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ARCHITECTURE FORRENDERING 
GRAPHCS ON OUTPUT DEVICES OVER 

DIVERSE CONNECTIONS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 11/176,482, filed Jul. 7, 2005, which 
claims the benefit of the filing date of U.S. Provisional Patent 
Application No. 60/586,327, filed Jul. 8, 2004, the contents of 
which are herein incorporated by reference. 

BACKGROUND 

0002 The present disclosure relates generally to imaging 
and visualization, and, more particularly, to an architecture 
for rendering graphics on output devices over diverse connec 
tions. Example output devices are two-dimensional displays, 
three-dimensional displays Such as Volumetric, multi-view, 
and holographic displays, and two- and three-dimensional 
printers. 
0003. Three-dimensional (3-D) information is used in a 
variety of tasks, such as radiation treatment planning, 
mechanical computer-aided design, computational fluid 
dynamics, and battlefield visualization. As computational 
power and the capability of sensors improve, the user is 
forced to comprehend more information in less time. For 
example, a rescue team has limited time to discover a cata 
strophic event, map the structure of the context (i.e., a sky 
scraper), and deliver accurate instructions to team members. 
Just as an interactive computer screen is better than a paper 
map, a spatial 3-D display offers rescue planners the ability to 
see the entire scenario at once. The 3-D locations of the 
injured are more intuitively known from a spatial display than 
from a flat screen, which would require rotating the “perspec 
tive view' in order to build a mental model of the situation. 
0004 Display technologies now exist which are designed 
to cope with these large datasets. Spatial 3-D displays (e.g., 
Actuality Systems Inc.'s Perspecta.RTM. Spatial 3-D Dis 
play) create imagery that fills a Volume of space—such as 
inside a transparent dome—and that appears 3-D without any 
cumbersome headwear. 
0005. It is expected that a variety of spatial displays will 
come into existence in the near future. Furthermore, software 
applications will emerge that will exploit the unique proper 
ties of spatial displays. In order to allow every type of display 
to be compatible with every application, a standard is needed 
which dictates how (electronically and with what protocol) 
spatial 3-D information is transmitted to the display device. In 
addition, Software applications and display devices that are 
not specialized for spatial 3-D rendering will continue to be 
utilized. Many customer computer environments will contain 
a mix of 3-D and non-3-D display devices and software 
applications. It would be desirable for application program 
mers to be able to write and execute a single application 
program to produce graphics on a variety of 3-D and non-3-D 
displays. 
0006 Further, modern graphics environments must solve 
the problem that the application Software generally runs on 
separate hardware from the rendering algorithms. Since off 
the-shelf personal computers (PCs) are not yet specialized for 
spatial 3-D rendering, the process separation is generally 
more complicated than sending the data across the peripheral 
component interface (PCI)-express bus. The Chromium 
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architecture is a prior attempt to solve this problem. Chro 
mium abstracts a graphical execution environment. However, 
the binding between an application, rendering resource and 
display is statically determined by a configuration file. There 
fore, applications cannot address specific rendering 
resources. Current 3-D display architectures and applications 
cannot address remote or distributed resources. Such 
resources are necessary for displays where ready-made ren 
dering hardware is not available for PCs. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007 Referring now to the figures, which are exemplary 
embodiments and wherein like elements are numbered alike: 
0008 FIG. 1 depicts an overview of an architecture that 
may be implemented by exemplary embodiments of the 
present invention; 
0009 FIG. 2 depicts an more detailed view of an architec 
ture that may be implemented by exemplary embodiments of 
the present invention; 
0010 FIG. 3 is a block diagram of an exemplary spatial 
graphics language implementation; 
0011 FIG. 4 is a block diagram of an exemplary compat 
ibility module structure; 
0012 FIG. 5 is a block diagram of an exemplary rendering 
module; 
0013 FIG. 6 is an exemplary process flow diagram for 
processing a command from a ported application; 
0014 FIG.7 depicts a system that may be implemented by 
exemplary embodiments of the present invention; 
0015 FIG. 8 depicts a system that may be implemented by 
exemplary embodiments of the present invention; 
0016 FIG.9 depicts a system that may be implemented by 
exemplary embodiments of the present invention; and 
0017 FIG. 10 depicts a system that may be implemented 
by exemplary embodiments of the present invention. 

SUMMARY OF THE INVENTION 

00.18 Exemplary embodiments of the present invention 
are directed to a system for displaying graphical information. 
The system includes an asset server for storing information 
and a rendering server in communication with the asset 
server. The rendering server receives a graphics command 
and renders graphic display data in response to the graphics 
command and to the information. The rendering server is 
independently addressable from the asset server. 
0019. Other exemplary embodiments of the present inven 
tion are directed to a method for displaying graphical infor 
mation. The method includes receiving a graphics command 
at a rendering server. Information responsive to the graphics 
command is accessed. The information is located in an asset 
server that is separately addressable from the rendering 
server. Graphic display data is rendered in response to the 
graphics command and the information. 
0020. Further exemplary embodiments of the present 
invention are directed to an architecture for displaying 
graphical information. The architecture includes an asset 
resource layer for storing information and a rendering layer. 
The rendering layer receives a graphics command and renders 
graphic display data in response to the graphics command and 
to the information. The communication server is indepen 
dently addressable from the asset resource layer. 
0021 Still further exemplary embodiments of the present 
invention include a computer program product for displaying 
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graphical information. The computer program product 
includes a storage medium readable by a processing circuit 
for performing a method. The method includes receiving a 
graphics command at a rendering server. Information respon 
sive to the graphics command is accessed. The information is 
located in an asset server that is separately addressable from 
the rendering server. Graphic display data is rendered in 
response to the graphics command and the information. 

