. The initial version of STP will include conditional
execution and parallel branching prototype features. In later
versions of Core Rendering Software, modules will be writ
ten within the STP language, thus flattening the hardware
native part of the architecture. Conditional execution and
parallel branching features will be optimized in later versions
of Core Rendering Software.

Rendering Modules
0071 FIG.5 is a block diagram of an exemplary rendering
module. The pipeline system structure, or pipeline frame
work, Subsystem provides the generic structure that is com
mon to rendering pipelines for the CRS 122. A rendering
pipeline is implemented through a pipeline system class 502.
A pipeline system class 502 is composed of a rendering
pipeline and a fixed set of active objects. An active object
models a device that can trade time for data movement or
transformation, such as a bus, a GPU or a CPU. The pipeline
system class 502 binds stages to scheduler threads 510 (i.e., to

Mar. 1, 2012

active objects). The scheduler thread 510 is the binding
between stages and active objects.
0072 An instance of a pipeline 504 operates on a single
input stream of homogeneous elements. An exemplary pipe
line constructor includes: initiate first-in-first-out (FIFO)
length; and initialize stage connections. As depicted in FIG. 5,
fixed length FIFOs 506 constrain the resource usage of the
system.
0073 Rendering pipelines are implemented as a series of
stages 508 that communicate with tasks. A stage 508 is an
algorithmic unit that transforms one stream of tasks into
another stream of tasks. Although a stage 508 may be
designed to be compatible with a specific active object 512,
the binding to the active object 512 is external to the stage
508. For example, a stage 508 may implicitly require a bind
ing with a GPU by making OpenGL calls, but it must not own
or manipulate an OpenGL context.
0074 Stage objects have an unusually complicated life
cycle. They are typically created in one thread but work in a
second thread. The lifetime of a stage 508 consists of these
distinct transitions: construction, initialization, execution,
de-initialization, and destruction. A stage 508 transforms a
stream of homogeneous elements. A stage 508 utilizes the
resources of a single active object and executes several hun
dreds of times a second. The biding between a stage 508 and
an active object 512 is external to the stage class. Therefore,
a pipeline 504 may be considered a stage 508, but a pipeline
system 502 may not be considered a stage 508. The remote
active object 512 depicted in FIG.5 models a thread of execu
tion that exists outside of the CPU. Input to the active object
512 includes data from the GL context block 514 and the
voxel engine context block 516.
0075 Task objects are not strongly structured, outside of
their specific implementation domain. In exemplary embodi
ments of the present invention, the pipeline framework
includes a Fence class, which is utilized to provide a main
stream synchronization pattern. A pipeline system 502 oper
ates asynchronously from its enclosing system. The enclosing
system can insert a Fence into the command stream of a
pipeline 504. A pipeline passes a fence when all processing
due to tasks issued before the fence have completed. The
enclosing system can query whether the pipeline 504 has
passed the fence, or it can block until the fence has been
passed.

SpatialGL Graphics Pipeline for Other Displays

(0076. As described above, a key feature of the SVE is
display-independence (or 'display-agnosticism'). Imple
mentations of the SpatialGL API can be made for a variety of
2-D and 3-D displays. The SpatialGL API may be utilized
with a Perspecta multiplanar volumetric display. In addition,
the SpatialGL API may be utilized with other types of dis
playS.
0077. Because multi-view rendering is very similar to
single-view rendering, the SpatialGL implementation is Sub
stantially simpler than the SpatialGL implementation for
multiplanar rendering. For example, on flat, horizontal-par
allax multi-view displays, such as the Stereographics 9-view
lenticular display or Actualty System's quasi-holographic
video display, a slice volume could be created as part of the
rendering process. A slice Volume contains a slice for each
rendered view direction. Rendered views use sheared ver
sions of standard projection matrices, corresponding to the
viewing angles. “Final views’ correspond to the views that

