

US 20170100469A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0100469 A1 PATERSON et al.

Apr. 13, 2017 (43) **Pub. Date:**

(54) COMPOSITIONS AND METHODS **COMPRISING KLK3 OR FOLH1 ANTIGEN**

- (71) Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, Philadelphia, PA (US); ADVAXIS, INC., Princeton, NJ (US)
- (72) Inventors: Yvonne PATERSON, Philadelphia, PA (US); John ROTHMAN, Lebanon, NJ (US); Vafa SHAHABI, Valley Forge, PA (US)
- (73) Assignees: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, Philadelphia, PA (US); ADVAXIS, INC., Princeton, NJ (US)
- (21) Appl. No.: 15/388,503
- (22) Filed: Dec. 22, 2016

Related U.S. Application Data

(60) Division of application No. 14/581,217, filed on Dec. 23, 2014, now Pat. No. 9,549,973, which is a division of application No. 11/798,177, filed on May 10, 2007, now Pat. No. 9,012,141, which is a continuation-inpart of application No. 11/727,889, filed on Mar. 28, 2007, now abandoned, which is a continuation-in-part of application No. 11/223,945, filed on Sep. 13, 2005, now Pat. No. 7,820,180, which is a continuation-inpart of application No. 10/949,667, filed on Sep. 24, 2004, now Pat. No. 7,794,729, which is a continuation-in-part of application No. 10/441,851, filed on May 20, 2003, now Pat. No. 7,135,188, which is a continuation of application No. 09/535,212, filed on Mar. 27, 2000, now Pat. No. 6,565,852.

Publication Classification

- (51) Int. Cl. A61K 39/00 (2006.01)C12N 9/64 (2006.01)C12N 9/48 (2006.01)
- (52) U.S. Cl. CPC A61K 39/0011 (2013.01); C12N 9/485 (2013.01); C12Y 304/17021 (2013.01); C12N 9/6445 (2013.01); C12Y 304/21077 (2013.01); A61K 2039/523 (2013.01)

(57)ABSTRACT

The present invention provides KLK3 peptides, FOLH1 peptides, recombinant polypeptides comprising same, recombinant nucleotide molecules encoding same, recombinant Listeria strains comprising same, and immunogenic and therapeutic methods utilizing same.

Figure 2

Figure 3A

Days Post Tumor Inoculation

Figure 3B

Figure 4

Days Post Tumor Inoculation

Figure 5

Figure 6

Figure 7

Figure 8A

Figure 8B

Figure 8C

Figure 8D

Figure 8E

Days Post Tumor Inoculation

Figure 9

Figure 10A

Figure 10B

.0.

Figure 11A

Figure 11B

Figure 12

Figure 13

Figure 14A

Figure 14B

Figure 15A

Figure 15B

Figure 16

COMPOSITIONS AND METHODS COMPRISING KLK3 OR FOLH1 ANTIGEN

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. application Ser. No. 14/581,217, filed Dec. 23, 2014, which is a divisional of U.S. application Ser. No. 11/798,177, filed May 10, 2007, now U.S. Pat. No. 9,012,141, which is a Continuationin-Part of co-pending U.S. application Ser. No. 11/727,889, filed Mar. 28, 2007 now abandoned, which is a Continuation-in-Part of co-pending U.S. application Ser. No. 11/223, 945, filed Sep. 13, 2005, now U.S. Pat. No. 7,820,180, which is a Continuation-in-Part of co-pending U.S. application Ser. No. 10/949,667, filed Sep. 24, 2004, now U.S. Pat. No. 7,794,729, which is a Continuation-in-Part of U.S. application Ser. No. 10/441,851, filed May 20, 2003, now U.S. Pat. No. 7,135,188, which is a Continuation of U.S. application Ser. No. 09/535,212, filed Mar. 27, 2000, now U.S. Pat. No. 6,565,852. These applications are hereby incorporated in their entirety by reference herein.

FIELD OF THE INVENTION

[0002] The present invention provides KLK3 peptides, FOLH1 peptides, recombinant polypeptides comprising same, recombinant nucleotide molecules encoding same, recombinant *Listeria* strains comprising same, and immunogenic and therapeutic methods utilizing same.

BACKGROUND OF THE INVENTION

[0003] Stimulation of an immune response is dependent upon the presence of antigens recognized as foreign by the host immune system. Bacterial antigens such as *Salmonella enterica* and *Mycobacterium bovis* BCG remain in the phagosome and stimulate CD4⁺ T-cells via antigen presentation through major histocompatibility class II molecules. In contrast, bacterial antigens such as *Listeria monocytogenes* exit the phagosome into the cytoplasm. The phagolysosomal escape of *L. monocytogenes* is a unique mechanism which facilitates major histocompatibility class I antigen presentation of listerial antigens. This escape is dependent upon the pore-forming sulfhydryl-activated cytolysin, listeriolysin O (LLO).

[0004] ActA is a surface-associated Listerial protein, and acts as a scaffold in infected host cells to facilitate the polymerization, assembly and activation of host actin polymers in order to propel the Listeria organism through the cytoplasm. Shortly after entry into the mammalian cell cytosol, L. monocytogenes induces the polymerization of host actin filaments and uses the force generated by actin polymerization to move, first intracellularly and then from cell to cell. A single bacterial protein, ActA is responsible for mediating actin nucleation and actin-based motility. The ActA protein provides multiple binding sites for host cytoskeletal components, thereby acting as a scaffold to assemble the cellular actin polymerization machinery. The NH2 terminus of ActA binds to monomeric actin and acts as a constitutively active nucleation promoting factor by stimulating the intrinsic actin nucleation activity. ActA and hly are both members of the 10-kb gene cluster regulated by the transcriptional activator PrfA, and is upregulated approximately 226-fold in the mammalian cytosol.

[0005] Prostate cancer is the most frequent type of cancer in American men and it is the second cause of cancer related death in this population. Prostate Specific Antigen (PSA) is a marker for prostate cancer that is highly expressed by prostate tumors.

[0006] There exists a long-felt need to develop compositions and methods to enhance the immunogenicity of antigens, especially antigens useful in the prevention and treatment of tumors and intracellular pathogens.

SUMMARY OF THE INVENTION

[0007] The present invention provides KLK3 peptides, FOLH1 peptides, recombinant polypeptides comprising same, recombinant nucleotide molecules encoding same, recombinant *Listeria* strains comprising same, and immunogenic and therapeutic methods utilizing same.

[0008] In another embodiment, the present invention provides a recombinant *Listeria* strain expressing a kallikreinrelated peptidase 3 (KLK3) peptide. In another embodiment, the sequence of the KLK3 peptide is selected from SEQ ID No: 25, 27, 29-32, 34, and 36-39. In another embodiment, the KLK3 peptide is an immunogenic KLK3 peptide. In another embodiment, the KLK3 peptide is any other KLK3 peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0009] In another embodiment, the present invention provides a recombinant *Listeria* strain expressing a folate hydrolase 1 (FOLH1) peptide. In another embodiment, the sequence of the FOLH1 peptide is selected from SEQ ID No: 41, 43, 44, and 45. In another embodiment, the FOLH1 peptide is an immunogenic FOLH1 peptide. In another embodiment, the FOLH1 peptide is any other FOLH1 peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0010] In another embodiment, the present invention provides a recombinant polypeptide, comprising a KLK3 peptide operatively linked to a non-KLK3 peptide. In another embodiment, the non-KLK3 peptide is an LLO peptide. In another embodiment, the non-KLK3 peptide is an ActA peptide. In another embodiment, the non-KLK3 peptide is a PEST-like sequence peptide. In another embodiment, the non-KLK3 peptide is a PEST-like sequence peptide. In another embodiment, the non-KLK3 peptide is a peptide enhances the immunogenicity of the KLK3 peptide. In another embodiment, the non-KLK3 peptide is any other type of peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0011] In another embodiment, the present invention provides a recombinant polypeptide, comprising an FOLH1 peptide operatively linked to a non-FOLH1 peptide. In another embodiment, the non-FOLH1 peptide is an LLO peptide. In another embodiment, the non-FOLH1 peptide is an ActA peptide. In another embodiment, the non-FOLH1 peptide is a PEST-like sequence peptide. In another embodiment, the non-FOLH1 peptide is the FOLH1 peptide. In another embodiment, the non-FOLH1 peptide is a PEST-like sequence peptide. In another embodiment, the non-FOLH1 peptide is an ActA peptide. In another embodiment, the non-FOLH1 peptide is an other embodiment, the non-FOLH1 peptide is another embodiment, the non-FOLH1 peptide is any other type of peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0012] In another embodiment, the present invention provides a recombinant vaccine vector encoding a recombinant polypeptide of the present invention.

[0013] In another embodiment, the present invention provides a nucleotide molecule encoding a recombinant polypeptide of the present invention.

[0014] In another embodiment, the present invention provides a method of inducing an anti-KLK3 immune response in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby inducing an anti-KLK3 immune response in a subject.

[0015] In another embodiment, the present invention provides a method of treating a KLK3 protein-expressing tumor in a subject, the method comprising the step of administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the KLK3 protein-expressing tumor, thereby treating a KLK3 protein-expressing tumor in a subject. Each possibility represents a separate embodiment of the present invention.

[0016] In another embodiment, the present invention provides a method of protecting a human subject against a KLK3 protein-expressing tumor, the method comprising the step of administering to the human subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the KLK3 protein, thereby protecting a human subject against a KLK3 protein-expressing tumor. Each possibility represents a separate embodiment of the present invention.

[0017] In another embodiment, the present invention provides a method of inducing an anti-FOLH1 immune response in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby inducing an anti-FOLH1 immune response in a subject.

[0018] In another embodiment, the present invention provides a method of treating an FOLH1 protein-expressing tumor in a subject, the method comprising the step of administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the FOLH1 protein-expressing tumor, thereby treating an FOLH1 protein-expressing tumor in a subject. Each possibility represents a separate embodiment of the present invention.

[0019] In another embodiment, the present invention provides a method of protecting a human subject against an FOLH1 protein-expressing tumor, the method comprising the step of administering to the human subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the FOLH1 protein, thereby protecting a human subject against an FOLH1 protein-expressing tumor. Each possibility represents a separate embodiment of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIGS. **1A-1B**. Lm-E7 and Lm-LLO-E7 use different expression systems to express and secrete E7. Lm-E7 was generated by introducing a gene cassette into the orfZ domain of the *L. monocytogenes* genome (FIG. **1A**). The hly promoter drives expression of the hly signal sequence and the first five amino acids (AA) of LLO followed by HPV-16 E7. FIG. **1B**), Lm-LLO-E7 was generated by transforming the prfA⁻ strain XFL-7 with the plasmid pGG-55. pGG-55 has the hly promoter driving expression of a nonhemolytic fusion of LLO-E7. pGG-55 also contains the prfA gene to select for retention of the plasmid by XFL-7 in vivo.

[0021] FIG. 2. Lm-E7 and Lm-LLO-E7 secrete E7. Lm-Gag (lane 1), Lm-E7 (lane 2), Lm-LLO-NP (lane 3), Lm-LLO-E7 (lane 4), XFL-7 (lane 5), and 10403S (lane 6) were grown overnight at 37° C. in Luria-Bertoni broth. Equivalent numbers of bacteria, as determined by OD at 600 nm absorbance, were pelleted and 18 ml of each supernatant was TCA precipitated. E7 expression was analyzed by Western blot. The blot was probed with an anti-E7 mAb, followed by HRP-conjugated anti-mouse (Amersham), then developed using ECL detection reagents.

[0022] FIGS. **3**A-**3**B. FIG. **3**A. Tumor immunotherapeutic efficacy of LLO-E7 fusions. Tumor size in millimeters in mice is shown at 7, 14, 21, 28 and 56 days post tumor-inoculation. Naive mice: open-circles; Lm-LLO-E7: filled circles; Lm-E7: squares; Lm-Gag: open diamonds; and Lm-LLO-NP: filled triangles. FIG. **3**B. Tumor immuno-therapeutic efficacy of LLO-Ova fusions.

[0023] FIG. **4**. Splenocytes from Lm-LLO-E7-immunized mice proliferate when exposed to TC-1 cells. C57BL/6 mice were immunized and boosted with Lm-LLO-E7, Lm-E7, or control rLm strains. Splenocytes were harvested 6 days after the boost and plated with irradiated TC-1 cells at the ratios shown. The cells were pulsed with ³H thymidine and harvested. Cpm is defined as (experimental cpm)—(no-TC-1 control).

[0024] FIG. **5**. Tumor immunotherapeutic efficacy of NP antigen expressed in LM. Tumor size in millimeters in mice is shown at 10, 17, 24, and 38 days post tumor-inoculation. Naive mice: X's; mice administered Lm-LLO-NP: filled diamonds; Lm-NP: squares; Lm-Gag: open circles.

[0025] FIG. **6**. Depiction of vaccinia virus constructs expressing different forms of HPV16 E7 protein.

[0026] FIG. 7. VacLLOE7 causes long-term regression of tumors established from 2×10^5 TC-1 cells injected s.c. into C57BL/6 mice. Mice were injected 11 and 18 days after tumor challenge with 10^7 PFU of VacLLOE7, VacSigE7LAMP-1, or VacE7/mouse i.p. or were left untreated (naive). 8 mice per treatment group were used, and the cross section for each tumor (average of 2 measurements) is shown for the indicated days after tumor inoculation.

[0027] FIGS. 8A-8E. FIG. 8A. schematic representation of the plasmid inserts used to create 4 LM vaccines. Lm-LLO-E7 insert contains all of the Listeria genes used. It contains the hly promoter, the first 1.3 kb of the hly gene (which encodes the protein LLO), and the HPV-16 E7 gene. The first 1.3 kb of hly includes the signal sequence (ss) and the PEST region. Lm-PEST-E7 includes the hly promoter, the signal sequence, and PEST and E7 sequences but excludes the remainder of the truncated LLO gene. Lm-DPEST-E7 excludes the PEST region, but contains the hly promoter, the signal sequence, E7, and the remainder of the truncated LLO. Lm-E7epi has only the hly promoter, the signal sequence, and E7. FIG. 8B. Schematic representation of the pActA-E7 expression system used to express and secrete E7 from recombinant Listeria bacteria. The hly promoter (pHLY) drives expression, the prfA gene is used to select retention of the plasmid by recombinant Listeria in vivo. FIG. 8C: Listeria constructs containing PEST regions induce tumor regression. Solid triangles: naïve mice; Circles: Lm-LLO-E7; Squares: Lm-E7epi; + signs: Lm-DPEST-E7; hollow triangles: Lm-PEST-E7. FIG. 8D. Average tumor sizes at day 28 post-tumor challenge in 2 separate experiments. FIG. 8E. Listeria constructs containing PEST regions induce a higher percentage of E7-specific lymphocytes in the spleen. Average and SE of data from 3 experiments are depicted.

[0028] FIG. 9. Tumor size in mice administered Lm-ActA-E7 (rectangles), Lm-E7 (ovals), Lm-LLO-E7 (X), and naive mice (non-vaccinated; solid triangles).

[0029] FIGS. 10A-10B. FIG. 10A. Induction of E7-specific IFN-gamma-secreting CD8⁺ T cells in the spleens and the numbers penetrating the tumors, in mice administered TC-1 tumor cells and subsequently administered Lm-E7, Lm-LLO-E7, Lm-ActA-E7, or no vaccine (naive). FIG. 10B. Induction and penetration of E7 specific CD8⁺ cells in the spleens and tumors of the mice described for (FIG. 10A). [0030] FIGS. 11A-11B. *Listeria* constructs containing PEST regions induce a higher percentage of E7-specific lymphocytes within the tumor. FIG. 11A. Representative data from one experiment. FIG. 11B. Average and SE of data from all 3 experiments.

[0031] FIG. 12. Plasmid map of pAdv34 (PSA-pGG55). [0032] FIG. 13. Western blot analysis of the cell culture supernatants of Lm-PSA. Proteins in culture broth from 4 colonies of Lm-PSA were precipitated with 10% TCA, separated on a 4-20% SDS protein gel, transferred to PVDF membranes and then detected with either anti-PSA (A) or anti-LLO antibody (B) (Lanes 6-9). A cell lysate from PSA-vaccinia transfected BHK21 cells was used as the positive control (lane 2). Parent XFL7 *Listeria* (lane 3) and two *Listeria* construct expressing fragments of Her2/neu antigen (Lanes 4 and 5) were used as negative controls.

[0033] FIGS. **14**A-**14**B. Stability of Lm-PSA. Lm-PSA was grown and passaged for 7 consecutive days in vitro. Plasmid DNA was purified from bacterial samples taken every day during the in vitro growth and tested by amplification of PSA gene by PCR (FIG. **14**A) or EcoRI/HindIII restriction mapping of the plasmid (FIG. **14**B).

[0034] FIGS. 15A-15B. Immunogenicity of Lm-LLO-PSA. Mice were immunized two times with Lm-PSA and splenocytes were tested by CTL assay with (FIG. 15A) different E:T (effector to target) ratios and (FIG. 15B) different peptide concentrations. % specific lysis is defined as (Experimental release – spontaneous release)×100/(Maximum release–spontaneous release).

[0035] FIG. **16**. IFN- γ secretion by splenocytes from immunized mice in response to peptide pulse with PSA peptide. Naïve mice were injected with PBS. LmWt1-A and B are two *Listeria* strains that express two fragments of Wilm's Tumor antigen and were used as negative controls.

DETAILED DESCRIPTION OF THE INVENTION

[0036] The present invention provides KLK3 peptides, FOLH1 peptides, recombinant polypeptides comprising same, recombinant nucleotide molecules encoding same, recombinant *Listeria* strains comprising same, and immunogenic and therapeutic methods utilizing same.

[0037] In another embodiment, the present invention provides a recombinant *Listeria* strain expressing a kallikreinrelated peptidase 3 (KLK3) peptide. In another embodiment, the sequence of the KLK3 peptide is selected from SEQ ID No: 25, 27, 29-32, 34, and 36-39. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 25. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 25. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 26. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID NO: 27. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID NO: 28. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID NO: 28. In another embodiment, the sequence ID No: 29. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 30. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 31. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 32. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 34. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 36. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 37. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 38. In another embodiment, the sequence of the KLK3 peptide is set forth in SEQ ID No: 39. In another embodiment, the sequence of the KLK3 peptide is any other KLK3 protein sequence known in the art. Each possibility represents a separate embodiment of the present invention.

[0038] In another embodiment, the sequence of the KLK3 peptide comprises a sequence selected from SEQ ID No: 25, 27, 29-32, 34, and 36-39.

[0039] In another embodiment, the KLK3 peptide is an immunogenic fragment of a larger KLK3 peptide, wherein the sequence of the larger KLK3 peptide is a sequence selected from SEQ ID No: 25, 27, 29-32, 34, and 36-39. In another embodiment, the KLK3 peptide is an immunogenic fragment of a larger KLK3 peptide, wherein the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 25. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 27. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 29. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 30. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 31. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 32. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 34. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 36. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 37. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 38. In another embodiment, the sequence of the larger KLK3 peptide is set forth in SEQ ID No: 39. In another embodiment, the sequence of the larger KLK3 peptide is any other KLK3 protein sequence known in the art. Each possibility represents a separate embodiment of the present invention. [0040] In another embodiment, the sequence of the KLK3 peptide comprises an immunogenic fragment of a sequence selected from SEQ ID No: 25, 27, 29-32, 34, and 36-39.

[0041] In another embodiment, the KLK3 peptide is any other KLK3 peptide known in the art. In another embodiment, the KLK3 peptide is a fragment of any other KLK3 peptide known in the art. Each type of KLK3 peptide represents a separate embodiment of the present invention. [0042] "KLK3 peptide" refers, in another embodiment, to a full-length KLK3 protein. In another embodiment, the term refers to a fragment of a KLK3 protein. In another embodiment, the term refers to a fragment of a KLK3 protein that is lacking the KLK3 signal peptide. In another embodiment, the term refers to a KLK3 protein that contains the entire KLK3 sequence except the KLK3 signal peptide. "KLK3 signal sequence" refers, in another embodiment, to any signal sequence found in nature on a KLK3 protein. In another embodiment, a KLK3 protein of methods and com-

positions of the present invention does not contain any signal sequence. Each possibility represents a separate embodiment of the present invention.

[0043] In another embodiment, the kallikrein-related peptidase 3 (KLK3 protein) that is the source of a KLK3 peptide of methods and compositions of the present invention is a PSA protein. In another embodiment, the KLK3 protein is a P-30 antigen protein. In another embodiment, the KLK3 protein is a gamma-seminoprotein protein. In another embodiment, the KLK3 protein is a kallikrein 3 protein. In another embodiment, the KLK3 protein is a semenogelase protein. In another embodiment, the KLK3 protein is a seminin protein. In another embodiment, the KLK3 protein is any other type of KLK3 protein that is known in the art. Each possibility represents a separate embodiment of the present invention.

[0044] In another embodiment, the KLK3 protein is a splice variant 1 KLK3 protein. In another embodiment, the KLK3 protein is a splice variant 2 KLK3 protein. In another embodiment, the KLK3 protein is a splice variant 3 KLK3 protein. In another embodiment, the KLK3 protein is a transcript variant 1 KLK3 protein. In another embodiment, the KLK3 protein is a transcript variant 2 KLK3 protein. In another embodiment, the KLK3 protein is a transcript variant 3 KLK3 protein. In another embodiment, the KLK3 protein is a transcript variant 4 KLK3 protein. In another embodiment, the KLK3 protein is a transcript variant 5 KLK3 protein. In another embodiment, the KLK3 protein is a transcript variant 6 KLK3 protein. In another embodiment, the KLK3 protein is a splice variant RP5 KLK3 protein. In another embodiment, the KLK3 protein is any other splice variant KLK3 protein known in the art. In another embodiment, the KLK3 protein is any other transcript variant KLK3 protein known in the art. Each possibility represents a separate embodiment of the present invention.

[0045] In another embodiment, the KLK3 protein is a mature KLK3 protein. In another embodiment, the KLK3 protein is a pro-KLK3 protein. In another embodiment, the leader sequence has been removed from a mature KLK3 protein of methods and compositions of the present invention. An example of a mature KLK3 protein is encoded by 378-1088 of SEQ ID No: 40. Each possibility represents a separate embodiment of the present invention.

[0046] In another embodiment, the KLK3 protein that is the source of a KLK3 peptide of methods and compositions of the present invention is a human KLK3 protein. In another embodiment, the KLK3 protein is a primate KLK3 protein. In another embodiment, the KLK3 protein is a KLK3 protein of any other species known in the art. In another embodiment, 1 of the above KLK3 proteins is referred to in the art as a "KLK3 protein." Each possibility represents a separate embodiment of the present invention. **[0047]** In another embodiment, the KLK3 protein has the sequence:

[0048] MWVPVVFLTLSVTWIGAAPLILSRIVGG-WECEKHSQPWQVLVASRGRAVCGGVL VHPQWVL-TAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPH-PLYDMSLLKNRFLRPG

DDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGT-TCYASGWGSIEPEEFLTPKKLQCV DLHVISNDV-CAQVHPQKVTKFMLCAGRWTGGKSTCSGDSGG-PLVCNGVLQGITSWGSEP

CALPERPSLYTKVVHYRKWIKDTIVANP (SEQ ID No: 25; GenBank Accession No. X14810). In another embodi-

ment, the KLK3 protein is a homologue of SEQ ID No: 25. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 25. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 25. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 25. Each possibility represents a separate embodiment of the present invention.

[0049] In another embodiment, the KLK3 protein is encoded by a nucleotide molecule having the sequence:

ggtgtcttaggcacactggtcttggagtgcaaaggatctaggcacgtgaggctttgtatgaagaatcgggggatcgtacccaccccctgtttctgtttcat cctgggcatgtctcctctgcctttgtcccctagatgaagtctccatgagc ${\tt tacaagggcctggtgcatccagggtgatctagtaattgcagaacagcaag}$ ${\tt tgctagctctcccctccccttccacagctctgggtgtgggaggggttgtc}$ cagcctccagcagcatggggggggccttggtcagcctctgggtgccagca qqqcaqqqqqqqqqqtcctqqqqaatqaaqqttttataqqqctcctqqqqq aggeteeccageeecaagettaceacetgeaceeggagagetgtgteace atgtgggtcccggttgtcttcctcaccctgtccgtgacgtggattggtga aagetqaqqctctttcccccccaacccaqcacccaqcccaqacaqqqaq ctqqqctcttttctqtctctcccaqccccacttcaaqcccatacccccaq tcccctccatattqcaacaqtcctcactcccacaccaqqtccccqctccc cccaqctqctttactaaaqqqqaaqttcctqqqcatctccqtqtttctct ttqtqqqqctcaaaacctccaaqqacctctctcaatqccattqqttcctt ggaccgtatcactggtccatctcctgagcccctcaatcctatcacagtct actgacttttcccattcagctgtgagtgtccaaccctatcccagagacct tgatgcttggcctcccaatcttgccctaggatacccagatgccaaccaga cacctccttctttcctagccaggctatctggcctgagacaacaaatgggt $\verb+ccctcagtctggcaatgggactctgagaactcctcattccctgactctta$ $\verb|gccccagactcttcattcagtggcccacattttccttaggaaaaacatga||$ gcatccccagccacaactgccagctctctgagtccccaaatctgcatcct tttcaaaacctaaaaacaaaaagaaaaacaaataaaaacaaaaccaactca qaccaqaactqttttctcaacctqqqacttcctaaactttccaaaacctt cctcttccaqcaactqaacctcqccataaqqcacttatccctqqttccta gcaccccttatcccctcagaatccacaacttgtaccaagtttcccttctc ccagtccaagaccccaaatcaccacaaaggacccaatccccagactcaag atatggtctgggcgctgtcttgtgtctcctaccctgatccctgggttcaa ctctgctcccagagcatgaagcctctccaccagcaccagccaccaacctg ${\tt caaacctagggaagattgacagaattcccagcctttcccagctcccctg}$ cccatqtcccaqqactcccaqccttqqttctctqcccccqtqtcttttca aacccacatcctaaatccatctcctatccqaqtcccccaqttccccctqt

caaccctgattcccctgatctagcaccccctctgcaggcgctgcgcccct ${\tt catcctgtctcggattgtgggaggctgggagtgcgagaagcattcccaac}$ cctggcaggtgcttgtggcctctcgtggcagggcagtctgcggcggtgtt ctggtgcacccccagtgggtcctcacagctgcccactgcatcaggaagtg agtaggggcctggggtctggggagcaggtgtctgtgtcccagaggaataa cagetgggcattttcccccaggataacetetaaggccageettgggaetgg gggagagagggaaagttetggtteaggteacatggggaggeagggttggg gctqqaccaccctccccatqqctqcctqqqtctccatctqtqtccctcta tqtctctttqtqtcqctttcattatqtctcttqqtaactqqcttcqqttq tcagtetecatatetecceetetetetgteettetetggteeetetetag ${\tt ccagtgtgtctcaccctgtatctctgccaggctctgtctctcggtctc}$ ${\tt tgtctcacctgtgccttctccctactgaacacacgcacgggatgggcctg}$ ggggaccctgagaaaaggaagggctttggctgggcgcggtggctcacacc tgtaatcccagcactttgggaggccaaggcaggtagatcacctgaggtca ggagttcgagaccagcctggccaactggtgaaaccccatctctactaaaa ${\tt atacaaaaaattagccaggcgtggtggcgcatgcctgtagtcccagctac}$ tcaqqaqctqaqqqaqaqaattqcattqaacctqqaqqttqaqqttqca ${\tt gtgagccgagaccgtgccactgcactccagcctgggtgacagagtgagac}$ aaagaaaaggaagtgttttatccctgatgtgtgtgggtatgagggtatga gagggcccctctcactccattccttctccaggacatccctccactcttgg gagacacagagaagggctggttccagctggagctgggaggggcaattgag ggaggaggaaggagaagggggaaggaaacagggtatgggggaaaggacc acccacttqqaaacccacqccaaaqccqcatctacaqctqaqccactctq aggceteccetecceggeggtecceacteagetecaaagtetetetecet tttctctcccacactttatcatcccccggattcctctctacttggttctc attetteetttgaetteetgetteeettteteatteatetgttteteaet ttetgeetgattttattettetetetettetetetageeeatgtetatt tctctatqtttctqtcttttcttctcatcctqtqtattttcqqctcacc ttgtttgtcactgttctcccctctgccctttcattctctctgccctttta ccctcttccttttcccttggttctctcagttctgtatctgcccttcaccc tctcacactgctgtttcccaactcgttgtctgtattttggcctgaactgt ${\tt gtcttcccaaccctgtgttttctcactgtttctttttctcttttggagcc}$ ${\tt tcctccttgctcctctgtcccttctctctttccttatcatcctcgctcct}$ catteetgegtetgetteeteeceageaaaagegtgatettgetgggteg gcacagcctgtttcatcctgaagacacaggccaggtatttcaggtcagccacagetteccacaccegetetacgatatgageeteetgaagaategatte

-continued

agageetgeegageteacggatgetgtgaaggteatggaeetgeeeacee aggagecageactgggggaceacetgetacgeetcaggetgggggggggageatt gaaccagaggagtgtacgcctgggccagatggtgcagccgggagcccaga gggccaaggaaccaggtggggtccagcccacaacagtgtttttgcctggc ccgtagtcttgaccccaaagaaacttcagtgtgtggacctccatgttatt ${\tt tccaatgacgtgtgtgcgcaagttcaccctcagaaggtgaccaagttcat}$ gctgtgtgctggacgctggacaggggggcaaaagcacctgctcggtgagtc atccctactcccaagatcttgagggaaaggtgagtgggaccttaattctg ggctggggtctagaagccaacaaggcgtctgcctcccctgctccccagct ${\tt tttgactccctcaaggcaataggttattcttacagcacaactcatctgtt}$ $\verb+cctgcgttcagcacacggttactaggcacctgctatgcacccagcactgc+$ ctgtagcccccaagccagtgaggggcacaggcaggaacagggaccacaac aaggggtggggggggtgtgtgactggggaggagacatcctgcagaaggtggggagtagagggaacagcatctggccaggcctgggaggggggcctagagggggcgtc aqqaqcaqaqqaqqttqcctqqctqqaqtqaaqqatcqqqqcaqqqtq cqaqaqqqaacaaaqqacccctcctqcaqqqcctcacctqqqccacaqqa ggacactgcttttcctctgaggagtcaggaactgtggatggtgctggaca gaagcaggacagggcctggctcaggtgtccagaggctgcgctggcctcct tqatqqqqctqacctqqqqqtqqctccaqqcattqtccccacctqqqccc ttacccagcctccctcacaggctcctggccctcagtctctcccctccact ccattetecacetacecacagtgggtcattetgateacegaactgaceat gccagccctgccgatggtcctccatggctccctagtgccctggagaggag qtqtctaqtcaqaqaqtaqtcctqqaaqqtqqcctctqtqaqqaqccacq gggacagcatcctgcagatggtcctggcccttgtcccaccgacctgtcta caaggactgtcctcgtggaccctcccctctgcacaggagctggaccctga $a \verb"gtcccttcctaccggccaggactggagcccctacccctctgttggaatc"$ $\verb+cctgcccaccttcttctggaagtcggctctggagacatttctcttctt$ $\verb|ccaaagctgggaactgctatctgttatctgcctgtccaggtctgaaagat||$ aggattgcccaggcagaaactgggactgacctatctcactctctccctgc $\tt ttttacccttagggtgattctgggggcccacttgtctgtaatggtgtgct$ ${\tt tcaaggtatcacgtcatggggcagtgaaccatgtgccctgcccgaaaggc}$ cttccctqtacaccaaqqtqqtqcattaccqqaaqtqqatcaaqqacacc

-continued ctcaggccaggtgatgactccagccacgacctatgctgctccgcctgtc

-continued

atcgtggccaacccctgagcacccctatcaagtccctattgtagtaaact tggaaccttggaaatgaccaggccaagactcaagcctccccagttctact gacctttgtccttaggtgtgaggtccagggttgctaggaaaagaaatcag cagacacaggtgtagaccagagtgtttcttaaatggtgtaattttgtcct ctctgtgtcctggggaatactggccatgcctggagacatatcactcaatt tctctgaggacacagttaggatggggtgtcgtgttatttgtgggataca gagatgaaagaggggtgggatcc (SEQ ID No: 26; GenBank Accession No. X14810).

[0050] In another embodiment, the KLK3 protein is encoded by residues 401 . . . 446, 1688 . . . 1847, 3477 . . . 3763, 3907 . . . 4043, and 5413 . . . 5568 of SEQ ID No: 26. In another embodiment, the KLK3 protein is encoded by a homologue of SEQ ID No: 26. In another embodiment, the KLK3 protein is encoded by a variant of SEQ ID No: 26. In another embodiment, the KLK3 protein is encoded by an isomer of SEQ ID No: 26. In another embodiment, the KLK3 protein is encoded by a fragment of SEQ ID No: 26. Each possibility represents a separate embodiment of the present invention.

[0051] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGT TCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAG RWTGGKSTCSWVILITELTMPALPMVLHGSLVPWRGGV (SEQ ID No: 27; GenBank Accession No. NM_001030047)

[0052] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 27. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 27. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 27. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 27. Each possibility represents a separate embodiment of the present invention.

[0053] In another embodiment, the KLK3 protein is encoded by a nucleotide molecule having the sequence:

agccccaagcttaccacctgcacccggagagctgtgtcaccatgtgggtc ccggttgtcttcctcaccctgtccgtgacgtggattggtgctgcacccct catcctgtctcggattgtgggaggctgggaggtgcgagaagcattcccaac cctggcaggtgcttgtgggctctcacagctgccactgcatcaggaacaa aagcgtgatcttgctgggtcggcacagcctgtttcatcctgaagaacaaa gccaggtatttcaggtcagccacagcttcccacacccgctctacgatatg agcctcctgaagaatcgattcctcaggccaggtgatgactccagcacag cctcatqctqctcccqcctgtcaqaqcctqccqagtgatgatgat

-continued

 ${\tt aggtcatggacctgcccacccaggagccagcactggggaccacctgctac}$ gcctcaggctggggcagcattgaaccagaggagttcttgaccccaaagaa ${\tt acttcagtgtgtggacctccatgttatttccaatgacgtgtgtgcgcaag}$ ${\tt ttcaccctcagaaggtgaccaagttcatgctgtgtgctggacgctggaca}$ gggggcaaaagcacctgctcgtgggtcattctgatcaccgaactgaccat $\verb+gccagccctgccgatggtcctccatggctccctagtgccctggagaggag$ ${\tt gtgtctagtcagagagtagtcctggaaggtggcctctgtgaggagccacg}$ gggacagcatcctgcagatggtcctggcccttgtcccaccgacctgtctacaaggactgtcctcgtggaccctcccctctgcacaggagctggaccctga $a {\tt gtcccttccccaccggccaggactggagcccctacccctctgttggaat}$ $\verb+ccctgcccaccttcttctggaagtcggctctggagacatttctcttct$ ${\tt tccaaagctgggaactgctatctgttatctgcctgtccaggtctgaaaga}$ ${\tt taggattgcccaggcagaaactgggactgacctatctcactctcccctg}$ $\tt cttttacccttagggtgattctgggggcccacttgtctgtaatggtgtgc$ ${\tt ttcaaggtatcacgtcatggggcagtgaaccatgtgccctgcccgaaagg}$ $\tt ccttccctgtacaccaaggtggtgcattaccggaagtggatcaaggacac$ catcqtqqccaacccctqaqcacccctatcaaccccctattqtaqtaaac ${\tt ttggaaccttggaaatgaccaggccaagactcaagcctccccagttctac}$ ${\tt tgacctttgtccttaggtgtgaggtccagggttgctaggaaaagaaatca}$ gcagacacaggtgtagaccagagtgtttcttaaatggtgtaattttgtcc ${\tt tctctgtgtcctggggaatactggccatgcctggagacatatcactcaat}$ $\tt tt ct ct gaggacacag at agg at gg gg tg t ct gt gt ta tt gt gg gg ta c$ agagatgaaagaggggtgggatccacactgagagagtggagagtgacatg ${\tt tgctggacactgtccatgaagcactgagcagaagctggaggcacaacgca}$ $\verb|ccagacactcacagcaaggatggagctgaaaacataacccactctgtcct||$ ggaggcactgggaagcctagagaaggctgtgagccaaggagggggggtct tcctttggcatgggatggggatgaagtaaggaggggactggaccccctg $gaag {\tt ctgattcactatgggggggggggggtgtattgaagtcctccagacaaccc$ tcagatttgatgatttcctagtagaactcacagaaataaagagctgttatactqtq (SEQ ID No: 28; GenBank Accession No.

NM_001030047).

[0054] In another embodiment, the KLK3 protein is encoded by residues 42-758 of SEQ ID No: 28. In another embodiment, the KLK3 protein is encoded by a homologue of SEQ ID No: 28. In another embodiment, the KLK3 protein is encoded by a variant of SEQ ID No: 28. In another embodiment, the KLK3 protein is encoded by an isomer of SEQ ID No: 28. In another embodiment, the KLK3 protein is encoded by a fragment of SEQ ID No: 28. Each possibility represents a separate embodiment of the present invention. **[0055]** In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC

GGVLVHPQWVLTAAHCIRK (SEQ ID No: 29; GenBank

Accession No. NM_001030050).

[0056] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 29. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 29. In another embodiment, the sequence of the KLK3 protein comprises SEQ ID No: 29. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 29. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 29. Each possibility represents a separate embodiment of the present invention.

[0057] In another embodiment, the KLK3 protein that is the source of the KLK3 peptide has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQK VTKFMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPS LYTKVVHYRKWIKDTIVANP (SEQ ID No: 30; GenBank. Accession No NM 001030049).

[0058] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 30. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 30. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 30. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 30. Each possibility represents a separate embodiment of the present invention.

[0059] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRKPGDDSSHDLMLLRLSEPAELTDAVKVMDLPT QEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVT KFMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLY TKVVHYRKWIKDTIVANP (SEQ ID No: 31; GenBank Accession No. NM_001030048).

[0060] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 31. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 31. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 31. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 31. Each possibility represents a separate embodiment of the present invention.

[0061] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGT TCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAG RWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYR KWIKDTIVANP (SEQ ID No: 32; GenBank Accession No. NM_001648).

[0062] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 32. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 32. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 32. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 32. Each possibility represents a separate embodiment of the present invention. [0063] In another embodiment, the KLK3 protein is encoded by a nucleotide molecule having the sequence:

agccccaagcttaccacctgcacccggagagctgtgtcaccatgtgggtc ccqqttqtcttcctcaccctqtccqtqacqtqqattqqtqctqcacccct catcctqtctcqqattqtqqqaqqctqqqaqtqcqaqaaqcattcccaac cctggcaggtgcttgtggcctctcgtggcaggcagtctgcggcggtgtt ctggtgcacccccagtgggtcctcacagctgcccactgcatcaggaacaa aaqcqtqatcttqctqqqtcqqcacaqcctqtttcatcctqaaqacacaq gccaggtatttcaggtcagccacagcttcccacacccgctctacgatatg agcotoctgaagaatcgattcotcaggccaggtgatgactccagccacga cctcatgctgctccgcctgtcagagcctgccgagctcacggatgctgtga ${\tt aggtcatggacctgcccacccaggagccagcactggggaccacctgctac}$ $\verb+gcctcaggctggggcagcattgaaccagaggagttcttgaccccaaagaa$ ${\tt acttcagtgtgtggacctccatgttatttccaatgacgtgtgtgcgcaag}$ ${\tt ttcaccctcagaaggtgaccaagttcatgctgtgtgctggacgctggaca}$ ggggggcaaaagcacctgctcgggtgattctggggggcccacttgtctgtaa ${\tt tggtgtgcttcaaggtatcacgtcatggggcagtgaaccatgtgccctgc}$ $\verb|ccgaaaggccttccctgtacaccaaggtggtgcattaccggaagtggatc||$ aaqqacaccatcqtqqccaacccctqaqcacccctatcaaccccctattq ${\tt tagtaaacttggaaccttggaaatgaccaggccaagactcaagcctcccc}$ agttctactgacctttgtccttaggtgtgaggtccagggttgctaggaaa agaaatcagcagacacaggtgtagaccagagtgtttcttaaatggtgtaa $\tt ttttgtcctctctgtgtcctggggaatactggccatgcctggagacatat$ $\verb|cactcaatttctctgaggacacagataggatggggtgtctgtgttatttg||$ tggggtacagagatgaaagaggggtgggatccacactgagagagtggaga qtqacatqtqctqqacactqtccatqaaqcactqaqcaqaaqctqqaqqc

-continued

[0064] In another embodiment, the KLK3 protein is encoded by residues 42-827 of SEQ ID No: 33. In another embodiment, the KLK3 protein is encoded by a homologue of SEQ ID No: 33. In another embodiment, the KLK3 protein is encoded by a variant of SEQ ID No: 33. In another embodiment, the KLK3 protein is encoded by an isomer of SEQ ID No: 33. In another embodiment, the KLK3 protein is encoded by a fragment of SEQ ID No: 33. Each possibility represents a separate embodiment of the present invention. [0065] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGT TCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAG RWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYR KWIKDTIVANP (SEQ ID No: 34; GenBank Accession No.

BC056665).

[0066] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 34. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 34. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 34. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 34. Each possibility represents a separate embodiment of the present invention.

[0067] In another embodiment, the KLK3 protein is encoded by a nucleotide molecule having the sequence:

gggggagccccaagcttaccacctgcacccggagagctgtgtcaccatgt gggtcccggttgtcttcctcaccctgtccgtgacgtggattggtgctgca cccctcatcctgtctcggattgtgggaggctgggaggcgggagagcattc ccaaccctggcaggtgcttgtggcctctcgtggcagggcagtctgcggcg gtgttctggtgcacccccagtgggtcctcacagctgcccactgcatcagg aacaaaagcgtgatcttgctgggtcggcacagcctgtttcatcctgaaga cacaggccaggtatttcaggtcagccacagcttcccacacccgctctacg atatgagcctcctgaagaatcgattcctcaggccaggtgatgactccagc cacgacctcatgctgctccgccgctgtcagagccggtgatgactccagc

tgtgaaggtcatggacctgcccacccaggagccagcactggggaccacct

-continued

gctacgcctcaggctggggcagcattgaaccagaggagttcttgacccca aagaaacttcagtgtgtggacctccatgttatttccaatgacgtgtgtgc gcaagttcaccctcagaaggtgaccaagttcatgctgtgtgctggacgct qqacaqqqqqcaaaaqcacctqctcqqqtqattctqqqqqcccacttqtc tqtaatqqtqtqcttcaaqqtatcacqtcatqqqqcaqtqaaccatqtqc cctgcccgaaaggccttccctgtacaccaaggtggtgcattaccggaagt ggatcaaggacaccatcgtggccaacccctgagcacccctatcaactccc tattqtaqtaaacttqqaaccttqqaaatqaccaqqccaaqactcaqqcc ${\tt tccccagttctactgacctttgtccttaggtgtgaggtccagggttgcta}$ ggaaaagaaatcagcagacacaggtgtagaccagagtgtttcttaaatgg ${\tt tgtaattttgtcctctctgtgtcctggggaatactggccatgcctggaga$ catatcactcaatttctctqaqqacacaqataqqatqqqqtqtctqtqt ${\tt atttgtggggtacagagatgaaagaggggtgggatccacactgagagagt$ ggagagtgacatgtgctggacactgtccatgaagcactgagcagaagctg gaggcacaacgcaccagacactcacagcaaggatggagctgaaaacataa $\verb+cccactctgtcctggaggcactgggaagcctagagaaggctgtgagccaa+$ $\verb+ctccagacaaccctcagatttgatgatttcctagtagaactcacagaaat+$ (SEQ ID No: 35; GenBank Accession No. BC056665).

