
US 20120323852A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0323852 A1

Jain et al. (43) Pub. Date: Dec. 20, 2012

(54) DATABASE REDISTRIBUTION UTILIZING Publication Classification
VIRTUAL PARTITIONS

(51) Int. Cl.
(75) Inventors: Saurabh Jain, Bangalore (IN); Neeraj ge. 5% 388

S. Sharma, New Delhi (IN) (52) U.S. Cl. 707/640; 707/609; 707/E17.005

(73) Assignee: IBM CORPORATION, Armonk, NY (57) ABSTRACT
(US) In some embodiments, a partitioned database is stored in a

plurality of logical or physical partitions on at least a logical
or physical first data storage node, and a Subset of a first

(21) Appl. No.: 13/595,566 partition among the plurality of logical partitions is config
ured as a virtual partition. An input indicating an allocation of

(22) Filed: Aug. 27, 2012 a second physical data storage node to store the partitioned
database is received. A second partition is configured on the

O O second data storage node. In response to the input, the parti
Related U.S. Application Data tioned database is redistributed over the first and second data

(63) Continuation of application No. 12/961,544, filed on storage nodes by moving data within the virtual partition on
Dec. 7, 2010. the first partition to the second partition.

302b

Communication)
Network(s) 304

Network interface(s) 316

Processor(s) I/O devices Data
320 Storage

- Cs node
Data storage 330 370a

OS Database Communication
332 Manager 340 COde 342

Data - - - - - - - -

Database || Partition Config Partition Map storage
node 350 352
37Ok

SAN360 Server 312n
Enterprise 310

US 2012/0323852 A1 Dec. 20, 2012 Sheet 1 of 10 Patent Application Publication

þUE

0£| 80

Patent Application Publication Dec. 20, 2012 Sheet 2 of 10 US 2012/0323852 A1

i

5

w

S. s
S
S
SS
S. <

s s ?

(S
CN

S
S
S
S

Patent Application Publication Dec. 20, 2012 Sheet 3 of 10 US 2012/0323852 A1

s

US 2012/0323852 A1 Dec. 20, 2012 Sheet 4 of 10 Patent Application Publication

Z95 O/MS

Patent Application Publication Dec. 20, 2012 Sheet 5 of 10 US 2012/0323852 A1

S.

i

US 2012/0323852 A1 Dec. 20, 2012 Sheet 6 of 10 Patent Application Publication

9 aumfl.),

US 2012/0323852 A1 Dec. 20, 2012 Sheet 7 of 10 Patent Application Publication

S0),

777-7

| - - - - - -- - - - --- - - - - - - - - -†

Patent Application Publication Dec. 20, 2012 Sheet 8 of 10 US 2012/0323852 A1

i

US 2012/0323852 A1 Dec. 20, 2012 Sheet 9 of 10 Patent Application Publication

096

096

0 | 6

| - - - - - - - - - --- - - - - - - - - - 1
706 rí I – I

006

Patent Application Publication Dec. 20, 2012 Sheet 10 of 10 US 2012/0323852 A1

s of N ?m in p
?h

s ss CC f 8.8-4. S.

5 le

SNR V rir an

S/ is EEA
se/ d - So Yomyxas al

s/
- MX --

US 2012/0323852 A1

DATABASE REDISTRIBUTION UTILIZING
VIRTUAL PARTITIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 12/961,544 entitled “DATABASE
REDISTRIBUTION UTILIZING VIRTUAL PARTI
TIONS” by Saurabh Jain et al. filed Dec. 7, 2010, the disclo
sure of which is hereby incorporated herein by reference in its
entirety for all purposes.

