RESTRICTED WEDGE SUTURE ANCHOR AND METHOD FOR SOFT TISSUE REPAIR
The present invention relates to an apparatus and method for repairing soft tissue regions. More particularly, the present invention relates to an apparatus and method for adjustably affixing torn soft tissues to a region of bone. It is an increasingly common problem for tendons and other soft connective tissues to tear or to detach from associated bone. One type of tear or detachment is a “rotator cuff” tear, wherein the supraspinatus tendon separates from the humerus, causing pain and loss of ability to elevate and rotate the arm. Complete separation of tissue from the bone can occur if the shoulder is subjected to gross trauma, but typically, the tear begins as a small lesion, especially in older patients. There are various surgical approaches for repair of the rotator cuff, one known as the “classic open” and another as the “mini-open”. The classic open approach requires a large incision and complete detachment of the deltoid muscle from the acromion to facilitate exposure. The cuff is debrided to ensure suture attachment to viable tissue and to create a reasonable edge approximation. In addition, the humeral head is abraded or notched at the proposed soft tissue to bone reattachment point, as healing is enhanced on a raw bone surface. A series of small diameter holes, referred to as “transosseous tunnels”, are “punched” through the bone laterally from the abraded or notched surface to a point on the outside surface of the greater tuberosity, commonly a distance of 2 to 3 cm. Finally, the cuff is sutured and secured to the bone by pulling the suture ends through the transosseous tunnels and tying them together using the bone between two successive tunnels as a bridge, after which the deltoid muscle must be surgically reattached to the acromion. The mini-open technique differs from the classic approach by working through a smaller incision and splitting rather than detaching the deltoid. Additionally, this procedure is typically performed in conjunction with arthroscopic acromial decompression. Once the deltoid is split, it is refracted to expose the rotator cuff tear. As before, the cuff is debrided, the humeral head is abraded, and the so-called “transosseous tunnels” are “punched” through the bone or suture anchors are inserted. Following the suturing of the rotator cuff to the humeral head, the split deltoid is surgically repaired. Less invasive arthroscopic techniques continue to be developed in an effort to address the shortcomings of open surgical repair. Working through small trocar portals that minimize disruption of the deltoid muscle, surgeons have been able to reattach the rotator cuff using various suture anchor and suture configurations. The rotator cuff is sutured intracorporeally and an anchor is driven into bone at a location appropriate for repair. Rather than thread the suture through transosseous tunnels which are difficult or impossible to create arthroscopically using current techniques, the repair is completed by tying the cuff down against bone using the anchor and suture. The skill level required to facilitate an entirely arthroscopic repair of the rotator cuff is fairly high. Intracorporeal suturing is clumsy and time consuming, and only the simplest stitch patterns can be utilized. Extracorporeal knot tying is somewhat less difficult, but the tightness of the knots is difficult to judge, and the tension cannot later be adjusted. Also, because of the use of suture anchors to provide a suture fixation point in the bone, the knots that secure the soft tissues to the anchor by necessity leave the knot bundle on top of the soft tissues. In the case of rotator cuff repair, this means that the knot bundle is left in the shoulder capsule where it can be felt by the patient postoperatively when the patient exercises the shoulder joint. So, knots tied arthroscopically are difficult to achieve, impossible to adjust, and are located in less than optimal areas of the shoulder. Suture tension is also impossible to measure and adjust once the knot has been fixed. There are various suture anchor designs available for use by an orthopedic surgeon for attachment of soft tissues to bone. A number these designs include use of a locking plug which is forced into a cavity of the anchor body to secure the suture therein. Although there is some merit to this approach for eliminating the need for knots in the attachment of sutures to bone, a problem with being able to properly set the tension in the sutures exists. The user is required to pull on the sutures until appropriate tension is achieved, and then to set the plug portion into the suture anchor portion. This action increases the tension in the sutures, and may garrote the soft tissues or increase the tension in the sutures beyond the tensile strength of the material, breaking the sutures. In addition, the minimal surface area provided by this anchor design for pinching or locking the sutures in place will abrade or damage the suture such that the suture's ability to resist load will be greatly compromised. And, perhaps