[0068] In another embodiment, the KLK3 protein is encoded by residues 47-832 of SEQ ID No: 35. In another embodiment, the KLK3 protein is encoded by a homologue of SEQ ID No: 35. In another embodiment, the KLK3 protein is encoded by a variant of SEQ ID No: 35. In another embodiment, the KLK3 protein is encoded by an isomer of SEQ ID No: 35. In another embodiment, the KLK3 protein is encoded by a fragment of SEQ ID No: 35. Each possibility represents a separate embodiment of the present invention.

[0069] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQK VTKFMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPS LYTKVVHYRKWIKDTIVA (SEQ ID No: 36; GenBank Accession No. AJ459782).

[0070] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 36. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 36. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 36. In another embodiment, the KLK3 protein is a fragment

of SEQ ID No: 36. Each possibility represents a separate embodiment of the present invention.

[0071] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGT TCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAG RWTGGKSTCSVSHPYSQDLEGKGEWGP (SEQ ID No: 37 GenBank Accession No. AJ512346).

[0072] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 37. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 37. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 37. In another embodiment, the sequence of the KLK3 protein comprises SEQ ID No: 37. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 37. Each possibility represents a separate embodiment of the present invention.

[0073] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGERGHGWGDAGEGASPDCQAEALSPPTQHPSPDRE LGSFLSLPAPLQAHTPSPSILQQSSLPHQVPAPSHLPQNFLPIAQPAPCS

QLLY (SEQ ID No: 38 GenBank Accession No.

AJ459784).

[0074] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 38. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 38. In another embodiment, the sequence of the KLK3 protein comprises SEQ ID No: 38. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 38. In another embodiment, the KLK3 protein is a fragment of SEQ ID No: 38. Each possibility represents a separate embodiment of the present invention.

[0075] In another embodiment, the KLK3 protein has the sequence:

MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVC GGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPL YDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGT TCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAG RWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYR KWIKDTIVANP (SEQ ID No: 39 GenBank Accession

No. AJ459783).

[0076] In another embodiment, the KLK3 protein is a homologue of SEQ ID No: 39. In another embodiment, the KLK3 protein is a variant of SEQ ID No: 39. In another embodiment, the KLK3 protein is an isomer of SEQ ID No: 39. In another embodiment, the KLK3 protein is a fragment

of SEQ ID No: 39. Each possibility represents a separate embodiment of the present invention.

[0077] In another embodiment, the KLK3 protein is encoded by a nucleotide molecule having the sequence:

aagtttcccttctcccagtccaagaccccaaatcaccacaaaggacccaa $\verb+tccccagactcaagatatggtctgggcgctgtcttgtgtctcctaccctg$ atccctgggttcaactctgctcccagagcatgaagcctctccaccagcac cagccaccaacctgcaaacctagggaagattgacagaattcccagccttt cccageteeceetgeecatgteecaggaeteecageettggttetetgee cccqtqtcttttcaaacccacatcctaaatccatctcctatccqaqtccc ccagttcctcctgtcaaccctgattcccctgatctagcaccccctctgca qqtqctqcacccctcatcctqtctcqqattqtqqqaqqctqqqaqtqcqa gaagcattccccaaccctggcaggtgcttgtagcctctcgtggcagggcag ${\tt tctgcggcggtgttctggtgcacccccagtgggtcctcacagctacccac}$ tgcatcaggaacaaaagcgtgatcttgctgggtcggcacagcctgtttca tcctgaagacacaggccaggtatttcaggtcagccacagcttcccacacc $\verb|cgctctacgatatgagcctcctgaagaatcgattcctcaggccaggtgat||$ $\verb+gactccagccacgacctcatgctgctccgcctgtcagagcctgccgagct+$ ${\tt cacggatgctatgaaggtcatggacctgcccacccaggagccagcactgg}$ ggaccacctgctacgcctcaggctggggcagcattgaaccagaggagttc ${\tt ttgaccccaaagaaacttcagtgtgtggacctccatgttatttccaatga}$ cgtgtgtgcgcaagttcaccctcagaaggtgaccaagttcatgctgtgtg $\tt ctggacgctggacaggggggcaaaagcacctgctcgggtgattctgggggc$ $\verb+ccacttgtctgtaatggtgtgcttcaaggtatcacgtcatggggcagtga$ accatgtgccctgcccgaaaggccttccctgtacaccaaggtggtgcattaccggaagtggatcaaggacaccatcgtggccaacccctgagcaccccta ${\tt tcaactccctattgtagtaaacttggaaccttggaaatgaccaggccaag}$ actcaggcctccccagttctactgacctttgtccttaggtgtgaggtcca qqqttqctaqqaaaaqaaatcaqcaqacacaqqtqtaqaccaqaqtqttt cttaaatqqtqtaattttqtcctctqtqtcctqqqqaatactqqccat gcctggagacatatcactcaatttctctgaggacacagataggatggggt qtctqtqttatttqtqqqqtacaqaqatqaaaqaqqqqtqqqatccacac tgagagagtggagagtgacatgtgctggacactgtccatgaagcactgag ${\tt cagaagctggaggcacaacgcaccagacactcacagcaaggatggagctg}$ aaaacataacccactctgtcctggaggcactgggaagcctagagaaggctgtgaaccaaggaggggggggtcttcctttggcatggggtggggatgaagta ttgaagteeteeagacaaceeteagatttgatgattteetagtagaacte acagaaataaagagctgttatactgtgaa (SEQ ID No: 40;

GenBank Accession No. X07730).

[0078] In another embodiment, the KLK3 protein is encoded by residues 67-1088 of SEQ ID No: 40. In another embodiment, the KLK3 protein is encoded by a homologue of SEQ ID No: 40. In another embodiment, the KLK3 protein is encoded by a variant of SEQ ID No: 40. In another embodiment, the KLK3 protein is encoded by an isomer of SEQ ID No: 40. In another embodiment, the KLK3 protein is encoded by a fragment of SEQ ID No: 40. Each possibility represents a separate embodiment of the present invention. [0079] In another embodiment, the KLK3 protein has a sequence set forth in one of the following GenBank Accession Numbers: BC005307, AJ310938, AJ310937, AF335478, AF335477, M27274, and M26663. In another embodiment, the KLK3 protein is encoded by a sequence set forth in one of the above GenBank Accession Numbers. Each possibility represents a separate embodiment of the present invention.

[0080] In another embodiment, the KLK3 protein is encoded by a sequence set forth in one of the following GenBank Accession Numbers: NM_001030050, NM_001030049, NM_001030048, AJ459782, AJ512346, or AJ459784. Each possibility represents a separate embodiment of the present invention.

[0081] In another embodiment, the KLK3 protein has the sequence that comprises a sequence set forth in one of the following GenBank Accession Numbers: X13943, X13942, X13940, X13941, and X13944. Each possibility represents a separate embodiment of the present invention.

[0082] In another embodiment, the KLK3 protein is any other KLK3 protein known in the art. Each KLK3 protein represents a separate embodiment of the present invention. [0083] In another embodiment, the present invention provides a recombinant Listeria strain expressing a folate hydrolase 1 (FOLH1) peptide. In another embodiment, the sequence of the FOLH1 peptide is selected from SEQ ID No: 41, 43, 44, and 45. In another embodiment, the sequence of the FOLH1 peptide is set forth in SEQ ID No: 41. In another embodiment, the sequence of the FOLH1 peptide is set forth in SEQ ID No: 43. In another embodiment, the sequence of the FOLH1 peptide is set forth in SEQ ID No: 44. In another embodiment, the sequence of the FOLH1 peptide is set forth in SEQ ID No: 45. In another embodiment, the sequence of the FOLH1 peptide is any other FOLH1 protein sequence known in the art. Each possibility represents a separate embodiment of the present invention. [0084] In another embodiment, the sequence of the FOLH1 peptide comprises a sequence selected from SEQ ID No: 41, 43, 44, and 45.

[0085] In another embodiment, the FOLH1 peptide is an immunogenic fragment of a larger FOLH1 peptide, wherein the sequence of the larger FOLH1 peptide is a sequence selected from SEQ ID No: 41, 43, 44, and 45. In another embodiment, the FOLH1 peptide is an immunogenic fragment of a larger FOLH1 peptide, wherein the sequence of the larger FOLH1 peptide is set forth in SEQ ID No: 41. In another embodiment, the sequence of the larger FOLH1 peptide is set forth in SEQ ID No: 43. In another embodiment, the sequence of the larger FOLH1 peptide is set forth in SEQ ID No: 44. In another embodiment, the sequence of the larger FOLH1 peptide is set forth in SEQ ID No: 45. In another embodiment, the sequence of the larger FOLH1 peptide is any other FOLH1 protein sequence known in the art. Each possibility represents a separate embodiment of the present invention.

[0086] In another embodiment, the sequence of the FOLH1 peptide comprises an immunogenic fragment of a sequence selected from SEQ ID No: 41, 43, 44, and 45.

[0087] "FOLH1 peptide" refers, in another embodiment, to a full-length FOLH1 protein. In another embodiment, the term refers to a fragment of an FOLH1 protein. In another embodiment, the term refers to a fragment of an FOLH1 protein that is lacking the FOLH1 signal peptide. In another embodiment, the term refers to an FOLH1 protein that contains the entire FOLH1 sequence except the FOLH1 signal peptide. "FOLH1 signal sequence" refers, in another embodiment, to any signal sequence found in nature on an FOLH1 protein. In another embodiment, an FOLH1 protein of methods and compositions of the present invention does not contain any signal sequence. Each possibility represents a separate embodiment of the present invention.

[0088] In another embodiment, the FOLH1 protein that is the source of an FOLH1 peptide of methods and compositions of the present invention is a human FOLH1 protein. In another embodiment, the FOLH1 protein is a mouse FOLH1 protein. In another embodiment, the FOLH1 protein is a rodent FOLH1 protein. In another embodiment, the FOLH1 protein is an FOLH1 protein of any other species known in the art. In another embodiment, 1 of the above FOLH1 proteins is referred to in the art as a "FOLH1 protein." Each possibility represents a separate embodiment of the present invention.

[0089] The FOLH1 protein that is the source of an FOLH1 peptide of methods and compositions of the present invention is a folate hydrolase (prostate-specific membrane antigen) protein. In another embodiment, the FOLH1 protein is PSMA protein. In another embodiment, the FOLH1 protein is a N-acetylated alpha-linked acidic dipeptidase 1 protein. In another embodiment, the FOLH1 protein is a folate hydrolase 1 protein. In another embodiment, the FOLH1 protein is a folylpoly-gamma-glutamate carboxypeptidase protein. In another embodiment, the FOLH1 protein is a glutamate carboxylase II protein. In another embodiment, the FOLH1 protein is a glutamate carboxypeptidase II protein. In another embodiment, the FOLH1 protein is a membrane glutamate carboxypeptidase protein. In another embodiment, the FOLH1 protein is a pteroylpoly-gammaglutamate carboxypeptidase protein. In another embodiment, the FOLH1 protein is any other type of FOLH1 protein that is known in the art. Each possibility represents a separate embodiment of the present invention.

[0090] In another embodiment, the FOLH1 protein has the sequence:

(SEQ ID No: 41; GenBank Accession No. BC025672) MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLGGWFIKSSNEAT NITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQW KEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPG YENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKI VIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPG GGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYY DAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTN EVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVR

-continued

- continued SFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKK SPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYP LYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDY AVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERL QDFDKSKHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQ IYVAAFTVQAAAETLSEVA.

[0091] In another embodiment, the FOLH1 protein is a homologue of SEQ ID No: 41. In another embodiment, the FOLH1 protein is a variant of SEQ ID No: 41. In another embodiment, the FOLH1 protein is an isomer of SEQ ID No: 41. In another embodiment, the FOLH1 protein is a fragment of SEQ ID No: 41. Each possibility represents a separate embodiment of the present invention.

[0092] In another embodiment, the FOLH1 protein is encoded by a nucleotide molecule having the sequence:

(SEQ ID No: 42; GenBank Accession No. BC025672) ctggaccccaggtctggagcgaattccagcctgcagggctgataagcgag gcattagtgagattgagagagactttaccccgccgtggtggttggagggc cqcqccqaqatqtqqaatctccttcacqaaaccqactcqqctqtqqccac cgcgcgccgccgcgctggctgtgcgctgggggggcgctggtgctgggggtg gettettteteeteggetteetettegggtggtttataaaateeteeaat qaaqctactaacattactccaaaqcataatatqaaaqcatttttqqatqa attqaaaqctqaqaacatcaaqaaqttcttatataattttacacaqatac cacatttagcaggaacagaacaaaactttcagcttgcaaagcaaattcaa tcccagtggaaagaatttggcctggattctgttgagctagcacattatga tgtcctgttgtcctacccaaataagactcatcccaactacatctcaataa ttaatgaagatggaaatgagattttcaacacatcattatttgaaccacct $\verb|cctccaggatatgaaaatgtttcggatattgtaccacctttcagtgcttt||$ $\verb+ctctcctcaaggaatgccagagggcgatctagtgtatgttaactatgcac+$ gaactgaagacttctttaaattggaacgggacatgaaaatcaattgctctgggaaaattgtaattgccagatatgggaaagttttcagaggaaataaggttaaaaatgcccagctggcaggggccaaaggagtcattctctactccgacc $\tt ctgctgactactttgctcctggggtgaagtcctatccagatggttggaat$ $\tt cttcctggaggtggtgtccagcgtggaaatatcctaaatctgaatggtgc$ aggagaccctctcacaccaggttacccagcaaatgaatatgcttataggc gtggaattgcagaggctgttggtcttccaagtattcctgttcatccaatt ggatactatgatgcacagaagctcctagaaaaaatgggtggctcagcacc accagatagcagctggagaggaagtctcaaagtgccctacaatgttggacctqqctttactqqaaacttttctacacaaaaaqtcaaqatqcacatccac tctaccaatqaaqtqacaaqaatttacaatqtqataqqtactctcaqaqq

agcagtggaaccagacagatatgtcattctgggaggtcaccgggactcat gggtgttttggtggtattgaccctcagagtggagcagctgttgttcatgaa attgtgaggagctttggaacactgaaaaaggaagggtggagacctagaag aacaattttgtttgcaagctgggatgcagaagaatttggtcttcttggtt ctactqaqtqqqcaqaqqaqaattcaaqactccttcaaqaqcqtqqcqtq gcttatattaatgctgactcatctatagaaggaaactacactctgagagt tgattgtacaccgctgatgtacagcttggtacacaacctaacaaaagagc ${\tt tgaaaagccctgatgaaggctttgaaggcaaatctctttatgaaagttgg}$ $a \verb"ctaaaaaaagtccttccccagagttcagtggcatgcccaggataagcaa$ attgggatctggaaatgattttgaggtgttcttccaacgacttggaattg ${\tt ggctatccactgtatcacagtgtctatgaaacatatgagttggtggaaaa}$ $\tt gttttatgatccaatgtttaaatatcacctcactgtggcccaggttcgag$ gagggatggtgtttgagctagccaattccatagtgctcccttttgattgt ${\tt cgagattatgctgtagttttaagaaagtatgctgacaaaatctacagtat}$ ${\tt ttctatgaaacatccacaggaaatgaagacatacagtgtatcatttgatt}$ $\verb|cacttttttctgcagtaaagaattttacagaaattgcttccaagttcagt||$ gagagactccaggactttgacaaaagcaagcatgtcatctatgctccaag $\verb|cagccacaacaagtatgcagggggggtcattcccaggaatttatgatgctc||$ tgtttgatattgaaagcaaagtggacccttccaaggcctggggagaagtg tttgagtgaagtagcctaagaggattctttagagaatccgtattgaattt gtgtggtatgtcactcagaaagaatcgtaatgggtatattgataaatttt

[0093] In another embodiment, the FOLH1 protein is encoded by residues 160-2319 of SEQ ID No: 42. In another embodiment, the FOLH1 protein is encoded by a homologue of SEQ ID No: 42. In another embodiment, the FOLH1 protein is encoded by a variant of SEQ ID No: 42. In another embodiment, the FOLH1 protein is encoded by an isomer of SEQ ID No: 42. In another embodiment, the FOLH1 protein is encoded by a fragment of SEQ ID No: 42. Each possibility represents a separate embodiment of the present invention. [0094] In another embodiment, the FOLH1 protein has the sequence:

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEAT NITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQW KEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPG YENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKI VIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPG GGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYY

-continued

DAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTN EVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVR SFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKK SPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYP LYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDY AVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERL QDFDKSKHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQ IYVAAFTVOAAAETLSEVA. (SEO ID No: 43: GenBank

IYVAAFTVQAAAETLSEVA. (SEQ ID No: 43; GenBank Accession No. NM_001014986)

[0095] In another embodiment, the FOLH1 protein is a homologue of SEQ ID No: 43. In another embodiment, the FOLH1 protein is a variant of SEQ ID No: 43. In another embodiment, the FOLH1 protein is an isomer of SEQ ID No: 43. In another embodiment, the FOLH1 protein is a fragment of SEQ ID No: 43. Each possibility represents a separate embodiment of the present invention.

[0096] In another embodiment, the FOLH1 protein has the sequence:

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEAT NITPKHNMKAFLDELKAENIKKFLYNFTOIPHLAGTEONFOLAKOIOSOW KEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPG YENVSDIVPPFSAFSPOGMPEGDLVYVNYARTEDFFKLERDMKINCSGKI VIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPG GGVORGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYY DAOKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTOKVKMHIHSTN EVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVR SFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLOERGVAYI NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKK ${\tt SPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYP$ LYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDY AVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERL QDFDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFYRHVIYAPSSHNKY AGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEV A. (SEQ ID No: 44; GenBank Accession No. NM_004476)

[0097] In another embodiment, the FOLH1 protein is a homologue of SEQ ID No: 44. In another embodiment, the FOLH1 protein is a variant of SEQ ID No: 44. In another embodiment, the FOLH1 protein is an isomer of SEQ ID No: 44. In another embodiment, the FOLH1 protein is a fragment of SEQ ID No: 44. Each possibility represents a separate embodiment of the present invention.

[0098] In another embodiment, the FOLH1 protein has the sequence:

(SEQ ID No: 45; GenBank Accession No. BC108719) IPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTHPNYIS IINEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNY ARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYS DPADYFAPGVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPGYPANEYAY RRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNV GPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRD SWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLL GSTEWAEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTK ELKSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLG IASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQV RGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKTYSVSF DSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPL GLPDRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVK

RQIYVAAFTVQAAAETLSEVA.

[0099] In another embodiment, the FOLH1 protein is a homologue of SEQ ID No: 45. In another embodiment, the FOLH1 protein is a variant of SEQ ID No: 45. In another embodiment, the FOLH1 protein is an isomer of SEQ ID No: 45. In another embodiment, the FOLH1 protein is a fragment of SEQ ID No: 45. Each possibility represents a separate embodiment of the present invention.

[0100] In another embodiment, the FOLH1 protein is encoded by a sequence set forth in one of the following GenBank Accession Numbers: NM_001014986, NM_004476, BC108719. Each possibility represents a separate embodiment of the present invention.

[0101] In another embodiment, the FOLH1 protein has the sequence that comprises a sequence set forth in one of the above GenBank Accession Numbers. Each possibility represents a separate embodiment of the present invention.

[0102] In another embodiment, the FOLH1 protein is any other FOLH1 protein known in the art. Each FOLH1 protein represents a separate embodiment of the present invention. **[0103]** In another embodiment, the present invention provides a vaccine comprising a recombinant *Listeria* strain of the present invention and an adjuvant.

[0104] In another embodiment, the present invention provides an immunogenic composition comprising a recombinant *Listeria* strain of the present invention.

[0105] In another embodiment, the recombinant *Listeria* strain expresses a recombinant polypeptide that comprises a KLK3 peptide. In another embodiment, the recombinant *Listeria* strain comprises a recombinant polypeptide, wherein the recombinant peptide comprises a KLK3 peptide. In another embodiment, the recombinant *Listeria* strain comprises a recombinant *Listeria* strain comprises a recombinant *Listeria* strain comprises a kLK3 peptide. In another embodiment, the recombinant *Listeria* strain comprises a recombinant peptide encoding the recombinant polypeptide. Each possibility represents a separate embodiment of the present invention.

[0106] In another embodiment, the recombinant *Listeria* strain expresses a recombinant polypeptide that comprises an FOLH1 peptide. In another embodiment, the recombinant

Listeria strain comprises a recombinant polypeptide, wherein the recombinant peptide comprises an FOLH1 peptide. In another embodiment, the recombinant *Listeria* strain comprises a recombinant nucleotide encoding the recombinant polypeptide. Each possibility represents a separate embodiment of the present invention.

[0107] The KLK3 peptide expressed by the recombinant *Listeria* strain is, in another embodiment, in the form of a fusion peptide. In another embodiment, the fusion peptide further comprises a non-KLK3 peptide. In another embodiment, the non-KLK3 peptide enhances the immunogenicity of the KLK3 peptide. Each possibility represents a separate embodiment of the present invention.

[0108] In another embodiment, an FOLH1 peptide expressed by the recombinant *Listeria* strain is in the form of a fusion peptide. In another embodiment, the fusion peptide further comprises a non-FOLH1 peptide. In another embodiment, the non-FOLH1 peptide enhances the immunogenicity of the FOLH1 peptide. Each possibility represents a separate embodiment of the present invention.

[0109] In another embodiment, the non-KLK3/non-FOLH1 peptide of methods and compositions of the present invention is a non-hemolytic LLO peptide. In another embodiment, the non-KLK3/non-FOLH1 peptide is an ActA peptide. In another embodiment, the non-KLK3/non-FOLH1 peptide is a PEST-like sequence-containing peptide. In another embodiment, the non-KLK3/non-FOLH1 peptide is any other non-KLK3/non-FOLH1 peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0110] In another embodiment, the present invention provides a recombinant *Listeria* strain comprising a recombinant polypeptide of the present invention. In another embodiment, the present invention provides a recombinant *Listeria* strain comprising a recombinant nucleotide encoding a recombinant polypeptide of the present invention. In another embodiment, the *Listeria* vaccine strain is a strain of the species *Listeria monocytogenes* (LM). In another embodiment, the present invention provides a composition comprising the *Listeria* strain. In another embodiment, the present invention provides a separate embodiment of the present invention.

[0111] In another embodiment, the *Listeria* strain is a recombinant *Listeria seeligeri* strain. In another embodiment, the *Listeria* strain is a recombinant *Listeria grayi* strain. In another embodiment, the *Listeria* strain is a recombinant *Listeria ivanovii* strain. In another embodiment, the *Listeria* strain is a recombinant strain of any other *Listeria* species known in the art. Each possibility represents a separate embodiment of the present invention.

[0112] In another embodiment, a recombinant *Listeria* strain of the present invention has been passaged through an animal host. In another embodiment, the passaging maximizes efficacy of the strain as a vaccine vector. In another embodiment, the passaging stabilizes the immunogenicity of the *Listeria* strain. In another embodiment, the passaging stabilizes the virulence of the *Listeria* strain. In another embodiment, the passaging increases the immunogenicity of the *Listeria* strain. In another embodiment, the passaging increases the virulence of the *Listeria* strain. In another embodiment, the passaging increases the virulence of the *Listeria* strain. In another embodiment, the passaging increases the virulence of the *Listeria* strain. In another

embodiment, the passaging removes unstable sub-strains of the Listeria strain. In another embodiment, the passaging reduces the prevalence of unstable sub-strains of the Listeria strain. In another embodiment, the Listeria strain contains a genomic insertion of the gene encoding the KLK3 peptidecontaining recombinant peptide. In another embodiment, the Listeria strain contains a genomic insertion of the gene encoding the FOLH1 peptide-containing recombinant peptide. In another embodiment, the Listeria strain carries a plasmid comprising the gene encoding the KLK3 peptidecontaining recombinant peptide. In another embodiment, the Listeria strain carries a plasmid comprising the gene encoding the FOLH1 peptide-containing recombinant peptide. Methods for passaging a recombinant Listeria strain through an animal host are well known in the art, and are described, for example, in United States Patent Application No. 2006/ 0233835, which is incorporated herein by reference. In another embodiment, the passaging is performed by any other method known in the art. Each possibility represents a separate embodiment of the present invention.

[0113] In another embodiment, the recombinant *Listeria* strain utilized in methods of the present invention has been stored in a frozen cell bank. In another embodiment, the recombinant *Listeria* strain has been stored in a lyophilized cell bank. Each possibility represents a separate embodiment of the present invention.

[0114] In another embodiment, the cell bank of methods and compositions of the present invention is a master cell bank. In another embodiment, the cell bank is a working cell bank. In another embodiment, the cell bank is Good Manufacturing Practice (GMP) cell bank. In another embodiment, the cell bank is intended for production of clinical-grade material. In another embodiment, the cell bank conforms to regulatory practices for human use. In another embodiment, the cell bank is any other type of cell bank known in the art. Each possibility represents a separate embodiment of the present invention.

[0115] "Good Manufacturing Practices" are defined, in another embodiment, by (21 CFR 210-211) of the United States Code of Federal Regulations. In another embodiment, "Good Manufacturing Practices" are defined by other standards for production of clinical-grade material or for human consumption; e.g. standards of a country other than the United States. Each possibility represents a separate embodiment of the present invention.

[0116] In another embodiment, a recombinant *Listeria* strain utilized in methods of the present invention is from a batch of vaccine doses.

[0117] In another embodiment, a recombinant *Listeria* strain utilized in methods of the present invention is from a frozen stock produced by a method disclosed herein.

[0118] In another embodiment, a recombinant *Listeria* strain utilized in methods of the present invention is from a lyophilized stock produced by a method disclosed herein.

[0119] In another embodiment, a cell bank, frozen stock, or batch of vaccine doses of the present invention exhibits viability upon thawing of greater than 90%. In another embodiment, the thawing follows storage for cryopreservation or frozen storage for 24 hours. In another embodiment, the storage is for 2 days. In another embodiment, the storage is for 4 days. In another embodiment, the storage is for 4 days. In another embodiment, the storage is for 1 week. In another embodiment, the storage is for 2 weeks. In another embodiment, the storage is for 3 weeks. In another embodiment, the storage is for 3 weeks. In another embodiment, the storage is for 3 weeks. In another embodiment, the storage is for 3 weeks. In another embodiment, the storage is for 3 weeks. In another embodiment, the storage is for 3 weeks.

ment, the storage is for 1 month. In another embodiment, the storage is for 2 months. In another embodiment, the storage is for 3 months. In another embodiment, the storage is for 5 months. In another embodiment, the storage is for 6 months. In another embodiment, the storage is for 9 months. In another embodiment, the storage is for 1 year. Each possibility represents a separate embodiment of the present invention.

[0120] In another embodiment, a cell bank, frozen stock, or batch of vaccine doses of the present invention is cryopreserved by a method that comprises growing a culture of the *Listeria* strain in a nutrient media, freezing the culture in a solution comprising glycerol, and storing the *Listeria* strain at below –20 degrees Celsius. In another embodiment, the temperature is about –70 degrees Celsius. In another embodiment, the temperature is about –70-80 degrees Celsius.

[0121] In another embodiment, a cell bank, frozen stock, or batch of vaccine doses of the present invention is cryopreserved by a method that comprises growing a culture of the *Listeria* strain in a defined media of the present invention (as described below), freezing the culture in a solution comprising glycerol, and storing the *Listeria* strain at below –20 degrees Celsius. In another embodiment, the temperature is about –70 degrees Celsius. In another embodiment, the temperature is about –70–80 degrees Celsius. In another embodiment, any defined microbiological media of the present invention may be used in this method. Each defined microbiological media represents a separate embodiment of the present invention.

[0122] In another embodiment of methods and compositions of the present invention, the culture (e.g. the culture of a *Listeria* vaccine strain that is used to produce a batch of *Listeria* vaccine doses) is inoculated from a cell bank. In another embodiment, the culture is inoculated from a frozen stock. In another embodiment, the culture is inoculated from a starter culture. In another embodiment, the culture is inoculated from a starter culture is inoculated at mid-log growth phase. In another embodiment, the culture is inoculated at approximately mid-log growth phase. In another embodiment, the culture is inoculated at another growth phase. Each possibility represents a separate embodiment of the present invention.

[0123] In another embodiment, the solution used for freezing contains another colligative additive or additive with anti-freeze properties, in place of glycerol. In another embodiment, the solution used for freezing contains another colligative additive or additive with anti-freeze properties, in addition to glycerol. In another embodiment, the additive is mannitol. In another embodiment, the additive is DMSO. In another embodiment, the additive is sucrose. In another embodiment, the additive is sucrose. In another embodiment, the additive is known in the art. Each possibility represents a separate embodiment of the present invention.

[0124] In another embodiment, the nutrient media utilized for growing a culture of a *Listeria* strain is LB. In another embodiment, the nutrient media is TB. In another embodiment, the nutrient media is a modified, animal-product free Terrific Broth. In another embodiment, the nutrient media is a defined media. In another embodiment, the nutrient media is a defined media of the present invention. In another embodiment, the nutrient media is any other type of nutrient

media known in the art. Each possibility represents a separate embodiment of the present invention.

[0125] In another embodiment of methods and compositions of the present invention, the step of growing is performed with a shake flask. In another embodiment, the flask is a baffled shake flask. In another embodiment, the growing is performed with a batch fermenter. In another embodiment, the growing is performed with a stirred tank or flask. In another embodiment, the growing is performed with a fed batch. In another embodiment, the growing is performed with a fed batch. In another embodiment, the growing is performed with a fed batch. In another embodiment, the growing is performed with a continuous cell reactor. In another embodiment, the growing is performed with an immobilized cell reactor. In another embodiment, the growing is performed with any other means of growing bacteria that is known in the art. Each possibility represents a separate embodiment of the present invention.

[0126] In another embodiment, a constant pH is maintained during growth of the culture (e.g. in a batch fermenter). In another embodiment, the pH is maintained at about 7.0. In another embodiment, the pH is about 6. In another embodiment, the pH is about 6.5. In another embodiment, the pH is about 7.5. In another embodiment, the pH is about 8. In another embodiment, the pH is 6.5-7.5. In another embodiment, the pH is 6-8. In another embodiment, the pH is 6-7. In another embodiment, the pH is 7-8. Each possibility represents a separate embodiment of the present invention.

[0127] In another embodiment, a constant temperature is maintained during growth of the culture. In another embodiment, the temperature is maintained at about 37° C. In another embodiment, the temperature is 37° C. In another embodiment, the temperature is 25° C. In another embodiment, the temperature is 27° C. In another embodiment, the temperature is 28° C. In another embodiment, the temperature is 30° C. In another embodiment, the temperature is 30° C. In another embodiment, the temperature is 32° C. In another embodiment, the temperature is 32° C. In another embodiment, the temperature is 32° C. In another embodiment, the temperature is 34° C. In another embodiment, the temperature is 35° C. In another embodiment, the temperature is 35° C. In another embodiment, the temperature is 39° C. Each possibility represents a separate embodiment of the present invention.

[0128] In another embodiment, a constant dissolved oxygen concentration is maintained during growth of the culture. In another embodiment, the dissolved oxygen concentration is maintained at 20% of saturation. In another embodiment, the concentration is 15% of saturation. In another embodiment, the concentration is 16% of saturation. In another embodiment, the concentration is 18% of saturation. In another embodiment, the concentration is 22% of saturation. In another embodiment, the concentration is 25% of saturation. In another embodiment, the concentration is 30% of saturation. In another embodiment, the concentration is 35% of saturation. In another embodiment, the concentration is 40% of saturation. In another embodiment, the concentration is 45% of saturation. In another embodiment, the concentration is 50% of saturation. In another embodiment, the concentration is 55% of saturation. In another embodiment, the concentration is 60% of saturation. In another embodiment, the concentration is 65% of saturation. In another embodiment, the concentration is 70% of saturation. In another embodiment, the concentration is 75% of saturation. In another embodiment, the concentration is 80% of saturation. In another embodiment, the concentration is

85% of saturation. In another embodiment, the concentration is 90% of saturation. In another embodiment, the concentration is 95% of saturation. In another embodiment, the concentration is 100% of saturation. In another embodiment, the concentration is near 100% of saturation. Each possibility represents a separate embodiment of the present invention.

[0129] In another embodiment of methods and compositions of the present invention, the *Listeria* culture is flash-frozen in liquid nitrogen, followed by storage at the final freezing temperature. In another embodiment, the culture is frozen in a more gradual manner; e.g. by placing in a vial of the culture in the final storage temperature. In another embodiment, the culture is frozen by any other method known in the art for freezing a bacterial culture. Each possibility represents a separate embodiment of the present invention.

[0130] In another embodiment of methods and compositions of the present invention, the storage temperature of the culture is between ⁻20 and ⁻80 degrees Celsius (° C.). In another embodiment, the temperature is significantly below ⁻20° C. In another embodiment, the temperature is not warmer than ^{-70°} C. In another embodiment, the temperature is -70° C. In another embodiment, the temperature is about ^{-70°} C. In another embodiment, the temperature is ⁻20° C. In another embodiment, the temperature is about $^{-20^{\circ}}$ C. In another embodiment, the temperature is $^{-30^{\circ}}$ C. In another embodiment, the temperature is -40° C. In another embodiment, the temperature is ^{-50°} C. In another embodiment, the temperature is ^{-60°} C. In another embodiment, the temperature is ^{-80°} C. In another embodiment, the temperature is $-30-70^{\circ}$ C. In another embodiment, the temperature is $-40-70^{\circ}$ C. In another embodiment, the temperature is $-50-70^{\circ}$ C. In another embodiment, the temperature is $-50-70^{\circ}$ C. In another embodiment, the temperature is $-60-70^{\circ}$ C. In another embodiment, the temperature is -30--80° C. In another embodiment, the temperature is -40--80° C. In another embodiment, the temperature is 50-80° C. In another embodiment, the temperature is ^{-60--80°} C. In another embodiment, the temperature is 70-780° C. In another embodiment, the temperature is colder than ^{-70°} C. In another embodiment, the temperature is colder than -80° C. Each possibility represents a separate embodiment of the present invention. [0131] Methods for lyophilization and cryopreservation of recombinant Listeria strains are well known to those skilled in the art. Each possibility represents a separate embodiment of the present invention.

[0132] The *Listeria*-containing composition of methods and compositions of the present invention is, in another embodiment, an immunogenic composition. In another embodiment, the composition is inherently immunogenic by virtue of its comprising a *Listeria* strain of the present invention. In another embodiment, the composition further comprises an adjuvant. Each possibility represents a separate embodiment of the present invention.

[0133] In another embodiment, the present invention provides a recombinant polypeptide, comprising a KLK3 peptide operatively linked to a non-KLK3 peptide. In another embodiment, the non-KLK3 peptide is an LLO peptide. In another embodiment, the non-KLK3 peptide is an ActA peptide. In another embodiment, the non-KLK3 peptide is a PEST-like sequence peptide. In another embodiment, the non-KLK3 peptide enhances the immunogenicity of the KLK3 peptide. In another embodiment, the non-KLK3 peptide.

peptide is any other type of peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0134] In another embodiment, the present invention provides a recombinant polypeptide, comprising an FOLH1 peptide operatively linked to a non-FOLH1 peptide. In another embodiment, the non-FOLH1 peptide is an LLO peptide. In another embodiment, the non-FOLH1 peptide is an ActA peptide. In another embodiment, the non-FOLH1 peptide is a PEST-like sequence peptide. In another embodiment, the non-FOLH1 peptide is the FOLH1 peptide is any other type of peptide known in the art. Each possibility represents a separate embodiment of the present invention.

[0135] As provided herein, a recombinant *Listeria* strain expressing an LLO-KLK3 fusion protects mice from tumors and elicits formation of antigen-specific CTL. Thus, *Listeria* strains expressing prostate-specific antigens (e.g. prostate-specific antigen/KLK3 and prostate-specific membrane anti-gen/FOLH1) are antigenic and efficacious in vaccination methods. Further, fusions of LLO and fragments thereof to prostate-specific antigens (e.g. prostate-specific antigen/KLK3 and prostate-specific antigen/FOLH1) are antigenic and efficacious in vaccination methods.

[0136] Further, as provided herein, Lm-LLO-E7 induces regression of established subcutaneous HPV-16 immortalized tumors from C57B1/6 mice (Example 1). Further, as provided herein, Lm-LLO-NP protects mice from RENCA-NP, a renal cell carcinoma (Example 3). Further, as provided herein, fusion of antigens to ActA and PEST-like sequences produces similar results. Thus, non-hemolytic LLO, ActA, and PEST-like sequences are all efficacious at enhancing the immunogenicity of KLK3 and FOLH1 peptides.

[0137] In another embodiment, the present invention provides a vaccine comprising a recombinant polypeptide of the present invention and an adjuvant.

[0138] In another embodiment, the present invention provides an immunogenic composition comprising a recombinant polypeptide of the present invention.

[0139] In another embodiment, the present invention provides a recombinant vaccine vector encoding a recombinant polypeptide of the present invention.

[0140] In another embodiment, the present invention provides a nucleotide molecule encoding a recombinant polypeptide of the present invention.

[0141] In another embodiment, the present invention provides a vaccine comprising a nucleotide molecule of the present invention and an adjuvant.

[0142] In another embodiment, the present invention provides an immunogenic composition comprising a nucleotide molecule of the present invention.

[0143] In another embodiment, the present invention provides a recombinant vaccine vector comprising a nucleotide molecule of the present invention.

[0144] In other embodiments, the adjuvant of methods and compositions of the present invention is Montanide ISA 51. Montanide ISA 51 contains a natural metabolizable oil and a refined emulsifier. In another embodiment, the adjuvant is GM-CSF. In another embodiment, the adjuvant is KLH. Recombinant GM-CSF is a human protein grown, in another embodiment, in a yeast (*S. cerevisiae*) vector. GM-CSF promotes clonal expansion and differentiation of hematopoietic progenitor cells, APC, and dendritic cells and T cells.

16

[0145] In another embodiment, the adjuvant is a cytokine. In another embodiment, the adjuvant is a growth factor. In another embodiment, the adjuvant is a cell population. In another embodiment, the adjuvant is QS21. In another embodiment, the adjuvant is Freund's incomplete adjuvant. In another embodiment, the adjuvant is aluminum phosphate. In another embodiment, the adjuvant is aluminum hydroxide. In another embodiment, the adjuvant is BCG. In another embodiment, the adjuvant is alum. In another embodiment, the adjuvant is an interleukin. In another embodiment, the adjuvant is an unmethylated CpG oligonucleotide. In another embodiment, the adjuvant is quill glycosides. In another embodiment, the adjuvant is monophosphoryl lipid A. In another embodiment, the adjuvant is liposomes. In another embodiment, the adjuvant is a bacterial mitogen. In another embodiment, the adjuvant is a bacterial toxin. In another embodiment, the adjuvant is a chemokine. In another embodiment, the adjuvant is any other type of adjuvant known in the art. In another embodiment, the vaccine of methods and compositions of the present invention comprises 2 of the above adjuvants. In another embodiment, the vaccine comprises more than 2 of the above adjuvants. Each possibility represents a separate embodiment of the present invention.

[0146] In another embodiment, the present invention provides a method of inducing an anti-KLK3 immune response in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby inducing an anti-KLK3 immune response in a subject.

[0147] In another embodiment, the present invention provides a method of treating a KLK3-expressing tumor in a subject, the method comprising the step of administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the KLK3-expressing tumor, thereby treating a KLK3-expressing tumor in a subject. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing prostate carcinoma. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing prostate carcinoma. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing prostate adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0148] In another embodiment, the present invention provides a method of protecting a human subject against a KLK3-expressing tumor, the method comprising the step of administering to the human subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the KLK3-expressing tumor, thereby protecting a human subject against a KLK3-expressing tumor. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing prostate carcinoma. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0149] In another embodiment, the present invention provides a method of inducing an anti-FOLH1 immune response in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain

of the present invention, thereby inducing an anti-FOLH1 immune response in a subject.

[0150] In another embodiment, the present invention provides a method of treating an FOLH1-expressing tumor in a subject, the method comprising the step of administering to the subject a composition comprising a recombinant Listeria strain of the present invention, whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby treating an FOLH1-expressing tumor in a subject. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate carcinoma. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing adenocarcinoma. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0151] In another embodiment, the present invention provides a method of protecting a human subject against an FOLH1-expressing tumor, the method comprising the step of administering to the human subject a composition comprising a recombinant *Listeria* strain of the present invention, whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby protecting a human subject against an FOLH1-expressing tumor. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing prostate carcinoma. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing tumor.

[0152] Methods for assessing efficacy of prostate cancer vaccines are well known in the art, and are described, for example, in Dzojic H et al (Adenovirus-mediated CD40 ligand therapy induces tumor cell apoptosis and systemic immunity in the TRAMP-C2 mouse prostate cancer model. Prostate. 2006 Jun. 1; 66(8):831-8), Naruishi K et al (Adenoviral vector-mediated RTVP-1 gene-modified tumor cell-based vaccine suppresses the development of experimental prostate cancer. Cancer Gene Ther. 2006 July; 13(7):658-63), Sehgal I et al (Cancer Cell Int. 2006 Aug. 23; 6:21), and Heinrich J E et al (Vaccination against prostate cancer using a live tissue factor deficient cell line in Lobund-Wistar rats. Cancer Immunol Immunother 2007; 56(5):725-30). Each possibility represents a separate embodiment of the present invention.

[0153] In another embodiment, the prostate cancer model used to test methods and compositions of the present invention is the TRAMP-C2 mouse model. In another embodiment, the prostate cancer model is a 178-2 BMA cell model. In another embodiment, the prostate cancer model is a PAIII adenocarcinoma cells model. In another embodiment, the prostate cancer model is a PC-3M model. In another embodiment, the prostate cancer model is any other prostate cancer model known in the art. Each possibility represents a separate embodiment of the present invention.

[0154] In another embodiment, the vaccine is tested in human subjects, and efficacy is monitored using methods well known in the art, e.g. directly measuring CD4⁺ and CD8⁺ T cell responses, or measuring disease progression, e.g. by determining the number or size of tumor metastases, or monitoring disease symptoms (cough, chest pain, weight

loss, etc). Methods for assessing the efficacy of a prostate cancer vaccine in human subjects are well known in the art, and are described, for example, in Uenaka A et al (T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein. Cancer Immun. 2007 Apr. 19; 7:9) and Thomas-Kaskel A K et al (Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. Int J Cancer. 2006 Nov. 15; 119(10):2428-34). Each method represents a separate embodiment of the present invention.

[0155] In another embodiment, the present invention provides a method of inducing an anti-KLK3 immune response in a subject, comprising administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, thereby inducing an anti-KLK3 immune response in a subject.

[0156] In another embodiment, the present invention provides a method of treating a KLK3-expressing tumor in a subject, the method comprising the step of administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, whereby the subject mounts an immune response against the KLK3 expressing tumor, thereby treating a KLK3 expressing tumor in a subject. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0157] In another embodiment, the present invention provides a method of protecting a human subject against a KLK3 expressing tumor, the method comprising the step of administering to the human subject an immunogenic composition comprising a recombinant polypeptide of the present invention, whereby the subject mounts an immune response against the KLK3 expressing tumor, thereby protecting a human subject against a KLK3 expressing tumor. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing prostate carcinoma. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing tumor

[0158] In another embodiment, the present invention provides a method of inducing an anti-KLK3 immune response in a subject, comprising administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, thereby inducing an anti-KLK3 immune response in a subject.