US 2012/0050300 A1

are physically generated by the display hardware. Final views
are sampled from the slice Volume (for example, using texture
mapping). The number of final views may be different than
the number of rendered views.
0078 Rendering tetrahedra requires special treatment
because, at the time of writing, GPUs lack native volumetric
rendering Support. In this case, SpatialGL wraps an efficient
Volume rendering implementation Such as ray casting.
0079. Depending on the multiview display, image format
ting can be different. Because Stereographics lenticular dis
play interfaces via digital visual interface (DVI), it does not
require special formatting hardware (such as the Voxel
Engine in Actuality Systems, Incorporated's Core Rendering
Electronics). However, the distribution of pixels and views is
Somewhat irregular, and requires a reformatting process
known as “interZigging.” Additionally, view anti-aliasing can
occur during this step. On the other hand, Actuality Systems
holovideo display was designed to use the same Core Ren
dering Electronics as Perspecta, and can share the same
implementation.
0080. Because SpatialGL is display-agnostic, SpatialGL
can also be used for non-3D displays. Examples include tiled
display walls, displays with heterogeneous interfaces (e.g. the
Sunnybrook HDR LCD, foveated resolution displays), and
displays with unusual geometries (e.g. dome, sphere or cube
shaped displays). Finally, an obvious example would be a
standard 2-D display Such as a desktop cathode ray tube
(CRT) or liquid crystal display (LCD). This would allow the
use of SpatialGL programs on standard computer hardware
without an exotic display configuration. For the most part, the
rendering of these displays only requires changes in the
image reformatting stage, and minor changes elsewhere.
0081 FIG. 6 is an exemplary process flow diagram of a
command from a ported application. A ported application 112
renders a scene by issuing function calls via the compatibility
module 114 to the GLAS Extended API (similar to OpenGL).
These API calls specify features of the scene, such as texture
images, the position and shape of primitive elements (such as
lines points and triangles) and the mappings between ele
ments textures and colors. The GLAS extended stub library
612 receives the API calls and issues them to the GLAS
translation library 412. The GLAS translation library man
ages the OpenGL state machine to interpret the GLAS
Extended API calls. Interpreted calls are translated into Spa
tialGL API calls.
0082 Legacy applications invoke a similar command
flow. In this case, a legacy application 110 renders a scene by
issuing function calls via the compatibility module 114 to the
GLAS Ghost API (similar to OpenGL). The GLAS ghost stub
library 613 receives the API calls and reformats the scene in
preparation for translation to SpatialGL. For example, the
stub library may apply a heuristic that inspects the Ghost API
calls to estimate the intended depth center of the scene. This
additional information is passed to the GLAS translation
library 412, along with the API calls generated by the legacy
application. Interpreted calls are translated into SpatialGL
API calls.
I0083. The SpatialGL client library 308 directs the API
calls to the Volume manager 310, along with association
information to identify the Software application instance that
generated the commands (the ported application).
I0084. The volume manager 310 modifies the API call
stream. For example, it may map the application's rendering
output to a specific potion of the graphics Volume generated

Mar. 1, 2012

by the display device. It may also apply an overlay to the
rendering output, such as a sprite that marks the location of a
3-D pointer.
I0085. After the volume manager 310, the core rendering
client library 312 marshals the API calls and transmits them
(for example, using Spatial Transport Protocol 314) to the
server execution environment. The core rendering Software
(instantiated in the server execution environment) receives
and unmarshals API calls.
I0086. The core rendering server 604 operates rendering
algorithms, based on the API calls. The rendering algorithms
are defined by a renderer module 606. In general, there is a
specialized renderer module for each distinct class of display
geometry. The rendering algorithms cause rendered image
bitmaps to be moved into the spatial frame-buffer 611, using
the voxel engine driver 610.

