
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0090068 A1

GUARNER et al.

US 20140090068A1

(43) Pub. Date: Mar. 27, 2014

(54)

(71)

(72)

(73)

(21)
(22)

(63)

METHOD AND APPARATUS FOR
PARALLELING AND DISTRIBUTING STATIC
SOURCE CODE SECURITY ANALYSIS USING
LOOSE SYNCHRONIZATION

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: SALVATORE GUARNIERI, Yorktown
Heights, NY (US); Marco Pistoia,
Yorktown Heights, NY (US); Omer
Tripp, Herzelyia (IL)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 13/644,377
Filed: Oct. 4, 2012

Related U.S. Application Data
Continuation of application No. 13/627,049, filed on
Sep. 26, 2012.

Publication Classification

(51) Int. Cl.
G06F2L/57 (2006.01)

(52) U.S. Cl.
CPC G06F2I/577 (2013.01)
USPC .. 726/25

(57) ABSTRACT

A method of static source code analysis is provided. A for
ward search of source code is performed from each of a
plurality of Source nodes. A backward search of Source code
is performed from each of a plurality of sink nodes, wherein
the forward search and the backward search are performed in
parallel simultaneously. The progress of the forward search
and the backward search are monitored to determine if the
searches intersect at a common node. A Vulnerability alert is
generated when the monitoring determines that a forward
search and a backward search reach a common node.

Patent Application Publication Mar. 27, 2014 Sheet 1 of 2 US 2014/0090068 A1

r 6.

Patent Application Publication Mar. 27, 2014 Sheet 2 of 2 US 2014/0090068 A1

FIG. 2 (PRIOR ART)

US 2014/0090068 A1

METHOD AND APPARATUS FOR
PARALLELING AND DISTRIBUTING STATIC
SOURCE CODE SECURITY ANALYSIS USING

LOOSE SYNCHRONIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a Continuation Application of
co-pending U.S. patent application Ser. No. 13/627,049, filed
on Sep. 26, 2012, the entire contents of which are incorpo
rated by reference herein.

BACKGROUND

0002 1. Technical Field
0003. The present disclosure relates to information tech
nology, and, more particularly, to Source code analysis.
0004 2. Discussion of Related Art
0005. In computer science formal static analysis involves
the automatic extraction of information about the possible
executions of computer programs. A conventional approach
for carrying out static source code security analysis is to
model integrity and confidentiality violations as problems as
to whether there is a path leading from one node to another in
a graph (i.e., graph-reachability problems). In security analy
sis, the source node represents a statement reading untrusted
user input, and the sink node represents a statement executing
a security-sensitive operation (e.g., database access), where
Source vertices are the control locations within the program
where untrusted data from the user is read, sink vertices are
the locations where security-sensitive operations are per
formed. There are also locations in the application that are
considered 'sanitizers’, i.e., flows crossing through these
locations that are endorsed (i.e., sanitized or validated), either
universally or for particular kinds of vulnerabilities, wherein
the user input changes status from untrusted to trusted having
been checked positively (validated) or modified to contain
only legal content (sanitized).
0006 Static source code security analysis holds the prom
ise of finding all Vulnerabilities in an application because the
analysis simultaneously models all possible execution paths
within an application, and more, because of over-approxima
tion.
0007. In practice, it is highly challenging to fulfill this
Soundness need when applying static security analysis to
modern, real-world applications, e.g., web applications
whose code base is at the scale of 10 lines of code (LOC),
excluding library code.
0008. Applying standard analysis techniques to code of

this scale is at best extremely expensive, and, at worst, the
analysis crashes before completing the scan. This has led to
the several ideas on how to scale the analysis.
0009. A simple and popular solution is to cast bounds on
the analysis budget by allowing the analysis to scan only a
Small neighborhood around each source, ignoring certain
libraries or virtual-call resolutions, and constraining the size
of the applications call graph. While bounds often yield a
scalable analysis, they create several problems. First, the
analysis is no longer predictable. A Small change in the code
may cause the analysis to exceed a bound. Second, and more
importantly, bounds are inherently unsound.
0010. Another common solution is to use synthetic models
for large libraries, which represent the library’s behavior