worse, once the suture is fixed the suture cannot be adjusted or retensioned. This is a shortcoming of such designs because it is not uncommon for a physician to desire to reposition or adjust the tissue location and suture after the anchor has been set. A suture anchor that addresses some of the shortcomings mentioned above is shown in Thus, a suture anchor device and method for repairing the rotator cuff or fixing other soft tissues to bone, wherein suture tension can be adjusted, released and conveniently retensioned after it is deployed and locked, and that maintains a strong locking force and functions reliably in a low friction environment is desirable. It is also desirable that there is no requirement for the surgeon to tie a knot to attach the suture to the suture anchor, and wherein the procedure associated with the new approach is better for the patient, saves time, is uncomplicated to use, and easily taught to practitioners having skill in the art. An anchor device for repairing soft tissue with a suture comprises an anchor body wall defining a lumen through the anchor body. A suture locking wedge is movably disposed at least partially within the lumen. A suture is looped around the suture locking wedge. When a tension force is applied to the tissue limb of the suture, the suture locking wedge is urged into a first position in which the suture is compressed between the suture locking wedge and a first contact location of the anchor body. When a second tension force is applied to the free limb of the suture the suture locking wedge is urged away from the first contact location such that the suture is not compressed. In one embodiment the anchor device comprises a wedge guide which restricts movement of the suture locking wedge to a path such that when a tension force is applied to the tissue limb of the suture, the suture locking wedge is urged into the first position in which the suture is compressed between the suture locking wedge and a first contact location of the anchor body and such that when a second tension force is applied to the free limb of the suture the suture locking wedge is urged away from the first contact location such that the suture is not compressed. The path comprises a translational dimension and an angular dimension. The multiple directions of freedom of the path increases leverage and clamping force to secure the suture. The guide may have various structures. In one embodiment the guide comprises a slot and the suture locking wedge has a lateral portion which engages the slot. The slot may be curved, or have an arcuate shape. The slot may have a constant height. In another embodiment the guide comprises a protrusion from the wall of the anchor body, and the suture locking wedge comprises a recess which is sized to engage and track the protrusion. In another embodiment the suture locking wedge has a cuboid shape and comprises two opposing substantially planar surfaces. In another embodiment the suture locking wedge is curved. In another embodiment the anchor body comprises a bone fixation structure for securing the anchor device in the bone wherein the bone fixation structure is selected from the group consisting of threads, ridges, barbs, and wings. In another embodiment at least one of the anchor body and the suture locking wedge comprise an elastic section which deforms when the suture locking wedge is placed in the first position. In another embodiment the first contact location comprises a surface parallel to a longitudinal axis of the anchor body. In another embodiment the first contact location comprises a surface not parallel to a longitudinal axis of the anchor body. In another embodiment an anchor device for repairing soft tissue with a suture comprises a suture locking wedge movably disposed at least partially within the anchor device and being in contact with the suture when the suture is threaded through the anchor device and looped around the suture locking wedge. A wedge track guides the suture locking wedge to a first position when a tension force is applied to the tissue limb of the suture in which the suture is compressed between the suture locking wedge and a first contact location of the body and to move the suture locking wedge away from the first contact location when a second tension force is applied to the free limb of the suture such that the suture is not compressed. In another embodiment the anchor device comprises an anchor body having a wall, and the wedge track comprises at least two slots in the wall of the anchor body and the suture locking wedge has a portion which engages the slots. The slots may be curved. In another embodiment the suture locking wedge is substantially planar. In another embodiment the track is curved. In another embodiment the track comprises a translational dimension and an angular dimension. In another embodiment the track comprises a recess in the wall of the anchor body. In another embodiment the track comprises a protrusion from the wall of the anchor body, and the suture locking wedge comprises a recess sized to engage the protrusion. In another