[0159] In another embodiment, the present invention provides a method of treating a KLK3 expressing tumor in a subject, the method comprising the step of administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, whereby the subject mounts an immune response against the KLK3 expressing tumor, thereby treating a KLK3 expressing tumor in a subject. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing prostate cancer, the KLK3-expressing prostate cancer is a KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing tumor.

KLK3-expressing tumor is a KLK3-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0160] In another embodiment, the present invention provides a method of protecting a human subject against a KLK3 expressing tumor, the method comprising the step of administering to the human subject an immunogenic composition comprising a nucleotide molecule of the present invention whereby the subject mounts an immune response against the KLK3 expressing tumor, thereby protecting a human subject against a KLK3 expressing tumor. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0161] In another embodiment, the present invention provides a method of inducing an anti-KLK3 immune response in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain, wherein the strain comprises a recombinant polypeptide of the present invention, thereby inducing an anti-KLK3 immune response in a subject.

[0162] In another embodiment, the present invention provides a method of treating a KLK3 expressing tumor in a subject, the method comprising the step of administering to the subject a composition comprising a recombinant *Listeria* strain, wherein the strain comprises a recombinant polypeptide of the present invention, whereby the subject mounts an immune response against the KLK3 expressing tumor, thereby treating a KLK3 expressing tumor in a subject. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing prostate carcinoma. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing tumor is a separate embodiment of the present invention.

[0163] In another embodiment, the present invention provides a method of protecting a human subject against a KLK3 expressing tumor, the method comprising the step of administering to the human subject a composition comprising a recombinant *Listeria* strain, wherein the strain comprises a recombinant polypeptide of the present invention whereby the subject mounts an immune response against the KLK3 expressing tumor, thereby protecting a human subject against a KLK3 expressing tumor. In another embodiment, the KLK3 expressing tumor is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing tumor is a KLK3-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0164] In another embodiment, the present invention provides a method of impeding a growth of a KLK3-expressing prostate cancer tumor in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby impeding a growth of a KLK3-expressing prostate cancer tumor in a subject.

[0165] In another embodiment, the present invention provides a method of overcoming an immune tolerance of a subject to a KLK3-expressing prostate cancer tumor, com-

prising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby overcoming an immune tolerance of a subject to a KLK3-expressing prostate cancer tumor.

[0166] In another embodiment, the present invention provides a method of impeding a growth of a KLK3-expressing prostate cancer tumor in a subject, comprising administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, thereby impeding a growth of a KLK3-expressing prostate cancer tumor in a subject.

[0167] In another embodiment, the present invention provides a method of overcoming an immune tolerance of a subject to a KLK3-expressing prostate cancer tumor, comprising administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, thereby overcoming an immune tolerance of a subject to a KLK3-expressing prostate cancer tumor.

[0168] In another embodiment, the present invention provides a method of impeding a growth of a KLK3-expressing prostate cancer tumor in a subject, comprising administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, thereby impeding a growth of a KLK3-expressing prostate cancer tumor in a subject.

[0169] In another embodiment, the present invention provides a method of overcoming an immune tolerance of a subject to a KLK3-expressing prostate cancer tumor, comprising administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, thereby overcoming an immune tolerance of a subject to a KLK3-expressing prostate cancer tumor.

[0170] In another embodiment, the present invention provides a method of inducing an anti-FOLH1 immune response in a subject, comprising administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, thereby inducing an anti-FOLH1 immune response in a subject.

[0171] In another embodiment, the present invention provides a method of treating an FOLH1-expressing tumor in a subject, the method comprising the step of administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby treating an FOLH1-expressing tumor in a subject. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing tumor is an FOLH1

[0172] In another embodiment, the present invention provides a method of protecting a human subject against an FOLH1-expressing tumor, the method comprising the step of administering to the human subject an immunogenic composition comprising a recombinant polypeptide of the present invention, whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby protecting a human subject against an FOLH1-expressing tumor. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing tumor is an FO

FOLH1-expressing tumor is an FOLH1-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0173] In another embodiment, the present invention provides a method of inducing an anti-FOLH1 immune response in a subject, comprising administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, thereby inducing an anti-FOLH1 immune response in a subject.

[0174] In another embodiment, the present invention provides a method of treating an FOLH1-expressing tumor in a subject, the method comprising the step of administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby treating an FOLH1-expressing tumor in a subject. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0175] In another embodiment, the present invention provides a method of protecting a human subject against an FOLH1-expressing tumor, the method comprising the step of administering to the human subject an immunogenic composition comprising a nucleotide molecule of the present invention whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby protecting a human subject against an FOLH1-expressing tumor. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing tumor is an FOLH1-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0176] In another embodiment, the present invention provides a method of inducing an anti-FOLH1 immune response in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain, wherein the strain comprises a recombinant polypeptide of the present invention, thereby inducing an anti-FOLH1 immune response in a subject.

[0177] In another embodiment, the present invention provides a method of treating an FOLH1-expressing tumor in a subject, the method comprising the step of administering to the subject a composition comprising a recombinant *Listeria* strain, wherein the strain comprises a recombinant polypeptide of the present invention, whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby treating an FOLH1-expressing tumor in a subject. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing prostate carcinoma. In another embodiment, the FOLH1-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0178] In another embodiment, the present invention provides a method of protecting a human subject against an FOLH1-expressing tumor, the method comprising the step of administering to the human subject a composition com-

prising a recombinant *Listeria* strain, wherein the strain comprises a recombinant polypeptide of the present invention whereby the subject mounts an immune response against the FOLH1-expressing tumor, thereby protecting a human subject against an FOLH1-expressing tumor. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing prostate carcinoma. In another embodiment, the FOLH1-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0179] In another embodiment, the present invention provides a method of impeding a growth of an FOLH1-expressing prostate cancer tumor in a subject, comprising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby impeding a growth of an FOLH1-expressing prostate cancer tumor in a subject.

[0180] In another embodiment, the present invention provides a method of overcoming an immune tolerance of a subject to an FOLH1-expressing prostate cancer tumor, comprising administering to the subject a composition comprising a recombinant *Listeria* strain of the present invention, thereby overcoming an immune tolerance of a subject to an FOLH1-expressing prostate cancer tumor.

[0181] In another embodiment, the present invention provides a method of impeding a growth of an FOLH1-expressing prostate cancer tumor in a subject, comprising administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, thereby impeding a growth of an FOLH1-expressing prostate cancer tumor in a subject.

[0182] In another embodiment, the present invention provides a method of overcoming an immune tolerance of a subject to an FOLH1-expressing prostate cancer tumor, comprising administering to the subject an immunogenic composition comprising a recombinant polypeptide of the present invention, thereby overcoming an immune tolerance of a subject to an FOLH1-expressing prostate cancer tumor.

[0183] In another embodiment, the present invention provides a method of impeding a growth of an FOLH1-expressing prostate cancer tumor in a subject, comprising administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, thereby impeding a growth of an FOLH1-expressing prostate cancer tumor in a subject.

[0184] In another embodiment, the present invention provides a method of overcoming an immune tolerance of a subject to an FOLH1-expressing prostate cancer tumor, comprising administering to the subject an immunogenic composition comprising a nucleotide molecule of the present invention, thereby overcoming an immune tolerance of a subject to an FOLH1-expressing prostate cancer tumor.

[0185] "Tolerance" refers, in another embodiment, to a lack of responsiveness of the host to an antigen. In another embodiment, the term refers to a lack of detectable responsiveness of the host to an antigen. In another embodiment, the term refers to a lack of immunogenicity of an antigen in a host. In another embodiment, tolerance is measured by lack of responsiveness in an in vitro CTL assay. In another embodiment, tolerance is measured by lack of responsive-ness in a delayed-type hypersensitivity assay. In another embodiment, tolerance is measured by lack of responsive-

ness in any other suitable assay known in the art. In another embodiment, tolerance is determined or measured as depicted in the Examples herein. Each possibility represents another embodiment of the present invention.

[0186] "Overcome" refers, in another embodiment, to a reversible of tolerance by a vaccine. In another embodiment, the term refers to conferment of detectable immune response by a vaccine. In another embodiment, overcoming of immune tolerance is determined or measured as depicted in the Examples herein. Each possibility represents another embodiment of the present invention.

[0187] In another embodiment, the present invention provides a method of treating benign prostate hyperplasia (BPH) in a subject, the method comprising the step of administering to the subject a KLK3-expressing *Listeria* strain of the present invention, thereby treating BPH in a subject. In another embodiment, the present invention provides a method of impeding the progression of BPH in a subject, the method comprising the step of administering to the subject a KLK3-expressing *Listeria* strain of the present invention, thereby impeding the progression of BPH in a subject.

[0188] In another embodiment, the present invention provides a method of treating BPH in a subject, the method comprising the step of administering to the subject an FOLH1-expressing *Listeria* strain of the present invention, thereby treating BPH in a subject. In another embodiment, the present invention provides a method of impeding the progression of BPH in a subject, the method comprising the step of administering to the subject an FOLH1-expressing *Listeria* strain of the present invention, thereby impeding the progression of BPH in a subject.

[0189] In another embodiment, the present invention provides a method of treating Prostatic Intraepithelial Neoplasia (PIN) in a subject, the method comprising the step of administering to the subject a KLK3-expressing *Listeria* strain of the present invention, thereby treating PIN in a subject. In another embodiment, the present invention provides a method of impeding the progression of PIN in a subject, the method comprising the step of administering to the subject a KLK3-expressing *Listeria* strain of the present invention, thereby inpeding the progression of PIN in a subject, the method comprising the step of administering to the subject a KLK3-expressing *Listeria* strain of the present invention, thereby impeding the progression of PIN in a subject.

[0190] In another embodiment, the present invention provides a method of treating Prostatic Intraepithelial Neoplasia (PIN) in a subject, the method comprising the step of administering to the subject an FOLH1-expressing *Listeria* strain of the present invention, thereby treating PIN in a subject. In another embodiment, the present invention provides a method of impeding the progression of PIN in a subject, the method comprising the step of administering to the subject an FOLH1-expressing *Listeria* strain of the present invention, thereby impeding the progression of PIN in a subject, the method comprising the step of administering to the subject an FOLH1-expressing *Listeria* strain of the present invention, thereby impeding the progression of PIN in a subject.

[0191] In another embodiment, the present invention provides a method of treating BPH in a subject, the method comprising the step of administering to the subject a KLK3-containing peptide of the present invention, thereby treating BPH in a subject. In another embodiment, the present invention provides a method of impeding the progression of BPH in a subject, the method comprising the step of administering to the subject a KLK3-containing peptide of the present invention, thereby impeding the progression of BPH in a subject.

[0192] In another embodiment, the present invention provides a method of treating BPH in a subject, the method comprising the step of administering to the subject an FOLH1-containing peptide of the present invention, thereby treating BPH in a subject. In another embodiment, the present invention provides a method of impeding the progression of BPH in a subject, the method comprising the step of administering to the subject an FOLH1-containing peptide of the present invention, thereby in a subject an FOLH1-containing peptide of the present invention, thereby impeding the progression of BPH in a subject.

[0193] In another embodiment, the present invention provides a method of treating Prostatic Intraepithelial Neoplasia (PIN) in a subject, the method comprising the step of administering to the subject a KLK3-containing peptide of the present invention, thereby treating PIN in a subject. In another embodiment, the present invention provides a method of impeding the progression of PIN in a subject, the method comprising the step of administering to the subject a KLK3-containing peptide of the present invention, thereby impeding the progression of PIN in a subject.

[0194] In another embodiment, the present invention provides a method of treating Prostatic Intraepithelial Neoplasia (PIN) in a subject, the method comprising the step of administering to the subject an FOLH1-containing peptide of the present invention, thereby treating PIN in a subject. In another embodiment, the present invention provides a method of impeding the progression of PIN in a subject, the method comprising the step of administering to the subject an FOLH1-containing peptide of the present invention, thereby impeding the progression of PIN in a subject.

[0195] In another embodiment, the present invention provides a method of treating BPH in a subject, the method comprising the step of administering to the subject a KLK3encoding nucleotide molecule of the present invention, thereby treating BPH in a subject. In another embodiment, the present invention provides a method of impeding the progression of BPH in a subject, the method comprising the step of administering to the subject a KLK3-encoding nucleotide molecule of the present invention, thereby impeding the progression of BPH in a subject.

[0196] In another embodiment, the present invention provides a method of treating BPH in a subject, the method comprising the step of administering to the subject an FOLH1-encoding nucleotide molecule of the present invention, thereby treating BPH in a subject. In another embodiment, the present invention provides a method of impeding the progression of BPH in a subject, the method comprising the step of administering to the subject an FOLH1-encoding nucleotide molecule of the present invention, thereby impeding the progression of BPH in a subject.

[0197] In another embodiment, the present invention provides a method of treating Prostatic Intraepithelial Neoplasia in a subject, the method comprising the step of administering to the subject a KLK3-encoding nucleotide molecule of the present invention, thereby treating Prostatic Intraepithelial Neoplasia in a subject. In another embodiment, the present invention provides a method of impeding the progression of Prostatic Intraepithelial Neoplasia in a subject, the method comprising the step of administering to the subject a KLK3-encoding nucleotide molecule of the present invention, thereby impeding the progression of Prostatic Intraepithelial Neoplasia in a subject.

[0198] In another embodiment, the present invention provides a method of treating Prostatic Intraepithelial Neoplasia

in a subject, the method comprising the step of administering to the subject an FOLH1-encoding nucleotide molecule of the present invention, thereby treating Prostatic Intraepithelial Neoplasia in a subject. In another embodiment, the present invention provides a method of impeding the progression of Prostatic Intraepithelial Neoplasia in a subject, the method comprising the step of administering to the subject an FOLH1-encoding nucleotide molecule of the present invention, thereby impeding the progression of Prostatic Intraepithelial Neoplasia in a subject.

[0199] In another embodiment, fusion proteins of the present invention need not be expressed by LM, but rather can be expressed and isolated from other vectors and cell systems used for protein expression and isolation.

[0200] As provided herein, LLO-E7 fusions exhibit significant therapeutic efficacy. In these experiments, a vaccinia vector that expresses E7 as a fusion protein with a non-hemolytic truncated form of LLO was constructed. Expression of the LLO-E7 fusion product by plaque purified vaccinia was verified by Western blot using an antibody directed against the LLO protein sequence. Vac-LLO-E7 was demonstrated to produce CD8⁺ T cells specific to LLO and E7 as determined using the LLO (91-99) and E7 (49-57) epitopes of Balb/c and C57/BL6 mice, respectively. Results were confirmed by a CTL assay (Example 4).

[0201] Thus, expression of an antigen, e.g. KLK3 or FOLH1, as a fusion protein with a non-hemolytic truncated form of LLO, ActA, or a PEST-like sequence in host cell systems in Listeria and host cell systems other than Listeria results in enhanced immunogenicity of the antigen. While comparative experiments were performed with vaccinia, a multitude of other plasmids and expression systems which can be used to express these fusion proteins are known. For example, bacterial vectors useful in the present invention include, but are not limited to Salmonella sp., Shigella sp., BCG, L. monocytogenes and S. gordonii. In addition the fusion proteins can be delivered by recombinant bacterial vectors modified to escape phagolysosomal fusion and live in the cytoplasm of the cell. Viral vectors useful in the present invention include, but are not limited to, Vaccinia, Avipox, Adenovirus, AAV, Vaccinia virus NYVAC, Modified vaccinia strain Ankara (MVA), Semliki Forest virus, Venezuelan equine encephalitis virus, herpes viruses, and retroviruses. Naked DNA vectors can also be used.

[0202] In another embodiment, a KLK3 protein expressed by the target tumor cell shares complete homology with the KLK3 peptide (throughout the length of the peptide) expressed by the Listerial vector. In another embodiment, the KLK3 protein is highly homologous (throughout the length of the peptide) to the KLK3 peptide expressed by the Listerial vector. "Highly homologous" refers, in another embodiment, to a homology of greater than 90%. In another embodiment, the term refers to a homology of greater than 92%. In another embodiment, the term refers to a homology of greater than 93%. In another embodiment, the term refers to a homology of greater than 94%. In another embodiment, the term refers to a homology of greater than 95%. In another embodiment, the term refers to a homology of greater than 96%. In another embodiment, the term refers to a homology of greater than 97%. In another embodiment, the term refers to a homology of greater than 98%. In another embodiment, the term refers to a homology of greater than 99%. In another embodiment, the term refers to

a homology of 100%. Each possibility represents a separate embodiment of the present invention.

[0203] In another embodiment, an FOLH1 protein expressed by the target tumor cell shares complete homology with the FOLH1 peptide (throughout the length of the peptide) expressed by the Listerial vector. In another embodiment, the FOLH1 protein is highly homologous (throughout the length of the peptide) to the FOLH1 peptide expressed by the Listerial vector. "Highly homologous" refers, in another embodiment, to a homology of greater than 90%. In another embodiment, the term refers to a homology of greater than 92%. In another embodiment, the term refers to a homology of greater than 93%. In another embodiment, the term refers to a homology of greater than 94%. In another embodiment, the term refers to a homology of greater than 95%. In another embodiment, the term refers to a homology of greater than 96%. In another embodiment, the term refers to a homology of greater than 97%. In another embodiment, the term refers to a homology of greater than 98%. In another embodiment, the term refers to a homology of greater than 99%. In another embodiment, the term refers to a homology of 100%. Each possibility represents a separate embodiment of the present invention. [0204] The KLK3 peptide of methods and compositions of the present invention is, in another embodiment, 200-261 amino acids (AA) in length. In another embodiment, the KLK3 peptide is about 100-261 AA long. In another embodiment, the length is 100-261 AA. In another embodiment, the length is 110-261 AA. In another embodiment, the length is 120-261 AA. In another embodiment, the length is 130-261 AA. In another embodiment, the length is 140-261 AA. In another embodiment, the length is 150-261 AA. In another embodiment, the length is 160-261 AA. In another embodiment, the length is 175-261 AA. In another embodiment, the length is 190-261 AA. In another embodiment, the length is 200-261 AA. In another embodiment, the length is 210-261 AA. In another embodiment, the length is 220-261 AA. In another embodiment, the length is 230-261 AA. In another embodiment, the length is 240-261 AA. In another embodiment, the length is 250-261 AA. In another embodiment, the length is 100-150 AA. In another embodiment, the length is 100-160 AA. In another embodiment, the length is 100-170 AA. In another embodiment, the length is 100-180 AA. In another embodiment, the length is 100-190 AA. In another embodiment, the length is 100-200 AA. In another embodiment, the length is 100-210 AA. In another embodiment, the length is 100-220 AA. In another embodiment, the length is 100-240 AA. In another embodiment, the length is 50-150 AA. In another embodiment, the length is 50-160 AA. In another embodiment, the length is 50-170 AA. In another embodiment, the length is 50-180 AA. In another embodiment, the length is 50-190 AA. In another embodiment, the length is 50-200 AA.

[0205] In another embodiment, the length is about 175 AA. In another embodiment, the length is about 200 AA. In another embodiment, the length is about 220 AA. In another embodiment, the length is about 240 AA. In another embodiment, the length is about 260 AA.

[0206] Each length represents a separate embodiment of the present invention.

[0207] In another embodiment, the KLK3 peptide consists of about one-third to one-half of the KLK3 protein. In another embodiment, the fragment consists of about one-tenth to one-fifth thereof. In another embodiment, the frag-

ment consists of about one-fifth to one-fourth thereof. In another embodiment, the fragment consists of about onefourth to one-third thereof. In another embodiment, the fragment consists of about one-third to one-half thereof. In another embodiment, the fragment consists of about onehalf to three quarters thereof. In another embodiment, the fragment consists of about three quarters to the KLK3 protein. In another embodiment, the fragment consists of about 5-10% thereof. In another embodiment, the fragment consists of about 10-15% thereof. In another embodiment, the fragment consists of about 15-20% thereof. In another embodiment, the fragment consists of about 20-25% thereof. In another embodiment, the fragment consists of about 25-30% thereof. In another embodiment, the fragment consists of about 30-35% thereof. In another embodiment, the fragment consists of about 35-40% thereof. In another embodiment, the fragment consists of about 45-50% thereof. In another embodiment, the fragment consists of about 50-55% thereof. In another embodiment, the fragment consists of about 55-60% thereof. In another embodiment, the fragment consists of about 5-15% thereof. In another embodiment, the fragment consists of about 10-20% thereof. In another embodiment, the fragment consists of about 15-25% thereof. In another embodiment, the fragment consists of about 20-30% thereof. In another embodiment, the fragment consists of about 25-35% thereof. In another embodiment, the fragment consists of about 30-40% thereof. In another embodiment, the fragment consists of about 35-45% thereof. In another embodiment, the fragment consists of about 45-55% thereof. In another embodiment, the fragment consists of about 50-60% thereof. In another embodiment, the fragment consists of about 55-65% thereof. In another embodiment, the fragment consists of about 60-70% thereof. In another embodiment, the fragment consists of about 65-75% thereof. In another embodiment, the fragment consists of about 70-80% thereof. In another embodiment, the fragment consists of about 5-20% thereof. In another embodiment, the fragment consists of about 10-25% thereof. In another embodiment, the fragment consists of about 15-30% thereof. In another embodiment, the fragment consists of about 20-35% thereof. In another embodiment, the fragment consists of about 25-40% thereof. In another embodiment, the fragment consists of about 30-45% thereof. In another embodiment, the fragment consists of about 35-50% thereof. In another embodiment, the fragment consists of about 45-60% thereof. In another embodiment, the fragment consists of about 50-65% thereof. In another embodiment, the fragment consists of about 55-70% thereof. In another embodiment, the fragment consists of about 60-75% thereof. In another embodiment, the fragment consists of about 65-80% thereof. In another embodiment, the fragment consists of about 70-85% thereof. In another embodiment, the fragment consists of about 75-90% thereof. In another embodiment, the fragment consists of about 80-95% thereof. In another embodiment, the fragment consists of about 85-100% thereof. In another embodiment, the fragment consists of about 5-25% thereof. In another embodiment, the fragment consists of about 10-30% thereof. In another embodiment, the fragment consists of about 15-35% thereof. In another embodiment, the fragment consists of about 20-40% thereof. In another embodiment, the fragment consists of about 30-50% thereof. In another embodiment, the fragment consists of about 40-60% thereof. In another embodiment, the fragment con-

sists of about 50-70% thereof. In another embodiment, the fragment consists of about 60-80% thereof. In another embodiment, the fragment consists of about 70-90% thereof. In another embodiment, the fragment consists of about 80-100% thereof. In another embodiment, the fragment consists of about 5-35% thereof. In another embodiment, the fragment consists of about 10-40% thereof. In another embodiment, the fragment consists of about 15-45% thereof. In another embodiment, the fragment consists of about 20-50% thereof. In another embodiment, the fragment consists of about 30-60% thereof. In another embodiment, the fragment consists of about 40-70% thereof. In another embodiment, the fragment consists of about 50-80% thereof. In another embodiment, the fragment consists of about 60-90% thereof. In another embodiment, the fragment consists of about 70-100% thereof. In another embodiment, the fragment consists of about 5-45% thereof. In another embodiment, the fragment consists of about 10-50% thereof. In another embodiment, the fragment consists of about 20-60% thereof. In another embodiment, the fragment consists of about 30-70% thereof. In another embodiment, the fragment consists of about 40-80% thereof. In another embodiment, the fragment consists of about 50-90% thereof. In another embodiment, the fragment consists of about 60-100% thereof. In another embodiment, the fragment consists of about 5-55% thereof. In another embodiment, the fragment consists of about 10-60% thereof. In another embodiment, the fragment consists of about 20-70% thereof. In another embodiment, the fragment consists of about 30-80% thereof. In another embodiment, the fragment consists of about 40-90% thereof. In another embodiment, the fragment consists of about 50-100% thereof. In another embodiment, the fragment consists of about 5-65% thereof. In another embodiment, the fragment consists of about 10-70% thereof. In another embodiment, the fragment consists of about 20-80% thereof. In another embodiment, the fragment consists of about 30-90% thereof. In another embodiment, the fragment consists of about 40-100% thereof. In another embodiment, the fragment consists of about 5-75% thereof. In another embodiment, the fragment consists of about 10-80% thereof. In another embodiment, the fragment consists of about 20-90% thereof. In another embodiment, the fragment consists of about 30-100% thereof. In another embodiment, the fragment consists of about 10-90% thereof. In another embodiment, the fragment consists of about 20-100% thereof. In another embodiment, the fragment consists of about 10-100% thereof.

[0208] In another embodiment, the fragment consists of about 5% of the KLK3 protein. In another embodiment, the fragment consists of about 6% thereof. In another embodiment, the fragment consists of about 8% thereof. In another embodiment, the fragment consists of about 10% thereof. In another embodiment, the fragment consists of about 12% thereof. In another embodiment, the fragment consists of about 15% thereof. In another embodiment, the fragment consists of about 18% thereof. In another embodiment, the fragment consists of about 20% thereof. In another embodiment, the fragment consists of about 25% thereof. In another embodiment, the fragment consists of about 30% thereof. In another embodiment, the fragment consists of about 35% thereof. In another embodiment, the fragment consists of about 40% thereof. In another embodiment, the fragment consists of about 45% thereof. In another embodiment, the fragment consists of about 50% thereof. In another embodiment, the fragment consists of about 55% thereof. In another embodiment, the fragment consists of about 60% thereof. In another embodiment, the fragment consists of about 65% thereof. In another embodiment, the fragment consists of about 70% thereof. In another embodiment, the fragment consists of about 75% thereof. In another embodiment, the fragment consists of about 80% thereof. In another embodiment, the fragment consists of about 85% thereof. In another embodiment, the fragment consists of about 90% thereof. In another embodiment, the fragment consists of about 90% thereof. In another embodiment, the fragment consists of about 90% thereof. In another embodithereof. In another embodithereof. In another embodithereof. Each possibility represents a separate embodiembodi-

[0209] In another embodiment, a KLK3 peptide or FOLH1 peptide of methods and compositions of the present invention is an immunogenic peptide. "Immunogenic" refers, in another embodiment, to an ability to induce an immune response when administered to a subject. In another embodiment, the subject is a human subject. In another embodiment, the immune response elicited is a T-cell response. In another embodiment, the immune response elicited is a cytotoxic T lymphocyte (CTL) response. In another embodiment, the immune response elicited is detectable. In another embodiment, the immune response elicited is detectable by an in vitro assay. In another embodiment, the assay is a cytokine release assay (e.g. fluorescence-activated cell sorting; or FACS). In another embodiment, the assay is a chromium-release assay or other in vitro cytotoxicity assay. Each possibility represents a separate embodiment of the present invention.

[0210] In another embodiment, the immunogenic fragment of a sequence selected from the sequences set forth in SEQ ID No: 25, 27, 29-32, 34, and 36-39, which is contained in a KLK3 peptide of methods and compositions of the present invention, is about 10-150 AA long. In another embodiment, the length is 15-150 AA. In another embodiment, the length is 20-150 AA. In another embodiment, the length is 30-150 AA. In another embodiment, the length is 40-150 AA. In another embodiment, the length is 50-150 AA. In another embodiment, the length is 60-150 AA. In another embodiment, the length is 70-150 AA. In another embodiment, the length is 80-150 AA. In another embodiment, the length is 90-150 AA. In another embodiment, the length is 100-150 AA. In another embodiment, the length is 10-100 AA. In another embodiment, the length is 15-100 AA. In another embodiment, the length is 20-100 AA. In another embodiment, the length is 30-100 AA. In another embodiment, the length is 40-100 AA. In another embodiment, the length is 50-100 AA. In another embodiment, the length is 60-100 AA. In another embodiment, the length is 70-100 AA. In another embodiment, the length is 10-80 AA. In another embodiment, the length is 15-80 AA. In another embodiment, the length is 20-80 AA. In another embodiment, the length is 30-80 AA. In another embodiment, the length is 40-80 AA. In another embodiment, the length is 50-80 AA. In another embodiment, the length is 60-80 AA. In another embodiment, the length is 70-80 AA. In another embodiment, the length is 10-60 AA. In another embodiment, the length is 15-60 AA. In another embodiment, the length is 20-60 AA. In another embodiment, the length is 30-60 AA. In another embodiment, the length is 40-60 AA. In another embodiment, the length is 50-60 AA. In another embodiment, the length is 10-50 AA. In another embodiment, the length is 15-50 AA. In another embodiment, the
length is 20-50 AA. In another embodiment, the length is 30-50 AA. In another embodiment, the length is 40-50 AA. In another embodiment, the length is 10-40 AA. In another embodiment, the length is 15-40 AA. In another embodiment, the length is 20-40 AA. In another embodiment, the length is 30-40 AA. In another embodiment, the length is 10-30 AA. In another embodiment, the length is 15-30 AA. In another embodiment, the length is 20-30 AA. In another embodiment, the length is 5-20 AA. In another embodiment, the length is 15-20 AA. In another embodiment, the length is 10-20 AA. In another embodiment, the length is 15-20 AA.

[0211] In another embodiment, the length of the immunogenic fragment is about 10 AA. In another embodiment, the length is about 15 AA. In another embodiment, the length is about 20 AA. In another embodiment, the length is about 30 AA. In another embodiment, the length is about 40 AA. In another embodiment, the length is about 50 AA. In another embodiment, the length is about 50 AA. In another embodiment, the length is about 60 AA. In another embodiment, the length is about 70 AA. In another embodiment, the length is about 70 AA. In another embodiment, the length is about 70 AA. In another embodiment, the length is about 90 AA. In another embodiment, the length is about 90 AA.

[0212] Each length of the immunogenic fragment represents a separate embodiment of the present invention.

[0213] The FOLH1 peptide of methods and compositions of the present invention is, in another embodiment, 200-750 AA in length. In another embodiment, the FOLH1 peptide is about 100-750 AA long. In another embodiment, the length is 100-750 AA. In another embodiment, the length is 110-750 AA. In another embodiment, the length is 120-750 AA. In another embodiment, the length is 130-750 AA. In another embodiment, the length is 140-750 AA. In another embodiment, the length is 150-750 AA. In another embodiment, the length is 160-750 AA. In another embodiment, the length is 175-750 AA. In another embodiment, the length is 190-750 AA. In another embodiment, the length is 200-750 AA. In another embodiment, the length is 210-750 AA. In another embodiment, the length is 220-750 AA. In another embodiment, the length is 230-750 AA. In another embodiment, the length is 240-750 AA. In another embodiment, the length is 250-750 AA. In another embodiment, the length is 280-750 AA. In another embodiment, the length is 300-750 AA. In another embodiment, the length is 350-750 AA. In another embodiment, the length is 400-750 AA. In another embodiment, the length is 450-750 AA. In another embodiment, the length is 500-750 AA. In another embodiment, the length is 550-750 AA. In another embodiment, the length is 600-750 AA. In another embodiment, the length is 650-750 AA. In another embodiment, the length is 700-750 AA. In another embodiment, the length is 100-150 AA. In another embodiment, the length is 100-160 AA. In another embodiment, the length is 100-170 AA. In another embodiment, the length is 100-180 AA. In another embodiment, the length is 100-190 AA. In another embodiment, the length is 100-200 AA. In another embodiment, the length is 100-220 AA. In another embodiment, the length is 100-240 AA. In another embodiment, the length is 100-260 AA. In another embodiment, the length is 100-280 AA. In another embodiment, the length is 100-300 AA. In another embodiment, the length is 100-350 AA. In another embodiment, the length is 100-400 AA. In another embodiment, the length is 100-450 AA. In another embodiment, the length is 100-500 AA. In another embodiment, the length is 100-600 AA. In another embodiment, the length is 100-700 AA. In another embodiment, the length is 50-150 AA. In another embodiment, the length is 50-160 AA. In another embodiment, the length is 50-170 AA. In another embodiment, the length is 50-180 AA. In another embodiment, the length is 50-190 AA. In another embodiment, the length is 50-200 AA. In another embodiment, the length is 50-220 AA. In another embodiment, the length is 50-240 AA. In another embodiment, the length is 50-240 AA. In another embodiment, the length is 50-260 AA. In another embodiment, the length is 50-280 AA. In another embodiment, the length is 50-300 AA. In another embodiment, the length is 50-400 AA. In another embodiment, the length is 50-500 AA.

[0214] In another embodiment, the length is about 175 AA. In another embodiment, the length is about 200 AA. In another embodiment, the length is about 220 AA. In another embodiment, the length is about 240 AA. In another embodiment, the length is about 260 AA.

[0215] Each length represents a separate embodiment of the present invention.

[0216] In another embodiment, the FOLH1 peptide consists of about one-third to one-half of the FOLH1 protein. In another embodiment, the fragment consists of about onetenth to one-fifth thereof. In another embodiment, the fragment consists of about one-fifth to one-fourth thereof. In another embodiment, the fragment consists of about onefourth to one-third thereof. In another embodiment, the fragment consists of about one-third to one-half thereof. In another embodiment, the fragment consists of about onehalf to three quarters thereof. In another embodiment, the fragment consists of about three quarters to the FOLH1 protein. In another embodiment, the fragment consists of about 5-10% thereof. In another embodiment, the fragment consists of about 10-15% thereof. In another embodiment, the fragment consists of about 15-20% thereof. In another embodiment, the fragment consists of about 20-25% thereof. In another embodiment, the fragment consists of about 25-30% thereof. In another embodiment, the fragment consists of about 30-35% thereof. In another embodiment, the fragment consists of about 35-40% thereof. In another embodiment, the fragment consists of about 45-50% thereof. In another embodiment, the fragment consists of about 50-55% thereof. In another embodiment, the fragment consists of about 55-60% thereof. In another embodiment, the fragment consists of about 5-15% thereof. In another embodiment, the fragment consists of about 10-20% thereof. In another embodiment, the fragment consists of about 15-25% thereof. In another embodiment, the fragment consists of about 20-30% thereof. In another embodiment, the fragment consists of about 25-35% thereof. In another embodiment, the fragment consists of about 30-40% thereof. In another embodiment, the fragment consists of about 35-45% thereof. In another embodiment, the fragment consists of about 45-55% thereof. In another embodiment, the fragment consists of about 50-60% thereof. In another embodiment, the fragment consists of about 55-65% thereof. In another embodiment, the fragment consists of about 60-70% thereof. In another embodiment, the fragment consists of about 65-75% thereof. In another embodiment, the fragment consists of about 70-80% thereof. In another embodiment, the fragment consists of about 5-20% thereof. In another embodiment, the fragment consists of about 10-25% thereof. In another embodiment, the fragment consists of about 15-30% thereof. In another embodiment, the

fragment consists of about 20-35% thereof. In another embodiment, the fragment consists of about 25-40% thereof. In another embodiment, the fragment consists of about 30-45% thereof. In another embodiment, the fragment consists of about 35-50% thereof. In another embodiment, the fragment consists of about 45-60% thereof. In another embodiment, the fragment consists of about 50-65% thereof. In another embodiment, the fragment consists of about 55-70% thereof. In another embodiment, the fragment consists of about 60-75% thereof. In another embodiment, the fragment consists of about 65-80% thereof. In another embodiment, the fragment consists of about 70-85% thereof. In another embodiment, the fragment consists of about 75-90% thereof. In another embodiment, the fragment consists of about 80-95% thereof. In another embodiment, the fragment consists of about 85-100% thereof. In another embodiment, the fragment consists of about 5-25% thereof. In another embodiment, the fragment consists of about 10-30% thereof. In another embodiment, the fragment consists of about 15-35% thereof. In another embodiment, the fragment consists of about 20-40% thereof. In another embodiment, the fragment consists of about 30-50% thereof. In another embodiment, the fragment consists of about 40-60% thereof. In another embodiment, the fragment consists of about 50-70% thereof. In another embodiment, the fragment consists of about 60-80% thereof. In another embodiment, the fragment consists of about 70-90% thereof. In another embodiment, the fragment consists of about 80-100% thereof. In another embodiment, the fragment consists of about 5-35% thereof. In another embodiment, the fragment consists of about 10-40% thereof. In another embodiment, the fragment consists of about 15-45% thereof. In another embodiment, the fragment consists of about 20-50% thereof. In another embodiment, the fragment consists of about 30-60% thereof. In another embodiment, the fragment consists of about 40-70% thereof. In another embodiment, the fragment consists of about 50-80% thereof. In another embodiment, the fragment consists of about 60-90% thereof. In another embodiment, the fragment consists of about 70-100% thereof. In another embodiment, the fragment consists of about 5-45% thereof. In another embodiment, the fragment consists of about 10-50% thereof. In another embodiment, the fragment consists of about 20-60% thereof. In another embodiment, the fragment consists of about 30-70% thereof. In another embodiment, the fragment consists of about 40-80% thereof. In another embodiment, the fragment consists of about 50-90% thereof. In another embodiment, the fragment consists of about 60-100% thereof. In another embodiment, the fragment consists of about 5-55% thereof. In another embodiment, the fragment consists of about 10-60% thereof. In another embodiment, the fragment consists of about 20-70% thereof. In another embodiment, the fragment consists of about 30-80% thereof. In another embodiment, the fragment consists of about 40-90% thereof. In another embodiment, the fragment consists of about 50-100% thereof. In another embodiment, the fragment consists of about 5-65% thereof. In another embodiment, the fragment consists of about 10-70% thereof. In another embodiment, the fragment consists of about 20-80% thereof. In another embodiment, the fragment consists of about 30-90% thereof. In another embodiment, the fragment consists of about 40-100% thereof. In another embodiment, the fragment consists of about 5-75% thereof. In another embodiment, the fragment consists of about 10-80% thereof. In another embodiment, the fragment consists of about 20-90% thereof. In another embodiment, the fragment consists of about 30-100% thereof. In another embodiment, the fragment consists of about 10-90% thereof. In another embodiment, the fragment consists of about 20-100% thereof. In another embodiment, the fragment consists of about 20-100% thereof. In another embodiment, the fragment consists of about 10-100% thereof.

[0217] In another embodiment, the fragment consists of about 5% of the FOLH1 protein. In another embodiment, the fragment consists of about 6% thereof. In another embodiment, the fragment consists of about 8% thereof. In another embodiment, the fragment consists of about 10% thereof. In another embodiment, the fragment consists of about 12% thereof. In another embodiment, the fragment consists of about 15% thereof. In another embodiment, the fragment consists of about 18% thereof. In another embodiment, the fragment consists of about 20% thereof. In another embodiment, the fragment consists of about 25% thereof. In another embodiment, the fragment consists of about 30% thereof. In another embodiment, the fragment consists of about 35% thereof. In another embodiment, the fragment consists of about 40% thereof. In another embodiment, the fragment consists of about 45% thereof. In another embodiment, the fragment consists of about 50% thereof. In another embodiment, the fragment consists of about 55% thereof. In another embodiment, the fragment consists of about 60% thereof. In another embodiment, the fragment consists of about 65% thereof. In another embodiment, the fragment consists of about 70% thereof. In another embodiment, the fragment consists of about 75% thereof. In another embodiment, the fragment consists of about 80% thereof. In another embodiment, the fragment consists of about 85% thereof. In another embodiment, the fragment consists of about 90% thereof. In another embodiment, the fragment consists of about 95% thereof. In another embodiment, the fragment consists of about 100% thereof. Each possibility represents a separate embodiment of the present invention.

[0218] In another embodiment, the immunogenic fragment of a sequence selected from the sequences set forth in SEQ ID No: 41, 43, 44, and 45, which is contained in an FOLH1 peptide of methods and compositions of the present invention, is about 10-150 AA long. In another embodiment, the length is 15-150 AA. In another embodiment, the length is 20-150 AA. In another embodiment, the length is 30-150 AA. In another embodiment, the length is 40-150 AA. In another embodiment, the length is 50-150 AA. In another embodiment, the length is 60-150 AA. In another embodiment, the length is 70-150 AA. In another embodiment, the length is 80-150 AA. In another embodiment, the length is 90-150 AA. In another embodiment, the length is about 10-200 AA long. In another embodiment, the length is 15-200 AA. In another embodiment, the length is 20-200 AA. In another embodiment, the length is 30-200 AA. In another embodiment, the length is 40-200 AA. In another embodiment, the length is 50-200 AA. In another embodiment, the length is 60-200 AA. In another embodiment, the length is 70-200 AA. In another embodiment, the length is 80-200 AA. In another embodiment, the length is 90-200 AA. In another embodiment, the length is 100-200 AA. In another embodiment, the length is 50-300 AA. In another embodiment, the length is 60-300 AA. In another embodiment, the length is 70-300 AA. In another embodiment, the length is 80-300 AA. In another embodiment, the length is 90-300 AA. In another embodiment, the length is 100-300 AA. In another embodiment, the length is 90-300 AA. In another embodiment, the length is 200-300 AA. In another embodiment, the length is 50-400 AA. In another embodiment, the length is 60-400 AA. In another embodiment, the length is 70-400 AA. In another embodiment, the length is 80-400 AA. In another embodiment, the length is 90-400 AA. In another embodiment, the length is 100-400 AA. In another embodiment, the length is 200-400 AA. In another embodiment, the length is 300-400 AA. In another embodiment, the length is 100-150 AA. In another embodiment, the length is 10-100 AA. In another embodiment, the length is 15-100 AA. In another embodiment, the length is 20-100 AA. In another embodiment, the length is 30-100 AA. In another embodiment, the length is 40-100 AA. In another embodiment, the length is 50-100 AA. In another embodiment, the length is 60-100 AA. In another embodiment, the length is 70-100 AA. In another embodiment, the length is 10-80 AA. In another embodiment, the length is 15-80 AA. In another embodiment, the length is 20-80 AA. In another embodiment, the length is 30-80 AA. In another embodiment, the length is 40-80 AA. In another embodiment, the length is 50-80 AA. In another embodiment, the length is 60-80 AA. In another embodiment, the length is 70-80 AA. In another embodiment, the length is 10-60 AA. In another embodiment, the length is 15-60 AA. In another embodiment, the length is 20-60 AA. In another embodiment, the length is 30-60 AA. In another embodiment, the length is 40-60 AA. In another embodiment, the length is 50-60 AA. In another embodiment, the length is 10-50 AA. In another embodiment, the length is 15-50 AA. In another embodiment, the length is 20-50 AA. In another embodiment, the length is 30-50 AA. In another embodiment, the length is 40-50 AA. In another embodiment, the length is 10-40 AA. In another embodiment, the length is 15-40 AA. In another embodiment, the length is 20-40 AA. In another embodiment, the length is 30-40 AA. In another embodiment, the length is 10-30 AA. In another embodiment, the length is 15-30 AA. In another embodiment, the length is 20-30 AA. In another embodiment, the length is 5-20 AA. In another embodiment, the length is 10-20 AA. In another embodiment, the length is 15-20 AA.

[0219] In another embodiment, the length of the immunogenic fragment is about 10 AA. In another embodiment, the length is about 15 AA. In another embodiment, the length is about 20 AA. In another embodiment, the length is about 30 AA. In another embodiment, the length is about 40 AA. In another embodiment, the length is about 50 AA. In another embodiment, the length is about 50 AA. In another embodiment, the length is about 60 AA. In another embodiment, the length is about 70 AA. In another embodiment, the length is about 80 AA. In another embodiment, the length is about 80 AA. In another embodiment, the length is about 90 AA. In another embodis about 100 AA.