BACKGROUND OF THE INVENTION

0002 1. Technical Field
0003. The present invention relates in general to data pro
cessing, and in particular, to redistribution of a partitioned
database.
0004 2. Description of the Related Art
0005. In computing environments in which a large volume
of data is stored, the data are commonly managed by a rela
tional database management system (RDBMS), which can be
utilized to instantiate one or more databases for storing,
accessing and manipulating the data. Each databases includes
one or more table spaces, which in turn store table data in
accordance with the relational data model. As implied by
tabular organization, the table data is logically arranged in
rows and columns, with each table row having an associated
row key.
0006 To provide enhanced manageability, performance
and/or availability, a relational database is commonly parti
tioned into multiple logical or physical partitions (hereinafter,
simply referred to as a “partition' unless a more definite
meaning is required), each having its own data, indexes, con
figuration files, and transaction logs. Table data of any given
table can be located in one or more of the partitions, with the
partition on which the table data resides typically being deter
mined by a hash function. Because data is distributed across
database partitions, the power of multiple processors, possi
bly on multiple computers, can be harnessed in tandem to
store, retrieve, process and manage the data in the database.
0007 Enterprises that manage large data volumes, such as
online transaction processing (OLTP) systems, data ware
housing enterprises, insurance and financial companies, etc.,
are frequently required to expand their data storage and pro
cessing capacities as the Volume of stored data grows. For
example, an enterprise may add one or more additional serv
ers and their associated Storage nodes to the existing infor
mation technology (IT) infrastructure of the enterprise in
order to handle an increased Volume of data while avoiding a
degradation in query response times.
0008 To make use of the additional servers, the RDBMS
must redistribute and reorganize one or more database
instances so that the database instance(s) reside not only on
the storage nodes of the existing servers, but also on the
storage nodes of the newly installed servers. A conventional
process by which a RDBMS redistributes and reorganizes a
database in accordance with the prior art is depicted in FIG.1.
0009. The conventional process of redistributing and reor
ganizing a database begins at block 100 and thereafter pro
ceeds to block 102, which depicts the RDBMS making a
backup of the entire database that is to be redistributed.
Depending upon the size of the database, making a backup of
the database can consume significant processing time (e.g.,
days or weeks). The process then enters an iterative loop
including blocks 104-118 in which the database is redistrib
uted row by row across the existing and new storage nodes.

Dec. 20, 2012

The redistribution begins at block 104, which depicts the
RDBMS reading a key value of the next database row to be
processed. The RDBMS then rehashes the key value of the
database row to determine a target partition number on which
the database row will reside following the redistribution
(block 106). At block 110, the RDBMS determines whether
the target partition number is the same as the existing partition
number, meaning that the database row will not be moved. If
the target partition number matches the existing partition
number, the process passes to block 118, which is described
below. If, however, the target partition number does not match
the existing partition number, the process proceeds to blocks
112-116.

(0010. At blocks 112-116, the RDBMS reads the complete
database row from the preexisting storage node, inserting the
database row in a new partition on a newly added storage
node, and then deleting the database row from the preexisting
storage node. Thereafter, at block 118, the RDBMS deter
mines whether or not all rows of the database have been
processed. If not, the process returns to block 104, which has
been described. If, however, RDBMS determines at block
118 that all rows of the database have been processed, the
process proceeds to block 120.
0011. As will be appreciated, the movement of selected
database rows from the preexisting storage nodes to the newly
installed storage nodes via the redistribution depicted at block
104-118 leaves the preexisting storage nodes sparsely popu
lated and thus inefficiently utilized. Consequently, at block
120 the RDBMS reorganizes the database rows in the preex
isting storage nodes to return the database to a compact stor
age organization. If the reorganization completes Success
fully, the RDBMS then makes a second backup of the entire
database at block 122. In addition, as depicted at block 124,
the RDBMS executes a utility to gather statistics regarding
the database, to recharacterize the table spaces, indexes, and
partitions, and to record these statistics in a catalog. Finally, at
block 126, the RDBMS notifies any partition-aware applica
tions (e.g., Microsoft(R) Internet Information Services (IIS))
of the reorganization of the database across the newly added
storage nodes. Thereafter, the conventional process for redis
tributing and reorganizing the database ends at block 130.
0012 FIGS. 2A-2C depict the redistribution and reorga
nization of a database over newly added data storage nodes in
accordance with the prior art. In particular, FIG. 2A depicts a
data storage system 200 including four database partitions
202a-202d that are populated with a database. Because the
size of the database is nearing the capacity of the currently
installed data storage nodes, a data warehousing enterprise
may add one or more additional storage nodes to data storage
system 200 in order to support additional database partitions.
0013. In the example depicted in FIG. 2B, the data ware
housing enterprise adds one or more additional storage nodes
to data storage system 200 in order to support four additional
database partitions 202e-202h. FIG. 2B further illustrates
that, following the conventional row-by-row redistribution of
the database depicted at blocks 104-118 of FIG. 1, the portion
of the database moved to new database partitions 202e-202h
is tightly compacted, but the portion of the database remain
ing on original database partitions 202a-202d is sparsely
populated and therefore makes poor utilization of the storage
capacity of data storage system 200. Accordingly, as dis
cussed above with reference to block 120 of FIG. 1, the
RDBMS must also reorganize the portion residing on data

US 2012/0323852 A1

base partitions 202a-202d to achieve the compact, well dis
tributed database illustrated in FIG. 2C.