embodiment the anchor body further comprises a bone fixation structure for securing the anchor device in the bone wherein the bone fixation structure is selected from the group consisting of threads, ridges, barbs, and wings. In another embodiment at least one of the anchor body and the wedge comprises an elastic section which deforms when the suture locking wedge is placed in the first position. In another embodiment a method for securing soft tissue to bone comprises: (a) securing a first limb of a length of suture to the soft tissue to be attached to the bone; (b) looping the length of suture through an anchor body and around a surface of a movable suture locking wedge; (c) fixing the anchor body within the bone; (d) positioning the soft tissue in proximity to the bone by applying tension to a second limb of the length of suture, such that the length of suture slides around the suture locking wedge, so as to draw the first limb of the length of suture toward the anchor body, thereby drawing the soft tissue toward the anchor body; and (e) moving the suture locking wedge along a wedge path defined in the anchor body such that the wedge moves to a first suture locking position and compresses the length of suture between a first contact location of the wedge and the anchor body. In another embodiment the wedge is moved in an angular dimension and a translational dimension. In another embodiment the step of moving the suture locking wedge is carried out by applying tension to the first limb of the suture. In another embodiment the approximating step is carried out until the soft tissue is moved within a threshold distance from the anchor body, such that a second tension arises on the first limb from the soft tissue. In another embodiment the step of moving the suture locking wedge is carried out by halting applying the first tension on the second limb, thereby causing the second tension on the first limb of the suture to move the suture locking wedge along the wedge path. In another embodiment the method further comprises applying tension on the second limb of the suture to unseat the suture locking wedge subsequent to said step (e) to release the suture from being compressed. In another embodiment the method further comprises repeating steps (d) and (e) to reposition the soft tissue and to re-tension the suture. In another embodiment applying tension is performed by pulling on the second limb of the suture by hand. Before the present invention is described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made to the invention described and equivalents may be substituted without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The following co-pending patent applications, which are being submitted contemporaneously with the present application, are incorporated by reference in their entirety: U.S. Ser. No.______, Attorney Docket No. OP-31, entitled “ROTATING LOCKING MEMBER SUTURE ANCHOR AND METHOD FOR SOFT TISSUE REPAIR”; U.S. Ser. No.______, Attorney Docket No. OP-31-1, entitled “FREE FLOATING WEDGE SUTURE ANCHOR FOR SOFT TISSUE REPAIR”; U.S. Ser. No.______, Attorney Docket No. OP-31-3, entitled “BIASED WEDGE SUTURE ANCHOR AND METHOD FOR SOFT TISSUE REPAIR”; U.S. Ser. No.______, Attorney Docket No. OP-31-4, entitled “METHOD FOR SOFT TISSUE REPAIR WITH FREE FLOATING SUTURE LOCKING MEMBER”, all of which are filed on the same date as the present application, and all of which are commonly assigned (or shall be assigned) to ArthroCare Corporation. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. It is also to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The present invention provides an improved knotless suture anchor apparatus for anchoring a length of suture with respect to a bone structure. In an exemplary embodiment described herein, the apparatus is used to anchor a length of suture to the humeral bone of the human shoulder. The length of suture is desirably looped through soft tissue, such as a rotator cuff tendon, to approximate and fix the soft tissue with respect to the bone structure. It should be understood, however, that the suture anchor apparatus may be utilized to secure a length of suture to anatomies other than in a bone structure. In this regard, the preferred apparatus includes an anchor body within which the length of suture may be adjusted freely and then anchored or secured without knots. If the anchor body is to be implanted within a body tissue, structure on the anchor's exterior may be provided for securing it therein. In a preferred embodiment, the anchor body is inserted within a bone structure, and a pair of wings are deployed from the exterior of the anchor body to hold it within the cavity. As mentioned above, the present invention is particularly well-suited for repairing rotator cuff injuries by re-attaching the rotator cuff tendon to the outside of the humeral head. Embodiments of the present invention permit minimally invasive surgeries on such injuries and greatly facilitate rapid and secure fixation of the rotator cuff tendon to the humeral head. However, it should be understood that the