[0220] Each length of the immunogenic fragment represents a separate embodiment of the present invention.

[0221] In another embodiment, the present invention provides a method of reducing a size of a KLK3-expressing tumor, comprising administering a vaccine, immunogenic composition, or vector comprising a recombinant *Listeria* strain of the present invention, thereby reducing a size of a KLK3-expressing tumor. In another embodiment, a cell of the tumor expresses KLK3. Each possibility represents a separate embodiment of the present invention.

[0222] In another embodiment, the present invention provides a method of suppressing a formation of a KLK3-

expressing tumor, comprising administering an effective amount of a vaccine comprising either: (a) a recombinant *Listeria* strain comprising an N-terminal fragment of a protein fused to a KLK3 peptide; or (b) a recombinant nucleotide encoding the recombinant polypeptide, whereby the subject mounts an immune response against the KLK3expressing tumor, thereby suppressing a formation of a KLK3-expressing tumor.

[0223] In another embodiment, the present invention provides a method of reducing a size of a KLK3-expressing tumor, comprising administering a vaccine, immunogenic composition, or vector comprising a recombinant polypeptide of the present invention, thereby reducing a size of a KLK3-expressing tumor. In another embodiment, a cell of the tumor expresses KLK3. Each possibility represents a separate embodiment of the present invention.

[0224] In another embodiment, the present invention provides a method of suppressing a formation of a KLK3-expressing tumor, comprising administering an effective amount of a vaccine comprising either: (a) a recombinant polypeptide comprising an N-terminal fragment of a protein fused to a KLK3 peptide; or (b) a recombinant nucleotide encoding the recombinant polypeptide, whereby the subject mounts an immune response against the KLK3-expressing tumor, thereby suppressing a formation of a KLK3-expressing tumor.

[0225] In another embodiment, the present invention provides a method of reducing a size of a KLK3-expressing tumor, comprising administering a vaccine, immunogenic composition, or vector comprising a recombinant nucleotide molecule of the present invention, thereby reducing a size of a KLK3-expressing tumor. In another embodiment, a cell of the tumor expresses KLK3. Each possibility represents a separate embodiment of the present invention.

[0226] In another embodiment, the present invention provides a method of suppressing a formation of a KLK3expressing tumor, comprising administering an effective amount of a vaccine comprising either: (a) a recombinant nucleotide molecule comprising an N-terminal fragment of a protein fused to a KLK3 peptide; or (b) a recombinant nucleotide encoding the recombinant polypeptide, whereby the subject mounts an immune response against the KLK3expressing tumor, thereby suppressing a formation of a KLK3-expressing tumor.

[0227] The non-KLK3/non-FOLH1 peptide of methods and compositions of the present invention is, in another embodiment, a listeriolysin (LLO) peptide. In another embodiment, the non-KLK3/non-FOLH1 peptide is an ActA peptide. In another embodiment, the non-KLK3/non-FOLH1 peptide is a PEST-like sequence peptide. In another embodiment, the non-KLK3/non-FOLH1 peptide is any other peptide capable of enhancing the immunogenicity of a KLK3 or FOLH1 peptide. Each possibility represents a separate embodiment of the present invention.

[0228] In another embodiment, a recombinant fusion peptide of methods and compositions of the present invention is an LLO-KLK3 fusion peptide. In another embodiment, the fusion peptide has the sequence set forth in SEQ ID No: 54. In another embodiment, the fusion peptide is homologous to the sequence set forth in SEQ ID No: 54. In another embodiment, the fusion peptide is a variant of the sequence set forth in SEQ ID No: 54. In another embodiment, "homology" refers to identity to one of SEQ ID No: 54 of greater than 72%. In another embodiment, the homology is greater than 75%. In another embodiment, "homology" refers to identity to a sequence of greater than 78%. In another embodiment, the homology is greater than 80%. In another embodiment, the homology is greater than 82%. In another embodiment, "homology" refers to identity to a sequence of greater than 83%. In another embodiment, the homology is greater than 85%. In another embodiment, the homology is greater than 87%. In another embodiment, "homology" refers to identity to a sequence of greater than 88%. In another embodiment, the homology is greater than 90%. In another embodiment, the homology is greater than 92%. In another embodiment, "homology" refers to identity to a sequence of greater than 93%. In another embodiment, the homology is greater than 95%. In another embodiment, "homology" refers to identity to a sequence of greater than 96%. In another embodiment, the homology is greater than 97%. In another embodiment, the homology is greater than 98%. In another embodiment, the homology is greater than 99%. Each possibility represents a separate embodiment of the present invention.

[0229] The sequence of the LLO protein utilized to construct vaccines of the present invention is, in another embodiment:

(GenBank Accession No. P13128; SEQ ID NO: 17 MKKIMLVFITLILVSLPIAQQTEAKDASAFNKENSISSMAPPASPASPK TPIEKKHADEIDKYIQGLDYNKNNVLVYHGDAVTNVPPRKGYKDGNEYIV VEKKKKSINQNNADIQVVNAISSLTYPGALVKANSELVENQPDVLPVKRD SLTLSIDLPGMTNQDNKIVVKNATKSNVNNAVNTLVERWNEKYAQAYPNV SAKIDYDDEMAYSESQLIAKFGTAFKAVNNSLNVNFGAISEGKMQEEVIS FKQIYYNVNVNEPTRPSRFFGKAVTKEQLQALGVNAENPPAYISSVAYGR QVYLKLSTNSHSTKVKAAFDAAVSGKSVSGDVELTNIIKNSSFKAVIYGG SAKDEVQIIDGNLGDLRDILKKGATFNRETPGVPIAYTNFLKDNELAVI KNNSEYIETTSKAYTDGKINIDHSGGYVAQFNISWDEVNYDPEGNEIVQH

LPLVKNRNISIWGTTLYPKYSNKVDNPIE;

nucleic acid sequence is set forth in GenBank Accession No. X15127). The first 25 amino acids of the proprotein corresponding to this sequence are the signal sequence and are cleaved from LLO when it is secreted by the bacterium. Thus, in this embodiment, the full length active LLO protein is 504 residues long. In another embodiment, the LLO protein is a homologue of SEQ ID No: 17. In another embodiment, the LLO protein is a variant of SEQ ID No: 17. In another embodiment, the LLO protein is an isomer of SEQ ID No: 17. In another embodiment, the LLO protein is a fragment of SEQ ID No: 17. Each possibility represents a separate embodiment of the present invention.

[0230] In another embodiment, "LLO peptide" and "LLO fragment" refer to an N-terminal fragment of an LLO protein. In another embodiment, the terms refer to a full-length but non-hemolytic LLO protein. In another embodiment, the terms refer to a non-hemolytic protein containing a point mutation in cysteine 484 of sequence ID No: 17 or a corresponding residue thereof in a homologous LLO protein. Each possibility represents a separate embodiment of the present invention.

[0231] In another embodiment, the N-terminal fragment of an LLO protein utilized in compositions and methods of the present invention has the sequence:

(SEQ ID NO: 18) MKKIMLVFITLILVSLPIAQQTEAKDASAFNKENSISSVAPPASPASPK TPIEKKHADEIDKYIQGLDYNKNNVLVYHGDAVTNVPPRKGYKDGNEYIV VEKKKKSINQNNADIQVVNAISSLTYPGALVKANSELVENQPDVLPVKRD SLTLSIDLPGMTNQDNKIVVKNATKSNVNNAVNTLVERWNEKYAQAYSNV SAKIDYDDEMAYSESQLIAKFGTAFKAVNNSLNVNFGAISEGKMQEEVIS FKQIYYNVNVNEPTRPSRFFGKAVTKEQLQALGVNAENPPAYISSVAYGR QVYLKLSTNSHSTKVKAAFDAAVSGKSVSGDVELTNIIKNSSFKAVIYGG SAKDEVQIIDGNLGDLRDILKKGATFNRETPGVPIAYTNFLKDNELAVI

[0232] In another embodiment, the LLO fragment is a homologue of SEQ ID No: 18. In another embodiment, the LLO fragment is a variant of SEQ ID No: 18. In another embodiment, the LLO fragment is an isomer of SEQ ID No: 18. In another embodiment, the LLO fragment is a fragment of SEQ ID No: 18. Each possibility represents a separate embodiment of the present invention.

[0233] In another embodiment, the LLO fragment has the sequence:

(SEQ ID NO: 19) MKKIMLVFITLILVSLPIAQQTEAKDASAFNKENSISSVAPPASPASPK TPIEKKHADEIDKYIQGLDYNKNNVLVYHGDAVTNVPPRKGYKDGNEYIV VEKKKKSINQNNADIQVVNAISSLTYPGALVKANSELVENQPDVLPVKRD SLTLSIDLPGMTNQDNKIVVKNATKSNVNNAVNTLVERWNEKYAQAYSNV SAKIDYDDEMAYSESQLIAKFGTAFKAVNNSLNVNFGAISEGKMQEEVIS FKQIYYNVNVNEPTRPSRFFGKAVTKEQLQALGVNAENPPAYISSVAYGR QVYLKLSTNSHSTKVKAAFDAAVSGKSVSGDVELTNIIKNSSFKAVIYGG SAKDEVQIIDGNLGDLRDILKKGATFNRETPGVPIAYTTNFLKDNELAVI KNNSEYIETTSKAYTD.

[0234] In another embodiment, the LLO fragment is a homologue of SEQ ID No: 19. In another embodiment, the LLO fragment is a variant of SEQ ID No: 19. In another embodiment, the LLO fragment is an isomer of SEQ ID No: 19. In another embodiment, the LLO fragment is a fragment of SEQ ID No: 19. Each possibility represents a separate embodiment of the present invention.

[0235] In another embodiment, the LLO fragment is any other LLO fragment known in the art. Each possibility represents a separate embodiment of the present invention.

[0236] "ActA peptide" refers, in another embodiment, to a full-length ActA protein. In another embodiment, the term refers to an ActA fragment. Each possibility represents a separate embodiment of the present invention.

[0237] The ActA fragment of methods and compositions of the present invention is, in another embodiment, an N-terminal ActA fragment. In another embodiment, the

fragment is any other type of ActA fragment known in the art. Each possibility represents a separate embodiment of the present invention.

[0238] In another embodiment, the N-terminal fragment of an ActA protein has the sequence:

(SEQ ID No: 15) MRAMMVVFITANCITINPDIIFAATDSEDSSLNTDEWEEEKTEEQPSEVN

TGPRYETAREVSSRDIKELEKSNKVRNTNKADLIAMLKEKAEKGPNINNN

NSEQTENAAINEEASGADRPAIQVERRHPGLPSDSAAEIKKRRKAIASSD

 ${\tt SELESLTYPDKPTKVNKKKVAKESVADASESDLDSSMQSADESSPQPLKA$

NQQPFFPKVFKKIKDAGKWVRDKIDENPEVKKAIVDKSAGLIDQLLTKKK

SEEVNASDFPPPPTDEELRLALPETPMLLGFNAPATSEPSSFEFPPPPTD

EELRLALPETPMLLGFNAPATSEPSSFEFPPPPTEDELEIIRETASSLDS

 ${\tt SFTRGDLASLRNAINRHSQNFSDFPPIPTEEELNGRGGRP}\,.$

[0239] In another embodiment, the ActA fragment comprises SEQ ID No: 15. In another embodiment, the ActA fragment is a homologue of SEQ ID No: 15. In another embodiment, the ActA fragment is a variant of SEQ ID No: 15. In another embodiment, the ActA fragment is an isomer of SEQ ID No: 15. In another embodiment, the ActA fragment is a fragment of SEQ ID No: 15. Each possibility represents a separate embodiment of the present invention.

[0240] In another embodiment, the N-terminal fragment of an ActA protein has the sequence:

(SEQ ID No: 14) MRAMMVVFITANCITINPDIIFAATDSEDSSLNTDEWEEEKTEEQPSEVN

TGPRYETAREVSSRDIKELEKSNKVRNTNKADLIAMLKEKAEKGPNINN

Ν.

[0241] In another embodiment, the ActA fragment is a homologue of SEQ ID No: 14. In another embodiment, the ActA fragment is a variant of SEQ ID No: 14. In another embodiment, the ActA fragment is an isomer of SEQ ID No: 14. Each possibility represents a separate embodiment of the present invention.

[0242] In another embodiment, the ActA fragment of methods and compositions of the present invention comprises a PEST-like sequence. In another embodiment, the PEST-like sequence contained in the ActA fragment is selected from SEQ ID No: 2-5. In another embodiment, the ActA fragment comprises at least 2 of the PEST-like sequences set forth in SEQ ID No: 2-5. In another embodiment, the ActA fragment comprises at least 3 of the PEST-like sequences set forth in SEQ ID No: 2-5. In another embodiment, the ActA fragment comprises at least 3 of the PEST-like sequences set forth in SEQ ID No: 2-5. In another embodiment, the ActA fragment comprises the 4 PEST-like sequences set forth in SEQ ID No: 2-5. Each possibility represents a separate embodiment of the present invention.

[0243] In another embodiment, the N-terminal ActA fragment is encoded by a nucleotide molecule having the sequence SEQ ID NO: 16:

(SEQ No: 16)

atgcgtgcgatgatggtggttttcattactgccaattgcattacgattaa ccccqacataatatttqcaqcqacaqataqcqaaqattctaqtctaaaca caqatqaatqqqaaqaaqaaaaaacaqaaqaqcaaccaaqcqaqqtaaat acqqqaccaaqatacqaaactqcacqtqaaqtaaqttcacqtqatattaa agaactagaaaaatcgaataaagtgagaaatacgaacaaagcagacctaa tagcaatgttgaaagaaaaagcagaaaaaggtccaaatatcaataataac aacagtgaacaaactgagaatgcggctataaatgaagaggcttcaggagc cgaccgaccagctatacaagtggagcgtcgtcatccaggattgccatcgg ${\tt atagcgcagcggaaattaaaaaaagaaggaaagccatagcatcatcggat$ agtgagcttgaaagccttacttatccggataaaccaacaaaagtaaataagaaaaaagtggcgaaagagtcagttgcggatgcttctgaaagtgacttag ${\tt attctagcatgcagtcagcagatgagtcttcaccacaacctttaaaagca}$ aaccaacaaccatttttccctaaagtatttaaaaaaataaaagatgcggg ${\tt ttgttgataaaagtgcagggttaattgaccaattattaaccaaaaagaaa$ agtgaagaggtaaatgcttcggacttcccgccaccacctacggatgaaga gttaagacttgctttgccagagacaccaatgcttcttggttttaatgctc ${\tt ctgctacatcagaaccgagctcattcgaatttccaccaccacctacggat}$ gaagagttaagacttgctttgccagagacgccaatgcttcttggttttaa tgctcctgctacatcggaaccgagctcgttcgaatttccaccgcctccaa caqaaqatqaactaqaaatcatccqqqaaacaqcatcctcqctaqattct agttttacaagaggggatttagctagtttgagaaatgctattaatcgcca tagtcaaaatttctctgatttcccaccaatcccaacagaagaagagttga acgggagaggcggtagacca.

[0244] In another embodiment, the ActA fragment is encoded by a nucleotide molecule that comprises SEQ ID No: 16. In another embodiment, the ActA fragment is encoded by a nucleotide molecule that is a homologue of SEQ ID No: 16. In another embodiment, the ActA fragment is encoded by a nucleotide molecule that is a variant of SEQ ID No: 16. In another embodiment, the ActA fragment is encoded by a nucleotide molecule that is an isomer of SEQ ID No: 16. In another embodiment, the ActA fragment is encoded by a nucleotide molecule that is an isomer of SEQ ID No: 16. In another embodiment, the ActA fragment is encoded by a nucleotide molecule that is a fragment of SEQ ID No: 16. Each possibility represents a separate embodiment of the present invention.

[0245] In another embodiment, a recombinant nucleotide of the present invention comprises any other sequence that encodes a fragment of an ActA protein. Each possibility represents a separate embodiment of the present invention.

[0246] In another embodiment, the ActA fragment is any other ActA fragment known in the art. Each possibility represents a separate embodiment of the present invention.

[0247] In another embodiment of methods and compositions of the present invention, a PEST-like AA sequence is fused to the KLK3 peptide or FOLH1 peptide. In another embodiment, the PEST-like AA sequence has a sequence selected from SEQ ID NO: 2-7 and 20. In another embodiment, the PEST-like sequence is any other PEST-like sequence known in the art. Each possibility represents a separate embodiment of the present invention.

[0248] In another embodiment, the PEST-like AA sequence is KENSISSMAPPASPASPKTPIEKKHA-DEIDK (SEQ ID NO: 1). In another embodiment, the PEST-like sequence is KENSISSMAPPASPASPK (SEQ ID No: 21). In another embodiment, fusion of a KLK3 peptide or FOLH1 peptide to any LLO sequence that includes the 1 of the PEST-like AA sequences enumerated herein is efficacious for enhancing cell-mediated immunity against KLK3 or FOLH1.

[0249] The present invention also provides methods for enhancing cell mediated and anti-tumor immunity and compositions with enhanced immunogenicity which comprise a PEST-like amino acid sequence derived from a prokaryotic organism fused to a KLK3 or FOLH1 antigen. In another embodiment, the PEST-like sequence is embedded within an antigen. In another embodiment, the PEST-like sequence is fused to either the amino terminus of the antigen. In another embodiment, the PEST-like sequence is fused to the carboxy terminus. As demonstrated herein, fusion of an antigen to the PEST-like sequence of LM enhanced cell mediated and anti-tumor immunity of the antigen. Thus, fusion of an antigen to other PEST-like sequences derived from other prokaryotic organisms will also enhance immunogenicity of KLK3 or FOLH1. PEST-like sequence of other prokaryotic organism can be identified routinely in accordance with methods such as described by, for example Rechsteiner and Rogers (1996, Trends Biochem. Sci. 21:267-271) for LM. In another embodiment, PEST-like AA sequences from other prokaryotic organisms are identified based by this method. In another embodiment, the PEST-like AA sequence is from another Listeria species. For example, the LM protein ActA contains 4 such sequences.

[0250] In another embodiment, the PEST-like AA sequence is a PEST-like sequence from a Listeria ActA protein. In another embodiment, the PEST-like sequence is KTEEQPSEVNTGPR (SEQ ID NO: 2), KASVTDT-SEGDLDSSMQSADESTPQPLK (SEQ ID NO: 3), KNEEVNASDFPPPPTDEELR (SEQ ID NO: 4), or RGGIPTSEEFSSLNSGDFTDDENSETTEEEIDR (SEQ ID NO: 5). In another embodiment, the PEST-like sequence is from Listeria seeligeri cytolysin, encoded by the lso gene. In another embodiment, the PEST-like sequence is RSE-VTISPAETPESPPATP (SEQ ID NO: 20). In another embodiment, the PEST-like sequence is from Streptolysin 0 protein of Streptococcus sp. In another embodiment, the PEST-like sequence is from Streptococcus pyogenes Streptolysin 0, e.g. KQNTASTETTTTNEQPK (SEQ ID NO: 6) at AA 35-51. In another embodiment, the PEST-like sequence is from Streptococcus equisimilis Streptolysin 0, e.g. KQNTANTETTTTNEQPK (SEQ ID NO: 7) at AA 38-54. In another embodiment, the PEST-like sequence has a sequence selected from SEQ ID NO: 1-7 and 20-21. In another embodiment, the PEST-like sequence has a sequence selected from SEQ ID NO: 2-7 and 20. In another embodiment, the PEST-like sequence is another PEST-like AA sequence derived from a prokaryotic organism.

[0251] PEST-like sequences of other prokaryotic organism are identified, in another embodiment, in accordance with methods such as described by, for example Rechsteiner and Rogers (1996, Trends Biochem. Sci. 21:267-271) for LM. Alternatively, PEST-like AA sequences from other prokaryotic organisms can also be identified based by this method. Other prokaryotic organisms wherein PEST-like AA sequences would be expected to include, but are not limited to, other Listeria species. In another embodiment, the PESTlike sequence is embedded within the antigenic protein. Thus, in another embodiment, "fusion" refers to an antigenic protein comprising a KLK3 peptide and a PEST-like amino acid sequence linked at one end of the KLK3 peptide. In another embodiment, the term refers to an antigenic protein comprising an FOLH1 peptide and a PEST-like amino acid sequence linked at one end of the FOLH1 peptide. In another embodiment, the term refers to an antigenic protein comprising PEST-like amino acid sequence embedded within the KLK3 peptide. In another embodiment, the term refers to an antigenic protein comprising PEST-like amino acid sequence embedded within the FOLH1 peptide. Each possibility represents a separate embodiment of the present invention.

[0252] In another embodiment, the PEST-like sequence is identified using the PEST-find program. In another embodiment, a PEST-like sequence is defined as a hydrophilic stretch of at least 12 AA in length with a high local concentration of proline (P), aspartate (D), glutamate (E), serine (S), and/or threonine(T) residues. In another embodiment, a PEST-like sequence contains no positively charged AA, namely arginine (R), histidine (H) and lysine (K).

[0253] In another embodiment, identification of PEST motifs is achieved by an initial scan for positively charged AA R, H, and K within the specified protein sequence. All AA between the positively charged flanks are counted and only those motifs are considered further, which contain a number of AA equal to or higher than the window-size parameter. In another embodiment, a PEST-like sequence must contain at least 1 P, 1 D or E, and at least 1 S or T.

[0254] In another embodiment, the quality of a PEST motif is refined by means of a scoring parameter based on the local enrichment of critical AA as well as the motifs hydrophobicity. Enrichment of D, E, P, S and T is expressed in mass percent (w/w) and corrected for 1 equivalent of D or E, 1 of P and 1 of S or T. In another embodiment, calculation of hydrophobicity follows in principle the method of J. Kyte and R. F. Doolittle (Kyte, J and Dootlittle, R F. J. Mol. Biol. 157, 105 (1982). For simplified calculations, Kyte-Doolittle hydropathy indices, which originally ranged from -4.5 for arginine to +4.5 for isoleucine, are converted to positive integers, using the following linear transformation, which yielded values from 0 for arginine to 90 for isoleucine.

[0255] Hydropathy index=10*Kyte-Doolittle hydropathy index+45

[0256] In another embodiment, a potential PEST motif's hydrophobicity is calculated as the sum over the products of mole percent and hydrophobicity index for each AA species. The desired PEST score is obtained as combination of local enrichment term and hydrophobicity term as expressed by the following equation:

PEST score=0.55*DEPST-0.5*hydrophobicity index.

[0257] In another embodiment, "PEST-like sequence," "PEST-like sequence peptide," or "PEST-like sequencecontaining peptide" refers to a peptide having a score of at least +5, using the above algorithm. In another embodiment, the term refers to a peptide having a score of at least 6. In another embodiment, the peptide has a score of at least 7. In another embodiment, the score is at least 8. In another embodiment, the score is at least 9. In another embodiment, the score is at least 10. In another embodiment, the score is at least 11. In another embodiment, the score is at least 12. In another embodiment, the score is at least 13. In another embodiment, the score is at least 14. In another embodiment, the score is at least 15. In another embodiment, the score is at least 16. In another embodiment, the score is at least 17. In another embodiment, the score is at least 18. In another embodiment, the score is at least 19. In another embodiment, the score is at least 20. In another embodiment, the score is at least 21. In another embodiment, the score is at least 22. In another embodiment, the score is at least 22. In another embodiment, the score is at least 24. In another embodiment, the score is at least 24. In another embodiment, the score is at least 25. In another embodiment, the score is at least 26. In another embodiment, the score is at least 27. In another embodiment, the score is at least 28. In another embodiment, the score is at least 29. In another embodiment, the score is at least 30. In another embodiment, the score is at least 32. In another embodiment, the score is at least 35. In another embodiment, the score is at least 38. In another embodiment, the score is at least 40. In another embodiment, the score is at least 45. Each possibility represents a separate embodiment of the present invention.

[0258] In another embodiment, the PEST-like sequence is identified using any other method or algorithm known in the art, e.g the CaSPredictor (Garay-Malpartida H M, Occhiucci J M, Alves J, Belizario J E. Bioinformatics. 2005 June; 21 Suppl 1:i169-76). In another embodiment, the following method is used:

[0259] A PEST index is calculated for each stretch of appropriate length (e.g. a 30-35 AA stretch) by assigning a value of 1 to the AA Ser, Thr, Pro, Glu, Asp, Asn, or Gln. The coefficient value (CV) for each of the PEST residue is 1 and for each of the other AA (non-PEST) is 0.

[0260] Each method for identifying a PEST-like sequence represents a separate embodiment of the present invention. **[0261]** In another embodiment, "PEST-like sequence peptide" or "PEST-like sequence-containing peptide" refers to a peptide containing a PEST-like sequence, as defined here-inabove.

[0262] "Fusion to a PEST-like sequence" refers, in another embodiment, to fusion to a protein fragment comprising a PEST-like sequence. In another embodiment, the term includes cases wherein the protein fragment comprises surrounding sequence other than the PEST-like sequence. In another embodiment, the protein fragment consists of the PEST-like sequence. Each possibility represents a separate embodiment of the present invention.

[0263] As provided herein, recombinant *Listeria* strains expressing PEST-like sequence-antigen fusions induce antitumor immunity (Example 5) and generate antigen-specific, tumor-infiltrating T cells (Example 6).

[0264] In another embodiment, "homology" refers to identity greater than 70% to a KLK3 sequence set forth in a sequence selected from SEQ ID No: 25-40. In another embodiment, "homology" refers to identity to one of SEQ ID No: 25-40 of greater than 72%. In another embodiment, the homology is greater than 75%. In another embodiment,

"homology" refers to identity to a sequence of greater than 78%. In another embodiment, the homology is greater than 80%. In another embodiment, the homology is greater than 82%. In another embodiment, "homology" refers to identity to a sequence of greater than 83%. In another embodiment, the homology is greater than 85%. In another embodiment, the homology is greater than 87%. In another embodiment, "homology" refers to identity to a sequence of greater than 88%. In another embodiment, the homology is greater than 90%. In another embodiment, the homology is greater than 92%. In another embodiment, "homology" refers to identity to a sequence of greater than 93%. In another embodiment, the homology is greater than 95%. In another embodiment, "homology" refers to identity to a sequence of greater than 96%. In another embodiment, the homology is greater than 97%. In another embodiment, the homology is greater than 98%. In another embodiment, the homology is greater than 99%. Each possibility represents a separate embodiment of the present invention.

[0265] In another embodiment, "homology" refers to identity greater than 70% to an FOLH1 sequence set forth in a sequence selected from SEQ ID No: 41-45. In another embodiment, "homology" refers to identity to one of SEQ ID No: 41-45 of greater than 72%. In another embodiment, the homology is greater than 75%. In another embodiment, "homology" refers to identity to a sequence of greater than 78%. In another embodiment, the homology is greater than 80%. In another embodiment, the homology is greater than 82%. In another embodiment, "homology" refers to identity to a sequence of greater than 83%. In another embodiment, the homology is greater than 85%. In another embodiment, the homology is greater than 87%. In another embodiment, "homology" refers to identity to a sequence of greater than 88%. In another embodiment, the homology is greater than 90%. In another embodiment, the homology is greater than 92%. In another embodiment, "homology" refers to identity to a sequence of greater than 93%. In another embodiment, the homology is greater than 95%. In another embodiment, "homology" refers to identity to a sequence of greater than 96%. In another embodiment, the homology is greater than 97%. In another embodiment, the homology is greater than 98%. In another embodiment, the homology is greater than 99%. Each possibility represents a separate embodiment of the present invention.

[0266] In another embodiment, "homology" refers to identity greater than 70% to an LLO sequence set forth in a sequence selected from SEQ ID No: 17-19. In another embodiment, "homology" refers to identity to one of SEQ ID No: 17-19 of greater than 72%. In another embodiment, the homology is greater than 75%. In another embodiment, "homology" refers to identity to a sequence of greater than 78%. In another embodiment, the homology is greater than 80%. In another embodiment, the homology is greater than 82%. In another embodiment, "homology" refers to identity to a sequence of greater than 83%. In another embodiment, the homology is greater than 85%. In another embodiment, the homology is greater than 87%. In another embodiment, "homology" refers to identity to a sequence of greater than 88%. In another embodiment, the homology is greater than 90%. In another embodiment, the homology is greater than 92%. In another embodiment, "homology" refers to identity to a sequence of greater than 93%. In another embodiment, the homology is greater than 95%. In another embodiment, "homology" refers to identity to a sequence of greater than

96%. In another embodiment, the homology is greater than 97%. In another embodiment, the homology is greater than 98%. In another embodiment, the homology is greater than 99%. Each possibility represents a separate embodiment of the present invention.

[0267] In another embodiment, "homology" refers to identity greater than 70% to an ActA sequence set forth in a sequence selected from SEQ ID No: 14-16. In another embodiment, "homology" refers to identity to one of SEQ ID No: 14-16 of greater than 72%. In another embodiment, the homology is greater than 75%. In another embodiment, "homology" refers to identity to a sequence of greater than 78%. In another embodiment, the homology is greater than 80%. In another embodiment, the homology is greater than 82%. In another embodiment, "homology" refers to identity to a sequence of greater than 83%. In another embodiment, the homology is greater than 85%. In another embodiment, the homology is greater than 87%. In another embodiment, "homology" refers to identity to a sequence of greater than 88%. In another embodiment, the homology is greater than 90%. In another embodiment, the homology is greater than 92%. In another embodiment, "homology" refers to identity to a sequence of greater than 93%. In another embodiment, the homology is greater than 95%. In another embodiment, "homology" refers to identity to a sequence of greater than 96%. In another embodiment, the homology is greater than 97%. In another embodiment, the homology is greater than 98%. In another embodiment, the homology is greater than 99%. Each possibility represents a separate embodiment of the present invention.

[0268] In another embodiment, "homology" refers to identity greater than 70% to a PEST-like sequence set forth in a sequence selected from SEQ ID No: 1-7 and 20-21. In another embodiment, "homology" refers to identity to one of SEQ ID No: 1-7 and 20-21 of greater than 72%. In another embodiment, the homology is greater than 75%. In another embodiment, "homology" refers to identity to a sequence of greater than 78%. In another embodiment, the homology is greater than 80%. In another embodiment, the homology is greater than 82%. In another embodiment, "homology" refers to identity to a sequence of greater than 83%. In another embodiment, the homology is greater than 85%. In another embodiment, the homology is greater than 87%. In another embodiment, "homology" refers to identity to a sequence of greater than 88%. In another embodiment, the homology is greater than 90%. In another embodiment, the homology is greater than 92%. In another embodiment, "homology" refers to identity to a sequence of greater than 93%. In another embodiment, the homology is greater than 95%. In another embodiment, "homology" refers to identity to a sequence of greater than 96%. In another embodiment, the homology is greater than 97%. In another embodiment, the homology is greater than 98%. In another embodiment, the homology is greater than 99%. Each possibility represents a separate embodiment of the present invention.

[0269] Methods of identifying corresponding sequences in related proteins are well known in the art, and include, for example, AA sequence alignment. Each method represents a separate embodiment of the present invention.

[0270] In another embodiment of the present invention, "nucleic acids" or "nucleotide" refers to a string of at least two base-sugar-phosphate combinations. The term includes, in one embodiment, DNA and RNA. "Nucleotides" refers, in one embodiment, to the monomeric units of nucleic acid polymers. RNA may be, in one embodiment, in the form of a tRNA (transfer RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), anti-sense RNA, small inhibitory RNA (siRNA), micro RNA (miRNA) and ribozymes. The use of siRNA and miRNA has been described (Caudy AA et al, Genes & Devel 16: 2491-96 and references cited therein). DNA may be in form of plasmid DNA, viral DNA, linear DNA, or chromosomal DNA or derivatives of these groups. In addition, these forms of DNA and RNA may be single, double, triple, or quadruple stranded. The term also includes, in another embodiment, artificial nucleic acids that may contain other types of backbones but the same bases. In one embodiment, the artificial nucleic acid is a PNA (peptide nucleic acid). PNA contain peptide backbones and nucleotide bases and are able to bind, in one embodiment, to both DNA and RNA molecules. In another embodiment, the nucleotide is oxetane modified. In another embodiment, the nucleotide is modified by replacement of one or more phosphodiester bonds with a phosphorothioate bond. In another embodiment, the artificial nucleic acid contains any other variant of the phosphate backbone of native nucleic acids known in the art. The use of phosphothiorate nucleic acids and PNA are known to those skilled in the art, and are described in, for example, Neilsen P E, Curr Opin Struct Biol 9:353-57; and Raz N K et al Biochem Biophys Res Commun. 297:1075-84. The production and use of nucleic acids is known to those skilled in art and is described, for example, in Molecular Cloning, (2001), Sambrook and Russell, eds. and Methods in Enzymology: Methods for molecular cloning in eukaryotic cells (2003) Purchio and G. C. Fareed. Each nucleic acid derivative represents a separate embodiment of the present invention.

[0271] Protein and/or peptide homology for any amino acid sequence listed herein is determined, in one embodiment, by methods well described in the art, including immunoblot analysis, or via computer algorithm analysis of amino acid sequences, utilizing any of a number of software packages available, via established methods. Some of these packages may include the FASTA, BLAST, MPsrch or Scanps packages, and may employ the use of the Smith and Waterman algorithms, and/or global/local or BLOCKS alignments for analysis, for example. Each method of determining homology represents a separate embodiment of the present invention.

[0272] In another embodiment, the present invention provides a kit comprising a reagent utilized in performing a method of the present invention. In another embodiment, the present invention provides a kit comprising a composition, tool, or instrument of the present invention.

[0273] In another embodiment, the ActA or LLO fragment is attached to the KLK3 or FOLH1 peptide by chemical conjugation. In another embodiment, paraformaldehyde is used for the conjugation. In another embodiment, the conjugation is performed using any suitable method known in the art. Each possibility represents another embodiment of the present invention.

[0274] In another embodiment, the KLK3 expressing tumor targeted by methods and compositions of the present invention is a KLK3-expressing prostate cancer. In another embodiment, the KLK3-expressing tumor is a KLK3-expressing prostate carcinoma. In another embodiment, the

KLK3-expressing tumor is a KLK3-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0275] In another embodiment, the FOLH1-expressing tumor targeted by methods and compositions of the present invention is an FOLH1-expressing prostate cancer. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing prostate carcinoma. In another embodiment, the FOLH1-expressing tumor is an FOLH1-expressing adenocarcinoma. Each possibility represents a separate embodiment of the present invention.

[0276] In another embodiment, the KLK3- or FOLH1expressing tumor is a breast cancer. In another embodiment, the cancer is a melanoma. In another embodiment, the cancer is a glioma tumor. In another embodiment, the cancer is an ovarian neoplasm. In another embodiment, the cancer is a mammary carcinoma. In another embodiment, the cancer is an ependymoma.

[0277] In another embodiment, the cancer is a melanoma. In another embodiment, the cancer is a sarcoma. In another embodiment, the cancer is a carcinoma. In another embodiment, the cancer is a lymphoma. In another embodiment, the cancer is a leukemia. In another embodiment, the cancer is a glioma. In another embodiment, the cancer is a glioma. In another embodiment, the cancer is a glioma. In another embodiment, the cancer is a carcinoma. Each possibility represents a separate embodiment of the present invention.

[0278] In another embodiment, the cancer is pancreatic cancer. In another embodiment, the cancer is ovarian cancer. In another embodiment, the cancer is gastric cancer. In another embodiment, the cancer is a carcinomatous lesion of the pancreas. In another embodiment, the cancer is pulmonary adenocarcinoma. In another embodiment, the cancer is colorectal adenocarcinoma. In another embodiment, the cancer is pulmonary squamous adenocarcinoma. In another embodiment, the cancer is gastric adenocarcinoma. In another embodiment, the cancer is an ovarian surface epithelial neoplasm (e.g. a benign, proliferative or malignant variety thereof). In another embodiment, the cancer is an oral squamous cell carcinoma. In another embodiment, the cancer is non small-cell lung carcinoma. In another embodiment, the cancer is an endometrial carcinoma. In another embodiment, the cancer is a bladder cancer. In another embodiment, the cancer is a head and neck cancer. In another embodiment, the cancer is a prostate carcinoma.

[0279] In another embodiment, the cancer is an acute myelogenous leukemia (AML). In another embodiment, the cancer is a myelodysplastic syndrome (MDS). In another embodiment, the cancer is a non-small cell lung cancer (NSCLC). In another embodiment, the cancer is a Wilms' tumor. In another embodiment, the cancer is a leukemia. In another embodiment, the cancer is a lymphoma. In another embodiment, the cancer is a desmoplastic small round cell tumor. In another embodiment, the cancer is a mesothelioma (e.g. malignant mesothelioma). In another embodiment, the cancer is a gastric cancer. In another embodiment, the cancer is a colon cancer. In another embodiment, the cancer is a lung cancer. In another embodiment, the cancer is a germ cell tumor. In another embodiment, the cancer is an ovarian cancer. In another embodiment, the cancer is a uterine cancer. In another embodiment, the cancer is a thyroid cancer. In another embodiment, the cancer is a hepatocellular carcinoma. In another embodiment, the cancer is a thyroid cancer. In another embodiment, the cancer is a liver cancer. In another embodiment, the cancer is a renal cancer. In another embodiment, the cancer is a kaposis. In another embodiment, the cancer is a sarcoma. In another embodiment, the cancer is another carcinoma or sarcoma. Each possibility represents a separate embodiment of the present invention.

[0280] In another embodiment, the cancer is any other KLK3 or FOLH1-expressing cancer known in the art. Each type of cancer represents a separate embodiment of the present invention.

[0281] As provided herein, enhanced cell mediated immunity was demonstrated for fusion proteins comprising an antigen and truncated LLO containing the PEST-like amino acid sequence, SEQ ID NO: 1. The ALLO used in some of the Examples was 416 amino acids long (following cleavage of the signal peptide), as 88 residues from the carboxy terminus which is inclusive of the activation domain containing cysteine 484 were truncated. However, it is apparent from the present disclosure that other Δ LLO without the activation domain, and in particular cysteine 484, are efficacious in methods of the present invention. In another embodiment fusion of KLK3 or FOLH1 to any non-hemolytic LLO protein or fragment thereof, ActA protein or fragment thereof, or PEST-like amino AA enhances cellmediated and anti-tumor immunity of the resulting vaccine. [0282] As provided herein, fusion of an antigen to a non-hemolytic truncated form of listeriolysin O (LLO) enhanced immunogenicity. An LM vector that expresses and secretes a fusion product of Human Papilloma Virus (HPV) strain 16 E7 and LLO was a more potent cancer immunotherapeutic for HPV-immortalized tumors than LM secreting the E7 protein alone. Further, a recombinant vaccinia virus that carries the gene for the fusion protein LLO-E7 is a more potent cancer immunotherapeutic for HPV-immortalized tumors than an isogenic strain of vaccinia that carries the gene for E7 protein alone. In comparison, a short fusion protein Lm-AZ/-E7 comprising the E7 antigen fused to the promoter, signal sequence and the first 7 AA residues of LLO was an ineffective anti-tumor immunotherapeutic. This short fusion protein terminates directly before the PEST-like sequence and does not contain it.

[0283] "Fusion protein" refers, in another embodiment, to a protein comprising 2 or more proteins linked together by peptide bonds or other chemical bonds. In another embodiment, the proteins are linked together directly by a peptide or other chemical bond. In another embodiment, the proteins are linked together with one or more amino acids (e.g. a "spacer") between the two or more proteins. Each possibility represents a separate embodiment of the present invention. [0284] Fusion proteins comprising a KLK3 or FOLH1 peptide are, in another embodiment, prepared by any suitable method. In another embodiment, a fusion protein is prepared by cloning and restriction of appropriate sequences or direct chemical synthesis by methods discussed below. In another embodiment, subsequences are cloned and the appropriate subsequences cleaved using appropriate restriction enzymes. The fragments are then ligated, in another embodiment, to produce the desired DNA sequence. In another embodiment, DNA encoding the KLK3 or FOLH1 peptide is produced using DNA amplification methods, for example polymerase chain reaction (PCR). First, the segments of the native DNA on either side of the new terminus are amplified separately. The 5' end of the one amplified

sequence encodes the peptide linker, while the 3' end of the other amplified sequence also encodes the peptide linker. Since the 5' end of the first fragment is complementary to the 3' end of the second fragment, the 2 fragments (after partial purification, e.g. on LMP agarose) can be used as an overlapping template in a third PCR reaction. The amplified sequence will contain codons, the segment on the carboxy side of the opening site (now forming the amino sequence), the linker, and the sequence on the amino side of the opening site (now forming the carboxyl sequence). The KLK3 or FOLH1 peptide-encoding gene is then ligated into a plasmid.

[0285] In another embodiment, the KLK3 or FOLH1 peptide is conjugated to the truncated ActA protein, truncated LLO protein, or PEST-like sequence by any of a number of means well known to those of skill in the art. In another embodiment, the KLK3 or FOLH1 peptide is conjugated, either directly or through a linker (spacer), to the ActA protein or LLO protein. In another embodiment, wherein both the KLK3 or FOLH1 peptide and the ActA protein or LLO protein are polypeptides, the chimeric molecule is recombinantly expressed as a single-chain fusion protein.

[0286] In another embodiment, wherein the KLK3 or FOLH1 peptide and/or the ActA protein, LLO protein, or PEST-like sequence is relatively short (i.e., less than about 50 AA), they are synthesized using standard chemical peptide synthesis techniques. Where both molecules are relatively short, in another embodiment, the chimeric molecule is synthesized as a single contiguous polypeptide. In another embodiment, the KLK3 or FOLH1 peptide and the ActA protein, LLO protein, or PEST-like sequence are synthesized separately and then fused by condensation of the amino terminus of one molecule with the carboxyl terminus of the other molecule thereby forming a peptide bond. In another embodiment, the KLK3 or FOLH1 peptide and the ActA protein, LLO protein, or PEST-like sequence are each condensed with one end of a peptide spacer molecule, thereby forming a contiguous fusion protein.

[0287] In another embodiment, the peptides and proteins of the present invention are readily prepared by standard, well-established solid-phase peptide synthesis (SPPS) as described by Stewart et al. in Solid Phase Peptide Synthesis, 2nd Edition, 1984, Pierce Chemical Company, Rockford, Ill.; and as described by Bodanszky and Bodanszky (The Practice of Peptide Synthesis, 1984, Springer-Verlag, New York). At the outset, a suitably protected amino acid residue is attached through its carboxyl group to a derivatized, insoluble polymeric support, such as cross-linked polystyrene or polyamide resin. "Suitably protected" refers to the presence of protecting groups on both the alpha-amino group of the amino acid, and on any side chain functional groups. Side chain protecting groups are generally stable to the solvents, reagents and reaction conditions used throughout the synthesis, and are removable under conditions which will not affect the final peptide product. Stepwise synthesis of the oligopeptide is carried out by the removal of the N-protecting group from the initial amino acid, and couple thereto of the carboxyl end of the next amino acid in the sequence of the desired peptide. This amino acid is also suitably protected. The carboxyl of the incoming amino acid can be activated to react with the N-terminus of the supportbound amino acid by formation into a reactive group such as formation into a carbodiimide, a symmetric acid anhydride or an "active ester" group such as hydroxybenzotriazole or pentafluorophenly esters.

[0288] Examples of solid phase peptide synthesis methods include the BOC method which utilized tert-butyloxcarbonyl as the alpha-amino protecting group, and the FMOC method which utilizes 9-fluorenylmethyloxcarbonyl to protect the alpha-amino of the amino acid residues, both methods of which are well-known by those of skill in the art.