SUMMARY OF THE INVENTION

0014. In some embodiments, a partitioned database is
stored in a plurality of logical or physical partitions on at least
a logical or physical first data storage node, and a Subset of a
first partition among the plurality of logical partitions is con
figured as a virtual partition. An input indicating an allocation
of a second physical data storage node to store the partitioned
database is received. A second partition is configured on the
second data storage node. In response to the input, the parti
tioned database is redistributed over the first and second data
storage nodes by moving data within the virtual partition on
the first partition to the second partition.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 is a high level flowchart of a conventional
process for redistributing and reorganizing a database in
accordance with the prior art;
0016 FIGS. 2A-2C depicts the conventional redistribu
tion and reorganization of a database over new data storage
nodes in accordance with the prior art;
0017 FIG. 3 illustrates an exemplary data processing
environment in accordance with one embodiment;
0018 FIG. 4 shows an exemplary data storage node of the
data processing enterprise of FIG. 3;
0019 FIG. 5 illustrates an exemplary embodiment of a
partition configuration data structure in accordance with one
embodiment;
0020 FIG. 6 depicts an exemplary embodiment of a par

tition map in accordance with one embodiment;
0021 FIG. 7 is a high level logical flowchart of a first
exemplary embodiment of a method of redistributing a data
base;
0022 FIG. 8 illustrates an exemplary redistribution of a
database in accordance with the first exemplary method
depicted in FIG. 7:
0023 FIG. 9 is a high level logical flowchart of a second
exemplary embodiment of a method of redistributing a data
base; and
0024 FIG. 10 depicts an exemplary redistribution of a
database in accordance with the second exemplary method
illustrated in FIG. 9.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

0025. With reference now to the figures and with particu
lar reference to FIG. 3, there is illustrated a high level block
diagram of an exemplary data processing environment 300 in
accordance with one embodiment. As shown, exemplary data
processing environment 300 includes an data processing
enterprise 310, which can be operated or on behalf of an
organization, such as a business, governmental agency, non
profit association, educational institution or the like, that
manages a large Volume of data. Data processing enterprise
310 is coupled for communication to one or more circuit
switched or packet-switched communication networks 304,
Such as wired or wireless local area or wide area network(s).
cellular telephony network(s), and/or public switched tele
phone network(s) (PSTNs). Thus, data processing enterprise
310 may communicate with devices 302a-302d (e.g., server
computer systems, personal computer systems, portable

Dec. 20, 2012

computer systems, mobile telephones, Smartphones, landline
telephones) via communication network(s) 304.
0026. The communication between devices 302a-302d
and data processing system 110 can include Voice communi
cation, for example, via a PSTN or voice over Internet Pro
tocol (VoIP) connection, and/or data communication, for
example, via instant messaging, Simple Mail Transport Pro
tocol (SMTP) or Hypertext Transfer Protocol (HTTP). For
example, the communication between data processing enter
prise 310 and devices 302a-302d can include the transmission
of data requests from devices 302a-302d to data processing
enterprise 310 and the transmission of responsive data (e.g.,
formatted as program code, images, graphics, text, audio,
Video, and/or files containing Such data) from data processing
enterprise 310 to devices 302a-302d.
0027 Still referring to FIG. 3, data processing enterprise
310 can include one or more physical computer systems. Such
as servers 312a-312n, which are coupled for communication
by a communication fabric 314, which can include, for
example, cabling and/or network connections, such as an
intranet, virtual private network (VPN) or socket connection.
In the illustrated exemplary embodiment, server 312a
includes one or more network interfaces 316 that permit
server 312a to communicate via communication networks
304 and communication fabric 314. Server 312a additionally
includes one or more processors 320 that process data and
program code, for example, to manages, access and manipu
late data organized in one or more databases. Server 312a also
includes input/output (I/O) devices 322, such as ports, dis
plays, and attached devices, etc., which receive inputs and
provide outputs of the processing performed by server 312a.
Finally, server 312a includes data storage 330, which may
include one or more Volatile or non-volatile storage devices,
including memories, Solid state drives, optical or magnetic
disk drives, tape drives, etc.
0028. In the depicted embodiment, data storage 330 stores
an operating system (OS) 332 that manages the hardware
resources of server 312a and provides common services to
other software executing on server 312a. For example, OS
332 may be implemented with one of the AIX(R), Linux(R),
Android R, or Windows(R operating systems. Data storage
330 also includes a database manager 122, such as the DB2(R)
relational database management system (RDBMS) available
from IBM Corporation of Armonk, N.Y., which manages,
accesses and manipulates data within one or more databases,
such as exemplary database 350. In some embodiments, data
base manager 340 may be integrated with OS332 or another
software program. In addition to database 350, database man
ager 340 maintains one or more partition configuration data
structures 352 that define the various logical partitions of
database 350 and map the partitions to the physical storage
resources of data processing enterprise 310. Database man
ager 340 may optionally also maintain a partition map 354
that maps virtual partitions of database 350 to the logical
partitions of database 350, as discussed further below.
0029. In various embodiments, database manager 340
and/or OS 332 may include code to support communication
of server 312a with other servers 312 and devices 302a-302d
via communication fabric 314 and communication network
(s) 304. Should appropriate communication capabilities not
be integrated within OS332 and/or database manager 340 in
some embodiments, data storage 330 may additionally
include communication code 342. Such as a web server (e.g.,
Apache, IIS, etc.), Interactive Voice Response (IVR) and/or