Distributed Configurations
I0087. Typically, graphics libraries allow multiple client
applications to share access to a single rendering server (via,
for example, the Windows Graphics Library IWGL for
OpenGL Windows). In exemplary embodiments of the
present invention, the SVE volume manger provides this
meta-service for the SpatialGL API. The SpatialGL API is
also designed to allow a single client application to access
multiple servers. Often, this will be to provide multiple views
to an application (e.g., standard 2-D view with a Perspecta
volumetric view).
I0088. However, for the SpatialGL API, servers do not
necessarily represent access to rendering/display resources;
instead they may also represent access to graphical assets.
This includes geometry data, images, shader programs, and
their combinations. Like web pages, SpatialGL objects can be
referenced by Uniform Resource Locators (URLs). These
URLs may represent local resources or shared resources.
Exemplary implementations of the present invention can dis
tribute different parts of the rendering pipeline to different
servers that may specialize in various tasks.
I0089. A simple configuration that may be implemented by
the network layer 202 of the architecture described previously
herein includes having a host computer attached directly to a
display (e.g., a spatial display). In this configuration, the
client application on the host computer may open multiple
contexts (virtual servers) that are shared on the display.
Another configuration that may be implemented by exem
plary embodiments of the present invention is a typical client/
server configuration. In this case, multiple host computers are
attached to a display over a network and client applications on
different host computers can each open multiple contexts
(e.g., via the SpatialGL API) that are shared on the display.
Other exemplary configurations include a buffered display
configuration with a host computer that is attached to a Spa
tialGL rendering server. In this configuration the rendering
server can only perform rendering, and does not actually
display images. When the client application sends scenes to
the rendering server, they are rendered and stored. The stored
results can be played back on a display at a later time.
(0090 FIGS. 7-10 depict further example configurations
that may be implemented by the network layer 202 of the
architecture described previously herein. In FIG. 7, multiple
host computers 702 are attached to various displays 704 over
one or more networks 706. The displays 704 may be a mixture
of various types (e.g., 2-D and 3-D). In exemplary embodi
ments of the present invention, the host computers 702 dis

US 2012/0050300 A1

cover displays 704 through the Domain Name System (DNS).
The host computer systems 702 include one or more graphics
applications that communicate with one or more displays 704
via the network using an API (e.g., the SpatialGL API).
0091. The network 706 may be implemented by any type
of known network including, but not limited to, a wide area
network (WAN), a local area network (LAN), storage area
network (SAN), a global network (e.g. Internet, cellular), a
virtual private network (VPN), and an intranet. The network
706 may be implemented using a wireless network or any
kind of physical network implementation. SpatialGL servers
(e.g., asset server, rendering server) may be attached to the
network 706 in a wireless fashion.
0092 FIG.8 depicts a system that may be implemented by
exemplary embodiments of the present invention. The con
figuration depicted in FIG. 8 includes a dedicated asset server
802. In FIG.8a host computer is attached to a SpatialGL asset
server 802, a SpatialGL rendering server 804 and a display on
a thin client 806. The client application accesses assets from
the asset server 802 by URL. These assets are forwarded to
the rendering server 804 (which may have the asset locally
cached). The client application sends SpatialGL commands
to the rendering server 804, which renders the SpatialGL
scenes (also referred to herein as graphic display data) and
sends the results to the display. In exemplary embodiments of
the present invention, the assets are very large compared to
the bandwidth between the host computer and the SpatialGL
server (e.g., host/display is a doctor's home PC connected
over the Internet and the asset server 802 is SpatialGL/DI
COM bridge that creates SpatialGL volumetric textures from
a hospital's picture archiving and communication system
(PACS).
0093 FIG.9 depicts a system that may be implemented by
exemplary embodiments of the present invention. The con
figuration depicted in FIG.8 may be referred to as a remote
rendering implementation. In FIG. 9, a host computer is in
communication with a SpatialGL rendering server 804 and a
display server through a network. In the system depicted in
FIG.9, the host computer and display server on located on the
same machine (e.g., host/display is a thin client 806 Such as a
table PC or cellular telephone) and the rendering algorithms
are performed remotely by the rendering server 804. The
rendering server may access the asset server 802 via the
network 706. The client application, located on the thin client
806, sends SpatialGL commands to the rendering server 804.
The rendering server 804 then renders the SpatialGL scenes
and sends the results to the Spatial GL display on the thin
client 806.
0094 FIG. 10 depicts a system that may be implemented
by exemplary embodiments of the present invention to pro
vide distributed rendering. Multiple host computers 702 are
attached to various SpatialGL rendering servers 1004 and
displays 1002 over a network. 706. Client applications from
the host computers 702 send SpatialGL commands to the pool
of rendering servers 1004 that load-balances and distributes
the rendering tasks amongst themselves, possibly through an
arbiter. Scenes are rendered in parallel across available and
easily accessible rendering servers 1004 and sent to the
appropriate displays 1002. Interesting (though not mutually
exclusive) distributions of rendering servers 1004 include
workstations that perform SpatialGL rendering during idle
cycles or centrally deployed cluster of dedicated rendering
servers 1004. The latter case is particularly interesting when
combined with dedicated asset servers 802.