[0289] Incorporation of N- and/or C-blocking groups can also be achieved using protocols conventional to solid phase peptide synthesis methods. For incorporation of C-terminal blocking groups, for example, synthesis of the desired peptide is typically performed using, as solid phase, a supporting resin that has been chemically modified so that cleavage from the resin results in a peptide having the desired C-terminal blocking group. To provide peptides in which the C-terminus bears a primary amino blocking group, for instance, synthesis is performed using a p-methylbenzhydrylamine (MBHA) resin so that, when peptide synthesis is completed, treatment with hydrofluoric acid releases the desired C-terminally amidated peptide. Similarly, incorporation of an N-methylamine blocking group at the C-terminus is achieved using N-methylaminoethyl-derivatized DVB, resin, which upon HF treatment releases a peptide bearing an N-methylamidated C-terminus. Blockage of the C-terminus by esterification can also be achieved using conventional procedures. This entails use of resin/ blocking group combination that permits release of sidechain peptide from the resin, to allow for subsequent reaction with the desired alcohol, to form the ester function. FMOC protecting group, in combination with DVB resin derivatized with methoxyalkoxybenzyl alcohol or equivalent linker, can be used for this purpose, with cleavage from the support being effected by TFA in dicholoromethane. Esterification of the suitably activated carboxyl function e.g. with DCC, can then proceed by addition of the desired alcohol, followed by deprotection and isolation of the esterified peptide product.

[0290] Incorporation of N-terminal blocking groups can be achieved while the synthesized peptide is still attached to the resin, for instance by treatment with a suitable anhydride and nitrile. To incorporate an acetyl blocking group at the N-terminus, for instance, the resin coupled peptide can be treated with 20% acetic anhydride in acetonitrile. The N-blocked peptide product can then be cleaved from the resin, deprotected and subsequently isolated.

[0291] In another embodiment, to ensure that the peptide obtained from either chemical or biological synthetic techniques is the desired peptide, analysis of the peptide composition is conducted. In another embodiment, amino acid composition analysis is conducted using high resolution mass spectrometry to determine the molecular weight of the peptide. Alternatively, or additionally, the amino acid content of the peptide can be confirmed by hydrolyzing the peptide in aqueous acid, and separating, identifying and quantifying the components of the mixture using HPLC, or an amino acid analyzer. Protein sequencers, which sequentially degrade the peptide and identify the amino acids in order, may also be used to determine definitely the sequence of the peptide.

[0292] In another embodiment, prior to its use, the peptide is purified to remove contaminants. In this regard, it will be appreciated that the peptide will be purified so as to meet the

standards set out by the appropriate regulatory agencies and guidelines. Any one of a number of a conventional purification procedures may be used to attain the required level of purity including, for example, reversed-phase high-pressure liquid chromatography (HPLC) using an alkylated silica column such as C_4 -, C_8 - or C_{18} -silica. A gradient mobile phase of increasing organic content is generally used to achieve purification, for example, acetonitrile in an aqueous buffer, usually containing a small amount of trifluoroacetic acid. Ion-exchange chromatography can be also used to separate peptides based on their charge.

[0293] Solid phase synthesis in which the C-terminal AA of the sequence is attached to an insoluble support followed by sequential addition of the remaining amino acids in the sequence is used, in another embodiment, for the chemical synthesis of the polypeptides of this invention. Techniques for solid phase synthesis are described by Barany and Merrifield in Solid-Phase Peptide Synthesis; pp. 3-284 in The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A., Merrifield, et al. J. Am. Chem. Soc., 85: 2149-2156 (1963), and Stewart et al., Solid Phase Peptide Synthesis, 2nd ed. Pierce Chem. Co., Rockford, Ill. (1984).

[0294] In another embodiment, peptides of the present invention can incorporate AA residues which are modified without affecting activity. For example, the termini may be derivatized to include blocking groups, i.e. chemical substituents suitable to protect and/or stabilize the N- and C-termini from "undesirable degradation", a term meant to encompass any type of enzymatic, chemical or biochemical breakdown of the compound at its termini which is likely to affect the function of the compound, i.e. sequential degradation of the compound at a terminal end thereof.

[0295] In another embodiment, blocking groups include protecting groups conventionally used in the art of peptide chemistry which will not adversely affect the in vivo activities of the peptide. For example, suitable N-terminal blocking groups can be introduced by alkylation or acylation of the N-terminus. Examples of suitable N-terminal blocking groups include C1-C5 branched or unbranched alkyl groups, acyl groups such as formyl and acetyl groups, as well as substituted forms thereof, such as the acetamidomethyl (Acm) group. Desamino analogs of amino acids are also useful N-terminal blocking groups, and can either be coupled to the N-terminus of the peptide or used in place of the N-terminal reside. Suitable C-terminal blocking groups, in which the carboxyl group of the C-terminus is either incorporated or not, include esters, ketones or amides. Ester or ketone-forming alkyl groups, particularly lower alkyl groups such as methyl, ethyl and propyl, and amide-forming amino groups such as primary amines (-NH₂), and monoand di-alkyl amino groups such as methyl amino, ethylamino, dimethylamino, diethylamino, methylethylamino and the like are examples of C-terminal blocking groups. Descarboxylated amino acid analogues such as agmatine are also useful C-terminal blocking groups and can be either coupled to the peptide's C-terminal residue or used in place of it. Further, it will be appreciated that the free amino and carboxyl groups at the termini can be removed altogether from the peptide to yield desamino and descarboxylated forms thereof without affect on peptide activity.

[0296] In another embodiment, other modifications are incorporated without adversely affecting the activity. In another embodiment, such modifications include, but are not

limited to, substitution of one or more of the amino acids in the natural L-isomeric form with amino acids in the D-isomeric form. Thus, the peptide may include one or more D-amino acid resides, or may comprise amino acids which are all in the D-form. Retro-inverso forms of peptides in accordance with the present invention are also contemplated, for example, inverted peptides in which all amino acids are substituted with D-amino acid forms.

[0297] In another embodiment, acid addition salts peptides of the present invention are utilized as functional equivalents thereof. In another embodiment, a peptide in accordance with the present invention treated with an inorganic acid such as hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, and the like, or an organic acid such as an acetic, propionic, glycolic, pyruvic, oxalic, malic, malonic, succinic, maleic, fumaric, tataric, citric, benzoic, cinnamie, mandelic, methanesulfonic, ethanesulfonic, p-toluenesulfonic, salicyclic and the like, to provide a water soluble salt of the peptide is suitable for use in the invention.

[0298] In another embodiment, modifications (which do not normally alter primary sequence) include in vivo, or in vitro chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are sequences which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

[0299] In another embodiment polypeptides are modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent. Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids. The peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.

[0300] In another embodiment, the chimeric fusion proteins of the present invention are synthesized using recombinant DNA methodology. Generally this involves creating a DNA sequence that encodes the fusion protein, placing the DNA in an expression cassette, such as the plasmid of the present invention, under the control of a particular promoter/ regulatory element, and expressing the protein.

[0301] DNA encoding a fusion protein of the present invention are prepared, in another embodiment, by any suitable method, including, for example, cloning and restriction of appropriate sequences or direct chemical synthesis by methods such as the phosphotriester method of Narang et al. (1979, Meth. Enzymol. 68: 90-99); the phosphodiester method of Brown et al. (1979, Meth. Enzymol 68: 109-151); the diethylphosphoramidite method of Beaucage et al. (1981, Tetra. Lett., 22: 1859-1862); and the solid support method of U.S. Pat. No. 4,458,066.

[0302] Chemical synthesis produces a single stranded oligonucleotide. This is converted, in another embodiment, into double stranded DNA by hybridization with a complementary sequence, or by polymerization with a DNA polymerase using the single strand as a template. One of skill in the art would recognize that while chemical synthesis of DNA is limited to sequences of about 100 bases, longer sequences may be obtained by the ligation of shorter sequences.

[0303] In another embodiment, "isolated nucleic acid" includes an RNA or a DNA sequence encoding a fusion protein of the invention, and any modified forms thereof, including chemical modifications of the DNA or RNA which render the nucleotide sequence more stable when it is cell free or when it is associated with a cell. Chemical modifications of nucleotides may also be used to enhance the efficiency with which a nucleotide sequence is taken up by a cell or the efficiency with which it is expressed in a cell. Such modifications are detailed elsewhere herein. Any and all combinations of modifications of the nucleotide sequences are contemplated in the present invention.

[0304] In another embodiment, the present invention provides an isolated nucleic acid encoding a KLK3 or FOLH1 peptide operably linked to a non-hemolytic LLO, truncated ActA protein, or PEST-like sequence, wherein the isolated nucleic acid further comprises a promoter/regulatory sequence, such that the nucleic acid is preferably capable of directing expression of the protein encoded by the nucleic acid. Thus, the invention encompasses expression vectors and methods for the introduction of exogenous DNA into cells with concomitant expression of the exogenous DNA in the cells such as those described, for example, in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York).

[0305] In another embodiment, a nucleotide of the present invention is operably linked to a promoter/regulatory sequence that drives expression of the encoded peptide in the *Listeria* strain. Promoter/regulatory sequences useful for driving constitutive expression of a gene are well known in the art and include, but are not limited to, for example, the P_{hlyA} , P_{ActA} , and p60 promoters of *Listeria*, the *Streptococcus* bac promoter, the *Streptomyces griseus* sgiA promoter, and the *B. thuringiensis* phaZ promoter. Thus, it will be appreciated that the invention includes the use of any promoter/regulatory sequence that is capable of driving expression of the desired protein operably linked thereto.

[0306] Expressing a KLK3 or FOLH1 peptide operably linked to a non-hemolytic LLO, truncated ActA protein, or PEST-like sequence using a vector allows the isolation of large amounts of recombinantly produced protein. It is well within the skill of the artisan to choose particular promoter/ regulatory sequences and operably link those promoter/ regulatory sequences to a DNA sequence encoding a desired polypeptide. Such technology is well known in the art and is described, for example, in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York).

[0307] In another embodiment, the present invention provides a vector comprising an isolated nucleic acid encoding a KLK3 or FOLH1 peptide operably linked to a non-hemolytic LLO, truncated ActA protein, or PEST-like sequence. The incorporation of a desired nucleic acid into a vector and the choice of vectors is well-known in the art as described in, for example, Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Labo-

ratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York).

[0308] In another embodiment, the present invention provides cells, viruses, proviruses, and the like, containing such vectors. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in Ausubel et al. (1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York).

[0309] In another embodiment, the nucleic acids encoding a KLK3 or FOLH1 peptide operably linked to a non-hemolytic LLO, truncated ActA protein, or PEST-like sequence are cloned into a plasmid vector. In another embodiment, a recombinant *Listeria* strain is transformed with the plasmid vector. Each possibility represents a separate embodiment of the present invention.

[0310] Once armed with the present invention, it is readily apparent to one skilled in the art that other nucleic acids encoding a KLK3 or FOLH1 peptide operably linked to a non-hemolytic LLO, truncated ActA protein, or PEST-like sequence can be obtained by following the procedures described herein in the experimental details section for the generation of other fusion proteins as disclosed herein (e.g., site-directed mutagenesis, frame shift mutations, and the like), and procedures in the art.

[0311] Methods for the generation of derivative or variant forms of fusion proteins are well known in the art, and include, inter alia, using recombinant DNA methodology well known in the art such as, for example, that described in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York) and Ausubel et al. (1997, Current Protocols in Molecular Biology, Green & Wiley, New York), and elsewhere herein. [0312] In another embodiment, the present invention provides a nucleic acid encoding a KLK3 or FOLH1 peptide operably linked to a non-hemolytic LLO, truncated ActA protein, or PEST-like sequence, wherein a nucleic acid encoding a tag polypeptide is covalently linked thereto. That is, the invention encompasses a chimeric nucleic acid wherein the nucleic acid sequence encoding a tag polypeptide is covalently linked to the nucleic acid encoding a KLK3 or FOLH1 peptide-containing protein. Such tag polypeptides are well known in the art and include, for instance, green fluorescent protein (GFP), myc, myc-pyruvate kinase (myc-PK), His₆, maltose biding protein (MBP), an influenza virus hemagglutinin tag polypeptide, a flag tag polypeptide (FLAG), and a glutathione-S-transferase (GST) tag polypeptide. However, the invention should in no way be construed to be limited to the nucleic acids encoding the above-listed tag polypeptides. Rather, any nucleic acid sequence encoding a polypeptide which may function in a manner substantially similar to these tag polypeptides should be construed to be included in the present invention. [0313] The present invention also provides for analogs of ActA, LLO, and PEST-like sequences of the present invention, fragments thereof, proteins, or peptides. Analogs differ, in another embodiment, from naturally occurring proteins or peptides by conservative amino acid sequence differences, by modifications which do not affect sequence, or by both. [0314] In another embodiment, the present invention provides a KLK3 peptide with enhanced immunogenicity. In another embodiment, the present invention provides an FOLH1 peptide with enhanced immunogenicity. That is, as the data disclosed herein demonstrate, a KLK3 or FOLH1 peptide fused to a truncated ActA protein, non-hemolytic LLO protein, or PEST-like sequence, when administered to an animal, results in a clearance of existing tumors and the induction of antigen-specific cytotoxic lymphocytes capable of infiltrating tumor or infected cells. When armed with the present disclosure, and the methods and compositions disclosed herein, the skilled artisan will readily realize that the present invention in amenable to treatment and/or prevention of a multitude of diseases.

[0315] In another embodiment, a commercially available plasmid is used in the present invention. Such plasmids are available from a variety of sources, for example, Invitrogen (Carlsbad, Calif.), Stratagene (La Jolla, Calif.), Clontech (Palo Alto, Calif.), or can be constructed using methods well known in the art. A commercially available plasmid such as pCR2.1 (Invitrogen, Carlsbad, Calif.), which is a prokaryotic expression vector with a prokaryotic origin of replication and promoter/regulatory elements to facilitate expression in a prokaryotic organism.

[0316] The present invention further comprises transforming such a Listeria strain with a plasmid comprising (a) a KLK3 or FOLH1 peptide; and (b) an isolated nucleic acid encoding a truncated ActA protein, truncated LLO protein, or PEST-like sequence. In another embodiment, if an LM vaccine strain comprises a deletion in the prfA gene or the actA gene, the plasmid comprises a prfA or actA gene in order to complement the mutation, thereby restoring function to the L. monocytogenes vaccine strain. As described elsewhere herein, methods for transforming bacteria are well known in the art, and include calcium-chloride competent cell-based methods, electroporation methods, bacteriophage-mediated transduction, chemical, and physical transformation techniques (de Boer et al, 1989, Cell 56:641-649; Miller et al, 1995, FASEB J., 9:190-199; Sambrook et al. 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York; Ausubel et al., 1997, Current Protocols in Molecular Biology, John Wiley & Sons, New York; Gerhardt et al., eds., 1994, Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C.; Miller, 1992, A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

[0317] The plasmid of the present invention comprises, in another embodiment, a promoter/regulatory sequence operably linked to a gene encoding a fusion protein.

[0318] Plasmids and other expression vectors useful in the present invention are described elsewhere herein, and can include such features as a promoter/regulatory sequence, an origin of replication for gram negative and/or gram positive bacteria, and an isolated nucleic acid encoding a fusion protein. Further, the isolated nucleic acid encoding a fusion protein will have its own promoter suitable for driving expression of such an isolated nucleic acid. Promoters useful for driving expression in a bacterial system are well known in the art, and include bacteriophage lambda, the bla promoter of the beta-lactamase gene of pBR322, and the CAT promoter of the chloramphenicol acetyl transferase gene of pBR325. Further examples of prokaryotic promoters include the major right and left promoters of bacteriophage lambda $(P_L \text{ and } P_R)$, the trp, recA, lacZ, lacd, and gal promoters of E. coli, the alpha-amylase (Ulmanen et al, 1985. J. Bacteriol. 162:176-182) and the S28-specific promoters of B. subtilis (Gilman et al, 1984 Gene 32:11-20), the promoters of the bacteriophages of *Bacillus* (Gryczan, 1982, In: The Molecular Biology of the Bacilli, Academic Press, Inc., New York), and *Streptomyces* promoters (Ward et al, 1986, Mol. Gen. Genet. 203:468-478). Additional prokaryotic promoters contemplated in the present invention are reviewed in, for example, Glick (1987, J. Ind. Microbiol. 1:277-282); Cenatiempo, (1986, Biochimie, 68:505-516); and Gottesman, (1984, Ann Rev. Genet. 18:415-442). Further examples of promoter/regulatory elements contemplated in the present invention include, but are not limited to the Listerial prfA promoter (GenBank Acc. No. X15127), and the Listerial p60 promoter (GenBank Acc. No. AY126342), or fragments thereof.

[0319] In another embodiment, a *Listeria* strain of methods and compositions of the present invention contains an integrated gene encoding a peptide that comprises a KLK3 peptide. In another embodiment, the *Listeria* strain contains an integrated gene encoding a peptide that comprises a FOLH1 peptide.

[0320] In another embodiment, a *Listeria* strain of methods and compositions of the present invention is created using a site-specific integration vector. In another embodiment, a *Listeria* strain containing an integrated gene is created using homologous recombination. In another embodiment, a *Listeria* strain containing an integrated gene is created using any other method known in the art of integrating a gene into the *Listeria* chromosome. Each possibility represents a separate embodiment of the present invention.

[0321] In another embodiment, the integration vector comprises a PSA attPP' site. In another embodiment, the integration vector comprises a gene encoding a PSA integrase. In another embodiment, the integration vector comprises a U153 attPP' site. In another embodiment, the integration vector comprises a gene encoding a U153 integrase. In another embodiment, the integration vector comprises an A118 attPP' site. In another embodiment, the integration vector comprises a gene encoding an A118 integrase. In another embodiment, the integration vector comprises a gene encoding an A118 integrase. In another embodiment, the integration vector comprises any other attPP' site known in the art. In another embodiment, the integration vector comprises any other attPP' site known in the art. Each possibility represents a separate embodiment of the present invention.

[0322] In another embodiment, a *Listeria* strain of methods and compositions of the present invention contains a mutation or auxotrophy in a metabolic gene. In another embodiment, a plasmid carrying a KLK3 peptide or FOLH1 peptide contains a metabolic gene that complements the mutation or auxotrophy. In another embodiment, a KLK3 peptide- or FOLH1 peptide-encoding integration vector or construct used for integration into the Listeria chromosome contains a gene that complements the mutation or auxotrophy. In another embodiment, the metabolic gene is used for selection instead of an antibiotic resistance gene. In another embodiment, the metabolic gene is used for selection in addition to an antibiotic resistance gene. Each possibility represents a separate embodiment of the present invention. [0323] In another embodiment, the metabolic gene is a gene encoding an amino acid metabolism enzyme. In another embodiment, the metabolic enzyme is an alanine racemase (dal) enzyme. In another embodiment, the metabolic enzyme is D-amino acid transferase enzyme (dat).

[0324] In another embodiment, the metabolic enzyme metabolizes an amino acid (AA) that is used for a bacterial growth process. In another embodiment, the product AA is used for a replication process. In another embodiment, the product AA is used for cell wall synthesis. In another embodiment, the product AA is used for protein synthesis. In another embodiment, the product AA is used for metabolism of a fatty acid. In another embodiment, the product AA is used for any other growth or replication process known in the art. Each possibility represents a separate embodiment of the present invention.

[0325] In another embodiment, the metabolic enzyme catalyzes the formation of an AA used in cell wall synthesis. In another embodiment, the metabolic enzyme catalyzes synthesis of an AA used in cell wall synthesis. In another embodiment, the metabolic enzyme is involved in synthesis of an AA used in cell wall synthesis. In another embodiment, the AA is used in cell wall biogenesis. Each possibility represents a separate embodiment of the present invention.

[0326] In another embodiment, the metabolic enzyme is a synthetic enzyme for D-glutamic acid, a cell wall component.

[0327] In another embodiment, the metabolic enzyme is encoded by an alanine racemase gene (dal) gene. D-glutamic acid synthesis is controlled in part by the dal gene, which is involved in the conversion of D-glu+ pyr to alpha-ketoglutarate+D-ala, and the reverse reaction.

[0328] In another embodiment, the dal protein of methods and compositions of the present invention has the sequence:

(SEQ ID No: 56; GenBank Accession No: AF038438) MVTGWHRPTWIEIDRAAIRENIKNEQNKLPESVDLWAVVKANAYGHGIIE VARTAKEAGAKGFCVAILDEALALREAGFQDDFILVLGATRKEDANLAAK NHISLTVFREDWLENLTLEATLRIHLKVDSGMGRLGIRTTEEARRIEATS TNDHQLQLEGIYTHFATADQLETSYFEQQLAKFQTILTSLKKRPTYVHTA NSAASLLQPQIGFDAIRFGISMYGLTPSTEIKTSLPFELKPALALYTEMV HVKELAPGDSVSYGATYTATEREWVATLPIGYADGLIRHYSGFHVLVDGE PAPIIGRVCMDQTIIKLPREFQTGSKVTIIGKDHGNTVTADDAAQYLDTI

NYEVTCLLNERIPRKYIH.

[0329] In another embodiment, the dal protein is homologous to SEQ ID No: 56. In another embodiment, the dal protein is a variant of SEQ ID No: 56. In another embodiment, the dal protein is an isomer of SEQ ID No: 56. In another embodiment, the dal protein is a fragment of SEQ ID No: 56. In another embodiment, the dal protein is a fragment of a homologue of SEQ ID No: 56. In another embodiment, the dal protein is a fragment of a variant of SEQ ID No: 56. In another embodiment, the dal protein is a fragment of a variant of SEQ ID No: 56. In another embodiment, the dal protein is a fragment of a variant of SEQ ID No: 56. In another embodiment, the dal protein is a fragment of an isomer of SEQ ID No: 56.

[0330] In another embodiment, the dal protein any other *Listeria* dal protein known in the art. In another embodiment, the dal protein is any other gram-positive dal protein known in the art. In another embodiment, the dal protein any other dal protein known in the art. Each possibility represents a separate embodiment of the present invention.

[0331] The dat protein of methods and compositions of the present invention is encoded, in another embodiment, by the sequence:

(SEQ ID No: 57; GenBank Accession No: AF038439) MKVLVNNHLVEREDATVDIEDRGYQFGDGVYEVVRLYNGKFFTYNEHIDR LYASAAKIDLVIPYSKEELRELLEKLVAENNINTGNVYLQVTRGVQNPRN HVIPDDFPLEGVLTAAAREVPRNERQFVEGGTAITEEDVRWLRCDIKSLN LLGNILAKNKAHQQNALEAILHRGEQVTECSASNVSIIKDGVLWTHAADN LILNGITRQVIIDVAKKNGIPVKEADFTLTDLREADEVFISSTTIEITPI THIDGVQVADGKRGPITAQLHQYFVEEITRACGELEFAK.

[0332] In another embodiment, the dat protein is homologous to SEQ ID No: 57. In another embodiment, the dat protein is a variant of SEQ ID No: 57. In another embodiment, the dat protein is an isomer of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of a homologue of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of a variant of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of a variant of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of a variant of SEQ ID No: 57. In another embodiment, the dat protein is a fragment of an isomer of SEQ ID No: 57.

[0333] In another embodiment, the dat protein any other *Listeria* dat protein known in the art. In another embodiment, the dat protein is any other gram-positive dat protein known in the art. In another embodiment, the dat protein any other dat protein known in the art. Each possibility represents a separate embodiment of the present invention.

[0334] In another embodiment, the metabolic enzyme is a D-glutamic acid synthesis gene. In another embodiment, the metabolic enzyme is encoded by dga. In another embodiment, the metabolic enzyme is encoded by an alr (alanine racemase) gene. In another embodiment, the metabolic enzyme is any other enzyme known in the art that is involved in alanine synthesis.

[0335] In another embodiment, the metabolic enzyme is encoded by serC, a phosphoserine aminotransferase. In another embodiment, the metabolic enzyme is encoded by asd (aspartate beta-semialdehyde dehydrogenase), involved in synthesis of the cell wall constituent diaminopimelic acid. In another embodiment, the metabolic enzyme is encoded by gsaB-glutamate-1-semialdehyde aminotransferase, which catalyzes the formation of 5-aminolevulinate from (S)-4amino-5-oxopentanoate. In another embodiment, the metabolic enzyme is encoded by HemL, which catalyzes the formation of 5-aminolevulinate from (S)-4-amino-5-oxopentanoate. In another embodiment, the metabolic enzyme is encoded by aspB, an aspartate aminotransferase that catalyzes the formation of oxalozcetate and L-glutamate from L-aspartate and 2-oxoglutarate. In another embodiment, the metabolic enzyme is encoded by argF-1, involved in arginine biosynthesis. In another embodiment, the metabolic enzyme is encoded by aroE, involved in amino acid biosynthesis. In another embodiment, the metabolic enzyme is encoded by aroB, involved in 3-dehydroquinate biosynthesis. In another embodiment, the metabolic enzyme is encoded by aroD, involved in amino acid biosynthesis. In another embodiment, the metabolic enzyme is encoded by aroC, involved in amino acid biosynthesis. In another embodiment, the metabolic enzyme is encoded by hisB, involved in histidine biosynthesis. In another embodiment,

the metabolic enzyme is encoded by hisD, involved in histidine biosynthesis. In another embodiment, the metabolic enzyme is encoded by hisG, involved in histidine biosynthesis. In another embodiment, the metabolic enzyme is encoded by metX, involved in methionine biosynthesis. In another embodiment, the metabolic enzyme is encoded by proB, involved in proline biosynthesis. In another embodiment, the metabolic enzyme is encoded by argR, involved in arginine biosynthesis. In another embodiment, the metabolic enzyme is encoded by argJ, involved in arginine biosynthesis. In another embodiment, the metabolic enzyme is encoded by thil, involved in thiamine biosynthesis. In another embodiment, the metabolic enzyme is encoded by LMOf2365_1652, involved in tryptophan biosynthesis. In another embodiment, the metabolic enzyme is encoded by aroA, involved in tryptophan biosynthesis. In another embodiment, the metabolic enzyme is encoded by ilvD, involved in valine and isoleucine biosynthesis. In another embodiment, the metabolic enzyme is encoded by ilvC, involved in valine and isoleucine biosynthesis. In another embodiment, the metabolic enzyme is encoded by leuA, involved in leucine biosynthesis. In another embodiment, the metabolic enzyme is encoded by dapF, involved in lysine biosynthesis. In another embodiment, the metabolic enzyme is encoded by thrB, involved in threonine biosynthesis (all GenBank Accession No. NC_002973).

[0336] In another embodiment, the metabolic enzyme is a tRNA synthetase. In another embodiment, the metabolic enzyme is encoded by the trpS gene, encoding tryptopha-nyltRNA synthetase. In another embodiment, the metabolic enzyme is any other tRNA synthetase known in the art. Each possibility represents a separate embodiment of the present invention.

[0337] In another embodiment, the host strain bacteria is Δ (trpS aroA), and both markers are contained in the integration vector.

[0338] In another embodiment, the metabolic enzyme is encoded by murE, involved in synthesis of diaminopimelic acid (GenBank Accession No: NC_003485).

[0339] In another embodiment, the metabolic enzyme is encoded by LMOf2365_2494, involved in teichoic acid biosynthesis.

[0340] In another embodiment, the metabolic enzyme is encoded by WecE (Lipopolysaccharide biosynthesis protein rffA; GenBank Accession No: AE014075.1). In another embodiment, the metabolic enzyme is encoded by amiA, an N-acetylmuramoyl-L-alanine amidase. In another embodiment, the metabolic enzyme is aspartate aminotransferase. In another embodiment, the metabolic enzyme is histidinol-phosphate aminotransferase (GenBank Accession No. NP_466347). In another embodiment, the metabolic enzyme is the cell wall teichoic acid glycosylation protein GtcA.

[0341] In another embodiment, the metabolic enzyme is a synthetic enzyme for a peptidoglycan component or precursor. In another embodiment, the component is UDP-N-acetylmuramyl-pentapeptide. In another embodiment, the component is UDP-N-acetylglucosamine. In another embodiment, the component is MurNAc-(pentapeptide)-pyrophosphoryl-undecaprenol. In another embodiment, the component is GlcNAc- β -(1,4)-MurNAc-(pentapeptide)-pyrophosphoryl-undecaprenol. In another embodiment, the component is any other peptidoglycan component or precursor known in the art. Each possibility represents a separate embodiment of the present invention.

[0342] In another embodiment, the metabolic enzyme is encoded by murG. In another embodiment, the metabolic enzyme is encoded by murD. In another embodiment, the metabolic enzyme is encoded by murA-1. In another embodiment, the metabolic enzyme is encoded by murA-2 (all set forth in GenBank Accession No. NC_002973). In another embodiment, the metabolic enzyme is any other synthetic enzyme for a peptidoglycan component or precursor. Each possibility represents a separate embodiment of the present invention.

[0343] In another embodiment, the metabolic enzyme is a trans-glycosylase. In another embodiment, the metabolic enzyme is trans-peptidase. In another embodiment, the metabolic enzyme is a carboxy-peptidase. In another embodiment, the metabolic enzyme is any other class of metabolic enzyme known in the art. Each possibility represents a separate embodiment of the present invention.

[0344] In another embodiment, the metabolic enzyme is any other *Listeria monocytogenes* metabolic enzyme known in the art.

[0345] In another embodiment, the metabolic enzyme is any other *Listeria* metabolic enzyme known in the art.

[0346] In another embodiment, the metabolic enzyme is any other gram-positive bacteria metabolic enzyme known in the art.

[0347] In another embodiment, the metabolic enzyme is any other metabolic enzyme known in the art. Each possibility represents a separate embodiment of the present invention.

[0348] In another embodiment, the integration vector is any other site-specific integration vector known in the art that is capable of infecting *Listeria*. Each possibility represents a separate embodiment of the present invention.

[0349] In another embodiment, the present invention provides methods for enhancing the immunogenicity of a KLK3 or FOLH1 antigen via fusion of the antigen to a nonhemolytic truncated form of LLO (" Δ LLO"). In another embodiment, the antigen is fused to a PEST-like sequence. In another embodiment, the PEST-like amino acid sequence is SEQ ID NO: 1, of LLO. The present invention further provides methods and compositions for enhancing the immunogenicity of a KLK3 or FOLH1 antigen by fusing the antigen to a truncated ActA protein, truncated LLO protein, or fragment thereof. As demonstrated by the data disclosed herein, an antigen fused to an ActA protein elicits an immune response that clears existing tumors and results in the induction of antigen-specific cytotoxic lymphocytes.

[0350] In another embodiment, fusion proteins of the present invention are produced recombinantly via transcription and translation, in a bacterium, of a plasmid or nucleotide molecule that encodes both a KLK3 peptide and a non-KLK3 peptide. In another embodiment, a fusion protein is produced recombinantly via transcription and translation, in a bacterium, of a plasmid or nucleotide molecule that encodes both a FOLH1 peptide and a non-FOLH1 peptide/In another embodiment, the plasmid or nucleotide is transcribed and/or translated in vitro. In another embodiment, the antigen is chemically conjugated to the truncated form of LLO comprising the PEST-like AA sequence of L. monocytogenes or a PEST-like AA sequence derived from another prokaryotic organism. "Antigen" refers, in another embodiment, to the native KLK3 or FOLH1 gene product or truncated versions of these that include identified T cell epitopes. In another embodiment, these fusion proteins are then incorporated into vaccines for administration to a subject, to invoke an enhanced immune response against the antigen of the fusion protein. In other embodiments, the fusion proteins of the present invention are delivered as DNA vaccines, RNA vaccines or replicating RNA vaccines. As will be apparent to those of skill in the art upon this disclosure, vaccines comprising the fusion proteins of the present invention are particularly useful in the prevention and treatment of infectious and neoplastic diseases.

[0351] The present invention further comprises a method of administering to an animal or human an effective amount of a composition comprising a vaccine of the present invention. The composition comprises, among other things, a pharmaceutically acceptable carrier. In another embodiment, the composition includes a *Listeria* vaccine strain comprising a truncated ActA protein, truncated LLO protein, or fragment thereof, fused to a KLK3 or FOLH1 peptide, and a pharmaceutically acceptable carrier.

[0352] In another embodiment, the present invention provides a kit that comprises a composition, including a KLK3 or FOLH1 peptide fused to a truncated LLO protein, truncated ActA protein, or a PEST-like sequence and/or a *Listeria* vaccine strain comprising same, an applicator, and an instructional material which describes use of the compound to perform the methods of the invention. Although model kits are described below, the contents of other useful kits will be apparent to the skilled artisan in light of the present disclosure. Each of these kits is contemplated within the present invention.

[0353] In another embodiment, the present invention provides a kit for eliciting an enhanced immune response to an antigen, the kit comprising a KLK3 or FOLH1 peptide fused to a truncated ActA protein, truncated LLO protein, or PEST-like sequence, and a pharmaceutically acceptable carrier, said kit further comprising an applicator, and an instructional material for use thereof.

[0354] In another embodiment, the present invention provides a kit for eliciting an enhanced immune response to an antigen. The kit is used in the same manner as the methods disclosed herein for the present invention. In another embodiment, the kit is used to administer a *Listeria* vaccine strain comprising a KLK3 or FOLH1 peptide fused to a truncated ActA protein, LLO protein, or PEST-like sequence. In another embodiment, the kit comprises an applicator and an instructional material for the use of the kit. These instructions simply embody the examples provided herein.

[0355] In another embodiment, the invention includes a kit for eliciting an enhanced immune response to an antigen. The kit is used in the same manner as the methods disclosed herein for the present invention. Briefly, the kit may be used to administer an antigen fused to an ActA protein, LLO protein, or PEST-like sequence. Additionally, the kit comprises an applicator and an instructional material for the use of the kit. These instructions simply embody the examples provided herein.

EXPERIMENTAL DETAILS SECTION

Example 1: LLO-Antigen Fusions Induce Anti-Tumor Immunity

Materials and Experimental Methods (Examples 1-2)

Cell lines

[0356] The C57BL/6 syngeneic TC-1 tumor was immortalized with HPV-16 E6 and E7 and transformed with the

c-Ha-ras oncogene. TC-1 expresses low levels of E6 and E7 and is highly tumorigenic. TC-1 was grown in RPMI 1640, 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 μ g/ml streptomycin, 100 μ M nonessential amino acids, 1 mM sodium pyruvate, 50 micromolar (mcM) 2-ME, 400 microgram (mcg)/ml G418, and 10% National Collection Type Culture-109 medium at 37° with 10% CO₂. C3 is a mouse embryo cell from C57BL/6 mice immortalized with the complete genome of HPV 16 and transformed with pEJ-ras. EL-4/E7 is the thymoma EL-4 retrovirally transduced with E7.

L. monocytogenes Strains and Propagation

[0357] *Listeria* strains used were Lm-LLO-E7 (hly-E7 fusion gene in an episomal expression system; FIG. 1A), Lm-E7 (single-copy E7 gene cassette integrated into *Listeria* genome), Lm-LLO-NP ("DP-L2028"; hly-NP fusion gene in an episomal expression system), and Lm-Gag ("ZY-18"; single-copy HIV-1 Gag gene cassette integrated into the chromosome).

[0358] To generate pGG-55, the LLO-E7 plasmid, E7 was amplified by PCR using the primers -5'-GG CTCGAGCATGGAGATACACC-3' (SEQ ID No: 8; XhoI underlined) 5'-GGGG site is and ACTAGTTTATGGTTTCTGAGAACA-3' (SEQ ID No: 9; SpeI site is underlined) and ligated into pCR2.1 (Invitrogen, San Diego, Calif.). E7 was excised from pCR2.1 by XhoI/ SpeI digestion and ligated into pDP-2028 (Ikonomidis G et al. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes. J Exp Med. 1994 Dec. 1; 180(6):2209-18). The hly-E7 fusion gene and the pluripotential transcription factor prfA were amplified and subcloned into pAM401, a multicopy shuttle plasmid (Wirth R et al, J Bacteriol, 165: 831, 1986), generating pGG-55. The hly promoter and gene fragment were ampli-5'-GGGG fied using primers GCTAGCCCTCCTTTGATTAGTATATTC-3' (SEQ ID No: site is underlined) and 5'-CTCC NheI 10: CTCGAGATCATAATTTACTTCATC-3' (SEQ ID No: 11; XhoI site is underlined). The prfA gene was PCR amplified using primers 5'-GACTACAAGGACGATGACCGA-CAAGTGATAACCCGGGATCTAAATAAATCCGTTT-3' (SEQ ID No: 12; XbaI site is underlined) and 5'-CCC GTCGACCAGCTCTTCTTGGTGAAG-3' (SEQ ID No: 13; Sall site is underlined).

[0359] In the resulting plasmid, pGG-55, the hly promoter drives the expression of the first 441 AA of the hly gene product, including the subsequently cleaved signal sequence, which is joined by the XhoI site to the E7 gene, yielding a hly-E7 fusion gene that is transcribed and secreted as LLO-E7. This LLO fragment lacks the hemolytic C-terminus and has the sequence set forth in SEQ ID No: 18. It is referred to below as " Δ LLO," and is merely an exemplary Δ LLO of many that could be used with methods and compositions of the present invention. Transformation of a prfA-negative strain of *Listeria*, XFL-7 (provided by Dr. Hao Shen, University of Pennsylvania), with pGG-55 selected for the retention of the plasmid in vivo (FIGS. **1A-1B**).

[0360] Lm-E7 was generated by introducing an expression cassette containing the hly promoter and signal sequence driving the expression and secretion of E7 into the orfZ domain of the LM genome. E7 was amplified by PCR using the primers 5'-GC<u>GGATCC</u>CATGGAGATACACCTAC-3' (SEQ ID No: 22; BamHI site is underlined) and 5'-GC

<u>TCTAGA</u>TTATGGTTTCTGAG-3' (SEQ ID No: 23; Xbal site is underlined). E7 was then ligated into the pZY-21 shuttle vector. LM strain 10403S was transformed with the resulting plasmid, pZY-21-E7, which includes an expression cassette inserted in the middle of a 1.6-kb sequence that corresponds to the orfX, Y, Z domain of the LM genome. The homology domain allows for insertion of the E7 gene cassette into the orfZ domain by homologous recombination. Clones were screened for integration of the E7 gene cassette into the orfZ domain. Bacteria were grown in brain heart infusion medium with (Lm-LLO-E7 and Lm-LLO-NP) or without (Lm-E7 and ZY-18) chloramphenicol (20 µg/ml). Bacteria were frozen in aliquots at -80° C. Expression was verified by Western blotting (FIG. **2**)

Western Blotting

[0361] *Listeria* strains were grown in Luria-Bertoni medium at 37° C. and were harvested at the same optical density measured at 600 nm. The supernatants were TCA precipitated and resuspended in 1× sample buffer supplemented with 0.1 N NaOH. Identical amounts of each cell pellet or each TCA-precipitated supernatant were loaded on 4-20% Tris-glycine SDS-PAGE gels (NOVEX, San Diego, Calif.). The gels were transferred to polyvinylidene difluoride and probed with an anti-E7 monoclonal antibody (mAb) (Zymed Laboratories, South San Francisco, Calif.), then incubated with HRP-conjugated anti-mouse secondary Ab (Amersham Pharmacia Biotech, Little Chalfont, U.K.), developed with Amersham ECL detection reagents, and exposed to Hyperfilm (Amersham Pharmacia Biotech).

Measurement of Tumor Growth

[0362] Tumors were measured every other day with calipers spanning the shortest and longest surface diameters. The mean of these two measurements was plotted as the mean tumor diameter in millimeters against various time points. Mice were sacrificed when the tumor diameter reached 20 mm. Tumor measurements for each time point are shown only for surviving mice.

Effects of *Listeria* Recombinants on Established Tumor Growth

[0363] Six- to 8-wk-old C57BL/6 mice (Charles River) received 2×10^5 TC-1 cells s.c. on the left flank. One week following tumor inoculation, the tumors had reached a palpable size of 4-5 mm in diameter. Groups of 8 mice were then treated with 0.1 LD₅₀ i.p. Lm-LLO-E7 (10⁷ CFU), Lm-E7 (10⁶ CFU), Lm-LLO-NP (10⁷ CFU), or Lm-Gag (5×10^5 CFU) on days 7 and 14.

⁵¹Cr Release Assay

[0364] C57BL/6 mice, 6-8 wk old, were immunized i.p. with 0.1LD₅₀ Lm-LLO-E7, Lm-E7, Lm-LLO-NP, or Lm-Gag. Ten days post-immunization, spleens were harvested. Splenocytes were established in culture with irradiated TC-1 cells (100:1, splenocytes:TC-1) as feeder cells; stimulated in vitro for 5 days, then used in a standard ⁵¹Cr release assay, using the following targets: EL-4, EL-4/E7, or EL-4 pulsed with E7 H-2b peptide (RAHYNIVTF). E:T cell ratios, performed in triplicate, were 80:1, 40:1, 20:1, 10:1, 5:1, and 2.5:1. Following a 4-h incubation at 37° C, cells were pelleted, and 50 µl supernatant was removed from each well. Samples were assayed with a Wallac 1450 scintillation

counter (Gaithersburg, Md.). The percent specific lysis was determined as [(experimental counts per minute–spontaneous counts per minute)/(total counts per minute–spontaneous counts per minute)]×100.

TC-1-Specific Proliferation

[0365] C57BL/6 mice were immunized with 0.1 LD₅₀ and boosted by i.p. injection 20 days later with 1 LD₅₀ Lm-LLO-E7, Lm-E7, Lm-LLO-NP, or Lm-Gag. Six days after boosting, spleens were harvested from immunized and naive mice. Splenocytes were established in culture at 5×10^5 /well in flat-bottom 96-well plates with 2.5×10^4 , 1.25×10^4 , 6×10^3 , or 3×10^3 irradiated TC-1 cells/well as a source of E7 Ag, or without TC-1 cells or with 10 µg/ml Con A. Cells were pulsed 45 h later with 0.5 µCi [³H]thymidine/well. Plates were harvested 18 h later using a Tomtec harvester 96 (Orange, Conn.), and proliferation was assessed with a Wallac 1450 scintillation counter. The change in counts per minute was calculated as experimental counts per minute—no Ag counts per minute.

Flow Cytometric Analysis

[0366] C57BL/6 mice were immunized intravenously (i.v.) with 0.1 LD_{50} Lm-LLO-E7 or Lm-E7 and boosted 30 days later. Three-color flow cytometry for CD8 (53-6.7, PE conjugated), CD62 ligand (CD62L; MEL-14, APC conjugated), and E7 H-2Db tetramer was performed using a FACSCalibur® flow cytometer with CellQuest® software (Becton Dickinson, Mountain View, Calif.). Splenocytes harvested 5 days after the boost were stained at room temperature (rt) with H-2Db tetramers loaded with the E7 peptide (RAHYNIVTF) or a control (HIV-Gag) peptide. Tetramers were used at a 1/200 dilution and were provided by Dr. Larry R. Pease (Mayo Clinic, Rochester, Minn.) and by the National Institute of Allergy and Infectious Diseases Tetramer Core Facility and the National Institutes of Health AIDS Research and Reference Reagent Program. Tetramer+, CD8⁺, CD62L^{low} cells were analyzed.