US 2012/0323852 A1

other program code, that enables server 312a to communicate
with other servers 312 and devices 302a-302d via communi
cation fabric 314 and communication network(s) 304. In par
ticular, if implemented, communication code 342 Supports
the communication of database queries to database manager
340 and the communication of responsive data from database
manager 340 to a requester.
0030. It should be appreciated that the contents of data
storage 330 can be localized on server 312a in some embodi
ments and will be distributed across the data storage 330 of
multiple of servers 312a-312m in other embodiments. In addi
tion, the contents depicted in data storage 330 of server 312a
may optionally partially or fully reside on a storage area
network (SAN) 360 of data processing enterprise 310. As
shown, SAN360 includes a switch/controller (SW/C) 362
that receives and services storage requests and multiple data
storage nodes 370a-370k, each of which may comprise one or
more physical non-volatile memory drives, hard disk drives,
optical storage drives, tape drives, etc. In some embodiments,
data storage nodes 370a-370k may be logical entities present
ing virtualized abstractions of Such physical storage
SOUCS.

0031. It will be appreciated upon review of the foregoing
description that the form in which data processing enterprise
312 is realized can vary between embodiments based upon
one or more factors, for example, the type of organization, the
size of database 350, the number of devices 302a-302d that
can query database 350, etc. All such implementations, which
may include, for example, one or more handheld, notebook,
desktop, or server computer systems, are contemplated as
embodiments of the inventions set forth in the appended
claims.
0032 FIG.4 depicts a more detailed view of a data storage
node 400 (e.g., a data storage node 370 of SAN370 or a data
storage node within data storage 330 of a server 312) within
data processing enterprise 310 of FIG. 3. In the depicted
example, data storage node 400 hosts eight logical or physical
partitions, which are hereinafter assumed to be logical parti
tions numbered LP0-LP7, respectively. Logical partitions
LP0-LP7 store a database 350, which includes sixteen data
blocks numbered B0-B15, respectively. In a RDBMS, each of
data blocks B0-B15 may correspond to one or more database
rows having a common row key hash.
0033. In accordance with the present disclosure, database
manager 340 assigns a subset of data blocks B0-B15 to virtual
partitions. For example, database manager 340 may assign
each of data blocks B8-B15 to a respective one of eight virtual
partitions numbered VP8-VP15. In various scenarios, each
virtual partition can include one or more data blocks, which
preferably all reside on a common logical partition. As dis
cussed further below with reference to FIGS. 7-10, database
manager 340 can efficiently redistribute database 350 by ref
erence to the virtual partitions.
0034. With reference now to FIG. 5, there is illustrated an
exemplary embodiment of a partition configuration data
structure 352 in accordance with one embodiment. In the
depicted embodiment, partition configuration data structure
352, which may be implemented, for example, in one or more
database configuration files, includes a plurality of configu
ration entries 500 defining a plurality of logical partitions of
database 350 and mapping the logical partitions to the physi
cal storage resources of data processing enterprise 310.
0035. In an exemplary embodiment, each configuration
entry 500 of partition configuration data structure 352 com