same principles described herein apply to the repair of other injuries in which soft tissue is to be re-attached to a bone structure or other tissue region. Embodiments of the present invention permit the user to insert at least one anchor into bone independently of any other anchor, lock an anchor in the bone, allow the user to subsequently tension or loosen a length of suture or wire between the anchors or between the anchor and soft tissue, to affix the soft tissue, immobilize the suture or wire, release and retension the suture, and then disassociate the inserter assembly from the at least one anchor, leaving the at least one anchor and the soft tissue repaired. Such an anchor inserter assembly may preferably eliminate the need to separately pass suture or wire, eliminate the need to tie knots, allow the procedure to be performed without the need to move an arthroscope from an articular side to a bursal side of the cuff, and by virtue of the small diameter of the anchor implants, reduce the size of the hole placed in any tissue, if passing the implant through. In the embodiment shown in At least one suture 28 which includes at least one bound leg 28 The suture locking wedge 42 is movably disposed within the lumen 24 of the anchor body and in particular, is engaged with the slots 45. The tracks or slots 45 guide and restrict movement of the suture locking wedge to substantially translational and angular movements as shown. In a first or open configuration as shown in The shape of the suture locking wedge may vary. The suture locking wedge need not have one side or edge thicker than another. Indeed, the suture locking wedge may have, but need not be limited to, a cuboid-like shape. The suture locking wedge may have an arcuate shape and parallel surfaces as shown in Suture locking wedge 42 may preferably have a smooth surface, and more specifically, a smooth distal surface to allow for easy suture sliding around the suture locking wedge surface during use. Additionally, the suture locking wedge 42 may have an elongate nest or groove (not shown) to provide some limitation to any lateral motion of the suture 28 (i.e. to keep the suture 28 from slipping off the suture locking wedge 42). The suture 28 itself may also comprise a low friction material such as polyester suture to create an overall low friction environment. Examples of sutures include without limitation low friction UHMWPE suture and polyester suture. The suture locking wedge may be formed of (or comprise) metal, polymer, or another material. In a preferred embodiment, the wedge is formed from a rigid, relatively low friction material, so as to allow easy sliding of the suture. Additionally, elastic or resilient materials or components may be incorporated into the suture locking wedge and/or the anchor body. As the suture locking wedge is urged into a locked configuration, the elastic component(s) tend to conform to one another which can increase the clamping force on the suture. As mentioned above the anchor body 12 preferably includes at least one track or slot 45 to guide the suture locking wedge between an open suture or unlocked configuration and a locked configuration. The slot 45 is shown extending through the wall of the anchor. However, the slot need not extend completely through the wall. The slot or window may be covered or closed. The slot 45 is also shown having an arcuate, elongate shape. However, the shape of the slot may vary. Additionally, the size of the slot may vary. An exemplary length of the slot ranges from 2 to 10 mm. An exemplary height of the slot ranges from 0.5 to 3 mm. However, these ranges are not intended to be limiting except where specifically recited in the appended claims. Preferably, the slot has a size and shape that provides a track to the suture locking wedge 42, or to a portion or projection of the suture locking wedge member. The track may have a translational component, and an angular component with respect to the longitudinal axis of the anchor body. The guide or track may be linear or non-linear. The path of the suture locking wedge is optimized to provide enhanced leverage and compression on the suture in the locked position. As shown, the suture locking wedge travels along the arcuate path defined by slots 45 until it reaches the locked position, compressing the suture 28. Further details of the suture locking are discussed below in connection with The anchor body 12 may comprise additional openings or apertures (not shown). For example, apertures may be provided for the purpose of providing space or room for suture routing. Suture routing, in some instances, requires the suture to be doubled up around a preloaded snare type device (not shown), and pulled through the anchor. More space at the locations along the suture path where the suture turns is desirable. To this end, apertures are positioned at locations along the suture path where the suture changes direction. The apertures are preferably sized to be at least as wide as the suture diameter. However, the shape, size and location of the apertures may vary. When the anchor is loaded