DETAILED DESCRIPTION 

0022 Exemplary embodiments of the present invention 
include a spatial 3-D architecture to Support separate asset 
servers and rendering servers in a graphics environment. The 
architecture also has a spatial visualization environment 
(SVE), that includes a 3-D rendering API and a display vir 
tualization layer that enables application developers to uni 
versally exploit the unique benefits (such as true volumetric 
rendering) of 3-D displays. SVE supports the cooperative 
execution of multiple Software applications. As part of the 
SVE, a new API is defined, referred to herein as the spatial 
graphics language (SpatialGL), to provide an optional, dis 
play-agnostic interface for 3-D rendering. SpatialGL is a 
graphical language that facilitates access to remote displays 
and graphical data (e.g., rendering modules and assets). The 
architecture further has core rendering software which 
includes a collection of high-performance rendering algo 
rithms for a variety of 3-D displays. The architecture also 
includes core rendering electronics including a motherboard 
that combines a graphics processing unit (GPU) with a 64-bit 
processor and double-buffered video memory to accelerate 
3-D rendering for a variety of high-resolution, color, multi 
planar and/or multiview displays. Many of today's 3-D soft 
ware applications use the well-known OpenGL API. To pro 
vide compatibility with those applications, exemplary 
embodiments of the present invention include an OpenGL 
driver for the Actuality Systems, Incorporated Perspecta Spa 
tial 3-D Display product. Embodiments of the Perspecta Spa 
tial 3-D Display product are described in U.S. Pat. No. 6,554, 
430 to Dorval et al., of common assignment herewith. 
0023 Currently, a volume manager is available to manage 
cooperative access to display resources from one or more 
simultaneous Software applications (see for example, U.S. 
Patent Application No. 2004/0135974A1 to Favalora et al., of 
common assignment herewith). Current implementations of 
the Volume manager have asset and rendering resources that 
are not abstracted separately from the display. The display 
rendering and storage system are considered as a single con 
cept. Therefore, the display and rendering system must be 
designed together. Effectively, the display must be designed 
with the maximum image complexity in mind. Exemplary 
embodiments of the SVE, as described herein, remove this 
restriction by providing separately named asset, computation 
(rendering), and display resources. Unlike other rendering 
systems, the application has the flexibility to combine these 
resources by addressing each one independently. These 
resources may be independently addressed, and therefore 
may be located in one or more servers and accessed via one or 
more networks. In addition, these resources (e.g., two or more 
computation resources) may be combined to create output for 
a single graphics display. The resources may also be located 
in different geographic locations (e.g., different rooms in the 
same building, different cities, different countries) and in 
communication via a network. 
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0024 FIG. 1 depicts an overview of an architecture that 
may be implemented by exemplary embodiments of the 
present invention. One or more means is also provided for 
interfacing one or more central applications with a local, 
remote or distributed rendering or display systems and for 
interfacing external databases with a rendering system. 
(0025. The architecture depicted in FIG. 1 includes four 
layers, an application software layer 102, an SVE layer 104, 
a rendering architecture layer 106 and a display-specific ren 
dering module layer 108. The application software layer 102 
includes legacy applications 110, ported applications 112 and 
native applications 116. The legacy applications 110 and the 
ported applications 112 are written to the OpenGL API and 
converted into the SpatialGL API 118 by the OpenGL com 
patibility module 114 in the SVE layer 104. OpenGL and 
SpatialGL are examples of API types. Exemplary embodi 
ments are not limited to these two types of APIs and may be 
extended to support any graphics APIs such as the Direct3D 
API. The native applications 116 are written to the SpatialGL 
API 118 which is in communication with the volume manager 
120. The rendering architecture layer 106 depicted in FIG. 1 
includes core rendering software (CRS) 122, which is a 
device independent management layer for performing com 
putations/renderings based on commands received from the 
SpatialGL API 118 and data in the volume manager 120. The 
display-specific rendering module layer 108 includes a Per 
specta rendering module 124 for converting data from the 
CRS 122 for output to a Perspecta Spatial 3-D Display and a 
multiview rendering module 126 for converting data from the 
CRS 122 into output to other 3-D and 2-D display devices. 
0026. Unlike priorarchitectures, the architecture depicted 
in FIG. 1 transforms commands (e.g., graphics commands) 
from several API types into a single graphical language, Spa 
tialGL. This permits the architecture to provide consistent 
access to display and rendering resources to both legacy and 
native application software. This is contrasted with the cur 
rently utilized device-specific rendering drivers. Each driver 
manages rendering hardware, visual assets (display lists, tex 
tures, vertex buffers, etc.), and display devices. The architec 
ture depicted in FIG. 1 includes a rendering architecture layer 
106 that is a device-independent management layer that with 
core rendering software 122. This rendering architecture 
layer 106 gives the graphics language (SpatialGL118) access 
to diverse, high-level resources, such as multiple display 
geometries, rendering clusters and image databases. Each 
class of resources: asset (e.g., Volume manager 120); compu 
tational (e.g., core rendering software 122); and display (e.g., 
Perspecta rendering 124 and multiview rendering 126) is 
enabled by an independent module. 
0027 FIG. 2 depicts a more detailed view of an architec 
ture that may be implemented by exemplary embodiments of 
the present invention. The SVE layer 104 includes a collec 
tion of compatibility strategies between emerging displays 
and application software. One aspect of SVE provides com 
patibility with software applications to diverse display types 
through SpatialGL APIs and OpenGL APIs. The SVE con 
cept extends in three additional directions: application soft 
ware development can be accelerated by producing higher 
level graphical programming toolkits; a spatial user interface 
(UI) library can provide applications with a consistent and 
intuitive UI that works well with 3-D displays; and a stream 
ing content library allows the SVE to work with stored or 
transmitted content. This may be utilized to enable “appli 
ance' applications and “dumb terminals.” 
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0028. In addition, the SVE is a display-agnostic and poten 
tially remote-rendering architecture. The SVE can commu 
nicate with 2-D and very different 3-D displays (multiplanar, 
view-sequential, lenticular, Stereoscopic, holographic). The 
rendering server does not need to be local to the display(s). 
0029. The CRS 122 is a collection of rendering strategies. 
The cost of implementing a rendering engine for a new dis 
play geometry breaks down into a system integration effort 
and an algorithm implementation effort. CRS 122 eliminates 
the system integration effort by providing a portable commu 
nication framework to bridge the client and server domains 
and by abstracting computation assets. The CRS 122 creates 
output for a Perspecta rendering module 124, a multiview 
rendering module 126 and can be tailored to create output for 
future rendering modules 206. In addition, the architecture 
depicted in FIG.2 may be utilized to support future graphics 
display architectures and third-party architectures 210. 
0030 The spatial transport protocol (STP) describes the 
interaction between the Spatial Visualization Environment 
and Core Rendering Software. The spatial transport protocol 
comprises a set of commands. The STP may optionally com 
prise a physical definition of the bus used to communicate 
STP-formatted information. The STP commands are divided 
into several groups. One group of commands is for operating 
the rendering hardware, and frame buffer associated with the 
display. Another group of commands is for synchronizing the 
STP command stream with events on the host device, render 
ing hardware and frame buffer. Another group of commands 
is for operating features specific to the display hardware, such 
as changing to a low power mode or reading back diagnostic 
information. 