Mar. 27, 2014

simplistically. This saves the need to scan large amounts of
code, but Soundness again becomes a concern.
0011. Another approach is modular analysis, where the
analysis analyzes each method independently, and produces a
general Summary of that method. Later, when a client of that
method is analyzed, the analysis can reuse the Summary with
out having to reanalyze the method. While elegant and attrac
tive, the modular approach is challenged by several funda
mental questions: First, it’s not clear how to construct a Sound
Summary for a method manipulating pointer-based data
structures. Summaries are valid only under the analysis scope
under which they were built. If existing classes are modified
or new classes are introduced, previously constructed Sum
maries may have to be invalidated and recomputed, thereby
canceling out the advantages of the analysis being modular.
Second, modular Summaries are often imprecise due to the
need to simultaneously account for all possible behaviors of
the Summarized method.
0012. As such, there is a need for a method and apparatus
for carrying out static Source code security analysis in a
Scalable and efficient manner.

BRIEF SUMMARY

0013 Exemplary embodiments of the present disclosure
provide a method and system for parallelizing and distribut
ing static security analysis of Source code using loose Syn
chronization. An original source code analysis is broken into
multiple independent Sub-analyses which are tracked inde
pendently and computed periodically.
0014 Multiple independent sub-analyses involve seeds
which are starting points for the analysis, namely a statement
reading user input for forward analyses from sources and a
statement executing a security-sensitive operation for back
ward analysis starting from sinks. In other words, the multiple
independent Sub-analyses include: forward tasks which cor
respond to source seeds, backward tasks which correspond to
sink seeds, a chop task which corresponds to a source-sink
pair with periodically computed samples, and a witness cre
ation task which corresponds to a source-sink pair.
0015 Solutions (i.e., mappings from each point in the
program to the abstract state per the abstraction employed
by the static analysis—at that point) for different seeds can be
computed in parallel. Finding whether the intersection
between the Solutions for a particular source-sink pair is
empty (i.e., there is no program point where the abstract states
overlap) includes read access into the Solution, which evolves
monotonically, per the convergence requirements of the
framework of abstract interpretation. That is, the abstract
states form a lattice, and the Solution at each point can only
grow during the analysis (per the ordering relation of the
lattice). This makes sound parallelization feasible.
0016. Witness creation includes only read access into the
corresponding slices (i.e., the part of the program affected by
a seed Statement (also known as the slicing criterion)) and
thus no synchronization is required when Such a task is per
formed.
0017. An algorithm and code may be provided for paral
lelizing and distributing security analysis for forward task,
backward task, chop task, and witness creation task descrip
tions.
0018. According to an exemplary embodiment a method
of static source code analysis is provided. A forward search of
Source code from each of a plurality of Source nodes is per
formed. A backward search of source code from each of a

US 2014/0090068 A1

plurality of sink nodes is performed, wherein the forward
search and the backward search are performed in parallel
simultaneously. The progress of the forward search and the
backward search is monitored to determine if the searches
intersect at a common node. A Vulnerability alert is generated
when the monitoring determines that a forward search and a
backward search reach a common node.

0019. The forward search and the backward search may be
terminated when the monitoring determines that the searches
have reached a common node.
0020. The monitoring may be performed in parallel with
the searches.
0021. According to an exemplary embodiment a method
for parallelizing and distributing static Source code security
analysis using loose synchronization includes breaking an
original source code analysis into multiple independent Sub
analyses that are tracked independently and computed peri
odically. The multiple independent Sub-analyses include a
plurality of tasks: forward tasks that correspond to Source
seeds, backward tasks that correspond to sink seeds, a chop
task that corresponds to a source-sink pair with computed
periodically samples, and a witness creation task that corre
sponds to a source-sink pair with queries of partial data-flow
graphs.
0022. The method may further include determining
whether an intersection between solutions for a particular
Source-sink pair is empty, wherein finding whether an inter
section between Solutions for a particular Sour-sink pair is
empty may include read access into the solution which
evolves monotonically per convergence requirements of a
framework of abstract interpretation.
0023. Witness creation may include read access into the
corresponding slices without synchronization when a witness
creation task is performed.
0024. According to an exemplary embodiment a method
of static source code analysis includes building a call graph,
scanning for sources, sinks and sanitizers, building Source
tasks and sink tasks, building chop tasks, starting forward
propagation and backward propagation, starting chip tasks,
and adding results to a report.
0025. According to an exemplary embodiment a method
of static source code analysis includes analyzing source code
in parallel forward from source nodes, backwards from sink
nodes, checking if forward and backwards searches reach
same node(s), and producing a Vulnerability alert whenever
an intersection is detected.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0026 Exemplary embodiments will be more clearly
understood from the following detailed description taken in
conjunction with the accompanying drawings.
0027 FIG. 1 depicts a sequence of operational steps in
accordance with an exemplary embodiment of the present
disclosure.
0028 FIG. 2 depicts an exemplary computer system for
implementing the exemplary embodiment of the present dis
closure as depicted in FIG. 1.