with a suture, for example, a portion of the suture 28 may protrude or ride outside of the anchor body. Alternative embodiments may have additional apertures elsewhere on the anchor body such as, for example, on the opposite or inferior side of anchor 10 (not shown). The distal end section 30 of suture anchor 10 may comprise a piercing tip 32 to penetrate soft tissue and be driven into and through tissue and bone. The piercing tip may facilitate the anchor to be pounded or driven into bone with a mallet or hammer-like instrument. Piercing tip 32 may be hollow or solid depending on strength or weight requirements and manufacturing technique. Suture anchor 10 may be preferably fabricated from a metal such as 316L stainless steel, although other materials such as titanium may be used. Alternative embodiments may include a blunted tip for inserting into a prepared bone passage or a threaded or tissue cutting tip. After the anchor is positioned within the target tissue, namely bone, the anchor is fixed within the target tissue so as to remain in place. The suture anchor of the present invention may incorporate a number of features or structure to achieve a bone lock including, for example, assuming a larger profile using a variety of anchoring means such as expansion ribs, molybolts, rivets, wings, and other mechanisms. Alternate embodiments may include a threaded, ridged or barbed portion on the outer surface 12 to lock into the wall of the target tissue (not shown). In one embodiment, proximal end 20 may include an anchoring element with two deformable wings 22 that may be permanently or reversibly deformed or outwardly deployable to have a larger profile so as to anchor or fix the suture anchor 10 within the target tissue. With reference to In the open configuration, slots 45 are shown holding the suture locking wedge 42 in a substantially lateral or horizontal position. Maintaining the suture locking wedge 42 in a near lateral position facilitates routing the suture through the anchor because this position provides a larger space between the wedge surface and the lumen wall 24. Suture routing in some instances requires the suture to be doubled up around a preloaded snare type device (not shown), and pulled through the anchor. More space at the locations along the suture path where the suture turns is desirable. The suture locking wedge is manipulated into the locked position by manipulation of the suture legs. More specifically, as tension (T2) grows on suture leg 28 In addition to the translation force FT, a second type of force or motion is applied to the suture locking wedge 42 when tension on the tissue bound suture leg arises. Because the suture locking wedge is guided along a track or path which forms an angle or curve with respect to the longitudinal axis of the anchor body, the suture locking wedge has at least a second degree of motion or freedom. A rotation force FR on the suture locking wedge 42 therefore arises. This force FR urges the wedge in a clockwise direction, and acts to further compress the suture against the suture contacting surfaces as the tissue bound suture leg is placed in tension. The locking or compression on the suture increases as the tension T2 is increased because of the translation, and rotational forces placed on the suture locking wedge 42. A number of parameters serve to increase the compression and clamping force on the suture including but not limited to the angle (α) which the suture locking wedge makes with the longitudinal axis of the anchor body (this is also restricted or controlled by the shape of the slots/tracks), the length of the suture locking wedge (L), and the contacting surfaces of the anchor body. The angle (α) guides the suture locking wedge in an angular dimension or movement. The slot also has an axial or translational dimension. Preferably the angle (α) ranges from 5 to 60 degrees, and more preferably is about 20 degrees from the longitudinal axis of the anchor body. The length (L) of the suture locking wedge preferably ranges from about 1 to 10 mm and more preferably is about 5 mm. The width (W) of the suture locking wedge preferably ranges from about 2 to 7 mm and more preferably is about 3 mm. Preferably the width (W) is sufficient to engage the slots and yet not protrude or extend beyond the exterior surface of the anchor body. The thickness or height (H) of the suture locking wedge preferably ranges from about 0.5 to 3 mm and more preferably is about 0.8 mm. The shape of the suture locking wedge and in particular the length (L) serves to increase the rotational or moment force on the wedge. An increased length generally increases the clamping force. The position or point at which the suture locking wedge compresses the suture against the anchor body, namely, the contacting surface, also affects the frictional forces, and clamping force on the suture. In particular, an off-axis contacting surface such as 54 Utilizing a combination of the above described parameters, the suture anchor of the present invention guides a suture locking wedge to a locked configuration. The anchor body