0031. Different streams of graphics commands from dif 
ferent applications may proceed through the architecture to 
be merged into a single STP stream. Due to multitasking, the 
STP is able to coherently communicate overlapping streams 
of graphics commands. STP Supports synchronization 
objects between the applications (or any layer below the 
application) and the display hardware. The application level 
of the system typically generates sequential operations for the 
display drivers to process. Graphics commands may be com 
municated with a commutative language. For efficiency, the 
display hardware completes the commands out of order. 
Occasionally, order is important; one graphics operation may 
refer to the output of a previous graphics operation, or an 
application may read information back from the hardware, 
expecting to receive a result from a sequence of graphics 
operations. Application Layer 
0032 Exemplary embodiments of the SVE include a 3-D 
rendering API and display virtualization layer that enables 
application developers to universally exploit the unique ben 
efits (such as true volumetric rendering) of 3-D displays. It 
consists of several subsystems: SpatialGL 118, OpenGL 
compatibility module 114, Streaming content library and Vol 
ume manager 120. Future development may expand SVE to 
include scene-graph, rendering engine and application-spe 
cific plug-in subsystems. 

SpatialGL 

0033. Just as OpenGL API implementations are video 
card-specific, implementations of the SpatialGL API 118 are 
display, or output-device-specific. Examples of “targets' for 
SpatialGL implementations are: 2-D displays, Volumetric 
displays, view-sequential displays, and lenticular multi-view 
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displays. Exemplary embodiments of the SVE can commu 
nicate with a broad range of output devices whose underlying 
physics are quite different. 
0034 FIG. 3 is a block diagram of an exemplary Spa 
tialGL implementation that may be utilized by exemplary 
embodiments of the present invention. The blocks include a 
NativeApp block 116 which is written to take full advantage 
of spatial displays by using the SpatialGL API. The Native 
App block 116 may transmit data to the client 308, Spa 
tialEngine 304, SceneGraph 306 and the volume manager 
310. In alternate exemplary embodiments, applications can 
also take advantage of higher level APIs such as SceneGraph 
306 and SpatialEngine 304 from Actuality Systems, Incorpo 
rated. SceneGraph 306 provides an interface for encoding 
scene graphs in SpatialGL. SceneGraph 306 implements fea 
tures Such as: assemble shapes into objects; transform the 
positions of an objects; and animation node. The Spa 
tialEngine 304 implements high level functions such as draw 
Volume and overlaying a scene-graph. SpatialEngine 304 is 
extensible. For example, an Oil Toolkit can be added, which 
adds functions such as: draw porosity Volume, overlay drill 
path and animate path plan. 
0035. As depicted in FIG. 3, SpatialGL is input to the 
client 308. In exemplary embodiments of the present inven 
tion, the native API, or SpatialGL API, provides an object 
oriented front-end to the STP byte code. The SpatialGL API 
exposes features such as, but not limited to: define fragment 
program, define vertex program, bind geometry Source, bind 
texture source, swap buffer and synchronize. The client 308 
sends SpatialGL commands to the volume manager 310. The 
SpatialGL commands may include commands for retrieving 
persistent objects to be displayed on a graphical display 
device. The persistent objects include, but are not limited to, 
2-D and 3-D textures and vertex buffers. The persistent 
objects may be stored on one or more of a database, a storage 
medium and a memory buffer. In addition, the SpatialGL 
commands may include commands for retrieving display 
nodes to be displayed on a graphical display device. Display 
nodes refer to an instance of any display that can be individu 
ally referenced (e.g., a Perspecta display, a 2-D display). STP 
commands from the volume manger 310 are sent to the core 
rendering client 312. The core rendering client 312 is the first 
computation resource available to the STP execution environ 
ment. Early data reducing filter stages can also execute here. 
Stream compression and Volume overlay are processes that 
may be assigned computation resources at this point. The core 
rendering client 312 formats the remainder of the filter graph 
to take into account the physical transport 314 layer between 
the core rendering client 312 and the core rendering server. At 
the STP interpreter block 316, API calls are converted into 
STP. Each STP node is a computation resource. STP proce 
dures get bound to STP nodes as the program is processed. 
The node executes any procedure that has been bound to it by 
a previous node. 
0036 Spatial Transport Protocol may be converted for 
persistent storage and written to a disk. This can be accom 
plished by storing the serialized Spatial Transport Protocol 
byte code to disk, along with a global context table. The 
global context table allows context-specific assets to be 
resolved when the STP file is later read back from disk. The 
global context table establishes correspondences between 
local context handles referenced by the STP byte code and 
persistent forms of the referenced data. For example, a STP 
byte code may reference texture image number 5. The texture 
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image number is associated with specific data in the original 
local context of the byte code. When saved to disk, texture 
image number 5 is associated with a particular texture image 
by the local context table. This can be accomplished by stor 
ing in table position 5, a copy of the texture image, or by 
storing a GUID or URL that identifies a persistent source for 
the texture image. 

Compatibility Module Structure 
0037 FIG. 4 is a block diagram of an exemplary compat 