DETAILED DESCRIPTION

0029 Reference will now be made in more detail to the
exemplary embodiments, examples of which are illustrated in

Mar. 27, 2014

the accompanying drawings, wherein like reference numerals
refer to the like elements throughout.
0030. In accordance with an exemplary embodiment of
the present disclosure an original Source code analysis is
broken into multiple independent Sub-analyses. Each source,
or data-flow seed, is tracked independently.
0031 Similarly, flows reaching sink locations are com
puted backwards independently for each sink, that is, the
analysis computes a backward slice for each sink.
0032. The chop, i.e., the intersection between forward
flows from sources and backward flows from sinks, is com
puted periodically, and without synchronization, by reading a
current Snapshot (i.e., the current (intermediate) solution
computed by the analysis) from forward and backward tasks.
If the chop of a given source-sink pair is nonempty, then a
flow can be recovered for this pair (i.e., a path from the source
to the sink can be reconstructed based on their corresponding
(partial) slices).This work can also be done in parallel for
each Source-sink pair.
0033. In accordance with an exemplary embodiment there
are four types of tasks: forward tasks, backward tasks, chop
tasks, and witness creation tasks.
0034) Forward tasks, which correspond to source seeds,
compute (forward) the data flow emanating from a specific
Source location, which yields a data-flow solution spanning
all the locations that are (transitively) reachable (i.e., reach
able through Zero or more edges) from the Source statement.
0035. Backward tasks, which correspond to sink seeds,
compute (backwards) the data flow for a given sink location,
which yields a solution spanning all the locations that (tran
sitively) reach that sink statement, that is, the Solution con
tains a nontrivial abstract state for all locations that reach the
sink statement.
0036. A chop task, which corresponds to a source-sink
pair, periodically samples the Solutions computed for the
Source and the sink without any synchronization, and tests
whether the sampled data-flow slices intersect. If they do
intersect, then (i) the chop task asks the corresponding Source
and sink tasks to abort, and (ii) a witness creation task is
created.
0037. A witness creation task, which corresponds to a
Source-sink pair, queries the partial data-flow graphs (solu
tions) for the source and the sink, unifies the two graphs, and
then searches for a path extending from the source to the sink.
Such a path is found by the chop task, which only creates a
witness creation task if the slices intersect.
0038. The decomposition of an implementing algorithm
into tasks includes several steps.
0039 First, the solutions for different seeds are computed
in parallel. This reduces sharing between the analyses (e.g.,
Interprocedural Finite Distributive Subset (IFDS)-style
memoization), but enables parallelism, and even distribution
across a network of independent computers, memoization
being the caching of a value So as not to compute it multiple
times, with the IFDS dataflow analysis algorithm framework
doing this to achieve good asymptotic efficiency.
0040 Second, finding whether the intersection between
the solutions for a particular source-sink pair is empty
requires read access into the solutions, which evolve mono
tonically, per the convergence requirements of the framework
of abstract interpretation. This implies that no synchroniza
tion is required by a chop task, which can run in the back
ground while its corresponding source and sink tasks are
executing.

US 2014/0090068 A1

0041 Finally, witness creation also requires only read
access into the corresponding slices, and thus no synchroni
Zation is required when Such a task is performed.
0042 Below is a formal description of an exemplary algo
rithm, where a forward task is denoted by FW, a backward
task by BW, a chop task by C, and a witness task by W. noting
that access to shared variables is atomic, so there are no races.

