PRESS-MOLDED PRODUCT, PRESS-MOLDED PRODUCT PRODUCING METHOD, AND PRESS-MOLDED PRODUCT PRODUCING APPARATUS
The present invention relates to a press-molded product having excellent rigidity and strength and appropriately used as, for example, a vehicle body reinforcing member and also relates to a press-molded product producing method and a press-molded product producing apparatus used to produce the press-molded product. A vehicle body has a structure in which a plurality of molding panels is bonded into a box shape by, for example, resistance spot-welding while edge portions of the molding panels overlap one another. A reinforcing member or a strengthening member (hereinafter, generally referred to as a “reinforcing member”) is bonded to the box-shaped structure by, for example, resistance spot-welding. As such vehicle body reinforcing members, there are a bumper reinforcement, a locker (side sill), a beltline, a cross member, and a side member. Each of these reinforcing members is formed as, for example, a press-molded member that has a substantially hat-shaped or groove-shaped cross-section and includes a ceiling plate, two ridge lines connected to the ceiling plate, and two flanges connected to two ridge lines. An end portion opened in the extension direction of the ridge line of such a reinforcing member is bent inward or outward so as to form a flange in the end portion. When the flange overlaps the other member and the flange and the other member are bonded to each other by, for example, resistance spot-welding, a vehicle body reinforcing member is assembled. Depending on the plate thickness of the material, arc-welding may be used instead of spot-welding. Here, in the specification, a flange obtained by bending the end portion of the reinforcing member toward an area in which an angle formed by two surfaces respectively connected to both ends of the ridge line is smaller than 180° will be referred to as an inward flange. Further, a flange obtained by bending the end portion of the reinforcing member toward an area in which an angle formed by two surfaces respectively connected to both ends of the ridge line is larger than 180° will be referred to as an outward flange. When the inward flange is formed in the end portion of the reinforcing member, a ridge-portion flange located on the extension line of the ridge line is molded as a flange by shrinking, and hence wrinkles are generated in the ridge-portion flange. For that reason, when such an inward flange overlaps the other member and the inward flange and the other member are bonded to each other by spot-welding, a gap is generated between the inward flange and the other member due to the wrinkles, and hence there is a concern that an assembling problem may occur. Thus, when the reinforcing member having the inward flange formed at the end portion is used, there is a need to weld the reinforcing member to the other member by using the inward flange as a bonding edge while avoiding the generation of wrinkles by, for example, forming a notch in the ridge-portion flange. However, when the notch is formed in the inward ridge-portion flange so that the flange is not continuous, the performance of the vehicle body reinforcing member involved with torsional rigidity or load transfer efficiency is essentially degraded. Thus, in order to ensure the performance demanded for the reinforcing member by bonding the reinforcing member to the other member through the inward flange, there is a need to mold the shrinking flange while suppressing the generation of wrinkles in the ridge-portion flange without any notch formed in the inward flange. In addition, in the specification, the “notch formed in the flange” indicates a state where the notch is formed in the entire flange in the width direction so that the flange is not continuous. Further, the width of the flange is used as the meaning of the height of the flange. Thus, when the width of the flange is partially decreased so that a part of the flange is left, the notch is not formed in the flange. So far, a technique of suppressing the generation of wrinkles during the shrinking flange molding process has been proposed. For example, Patent Literature 1 discloses a technique of forming an unevenness shape, absorbing a difference in length between a front end portion and a base portion in a shrinking flange portion, in a roof panel having a sunroof opening. Further, Patent Literature 2 discloses a technique of preventing the generation of wrinkles by providing a specific drawing bead in a shrinking flange portion during a rectangular tube drawing process. Furthermore, Patent Literature 3 discloses a technique of suppressing the generation of wrinkles by performing a molding process while applying a pressure to a shrinking flange portion using a cam structure. Further, Patent Literature 4 discloses a plate member molding method in which a flange corresponding portion extending in a direction interesting a bending load direction is formed in a portion to be used as a bent portion and the flange corresponding portion is stretched into a flange so as to have a desired shape. Such a plate member molding method is used to suppress tearing caused by the wrinkles in the flange. Patent Literature 5 discloses a method in which a plane metal member is bent, upright portions of both side portions are bent outward, and both inclined side portions are strongly pressed by a processing roller of a pressing surface of a side surface of a receiving die so as to be sequentially raised. Such a processing method is used to reduce the distortion or the wrinkles of the upright portion. The techniques disclosed in Patent Literatures 1 and 2 are used to absorb the extra line length causing the generation of wrinkles and excessive padding by an excessive portion formed in advance. Thus, the spot-welding is not easily performed on the excessive portion and the excessive portion disturbs the spot-welding of the other portion. In such a case, it is difficult to perform the techniques disclosed in Patent Literatures 1 and 2. Further, the technique disclosed in Patent Literature 3 can suppress the generation of wrinkles of the flange portion of the large-curvature-radius portion having, for example, a curvature radius of 2100 mm and having a feature that the shrinkage rate of the flange portion and the reaction force for the cam structure are small. However, it is difficult to suppress the generation of wrinkles of the flange portion of the small-curvature-radius portion having, for example, a curvature radius of 5 mm and having a feature that the shrinkage rate of the flange portion and the reaction force for the cam structure are large. Particularly, when a high-strength steel plate having a large tensile strength is used, excessive wrinkles are generated, and hence the reaction force from the flange portion increases. For that reason, the cam structure disclosed in Patent Literature 3 cannot suppress the generation of wrinkles. Further, the technique disclosed in Patent Literature 4 is used to suppress the generation of wrinkles by the stretching