ibility module structure. Ported applications 112 and/or 
legacy applications 110 can provide input to the compatibility 
module structure depicted in FIG. 4. Ported applications 112 
are applications originally written using OpenGL, but have 
been extended by programmers to interface with spatial dis 
plays. Legacy applications 110 are applications written with 
no knowledge of spatial displays or vendor APIs (e.g., Actu 
ality Systems, Incorporated APIs). OpenGL support is pro 
vided through two dynamic link libraries. The main library is 
called the GLAS library 412. It provides drawing methods 
similar to the industry-standard OpenGL API, and also con 
tains specialized initialization and State management routines 
for spatial displays. The GLAS library 412 converts OpenGL 
API calls into SpatialGL 118 calls. SpatialGL 118 is a low 
level graphics language utilized by exemplary embodiments 
of the present invention. The OGLStub library 414 exports an 
interface similar to the OpenGL32.dll system library 408. The 
behavior of the library can be customized on a per-application 
basis. The OGLStub library 414 intercepts and redirects 
OpenGL API calls in a customizable manner. Calls are 
optionally forwarded to the OpenGL32.dll system library 408 
and/or the GLAS library 412 for translation. 
0038 OpenGL is an industry standard low-level 3-D 
graphics API for, Scientific and computer aided design (CAD) 
applications. OpenGL Supplies a language that expresses 
static information. The application must explicitly break 
down dynamic scenes into discrete frames and render each 
one. OpenGL expresses commands Such as: input a vertex; 
draw a triangle; apply a texture; engage a lighting model; and 
show the new rendering. 
0039 Referring to FIG.3, OpenGL calls are duplicated for 
both the system library 408 (to render on the 2-D monitor) and 
for the GLAS library 412. By default, the first scene is ana 
lyzed to determine the depth center of the application's 
implied coordinate system. Since the depth center is not 
known until the first swap-buffers call, it may take until the 
second scene for the image in Perspecta to render properly. 
0040. The first scene is analyzed to determine the depth 
center of the application's coordinate system. Once the depth 
center is calculated, a fix-up transform is calculated. This 
transform is applied consistently to the projection specified 
by the application, so that the application's further transfor 
mations the projection (such as Scaling and Zooming) are 
reflected properly in the spatial rendering. After the depth 
center is determined, the Stub library 414 issues a redraw call 
to the application to ensure that the first scene is drawn prop 
erly in Perspecta. 
0041. The two main configurations are “ghost mode 406 
and “extended mode 410. Ghost mode 406 automatically 
duplicates OpenGL calls for both the system library 408 and 
for the GLAS library 412. In ghost mode 406, depth centering 
is based on Xandy Scale and centered to get the majority of the 
vertices within the display. Ghost mode 406 provides an 
unextended OpenGL interface and attempts to make a spatial 
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display appear as a 2-D display to the application. Extended 
mode 410 allows the application to control the call forward 
ing behavior. Extended mode 410 exposes an extended 
OpenGL interface. A few commands are added to help the 
application control a spatial display separately from a 2-D 
display. Example commands include: create a context for a 
spatial display and draw to a spatial display context. Output 
from the GLAS library 412, in SpatialGL, is sent to the client 
308 and then to the volume manager 310. The volume man 
ager 310 assigns display resources. It filters the STP stream to 
reformat the data according to the display resource assigned 
to the given context. The core rendering block 312, which 
contains the mechanisms for decoding and executing proce 
dures in the STP language, receives STP commands. 
0042. The configuration is controllable for each applica 
tion, based on a central control repository. Parameters that 
may configured include, but are not limited to: context selec 
tion strategy (allows the controller to change the context 
selection while the application is running); projection fix-up 
strategy that overrides the projection that that application 
specifies, in order to fit the image in the actual display geom 
etry; texture processing strategy; context STP preamble (e.g., 
resolution hints); and scene STP preamble. 
0043. Some spatial displays physically realize view-de 
pendent lighting effects. In this case, lighting is calculated 
based on the actual view directions, rather than the master 
direction given by the projection matrix. 
0044 Specific rasterization constraints and rules can only 
be specified relative to the unique geometry of each display 
type. In general, only fragments that intersect the projection 
of an element into the display's native coordinate system may 
be lit. When rendering polygons, elements must not contain 
holes. When rendering connected polygons where exact ver 
tex positions are shared, the rendered figure must not contain 
holes. 
0045. When anti-aliasing is used, the partial ordering of 
the color value of the fragments must agree with the partial 
ordering of the intersection (area or length) between the frag 
ment and pixels of the display's native coordinate system, 
when normalized for variation in area or volume of the pixels. 

Streaming Content Library 
0046. The streaming content library permits spatial stream 
assets. A spatial stream asset is a time-varying source of 
spatial imagery. Optionally, the spatial stream may be Syn 
chronized with one or more audio streams. A spatial stream 
may either consist of a real-time stream, a recorded stream, or 
a dynamically generated Stream. An example of a ream-time 
spatial stream is a multi-view stream that is fed from an array 
of cameras. An example of a recorded stream is a spatial 
movie stored on a removable disk. An example of a dynami 
cally generated stream is a sequence of dynamically rendered 
3-D reconstructions from a PACS database. 
0047. Each stream is associated with a spatial codec. The 
intended interpretation of the stream is determined by the 
associated spatial codec. The spatial codec is comprised of a 
stream encoding specification and a reconstruction specifica 
tion. The stream encoding specification determines the map 
ping from the raw binary stream to a time-varying series of 
pixel arrays. The stream encoding specification may also 
identify an audio stream, synchronized with the pixel arrays. 
The reconstruction specification determines the intended 
mapping from pixel arrays to physical light fields. Examples 
of stream encoding specifications include MPEG coded rep 
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resentations. The reconstruction specification can be defined 
using the persistent form of Spatial Transport Protocol. 
0048. A client of the streaming content library receives the 
raw binary stream and the spatial codec. The client proceeds 
to reconstruct an approximation of the intended physical light 
field, by calculating pixel arrays using the stream encoding 
specification. At each time step, the client consumes one or 
more pixel arrays and interprets an intended light field, using 
the reconstruction specification. The intended light field is 
rendered into the local display's specific geometry, using 
Core Rendering Software. Finally, Core Rendering Software 
moves the rendered image into the spatial frame buffer, caus 
ing the display to generate a physical manifestation of a light 
field. 
0049. The streaming content library includes spatial 
stream asset servers. Each spatial stream asset is published by 
a spatial asset server. An asset server may publish one or more 
streams, each with a unique URL. A Software application 
using SpatialGL (Such as a spatial media player) can call up a 
particular spatial stream asset using its associated URL. 
0050 Spatial stream assets may be transmitted with uni 
directional signaling: for example several TV channels may 
be jointly used to transmit a multi-view recording. In this 
case, the spatial codec can be continuously or periodically 
transmitted. Spatial content may also be broadcast with bidi 
rectional signaling: for example, a spatial movie may be 
downloaded from an Internet-based asset server and viewed 
using a spatial media player using SpatialGL. In this case, the 
client could potentially negotiate an optimal spatial codec to 
match the client's display geometry. Bidirectional signaling 
can also be used to allow a client to remotely control a 
dynamically generated stream. For example, a client may 
continuously send updates to a server about the desired view 
direction and region of interest, while the server continuously 
returns rendered images to the client through the streaming 
library. Alternately, a client may receive notifications from 
the spatial stream asset server when new data is available. 
Based on the notifications, the client may choose to download 
and render the new data or else the client may skip the new 
data. When receiving a notification, the client may decide 
whether to download or skip the new data, based on factors 
Such as the currently available buffer space, communication 
bandwidth, processing power, or desired level of image qual 