Depletion of Specific Immune Components

[0367] CD8⁺ cells, CD4⁺ cells and IFN were depleted in TC-1-bearing mice by injecting the mice with 0.5 mg per mouse of mAb: 2.43, GK1.5, or xmg1.2, respectively, on days 6, 7, 8, 10, 12, and 14 post-tumor challenge. CD4⁺ and CD8⁺ cell populations were reduced by 99% (flow cytometric analysis). CD25⁺ cells were depleted by i.p. injection of 0.5 mg/mouse anti-CD25 mAb (PC61, provided by Andrew J. Caton) on days 4 and 6. TGF was depleted by i.p. injection of the anti-TGF-mAb (2G7, provided by H. I. Levitsky), into TC-1-bearing mice on days 6, 7, 8, 10, 12, 14, 16, 18, and 20. Mice were treated with 10^7 Lm-LLO-E7 or Lm-E7 on day 7 following tumor challenge.

Adoptive Transfer

[0368] Donor C57BL/6 mice were immunized and boosted 7 days later with 0.1 LD_{50} Lm-E7 or Lm-Gag. The donor splenocytes were harvested and passed over nylon wool columns to enrich for T cells. CD8⁺ T cells were depleted in vitro by incubating with 0.1 µg 2.43 anti-CD8 mAb for 30 min at rt. The labeled cells were then treated with rabbit complement. The donor splenocytes were >60% CD4⁺ T cells (flow cytometric analysis). TC-1 tumor-bearing recipient mice were immunized with 0.1 LD_{50} 7 days

post-tumor challenge. $CD4^+$ -enriched donor splenocytes (10⁷) were transferred 9 days after tumor challenge to recipient mice by i.v. injection.

B16F0-Ova Experiment

[0369] 24 C57BL/6 mice were inoculated with 5×10^5 16F0-Ova cells. On days 3, 10 and 17, groups of 8 mice were immunized with 0.1 LD₅₀ Lm-OVA (10^5 cfu), Lm-LLO-OVA (10^8 cfu) and eight animals were left untreated.

Statistics

[0370] For comparisons of tumor diameters, mean and SD of tumor size for each group were determined, and statistical significance was determined by Student's t test. p<0.05 was considered significant.

Results

[0371] Lm-E7 and Lm-LLO-E7 were compared for their abilities to impact on TC-1 growth. Subcutaneous tumors were established on the left flank of C57BL/6 mice. Seven days later tumors had reached a palpable size (4-5 mm). Mice were vaccinated on days 7 and 14 with 0.1 LD_{50} Lm-E7, Lm-LLO-E7, or, as controls, Lm-Gag and Lm-LLO-NP. Lm-LLO-E7 induced complete regression of 75% of established TC-1 tumors, while the other 2 mice in the group controlled their tumor growth (FIG. 3A). By contrast, immunization Lm-E7 and Lm-Gag did not induce tumor regression. This experiment was repeated multiple times, always with very similar results. In addition, similar results were achieved for Lm-LLO-E7 under different immunization protocols. In another experiment, a single immunization was able to cure mice of established 5 mm TC-1 tumors. [0372] In other experiments, similar results were obtained with 2 other E7-expressing tumor cell lines: C3 and EL-4/ E7. To confirm the efficacy of vaccination with Lm-LLO-E7, animals that had eliminated their tumors were re-challenged with TC-1 or EL-4/E7 tumor cells on day 60 or day 40, respectively. Animals immunized with Lm-LLO-E7 remained tumor free until termination of the experiment (day 124 in the case of TC-1 and day 54 for EL-4/E7). [0373] A similar experiment was performed with the chicken ovalbumin antigen (OVA). Mice were immunized with either Lm-OVA or Lm-LLO-OVA, then challenged with either an EL-4 thymoma engineered to express OVA or the very aggressive murine melanoma cell line B16F0-Ova, which has very low MHC class I expression. In both cases, Lm-LLO-OVA, but not Lm-OVA, induced the regression of established tumors. For example, at the end of the B16F0 experiment (day 25), all the mice in the naive group and the

Lm-OVA group had died. All the Lm-LLO-OVA mice were alive, and 50% of them were tumor free. (FIG. **3**B). [0374] Thus, expression of an antigen gene as a fusion

[0374] Thus, expression of an antigen gene as a fusion protein with Δ LLO enhances the immunogenicity of the antigen.

Example 2: Lm-LLO-E7 Treatment Elicits TC-1 Specific Splenocyte Proliferation

[0375] To measure induction of T cells by Lm-E7 with Lm-LLO-E7, TC-1-specific proliferative responses of splenocytes from rLm-immunized mice, a measure of antigen-specific immunocompetence, were assessed. Splenocytes from Lm-LLO-E7-immunized mice proliferated when exposed to irradiated TC-1 cells as a source of E7, at

splenocyte: TC-1 ratios of 20:1, 40:1, 80:1, and 160:1 (FIG. 4). Conversely, splenocytes from Lm-E7 and rLm control immunized mice exhibited only background levels of proliferation.

Example 3: Fusion of NP to LLO Enhances its Immunogenicity

Materials and Experimental Methods

[0376] Lm-LLO-NP was prepared as depicted in FIGS. **1A-1B**, except that influenza nucleoprotein (NP) replaced E7 as the antigen. 32 BALB/c mice were inoculated with 5×10^5 RENCA-NP tumor cells. RENCA-NP is a renal cell carcinoma retrovirally transduced with influenza nucleoprotein NP (described in U.S. Pat. No. 5,830,702, which is incorporated herein by reference). After palpable macroscopic tumors had grown on day 10, 8 animals in each group were immunized i.p. with 0.1 LD₅₀ of the respective *Listeria* vector. The animals received a second immunization one week later.

Results

[0377] In order to confirm the generality of the finding that fusing LLO to an antigen confers enhanced immunity, Lm-LLO-NP and Lm-NP (isogenic with the Lm-E7 vectors, but expressing influenza antigen) were constructed, and the vectors were compared for ability to induce tumor regression, with Lm-Gag (isogenic with Lm-NP except for the antigen expressed) as a negative control. As depicted in FIG. 5, 6/8 of the mice that received Lm-LLO-NP were tumor free. By contrast, only 1/8 and 2/8 mice in the Lm-Gag and Lm-NP groups, respectively, were tumor free. All the mice in the naive group had large tumors or had died by day 40. Thus, LLO strains expressing NP and LLO-NP fusions are immunogenic. Similar results were achieved for Lm-LLO-E7 under different immunization protocols. Further, just a single immunization was demonstrated to cure mice of established TC-1 of 5 mm diameter.

Example 4: Enhancement of Immunogenicity by Fusion of an Antigen to LLO does not Require a *Listeria* Vector

Materials and Experimental Methods

Construction of Vac-SigE7Lamp

[0378] The WR strain of vaccinia was used as the recipient and the fusion gene was excised from the Listerial plasmid and inserted into pSC11 under the control of the p75 promoter. This vector was chosen because it is the transfer vector used for the vaccinia constructs Vac-SigE7Lamp and Vac-E7 and would therefore allow direct comparison with Vac-LLO-E7. In this way all three vaccinia recombinants would be expressed under control of the same early/late compound promoter p7.5. In addition, SC11 allows the selection of recombinant viral plaques to TK selection and beta-galactosidase screening. FIG. 6 depicts the various vaccinia constructs used in these experiments. Vac-SigE7Lamp is a recombinant vaccinia virus that expressed the E7 protein fused between lysosomal associated membrane protein (LAMP-1) signal sequence and sequence from the cytoplasmic tail of LAMP-1. It was designed to facilitate the targeting of the antigen to the MHC class II pathway.

[0379] The following modifications were made to allow expression of the gene product by vaccinia: (a) the T5XT sequence that prevents early transcription by vaccinia was removed from the 5' portion of the LLO-E7 sequence by PCR; and (b) an additional XmaI restriction site was introduced by PCR to allow the final insertion of LLO-E7 into SC11. Successful introduction of these changes (without loss of the original sequence that encodes for LLO-E7) was verified by sequencing. The resultant pSCl 1-E7 construct was used to transfect the TK-ve cell line CV1 that had been infected with the wild-type vaccinia strain, WR. Cell lysates obtained from this co-infection/transfection step contain vaccinia recombinants that were plaque-purified 3 times. Expression of the LLO-E7 fusion product by plaque purified vaccinia was verified by Western blot using an antibody directed against the LLO protein sequence. In addition, the ability of Vac-LLO-E7 to produce CD8⁺ T cells specific to LLO and E7 was determined using the LLO (91-99) and E7 (49-57) epitopes of Balb/c and C57/BL6 mice, respectively. Results were confirmed in a chromium release assay.

Results

[0380] To determine whether enhancement of immunogenicity by fusion of an antigen to LLO requires a *Listeria* vector, a vaccinia vector expressing E7 as a fusion protein with a non-hemolytic truncated form of LLO (Δ LLO) was constructed. Tumor rejection studies were performed with TC-1 following the protocol described for Example 1. Two experiments were performed with differing delays before treatment was started. In one experiment, treatments were initiated when the tumors were about 3 mm in diameter (FIG. 7). As of day 76, 50% of the Vac-LLO-E7 treated mice were tumor free, while only 25% of the Vac-SigE7Lamp mice were tumor free. In other experiments, Δ LLO-antigen fusions were more immunogenic than E7 peptide mixed with SBAS2 or unmethylated CpG oligonucleotides in a side-by-side comparison.

[0381] These results show that (a) fusion of Δ LLO-antigen fusions are immunogenic not only in the context of *Listeria*, but also in other contexts; and (b) the immunogenicity of Δ LLO-antigen fusions compares favorably with other accepted vaccine approaches.

Example 5: actA-Antigen and Pest-Antigen Fusions Confer Anti-Tumor Immunity

Materials and Experimental Methods

Construction of Lm-PEST-E7, Lm-ΔPEST-E7, and Lm-E7epi (FIG. 8A)

[0382] Lm-PEST-E7 is identical to Lm-LLO-E7, except that it contains only the promoter and PEST sequence of the hly gene, specifically the first 50 AA of LLO. To construct Lm-PEST-E7, the hly promoter and PEST regions were fused to the full-length E7 gene using the SOE (gene splicing by overlap extension) PCR technique. The E7 gene and the hly-PEST gene fragment were amplified from the plasmid pGG-55, which contains the first 441 AA of LLO, and spliced together by conventional PCR techniques. To create a final plasmid, pVS16.5, the hly-PEST-E7 fragment and the prfA gene were subcloned into the plasmid pAM401, which includes a chloramphenicol resistance gene for selection in vitro, and the resultant plasmid was used to transform XFL-7.

[0383] Lm- Δ PEST-E7 is a recombinant *Listeria* strain that is identical to Lm-LLO-E7 except that it lacks the PEST sequence. It was made essentially as described for Lm-PEST-E7, except that the episomal expression system was constructed using primers designed to remove the PESTcontaining region (bp 333-387) from the hly-E7 fusion gene. Lm-E7epi is a recombinant strain that secretes E7 without the PEST region or LLO. The plasmid used to transform this strain contains a gene fragment of the hly promoter and signal sequence fused to the E7 gene. This construct differs from the original Lm-E7, which expressed a single copy of the E7 gene integrated into the chromosome. Lm-E7epi is completely isogenic to Lm-LLO-E7, Lm-PEST-E7, and Lm- Δ PEST-E7 except for the form of the E7 antigen expressed.

Construction of Lm-actA-E7

[0384] Lm-actA-E7 is a recombinant strain of LM, comprising a plasmid that expresses the E7 protein fused to a truncated version of the actA protein. Lm-actA-E7 was generated by introducing a plasmid vector pDD-1 constructed by modifying pDP-2028 into LM. pDD-1 comprises an expression cassette expressing a copy of the 310 bp hly promoter and the hly signal sequence (ss), which drives the expression and secretion of actA-E7; 1170 bp of the actA gene that comprises 4 PEST sequences (SEQ ID No: 16) (the truncated ActA polypeptide consists of the first 390 AA of the molecule, SEQ ID No: 15); the 300 bp HPV E7*gene; the 1019 bp prfA*gene (controls expression of the virulence genes); and the CAT gene (chloramphenicol resistance gene) for selection of transformed bacteria clones. (FIG. **8**B).

[0385] The hly promoter (pHly) and gene fragment were PCR amplified from pGG-55 (Example 1) using the primers 5'-GGGGTCTAGACCTCCTTTGATTAGTATATTC-3'

(Xba I site is underlined; SEQ ID NO: 46) and 5'-ATCT-TCGCTATCTGTCGC

<u>CGCGGC</u>GCGTGCTTCAGTTTGTTGCGC-'3 (Not I site is underlined; the first 18 nucleotides are the ActA gene overlap; SEQ ID NO: 47). The actA gene was PCR amplified from the LM 10403s wildtype genome using primer 5'-GCGCAACAAACTGAAGCAGC

<u>GGCCGC</u>GGCGACAGATAGCGAAGAT-3' (NotI site is underlined; SEQ ID NO: 48) and primer 5'-TGTAGGTG-TATCTCCATGCTCGAGAGCTAGGCGATCAATTTC-3'

(XhoI site is underlined; SEQ ID NO: 49). The E7 gene was PCR amplified from pGG55 (pLLO-E7) using primer 5'-GGAATTGATCGCCTAGCT

CTCGAGCATGGAGATACACCTACA-3' (XhoI site is underlined; SEQ ID NO: 50) and primer 5'-AAACGGATT-TATTTAGATCCCGGGTTATGGTTTCTGAGAACA-3'

(Xmal site is underlined; SEQ ID NO: 51). The prfA gene was PCR amplified from the LM 10403s wild-type genome using primer 5'-TGTTCTCAGAAACCATAA <u>CCCGGGG</u>ATCTAAATAAATCCGTTT-3' (Xmal site is underlined; SEQ ID NO: 52) and primer 5'-GGGGG <u>TCGACCAGCTCTTCTTGGTGAAG-3'</u> (Sall site is underlined; SEQ ID NO: 53). The hly promoter was fused to the actA gene (pHly-actA) was PCR generated and amplified from purified pHly DNA and purified actA DNA using the upstream pHly primer (SEQ ID NO: 46) and downstream actA primer (SEQ ID NO: 49).

[0386] The E7 gene fused to the prfA gene (E7-prfA) was PCR generated and amplified from purified E7 DNA and

purified prfA DNA using the upstream E7 primer (SEQ ID NO: 50) and downstream prfA gene primer (SEQ ID NO: 53).

[0387] The pHly-actA fusion product fused to the E7-prfA fusion product was PCR generated and amplified from purified fused pHly-actA DNA product and purified fused E7-prfA DNA product using the upstream pHly primer (SEQ ID NO: 46) and downstream prfA gene primer (SEQ ID NO: 53) and ligated into pCRII (Invitrogen, La Jolla, Calif.). Competent *E. coli* (TOP10'F, Invitrogen, La Jolla, Calif.) were transformed with pCRII-ActAE7. After lysis and isolation, the plasmid was screened by restriction analysis using BamHI (expected fragment sizes 770 bp and 6400 bp (or when the insert was reversed into the vector: 2500 bp and 4100 bp)) and BstXI (expected fragment sizes 2800 bp and 3900 bp) and also screened with PCR analysis using the upstream pHly primer (SEQ ID NO: 46) and the downstream prfA gene primer (SEQ ID NO: 53).

[0388] The pHly-ActA-E7-PrfA DNA insert was excised from pCRII by double digestion with Xba I and Sal I and ligated into pDP-2028 also digested with Xba I and Sal I. After transforming TOP10'F competent E. coli (Invitrogen, La Jolla, Calif.) with expression system pActAE7, chloramphenicol resistant clones were screened by PCR analysis using the upstream pHly primer (SEQ ID NO: 46) and the downstream PrfA gene primer (SEQ ID NO: 53). A clone carrying pHly-ActA-E7 was grown in brain heart infusion medium with 20 mcg (microgram)/ml(milliliter) chloramphenicol (Difco, Detroit, Mich.), and pActAE7 was isolated from the bacteria cell using a midiprep DNA purification system kit (Promega, Madison, Wis.). Penicillin-treated Listeria strain XFL-7 was transformed with pActAE7, and clones were selected for the retention of the plasmid in vivo. Clones were grown in brain heart infusion with chloramphenicol (20 mcg/ml) at 37° C. Bacteria were frozen in aliquots at -80° C.

Results

[0389] To compare the anti-tumor immunity induced by Lm-ActA-E7 versus Lm-LLO-E7, 2×10^5 TC-1 tumor cells were implanted subcutaneously in mice and allowed to grow to a palpable size (approximately 5 millimeters [mm]). Mice were immunized i.p. with one LD₅₀ of either Lm-ActA-E7 (5×10^8 CFU), (crosses) Lm-LLO-E7 (10^8 CFU) (squares) or Lm-E7 (10^6 CFU) (circles) on days 7 and 14. By day 26, all of the animals in the Lm-LLO-E7 and Lm-ActA-E7 were tumor free and remained so, whereas all of the naive animals (triangles) and the animals immunized with Lm-E7 grew large tumors (FIG. 9). Thus, vaccination with ActA-E7 fusions causes tumor regression.

addition, [0390] In Lm-LLO-E7, Lm-PEST-E7, Lm- Δ PEST-E7, and Lm-E7epi were compared for their ability to cause regression of E7-expressing tumors. S.c. TC-1 tumors were established on the left flank of 40 C57BL/6 mice. After tumors had reached 4-5 mm, mice were divided into 5 groups of 8 mice. Each groups was treated with 1 of 4 recombinant LM vaccines, and 1 group was left untreated. Lm-LLO-E7 and Lm-PEST-E7 induced regression of established tumors in 5/8 and 3/8 cases, respectively. There was no statistical difference between the average tumor size of mice treated with Lm-PEST-E7 or Lm-LLO-E7 at any time point. However, the vaccines that expressed E7 without the PEST sequences, Lm-APEST-E7 and Lm-E7epi, failed to cause tumor regression in all mice except one (FIG. **8**C). This was representative of 2 experiments, wherein a statistically significant difference in mean tumor sizes at day 28 was observed between tumors treated with Lm-LLO-E7 or Lm-PEST-E7 and those treated with Lm-E7epi or Lm- Δ PEST-E7; P <0.001, Student's t test; FIG. **8**D). In addition, increased percentages of tetramer-positive splenocytes were seen reproducibly over 3 experiments in the spleens of mice vaccinated with PEST-E7 fusions causes tumor regression.

Example 6: Fusion of E7 to LLO, ActA, or a Pest-Like Sequence Enhances Antigen-Specific Immunity and Generates Tumor-Infiltrating E7-Specific CD8⁺ Cells

Materials and Experimental Methods

[0391] 500 mcl (microliter) of MATRIGEL®, comprising 100 mcl of 2×10^5 TC-1 tumor cells in phosphate buffered saline (PBS) plus 400 mcl of MATRIGEL® (BD Biosciences, Franklin Lakes, N.J.) were implanted subcutaneously on the left flank of 12 C57BL/6 mice (n=3). Mice were immunized intraperitoneally on day 7, 14 and 21, and spleens and tumors were harvested on day 28. Tumor MATRIGELs were removed from the mice and incubated at 4° C. overnight in tubes containing 2 milliliters (ml) of RP 10 medium on ice. Tumors were minced with forceps, cut into 2 mm blocks, and incubated at 37° C. for 1 hour with 3 ml of enzyme mixture (0.2 mg/ml collagenase-P, 1 mg/ml DNAse-1 in PBS). The tissue suspension was filtered through nylon mesh and washed with 5% fetal bovine serum+0.05% of NaN3 in PBS for tetramer and IFN-gamma staining.

[0392] Splenocytes and tumor cells were incubated with 1 micromole (mcm) E7 peptide for 5 hours in the presence of brefeldin A at 10^7 cells/ml. Cells were washed twice and incubated in 50 mcl of anti-mouse Fc receptor supernatant (2.4 G2) for 1 hour or overnight at 4° C. Cells were stained for surface molecules CD8 and CD62L, permeabilized, fixed using the permeabilization kit Golgi-Stop® or Golgi-Plug® (Pharmingen, San Diego, Calif.), and stained for IFN-gamma. 500,000 events were acquired using two-laser flow cytometer FACSCalibur and analyzed using Cellquest Software (Becton Dickinson, Franklin Lakes, N.J.). Percentages of IFN-gamma secreting cells within the activated (CD62L^{tow}) CD8⁺ T cells were calculated.

[0393] For tetramer staining, H-2D^b tetramer was loaded with phycoerythrin (PE)-conjugated E7 peptide (RAHYNIVTF, SEQ ID NO: 24), stained at rt for 1 hour, and stained with anti-allophycocyanin (APC) conjugated MEL-14 (CD62L) and FITC-conjugated CD8 β at 4° C. for 30 min. Cells were analyzed comparing tetramer⁺ CD8⁺ CD62L^{low} cells in the spleen and in the tumor.

Results

[0394] To analyze the ability of Lm-ActA-E7 to enhance antigen specific immunity, mice were implanted with TC-1 tumor cells and immunized with either Lm-LLO-E7 $(1\times10^7 \text{ CFU})$, Lm-E7 $(1\times10^6 \text{ CFU})$, or Lm-ActA-E7 $(2\times10^8 \text{ CFU})$, or were untreated (naïve). Tumors of mice from the Lm-LLO-E7 and Lm-ActA-E7 groups contained a higher per-

centage of IFN-gamma-secreting CD8⁺ T cells (FIG. 10A) and tetramer-specific CD8⁺ cells (FIG. 10B) than in Lm-E7 or naive mice.

[0395] In another experiment, tumor-bearing mice were administered Lm-LLO-E7, Lm-PEST-E7, Lm- Δ PEST-E7, or Lm-E7epi, and levels of E7-specific lymphocytes within the tumor were measured. Mice were treated on days 7 and 14 with 0.1 LD₅₀ of the 4 vaccines. Tumors were harvested on day 21 and stained with antibodies to CD62L, CD8, and with the E7/Db tetramer. An increased percentage of tetramer-positive lymphocytes within the tumor were seen in mice vaccinated with Lm-LLO-E7 and Lm-PEST-E7 (FIG. **11**A). This result was reproducible over three experiments (FIG. **11**B).

[0396] Thus, Lm-LLO-E7, Lm-ActA-E7, and Lm-PEST-E7 are each efficacious at induction of tumor-infiltrating CD8⁺ T cells and tumor regression.

Example 7: Creation and Verifcation of *Listeria*-LLO-PSA Constructs

Materials and Experimental Methods

Subcloning of LLO-PSA

[0397] A truncated PSA open reading frame (GenBank Accession Number NM_001648), lacking its secretory signal sequence, the first 24 AA, was amplified using the primers: Adv60-PSA(XhoI-no ATG)F: gtgCTCGAGatt-gtgggaggtgggagtg (SEQ ID No: 58) and Adv61-PSA(SpeI-Stop)R: gatACTAGTttaggggttggccacgatgg (SEQ ID No: 59) and was subcloned in-frame with the first 441 amino acids of LLO (FIG. **12**). The plasmid backbone, pGG55 (Example 1) also has a copy of the *Listeria* virulence gene prfA, and 2 chloramphenicol acetyl-transferase genes that render chloramphenicol resistance in both gram-positive and gram negative bacterial strains. The AA sequence of LLO-PSA is as follows:

(SEQ ID No: 54; PSA sequence is underlined) MKKIMLVFITLILVSLPIAQQTEAKDASAFNKENSISSMAPPASPASPK TPIEKKHADEIDKYIQGLDYNKNNVLVYHGDAVTNVPPRKGYKDGNEYIV VEKKKKSINQNNADIQVVNAISSLTYPGALVKANSELVENQPDVLPVKRD SLTLSIDLPGMTNQDNKIVVKNATKSNVNNAVNTLVERWNEKYAQAYPNV SAKIDYDDEMAYSESQLIAKFGTAFKAVNNSLNVNFGAISEGKMQEEVIS FKQIYYNVNVNEPTRPSRFFGKAVTKEQLQALGVNAENPPAYISSVAYGR QVYLKLSTNSHSTKVKAAFDAAVSGKSVSGDVELTNIIKNSSFKAVIYGG SAKDEVQIIDGNLGDLRDILKKGATFNRETPGVPIAYTNFLKDNELAVI KNNSEYIETTSKAYTDGKINIDHSGGYVAQFNISWDEVNYDLE<u>IVGGWEC</u> EKHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRHSLF HPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAE LTDAVKVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISN DVCAQVHPQKVTKFMLCAGRWTGGKSTCSGDSGGPLVCYGVLQGITSWGS EPCALPERPSLYTKVVHYRKWIKDTIVANP **[0398]** There is one AA difference between this PSA and the sequence in NM_001648, at position N 221 Y). pGG55-LLO-PSA was electroporated into *L. monocytogenes* XFL-7 (Example 1).

Growth and Storage of Bacterial Vaccine Strains

[0399] Recombinant *Listeria*-PSA was grown in an animal product free medium (Modified Terrific Broth), in the presence of 34 µg/ml chloramphenicol and 250 µg/ml streptomycin at 37° C. in a shaker incubator. After reaching an optical density (OD_{600}) of 0.5, which indicated a logarithmic growth phase, bacteria were collected by centrifugation, and the pellet was washed 2 times in Phosphate Buffered Saline (PBS) and resuspended in PBS containing 2% glycerol, then aliquoted and stored at -80° C. One aliquot was thawed 1 day later and titrated to determine bacterial titer (Colony Forming Units/ml). *Listeria* vaccines stored in this manner are stable for up to 1 year. These aliquots were then thawed, diluted at 1×10^7 CFU/dose and used for the immunogenicity studies as follows.

Verification of Expression and Secretion of LLO-PSA

[0400] Four colonies of Lm-PSA were grown in Brain Heart infusion broth in the presence of $34 \mu g/ml$ chloramphenicol for 8 hours. Proteins in the culture broth were precipitated with 10% TCA, separated by SDS-PAGE, transferred to PVDF membranes, and blotted as indicated in the legend to FIG. **13**.

Testing Stability of Lm-PSA Construct

[0401] Lm-PSA was grown and passaged for 7 consecutive days in modified terrific broth containing 34 µg/ml chloramphenicol. Plasmid DNA was purified from the bacteria at different time points during passaging and tested for integrity and the presence of PSA gene by amplification of PSA gene by PCR or EcoRI/HindIII restriction mapping of the plasmid.

Results

[0402] A *Listeria* strain was created that expresses a non-hemolytic LLO fused to a truncated PSA (kallikreinrelated peptidase 3). The resulting recombinant *Listeria* strain secretes a protein of the predicted size for LLO-PSA (75 Kd), which is detected by both anti-LLO and anti-PSA antibodies, showing that LLO-PSA protein was expressed and secreted (FIG. **13**).

[0403] To test the in vitro stability of Lm-PSA, the strain was grown and passaged for 7 consecutive days in modified terrific broth. After this time, the bacteria retained the plasmid, the plasmid contained the PSA gene and there were no deletions or re-arrangements in the plasmid, indicating plasmid stability (FIGS. **14**A-**14**B).

[0404] To test the in vivo stability of Lm-PSA, the strain was passaged twice through mice. The plasmid was then sequenced by GenewizTM and found to have the following sequence:

(SEQ ID No: 55) AATTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAGGCCGG

ATAAAACTTGTGCTTATTTTTTTTTTTTCTTTACGGTCTTTAAAAAGGCCGTAATAT

continued TCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCC AGTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATA ACTCAAAAAATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTG GAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCCAAAAGTTGGCCCA GATCTTCCGTCACAGGTATTTATTCGGCGCAAAGTGCGTCGGGTGATGCT GCCAACTTACTGATTTAGTGTATGATGGTGTTTTTTGAGGTGCTCCAGTGG CGTAACGGCAAAAGCACCGCCGGACATCAGCGCTAGCGGAGTGTATACTG GCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAGTGCTTCATGTGGC AGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGAT ATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGC GGCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCC AGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGCGCAAAGCCGTTTTTC CATAGGCTCCGCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCA GTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTG GCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTC ATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTT CCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTT CAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCC GGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTA GAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGAC AAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGT TGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCG TTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCA TCTTATTAATCAGATAAAATATTTCTAGCCCTCCTTTGATTAGTATATTC CTATCTTAAAGTTACTTTTATGTGGAGGCATTAACATTTGTTAATGACGT GCGTTTCATCTTTAGAAGCGAATTTCGCCAATATTATAATTATCAAAAGA GAGGGGTGGCAAACGGTATTTGGCATTATTAGGTTAAAAAATGTAGAAGG ${\tt AGAGTGAAACCC} \underline{{\tt ATGAAAAAAAATAATGCTAGTTTTTATTACACTTATATT}$ AGTTAGTCTACCAATTGCGCAACAAACTGAAGCAAAGGATGCATCTGCAT TCAATAAAGAAAATTCAATTTCATCCATGGCACCACCAGCATCTCCGCCT GCAAGTCCTAAGACGCCAATCGAAAAGAAACACGCGGATGAAATCGATAA GTATATACAAGGATTGGATTACAATAAAAACAATGTATTAGTATACCACG GAGATGCAGTGACAAATGTGCCGCCAAGAAAAGGTTACAAAGATGGAAAT

AGACATTCAAGTTGTGAATGCAATTTCGAGCCTAACCTATCCAGGTGCTC

-continued

TCGTAAAAGCGAATTCGGAATTAGTAGAAAATCAACCAGATGTTCTCCCT GTAAAACGTGATTCATTAACACTCAGCATTGATTTGCCAGGTATGACTAA TCAAGACAATAAAATAGTTGTAAAAAATGCCACTAAATCAAACGTTAACA ACGCAGTAAATACATTAGTGGAAAGATGGAATGAAAAATATGCTCAAGCT TATCCAAATGTAAGTGCAAAAATTGATTATGATGACGAAATGGCTTACAG TGAATCACAATTAATTGCGAAATTTGGTACAGCATTTAAAGCTGTAAATA ATAGCTTGAATGTAAACTTCGGCGCAATCAGTGAAGGGAAAATGCAAGAA GAAGTCATTAGTTTTAAACAAATTTACTATAACGTGAATGTTAATGAACC TACAAGACCTTCCAGATTTTTCGGCAAAGCTGTTACTAAAGAGCAGTTGC AAGCGCTTGGAGTGAATGCAGAAAATCCTCCTGCATATATCTCAAGTGTG GCGTATGGCCGTCAAGTTTATTTGAAATTATCAACTAATTCCCATAGTAC TAAAGTAAAAGCTGCTTTTGATGCTGCCGTAAGCGGAAAATCTGTCTCAG ATTTACGGAGGTTCCGCAAAAGATGAAGTTCAAATCATCGACGGCAACCT CGGAGACTTACGCGATATTTTGAAAAAAGGCGCTACTTTTAATCGAGAAA CACCAGGAGTTCCCATTGCTTATACAACAAACTTCCTAAAAGACAATGAA TTAGCTGTTATTAAAAACAACTCAGAATATATTGAAACAACTTCAAAAGC TTATACAGATGGAAAAATTAACATCGATCACTCTGGAGGATACGTTGCTC AATTCAACATTTCTTGGGATGAAGTAAATTATGATCTCGAGattgtggga ggctgggagtgcgagaagcattcccaaccctggcaggtgcttgtggcctc ${\tt tcgtggcagggcagtctgcggcggtgttctggtgcacccccagtgggtcc}$ tcacagetgeccactgcatcaggaacaaaagegtgatettgetgggtegg cacageetgtttcateetgaagaeacaggeeaggtattteaggteageea cagetteccacaccegetetacgatatgageeteetgaagaategattee tcaqqccaqqtqatqactccaqccacqacctcatqctqctccqcctqtca qqaqccaqcactqqqqaccacctqctacqcctcaqqctqqqqcaqcattq aaccaqaqqaqttcttqaccccaaaqaaacttcaqtqtqtqqacctccat gttatttccaatgacgtgtgtgcgcaagttcaccctcagaaggtgaccaa gttcatgctgtgtgctggacgctggacaggggggcaaaagcacctgctcgg gtgattctggggggcccacttgtctgttatggtgtgcttcaaggtatcacg $\underline{tcatggggcagtgaaccatgtgccctgcccgaaaggccttccctgtacac}$ caaggtggtgcattaccggaagtggatcaaggacaccatcgtggccaacc CCTAAACTAGTGACTACAAGGACGATGACGACAAGTGATACCCCGGGATCT AAATAAATCCGTTTTTTAAATATGTATGCATTTCTTTTGCGAAATCAAAAT TTGTATAATAAAATCCTATATGTAAAAAACATCATTTAGCGTGACTTTCT TTCAACAGCTAACAATTGTTGTTACTGCCTAATGTTTTTAGGGTATTTTA AAAAAGGGCGATAAAAAACGATTGGGGGATGAGACATGAACGCTCAAGCA GAAGAATTCAAAAAATATTTAGAAACTAACGGGATAAAACCAAAACAATT

continued TCATAAAAAAGAACTTATTTTTTAACCAATGGGATCCACAAGAATATTGTA TTTTCCTATATGATGGTATCACAAAGCTCACGAGTATTAGCGAGAACGGG ACCATCATGAATTTACAATACTACAAAGGGGGCTTTCGTTATAATGTCTGG CTTTATTGATACAGAAACATCGGTTGGCTATTATAATTTAGAAGTCATTA GCGAGCAGGCTACCGCATACGTTATCAAAATAAACGAACTAAAAGAACTA CTGAGCAAAAATCTTACGCACTTTTTCTATGTTTTCCAAACCCTACAAAA ACAAGTTTCATACAGCCTAGCTAAATTTAATGATTTTTCGATTAACGGGA AGCTTGGCTCTATTTGCGGTCAACTTTTAATCCTGACCTATGTGTATGGT AAAGAAACTCCTGATGGCATCAAGATTACACTGGATAATTTAACAATGCA GGAGTTAGGATATTCAAGTGGCATCGCACATAGCTCAGCTGTTAGCAGAA TTATTTCCAAATTAAAGCAAGAGAAAGTTATCGTGTATAAAAATTCATGC TTTTATGTACAAAATCGTGATTATCTCAAAAGATATGCCCCCTAAATTAGA TGAATGGTTTTTATTTAGCATGTCCTGCTACTTGGGGGAAAATTAAATTAAA TCAAAAACAGTATTCCTCAATGAGGAATACTGTTTTATATTTTATTCGAA TAAAGAACTTACAGAAGCATTTTCATGAACGCGTACGATTGCTTCACCAA GAAGAGCTGGTCGACCGATGCCCTTGAGAGCCCTTCAACCCAGTCAGCTCC TTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTT CTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTT TCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTT GCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCC CGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGG CCGACGCGCTGGGCTACGTCTTGCTGGCGTTCGCGACGCGAGGCTGGATG GCCTTCCCCATTATGATTCTTCTCGCTTCCGGCGGCATCGGGATGCCCGC GTTGCAGGCCATGCTGTCCAGGCAGGTAGATGACGACCATCAGGGACAGC TTCAAGGATCGCTCGCGGCTCTTACCAGCCTAACTTCGATCATTGGACCG CTGATCGTCACGGCGATTTATGCCGCCTCGGCGAGCACATGGAACGGGTT GGCATGGATTGTAGGCGCCGCCCTATACCTTGTCTGCCTCCCCGCGTTGC GTCGCGGTGCATGGAGCCGGGCCACCTCGACCTGAATGGAAGCCGGCGGC CGGAGAACTGTGAATGCGCAAACCAACCCTTGGCAGAACATATCCATCGC GTCCGCCATCTCCAGCAGCCGCACGCGGCGCATCTCGGCTTTCGATTTGT TTTTGAATGGTTTATCCGATAAAGAAGTTGAAGAACAAACTGGAATCAAT CGCCGAACGTTTAGAAGGTATCGAGCAAGATATAACGTGACAGTCGATCA AAGAAAAAACAATGAAAAGAGGGATAGTTAATGAGTACGGTTATTTTAGC TGAAAAACCAAGCCAGGCATTAGCCTACGCAAGTGCTTTAAAAACAAAGCA CCAAAAAAGACGGTTATTTTGAGATCAAAGACCCACTATTTACAGATGAA ACGTTTATCACCTTTGGTTTTGGGCATTTAGTGGAATTAGCAGAACCAGG TCATTATGACGAAAAAGTGGCAAAATTGGAAACTTGAATCTTTGCCGATTT TTCCTGATCGATACGATTTTGAAGTTGCAAAAGATAAGGGAAAGCAGTTT

AAAATTGTTGCAGAACTTCTCAAAAAGGCAAATACAATTATTGTTGCAAC AGATAGCGACAGAGAAGGTGAAAATATCGCCTGGTCGATTATCCATAAAG CAAATGCCTTTTCAAAAGATAAAACATTTAAAAGACTATGGATCAATAGC TTAGAAAAAGATGTAATCCGAAGCGGTTTTCAAAATTTGCAACCTGGAAT GAATTACTATCCCTTTTATCAAGAAGCGCAAACACGCCAAATTGCCGATT GGTTGATCGGCATGAACGCAAGCCCTTTGTATACGTTAAATTTACAACAG AAGGGCGTACAAGGTACATTTTCACTAGGACGTGTTCAAACGCCCACCTT ATACCTTATTTTTCAGCGCCAGGAAGCCATAGAGAATTTTAAAAAAGAAC CTTTTTTCGAGGTGGAAGCTAGTATAAAAGTAAACCAAGGGTCGTTTAAG GGCGTTCTAAGCCCCACACAGCGTTTTAAAAACCCAAGAGGAGCTTTTAGC TTTTGTTTCTTCTAAACAAGCTAAAATAGGCAATCAAGAGGGGGATAATTG TTAAGTAGTTTGCAATCAAAAGTCAATCAGCTTTATAAAGCGACAGCGAG GTAACAGCAAGCACAGTCAAGGTATACACCTTTGACAAAAAATAGCACAT TCTCTATCGAAAATTTTTGCTTATTTTTAAATTATTTGGGAAATTTTC CCAATCCCTTTTTCTAACTCAAAAAATATAATCACTCAAAAATTTAAAAAGG GCGCACTTATACATCATTTTAAAAAATTGATGTAACGTGCTAAGTTCAAA ACAAAGGGCGCACTTATACACGATTTTCAATCTTGTATATTTCTAACGAA AAGCGTGCGCCAAAAAACCCCCCTTCGTCAATTTTGACAGGGGGGCTTTTTG ATGTAAAAATTTCTATCGAAATTTAAAAAATTCGCTTCACTCATGTTATAA AGACTTAAAATAAAATAACTCTTTAAAAATCTTTTGCTAGTTGTTCTTCAA TATTTTTTTTTCGGTGCATCTTCCAAGTAAAGTATAACACACTAGACTTA TTTACTACGTTTCATAAGTCATTAATGCGTGTGCTCTGCGAGGCTAGTTT TTGTGCAAGCACAAAAAATGGACTGAATAAATCAGTCCATAAGTTCAAAA CCAAATTCAAAATCAAAAACCACAAGCAACCAAAAAATGTGGTTGTTATAC GTTCATAAATTTTATGATCACTTACGTGTATAAAATTAAATTCACTTTCA AAATCTAAAAACTAAATCCAATCATCTACCCTATGAATTATATCTTGAAA TTCATTCATAAATAGTGAAGCATGGTAACCATCACATACAGAATGATGAA GTTGCAGAGCAACTGGTATATAAATTTTATTATTCTCACTATAAAATTTA CCTATCGTAATAATAGGCAATAAAAAGCTGCTATTGTTACCAATATTTAA ATTAAATGAACTAAAATCAATCCAAGGAATCATTGAAATCGGTATGGTGT TTTCAGGTATCGGTTTTTTAGGAAACATTTCTTCTTTATCTTTATATTCA TTCAGTCCAAATGTTAGTAAATTTTCAGTTTGCTTATTAAAAACTGTAT ACAAAGGATTTAACTTATCCCAATAACCTAATTTATTCTCACTATTAATT CCTGTTCTAAACACTTTATTTTTTTTTTTTTTTTTTCAACTTCCATAATTGCATAAAT TAAAGAGGGATAAATTTCATATCCTTTCTTTTTATCATATCTTTAAAACA AAGTAATATCAATTTCTTTAGTAATGCTATAAGTAGTTTGCTGATTAAAA

continued

continued AAAAGTCATATATAACTTCCTCCTAAATTTTAAATTTTTATATTTAGGAG GAATAATCCTCTGATTTTTTCATACGTTATGTCACCTCGTAAATATTAAT TATACTGAATTAGCAATTTTTATCAAATAAAACTTATTTTACTTCCAAAA CCTAAATTCACGTTGCCAAAAATCAATCTGCTTTTGCAATTGTTTTTCGT TCGCTTTTAAAGTCGATTTCATTAATTCCGTTAAATCAATTGGAGATATT CCACATACTTTCTTCATGCAACAAAGTATAAACCATAGCTTGCTCATTAA TTTTTTCTAAAGTAGCCCACGCAGGTTTCAAGATGTGTAAATCATTAAAA CAATCATTCCAGTAATCAACCATATCTCTTTTTAATTCAACTTCTACACG CCATAAATGTTCAGACACAACTTCAACATCTGCGTTATCTTTACGTTCTT TATTTTGTTTCTGGCTTGCCATTACGACCATAAAAAACAGTTTTCTTAAC TGCTTTATCAGTCATTGCATAGTAATCGCTCAAATCATCTTCAAAATCAA AAGCTAAGTCTAATCTTGTAAAACCGTCATCTTCCATGTAGTCGATAATA TTTTGTTTTAACCAAATCATTTCTTCATGTGTGAGTTTATTGGGATTAAA TTCAACACGCATATTACGTCTATCCCAAGTATCTGCTTTTACTTGTCAT AGTATATCCCAAAGTCGTATTTGTGGCTCTACACTCATAAAGTCAGATAG CTTTTTAGCATTAGTTTTGTTCAAATTTCCAACGATTGTCATGGCATCAA AACTTAATGCGGGTTGAGATTTTCCCAAAGTTTGACCACTTAACCGGCTA TTACTTAACCGGCTATTAGAGACGGAACTAACTCAACGCTAGTAGTGGAT TTAATCCCAAATGAGCCAACAGAACCAGAACCAGAACAGAACAAGTAAC ATTGGAGTTAGAAATGGAAGAAGAAGAAAAAGCAATGATTTCGTGTGAATAA TGCACGAAATCATTGCTTATTTTTTTTTTTAAAAAGCGATATACTAGATATAAC GAAACAACGAACTGAATAAAGAATACAAAAAAAGAGCCACGACCAGTTAA AAAGAAGTCGAGACCCAAAATTTGGTAAAGTATTTAATTACTTTATTAAT CAGATACTTAAATATCTGTAAACCCATTATATCGGGTTTTTGAGGGGGATT TCAAGTCTTTAAGAAGATACCAGGCAATCAATTAAGAAAAACTTAGTTGA TTTTCGTAAGAAAGGAGAACAGCTGAATGAATATCCCTTTTGTTGTAGAA ACTGTGCTTCATGACGGCTTGTTAAAGTACAAATTTAAAAATAGTAAAAT TCGCTCAATCACTACCAAGCCAGGTAAAAGTAAAGGGGGCTATTTTGCGT ATCGCTCAAAAAAAGCATGATTGGCGGACGTGGCGTTGTTCTGACTTCC GAAGAAGCGATTCACGAAAATCAAGATACATTTACGCATTGGACACCAAA CGTTTATCGTTATGGTACGTATGCAGACGAAAACCGTTCATACACTAAAG GACATTCTGAAAACAATTTAAGACAAATCAATACCTTCTTTATTGATTT GATATTCACACGGAAAAAGAAACTATTTCAGCAAGCGATATTTTAACAAC

continued AGCTATTGATTTAGGTTTTATGCCTACGTTAATTATCAAATCTGATAAAG GTTATCAAGCATATTTTGTTTTAGAAACGCCAGTCTATGTGACTTCAAAA TCAGAATTTAAATCTGTCAAAGCAGCCAAAATAATCTCGCAAAATATCCCG AGAATATTTTGGAAAGTCTTTGCCAGTTGATCTAACGTGCAATCATTTTG GGATTGCTCGTATACCAAGAACGGACAATGTAGAATTTTTTGATCCCAAT TAATAAGGGCTTTACTCGTTCAAGTCTAACGGTTTTAAGCGGTACAGAAG GCAAAAAACAAGTAGATGAACCCTGGTTTAATCTCTTATTGCACGAAACG AAATTTTCAGGAGAAAAGGGTTTAGTAGGGCGCAATAGCGTTATGTTTAC CCTCTCTTTAGCCTACTTTAGTTCAGGCTATTCAATCGAAACGTGCGAAT ATAATATGTTTGAGTTTAATAATCGATTAGATCAACCCTTAGAAGAAAAA GAAGTAATCAAAATTGTTAGAAGTGCCTATTCAGAAAACTATCAAGGGGC TAATAGGGAATACATTACCATTCTTTGCAAAGCTTGGGTATCAAGTGATT TAACCAGTAAAGATTTATTTGTCCGTCAAGGGTGGTTTAAATTCAAGAAA AAAAGAAGCGAACGTCAACGTGTTCATTTGTCAGAATGGAAAGAAGAATTT AATGGCTTATATTAGCGAAAAAAGCGATGTATACAAGCCTTATTTAGCGA CGACCAAAAAAGAGATTAGAGAAGTGCTAGGCATTCCTGAACGGACATTA GATAAATTGCTGAAGGTACTGAAGGCGAATCAGGAAATTTTCTTTAAGAT TAAACCAGGAAGAAATGGTGGCATTCAACTTGCTAGTGTTAAATCATTGT GCGCTGACAGCTTCGTTTAATTTAGAACGTACATTTATTCAAGAAACTCT AAACAAATTGGCAGAACGCCCCAAAACGGACCCACAACTCGATTTGTTTA GCTACGATACAGGCTGAAAATAAAACCCGCACTATGCCATTACATTTATA TCTATGATACGTGTTTGTTTTTTTTTTTTTGCTGTTTAGTGAATGATTAGCAGA AATATACAGAGTAAGATTTTAATTAATTATTAGGGGGGAGAAGGAGAGAGAG AGCCCGAAAACTTTTAGTTGGCTTGGACTGAACGAAGTGAGGGAAAGGCT ACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACACTTGATCTTTTAA GTTGCTATCATTTATAGGTCAATAGAGTATACCTATTTGTCCTAATATGA TTTTAGCAGTATAATTGACTTGGTGAATAGGTCATTTAAGTTGGGCATAA TAGGAGGAGTAAAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACG AAGTGGTGGCTATTTTTAATGAGCAACAATATGCGCAAGATTTTATCGCT TACGAAAAGACAATTTCTGATAAGCAATTTGAAAATTGAAAAAGTAGATAT GCTAAAATTGGTTATGCACGTGTCAGTAGCAAAGAACAGAACTTAGATCG GCAATTACAAGCGTTACAGGGCGTTTCTAAGGTCTTTTCAGACAAATTAA GCGGTCAATCGGTCGAACGCCCACAATTACAAGCTATGCTTAACTATATT CGTGAAGGGGATATTGTTATTGTTACTGAATTAGATCGATTAGGACGAAA TAATAAAGAATTAACAGAATTGATGAATCAAATTCAAATTAAGGGGGCAA CCCTGGAAGTCTTAAATTTACCCTCAATGAATGGTATTGAAGATGAAAAT

-continued TTAAGGCGTTTGATTAATAGCCTTGTCATTGAATTGTACAAGTATCAAGC

AGAATCAGAACGAAAAAAAATTAAGGAACGTCAGGCACAAGGAATCGAAA TTGCTAAGAAAAAAGGCAAATTCAAAGGTCGTCAGCATAAATTTAAAGAA AATGATCCACGTTTAAAGTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCG CATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCC TTACTGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGAC TGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGTCTTCGG TTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCCCCTACGTGCTGCT GAAGTTGCCCGCAACAGAGAGTGGAACCAACCGGTGATACCACGATACTA TGACTGAGAGTCAACGCCATGAGCGGCCTCATTTCTTATTCTGAGTTACA ACAGTCCGCACCGCTGCCGGTAGCTCCTTCCGGTGGGCGCGGGGGCATGAC TATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGAC AGGTGCCGGCAGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATA CCCACGCCGAAACAAGCGCCCTGCACCATTATGTTCCGGATCTGCATCGC AGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGC GCTAACCGTTTTTATCAGGCTCTGGGAGGCAGAATAAATGATCATATCGT GAGAAGCACACGGTCACACTGCTTCCGGTAGTCAATAAACCGGTAAACCA GCAATAGACATAAGCGGCTATTTAACGACCCTGCCCTGAACCGACGACCG GGTCGAATTTGCTTTCGAATTTCTGCCATTCATCCGCTTATTATCACTTA TTCAGGCGTAGCAACCAGGCGTTTAAGGGCACCAATAACTGCCTTAAAAA AATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAG CATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATCG CCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTG AAAACGGGGGGGGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACT GGTGAAACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCTCAATAA ACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGC GAATATATGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAG CGATGAAAACGTTTCAGTTTGCTCATGGAAAACGGTGTAACAAGGGTGAA CACTATCCCATATCACCAGCTCACCGTCTTTCATTGCCATACGG.