process. Thus, the plate thickness of the obtained flange is decreased. As a result, there is a concern that the rigidity of the reinforcing member or the strength of the flange portion may be degraded. Further, the technique disclosed in Patent Literature 5 is used to form the upright portion by sequentially strongly pressing a plurality of processing rollers. Here, a product in which the curvature radius of the bent portion of the plane metal member is comparatively large is considered as a target. Thus, it is difficult to suppress the generation of wrinkles of, for example, the flange portion of the small-curvature-radius portion having a curvature radius of 5 mm. In this way, in the member having a substantially hat-shaped or groove-shaped cross-section, it is difficult to form the inward flange without forming the notch in the end portion opened in the extension direction of the ridge portion from the viewpoint of press-moldability. Particularly, Patent Literatures 1 to 5 above are not contrived in consideration of the formation of the flange in the high-strength steel plate having a tensile strength of 340 MPa or more. For that reason, there is no example in which a press-molded product formed by a high-strength steel plate and including a continuous, inward flange without a notch in a ridge-portion flange is used as the vehicle body reinforcing member so far. In a press-molded product having an outward flange, a hat-shaped or groove-shaped cross-section cannot be enlarged to the fullest extent of the design cross-section by the area of the outward flange. In other words, when the press-molded product can be bonded to the other member through the inward flange instead of the outward flange, the cross-section of the press-molded product can be enlarged to the fullest extent of the design cross-section by the area in which the outward flange is not provided. For that reason, it is possible to improve the bonding strength between the vehicle body reinforcing member and the other member or the bending rigidity or the torsional rigidity of the vehicle body. Thus, there is a desire to realize a press-molded product formed by a high-strength steel plate and including an inward flange. An object of the invention is to provide a press-molded product including an inward continuous flange without a notch and capable of improving performance involved with the bonding strength between a reinforcing member and the other member or the rigidity of a vehicle body without forming a notch in a ridge-portion flange so as to prevent a defect generated during a press-molding process. Further, another object of the invention is to provide a press-molded product producing method and a press-molded product producing apparatus. In order to solve the above problems, according to an aspect of the present invention, there is provided a press-molded product of a metal plate which is formed by a steel plate having a tensile strength of 340 MPa or more and includes a ridge portion extending in a predetermined direction and first and second surface portions respectively extending from both ends of a ridge line formed by the ridge portion, the press-molded product including: an inward continuous flange in at least one end portion in the predetermined direction. The inward continuous flange is obtained by continuously forming a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion. A flange width (Lf) of the ridge-portion flange, a curvature radius (rf) of the ridge portion, and an angle (θ) formed by the first surface portion and the second surface portion satisfy Equation (1) below: where 0 mm≦rf≦35 mm and 90°≦θ≦145°. A flange width of at least a part of the ridge-portion flange may be smaller than a flange width of at least a part of each of the first flange and the second flange. A cross-section of the press-molded product when viewed in the predetermined direction may be a hat-shaped or groove-shaped opened cross-section or a closed cross-section. The press-molded product may be a vehicle body reinforcing member. A plate thickness of at least an area of an edge portion of the ridge-portion flange in a width direction may be equal to or larger than a plate thickness obtained before a press-molding process. A plate thickness of at least an area of an edge portion of the ridge-portion flange in a width direction may be equal to or smaller than 1.5 times a plate thickness obtained before a press-molding process. In order to solve the above problems, according to another aspect of the present invention, there is provided a press-molded product producing method including: a first intermediate molding step of bending at least one end portion of a blank formed by a steel plate having a tensile strength of 340 MPa or more in a predetermined direction so as to mold the blank into a first intermediate member having a flange; and a first press-molding step of bending the first intermediate member in the predetermined direction by press-molding the first intermediate member while nipping the flange inside a predetermined first gap so as to mold a ridge portion extending in the predetermined direction and a first surface portion and a second surface portion respectively extending from both ends of a ridge line formed by the ridge portion and to mold the flange into an inward continuous flange in which a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion are continuous to one another. In the first press-molding step, a press-molding mold including a die, a punch disposed so as to face the die, and an out-of-plane deformation restricting tool disposed so as to face a side surface of the punch during the press-molding process and to suppress out-of-plane deformation of the flange may be used, and the first intermediate member may be disposed on the punch and the first intermediate member may be press-molded by the die and the punch while the flange is nipped inside the first gap formed by the side surface of the punch and the out-of-plane deformation restricting tool. The die may support a pad pressing the first intermediate member in a manner that the pad is movable in a pressing direction. In the first press-molding step, the press-molding mold further including a blank holder which faces the die may be used, and a part of the first intermediate member may be drawn while being constrained by the die and the blank holder. The punch of the press-molding mold may support an inner pad contacting one surface of the first intermediate member in a manner that the inner pad is movable in a mold clamping direction. In the first press-molding step, the first intermediate member may be press-molded by the die, the punch, and the inner pad while the flange is nipped inside the first gap formed by side surfaces of the punch and the inner pad and the out-of-plane deformation restricting tool. According to still another aspect of the present invention, there is provided a press-molded product producing method including: a first intermediate molding step of bending at least one end portion of a blank formed by a steel plate having a tensile strength of 340 MPa or more