Pseudo-Code Reconstruction Specification for a Multi-View 
Stream 

0051 Define in views V. Sub.1, ...V.Sub.n, each comprised 
of a projection P. Sub.i and an aperture Q. Sub.i 
For each time step t 
0052 For each view V. Sub.i. 
0053 Render a plane, textured with pixel array tin--i, 
using projection P. Sub.i 

0054 Render aperture Q subi 
0055 Swap the rendered image into the active frame 
buffer 

Pseudo-Code Reconstruction Specification for a Volumetric 
Stream 

0056 Define a local 3-D texture asset T 
For each time step t 
0057 For each pixel array i in 1... n. 

0.058 Load pixel array i into slice i of texture T 
0059 Render a solid cube, textured with T 
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0060 Swap the rendered image into the active frame 
buffer 

Network Layer 

0061. In an exemplary embodiment of the present inven 
tion, the CRS 122 has the character of a slave peripheral and 
communication to the CRS 122 is limited to proprietary chan 
nels. Alternate exemplary embodiments of the CRS 122 have 
an expanded role as a network device. In addition, it can 
communicate with a host over a network, and it supports 
standard protocols for network configuration. The CRS 122 
has both a client part and a server part. 
0062. In exemplary embodiments of the present invention, 
a host PC runs an application and is in communication with a 
single multiplanar 3-D display which contains an embedded 
core rendering electronics system. The client part is embod 
ied on the host PC, while the server part is embodied on the 
core rendering electronics. CRS 122 is distinct from the SVE 
because the CRS 122 is meant primarily to provide a render 
ing engine for specific display types that is compatible with 
the display-independent graphical commands generated in 
the SVE. 

0063. The client side of the CRS 122 interfaces to the SVE 
using the STP language. STP is used to package and transport 
SpatialGL API calls. A core rendering client connects the 
Volume manager 120 to the physical transport by acting as an 
STP interpreter. The core rendering client interpreter exposes 
procedures (with STP linkage) that allow an STP program to 
address specific servers. Exemplary embodiments of the 
present invention only function when a single server is 
present. Alternate exemplary embodiments of the core ren 
dering client communicate with servers over a network, and 
are able to list and address the set of available servers. 

0064. The client also provides a boot service. This pro 
vides the boot-image used by the net-boot feature of the 
servers. The boot-image is stored in a file that can be updated 
by Perspecta Software Suite upgrade disks (or via web 
upgrade). The boot service can be enabled and disabled by the 
SVE. After the boot-image file is upgraded, the installer must 
enable the boot service to allow the display to update. 
0065. In the current example, in which there is one host PC 
and one Perspecta display, all input to the system arrives 
through the gigabit Ethernet connections. The embedded sys 
tem acts as a normal Internet Protocol (IP) device. The 
embedded system acts as a server, while the host PC acts as a 
client. The server acts as a normal IP device. In exemplary 
embodiments of the present invention, the client and server 
must be directly connected. In alternate exemplary embodi 
ments of the present invention, clients and servers are con 
nected through a gigabit Switch. This configuration removes 
the requirement that the client PC contains two Ethernet 
controllers, and it allows multiple clients to connect to a 
single server. The server obtains an IP address using dynamic 
host configuration protocol (DHCP) (unless it has been con 
figured to use a static address). Once an IP address has been 
obtained, the CRS 122 and the client must be made aware of 
the identity of the server. This is done by a symmetric system 
where a node (client or server) broadcasts a datagram when it 
starts. The node that starts first obtains the identity of the later 
node. If the server is started first, and encounters a client 
datagram broadcast, it opens a connection to the client to 
communicate the server's identity. A client may simulta 
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neously communicate with multiple servers. Each server may 
only communicate with a single client at a time. 
0066. In alternate exemplary embodiments of the present 
invention, the servers have a user interface and policy for 
attaching to specific clients when more than one client is 
available. The CRS 122 provides a simple network manage 
ment protocol (SNMP) interface to manage the network set 
tings of the server. The SNMP interface configures the IP 
address, broadcast settings and security settings. The security 
settings include client allow and deny lists. 
0067. In exemplary embodiments of the present invention 
the host and client Support a single gigabit Ethernet connec 
tion. In alternate exemplary embodiments, the host and client 
employ an additional protocol to support two gigabit Ethernet 
connections. 

0068. Once a client knows the identity of a server, the 
client may open the server. The client and server communi 
cate through datagrams. The server is single-threaded; the 
client may only open a single connection to the server and it 
is guaranteed exclusive access to the entire display resource. 
Once the client has opened the server, it may begin transact 
ing rendering commands. Rendering commands are moved 
between the client and server using a command stream and a 
remote memory protocol. 
0069. Since the network graphics service is meant to com 
municate only over a local network segment, a very low level 
of packet loss is expected. The details of the communication 
scheme can be arranged to ensure that the system degrades 
gracefully under packet loss. Device allocation and context 
creation must be guaranteed to operate correctly underpacket 
loss. The bulk graphics data transfer is not protected, except 
that a frame that is rendered without packet loss must not be 
degraded by packet loss in previous frames. Persistent texture 
map data is protected against packet loss by a checksum and 
a failure/retry scheme. 

Core Rendering Software (CRS) 
0070 CRS 122 uses the STP language as a form for com 
municating graphics commands and procedures. STP allows 
the interfaces between the major components of the Core 
Rendering Software system to be uniform. In the initial ver 
sion of Core Rendering Software, STP serves as the inter 
process-communication mechanism. STP is used to commu 
nicate a sequence of graphics commands from the client to the 
server. The initial version of STP will include conditional 
execution and parallel branching prototype features. In later 
versions of Core Rendering Software, modules will be writ 
ten within the STP language, thus flattening the hardware 
native part of the architecture. Conditional execution and 
parallel branching features will be optimized in later versions 
of Core Rendering Software. 