Mar. 1, 2012

0.095 The system configurations described above and
depicted in FIGS. 7-10 are exemplary in nature. In general,
the asset resources (e.g., asset server 802), computation
resources (e.g., rendering server 804) and/or display
resources (e.g., displays 704) may be distributed across one or
more networks 706 or co-located. In addition, one or more
assets resources and/or computation resources may create
input to one or more displays. Particular use-cases and spe
cific examples that may be implemented using the configu
rations described above include, but are not limited to:

0096. A customer's PC connected directly to a 3-D dis
play (for example, a mechanical engineer running Solid
Works application software on a desktop IBM PC work
station, containing elements of Spatial Visualization
Environment, in physical connection to a multiplanar
three-dimensional display over gigabit Ethernet.)

0097. One or more mobile devices with rendered 3-D
graphics on its 2-D display (i.e. 3-D-on-2-D) that call
upon remote rendering computational horsepower to
draw animated 3-D graphics for games.

0098. One or more mobile devices with rendered 3-D
graphics on its 3-D display (i.e. a cellphone with a len
ticular 9-view autostereoscopic 3-D display) that call
upon remote rendering computational horsepower.

0099. Several displays of various types distributed
through an oil exploration enterprise, Such as 17" desk
top LCDs, a 9-panel 2-D video wall, ten stereoscopic
displays, and a volumetric 3-D display, all rendering
projections of a 3-D application's graphical output,
where the 3-D application resides in a computer not
necessarily local to the displays.

0.100 Several displays of various types, such as 2-D and
panoramagram 3-D, throughout one or many movie
retail locations, which in response to a potentially
remote source of data provides content in a synchro
nized manner. For example, when a new product is
offered, all of the displays can show up-to-date adver
tising content.

0101 Exemplary embodiments of the present invention
allow applications to have access to a wider variety of assets,
rendering algorithms and displays. The assets, rendering
algorithms and displays may be located in the same geo
graphic location or located in separate geographic locations
and in communication via a network.

0102. As described above, the embodiments of the inven
tion may be embodied in the form of hardware, software,
firmware, or any processes and/or apparatuses for practicing
the embodiments. Embodiments of the invention may also be
embodied in the form of computer program code containing
instructions embodied in tangible media, such as floppy dis
kettes, CD-ROMs, hard drives, or any other computer-read
able storage medium, wherein, when the computer program
code is loaded into and executed by a computer, the computer
becomes an apparatus for practicing the invention. The
present invention can also be embodied in the form of com
puter program code, for example, whether stored in a storage
medium, loaded into and/or executed by a computer, or trans
mitted over some transmission medium, Such as over electri
cal wiring or cabling, through fiber optics, or via electromag
netic radiation, wherein, when the computer program code is
loaded into and executed by a computer, the computer
becomes an apparatus for practicing the invention. When
implemented on a general-purpose microprocessor, the com