in a predetermined direction so as to mold the blank into a first intermediate member having a flange; a second intermediate molding step of bending the first intermediate member in the predetermined direction by press-molding the first intermediate member while nipping the flange inside a predetermined first gap so as to form an intermediate ridge portion extending in the predetermined direction and a first intermediate surface portion and a second intermediate surface portion respectively extending from both ends of a ridge line formed by the intermediate ridge portion and to mold the flange into an intermediate continuous flange in which an intermediate ridge-portion flange formed in the end portion of the intermediate ridge portion, a first intermediate flange formed in at least a part of an area of the end portion of the first intermediate surface portion, and a second intermediate flange formed in at least a part of an area of the end portion of the second intermediate surface portion are continuous to one another, thereby molding the first intermediate member into a second intermediate member; and a second press-molding step of further bending at least one of the first intermediate surface portion and the second intermediate surface portion formed in the second intermediate member in the predetermined direction while nipping the intermediate continuous flange inside a predetermined second gap so as to mold a ridge portion extending in the predetermined direction and a first surface portion and a second surface portion respectively extending from both ends of a ridge line formed by the ridge portion and to mold the intermediate continuous flange into an inward continuous flange in which a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion are continuous to one another. In the second intermediate molding step, a press-molding mold including a die, a punch disposed so as to face the die, and an out-of-plane deformation restricting tool disposed so as to face a side surface of the punch during the press-molding process and to suppress out-of-plane deformation of the flange may be used, and the first intermediate member may be disposed on the punch and the first intermediate member may be press-molded by the die and the punch while the flange is nipped inside the first gap formed by the side surface of the punch and the out-of-plane deformation restricting tool. In the second intermediate molding step, the press-molding mold further including a blank holder which faces the die may be used, and a part of the first intermediate member may be drawn while being constrained by the die and the blank holder. The punch of the press-molding mold may support an inner pad contacting one surface of the first intermediate member in a manner that the inner pad is movable in a mold clamping direction. In the second intermediate molding step, the first intermediate member may be press-molded by the die, the punch, and the inner pad while the flange is nipped inside the first gap formed by side surfaces of the punch and the inner pad and the out-of-plane deformation restricting tool. In the second press-molding step, a press-molding mold including a die, a punch disposed so as to face the die, and an out-of-plane deformation restricting tool disposed so as to face a side surface of the punch during the press-molding process and to suppress out-of-plane deformation of the flange may be used, and the second intermediate member may be disposed on the punch and the second intermediate member may be press-molded by the die and the punch while the intermediate continuous flange is nipped inside the second gap formed by the side surface of the punch and the out-of-plane deformation restricting tool. The die may support a pad pressing the first intermediate member in a manner that the pad is movable in a pressing direction. A distance (x) of the first gap may satisfy Equation (2) below: where t is a plate thickness (mm) of the blank, and
In order to solve the above problems, according to still another aspect of the present invention, there is provided a press-molded product producing apparatus used to produce a press-molded product including a ridge portion extending in a predetermined direction and a first surface portion and a second surface portion respectively extending from both ends of a ridge line formed by the ridge portion and also including an inward continuous flange in at least one end portion in the predetermined direction, the inward continuous flange being obtained by continuously forming a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion, the press-molded product producing apparatus including: a punch which contacts one surface of an intermediate member having a flange in at least one end portion in the predetermined direction; a die which is disposed so as to face the punch; and an out-of-plane deformation restricting tool which is disposed so as to face a side surface of the punch when the intermediate member is press-molded and to have a predetermined gap between the out-of-plane deformation restricting tool and the side surface of the punch so as to nip the flange in the gap, thereby suppressing out-of-plane deformation of the flange. A distance (x) of the gap between the side surface of the punch and the out-of-plane deformation restricting tool may satisfy Equation (2) below: where t is a plate thickness (mm) of the blank, and
The die may include a pad which is supported so as to be movable in a mold clamping direction and contacts the other surface of the intermediate member. The punch may include an inner pad which is supported so as to be movable in a mold clamping direction and contacts the one surface of the intermediate member. The out-of-plane deformation restricting tool may be disposed so as to face side surfaces of the punch and the inner pad when the intermediate member is press-molded and to have a predetermined gap between the out-of-plane deformation restricting tool and the side surfaces of the punch and the inner pad so as to nip the flange in the gap. The press-molded product producing apparatus may bend the intermediate member during the press-molding process. The press-molded product producing apparatus may further include a blank holder which faces the die. The intermediate member may be drawn while being constrained by the die and the blank holder during the press-molding process. According to the invention, it is possible to suppress the generation of wrinkles in an inward continuous flange without forming a notch in a ridge-portion flange in order to prevent a defect generated during a press-molding process in a press-molded product formed by a steel plate. Thus, when the press-molded product is used as a vehicle body reinforcing member, it is possible to improve performance involved with the bonding strength between the reinforcing member and the other member or the rigidity of a vehicle body. Hereinafter, referring to the appended drawings, preferred embodiments of the present invention will be described in detail. It should be noted that, in this specification and the appended