Rendering Modules 
0071 FIG.5 is a block diagram of an exemplary rendering 
module. The pipeline system structure, or pipeline frame 
work, Subsystem provides the generic structure that is com 
mon to rendering pipelines for the CRS 122. A rendering 
pipeline is implemented through a pipeline system class 502. 
A pipeline system class 502 is composed of a rendering 
pipeline and a fixed set of active objects. An active object 
models a device that can trade time for data movement or 
transformation, such as a bus, a GPU or a CPU. The pipeline 
system class 502 binds stages to scheduler threads 510 (i.e., to 
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active objects). The scheduler thread 510 is the binding 
between stages and active objects. 
0072 An instance of a pipeline 504 operates on a single 
input stream of homogeneous elements. An exemplary pipe 
line constructor includes: initiate first-in-first-out (FIFO) 
length; and initialize stage connections. As depicted in FIG. 5, 
fixed length FIFOs 506 constrain the resource usage of the 
system. 
0073 Rendering pipelines are implemented as a series of 
stages 508 that communicate with tasks. A stage 508 is an 
algorithmic unit that transforms one stream of tasks into 
another stream of tasks. Although a stage 508 may be 
designed to be compatible with a specific active object 512, 
the binding to the active object 512 is external to the stage 
508. For example, a stage 508 may implicitly require a bind 
ing with a GPU by making OpenGL calls, but it must not own 
or manipulate an OpenGL context. 
0074 Stage objects have an unusually complicated life 
cycle. They are typically created in one thread but work in a 
second thread. The lifetime of a stage 508 consists of these 
distinct transitions: construction, initialization, execution, 
de-initialization, and destruction. A stage 508 transforms a 
stream of homogeneous elements. A stage 508 utilizes the 
resources of a single active object and executes several hun 
dreds of times a second. The biding between a stage 508 and 
an active object 512 is external to the stage class. Therefore, 
a pipeline 504 may be considered a stage 508, but a pipeline 
system 502 may not be considered a stage 508. The remote 
active object 512 depicted in FIG.5 models a thread of execu 
tion that exists outside of the CPU. Input to the active object 
512 includes data from the GL context block 514 and the 
voxel engine context block 516. 
0075 Task objects are not strongly structured, outside of 
their specific implementation domain. In exemplary embodi 
ments of the present invention, the pipeline framework 
includes a Fence class, which is utilized to provide a main 
stream synchronization pattern. A pipeline system 502 oper 
ates asynchronously from its enclosing system. The enclosing 
system can insert a Fence into the command stream of a 
pipeline 504. A pipeline passes a fence when all processing 
due to tasks issued before the fence have completed. The 
enclosing system can query whether the pipeline 504 has 
passed the fence, or it can block until the fence has been 
passed. 

SpatialGL Graphics Pipeline for Other Displays 

(0076. As described above, a key feature of the SVE is 
display-independence (or 'display-agnosticism'). Imple 
mentations of the SpatialGL API can be made for a variety of 
2-D and 3-D displays. The SpatialGL API may be utilized 
with a Perspecta multiplanar volumetric display. In addition, 
the SpatialGL API may be utilized with other types of dis 
playS. 
0077. Because multi-view rendering is very similar to 
single-view rendering, the SpatialGL implementation is Sub 
stantially simpler than the SpatialGL implementation for 
multiplanar rendering. For example, on flat, horizontal-par 
allax multi-view displays, such as the Stereographics 9-view 
lenticular display or Actualty System's quasi-holographic 
video display, a slice volume could be created as part of the 
rendering process. A slice Volume contains a slice for each 
rendered view direction. Rendered views use sheared ver 
sions of standard projection matrices, corresponding to the 
viewing angles. “Final views’ correspond to the views that 
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are physically generated by the display hardware. Final views 
are sampled from the slice Volume (for example, using texture 
mapping). The number of final views may be different than 
the number of rendered views. 
0078 Rendering tetrahedra requires special treatment 
because, at the time of writing, GPUs lack native volumetric 
rendering Support. In this case, SpatialGL wraps an efficient 
Volume rendering implementation Such as ray casting. 
0079. Depending on the multiview display, image format 
ting can be different. Because Stereographics lenticular dis 
play interfaces via digital visual interface (DVI), it does not 
require special formatting hardware (such as the Voxel 
Engine in Actuality Systems, Incorporated's Core Rendering 
Electronics). However, the distribution of pixels and views is 
Somewhat irregular, and requires a reformatting process 
known as “interZigging.” Additionally, view anti-aliasing can 
occur during this step. On the other hand, Actuality Systems 
holovideo display was designed to use the same Core Ren 
dering Electronics as Perspecta, and can share the same 
implementation. 
0080. Because SpatialGL is display-agnostic, SpatialGL 
can also be used for non-3D displays. Examples include tiled 
display walls, displays with heterogeneous interfaces (e.g. the 
Sunnybrook HDR LCD, foveated resolution displays), and 
displays with unusual geometries (e.g. dome, sphere or cube 
shaped displays). Finally, an obvious example would be a 
standard 2-D display Such as a desktop cathode ray tube 
(CRT) or liquid crystal display (LCD). This would allow the 
use of SpatialGL programs on standard computer hardware 
without an exotic display configuration. For the most part, the 
rendering of these displays only requires changes in the 
image reformatting stage, and minor changes elsewhere. 
0081 FIG. 6 is an exemplary process flow diagram of a 
command from a ported application. A ported application 112 
renders a scene by issuing function calls via the compatibility 
module 114 to the GLAS Extended API (similar to OpenGL). 
These API calls specify features of the scene, such as texture 
images, the position and shape of primitive elements (such as 
lines points and triangles) and the mappings between ele 
ments textures and colors. The GLAS extended stub library 
612 receives the API calls and issues them to the GLAS 
translation library 412. The GLAS translation library man 
ages the OpenGL state machine to interpret the GLAS 
Extended API calls. Interpreted calls are translated into Spa 
tialGL API calls. 
0082 Legacy applications invoke a similar command 
flow. In this case, a legacy application 110 renders a scene by 
issuing function calls via the compatibility module 114 to the 
GLAS Ghost API (similar to OpenGL). The GLAS ghost stub 
library 613 receives the API calls and reformats the scene in 
preparation for translation to SpatialGL. For example, the 
stub library may apply a heuristic that inspects the Ghost API 
calls to estimate the intended depth center of the scene. This 
additional information is passed to the GLAS translation 
library 412, along with the API calls generated by the legacy 
application. Interpreted calls are translated into SpatialGL 
API calls. 
I0083. The SpatialGL client library 308 directs the API 
calls to the Volume manager 310, along with association 
information to identify the Software application instance that 
generated the commands (the ported application). 
I0084. The volume manager 310 modifies the API call 
stream. For example, it may map the application's rendering 
output to a specific potion of the graphics Volume generated 

Mar. 1, 2012 

by the display device. It may also apply an overlay to the 
rendering output, such as a sprite that marks the location of a 
3-D pointer. 
I0085. After the volume manager 310, the core rendering 
client library 312 marshals the API calls and transmits them 
(for example, using Spatial Transport Protocol 314) to the 
server execution environment. The core rendering Software 
(instantiated in the server execution environment) receives 
and unmarshals API calls. 
I0086. The core rendering server 604 operates rendering 
algorithms, based on the API calls. The rendering algorithms 
are defined by a renderer module 606. In general, there is a 
specialized renderer module for each distinct class of display 
geometry. The rendering algorithms cause rendered image 
bitmaps to be moved into the spatial frame-buffer 611, using 
the voxel engine driver 610. 