[0405] The sequence matches exactly the predicted sequence of the PSA cloned into pGG55. LLO-PSA open reading frame is underlined; lower case letters indicate the sequence of PSA alone.

Example 8: *Listeria*-LLO-PSA Constructs Elicit Antigen-Specific Cytotoxic T Lymphocytes

Materials and Experimental Methods

CTL Assays

[0406] Male C57BL/6 mice were immunized i.p. with either 0.1 LD50 of Lm-PSA or 0.1 LD50 of Lm-HPV16E7E6TM and boosted 1 time after 2 weeks. Spleens were harvested 6 days after the boost. Isolated

splenocytes were prepared and stimulated for 5 days with mitomycin-treated, PSA-vaccinia infected, MC57G cells as feeders. In the first experiment, a CTL assay was performed using PSA H2Db peptide (1 µM, HCIRNKSVIL; SEQ ID No: 60)-pulsed EL4 cells as targets labeled with 100 µM of europium (Sigma), using the following E:T ratios: 25:1, 8:1, 2.8:1, 0.9:1, 0.3:1, 0.1:1 and 0.03:1. After 4 hour incubation of mixed targets and effectors, cells were separated from the culture supernatant by centrifugation. Released europium from lysed cells in the supernatant was determined as follows: 10 µl of the supernatant was added to 100 µl Europium enhancement solution (Delfia). Absorbance was read at 590 nm using Victor II spectrophotometer (Perkin Elmer). Maximum release of Europium was determined from the supernatant of labeled target cells with 1% triton X-100 and the spontaneous release was determined from the target cells incubated in the absence of effector cells. In the second experiment, E:T ratio was kept constant at 25:1, and the peptide concentrations was varied as indicated. Percent specific lysis was determined as [(experimental release -spontaneous release)/(maximum release -spontaneous release)]×100.

Cytokine Secretion Assays

[0407] Male C57BL/6 mice were immunized with either Lm-PSA or *Listeria* expressing different fragments of Wilm's tumor antigen (negative control) or left un-immunized. Mice were boosted 1 time after two weeks and the spleens were harvested 6 days after the boost. Isolated splenocytes were prepared and stimulated in vitro overnight in the presence of 1 μ M PSA H2Db peptide. IFN- γ secretion by isolated splenocytes was determined by ELISpot assay.

Results

[0408] To test the immunogenicity of LLO-PSA, 6-8 weeks old C57BL/6 mice (Jackson laboratories) were immunized i.p. with either Lm-PSA (0.1 LD_{50} , 1×10⁷ CFU/dose) or Lm-HPV16E7E6TM (negative control, 0.1 LD_{50} , 1×10⁶ CFU/dose) or left un-immunized. Splenocytes from vaccinated mice were tested for ability to recognize and lyse PSA peptide presenting cells in vitro in a CTL assay. Splenocytes from the immunized mice were able to recognize and lyse PSA-peptide pulsed tumor cells with high efficiency (FIG. **15**A). Further, the response was dose-dependent with regard to the amount of antigen presented by the target cells (FIG. **15**B).

[0409] In additional assays, mice were immunized with Lm-PSA or strains expressing fragments of Wilm's tumor antigen (negative control), and cytokine secretion was determined, in response to incubation with the PSA peptide. Splenocytes from the vaccinated mice exhibited high levels of IFN- γ secretion (FIG. **16**).

[0410] Thus, PSA-expressing LM strains and LLO-PSA fusions are efficacious in the induction of antigen-specific CTL that are capable of target cell lysis and IFN- γ secretion. Accordingly, PSA-expressing LM strains and LLO-PSA fusions are efficacious in therapeutic and prophylactic vaccination against PSA-expressing prostate cancer.

Example 9: *Listeria*-LLO-PSA Constructs Provide Tumor Protection

Materials and Experimental Methods

Cell Culture, Materials, and Reagents

[0411] TRAMP-C1 mouse prostate adenocarcinoma cells derived from a C57BL/6 mouse prostate tumor was pur-

chased from ATCC. This cell line is negative for PSA expression. Cells were maintained in Dulbecco's modified Eagle's medium with 4 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate and 4.5 g/L glucose supplemented with 0.005 mg/ml bovine insulin and 10 nM dehydroisoandrosterone, 90%; fetal bovine serum, 5%; Nu-Serum IV, 5%. The gene encoding the full-length human PSA protein, including its signal sequence, was subcloned into a pUV6/v5 plasmid (Invitrogen). After confirmation of the correct sequence, the plasmid was linearized and transfected into TRAMP-C1 cells using Lipofectamine 2000TM (Invitrogen). Positive clones were selected in the presence of 10 μ g/ml blasticidin. Several stably expressing PSA clones were isolated and tested for the secretion of human PSA into the cell culture medium.

Subcutaneous Tumor Inoculation

[0412] Two different clones of PSA-expressing TRAMP-C1 cells were resuspended at 5×10^6 cells per 200 mcl dose. Male C57BL/6 mice (8 per group, 6-8 weeks old) were inoculated s.c. in the left flank.

Tumor Regression Studies

[0413] 7 days after tumor inoculation, mice are immunized with either 0.1 LD_{50} of Lm-PSA (10⁷ CFU), 0.1 LD_{50} of Lm-HPV16E7, or PBS. Two boosts are administered on days 15 and 25 post-tumor inoculation. Tumors are monitored for 90 days. Tumor size is defined as the mean of two perpendicular diameters.

Orthotopic Injection of Prostate Tumor Cells

[0414] Six-week-old male C57BL/6 mice are anesthetized with 2% isoflurane. In a sterile field, a lower midline incision is made to access the prostate. The left lobe of the dorsal prostate is injected with 1×10^5 TRAMPC-1/PSA tumor cells from a single-cell suspension in PBS, using a 27-gauge needle fitted on a 50-0 Hamilton syringe. Mice are sutured, and sutures are removed 10 days after surgery. Seven days later, mice are immunized i.v. with Lm-PSA, LmHPV16E7 or PBS. Mice are sacrificed at different time points, prostates are removed surgically and weighed for determination of the tumor growth.

Tumor Protection Studies

[0415] C57BL/6 mice are immunized and boosted with Lm-PSA, LmHPV16E7, or PBS, as described in the previous Example. Seven days after the boost, mice are injected s.c. with 5×10^6 TRAMPC-1/PSA tumor cells. Growth of the tumors is monitored by measuring with a caliper for 90 days.

Inhibition of Prostate Cancer Metastases

[0416] For orthotopic tumor inoculation, 8-10 week old C57BL/6 male mice (Jackson labs) are anesthetized with isoflurane. A low abdominal skin incision cranial to the prepucial glands is made, and the seminal vesicles are carefully exteriorized to expose the dorso-lateral prostate. Using a 29 gauge insulin syringe, 5×10^5 TRAMPC-1/PSA cells suspended in PBS are injected into the dorso-lateral prostate in a 20 µL volume. The seminal vesicles and prostate are held for one minute to allow the injected cells to settle into the gland and then gently replaced into the

abdominal cavity. Body wall and skin wounds closed are closed with 5-0 PDS and 5-0 nylon, respectively.

[0417] Tumors are allowed to develop for 50 days. The primary tumor is removed during necropsy and fixed in formalin, and then paraffin embedded, sectioned and stained with H&E. Enlarged lymph nodes from the paralumbar region are visualized under surgical microscopy and then dissected out, fixed, embedded, and histologically analyzed for prostate cancer cells.

Tissue Immunostaining

[0418] Formalin-fixed prostate tumor tissues are paraffin embedded, sectioned, applied to Plus Slides[™] (VWR Corp), and then stained using a Dako autostainer system. Slides are pre-treated with 3.0% hydrogen peroxide for 10 minutes, then rinsed and treated with a 10 µg/mL solution of proteinase K solution for 3 minutes to enhance antigen retrieval. Non-specific binding sites are blocked by addition of normal goat serum for 30 minutes, and then a 10 µg/mL solution of rabbit anti-human PSA antibody (Sigma) or rabbit antihuman Proliferating Cell Nuclear Antigen (AB15497, AbCam antibodies) is applied to the tissue for 30 minutes. Primary antibody is removed by washing, and appropriate horseradish peroxidase-labeled secondary antibody is applied for a 30-minute period and detected using Nova-Red[™] substrate (Vector Labs, Burlingame, Calif.) in an 8-minute incubation. Slides are counter-stained with hematoxylin before drying.

[0419] Cells from slides of primary and lymph node sections are scored as either positive or negative for human PSA. Four regions of each slide were randomly selected, and 20 cells from each region are scored. PSA staining in tumors is compared to lymph node metastases from the same mouse.

Listeria Strains

[0420] *Listeria* vaccines are prepared and stored as described in the previous Example.

Results

[0421] *Listeria* vaccines described in the previous Example are used in tumor protection experiments in an orthotopic prostate carcinoma animal model. Mice are immunized with either Lm-PSA, LmHPV16E7, or PBS, then injected with TRAMPC-1 Lm-PSA protects mice from tumor formation.

[0422] In additional experiments, mice are first injected with TRAMPC-1/PSAprostate cancer cells, vaccinated with Lm-PSA, LmHPV16E7, or PBS 4 days later, and boosted with the same vaccine. Lm-PSA impedes growth of prostate metastases.

[0423] Thus, PSA-producing LM strains and LLO-PSA fusions induce tumor protection.

Example 10: *Listeria*-LLO-Folate Hydrolase 1 (FOLH1) Constructs Elicit Antigen-Specific Cytotoxic T Lymphocytes

Materials and Experimental Methods

Growth and Storage of Bacterial Vaccine Strains

[0424] Recombinant *Listeria*-LLO-FOLH1 is grown and maintained as described for *Listeria*-PSA in Example 7 above.

Results

[0425] A gene encoding a truncated FOLH1, which contains the complete open reading frame of FOLH1, except for its secretion signal sequence, is fused to a gene encoding a truncated non-hemolytic fragment of Listeriolysin 0, in a similar manner to that described for KLK3 in Example 7 above. The gene is cloned into *Listeria* plasmid pGG55 and electroporated into LM XFL-7. LLO-FOLH1 protein is thus expressed and secreted episomally from this recombinant *Listeria* strain.

[0426] To test the immunogenicity of LLO-FOLH1, mice re immunized with either Lm-LLO-FOLH1 or LmWT1A (irrelevant antigen control) or PBS (negative control), as described for LLO-KLK3 in Example 7 above. Following culture with vaccinia-PSA infected stimulator cells with for 5 days, splenocytes from the vaccinated mice are able to recognize and lyse FOLH1-peptide pulsed tumor cells with high efficiency in a CTL assay. In addition, the splenocytes exhibit high levels of IFN- γ secretion, in response to incubation with the FOLH1 peptide.

[0427] Thus, FOLH1-expressing LM strains and LLO-FOLH1 fusions are efficacious in the induction of antigen-

SEQUENCE LISTING

specific CTL that are capable of target cell lysis and IFN- γ secretion. Accordingly, FOLH1-expressing LM strains and LLO-FOLH1 fusions are efficacious in therapeutic and prophylactic vaccination against PSA-expressing prostate cancer.

Example 11: *Listeria*-LLO-FOLH1 Constructs Provide Tumor Protection

[0428] *Listeria* vaccines described in the previous Example are used in tumor protection experiments in the orthotopic prostate carcinoma animal model described in Example 9 above. Mice are immunized with either Lm-FOLH1, LmWT1A, or PBS, then injected with PC3M-LN4 or 22Rv1 cells. Lm-FOLH1 protects mice from tumor formation.

[0429] In additional experiments, mice are first injected with PC-3M prostate cancer cells, as described for Example 9 above, vaccinated with Lm-FOLH1, LmWT1A, or PBS 4 days later, and boosted with the same vaccine. Lm-FOLH1 impedes growth of prostate metastases.

[0430] Thus, FOLH1-producing LM strains and Lm-FOLH1 fusions induce tumor protection.

<160> NUMBER OF SEQ ID NOS: 60 <210> SEQ ID NO 1 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 1 Lys Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala 5 10 Ser Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys 25 20 30 <210> SEQ ID NO 2 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEOUENCE: 2 Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg 5 10 <210> SEQ ID NO 3 <211> LENGTH: 28 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 3 Lys Ala Ser Val Thr Asp Thr Ser Glu Gly Asp Leu Asp Ser Ser Met 10 Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys 20 25 <210> SEQ ID NO 4 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes

```
-continued
```

<400> SEQUENCE: 4

Lys Asn Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro Thr Asp 5 1 10 15 Glu Glu Leu Arg 20 <210> SEQ ID NO 5 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 5 Arg Gly Gly Ile Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly 1 10 15 5 Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp 25 20 30 Arg <210> SEQ ID NO 6 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Streptococcus pyogenes <400> SEQUENCE: 6 Lys Gln Asn Thr Ala Ser Thr Glu Thr Thr Thr Thr Asn Glu Gln Pro 1 5 10 15 Lys <210> SEQ ID NO 7 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Streptococcus equisimilis <400> SEQUENCE: 7 Lys Gln Asn Thr Ala Asn Thr Glu Thr Thr Thr Thr Asn Glu Gln $\ensuremath{\mathsf{Pro}}$ 1 5 10 15 Lys <210> SEQ ID NO 8 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 8 22 ggctcgagca tggagataca cc <210> SEQ ID NO 9 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 9 ggggactagt ttatggtttc tgagaaca 28

<210> SEQ ID NO 10

51

-continued	
<211> LENGTH: 31 <212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: chemically synthesized	
<400> SEQUENCE: 10	
gggggctagc cctcctttga ttagtatatt c	31
<210> SEQ ID NO 11	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial <220> FEATURE:	
<223> OTHER INFORMATION: chemically synthesized	
<400> SEQUENCE: 11	
ctccctcgag atcataattt acttcatc	28
<210> SEQ ID NO 12 <211> LENGTH: 55	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE: <223> OTHER INFORMATION: chemically synthesized	
<400> SEQUENCE: 12	
gactacaagg acgatgaccg acaagtgata acccgggatc taaataaatc cgttt	55
<210> SEQ ID NO 13	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial <220> FEATURE:	
<223> OTHER INFORMATION: chemically synthesized	
<400> SEQUENCE: 13	
cccgtcgacc agctcttctt ggtgaag	27
<210> SEQ ID NO 14 <211> LENGTH: 100	
<212> TYPE: PRT	
<213> ORGANISM: Listeria monocytogenes	
<400> SEQUENCE: 14	
Met Arg Ala Met Met Val Val Phe Ile Thr Ala Asn Cys Ile Thr Ile 1 5 10 15	
Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp Ser Glu Asp Ser Ser Leu	
20 25 30	
Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu 35 40 45	
Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val Ser Ser Arg	
50 55 60	
Asp Ile Lys Glu Leu Glu Lys Ser Asn Lys Val Arg Asn Thr Asn Lys	
65 70 75 80	
Ala Asp Leu Ile Ala Met Leu Lys Glu Lys Ala Glu Lys Gly Pro Asn 85 90 95	
Ile Asn Asn 100	
100	

											-	COII	CIII	uea	
<pre><210> SEQ ID NO 15 <211> LENGTH: 390</pre>															
	<212> TYPE: PRT														
				List	ceria	a moi	nocyt	cogei	nes						
<400> SEQUENCE: 15															
Met 1	Arg	Ala	Met	Met 5	Val	Val	Phe	Ile	Thr 10	Ala	Asn	Суз	Ile	Thr 15	Ile
Asn	Pro	Aab	Ile 20	Ile	Phe	Ala	Ala	Thr 25	Asp	Ser	Glu	Aab	Ser 30	Ser	Leu
Asn	Thr	Asp 35	Glu	Trp	Glu	Glu	Glu 40	Lys	Thr	Glu	Glu	Gln 45	Pro	Ser	Glu
Val	Asn 50	Thr	Gly	Pro	Arg	Tyr 55	Glu	Thr	Ala	Arg	Glu 60	Val	Ser	Ser	Arg
Asp 65	Ile	Lys	Glu	Leu	Glu 70	Lys	Ser	Asn	Lys	Val 75	Arg	Asn	Thr	Asn	Lүа 80
Ala	Asp	Leu	Ile	Ala 85	Met	Leu	Lys	Glu	Lys 90	Ala	Glu	ГЛа	Gly	Pro 95	Asn
Ile	Asn	Asn	Asn 100	Asn	Ser	Glu	Gln	Thr 105	Glu	Asn	Ala	Ala	Ile 110	Asn	Glu
Glu	Ala	Ser 115	Gly	Ala	Asp	Arg	Pro 120	Ala	Ile	Gln	Val	Glu 125	Arg	Arg	His
Pro	Gly 130	Leu	Pro	Ser	Asp	Ser 135	Ala	Ala	Glu	Ile	Lys 140	ГЛа	Arg	Arg	Lys
Ala 145	Ile	Ala	Ser	Ser	Asp 150	Ser	Glu	Leu	Glu	Ser 155	Leu	Thr	Tyr	Pro	Asp 160
Lys	Pro	Thr	Lys	Val 165	Asn	Lys	Lys	Lys	Val 170	Ala	Lys	Glu	Ser	Val 175	Ala
Asp	Ala	Ser	Glu 180	Ser	Asp	Leu	Asp	Ser 185	Ser	Met	Gln	Ser	Ala 190	Asp	Glu
Ser	Ser	Pro 195	Gln	Pro	Leu	Lys	Ala 200	Asn	Gln	Gln	Pro	Phe 205	Phe	Pro	Lys
Val	Phe 210	Lys	Lys	Ile	Lys	Asp 215	Ala	Gly	Lys	Trp	Val 220	Arg	Asp	Lys	Ile
Asp 225	Glu	Asn	Pro	Glu	Val 230	Lys	Lys	Ala	Ile	Val 235	Asp	Гла	Ser	Ala	Gly 240
Leu	Ile	Asp	Gln	Leu 245	Leu	Thr	Lys	Lys	Lys 250	Ser	Glu	Glu	Val	Asn 255	Ala
Ser	Aab	Phe	Pro 260	Pro	Pro	Pro	Thr	Asp 265	Glu	Glu	Leu	Arg	Leu 270	Ala	Leu
Pro	Glu	Thr 275	Pro	Met	Leu	Leu	Gly 280	Phe	Asn	Ala	Pro	Ala 285	Thr	Ser	Glu
Pro	Ser 290	Ser	Phe	Glu	Phe	Pro 295	Pro	Pro	Pro	Thr	Asp 300	Glu	Glu	Leu	Arg
Leu 305	Ala	Leu	Pro	Glu	Thr 310	Pro	Met	Leu	Leu	Gly 315	Phe	Asn	Ala	Pro	Ala 320
Thr	Ser	Glu	Pro	Ser 325	Ser	Phe	Glu	Phe	Pro 330	Pro	Pro	Pro	Thr	Glu 335	Asp
Glu	Leu	Glu	Ile 340	Ile	Arg	Glu	Thr	Ala 345	Ser	Ser	Leu	Asp	Ser 350	Ser	Phe
Thr	Arg	Gly 355	Asp	Leu	Ala	Ser	Leu 360	Arg	Asn	Ala	Ile	Asn 365	Arg	His	Ser

-continued

Gln Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn 370 375 380 Gly Arg Gly Gly Arg Pro 385 390 <210> SEQ ID NO 16 <211> LENGTH: 1170 <212> TYPE: DNA <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 16 atgcgtgcga tgatggtggt tttcattact gccaattgca ttacgattaa ccccgacata 60 120 atatttqcaq cqacaqataq cqaaqattct aqtctaaaca caqatqaatq qqaaqaaqaa aaaacagaag agcaaccaag cgaggtaaat acgggaccaa gatacgaaac tgcacgtgaa 180 gtaagttcac gtgatattaa agaactagaa aaatcgaata aagtgagaaa tacgaacaaa 240 gcagacctaa tagcaatgtt gaaagaaaaa gcagaaaaag gtccaaatat caataataac 300 aacaqtqaac aaactqaqaa tqcqqctata aatqaaqaqq cttcaqqaqc cqaccqacca 360 gctatacaag tggagcgtcg tcatccagga ttgccatcgg atagcgcagc ggaaattaaa 420 aaaagaagga aagccatagc atcatcggat agtgagcttg aaagccttac ttatccggat 480 540 aaaccaacaa aaqtaaataa qaaaaaaqtq qcqaaaqaqt caqttqcqqa tqcttctqaa agtgacttag attetageat geagteagea gatgagtett caceacaace tttaaaagea 600 aaccaacaac catttttccc taaagtattt aaaaaaataa aagatgcggg gaaatgggta 660 cgtgataaaa tcgacgaaaa tcctgaagta aagaaagcga ttgttgataa aagtgcaggg 720 ttaattgacc aattattaac caaaaagaaa agtgaagagg taaatgcttc ggacttcccg 780 ccaccaccta cggatgaaga gttaagactt gctttgccag agacaccaat gcttcttggt 840 tttaatgete etgetacate agaacegage teattegaat ttecaceace acetaeggat 900 gaagagttaa gacttgcttt gccagagacg ccaatgcttc ttggttttaa tgctcctgct 960 acateggaac egagetegtt egaattteea eegeeteeaa eagaagatga aetagaaate 1020 atccgggaaa cagcatcctc gctagattct agttttacaa gaggggattt agctagtttg 1080 agaaatgeta ttaategeea tagteaaaat ttetetgatt teecaecaat eecaacagaa 1140 gaagagttga acgggagagg cggtagacca 1170 <210> SEQ ID NO 17 <211> LENGTH: 529 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 17 Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15 Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30 Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45 Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr 50 55 60 Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly 75 80 65 70

Asp	Ala	Val	Thr	Asn 85	Val	Pro	Pro	Arg	Lys 90	Gly	Tyr	Lys	Asp	Gly 95	Asn
Glu	Tyr	Ile	Val 100	Val	Glu	Lys	Lys	Lys 105	Lys	Ser	Ile	Asn	Gln 110	Asn	Asn
Ala	Asp	Ile 115	Gln	Val	Val	Asn	Ala 120	Ile	Ser	Ser	Leu	Thr 125	Tyr	Pro	Gly
Ala	Leu 130	Val	Lys	Ala	Asn	Ser 135	Glu	Leu	Val	Glu	Asn 140	Gln	Pro	Asp	Val
Leu 145	Pro	Val	Lys	Arg	Asp 150	Ser	Leu	Thr	Leu	Ser 155	Ile	Asp	Leu	Pro	Gly 160
Met	Thr	Asn	Gln	Asp 165	Asn	ГÀа	Ile	Val	Val 170	Lys	Asn	Ala	Thr	Lys 175	Ser
Asn	Val	Asn	Asn 180	Ala	Val	Asn	Thr	Leu 185	Val	Glu	Arg	Trp	Asn 190	Glu	Lys
Tyr	Ala	Gln 195	Ala	Tyr	Pro	Asn	Val 200	Ser	Ala	Lys	Ile	Asp 205	Tyr	Asp	Asp
Glu	Met 210	Ala	Tyr	Ser	Glu	Ser 215	Gln	Leu	Ile	Ala	Lys 220	Phe	Gly	Thr	Ala
Phe 225	Lys	Ala	Val	Asn	Asn 230	Ser	Leu	Asn	Val	Asn 235	Phe	Gly	Ala	Ile	Ser 240
Glu	Gly	Lys	Met	Gln 245	Glu	Glu	Val	Ile	Ser 250	Phe	Lys	Gln	Ile	Tyr 255	Tyr
Asn	Val	Asn	Val 260	Asn	Glu	Pro	Thr	Arg 265	Pro	Ser	Arg	Phe	Phe 270	Gly	Lys
Ala	Val	Thr 275	Lys	Glu	Gln	Leu	Gln 280	Ala	Leu	Gly	Val	Asn 285	Ala	Glu	Asn
Pro	Pro 290	Ala	Tyr	Ile	Ser	Ser 295	Val	Ala	Tyr	Gly	Arg 300	Gln	Val	Tyr	Leu
Lys 305	Leu	Ser	Thr	Asn	Ser 310	His	Ser	Thr	Lys	Val 315	Lys	Ala	Ala	Phe	Asp 320
Ala	Ala	Val	Ser	Gly 325	ГЛа	Ser	Val	Ser	Gly 330	Asp	Val	Glu	Leu	Thr 335	Asn
Ile	Ile	Lys	Asn 340	Ser	Ser	Phe	Lys	Ala 345	Val	Ile	Tyr	Gly	Gly 350	Ser	Ala
ГÀа	Asp	Glu 355	Val	Gln	Ile	Ile	Asp 360	Gly	Asn	Leu	Gly	Asp 365	Leu	Arg	Asp
Ile	Leu 370	Lys	Lys	Gly	Ala	Thr 375	Phe	Asn	Arg	Glu	Thr 380	Pro	Gly	Val	Pro
Ile 385	Ala	Tyr	Thr	Thr	Asn 390	Phe	Leu	Lys	Asp	Asn 395	Glu	Leu	Ala	Val	Ile 400
Lys	Asn	Asn	Ser	Glu 405	Tyr	Ile	Glu	Thr	Thr 410	Ser	Lys	Ala	Tyr	Thr 415	Asp
Gly	Lys	Ile	Asn 420	Ile	Asb	His	Ser	Gly 425	Gly	Tyr	Val	Ala	Gln 430	Phe	Asn
Ile	Ser	Trp 435	Asp	Glu	Val	Asn	Tyr 440	Asp	Pro	Glu	Gly	Asn 445	Glu	Ile	Val
Gln	His 450	Lys	Asn	Trp	Ser	Glu 455	Asn	Asn	Lys	Ser	Lys 460	Leu	Ala	His	Phe
Thr 465	Ser	Ser	Ile	Tyr	Leu 470	Pro	Gly	Asn	Ala	Arg 475	Asn	Ile	Asn	Val	Tyr 480

-continued

Ala Lys Glu Cys Thr Gly Leu Ala Trp Glu Trp Trp Arg Thr Val Ile Asp Asp Arg Asn Leu Pro Leu Val Lys Asn Arg Asn Ile Ser Ile Trp Gly Thr Thr Leu Tyr Pro Lys Tyr Ser Asn Lys Val Asp Asn Pro Ile Glu <210> SEQ ID NO 18 <211> LENGTH: 441 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 18 Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys Glu Asn Ser Ile Ser Ser Val Ala Pro Pro Ala Ser Pro Pro Ala Ser Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly Asp Ala Val Thr As
n Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly As
n Glu Tyr Ile Val Val Glu Lys Lys Lys Ser Ile Asn Gln Asn Asn Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser Asn Val Asn Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys Tyr Ala Gln Ala Tyr Ser Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp 195 200 Glu Met Ala Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu

-continued

	-continued														
Lys 305	Leu	Ser	Thr	Asn	Ser 310	His	Ser	Thr	Lys	Val 315	Lys	Ala	Ala	Phe	Asp 320
Ala	Ala	Val	Ser	Gly 325		Ser	Val	Ser	Gly 330		Val	Glu	Leu	Thr 335	Asn
Ile	Ile	Lys	Asn 340	Ser	Ser	Phe	Lys	Ala 345	Val	Ile	Tyr	Gly	Gly 350	Ser	Ala
Lys	Asp	Glu 355	Val	Gln	Ile	Ile	Asp 360	Gly	Asn	Leu	Gly	Asp 365	Leu	Arg	Asp
Ile	Leu 370	Lys	Lys	Gly	Ala	Thr 375	Phe	Asn	Arg	Glu	Thr 380	Pro	Gly	Val	Pro
Ile 385	Ala	Tyr	Thr	Thr	Asn 390	Phe	Leu	Lys	Asp	Asn 395	Glu	Leu	Ala	Val	Ile 400
Lys	Asn	Asn	Ser	Glu 405		Ile	Glu	Thr	Thr 410	Ser	Lys	Ala	Tyr	Thr 415	Asp
Gly	Lys	Ile	Asn 420	Ile	Asp	His	Ser	Gly 425		Tyr	Val	Ala	Gln 430	Phe	Asn
Ile	Ser	Trp 435		Glu	Val	Asn	Tyr 440								
<211 <212 <213	.> LH :> T) :> OF	EQ II ENGTH ZPE : RGANI EQUEN	H: 4: PRT [SM:	l6 Lis	teri	a moj	nocyt	togei	nes						
Met 1	Lys	Lys	Ile	Met 5	Leu	Val	Phe	Ile	Thr 10	Leu	Ile	Leu	Val	Ser 15	Leu
Pro	Ile	Ala	Gln 20	Gln	Thr	Glu	Ala	Lys 25	Asp	Ala	Ser	Ala	Phe 30	Asn	Lys
Glu	Asn	Ser 35	Ile	Ser	Ser	Val	Ala 40	Pro	Pro	Ala	Ser	Pro 45	Pro	Ala	Ser
Pro	Lys 50	Thr	Pro	Ile	Glu	Lуз 55	Lys	His	Ala	Asp	Glu 60	Ile	Asp	Lys	Tyr
Ile 65	Gln	Gly	Leu	Asp	Tyr 70	Asn	Lys	Asn	Asn	Val 75	Leu	Val	Tyr	His	Gly 80
Asp	Ala	Val	Thr	Asn 85	Val	Pro	Pro	Arg	Lys 90	Gly	Tyr	Lys	Asp	Gly 95	Asn
Glu	Tyr	Ile	Val 100		Glu	Lys	Lys	Lys 105	Lys	Ser	Ile	Asn	Gln 110	Asn	Asn
Ala	Asp	Ile 115	Gln	Val	Val	Asn	Ala 120	Ile	Ser	Ser	Leu	Thr 125	Tyr	Pro	Gly
Ala	Leu 130	Val	Lys	Ala	Asn	Ser 135	Glu	Leu	Val	Glu	Asn 140	Gln	Pro	Asp	Val
Leu 145	Pro	Val	Lys	Arg	Asp 150	Ser	Leu	Thr	Leu	Ser 155	Ile	Asp	Leu	Pro	Gly 160
Met	Thr	Asn	Gln	Asp 165		Lys	Ile	Val	Val 170	Lys	Asn	Ala	Thr	Lys 175	Ser
Asn	Val	Asn	Asn 180	Ala	Val	Asn	Thr	Leu 185	Val	Glu	Arg	Trp	Asn 190	Glu	Lys
Tyr	Ala	Gln 195	Ala	Tyr	Ser	Asn	Val 200	Ser	Ala	ГЛа	Ile	Asp 205	Tyr	Asp	Asp
Glu	Met 210	Ala	Tyr	Ser	Glu	Ser 215	Gln	Leu	Ile	Ala	Lys 220	Phe	Gly	Thr	Ala

-	СО	nt	in	ue	d

Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser 230 235 225 240 Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr 245 250 255 Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys 265 260 270 Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn 280 275 285 Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu 290 295 300 Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp 315 305 310 320 Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn 325 330 335 Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala 340 345 350 Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp 355 360 365 Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro 375 370 380 Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile 400 385 395 390 Lys Asn As
n Ser Glu Tyr Ile Glu Thr \mbox{Thr} Ser Lys Ala Tyr Thr
 Asp 405 410 415 <210> SEQ ID NO 20 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Listeria seeligeri <400> SEQUENCE: 20 Arg Ser Glu Val Thr Ile Ser Pro Ala Glu Thr Pro Glu Ser Pro Pro 1 5 10 15 Ala Thr Pro <210> SEQ ID NO 21 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEQUENCE: 21 Lys Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala 5 10 15 Ser Pro Lys <210> SEQ ID NO 22 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 22 gcggatccca tggagataca cctac

-continued

58

<210> SEQ ID NO 23 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 23 25 gcggatccca tggagataca cctac <210> SEQ ID NO 24 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Human papillomavirus <400> SEQUENCE: 24 Arg Ala His Tyr Asn Ile Val Thr Phe - 5 1 <210> SEQ ID NO 25 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 25 Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 1 5 10 15 Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30 Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45 Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 55 60 50 His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu 65 70 75 80 Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe 85 90 95 Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg 105 100 110 Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu 120 125 Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln 130 135 140 Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile 160 145 150 155 Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu 165 170 175 His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val 180 185 190 Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr 195 200 205 Cys Ser Gly Asp Ser Gly Gly Pro Leu Val Cys Asn Gly Val Leu Gln 215 220 210 Gly Ile Thr Ser Trp Gly Ser Glu Pro Cys Ala Leu Pro Glu Arg Pro 230 235 240 225 Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys Trp Ile Lys Asp Thr
		-conti	nued		
245	25	0	255		
Ile Val Ala Asn Pro 260					
<210> SEQ ID NO 26 <211> LENGTH: 5873 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens				
<400> SEQUENCE: 26					
ggtgtcttag gcacactggt	cttggagtgc aaagg	atcta ggcacgtga	g gctttgtatg	60	
aagaatcggg gatcgtaccc	accccctgtt tctgt	ttcat cctgggcat	g teteetetge	120	
ctttgtcccc tagatgaagt	ctccatgagc tacaa	gggcc tggtgcatc	c agggtgatct	180	
agtaattgca gaacagcaag	tgctagctct ccctc	ccctt ccacagctc	t gggtgtggga	240	
gggggttgtc cagcctccag	cagcatgggg agggc	cttgg tcagcctct	g ggtgccagca	300	
gggcaggggc ggagtcctgg	ggaatgaagg tttta	taggg ctcctgggg	g aggeteecea	360	
gccccaagct taccacctgc	acccggagag ctgtg	tcacc atgtgggtc	c cggttgtctt	420	
cctcaccctg tccgtgacgt	ggattggtga gaggg	gccat ggttggggg	g atgcaggaga	480	
gggagccagc cctgactgtc	aagctgaggc tcttt	ccccc ccaacccag	c accccagccc	540	
agacagggag ctgggctctt	ttctgtctct cccag	cccca cttcaagcc	c atacccccag	600	
tcccctccat attgcaacag	teetcactee cacae	caggt ccccgctcc	c tcccacttac	660	
cccagaactt tcttcccatt	tgeccageca getee	ctgct cccagctgc	t ttactaaagg	720	
ggaagtteet gggeatetee	gtgtttctct ttgtg	gggct caaaacctc	c aaggacctct	780	
ctcaatgcca ttggttcctt	ggaccgtatc actgg	tecat eteetgage	c cctcaatcct	840	
atcacagtct actgactttt	cccattcagc tgtga	gtgtc caaccctat	c ccagagacct	900	
tgatgettgg ceteceaate	ttgccctagg atacc	cagat gccaaccag	a cacctccttc	960	
ttteetagee aggetatetg	gcctgagaca acaaa	tgggt ccctcagtc	t ggcaatggga	1020	
ctctgagaac tcctcattcc	ctgactctta gcccc	agact cttcattca	g tggcccacat	1080	
tttccttagg aaaaacatga	gcatececag ceaca	actgc cagctctct	g agtecceaaa	1140	
tctgcatcct tttcaaaacc	taaaaacaaa aagaa	aaaca aataaaaca	a aaccaactca	1200	
gaccagaact gttttctcaa	cctgggactt cctaa	acttt ccaaaacct	t cctcttccag	1260	
caactgaacc tcgccataag	gcacttatcc ctggt	teeta geaceeett	a tecceteaga	1320	
atccacaact tgtaccaagt	ttecettete ceagt	ccaag accccaaat	c accacaaagg	1380	
acccaatccc cagactcaag	atatggtctg ggcgc	tgtet tgtgtetee	t accctgatcc	1440	
ctgggttcaa ctctgctccc	agagcatgaa gcctc	tccac cagcaccag	c caccaacctg	1500	
caaacctagg gaagattgac	agaatteeca geett	tecca geteccet	g cccatgtccc	1560	
aggactecca geettggtte	tetgecceeg tgtet	tttca aacccacat	c ctaaatccat	1620	
ctcctatccg agtcccccag	ttccccctgt caacc	ctgat tcccctgat	c tagcaccccc	1680	
tetgeaggeg etgegeeeet	catcctgtct cggat	tgtgg gaggctggg	a gtgcgagaag	1740	
catteccaac cetggeaggt	gettgtggee teteg	tggca gggcagtct	g cggcggtgtt	1800	
ctggtgcacc cccagtgggt	cctcacagct gccca	ctgca tcaggaagt	g agtaggggcc	1860	
tggggtctgg ggagcaggtg	tetgtgteee agagg	aataa cagctgggc	a ttttccccag	1920	
00 00 0 00 00 00	2.5 5.55	5 555-	5		

gataacctct a	aaggccagcc	ttgggactgg	gggagagagg	gaaagttctg	gttcaggtca	1980
catggggagg (cagggttggg	gctggaccac	cctccccatg	gctgcctggg	tctccatctg	2040
tgtccctcta 1	tgtctctttg	tgtcgctttc	attatgtctc	ttggtaactg	gcttcggttg	2100
tgtctctccg	tgtgactatt	ttgttctctc	tctccctctc	ttetetgtet	tcagtctcca	2160
tatctccccc 1	tctctctgtc	cttctctggt	ccctctctag	ccagtgtgtc	tcaccctgta	2220
tctctctgcc a	aggctctgtc	tctcggtctc	tgtctcacct	gtgccttctc	cctactgaac	2280
acacgcacgg	gatgggcctg	ggggaccctg	agaaaaggaa	gggctttggc	tgggcgcggt	2340
ggctcacacc 1	tgtaatccca	gcactttggg	aggccaaggc	aggtagatca	cctgaggtca	2400
ggagttcgag a	accagcctgg	ccaactggtg	aaaccccatc	tctactaaaa	atacaaaaaa	2460
ttagccaggc g	gtggtggcgc	atgcctgtag	tcccagctac	tcaggagctg	agggaggaga	2520
attgcattga a	acctggaggt	tgaggttgca	gtgagccgag	accgtgccac	tgcactccag	2580
cctgggtgac a	agagtgagac	tccgcctcaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaga	2640
aaagaaaaga a	aaagaaaagg	aagtgtttta	tccctgatgt	gtgtgggtat	gagggtatga	2700
gagggcccct (ctcactccat	tccttctcca	ggacatccct	ccactcttgg	gagacacaga	2760
gaagggctgg	ttccagctgg	agctgggagg	ggcaattgag	ggaggaggaa	ggagaagggg	2820
gaaggaaaac a	agggtatggg	ggaaaggacc	ctggggagcg	aagtggagga	tacaaccttg	2880
ggcctgcagg d	caggctacct	acccacttgg	aaacccacgc	caaagccgca	tctacagctg	2940
agccactctg a	aggceteece	tccccggcgg	tccccactca	gctccaaagt	ctctctccct	3000
tttetetece a	acactttatc	atcccccgga	tteeteteta	cttggttctc	attcttcctt	3060
tgacttcctg (cttccctttc	tcattcatct	gtttctcact	ttctgcctgg	ttttgttctt	3120
ctctctctct 1	ttetetggee	catgtctgtt	tctctatgtt	tctgtctttt	ctttctcatc	3180
ctgtgtattt 1	tcggctcacc	ttgtttgtca	ctgttctccc	ctctgccctt	tcattctctc	3240
tgccctttta (ccctcttcct	tttcccttgg	ttctctcagt	tctgtatctg	cccttcaccc	3300
tctcacactg o	ctgtttccca	actcgttgtc	tgtattttgg	cctgaactgt	gtcttcccaa	3360
ccctgtgttt	tctcactgtt	tctttttctc	ttttggagcc	tcctccttgc	tcctctgtcc	3420
cttctctctt 1	tccttatcat	cctcgctcct	cattcctgcg	tctgcttcct	ccccagcaaa	3480
agcgtgatct (tgctgggtcg	gcacagcctg	tttcatcctg	aagacacagg	ccaggtattt	3540
caggtcagcc a	acagetteee	acacccgctc	tacgatatga	gcctcctgaa	gaatcgattc	3600
ctcaggccag g	gtgatgactc	cagccacgac	ctcatgctgc	tccgcctgtc	agagcctgcc	3660
gageteaegg a	atgctgtgaa	ggtcatggac	ctgcccaccc	aggagccagc	actggggacc	3720
acctgctacg d	cctcaggctg	gggcagcatt	gaaccagagg	agtgtacgcc	tgggccagat	3780
ggtgcagccg o	ggagcccaga	tgcctgggtc	tgagggagga	ggggacagga	ctcctgggtc	3840
tgagggagga	gggccaagga	accaggtggg	gtccagccca	caacagtgtt	tttgcctggc	3900
ccgtagtctt g	gaccccaaag	aaacttcagt	gtgtggacct	ccatgttatt	tccaatgacg	3960
tgtgtgcgca a	agttcaccct	cagaaggtga	ccaagttcat	gctgtgtgct	ggacgctgga	4020
caggggggcaa a	aagcacctgc	tcggtgagtc	atccctactc	ccaagatctt	gagggaaagg	4080
tgagtgggac (cttaattctg	ggctggggtc	tagaagccaa	caaggcgtct	gcctcccctg	4140
ctccccagct o	gtagccatgc	cacctccccg	tgtctcatct	cattccctcc	ttecetette	4200

tttgactccc tcaaggcaat aggttattct tacagcacaa ctcatctgtt cctgcgttca	
gcacacggtt actaggcacc tgctatgcac ccagcactgc cctagagcct gggacatago	
agtgaacaga cagagagcag cccctccctt ctgtagcccc caagccagtg aggggcacag	
gcaggaacag ggaccacaac acagaaaagc tggagggtgt caggaggtga tcaggctcto	
ggggaggag aaggggtggg gagtgtgact gggaggagac atcctgcaga aggtgggagt	
gagcaaacac ctgcgcaggg gaggggaggg cctgcggcac ctggggggagc agagggaaca	
gcatctggcc aggcctggga ggaggggcct agagggggtc aggagcagag aggaggttgo	
ctggctggag tgaaggatcg gggcagggtg cgagagggaa caaaggaccc ctcctgcagg	
gcctcacctg ggccacagga ggacactgct tttcctctga ggagtcagga actgtggatg	
gtgctggaca gaagcaggac agggcctggc tcaggtgtcc agaggctgcg ctggcctcct	4800
atgggatcag actgcaggga gggagggcag cagggatgtg gagggagtga tgatggggct	4860
gacetggggg tggetecagg cattgteece acetgggeee ttaeceagee teecteacae	g 4920
geteetggee etcagtetet eccetecaet ceatteteca ectaeceaea gtgggteatt	4980
ctgatcaccg aactgaccat gccagccctg ccgatggtcc tccatggctc cctagtgccc	c 5040
tggagaggag gtgtctagtc agagagtagt cctggaaggt ggcctctgtg aggagccac	g 5100
gggacagcat cctgcagatg gtcctggccc ttgtcccacc gacctgtcta caaggactgt	5160
cetegtggae ceteceetet geacaggage tggaecetga agteeettee taeeggeeag	g 5220
gactggagee cetacecete tgttggaate eetgeeeaee ttettetgga agteggetet	5280
ggagacattt ctctcttctt ccaaagctgg gaactgctat ctgttatctg cctgtccag	3 5340
tetgaaagat aggattgeee aggeagaaae tgggaetgae etateteaet eteteeetge	5400
ttttaccctt agggtgattc tgggggccca cttgtctgta atggtgtgct tcaaggtatc	5460
acgtcatggg gcagtgaacc atgtgccctg cccgaaaggc cttccctgta caccaaggtg	3 5520
gtgcattacc ggaagtggat caaggacacc atcgtggcca acccctgagc acccctatca	a 5580
agteeetatt gtagtaaact tggaacettg gaaatgaeea ggeeaagaet eaageeteee	c 5640
cagttctact gacctttgtc cttaggtgtg aggtccaggg ttgctaggaa aagaaatcag	3 5700
cagacacagg tgtagaccag agtgtttctt aaatggtgta attttgtcct ctctgtgtcc	5760
tggggaatac tggccatgcc tggagacata tcactcaatt tctctgagga cacagttagg	g 5820
atggggtgtc tgtgttattt gtgggataca gagatgaaag aggggtggga tcc	5873
<210> SEQ ID NO 27 <211> LENGTH: 238 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 27	
Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 1 5 10 15	
Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30	
Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45	
Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60	

con		

His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu 65 70 75 80 Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe 85 90 95 Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg 100 105 110 Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu 125 120 Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln 130 135 140 Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile 145 150 155 160 Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu 175 165 170 His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val 180 185 190 Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr 195 200 205 Cys Ser Trp Val Ile Leu Ile Thr Glu Leu Thr Met Pro Ala Leu Pro 210 215 220 Met Val Leu His Gly Ser Leu Val Pro Trp Arg Gly Gly Val 225 230 235