Dec. 20, 2012

prises a number of fields, including a node number field 502,
a hostname field 504, a logical partition number field 506, and
a virtual partition flag 508. Node number field 502 specifies
an integer number uniquely identifying a partition of database
350. In contrast to conventional partitioned databases that
restrict node numbers to logical partitions, node number field
502 preferably contains a unique node number for each logi
cal and virtual partition of database 350. Hostname field 504
identifies the TCP/IP hostname (e.g., “ServerA) of the data
base partition identified in node number field 502. In addition,
logical port field 506 specifies the logical port (e.g., logical
partition) assigned to the database partition identified in node
number field 502, and virtual partition flag 508 identifies
whether or not the partition specified in node number field
502 is a virtual partition. It should be appreciated that con
figuration entries 500 may include one or more additional
fields providing additional configuration information, such as
a communication path to a logical partition and/or operating
system-specific information.
0036 Given the exemplary embodiment of partition con
figuration data structure 352 depicted in FIG. 5, the portion of
partition configuration data structure 352 describing data
storage node 400 of FIG. 4 can be given as shown in Table I
below.

TABLE I

Node No. Hostname Logical Port No. VP

O ServerA O
1 ServerA 1
2 ServerA 2
3 ServerA 3
4 ServerA 4
5 ServerA 5
6 ServerA 6
7 ServerA 7
8 ServerA O V
9 ServerA 1 V
10 ServerA 2 V
11 ServerA 3 V
12 ServerA 4 V
13 ServerA 5 V
14 ServerA 6 V
15 ServerA 7 V

0037. With reference now to FIG. 6, there is illustrated an
exemplary partition map 354 in accordance with one embodi
ment. In the depicted embodiment, database manager 340
implements partition map 354 as a lookup table including a
plurality of rows 500, each of which includes a hash value
field 502, a virtual partition number field 504, and a logical
partition number field 506. Thus, each row 500 associates a
respective hash value (e.g., derived via a hash function from a
row key of a row of database 350) with a logical partition
number, and if applicable, a virtual partition number. For
example, assuming hash values ranging between 0 and 4095
and a data storage node 400 implementing eight logical par
titions LP0-LP7 as shown in FIG.4, partition map 354 can
include 4096 rows 500 storing the values summarized in
Table II below.

TABLE II

Hash Value Virtual Partition No. Logical Partition No.

O O
1 1

US 2012/0323852 A1

TABLE II-continued

Hash Value Virtual Partition No. Logical Partition No.

2 2
3 3

7 7
8 8 O
9 9 1
10 10 2

15 15 7
16 O

23 7
24 8 O

31 15 7

4095 7

0038. With reference now to FIG. 7, there is illustrated a
high level logical flowchart of an exemplary method of redis
tributing a database in accordance with a first embodiment.
The depicted method may be performed, for example,
through the execution of database manager 340 by one or
more processors 320 of a server 312. As with the other logical
flowcharts presented herein, it should be understood that
steps are depicted in a logical rather than strictly chronologi
cal order and that, in at least some embodiments, one or more
steps may be performed contemporaneously or in a different
order than illustrated.
0039. The process depicted in FIG. 7 begins at block 700
and thereafter proceeds to block 702, which illustrates data
base manager 340 configuring a desired number of virtual
partitions in database 350, for example, in response to an
administrator input or automatically based upon predeter
mined defaults. In the exemplary partitioned database 350
described by Table I and depicted in FIG.4, database manager
340 may enter the last eight entries 500 of partition configu
ration data structure 352 at block 702 in order to establish
virtual partitions VP8-VP15 within logical partitions LP0
LP7, respectively. As noted above, the virtual partitions con
tain the data of database 350 that will be redistributed as the
physical storage capacity allocated to store database 350
scales. With the number and location of virtual partitions
configured, database manager 340 optionally establishes par
tition map 354 in order to quickly map between hash values
(e.g., of row keys) of data and the logical and virtual partitions
configured by partition configuration data structure 352
(block 704). Block 704 is optional in that database manager
340 could alternatively compute the logical and virtual par
tition associated with each hash value as needed.
0040. The process proceeds from block 704 to block 710,
which depicts database manager 340 determining whether or
not an input has been received indicating that database 350 is
to be redistributed over an expanded physical storage capac
ity. As will be appreciated, the expanded physical storage
capacity available to store database 350 may become avail
able through the addition of a server 312 to data processing
enterprise 310, the addition of an additional data storage node
370 to SAN 360, and/or the reallocation of existing data
storage node(s) of data processing enterprise 310 to store
database 350. If database manager 340 does not detect an
input indicating that database 350 is to be redistributed over
an expanded physical storage capacity, the process remains at
block 710. While the process remains at block 710, database