Distributed Configurations 
I0087. Typically, graphics libraries allow multiple client 
applications to share access to a single rendering server (via, 
for example, the Windows Graphics Library IWGL for 
OpenGL Windows). In exemplary embodiments of the 
present invention, the SVE volume manger provides this 
meta-service for the SpatialGL API. The SpatialGL API is 
also designed to allow a single client application to access 
multiple servers. Often, this will be to provide multiple views 
to an application (e.g., standard 2-D view with a Perspecta 
volumetric view). 
I0088. However, for the SpatialGL API, servers do not 
necessarily represent access to rendering/display resources; 
instead they may also represent access to graphical assets. 
This includes geometry data, images, shader programs, and 
their combinations. Like web pages, SpatialGL objects can be 
referenced by Uniform Resource Locators (URLs). These 
URLs may represent local resources or shared resources. 
Exemplary implementations of the present invention can dis 
tribute different parts of the rendering pipeline to different 
servers that may specialize in various tasks. 
I0089. A simple configuration that may be implemented by 
the network layer 202 of the architecture described previously 
herein includes having a host computer attached directly to a 
display (e.g., a spatial display). In this configuration, the 
client application on the host computer may open multiple 
contexts (virtual servers) that are shared on the display. 
Another configuration that may be implemented by exem 
plary embodiments of the present invention is a typical client/ 
server configuration. In this case, multiple host computers are 
attached to a display over a network and client applications on 
different host computers can each open multiple contexts 
(e.g., via the SpatialGL API) that are shared on the display. 
Other exemplary configurations include a buffered display 
configuration with a host computer that is attached to a Spa 
tialGL rendering server. In this configuration the rendering 
server can only perform rendering, and does not actually 
display images. When the client application sends scenes to 
the rendering server, they are rendered and stored. The stored 
results can be played back on a display at a later time. 
(0090 FIGS. 7-10 depict further example configurations 
that may be implemented by the network layer 202 of the 
architecture described previously herein. In FIG. 7, multiple 
host computers 702 are attached to various displays 704 over 
one or more networks 706. The displays 704 may be a mixture 
of various types (e.g., 2-D and 3-D). In exemplary embodi 
ments of the present invention, the host computers 702 dis 
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cover displays 704 through the Domain Name System (DNS). 
The host computer systems 702 include one or more graphics 
applications that communicate with one or more displays 704 
via the network using an API (e.g., the SpatialGL API). 
0091. The network 706 may be implemented by any type 
of known network including, but not limited to, a wide area 
network (WAN), a local area network (LAN), storage area 
network (SAN), a global network (e.g. Internet, cellular), a 
virtual private network (VPN), and an intranet. The network 
706 may be implemented using a wireless network or any 
kind of physical network implementation. SpatialGL servers 
(e.g., asset server, rendering server) may be attached to the 
network 706 in a wireless fashion. 
0092 FIG.8 depicts a system that may be implemented by 
exemplary embodiments of the present invention. The con 
figuration depicted in FIG. 8 includes a dedicated asset server 
802. In FIG.8a host computer is attached to a SpatialGL asset 
server 802, a SpatialGL rendering server 804 and a display on 
a thin client 806. The client application accesses assets from 
the asset server 802 by URL. These assets are forwarded to 
the rendering server 804 (which may have the asset locally 
cached). The client application sends SpatialGL commands 
to the rendering server 804, which renders the SpatialGL 
scenes (also referred to herein as graphic display data) and 
sends the results to the display. In exemplary embodiments of 
the present invention, the assets are very large compared to 
the bandwidth between the host computer and the SpatialGL 
server (e.g., host/display is a doctor's home PC connected 
over the Internet and the asset server 802 is SpatialGL/DI 
COM bridge that creates SpatialGL volumetric textures from 
a hospital's picture archiving and communication system 
(PACS). 
0093 FIG.9 depicts a system that may be implemented by 
exemplary embodiments of the present invention. The con 
figuration depicted in FIG.8 may be referred to as a remote 
rendering implementation. In FIG. 9, a host computer is in 
communication with a SpatialGL rendering server 804 and a 
display server through a network. In the system depicted in 
FIG.9, the host computer and display server on located on the 
same machine (e.g., host/display is a thin client 806 Such as a 
table PC or cellular telephone) and the rendering algorithms 
are performed remotely by the rendering server 804. The 
rendering server may access the asset server 802 via the 
network 706. The client application, located on the thin client 
806, sends SpatialGL commands to the rendering server 804. 
The rendering server 804 then renders the SpatialGL scenes 
and sends the results to the Spatial GL display on the thin 
client 806. 
0094 FIG. 10 depicts a system that may be implemented 
by exemplary embodiments of the present invention to pro 
vide distributed rendering. Multiple host computers 702 are 
attached to various SpatialGL rendering servers 1004 and 
displays 1002 over a network. 706. Client applications from 
the host computers 702 send SpatialGL commands to the pool 
of rendering servers 1004 that load-balances and distributes 
the rendering tasks amongst themselves, possibly through an 
arbiter. Scenes are rendered in parallel across available and 
easily accessible rendering servers 1004 and sent to the 
appropriate displays 1002. Interesting (though not mutually 
exclusive) distributions of rendering servers 1004 include 
workstations that perform SpatialGL rendering during idle 
cycles or centrally deployed cluster of dedicated rendering 
servers 1004. The latter case is particularly interesting when 
combined with dedicated asset servers 802. 
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0.095 The system configurations described above and 
depicted in FIGS. 7-10 are exemplary in nature. In general, 
the asset resources (e.g., asset server 802), computation 
resources (e.g., rendering server 804) and/or display 
resources (e.g., displays 704) may be distributed across one or 
more networks 706 or co-located. In addition, one or more 
assets resources and/or computation resources may create 
input to one or more displays. Particular use-cases and spe 
cific examples that may be implemented using the configu 
rations described above include, but are not limited to: 

0096. A customer's PC connected directly to a 3-D dis 
play (for example, a mechanical engineer running Solid 
Works application software on a desktop IBM PC work 
station, containing elements of Spatial Visualization 
Environment, in physical connection to a multiplanar 
three-dimensional display over gigabit Ethernet.) 