drawings, structural elements that have substantially the same function and structure are denoted with the same reference numerals, and repeated explanation thereof is omitted. First, a press-molded product according to a first embodiment of the invention will be described. (1-1. Entire Configuration) The press-molded product according to the embodiment is a molded product obtained by press-molding a steel plate. Such a press-molded product 100 is suitable for, for example, a vehicle body reinforcing member such as a bumper reinforcement, a locker (side sill), a beltline, and a cross member. The press-molded product 100 used for such an application may be obtained by press-molding a high-strength steel plate having a tensile strength of 340 MPa or more and desirably 590 MPa or more. The tensile strength is a value measured by the tensile test based on JIS Z 2241. Further, the plate thickness of the blank formed by the steel plate may be, for example, in the range of 0.8 to 2.0 mm. Further, in the embodiment, a predetermined direction in which the ridge portions 112 Further, the cross-section shape of the press-molded product 100 also includes, for example, a substantially hollow-square-shaped closed cross-section shape other than the opened cross-section shapes illustrated in As illustrated in The second surface portion 114 is connected to the ridge portions 112 In order to apply the press-molded product 100 molded by a high-strength steel plate to, for example, a vehicle body reinforcing member, it is desirable that the curvature radius rf of each of ridge portions 112 (1-2. Inward Continuous Flange) The press-molded product 100 includes the ridge-portion flanges 115 The ridge-portion flanges 115 The press-molded product 100 according to the embodiment includes the inward continuous flange 118 provided in the longitudinal outer end portion 100A so as to be continuous in the entire length of the first surface portions 113 (1-3. Ridge-Portion Flange) In the press-molded product 100 according to the embodiment, a concave portion 119 where a flange width is small is provided in each of the ridge-portion flanges 115 Since the width Lf of each of the ridge-portion flanges 115 rf (mm): curvature radius of ridge portion 112 θ: angle formed between first surface portion 113 (here, 0 mm≦rf≦35 mm and 90°≦θ≦145°) When the width Lf of each of the ridge-portion flanges 115 In addition, when the flange width Lf of each of the ridge-portion flanges 115 Further, it is desirable that the plate thickness of an edge portion of an inward continuous flange 118 in the width direction be equal to or larger than the plate thickness obtained before a press-molding process. Since the edge portion of the inward continuous flange 118 has such a plate thickness, it is possible to improve the rigidity or the load transfer strength of the press-molded product 100 used as the vehicle body reinforcing member. Further, it is desirable that the plate thickness of the edge portion of the inward continuous flange 118 in the width direction be equal to or smaller than 1.5 times the plate thickness obtained before the press-molding process. Particularly, it is desirable that the plate thickness of each of the edge portions of the ridge-portion flanges 115 As described above, in the press-molded product 100 according to the embodiment, a notch is not formed in the ridge-portion flanges 115 Next, an example of a method of producing the press-molded product 100 according to a second embodiment of the invention will be described along with a configuration example of an apparatus of producing the press-molded product 100. A method and an apparatus of producing the press-molded product 100 according to the embodiment are used to produce, for example, the press-molded product 100 according to the first embodiment. A method of producing the press-molded product 100 according to the embodiment includes a first intermediate molding step and a first press-molding step. (2-1. First Intermediate Molding Step) First, a press-molding method performed in a first intermediate molding step of obtaining a first intermediate member 130 from a blank 120 formed by a steel plate and a press-molding apparatus used in the corresponding step will be described. As illustrated in Here, an example is described in which both longitudinal end portions 121 of the blank 120 are bent, but any one of both longitudinal end portions 121 may be bent. The press-molding apparatus 90 used in the first intermediate molding step may be a known press-molding apparatus 90 which performs a bending process by including the punch 95 and the die 91 having the pad 92 attached thereto so as to be movable in the mold clamping direction. (2-2. First Press-Molding Step) Next, a press-molding method performed in a first press-molding step of obtaining the press-molded product 100 from the first intermediate member 130 and a press-molding apparatus used in the first press-molding step will be described. (2-2-1. Press-Molding Apparatus) As illustrated in All the die 30, the blank holder 32, the punch 35, the pad 31, and the inner pad 33 used for an existing press-molding apparatus performing such a drawing process may be used. Thus, the description thereof will be omitted herein. The out-of-plane deformation restricting tool 34 is disposed between the side surfaces 33 During the press-molding process, the press-molding process is performed while the flange 131 formed in the first intermediate member 130 is nipped in the gap (the first gap) formed between each of the side surface 35 t: plate thickness (mm) of blank x: distance (mm) of gap Since the distance x of the gap satisfies Equation (2) above, the out-of-plane deformation of the flange 131 can be reliably suppressed without setting the plate thickness of the flange 131 to be smaller than the plate thickness obtained before a press-molding process. Particularly, the out-of-plane deformation of the ridge-portion flanges 115 At this time, in order to suppress the die-galling during the press-molding process, a slight clearance may be provided between the surface of the flange 131 and the out-of-plane deformation restricting tool 34. Further, the out-of-plane deformation is easily generated as the plate thickness of the flange 131 decreases. Thus, it is desirable to provide the gap so as to satisfy Equation (3) as below. t: plate thickness (mm) of blank x: distance (mm) of gap The press-molding apparatus 10 illustrated in (2-2-2. First Press-Molding Step by Drawing Device) Next, a state in which a drawing process is performed on the first intermediate member 130 by a drawing device 10A without an inner pad will be described. Since the drawing device 10A is provided such that the inner pad 33 is not provided in the press-molding apparatus 10 illustrated in As illustrated in During the drawing process, the flange 131 of the first intermediate member 130 is disposed inside the gap (the first gap) formed by the side surface 35 As described above, the gap is provided between the side surface 35 t: plate thickness (mm) of blank x: distance (mm) of gap Since Equation (2) is satisfied, it is possible to reliably suppress the out-of-plane deformation of the inward continuous flange 118 obtained by continuously forming the first flange 116 Further, as described above, it is desirable that the gap satisfy Equation (3) as below in order to suppress the die-galling during the press-molding process and the out-of-plane deformation in the case of a thin plate thickness of the flange 131. t: plate thickness (mm) of blank x: distance (mm) of gap In the example illustrated in By the drawing process performed by such a drawing device 10A, as illustrated in In addition, in the description above, the press-molded product 100 having the inward continuous flange 118 continuously formed in the entire area of the longitudinal outer end portions 100A of the first surface portions 113 (2-2-3. First Press-Molding Step by Inner Pad Drawing Device) Next, a state where an inner pad drawing process is performed on the first intermediate member 130 by an inner pad drawing device 10B will be described. Further, As illustrated in In addition, in the inner pad drawing process illustrated in (2-2-3. First Press-Molding by Bending Device) The first press-molding step described so far is performed by the drawing process, but the first press-molding step may be performed by a bending process instead of the drawing process. In As illustrated in In this state, the die 30 and the punch 35 move close to each other while the first intermediate member 130 is nipped between the pad 31 attached to the die 30 and the punch 35. Accordingly, both ends in the width direction intersecting the longitudinal direction of the first intermediate member 130 are bent. As a result, the out-of-plane deformation of the flange 131 is suppressed during the bending process, and the ridge-portion flanges 115 Such a bending process can be performed by a mold having a simple configuration compared with the drawing process. Meanwhile, in the bending process, a large increase in the plate thickness of the ridge-portion flanges 115 As described above, in the press-molded product producing method according to the embodiment, it is possible to produce the press-molded product 100 with the inward continuous flange 118 suppressing the generation of wrinkles without forming a notch by the use of the high-strength steel plate. Thus, it is possible to obtain the press-molded product 100 which can be used in the vehicle body reinforcing member and has high rigidity and excellent load transfer efficiency. Next, an example of a method of producing the press-molded product 100 according to a third embodiment of the invention will be described along with a configuration example of a press-molding apparatus. A method of producing the press-molded product 100 according to the embodiment and a press-molding apparatus thereof are used to produce the press-molded product 100 of the first embodiment. The method of producing the press-molded product 100 according to the embodiment includes a first intermediate molding step, a second intermediate molding step, and a second press-molding step. The method of producing the press-molded product 100 according to the embodiment is performed, for example, when the length of each of the first surface portions 113 (3-1. Second Intermediate Molding Step) Hereinafter, a press-molding method performed in the second intermediate molding step of obtaining a second intermediate member 140 from the first intermediate member 130 and a press-molding apparatus used in the second intermediate molding step will be described. Similarly to the first press-molding step of the second embodiment, the second intermediate molding step may be also performed by any one of the drawing process not using the inner pad and the drawing process using the inner pad. (3-1-1. Second Intermediate Molding by Drawing Device) First, a state where a drawing process is performed on the first intermediate member 130 by a drawing device 60 without the inner pad will be described. Similarly to the drawing device 10A used in the first press-molding step, the drawing device 60 may not include the inner pad 33 in the press-molding apparatus 10 illustrated in As illustrated in During such a drawing process, the flange 131 of the first intermediate member 130 is constrained inside the gap (the first gap) formed by the side surface 35 By such a drawing process, as illustrated in Further, the flange 131 formed in the first intermediate member 130 by such a drawing process is molded into an intermediate continuous flange 148 in which intermediate ridge-portion flanges 145 During the drawing process, the flange 131 formed in the first intermediate member 130 is nipped by the side surface 35 When the first intermediate member 130 is drawn in this way, it is possible to obtain the second intermediate member 140 including the intermediate ridge portions 142 (3-1-2. Second Intermediate Molding by Inner Pad Drawing Device) Next, a state where a drawing process is performed on the first intermediate member 130 by an inner pad drawing device 70 with an inner pad will be described. The basic configuration of the inner pad drawing device 70 may be the same as that of the inner pad drawing device 10B used in the first press-molding step of the second embodiment. As illustrated in In this way, since an inner pad drawing process is performed on the first intermediate member 130 in the second intermediate molding step, it is possible to obtain the second intermediate member 140 including the intermediate ridge portions 142 (3-1-3. Second Intermediate Molding Step by Bending Device) The second intermediate molding step described so far is performed by the drawing process, but the second intermediate molding step may be performed by a bending process instead of the drawing process. The basic configuration of the bending device used to perform the bending process in the second intermediate molding step may be the same as that of the bending device used in the first press-molding step of the second embodiment. Here, when the second intermediate member 140 is formed by a bending process, the moving distance in which the die 30 moves close to the punch 35 is set to be shorter than the moving distance of the first press-molding step. For example, the moving distance can be shortened when an area in which the punch 35 advances in the die 30 is decreased. Accordingly, the end portion 132 of the first intermediate member 130 is held while not being completely bent. By such a bending process, the intermediate ridge portions 142 During such a bending process, the flange 131 formed in the first intermediate member 130 is nipped inside the gap (the first gap) formed by the side surface 35 Also in the embodiment, the bending process can be performed by a mold having a simple configuration compared with the drawing process. Meanwhile, in the bending process, a large increase in the plate thickness of the ridge-portion flanges 115 In this way, since the first intermediate member 130 is bent in the second intermediate molding step, it is possible to obtain the second intermediate member 140 