Dec. 20, 2012

manager 340 performs conventional database processing,
including providing data responsive to structured query lan
guage (SQL) queries of database 350 and performing any
requested management or configuration functions, etc., as is
known in the art. In response to a determination by database
manager 340 at block 710 that an input (e.g., a user command)
has been received indicating that database 350 is to be redis
tributed over an expanded physical storage capacity, the pro
cess passes to block 712.
0041 Block 712 depicts database manager 340 establish
ing logical partitions on the new physical storage node(s)
allocated to store database 350. The process then enters a loop
including blocks 720-730 in which virtual partitions are
redistributed from the preexisting logical partitions to the new
logical partitions established at block 712. Referring first to
block 720, database manager 340 determines, for example, by
reference to partition configuration data structure 352,
whether or not all virtual partitions of database 350 have been
processed. In response to database manager 350 determining
at block 720 that all virtual partitions of database 350 have
been processed, the process proceeds from block 720 to block
740, which is described below. If, however, database manager
350 determines at block 720 that not all virtual partitions of
database 350 have been processed, database manager 350
selects a virtual partition for processing, for example, the next
virtual partition listed in partition configuration data structure
352 (block 722).
0042. At block 724, database manager 350 determines
whether or not to move the virtual partition selected for pro
cessing, for example, by determining whether or not the Vir
tual partition number matches a logical partition number
assigned to one of the logical partitions established on the
newly allocated storage node(s). In response to a determina
tion not to move the currently selected virtual partition, the
process returns to block 720, which has been described. If,
however, database manager 350 determines at block 724 that
the selected virtual partition is to be moved, the process
passes to block 726. Block 726 depicts database manager 350
moving the data of the virtual partition using sequential
access operations from the existing logical partition to the
logical partition having a matching logical partition number.
Database manager 350 then updates the metadata stored in
association with the moved partition on the data storage node
(block 728) and clears the virtual partition flag 508 of the
associated configuration entry 500 in partition configuration
data structure 352 (block 730). As a result, the moved parti
tion is no longer a virtual partition and is converted into a data
block of one of the logical partitions on the newly allocated
data storage node. The process returns from block 730 to
block 720, which depicts database manager 340 processing
the next virtual partition, if any.
0043. In response to database manager 340 determining at
block 720 that all virtual partitions have been processed,
database manager 340 updates partition map 354 to reflect the
modified relationship between hash values and logical and
virtual partition numbers (block 740). Following block 740,
the process depicted in FIG. 7 ends at block 742.
0044 FIG. 8 illustrates an exemplary redistribution of a
database 350 from in accordance with the first exemplary
method depicted in FIG. 7. In the example shown in FIG. 8,
database 350 is originally stored on only the eight logical
partitions (i.e., LP0-LP7) of data storage node 400, as previ
ously discussed with reference to FIG. 4. On logical partitions

US 2012/0323852 A1

LP0-LP7, database manager 340 configures data blocks
B8-B15 as virtual partitions VP8-VP15, respectively.
0045. The physical data storage capacity of data process
ing environment 310 available to house database 350 is then
expanded to include an additional data storage node 800. As
noted with respect to block 712, database manager 340 con
figures data storage node 800 with eight logical partitions
numbered LP8-LP15. In addition, in accordance with blocks
720-730 of FIG. 7, database manager 340 redistributes each
of virtual partitions VP8-VP15 (corresponding to data blocks
B8-B15, respectively) to a respective one of logical partitions
LP8-LP15 on data storage node 800, leaving data blocks
B0-B7 on logical partitions LP0-LP7 of data storage node
400.
0046 Assuming data storage node 800 resides on a server
312 having the hostname “ServerB, database manager 340
updates partition configuration data structure 352 from the
state summarized above in Table I to that given in Table III
below.

TABLE III

Node No. Hostname Logical Port No. VP

Server A
Server A
Server A
Server A
Server A
Server A
Server A
Server A
ServerB
ServerB

10 ServerB
11 ServerB
12 ServerB
13 ServerB
14 ServerB
15 ServerB

In addition, database manager 350 updates partition map 354
from the state summarized above in Table II to that given in
Table IV below.