0097. One or more mobile devices with rendered 3-D 
graphics on its 2-D display (i.e. 3-D-on-2-D) that call 
upon remote rendering computational horsepower to 
draw animated 3-D graphics for games. 

0098. One or more mobile devices with rendered 3-D 
graphics on its 3-D display (i.e. a cellphone with a len 
ticular 9-view autostereoscopic 3-D display) that call 
upon remote rendering computational horsepower. 

0099. Several displays of various types distributed 
through an oil exploration enterprise, Such as 17" desk 
top LCDs, a 9-panel 2-D video wall, ten stereoscopic 
displays, and a volumetric 3-D display, all rendering 
projections of a 3-D application's graphical output, 
where the 3-D application resides in a computer not 
necessarily local to the displays. 

0.100 Several displays of various types, such as 2-D and 
panoramagram 3-D, throughout one or many movie 
retail locations, which in response to a potentially 
remote source of data provides content in a synchro 
nized manner. For example, when a new product is 
offered, all of the displays can show up-to-date adver 
tising content. 

0101 Exemplary embodiments of the present invention 
allow applications to have access to a wider variety of assets, 
rendering algorithms and displays. The assets, rendering 
algorithms and displays may be located in the same geo 
graphic location or located in separate geographic locations 
and in communication via a network. 

0102. As described above, the embodiments of the inven 
tion may be embodied in the form of hardware, software, 
firmware, or any processes and/or apparatuses for practicing 
the embodiments. Embodiments of the invention may also be 
embodied in the form of computer program code containing 
instructions embodied in tangible media, such as floppy dis 
kettes, CD-ROMs, hard drives, or any other computer-read 
able storage medium, wherein, when the computer program 
code is loaded into and executed by a computer, the computer 
becomes an apparatus for practicing the invention. The 
present invention can also be embodied in the form of com 
puter program code, for example, whether stored in a storage 
medium, loaded into and/or executed by a computer, or trans 
mitted over some transmission medium, Such as over electri 
cal wiring or cabling, through fiber optics, or via electromag 
netic radiation, wherein, when the computer program code is 
loaded into and executed by a computer, the computer 
becomes an apparatus for practicing the invention. When 
implemented on a general-purpose microprocessor, the com 
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puter program code segments configure the microprocessor 
to create specific logic circuits. 
(0103) While the invention has been described with refer 
ence to exemplary embodiments, it will be understood by 
those skilled in the art that various changes may be made and 
equivalents may be substituted for elements thereof without 
departing from the scope of the invention. In addition, many 
modifications may be made to adapt a particular situation or 
material to the teachings of the invention without departing 
from the essential scope thereof. Therefore, it is intended that 
the invention not be limited to the particular embodiment 
disclosed as the best mode contemplated for carrying out this 
invention, but that the invention will include all embodiments 
falling within the scope of the appended claims. Moreover, 
the use of the terms first, second, etc. do not denote any order 
or importance, but rather the terms first, second, etc. are used 
to distinguish one element from another. 
What is claimed is: 
1. A system for displaying graphical information, the sys 

tem comprising: 
an asset server for storing information; and 
a rendering server in communication with the asset server 

for receiving a graphics command and for rendering 
graphic display data in response to the graphics com 
mand and to the information, wherein the rendering 
server is independently addressable from the asset 
SeVe. 

2. The system of claim 1 wherein the asset server and the 
rendering server are in communication via a network. 

3. The system of claim 1 wherein the asset server is located 
in a different geographic location than the rendering server. 

4. The system of claim 1 wherein the information includes 
one or more of rendering resources, geometry data, images 
and shader programs. 

5. The system of claim 1 wherein the rendering server 
further transmits the graphic display data to a display device 
that is independently addressable from the asset server and 
the rendering server. 

6. The system of claim 5 wherein the graphic display data 
is transmitted to the display device via a network. 

7. The system of claim 5 wherein the display device is 
located in a different geographic location than one or more of 
the rendering server and the asset server. 

8. The system of claim 5 wherein the display device 
includes one or more of a two-dimensional (2-D) display and 
a three-dimensional (3-D) display. 

9. The system of claim 5 wherein the display device 
includes one or more of a 2-D printer and a 3-D printer. 

10. The system of claim 1 wherein the graphics command 
is generated by a client application. 

11. The system of claim 10 wherein the client application 
transmits the graphics command to the rendering server via a 
network. 
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12. The system of claim 10 wherein the client application is 
located in a different geographic location than the rendering 
SeVe. 

13. The system of claim 1 wherein the graphics command 
is generated by a plurality of client applications. 

14. The system of claim 1 wherein the rendering server 
further transmits the graphic display data to a plurality of 
independently addressable display devices. 

15. A method for displaying graphical information, the 
method comprising: 

receiving a graphics command at a rendering server, 
accessing information responsive to the graphics com 

mand, wherein the information is located in an asset 
server that is separately addressable from the rendering 
sever, and 

rendering graphic display data in response to the graphics 
command and to the information. 

16. The method of claim 15 wherein the asset server is 
located in a different geographic location than the rendering 
server and the asset server and the rendering server commu 
nicate via a network. 

17. The method of claim 15 further comprising transmit 
ting the graphic display data to a display device. 

18. The method of claim 17 wherein the display device is 
located in a different geographic location from one or more of 
the asset server and the rendering server. 

19. An architecture for displaying graphical information, 
the architecture comprising: 

an asset resource layer for storing information; and 
a rendering layer for receiving a graphics command and 

rendering graphic display data in response to the graph 
ics command and to the information, wherein the com 
munication server is independently addressable from the 
aSSet Server. 

20. The architecture of claim 19 further comprising a dis 
play layer for receiving the graphic display data and display 
ing the graphic display data on a display device, wherein the 
display layer in independently addressable from the asset 
layer and the rendering layer. 

21. A computer program product for displaying graphical 
information, the computer program product comprising: 

a storage medium readable by a processing circuit and 
storing instructions for execution by the processing cir 
cuit for performing a method comprising: 

receiving a graphics command at a rendering server, 
accessing information responsive to the graphics com 

mand, wherein the information is located in an asset 
server that is separately addressable from the rendering 
sever, and 

rendering graphic display data in response to the graphics 
command and to the information. 
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