including the intermediate ridge portions 142 (3-2. Second Press-Molding Step) In the second press-molding step, the configuration of the press-molding apparatus or the press-molding method is not particularly limited as long as the press-molded product 100 can be obtained from the second intermediate member 140 by, for example, a press-molding process such as a bending process. Hereinafter, an example of a press-molding method of obtaining the press-molded product 100 as a final molded product from the second intermediate member 140 and a press-molding apparatus 80 used in the second press-molding step will be described with reference to The distance of the gap (the second gap) formed by the side surface 39 As illustrated in During such a bending process, the intermediate continuous flange 148 formed in the second intermediate member 140 is nipped inside the gap formed by the side surface 39 By the bending process, as illustrated in In addition, in the embodiment, the end portion of the press-molded product 100 is provided with the inward continuous flange 118 formed in the entire area of the end portions of the ridge portions 112 Further, in the bending process of the second press-molding step, the ridge portion is not subjected to an additional bending process or a load applied thereto during the bending process is very small in accordance with the processing condition. For that reason, the distance of the gap (the second gap) formed by the side surface 35 As described above, in the press-molded product producing method according to the embodiment, it is possible to produce the press-molded product 100 with the inward continuous flange 118 suppressing the generation of wrinkles without forming a notch by the use of the high-strength steel plate. Thus, it is possible to obtain the press-molded product 100 which can be used in the vehicle body reinforcing member and has high rigidity and excellent load transfer efficiency. Hereinafter, Examples of the invention will be described. First, the press-molded products were produced by two press-molding apparatuses having the same configuration except for the existence of the out-of-plane deformation restricting tool, and the inward continuous flanges were compared with each other. The press-molded products were produced according to the press-molded product producing method of the second embodiment. In Examples 1 and 2, a press-molded product having a hat-shaped cross-section and an inward continuous flange was produced according to the press-molded product producing method of the second embodiment by using a blank as a cold rolled steel plate having a plate thickness of 1.0 mm and a tensile strength of 980 MPa level. That is, a flange was formed in the longitudinal end portion of the blank in the first intermediate molding step, and then was press-molded by using a drawing device with an out-of-plane deformation restricting tool in the first press-molding step. At this time, the distance x of the gap formed between the out-of-plane deformation restricting tool and the side surface of the punch was set to 1.33 mm in Example 1 and was set to 1.41 mm in Example 2. Further, in Comparative Example 1, the first press-molding step was performed without using the out-of-plane deformation restricting tool. The curvature radius rf of the ridge portion of the press-molded product was set to 5 mm, and the width Lf of the flat portion of the ridge-portion flange was set to 2 mm. Further, the angle θ formed between the first surface portion and the second surface portion of the press-molded product was set to 90°. The width Lf of such a flange is a value smaller than 6.9 as the result of the equation of 0.22×rf+0.13×θ−5.9. That is, the obtained press-molded product satisfies Equation (1) above. Further, the same blank was used in Examples 1 and 2 and Comparative Example 1. Further, in the press-molded product of Example 2 illustrated in Next, the plate thickness increase rates of the inward continuous flanges obtained by the drawing process, the inner pad drawing process, and the bending process in the press-molding process using the out-of-plane deformation restricting tool were compared with each other. The press-molded product was obtained according to the second embodiment. In Examples 3 to 5, a press-molded product having a hat-shaped cross-section and an inward continuous flange was produced according to the press-molded product producing method of the second embodiment by using a blank as a cold rolled steel plate having a plate thickness of 1.0 mm and a tensile strength of 980 MPa level. That is, a flange was formed in the longitudinal end portion of the blank in the first intermediate molding step, and then was press-molded by a bending device or a drawing device with an out-of-plane deformation restricting tool in the first press-molding step. As the press-molding apparatus used in the first press-molding step, a drawing device was used in Example 3, an inner pad drawing device was used in Example 4, and a bending device was used in Example 5. These forming apparatuses all included the out-of-plane deformation restricting tool, and the out-of-plane deformation restricting tool was disposed so that the distance x of the gap between the side surface of the inner pad or the punch and the out-of-plane deformation restricting tool was 1.18 times the plate thickness t of the blank. The curvature radius rf of the ridge portion of the press-molded product was set to 5 mm, and the width Lf of the flat portion of the ridge-portion flange was set to 2 mm. In Examples 3 to 5, the same blank was used. As illustrated in Next, a wrinkle generation state was compared in consideration of a difference in the flange width Lf, the curvature radius rf of the ridge portion, and the angle θ formed between the first surface portion and the second surface portion when a press-molding process was performed by using the out-of-plane deformation restricting tool. In Examples 6 to 17 and Comparative Examples 2 to 13, a press-molded product having a hat-shaped cross-section and an inward continuous flange was produced according to the producing method of the second embodiment by using a blank as a cold rolled steel plate having a plate thickness of 1.0 mm and a tensile strength of 980 MPa level. In Examples 6 to 17 and Comparative Examples 2 to 13, the first press-molding step was performed by a drawing process. A wrinkle generation state was evaluated for the inward continuous flanges of the press-molded products obtained in Examples 6 to 17 and Comparative Examples 2 to 13. As for the press-molded products of Examples 6 to 17 and Comparative Examples 2 to 13, the flange width Lf of the ridge portion, the curvature radius rf of the ridge portion, the angle θ, and the wrinkle generation state are shown in Table 1. (here, 0 mm≦rf≦35 mm and 90°≦θ≦145° Thus, it is proved that the flange width Lf of the ridge portion preferably satisfies Equation (1) as below in order to suppress the generation of wrinkles in the inward continuous flange. (here, 0 mm≦rf≦35 mm and 90°≦θ≦145° [Object] Provided is a press-molded product capable of improving the bonding strength between a vehicle body reinforcing member and the other member or the rigidity of a vehicle body by enlarging a cross-section of a member to a fullest extent of a design cross-section without forming a notch for preventing a press-molding failure in a ridge-portion flange. A press-molded product is formed by a steel plate having a tensile strength of 340 MPa or more, and includes an inward continuous flange in at least one end portion in a predetermined direction, the inward continuous flange being obtained by continuously forming a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of a first surface portion, and a second flange formed inward in at least a part of an area of the end portion of a second surface portion. 