Algorithm Security Analysis(Program P. SecuritySpec S)
Variables:
FSlices: Seeds -> Slices
BSlices: Seeds -> Slices
Status: Slices -> InProgress,Completed. Aborted
CG := CreateCallGraph(P)
Src := FindSources(CGS)
San := FindSanitizers(CGS)
Snk := FindSinks(CGS)
Foreach Src in Src

Spawn new FW(CG.Src,San)
Foreach Snk in Snk

Spawn new BW(CGSnk,San)
Foreach <Src.Sinks in Src X Snk

f Compatible(Src.Sink,S)
Spawn new C(Src.Sink)

FW(CG.sirc, San)
Status(FSlicessrc) := InProgress
While (Status(FSlicessrc) == InProgress)

R:= NextFPropagationStep(CG,Src,San FSlicessrc)
f(R == Done)

Status(FSlicessrc) == Completed
BW(CG.Snk,San)

Status(BSlices Snk) := InProgress
While (Status(BSlices Snk)== InProgress)

R:= NextBPropagationStep(CG.Snk.San, BSlices Snk)
f(R == Done)

Status(BSlices Snk)== Completed
C(Src,Snk)

While (true)
Fslice := FSlicessrc
Bslice := BSlices Snk
f(Intersection(Fslice.Bslice) = { })

Status(Fslice) := Aborted
Status(Bslice) := Aborted
CreateWitness(Src.Sink)

W CreateWitness(Src.Sink)
Let X = Any (Intersection (FSlice.B.Slice))
Let p1 = Any(Paths(Src.,x) in FSlice)
Let p2 = Any(Paths(Snk,x) in BSlice)
Output p1, Inverse(p2)

0043. As an exemplary explanation of the algorithmboxes
shown above, consider the witness task Was follows. First, a
statement X is found that is contained in the intersection of
FSlice (the forward slice from the source, src) and BSlice (the
backward slice from the sink, Snk). Then a forward path p1 is
found leading from Src to X, and analogously, and backward
path p2 leading from Snk to X. The concatenation of p1 is
output with the inverse of p2 (since p2 is a backward path),
which is a full path from Src to Snk (going through X).
0044 FIG. 1 shows an overview of a sequence of steps 100
in accordance with an exemplary embodiment of the present
disclosure.

0045. In step 110 a call graph is built.
0046. In step 112 a scan is made for sources, sinks and
sanitizers.

0047. In step 114a and 114b, source tasks and sink tasks
are built, the task being the execution thread parameterized by
a sourcelsink node, which computes the slice for that node.
0048. In step 116, chop tasks are built.

Mar. 27, 2014

0049. In step 118a and 118b, forward propagation and
backward propagation are started.
0050. In step 120, chop tasks are started.
0051. In step 122, results are added to a report.
0.052 The methodologies of the exemplary embodiments
of the present disclosure may be particularly well-suited for
use in an electronic device or alternative system. Accordingly,
as depicted in FIG. 2, exemplary embodiments may take the
form of an embodiment combining software and hardware
aspects that may all generally be referred to as a “processor.
“circuit,” “module' or “system.” Furthermore, exemplary
implementations may take the form of a computer program
product embodied in one or more computer readable medium
(s) having computer readable program code stored thereon.
0053 Any combination of one or more computerusable or
computer readable medium(s) may be utilized. The com
puter-usable or computer-readable medium may be a com
puter readable storage medium. A computer readable storage
medium may be, for example but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc
tor System, apparatus, device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer-readable storage medium would include the
following: a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an eras
able programmable read-only memory (EPROM or Flash
memory), an optical fibre, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus or device.
0054 Computer program code for carrying out operations
of the exemplary embodiments may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0055 Exemplary embodiments are described herein with
reference to flowchart illustrations and/or block diagrams. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions.
0056. The computer program instructions may be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

US 2014/0090068 A1

0057 For example, FIG. 2 is a block diagram depicting an
exemplary computer system for performing the method
depicted in FIG. 1. The computer system 201 may include a
processor 202, memory 203 coupled to the processor (e.g.,
via a bus 204 or alternative connection means), as well as
input/output (I/O) circuitry 205, 206 operative to interface
with the processor 202. The processor 202 may be configured
to perform one or more methodologies described in the
present disclosure, illustrative embodiments of which are
shown in the above figures and described herein. Embodi
ments of the present disclosure can be implemented as a
routine 207 that is stored in memory 203 and executed by the
processor 202 to process the signal from the signal Source
208. As such, the computer system 201 is a general-purpose
computer system that becomes a specific purpose computer
system when executing the routine 207 of the present disclo
SUC.