US 2012/0050300 A1

puter program code segments configure the microprocessor
to create specific logic circuits.
(0103) While the invention has been described with refer
ence to exemplary embodiments, it will be understood by
those skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the invention without departing
from the essential scope thereof. Therefore, it is intended that
the invention not be limited to the particular embodiment
disclosed as the best mode contemplated for carrying out this
invention, but that the invention will include all embodiments
falling within the scope of the appended claims. Moreover,
the use of the terms first, second, etc. do not denote any order
or importance, but rather the terms first, second, etc. are used
to distinguish one element from another.
What is claimed is:
1. A system for displaying graphical information, the sys

tem comprising:
an asset server for storing information; and
a rendering server in communication with the asset server

for receiving a graphics command and for rendering
graphic display data in response to the graphics com
mand and to the information, wherein the rendering
server is independently addressable from the asset
SeVe.

2. The system of claim 1 wherein the asset server and the
rendering server are in communication via a network.

3. The system of claim 1 wherein the asset server is located
in a different geographic location than the rendering server.

4. The system of claim 1 wherein the information includes
one or more of rendering resources, geometry data, images
and shader programs.

5. The system of claim 1 wherein the rendering server
further transmits the graphic display data to a display device
that is independently addressable from the asset server and
the rendering server.

6. The system of claim 5 wherein the graphic display data
is transmitted to the display device via a network.

7. The system of claim 5 wherein the display device is
located in a different geographic location than one or more of
the rendering server and the asset server.

8. The system of claim 5 wherein the display device
includes one or more of a two-dimensional (2-D) display and
a three-dimensional (3-D) display.

9. The system of claim 5 wherein the display device
includes one or more of a 2-D printer and a 3-D printer.

10. The system of claim 1 wherein the graphics command
is generated by a client application.

11. The system of claim 10 wherein the client application
transmits the graphics command to the rendering server via a
network.

Mar. 1, 2012

12. The system of claim 10 wherein the client application is
located in a different geographic location than the rendering
SeVe.

13. The system of claim 1 wherein the graphics command
is generated by a plurality of client applications.

14. The system of claim 1 wherein the rendering server
further transmits the graphic display data to a plurality of
independently addressable display devices.

15. A method for displaying graphical information, the
method comprising:

receiving a graphics command at a rendering server,
accessing information responsive to the graphics com

mand, wherein the information is located in an asset
server that is separately addressable from the rendering
sever, and

rendering graphic display data in response to the graphics
command and to the information.

16. The method of claim 15 wherein the asset server is
located in a different geographic location than the rendering
server and the asset server and the rendering server commu
nicate via a network.

17. The method of claim 15 further comprising transmit
ting the graphic display data to a display device.

18. The method of claim 17 wherein the display device is
located in a different geographic location from one or more of
the asset server and the rendering server.

19. An architecture for displaying graphical information,
the architecture comprising:

an asset resource layer for storing information; and
a rendering layer for receiving a graphics command and

rendering graphic display data in response to the graph
ics command and to the information, wherein the com
munication server is independently addressable from the
aSSet Server.

20. The architecture of claim 19 further comprising a dis
play layer for receiving the graphic display data and display
ing the graphic display data on a display device, wherein the
display layer in independently addressable from the asset
layer and the rendering layer.

21. A computer program product for displaying graphical
information, the computer program product comprising:

a storage medium readable by a processing circuit and
storing instructions for execution by the processing cir
cuit for performing a method comprising:

receiving a graphics command at a rendering server,
accessing information responsive to the graphics com

mand, wherein the information is located in an asset
server that is separately addressable from the rendering
sever, and

rendering graphic display data in response to the graphics
command and to the information.

c c c c c