TABLE IV

Hash Value Virtual Partition No. Logical Partition No.

O O
1 1
2 2
3 3

8 O
9 1
10 2

15 7
16 O

23 7
24 O

31 7

4095 7

0047. It should be noted by comparison of FIG. 1 with
FIGS. 7-8 that the exemplary process depicted in FIG. 7
renders unnecessary many of the processing-intensive steps

Dec. 20, 2012

of FIG. 1. For example, in FIG. 7, there is no need to rehash
the rows of database 350, as depicted at block 106. In addi
tion, there is no need to backup database 350 before or after
the redistribution of database 350, as depicted at blocks 102
and 122 of FIG. 1. Further, there is no need to reorganize
database 120, as depicted at block 120, or to update database
statistics, as depicted at block 124. Finally, there is no need to
update partition-aware applications, as shown at block 126.
0048. With reference to FIG.9, there is illustrated a high
level logical flowchart of an exemplary method of redistrib
uting a database in accordance with a second embodiment. In
particular, the process depicted in FIG. 9 redistributes data
base 350 onto one or more newly allocated physical storage
nodes via a backup and restore of the virtual partitions of
database 350.

0049. The process depicted in FIG.9 begins at block 900
and thereafter proceeds to block 902, which illustrates data
base manager 340 configuring a desired number of virtual
partitions in database 350, for example, in response to an
administrator input, as described previously. With the number
and location of virtual partitions configured, database man
ager 340 optionally establishes partition map 354 in order to
quickly map between hash values (e.g., of row keys) of data
and the logical and virtual partitions configured by partition
configuration data structure 352 (block 904). The process
proceeds from block 904 to block 910, which depicts data
base manager 340 determining whether or not an input has
been received indicating that database 350 is to be redistrib
uted over an expanded physical storage capacity. If database
manager 340 does not detect an input indicating that database
350 is to be redistributed over an expanded physical storage
capacity, the process remains at block 910 (during which
time, database manager 340 may perform other conventional
database management operations).
0050. In response to a determination by database manager
340 at block 910 that an input has been received indicating
that database 350 is to be redistributed over an expanded
physical storage capacity, the process passes to block 912.
Block 912 depicts database manager 340 establishing logical
partitions on the new physical storage node(s) allocated to
store database 350. The process then enters a loop including
blocks 920-930 in which virtual partitions are backed up from
the preexisting logical partitions established at block 912.
Referring first to block 920, database manager 340 deter
mines, for example, by reference to partition configuration
data structure 352 whether or not all virtual partitions of
database 350 have been processed. In response to database
manager 350 determining at block 920 that all virtual parti
tions of database 350 have been processed, the process pro
ceeds from block 920 to block940, which is described below.
If, however, database manager 350 determines at block 920
that not all virtual partitions of database 350 have been pro
cessed, database manager 350 selects a virtual partition for
processing, for example, the next virtual partition listed in
partition configuration data structure 352 (block 922). Next,
database manager 350 makes a backup of the selected virtual
partition, but preferably excludes from the backup the
remainder of the logical partition hosting the virtual partition
(block 926). Database manager 350 then clears the virtual
partition flag 508 associated with the selected virtual partition
in partition configuration data structure 352 (block 930). The
process returns from block 930 to block 920, which depicts
database manager 340 processing the next virtual partition, if
any.