0058. It is to be appreciated that the term “processor as
used herein is intended to include any processing device. Such
as, for example, one that includes a central processing unit
(CPU) and/or other processing circuitry (e.g., digital signal
processor (DSP), microprocessor, etc.). Additionally, it is to
be understood that the term “processor may refer to a multi
core processor that contains multiple processing cores in a
processor or more than one processing device, and that vari
ous elements associated with a processing device may be
shared by other processing devices.
0059. It is to be appreciated that the term “processor” as
used herein is intended to include any processing device. Such
as, for example, one that includes a central processing unit
(CPU) and/or other processing circuitry (e.g., digital signal
processor (DSP), microprocessor, etc.). Additionally, it is to
be understood that the term “processor may refer to more
than one processing device, and that various elements asso
ciated with a processing device may be shared by other pro
cessing devices. The term “memory” as used herein is
intended to include memory and other computer-readable
media associated with a processor or CPU, such as, for
example, random access memory (RAM), read only memory
(ROM), fixed storage media (e.g., a hard drive), removable
storage media (e.g., a diskette), flash memory, etc. Further
more, the term “I/O circuitry’ as used herein is intended to
include, for example, one or more input devices (e.g., key
board, mouse, etc.) for entering data to the processor, and/or
one or more output devices (e.g., printer, monitor, etc.) for
presenting the results associated with the processor.
0060. The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code, which com
prises one or more executable instructions for implementing
the specified logical function(s). It should also be noted that,
in some alternative implementations, the functions noted in
the block may occur out of the order noted in the figures. For
example, two blocks shown in Succession may, in fact, be
executed Substantially concurrently, or the blocks may some
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard

Mar. 27, 2014

ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com
puter instructions.
0061 Although illustrative embodiments of the present
disclosure have been described herein with reference to the
accompanying drawings, it is to be understood that the
present disclosure is not limited to those precise embodi
ments, and that various other changes and modifications may
be made therein by one skilled in the art without departing
from the scope of the appended claims.

1. A non-transitory computer program storage device
embodying instructions executable by a processor to analyze
Source code, comprising:

instruction code for performing by a computer system a
forward search of source code from each of a plurality of
Source nodes;

instruction code for performing by the computer system a
backward search of the source code from each of a
plurality of sink nodes, wherein the forward search and
the backward search are performed in parallel simulta
neously;

instruction code for monitoring the progress of the forward
search and the backward search by the computer system
to determine if the forward search and the backward
search intersect at a common node; and

instruction code for generating by the computer system a
Vulnerability alert when the monitoring determines that
the forward search and the backward search reach the
common node.

2. The non-transitory computer program storage device of
claim 1, further comprising instruction code for terminating
by the computer system the forward search and the backward
search when the monitoring determines that the forward
searches and the backward search have reached a common
node.

3. The non-transitory computer program storage device of
claim 1, wherein the monitoring is performed in parallel with
the forward search and the backward search.

4. A non-transitory computer program storage device
embodying instructions executable by a processor for paral
lelizing and distributing static source code security analysis
using loose synchronization, comprising:

instruction code for breaking an original Source code
analysis into multiple independent Sub-analyses that are
tracked independently and computed periodically by a
computer system, the multiple independent Sub-analy
ses comprising a plurality of tasks comprising:
forward tasks that correspond to Source seeds;
backward tasks that correspond to sink seeds;
a chop task that corresponds to a source-sink pair with

periodically computed samples; and
a witness creation task that corresponds to a source-sink

pair with queries of partial data-flow graphs.
5. The non-transitory computer program storage device of

claim 4, wherein solutions for different seeds are computed
by the computer system in parallel.

6. The non-transitory computer program storage device of
claim 4.

further comprising instruction code for determining by the
computer system whether an intersection between solu
tions for a particular source-sink pair is empty,

wherein instruction code for finding by the computer sys
tem whether an intersection between solutions for a
particular source-sink pair is empty comprises instruc

US 2014/0090068 A1 Mar. 27, 2014

tion code for read access into the solution which evolves
monotonically per convergence requirements of a
framework of abstract interpretation.

7. The non-transitory computer program storage device of
claim 4, wherein witness creation comprises read access into
the corresponding slices without synchronization when a wit
ness creation task is performed.

8. A non-transitory computer program storage device
embodying instructions executable by a processor to analyze
Source code comprising:

instruction code executable by the processor for analyzing
Source code in parallel forward from source nodes and
backwards from sink nodes;

instruction code executable by the processor for checking
if forward searches and backwards searches reach same
node(s); and

instruction code executable by the processor for producing
a vulnerability alert whenever an intersection of the for
ward searches and backwards searches is detected.

k k k k k