1-24. (canceled) 25. A press-molded product of a metal plate which is formed by a steel plate having a tensile strength of 340 MPa or more and includes a ridge portion extending in a predetermined direction and first and second surface portions respectively extending from both ends of a ridge line formed by the ridge portion, the press-molded product comprising:
an inward continuous flange in at least one end portion in the predetermined direction, wherein the inward continuous flange is obtained by continuously forming a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion, and wherein a flange width (Lf) of the ridge-portion flange, a curvature radius (rf) of the ridge portion, and an angle (0) formed by the first surface portion and the second surface portion satisfy Equation (1) below:
where 0 mm≦rf≦35 mm and 90°≦θ≦145°. 26. The press-molded product according to wherein a flange width of at least a part of the ridge-portion flange is smaller than a flange width of at least a part of each of the first flange and the second flange. 27. The press-molded product according to wherein a cross-section of the press-molded product when viewed in the predetermined direction is a hat-shaped or groove-shaped opened cross-section or a closed cross-section. 28. The press-molded product according to wherein the press-molded product is a vehicle body reinforcing member. 29. The press-molded product according to wherein a plate thickness of at least an area of an edge portion of the ridge-portion flange in a width direction is equal to or larger than a plate thickness obtained before a press-molding process. 30. The press-molded product according to wherein a plate thickness of at least an area of an edge portion of the ridge-portion flange in a width direction is equal to or smaller than 1.5 times a plate thickness obtained before a press-molding process. 31. A press-molded product producing method comprising:
a first intermediate molding step of bending at least one end portion of a blank formed by a steel plate having a tensile strength of 340 MPa or more in a predetermined direction so as to mold the blank into a first intermediate member having a flange; and a first press-molding step of bending the first intermediate member in the predetermined direction by press-molding the first intermediate member while nipping the flange inside a predetermined first gap so as to mold a ridge portion extending in the predetermined direction and a first surface portion and a second surface portion respectively extending from both ends of a ridge line formed by the ridge portion and to mold the flange into an inward continuous flange in which a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion are continuous to one another. 32. The press-molded product producing method according to wherein in the first press-molding step, a press-molding mold including a die, a punch disposed so as to face the die, and an out-of-plane deformation restricting tool disposed so as to face a side surface of the punch during the press-molding process and to suppress out-of-plane deformation of the flange is used, and the first intermediate member is disposed on the punch and the first intermediate member is press-molded by the die and the punch while the flange is nipped inside the first gap formed by the side surface of the punch and the out-of-plane deformation restricting tool. 33. The press-molded product producing method according to wherein the die supports a pad pressing the first intermediate member in a manner that the pad is movable in a pressing direction. 34. The press-molded product producing method according to wherein in the first press-molding step, the press-molding mold further including a blank holder which faces the die is used, and a part of the first intermediate member is drawn while being constrained by the die and the blank holder. 35. The press-molded product producing method according to wherein the punch of the press-molding mold supports an inner pad contacting one surface of the first intermediate member in a manner that the inner pad is movable in a mold clamping direction, and wherein in the first press-molding step, the first intermediate member is press-molded by the die, the punch, and the inner pad while the flange is nipped inside the first gap formed by side surfaces of the punch and the inner pad and the out-of-plane deformation restricting tool. 36. The press-molded product producing method according to wherein a distance (x) of the first gap satisfies Equation (2) below:
where t is a plate thickness (mm) of the blank, and x is the distance (mm) of the gap. 37. A press-molded product producing method comprising:
a first intermediate molding step of bending at least one end portion of a blank formed by a steel plate having a tensile strength of 340 MPa or more in a predetermined direction so as to mold the blank into a first intermediate member having a flange; a second intermediate molding step of bending the first intermediate member in the predetermined direction by press-molding the first intermediate member while nipping the flange inside a predetermined first gap so as to form an intermediate ridge portion extending in the predetermined direction and a first intermediate surface portion and a second intermediate surface portion respectively extending from both ends of a ridge line formed by the intermediate ridge portion and to mold the flange into an intermediate continuous flange in which an intermediate ridge-portion flange formed in the end portion of the intermediate ridge portion, a first intermediate flange formed in at least a part of an area of the end portion of the first intermediate surface portion, and a second intermediate flange formed in at least a part of an area of the end portion of the second intermediate surface portion are continuous to one another, thereby molding the first intermediate member into a second intermediate member; and a second press-molding step of further bending at least one of the first intermediate surface portion and the second intermediate surface portion formed in the second intermediate member in the predetermined direction while nipping the intermediate continuous flange inside a predetermined second gap so as to mold a ridge portion extending in the predetermined direction and a first surface portion and a second surface portion respectively extending from both ends of a ridge line formed by the ridge portion and to mold the intermediate continuous flange into an inward continuous flange in which a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion are continuous to one another. 