US 2012/0323852 A1

0051. In response to database manager 340 determining at
block 920 that all virtual partitions of database 350 on the
preexisting physical data storage node(s) have been pro
cessed, database manager 340 restores each of the virtual
partitions from the backup made at block 926 to a respective
logical partition of the newly allocated physical storage node
(s) of data processing enterprise 310 (e.g., the logical partition
having a logical partition number matching the virtual parti
tion number of the backed up virtual partition). As a result, the
moved partition is no longer a virtual partition and is con
Verted into a data block on a logical partition of the newly
allocated data storage node(s). Database manager 350 then
updates the metadata stored in association with the restored
partition on the data storage node (block 942) and deletes the
moved partitions from the preexisting physical storage node
(s) (block 944). Database manager 340 additionally updates
partition map 354, if present, to reflect the modified relation
ship between hash values and logical and virtual partition
numbers (block 946). Following block 946, the process
depicted in FIG. 9 ends at block 950.
0052 FIG. 10 depicts an exemplary redistribution of a
database in accordance with the second exemplary method
illustrated in FIG. 9. In the example shown in FIG. 10, data
base 350 is originally stored on only the eight logical parti
tions (i.e., LP0-LP7) of data storage node 400, as previously
discussed with reference to FIGS. 4 and 8. On logical parti
tions LP0-LP7, database manager 340 configures data blocks
B8-B15 as virtual partitions VP8-VP15, respectively.
0053. The physical data storage capacity of data process
ing environment 310 allocated to house database 350 is then
expanded to include an additional data storage node 800, on
which database manager 340 configures eight logical parti
tions numbered LP8-LP15. In accordance with blocks 920
930 of FIG. 9, database manager 340 creates a virtual parti
tion backup 1000 containing a backup of each of virtual
partitions VP8-VP15 (corresponding to data blocks B8-B15,
respectively), and preferably excluding other data residing on
logical partitions LP0-LP7. Rather than performing a conven
tional restore back to the host logical partitions, database
manager 340 then restores each virtual partition from virtual
partition backup 1000 to a respective one of logical partitions
LP8-LP15 on data storage node 800. In addition, database
manager 340 deletes the corresponding virtual partitions
from data storage node 400, leaving data blocks B0-B7 on
logical partitions LP0-LP7 of data storage node 400. In this
manner, database manager 340 redistributes the virtual parti
tions of database 350 from preexisting physical data storage
node 400 onto newly allocated physical data storage node 800
by leveraging its backup capabilities, rather than by directly
moving the data as depicted in FIG.8. The resulting partition
configuration data structure 352 and partition map 354 will,
however, be the same as summarized above in Tables III and
IV.

0054 As has been described, in at least some embodi
ments a partitioned database is stored in a plurality of logical
or physical partitions on at least a logical or physical first data
storage node, and a Subset of a first partition among the
plurality of logical partitions is configured as a virtual parti
tion. An input indicating an allocation of a second physical
data storage node to store the partitioned database is received.
A second partition is configured on the second data storage
node. In response to the input, the partitioned database is

Dec. 20, 2012

redistributed over the first and second data storage nodes by
moving data within the virtual partition on the first partition to
the second partition.
0055 While the present invention has been particularly
shown as described with reference to one or more preferred
embodiments, it will be understood by those skilled in the art
that various changes in form and detail may be made therein
without departing from the spirit and scope of the invention.
For example, although aspects have been described with
respect to a computer system executing program code that
directs the functions of the present invention, it should be
understood that present invention may alternatively be imple
mented as a program product including a tangible, non-tran
sient data storage medium (e.g., an optical or magnetic disk or
memory) storing program code that can be processed by a
data processing system to perform the functions of the present
invention.
What is claimed is:
1. A method of data processing, comprising:
storing a partitioned database in a plurality of partitions on

at least a first data storage node of a data processing
system;

configuring a Subset of a first partition among the plurality
of partitions as a virtual partition;

receiving an input indicating an allocation of a second data
storage node to store the partitioned database;

configuring a second partition of the partitioned database
on the second data storage node; and

in response to the input, redistributing the partitioned data
base over the first and second data storage nodes by
moving data within the virtual partition on the first par
tition to the second partition.

2. The method of claim 1, wherein the virtual partition
comprises one or more data blocks of the first partition.

3. The method of claim 2, wherein the virtual partition
includes only data within the first partition.

4. The method of claim 1, wherein:
the method includes establishing a partition configuration

data structure associating the virtual partition and the
first partition; and

the redistributing includes updating the partition configu
ration data structure to indicate that the data moved to
the second partition does not reside in a virtual partition.

5. The method of claim 1, wherein:
the method includes establishing a partition map mapping

data within the partitioned database to particular ones of
the plurality of partitions and the virtual partition; and

the redistributing includes updating the partition map to
indicate that data moved to the second partition is not
mapped to a virtual partition.

6. The method of claim 1, wherein the redistributing
includes:

creating a backup of the data within the virtual partition;
restoring the data from the backup to the second partition.
7. The method of claim 1, wherein:
the data within the virtual partition is first data;
prior to the redistributing, the first partition stores the first

data and second data that is not within the virtual parti
tion; and

creating the backup comprises creating a backup including
the first data and excluding the second data.

k k k k k