cooperates with the suture locking wedge to move the wedge with multiple degrees of motion or freedom. Consequently, the suture locking wedge of the present invention can apply a greater clamping force than that a standard plug or cam having only one degree of freedom. Additionally, as discussed below, the anchor may be conveniently implanted, tensioned, locked, and retensioned as desired. Anchor 132 may then be brought into contact against the underlying bone region 100 using instrument handle 130. Now with reference to With suture anchor 132 suitably implanted, the anchor wings 164′ may be deployed within the bone 100 using instrument 128, to lock the position of anchor 132 and to prevent or inhibit anchor 132 from being pulled out of bone 100, as shown in To effect the rotator cuff repair, the practitioner may first create an incision in the patient's shoulder 261, into which may be inserted a trocar 269, as shown in With reference to Once the tension on the bound limb 28 The suture locking mechanism of the present invention may be reversible. Retensioning may be possible to permit the continued adjustability of the bound end 28 For example, after the free end 28 Once the tendon 251 is adjusted to the desired location, the suture 28 may then be considered locked and the free end 28 Repeated stress or use of the tendon after the surgery may tend to move or dislodge the suture locking wedge. However, the novel designs of the present invention, and in particular, the ability of the suture locking wedge to move in multiple directions (e.g., angular, axial, and/or rotational) serves to prevent dislodgement of the suture locking wedge. When tension on the tissue bound end 28 With reference to In the unlocked or open position shown in With reference to Although two pins or projections are shown in the embodiment shown in Step 920 states to loop the length of suture through a lumen in a body of a suture anchor device and about a suture locking wedge disposed along the length of the lumen. The suture anchor device may be temporarily attached to an insertion instrument shaft distal end, having an opening to provide a passage for the length of suture to gain access to the suture anchor device as described in previous embodiments. The shaft distal end may also have a driver to deploy an anchoring element, disposed at the proximal end of the anchoring device. Next, the suture anchor is inserted into a portion of bone, deep enough so that the anchor device proximal end is in the cancellous bone region. A marker or indicator may be present on the shaft distal end to aid in proper anchor placement. And to deploy or fix the anchoring portion or anchoring element to secure the suture anchor device in surrounding bone (930). Step 940 states to apply tension to the second end of the length of suture, such that the length of suture slides around the suture locking wedge, so as to draw the first end of the length of suture toward the suture anchor device, thereby drawing the connective tissue closer to the anchor. The second end of the suture is drawn until the portion of connective tissue is snugly secured to the portion of bone. Step 950 states to guide the suture locking wedge along a path to a first suture locking position, thereby compressing the suture at a first contact location between the suture locking wedge and the anchor body. The path preferably comprises an angular dimension and a translational dimension. This step may be carried out by modifying the tension on the second limb (e.g., pausing, adjusting, or releasing tension on the free limb) so as to allow the tension on the tissue bound end to move the suture locking wedge. Should the connective tissue need to be relocated, tension may be increased to the second length of suture (the free side), sufficient enough to move the suture locking wedge so as to increase the gap and allow the length of suture to slide around the suture locking wedge, such that the soft tissue may be re-positioned relative to the portion of bone. After the connective tissue has been relocated, the tension may then be increased to the first end of the length of suture again, so as to compress the suture again. The insertion instrument may then be removed from the area. In another embodiment the method further comprises repeating steps 940 and 950 to reposition the soft tissue and to re-tension the suture. Additionally, applying tension may be performed by pulling on the second end of the suture by hand or otherwise. Repairing the capsule may be performed by stitching folds in the capsule to shrink its effective size (namely, plication). Tightening the capsule to the proper degree makes the shoulder more stable. Folds may be stitched in various manners. In one embodiment, and with reference to A second limb of the suture 1312 is threaded or looped through a second anchor 1316. The anchors may have features similar to the anchors described herein. In the anchors shown in Next, the first anchor 1314 and second anchor 1316 are placed in the tissue 1310 and connected with suture 1312. Initially, the method comprises securing