38. The press-molded product producing method according to wherein in the second intermediate molding step, a press-molding mold including a die, a punch disposed so as to face the die, and an out-of-plane deformation restricting tool disposed so as to face a side surface of the punch during the press-molding process and to suppress out-of-plane deformation of the flange is used, and the first intermediate member is disposed on the punch and the first intermediate member is press-molded by the die and the punch while the flange is nipped inside the first gap formed by the side surface of the punch and the out-of-plane deformation restricting tool. 39. The press-molded product producing method according to wherein in the second intermediate molding step, the press-molding mold further including a blank holder which faces the die is used, and a part of the first intermediate member is drawn while being constrained by the die and the blank holder. 40. The press-molded product producing method according to wherein the punch of the press-molding mold supports an inner pad contacting one surface of the first intermediate member in a manner that the inner pad is movable in a mold clamping direction, and wherein in the second intermediate molding step, the first intermediate member is press-molded by the die, the punch, and the inner pad while the flange is nipped inside the first gap formed by side surfaces of the punch and the inner pad and the out-of-plane deformation restricting tool. 41. The press-molded product producing method according to wherein in the second press-molding step, a press-molding mold including a die, a punch disposed so as to face the die, and an out-of-plane deformation restricting tool disposed so as to face a side surface of the punch during the press-molding process and to suppress out-of-plane deformation of the flange is used, and the second intermediate member is disposed on the punch and the second intermediate member is press-molded by the die and the punch while the intermediate continuous flange is nipped inside the second gap formed by the side surface of the punch and the out-of-plane deformation restricting tool. 42. The press-molded product producing method according to wherein the die supports a pad pressing the first intermediate member in a manner that the pad is movable in a pressing direction. 43. The press-molded product producing method according to wherein a distance (x) of the first gap satisfies Equation (3) below:
where t is a plate thickness (mm) of the blank, and x is the distance (mm) of the gap. 44. A press-molded product producing apparatus used to produce a press-molded product including a ridge portion extending in a predetermined direction and a first surface portion and a second surface portion respectively extending from both ends of a ridge line formed by the ridge portion and also including an inward continuous flange in at least one end portion in the predetermined direction, the inward continuous flange being obtained by continuously forming a ridge-portion flange formed inward in the end portion of the ridge portion, a first flange formed inward in at least a part of an area of the end portion of the first surface portion, and a second flange formed inward in at least a part of an area of the end portion of the second surface portion, the press-molded product producing apparatus comprising:
a punch which contacts one surface of an intermediate member having a flange in at least one end portion in the predetermined direction; a die which is disposed so as to face the punch; and an out-of-plane deformation restricting tool which is disposed so as to face a side surface of the punch when the intermediate member is press-molded and to have a predetermined gap between the out-of-plane deformation restricting tool and the side surface of the punch so as to nip the flange in the gap, thereby suppressing out-of-plane deformation of the flange. 45. The press-molded product producing apparatus according to wherein a distance (x) of the gap between the side surface of the punch and the out-of-plane deformation restricting tool satisfies Equation (4) below:
where t is a plate thickness (mm) of the blank, and x is the distance (mm) of the gap. 46. The press-molded product producing apparatus according to wherein the die includes a pad which is supported so as to be movable in a mold clamping direction and contacts the other surface of the intermediate member. 47. The press-molded product producing apparatus according to wherein the punch includes an inner pad which is supported so as to be movable in a mold clamping direction and contacts the one surface of the intermediate member, and wherein the out-of-plane deformation restricting tool is disposed so as to face side surfaces of the punch and the inner pad when the intermediate member is press-molded and to have a predetermined gap between the out-of-plane deformation restricting tool and the side surfaces of the punch and the inner pad so as to nip the flange in the gap. 48. The press-molded product producing apparatus according to 49. The press-molded product producing apparatus according to a blank holder which faces the die, wherein the intermediate member is drawn while being constrained by the die and the blank holder during the press-molding process.TECHNICAL FIELD
BACKGROUND ART
PRIOR ART LITERATURE(S)
Patent Literature(s)
SUMMARY OF THE INVENTION
Problem(s) to be Solved by the Invention
Means for Solving the Problem(s)
1.00×
x is the distance (mm) of the gap.
1.00×
x is the distance (mm) of the gap.
Effect(s) of the Invention
BRIEF DESCRIPTION OF THE DRAWING(S)
MODE(S) FOR CARRYING OUT THE INVENTION
1. First Embodiment
2. Second Embodiment
1.00×
1.03×
1.00×
1.03×3. Third Embodiment
EXAMPLES
Examples 1 and 2 and Comparative Example 1
Examples 3, 4, and 5
Examples 6 to 17 and Comparative Examples 2 to 13
Example 6 145 5.0 13.0 ∘ (No) Example 7 145 5.0 12.0 ∘ (No) Comparative Example 2 145 5.0 15.0 x (Yes) Comparative Example 3 145 5.0 14.0 x (Yes) Example 8 145 15.0 15.0 ∘ (No) Example 9 145 15.0 14.0 ∘ (No) Comparative Example 4 145 15.0 18.0 x (Yes) Comparative Example 5 145 15.0 16.0 x (Yes) Example 10 145 25.0 17.0 ∘ (No) Example 11 145 25.0 16.0 ∘ (No) Comparative Example 6 145 25.0 19.0 x (Yes) Comparative Example 7 145 25.0 18.0 x (Yes) Example 12 90 5.0 6.0 ∘ (No) Example 13 90 5.0 5.0 ∘ (No) Comparative Example 8 90 5.0 8.0 x (Yes) Comparative Example 9 90 5.0 7.0 x (Yes) Example 14 90 15.0 8.0 ∘ (No) Example 15 90 15.0 7.5 ∘ (No) Comparative Example 10 90 15.0 9.5 x (Yes) Comparative Example 11 90 15.0 9.0 x (Yes) Example 16 90 25.0 10.0 ∘ (No) Example 17 90 25.0 9.0 ∘ (No) Comparative Example 12 90 25.0 13.0 x (Yes) Comparative Example 13 90 25.0 11.0 x (Yes) REFERENCE SIGNS LIST
1.00×
1.00×
1.00×