a first limb 1332 of a length of suture to a first anchor 1340 Next, the suture is looped or threaded through additional anchors 1340 Next, anchors 1340 Next, the physician pulls on the free suture limb 1336. This step places tension on the suture spanning the tear 1342, closing the tear so that it may heal. Other modifications and variations can be made to the disclosed embodiments without departing from the subject invention. For example, other methods for anchor deployment will be apparent to the skilled artisan. Moreover, the instruments and methods described herein may be utilized in other regions of the body (e.g., knee, hip, etc.) and for other tissue treatment procedures. Thus, while the exemplary embodiments have been described in detail, by way of example and for clarity of understanding, a variety of changes, adaptations, and modifications will be obvious to those of skill in the art. Therefore, the scope of the present invention is limited solely by the appended claims. A suture anchor device and method for attaching soft tissue to bone includes an anchor body and a suture locking wedge movably disposed within the anchor body. Tension applied to one side of a suture causes the suture locking wedge to move in a translational and angular dimension to a position which compresses the suture, thereby locking the suture in the anchor. The anchor body includes tracks or slots which guide the suture locking wedge from the unlocked open configuration to the locked configuration. 1. An anchor device for repairing soft tissue with a suture, the anchor device comprising:
an anchor body comprising a wall, and the wall defining a lumen; a suture locking wedge movably disposed at least partially within the lumen, and being in contact with the suture when the suture extends through the anchor device and loops around the suture locking wedge; and wherein the anchor body further comprises a wedge guide restricting movement of the suture locking wedge to a path such that when a tension force is applied to a first limb of the suture, the suture locking wedge is urged into a first position in which the suture is compressed between the suture locking wedge and a first contact location of the anchor body and wherein the path comprises an angular dimension and a translational dimension. 2. The anchor device of 3. The anchor device of 4. The anchor device of 5. The anchor device of 6. The anchor device of 7. The anchor device of 8. The anchor device of 9. The anchor device of 10. The anchor device of 11. The anchor device of 12. The anchor device of 13. The anchor device of 14. The anchor device of 15. The anchor device of 16. The anchor device of 17. The anchor device of 18. An anchor device for attaching soft tissue to bone with a suture, the anchor device comprising:
a suture locking wedge movably disposed at least partially within the anchor device and being in contact with the suture when the suture extends through the anchor device and loops around the suture locking wedge; and a wedge track guiding the suture locking wedge to a first position when a tension force is applied to the first limb of the suture in which the suture is compressed between the suture locking wedge and a first contact location of the anchor device and wherein said wedge track comprises at least a portion which forms an angle with a longitudinal axis of the anchor. 19. The anchor device of 20. The anchor device of 21. The anchor device of 22. The anchor device of 23. The anchor device of 24. The anchor device of 25. The anchor device of 26. The anchor device of 27. The anchor device of 28. The anchor device of 29. The anchor device of 30. The anchor device of 31. A method for securing soft tissue to bone comprising:
(a) securing a first limb of a length of suture to the soft tissue to be attached to the bone; (b) extending the length of suture through an anchor body and around a surface of a suture locking wedge movably disposed at least partially within the anchor body; (c) fixing the anchor body within the bone; (d) approximating the soft tissue in proximity to the anchor body by applying a first tension to a second limb of the length of suture, such that the length of suture slides around the suture locking wedge so as to draw the soft tissue toward the anchor body; and (e) moving the suture locking wedge along a wedge path defined in the anchor body such that the suture locking wedge moves to a first suture locking position, compressing the length of suture between the suture locking wedge and the anchor body, and wherein the moving comprises moving the suture locking wedge in a direction comprising an angular dimension and a translational dimension. 32. The method of 33. The method of 34. The method of 35. The method of 36. The method of 37. The method of 38. The method of 39. The method of FIELD OF THE INVENTION
BACKGROUND
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION
Anchor Structure Overview
Suture Locking Wedge
Wedge Guide and Slots
Suture Locking Detail
Anchor Implantation Using Instrument
Reversibility
Alternative Embodiments
Methods for Tissue Repair