<210> SEQ ID NO 28 <211> LENGTH: 1906 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28

ageeceaage ttaceacetg cacceggaga getgtgteac catgtgggte eeggttgtet 60 teetcaceet gteegtgaeg tggattggtg etgeaceet cateetgtet eggattgtgg 120 gaggetggga gtgegagaag catteeeaac eetggeaggt gettgtggee tetegtggea 180 gggcagtetg eggeggtgtt etggtgeace eecagtgggt eeteacaget geceactgea 240 tcaggaacaa aagegtgate ttgetgggte ggeacageet gttteateet gaagacacag 300 gccaggtatt tcaggtcagc cacagettee cacaeceget etaegatatg ageeteetga 360 agaatcgatt cctcaggcca ggtgatgact ccagccacga cctcatgctg ctccgcctgt 420 cagageetge egageteacg gatgetgtga aggteatgga eetgeeeace eaggageeag 480 cactqqqqqac cacctqctac qcctcaqqct qqqqcaqcat tqaaccaqaq qaqttcttqa 540 ccccaaagaa acttcagtgt gtggacctcc atgttatttc caatgacgtg tgtgcgcaag 600 ttcaccctca gaaggtgacc aagttcatgc tgtgtgctgg acgctggaca gggggcaaaa 660 gcacctgctc gtgggtcatt ctgatcaccg aactgaccat gccagccctg ccgatggtcc 720 780 tecatggete cetagtgeee tggagaggag gtgtetagte agagagtagt eetggaaggt ggcetetgtg aggageeacg gggaeageat eetgeagatg gteetggeee ttgteeeace 840 gacctgtcta caaggactgt cctcgtggac cctcccctct gcacaggagc tggaccctga 900 agteeettee ceaeeggeea ggaetggage eeetaeeeet etgttggaat eeetgeeeae 960 ettettetgg aagteggete tggagaeatt tetetettet teeaaagetg ggaaetgeta 1020

-continued	
tctgttatct gcctgtccag gtctgaaaga taggattgcc caggcagaaa ctgggactga	1080
cctatctcac tctctccctg cttttaccct tagggtgatt ctggggggccc acttgtctgt	1140
aatggtgtgc ttcaaggtat cacgtcatgg ggcagtgaac catgtgccct gcccgaaagg	1200
ccttccctgt acaccaaggt ggtgcattac cggaagtgga tcaaggacac catcgtggcc	1260
aacccctgag cacccctatc aaccccctat tgtagtaaac ttggaacctt ggaaatgacc	1320
aggccaagac tcaagcctcc ccagttctac tgacctttgt ccttaggtgt gaggtccagg	1380
gttgctagga aaagaaatca gcagacacag gtgtagacca gagtgtttct taaatggtgt	1440
aattttgtcc tctctgtgtc ctggggaata ctggccatgc ctggagacat atcactcaat	1500
ttetetgagg acacagatag gatggggtgt etgtgttatt tgtggggtae agagatgaaa	1560
gaggggtggg atccacactg agagagtgga gagtgacatg tgctggacac tgtccatgaa	1620
gcactgagca gaagctggag gcacaacgca ccagacactc acagcaagga tggagctgaa	1680
aacataaccc actctgtcct ggaggcactg ggaagcctag agaaggctgt gagccaagga	1740
gggagggtct tcctttggca tgggatgggg atgaagtaag gagagggact ggaccccctg	1800
gaagetgatt cactatgggg ggaggtgtat tgaagteete cagacaaeee teagatttga	1860
tgattteeta gtagaaetea cagaaataaa gagetgttat aetgtg	1906
<210> SEQ ID NO 29 <211> LENGTH: 69 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 29	
Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 1 5 10 15	
Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30	
Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45	
Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60	
His Cys Ile Arg Lys 65	
<210> SEQ ID NO 30 <211> LENGTH: 220 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
- <400> SEQUENCE: 30	
Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 1 5 10 15	
Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30	
Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45	
Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60	
His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu 65 70 75 80	

_												con	tin	ued	
Phe	His	Pro	Glu	Asp 85	Thr	Gly	Gln	Val	Phe 90	Gln	Val	Ser	His	Ser 95	Phe
Pro	His	Pro	Leu 100	Tyr	Asp	Met	Ser	Leu 105	Leu	Lys	Asn	Arg	Phe 110	Leu	Arg
Pro	Gly	Asp 115	Asp	Ser	Ser	Ile	Glu 120	Pro	Glu	Glu	Phe	Leu 125	Thr	Pro	Lys
	Leu 130	Gln	Суз	Val	Asp	Leu 135	His	Val	Ile	Ser	Asn 140	Asp	Val	Суз	Ala
Gln 145	Val	His	Pro	Gln	Lys 150	Val	Thr	Lys	Phe	Met 155	Leu	Cys	Ala	Gly	Arg 160
Trp	Thr	Gly	Gly	Lys 165	Ser	Thr	Cys	Ser	Gly 170	Asp	Ser	Gly	Gly	Pro 175	Leu
Val	Cys	Asn	Gly 180	Val	Leu	Gln	Gly	Ile 185	Thr	Ser	Trp	Gly	Ser 190	Glu	Pro
СЛа	Ala	Leu 195	Pro	Glu	Arg	Pro	Ser 200	Leu	Tyr	Thr	ГÀа	Val 205	Val	His	Tyr
Arg	Lys 210	Trp	Ile	ГÀа	Asp	Thr 215	Ile	Val	Ala	Asn	Pro 220				
<210 <211 <212 <213	> LH > TY	ENGTI 7PE :	I: 2: PRT	18	o sa	pien	s								
<400	> SI	EQUEI	ICE :	31		-									
Met 1	Trp	Val	Pro	Val 5	Val	Phe	Leu	Thr	Leu 10	Ser	Val	Thr	Trp	Ile 15	Gly
Ala	Ala	Pro	Leu 20	Ile	Leu	Ser	Arg	Ile 25	Val	Gly	Gly	Trp	Glu 30	Суз	Glu
Lys	His	Ser 35	Gln	Pro	Trp	Gln	Val 40	Leu	Val	Ala	Ser	Arg 45	Gly	Arg	Ala
Val	Cys 50	Gly	Gly	Val	Leu	Val 55	His	Pro	Gln	Trp	Val 60	Leu	Thr	Ala	Ala
His 65	Cys	Ile	Arg	Lys	Pro 70	Gly	Asp	Asp	Ser	Ser 75	His	Asp	Leu	Met	Leu 80
Leu	Arg	Leu	Ser	Glu 85	Pro	Ala	Glu	Leu	Thr 90	Asp	Ala	Val	Lys	Val 95	Met
Asp	Leu	Pro	Thr 100	Gln	Glu	Pro	Ala	Leu 105	Gly	Thr	Thr	Суз	Tyr 110	Ala	Ser
Gly	Trp	Gly 115	Ser	Ile	Glu	Pro	Glu 120	Glu	Phe	Leu	Thr	Pro 125	-	Lys	Leu
Gln	Cys 130	Val	Asp	Leu	His	Val 135	Ile	Ser	Asn	Asp	Val 140		Ala	Gln	Val
His 145	Pro	Gln	Lys	Val	Thr 150	Lys	Phe	Met	Leu	Cys 155	Ala	Gly	Arg	Trp	Thr 160
Gly	Gly	Lys	Ser	Thr 165	Сүз	Ser	Gly	Asp	Ser 170	Gly	Gly	Pro	Leu	Val 175	Cys
Asn	Gly	Val	Leu 180	Gln	Gly	Ile	Thr	Ser 185	Trp	Gly	Ser	Glu	Pro 190	Суз	Ala
Leu	Pro	Glu 195	Arg	Pro	Ser	Leu	Tyr 200	Thr	ГЛа	Val	Val	His 205	-	Arg	Lys
-	Ile 210	Lys	Asp	Thr	Ile	Val 215	Ala	Asn	Pro						
	110					110									

60

120

180

240

<210> SEQ ID NO 32 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 5 10 Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30 Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 40 Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60 His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu 65 70 75 80 Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe 85 90 Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg 105 100 110 Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu 115 120 125 Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln 135 130 140 Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile 145 150 155 160 Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu 175 165 170 His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val 180 185 190 Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr 195 200 205 Cys Ser Gly Asp Ser Gly Gly Pro Leu Val Cys Asn Gly Val Leu Gln 215 210 220 Gly Ile Thr Ser Trp Gly Ser Glu Pro Cys Ala Leu Pro Glu Arg Pro 230 235 240 Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys Trp Ile Lys Asp Thr 245 250 Ile Val Ala Asn Pro 260 <210> SEQ ID NO 33 <211> LENGTH: 1464 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 33 ageceeaage ttaceacetg cacceggaga getgtgteac catgtgggte eeggttgtet teetcaceet gteegtgaeg tggattggtg etgeaceeet cateetgtet eggattgtgg gaggetggga gtgegagaag catteecaac eetggeaggt gettgtggee tetegtggea gggcagtetg eggeggtgtt etggtgeace eecagtgggt eeteacaget geceactgea

-continued	
tcaggaacaa aagcgtgatc ttgctgggtc ggcacagcct gtttcatcct gaagacacag	300
gecaggtatt teaggteage cacagettee cacaeceget etaegatatg ageeteetga	360
agaatcgatt cotcaggoca ggtgatgact coagocaoga cotcatgotg otoogootgt	420
cagageetge egageteacg gatgetgtga aggteatgga eetgeeeace eaggageeag	480
cactggggac cacctgctac gcctcaggct ggggcagcat tgaaccagag gagttettga	540
ccccaaagaa acttcagtgt gtggacctcc atgttatttc caatgacgtg tgtgcgcaag	600
ttcaccctca gaaggtgacc aagttcatgc tgtgtgctgg acgctggaca gggggcaaaa	660
gcacctgctc gggtgattct ggggggcccac ttgtctgtaa tggtgtgctt caaggtatca	720
cgtcatgggg cagtgaacca tgtgccctgc ccgaaaggcc ttccctgtac accaaggtgg	780
tgcattaccg gaagtggatc aaggacacca tcgtggccaa cccctgagca cccctatcaa	840
ccccctattg tagtaaactt ggaaccttgg aaatgaccag gccaagactc aagcctcccc	900
agttctactg acctttgtcc ttaggtgtga ggtccagggt tgctaggaaa agaaatcagc	960
agacacaggt gtagaccaga gtgtttetta aatggtgtaa ttttgteete tetgtgteet	1020
ggggaatact ggccatgcct ggagacatat cactcaattt ctctgaggac acagatagga	1080
tggggtgtct gtgttatttg tggggtacag agatgaaaga ggggtgggat ccacactgag	1140
agagtggaga gtgacatgtg ctggacactg tccatgaagc actgagcaga agctggaggc	1200
acaacgcacc agacactcac agcaaggatg gagctgaaaa cataacccac tctgtcctgg	1260
aggcactggg aagcctagag aaggctgtga gccaaggagg gagggtcttc ctttggcatg	1320
ggatggggat gaagtaagga gagggactgg accccctgga agctgattca ctatgggggg	1380
aggtgtattg aagteeteea gacaaceete agatttgatg attteetagt agaacteaca	1440
gaaataaaga gctgttatac tgtg	1464
<210> SEQ ID NO 34 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 34	
Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly151015	
Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30	
Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45	
Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60	
His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu	
65 70 75 80	
Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe 85 90 95	
Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg 100 105 110	
Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu 115 120 125	
Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln 130 135 140	
130 ISO IAO	

-	con	E.	Ъ	n	11	e	d

Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile 145 150 155 160 Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu 165 170 175 His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val 180 185 190 Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr 200 205 Cys Ser Gly Asp Ser Gly Gly Pro Leu Val Cys Asn Gly Val Leu Gln 210 215 Gly Ile Thr Ser Trp Gly Ser Glu Pro Cys Ala Leu Pro Glu Arg Pro 225 230 235 240 Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys Trp Ile Lys Asp Thr 250 255 245 Ile Val Ala Asn Pro 260 <210> SEQ ID NO 35 <211> LENGTH: 1495 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 35 gggggagccc caagcttacc acctgcaccc ggagagctgt gtcaccatgt gggtcccggt 60 tgtetteete accetgteeg tgaegtggat tggtgetgea ecceteatee tgteteggat 120 tgtgggaggc tgggagtgcg agaagcattc ccaaccctgg caggtgcttg tggcctctcg 180 tggcagggca gtctgcggcg gtgttctggt gcacccccag tgggtcctca cagctgccca 240 ctgcatcagg aacaaaagcg tgatcttgct gggtcggcac agcctgtttc atcctgaaga 300 cacaggeeag gtattteagg teageeacag etteecacae eegetetaeg atatgageet 360 cctgaagaat cgatteetea ggeeaggtga tgaeteeage caegaeetea tgetgeteeg 420 480 cctgtcagag cctgccgagc tcacggatgc tgtgaaggtc atggacctgc ccacccagga 540 gccagcactg gggaccacct gctacgcctc aggctggggc agcattgaac cagaggagtt cttgacccca aagaaacttc agtgtgtgga cctccatgtt atttccaatg acgtgtgtgc 600 gcaagttcac cctcagaagg tgaccaagtt catgctgtgt gctggacgct ggacaggggg 660 caaaagcacc tgctcgggtg attctggggg cccacttgtc tgtaatggtg tgcttcaagg 720 tatcacgtca tggggcagtg aaccatgtgc cctgcccgaa aggccttccc tgtacaccaa 780 ggtggtgcat taccggaagt ggatcaagga caccatcgtg gccaacccct gagcacccct 840 atcaactccc tattgtagta aacttggaac cttggaaatg accaggccaa gactcaggcc 900 teeccagtte tactgaeett tgteettagg tgtgaggtee agggttgeta ggaaaagaaa 960 tcagcagaca caggtgtaga ccagagtgtt tcttaaatgg tgtaattttg tcctctctgt 1020 gtcctgggga atactggcca tgcctggaga catatcactc aatttctctg aggacacaga 1080 taggatgggg tgtctgtgtt atttgtgggg tacagagatg aaagaggggt gggatccaca 1140 ctqaqaqaqt qqaqaqtqac atqtqctqqa cactqtccat qaaqcactqa qcaqaaqctq 1200 gaggcacaac gcaccagaca ctcacagcaa ggatggagct gaaaacataa cccactctgt 1260 cctggaggca ctgggaagcc tagagaaggc tgtgagccaa ggagggaggg tcttcctttg 1320

gcatgggatg gggatgaagt agggagaggg actggacccc ctggaagctg attcactatg 1380 gggggggggtg tattgaagtc ctccagacaa ccctcagatt tgatgatttc ctagtagaac 1440 1495 <210> SEQ ID NO 36 <211> LENGTH: 218 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 36 Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 5 1 10 15 Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 20 25 30 Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45 Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60 His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu 65 70 75 80 Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe 85 90 95 Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg 105 100 110 Pro Gly Asp Asp Ser Ser Ile Glu Pro Glu Glu Phe Leu Thr Pro Lys 115 120 125 Lys Leu Gln Cys Val Asp Leu His Val Ile Ser Asn Asp Val Cys Ala 130 135 140 Gln Val His Pro Gln Lys Val Thr Lys Phe Met Leu Cys Ala Gly Arg 145 150 155 160 Trp Thr Gly Gly Lys Ser Thr Cys Ser Gly Asp Ser Gly Gly Pro Leu 170 165 175 Val Cys Asn Gly Val Leu Gln Gly Ile Thr Ser Trp Gly Ser Glu Pro 185 180 190 Cys Ala Leu Pro Glu Arg Pro Ser Leu Tyr Thr Lys Val Val His Tyr 195 200 205 Arg Lys Trp Ile Lys Asp Thr Ile Val Ala 210 215 <210> SEQ ID NO 37 <211> LENGTH: 227 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 37 Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly 10 15 5 1 Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu 25 20 30 Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala 35 40 45 Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala 50 55 60

His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln 130 135 140 Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu 165 170 His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr Cys Ser Val Ser His Pro Tyr Ser Gln Asp Leu Glu Gly Lys Gly Glu Trp Gly Pro <210> SEQ ID NO 38 <211> LENGTH: 104 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 38 Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly Glu Arg Gly His Gly Trp Gly Asp Ala Gly Glu Gly Ala Ser Pro Asp Cys Gln Ala Glu Ala Leu Ser Pro Pro Thr Gln His Pro Ser Pro Asp Arg Glu Leu Gly Ser Phe Leu Ser Leu Pro Ala Pro Leu Gln Ala His Thr Pro Ser Pro Ser Ile Leu Gln Gln Ser Ser Leu Pro His Gln Val Pro Ala Pro Ser His Leu Pro Gln Asn Phe Leu Pro Ile Ala Gln Pro Ala Pro Cys Ser Gln Leu Leu Tyr <210> SEQ ID NO 39 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 39 Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu

45

70

Val	Cys 50	Gly	Gly	Val	Leu	Val 55	His	Pro	Gln	Trp	Val 60	Leu	Thr	Ala	Ala
His 65	Cys	Ile	Arg	Asn	Lys 70	Ser	Val	Ile	Leu	Leu 75	Gly	Arg	His	Ser	Leu 80
Phe	His	Pro	Glu	Asp 85	Thr	Gly	Gln	Val	Phe 90	Gln	Val	Ser	His	Ser 95	Phe
Pro	His	Pro	Leu 100	Tyr	Asp	Met	Ser	Leu 105	Leu	Lys	Asn	Arg	Phe 110	Leu	Arg
Pro	Gly	Asp 115	Asp	Ser	Ser	His	Asp 120	Leu	Met	Leu	Leu	Arg 125	Leu	Ser	Glu
Pro	Ala 130	Glu	Leu	Thr	Aab	Ala 135	Val	Lys	Val	Met	Asp 140	Leu	Pro	Thr	Gln
Glu 145	Pro	Ala	Leu	Gly	Thr 150	Thr	Cys	Tyr	Ala	Ser 155	Gly	Trp	Gly	Ser	Ile 160
Glu	Pro	Glu	Glu	Phe 165	Leu	Thr	Pro	Lys	Lys 170	Leu	Gln	Суз	Val	Asp 175	Leu
His	Val	Ile	Ser 180	Asn	Asp	Val	Сүз	Ala 185	Gln	Val	His	Pro	Gln 190	Lys	Val
Thr	Гла	Phe 195	Met	Leu	Сүз	Ala	Gly 200	Arg	Trp	Thr	Gly	Gly 205	Lys	Ser	Thr
Сүз	Ser 210	Gly	Asp	Ser	Gly	Gly 215	Pro	Leu	Val	Сув	Asn 220	Gly	Val	Leu	Gln
Gly 225	Ile	Thr	Ser	Trp	Gly 230	Ser	Glu	Pro	Сүз	Ala 235	Leu	Pro	Glu	Arg	Pro 240

Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala

40

Ile Val Ala Asn Pro 260

<210> SEQ ID NO 40 <211> LENGTH: 1729 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

245

<400> SEQUENCE: 40

aagtttccct	tctcccagtc	caagacccca	aatcaccaca	aaggacccaa	tccccagact	60
caagatatgg	tctgggcgct	gtcttgtgtc	tcctaccctg	atccctgggt	tcaactctgc	120
tcccagagca	tgaagcctct	ccaccagcac	cagccaccaa	cctgcaaacc	tagggaagat	180
tgacagaatt	cccagccttt	cccagctccc	cctgcccatg	tcccaggact	cccagccttg	240
gttctctgcc	cccgtgtctt	ttcaaaccca	catcctaaat	ccatctccta	tccgagtccc	300
ccagttcctc	ctgtcaaccc	tgattcccct	gatctagcac	cccctctgca	ggtgctgcac	360
ccctcatcct	gtctcggatt	gtgggaggct	gggagtgcga	gaagcattcc	caaccctggc	420
aggtgcttgt	agcctctcgt	ggcagggcag	tctgcggcgg	tgttctggtg	cacccccagt	480
gggtcctcac	agctacccac	tgcatcagga	acaaaagcgt	gatcttgctg	ggtcggcaca	540
gcctgtttca	tcctgaagac	acaggccagg	tatttcaggt	cagccacagc	ttcccacacc	600
cgctctacga	tatgagcctc	ctgaagaatc	gattcctcag	gccaggtgat	gactccagcc	660

Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys Trp Ile Lys Asp Thr

250

acgacctcat gctgctccgc ctgtcagagc ctgccgagct cacggatgct atgaaggtca720tggacctgcc cacccaggag ccagcactgg ggaccacctg ctacgcctca ggctggggca780gcattgaacc agaggagttc ttgaccccaa agaaacttca gtgtgtggac ctccatgtta840tttccaatga cgtgtgtgcg caagttcacc ctcagaaggt gaccaagttc atgctgtgtg900ctggacgctg gacagggggc aaaagcacct gctcgggtga ttctgggggc ccacttgtct960gtaatggtgt gcttcaaggt atcacgtcat ggggcagtga accatgtgc ctgccgaaa1020ggccttccct gtacaccaag gtggtgcatt accggaagtg gatcaaggac accatcgtgg1080
gcattgaacc agaggagttc ttgaccccaa agaaacttca gtgtgtgggac ctccatgtta 840 tttccaatga cgtgtgtgcg caagttcacc ctcagaaggt gaccaagttc atgctgtgtg 900 ctggacgctg gacagggggc aaaagcacct gctcgggtga ttctgggggc ccacttgtct 960 gtaatggtgt gcttcaaggt atcacgtcat ggggcagtga accatgtgcc ctgcccgaaa 1020
tttccaatga cgtgtgtgcg caagttcacc ctcagaaggt gaccaagttc atgctgtgg 900 ctggacgctg gacagggggc aaaagcacct gctcgggtga ttctggggggc ccacttgtct 960 gtaatggtgt gcttcaaggt atcacgtcat ggggcagtga accatgtgcc ctgcccgaaa 1020
ctggacgctg gacagggggc aaaagcacct gctcgggtga ttctgggggc ccacttgtct 960 gtaatggtgt gcttcaaggt atcacgtcat ggggcagtga accatgtgcc ctgcccgaaa 1020
gtaatggtgt getteaaggt ateaegteat ggggeagtga aceatgtgee etgeeegaaa 1020
ggccttccct gtacaccaag gtggtgcatt accggaagtg gatcaaggac accatcgtgg 1080
ccaacccctg agcaccccta tcaactccct attgtagtaa acttggaacc ttggaaatga 1140
ccaggccaag actcaggeet ecceagttet actgaeettt gteettaggt gtgaggteea 1200
gggttgctag gaaaagaaat cagcagacac aggtgtagac cagagtgttt cttaaatggt 1260
gtaattttgt cetetetgtg teetgggggaa taetggeeat geetggagae atateaetea 1320
atttctctga ggacacagat aggatggggt gtctgtgtta tttgtggggt acagagatga 1380
aagagggggg ggatccacac tgagagagtg gagagtgaca tgtgctggac actgtccatg 1440
aagcactgag cagaagctgg aggcacaacg caccagacac tcacagcaag gatggagctg 1500
aaaacataac ccactctgtc ctggaggcac tgggaagcct agagaaggct gtgaaccaag 1560
gagggagggt cttcctttgg catgggatgg ggatgaagta aggagaggga ctgaccccct 1620
ggaagctgat tcactatggg gggaggtgta ttgaagteet ccagacaace etcagatttg 1680
atgatttcct agtagaactc acagaaataa agagctgtta tactgtgaa 1729
<210> SEQ ID NO 41 <211> LENGTH: 719 <212> TYPE: PRT <213> ORGANISM: Homo sapiens
<400> SEQUENCE: 41
Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg 1 5 10 15
Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe 20 25 30
Phe Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu 35 40 45
Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu
50 55 60
Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile 65 70 75 80
Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile 85 90 95
Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His 100 105 110
Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile 115 120 125
Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe 130 135 140
Glu Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro
145150155160
Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr 165 170 175

Val	Asn	Tyr	Ala 180	Arg	Thr	Glu	Asp	Phe 185	Phe	Lys	Leu	Glu	Arg 190	Asp	Met
Lys	Ile	Asn 195	Суз	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val
Phe	Arg 210	Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly
Val 225	Ile	Leu	Tyr	Ser	Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255	Gly
Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270	Gly	Tyr
Pro	Ala	Asn 275	Glu	Tyr	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285	Ala	Val	Gly
Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Tyr	Tyr 300	Aab	Ala	Gln	Lya
Leu 305	Leu	Glu	ГÀа	Met	Gly 310	Gly	Ser	Ala	Pro	Pro 315	Asp	Ser	Ser	Trp	Arg 320
Gly	Ser	Leu	ГÀа	Val 325	Pro	Tyr	Asn	Val	Gly 330	Pro	Gly	Phe	Thr	Gly 335	Asn
Phe	Ser	Thr	Gln 340	ГÀа	Val	ГÀа	Met	His 345	Ile	His	Ser	Thr	Asn 350	Glu	Val
Thr	Arg	Ile 355	Tyr	Asn	Val	Ile	Gly 360	Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro
Asp	Arg 370	Tyr	Val	Ile	Leu	Gly 375	Gly	His	Arg	Asp	Ser 380	Trp	Val	Phe	Gly
Gly 385	Ile	Asp	Pro	Gln	Ser 390	Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400
Ser	Phe	Gly	Thr	Leu 405	Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile
Leu	Phe	Ala	Ser 420	Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr
Glu	Trp	Ala 435	Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala
Tyr	Ile 450	Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val
Asp 465	Суз	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495	Ser
Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510	Arg	Ile
Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525	Gln	Arg	Leu
Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540	Trp	Glu	Thr	Asn
Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555	Tyr	Glu	Thr	Tyr	Glu 560
Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570	Lys	Tyr	His	Leu	Thr 575	Val

Ala Gin Val Arg Gly Gly Net Val Phe Glu Leu Ala Aan der Tie Val 595 100 100 100 100 100 100 100 10	-continued	
SystemSourceSourceSourceApp Lyp 11e Tyr Sor I.e Sor Met Lyp His Pro Gin Glu Met Lys ThrSourceSystemSourceSourceSourceTyr Sor Val Sor Dhe App Sor Lou Pho Sor Ala Val Lys App Pho ThrSourceSourceSourceSourceSourceUn He Ala Sor Lys Phe Sor Glu Arg Lou Pho Sor Sar His App Lys SorSourceSor Phe Pro Gly Tle Tyr Ala Pho Sor Sar His App Lys May Glu 100SourceSor Phe Pro Gly Tle Tyr App Ala Leu Pho App Lie Glu Sor Lys ValSourceSor Phe Pro Gly Tle Tyr App Ala Leu Pho App Lie Glu Sor Lys ValSourceSor Pho Thr Val Glu Ala Ala Glu Thr Imp ConcernationTooSource <td< td=""><td></td><td></td></td<>		
<pre>clo di di</pre>		
digit dig		
Lyg His Val lie Tyr Ala Pro Ser Ser His Am Lys Tyr Ala Gly Glu 660 A Low Ary Ary Ala Leu Phe Asp I e Glu Ser Lys Val 675 Ger Dys Ala Tyr Gly Glu Val Lys Arg Gln I le Tyr Val Ala 695 Asp Pro Ser Lys Ala Tyr Gly Glu Val Lys Arg Gln I le Tyr Val Ala 695 Asp Pro Ser Lys Ala Tyr Gly Glu Val Lys Arg Gln I le Tyr Val Ala 695 Asp Pro Ser Lys Ala Tyr Gly Glu Val Lys Arg Glu Val Ala 705 Trop Tyr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 705 Trop Tyr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 705 Trop Tyr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 705 Trop Tyr Val Gln Ala 705 Asp Pro Ser Lys Ala Tyr Gly Glu Val Lys Arg Glu Val Ala 705 Trop Tyr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 705 Trop Tyr Val Gln No 42 4005 SEQUENCE: 42 Ctggaccoca ggtctggage gasttcace cacegetggt gttggagge gogcagtaga gcacgacaca 700 gattgagaga gactttace cacegetggt gttggagge gogcagtaga gcacgacaca 700 gattgagaga gacttace cacegetggt cgegecga tugggetgg gg ggetggt 240 ctggegggtg gcttettet cocegette ctetteggg tggttataa atectecaa 700 gaagateca agaagteet ataaatte aceagata cacattaga agaaacagaa 700 gaagateeta acattaeta tacataett aceagata cacattaga agaaacagaa 700 gettegaaga gaattaga ggaattee aceattaega agaaatteg cetagateet foo 700 cetecaggat tiggaatet gigaaatgi tuteaaa atectecaa 650 700 cetecaggat atgaaaatgi tuteaaa cactateet tagtaggaa 700 700 getteteag gaataaget tatgatatet gaatagee ateggaa ateggaa 700 700 getteegga gaataaget tatgaaat ateetaatee tagatggea agaattee foo 700 getteegga gaataaget tatgaaata teetaatee tagatggea agaattee foo 700 getteegag gaataaget tatgaaata teetaatee tagatggea agaattee foo 700 getteegag gaataaget tatgaaate cacegegag gegeaaga agaettee foo 700 getteegag gaataaget tatgaaate categage gagegeee foo 700 getteegag gatgefgee acegegagaat ateetaae tagatggea ateetaa 720 700 getteegag gaataaget taaaatee cacegegag gagetaatee foo 700 getteegag gatgefgee acegegagaat ateetaae tagaagaat foo 700 getteegag gataceaga aataate getatageg gagegeee agaegeeee foo 700 getteegag gataceega aatagaat ateetaaee		
660665670Ser Phe Pro GLY He Tyr Ap Ala Leu Phe Ap He Glu Ser Lys Val 680685Ap Pro Ser Lys Ala Trp GLY GLU Val Lys Arg Gln He Tyr Val Ala 700700Ala Phe Thr Val Gln Ala Ala Glu Thr Leu Ser Glu Val Ala 7107002010 SEO ID NO 42 2013 Trg SP7102110 SEO ID NO 42 2014 Trg SP7102110 SEO ID NO 42 2015 Trg SP710 <tr< td=""><td></td><td></td></tr<>		
675680685Amp Pro Ser Lye Ala Trp Gly Glu Val Lye Arg Gln He Tyr Val Ala 680685Ala Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 715710710710715711712712713713715714715715710715710716710717718718710719715710715710715711717712717713717714717715717715718716717717718718717719718710715710715711717711717711717712717713717714717715718715718716717717718718718719718719718710718710718711718711718711719711719711719711719711711711711711711711711711711711711711711711711 <t< td=""><td></td><td></td></t<>		
690695700Ala Phe Thr Val Gin Ala Ala Ala Giu Thr Leu Ser Giu Val Ala 715710210> SEQ TD N0 42 211> LENGTH: 2472711221> Cityaccca ggtotggage gaattecage cityacggge gegeagtaga geageageae 2130 SEQUENCE: 4260ggatggagag gaetttacce egeegtggtg gitggaggge gegeagtaga geageageae acgoegggg cegggge eggeegteg eggeegtaga geageageae acgoegggg cegggegeg eggeegteg gggeeteggg120aggeegeggg ceegggege eggetetget egegeegga tgggaatet ectteaegaa acegaeteg etgiggeede eceggegeege eggeeteg eggeegtegg ggeetegge ggeegegg ggeetettet ecteegget etgegeggg ggeetettet ecteegget eggeegteg eggeegeagtaga aceeceata gaagetacta acattacte aaageataa tggaaaget tittggata attgaaaget attaaatttt aceaegatae cacattate gaagaaceae attagaagga adgeeteaa geaaateaa teceagtga aggaateat ecceatea attagaagga tetggaattg teeggatet tettee effet ggaaatgaa titteaga titteaea acattatt tgaacaet teagaagtet attagaagga titteaaa teceagtaga attagaage teagaagaa effet attaaattt tageagaag ggeeaagaa attagaa titteaea teagaaga effet teagaagga adgeeaa eattege gggaaatga attagaa attaaat tagaaga titteaea eattege aggaacaata teagaaga attagaaatgi tagaaatgi taacaatgee gggeeaaga attagaag atteeaa teagaagg acatteaa teattege gggaaatga gaetteea affe ggaatagaa atggaaatga atteeaa deattegea gggeeaaga attagaaaga titteaea teagaagg ggeeaaga aggeegaa fie diatteaaa teattee titteeeaaga ggeeaagaa affe fie ggaatgeeaa greaaataa teetaage titteeeaa geeaagaa teatteee diatteaeaa teetaaga titteeeaa atteeaaga fie fie ggaatagaa gaattaga taaaatgee cagetgeea ggeeaagaa atteetaa fie 		
7057107152105EQ ID NO 4221105EQ ID NO 422111LEMKTH: 24722123ORGANISM: Homo sapiers2400SEQUENCE: 42regardecag glottgagig gaatteee egeegegig glogagig geogegig glogagig geogegig glogagig g		
-211: LENCHE: 2472 -212: YTPE INA -213: OKGANISM: Homo sapiens -400> SEQUENCE: 42 ctgggaccca ggtctggag gaattcage ctgcgggt gtgggggg gcgcagag gcattagtg 60 gattgagag gactttacee cgeegtggt gtgggggg gcgcagag gcagacgaeae 120 aggegeggg eccgggage eggetetge eggecgeg t gtggggtg gcgcaggg 240 etggggggg g gettettet eccggete eccgegtgg gtgtggg ggtgtataa ateeteaaa acogaetea acattaetee aaageatat atgaaageat tttgggaa attggaaget 360 gagaactea agaagteet atataatte acacagaa eccaattage aggaacgaae 420 etggagacta gcaattag tgteetgte tecteecaa ataageeta tecteaaea 360 gtgagedgg geteattaga tecggaag eccageggg agaettegg aggetegg 360 gagaactaa gaagteet atataatte acacagaa eccaattage aggaacgaa 420 etgagacata agaagteet atataatte acacagaa eccaattage aggaacgaa 420 etgagacata gegaaattag tecggtgg attecaee ataageeta teccaatea 540 etgagacgg aggeggate agtgaatgg attecaee ataagaete ateceaeta 540 etgagacgg acatgaaat eaatgeet gggaaatg gagecaag agtatteggaa etgagacgg aggeggate agtgatatg atecaeee tecagag aggegaag agteattea 540 etcaeaeeg etgagag aggegaaat acattgee gggagaag eccaacag aggegaae futtecagag gagaataag taaaaatgee eggegaag eggegaag agteattee 640 etcaeaeeg etgeggaeae aggegaaat ateetaaae tgaaggeg aggegaaeee 640 etcaeaeeg etgeggaeae aggegaaat ateetaage eggagaeeg aggegaeeg aggagaeee 640 etcaeaeeg etgeggeegaaa ateetaage eggagaag eggegaegae eggagaeeefeegaa 740 etcaeaeega eggegaeae ategaaat egatage eggagaag eggegaeaegaaae 740 etcaeaeega eggegaeae aggegaeae eggegaeaega eggegaeaega eggaaeefeegaa eggaaeefeegaaaeefeegaaaegaeaegae		
cctggaccccaggttdgagagattccagctgcaggggtggtaggggggtgattggggggtggtggtgg	<211> LENGTH: 2472 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
gattgagaga gactttacce egeegtegte gttggagge egeesgtaga georgeagea 120 aggeegeggt eeggetetget egegeegeg egeetgege tgtggegetgg gegetgetg 240 etggeggggt gettettet eeteegget eeteeggg ggtttataaa ateeteeaa 300 gaagetaeta acattaetee aaageataat atgaaageat ttttggatga attgaaaget 360 gagaacatea agaagttett atataattt acacagatae eacatttage aggaacagaa 420 eaaaaettte agettgeaaa geaaatteaa teceagtaga agaatttgg eetggattet 480 gttgagetag eacattatga tgteetgtg teetaeeaa ataagaete teetaeeaaa 540 ateetaaaa ttaatgaaga tggaaatga attteaaea eateetaet teagaeaet 600 eeteedagag aggeegatet agtgatatg teetaeeaa ataagaete teetaeaaa 720 ttggaaegga aggeegatet agtgatagt aaetatgee gagaaeagaa 780 gttteagag gaaataagt taaaaatgee eagetggag ggeegaagg agteattee 840 taeteegae etgetgaeaa eattgeete ggggaaattg teattgeeag aggageeet 960 etteetgag gtggtgteea geegtgagaa teetaatae tgaatgge aggageetg 900 etteetgag gtagetee aaatgaata gettatage gtggaattge aggageetg 1020 ggtetteeaa gtateeega aatgaata gettatage gtggaatge aggageetg 1020 gtteteeaa gtateeega aatgaatat gettatage tgegaatge aggageetg 1020 ggtetteeaa gtateeega aatgaata gettatage gtggaatge aggageetg 1020 ggtetteeaa gtateeega aatgaata gettatage gtggaatge agageetet 1020 ggtetteeaa gtateeega aatgaata gettatage agegagag geeetaga 1140 aaaatgggtg geteageaee aceagatage agetggagag gaagteteaa agtgeeetae 1140	-	60
aggegegggt ceeggagge eggetetget egegeegga tgtggaatet eetteaaa 180 aeegaetegg etgtggeea egegegeege eegegetgg ggettataaa ateeteeaa 300 gaagetaeta acattaetee aaageataat atgaaageat ttttggatga attgaaaget 360 gagaacatea agaagttet atataattt acacagatae cacatttage aggaacagaa 420 caaaaettte agettgeeaa geaaatteaa teeeagatae cacatttage aggaacagaa 420 caaaaettte agettgeeaa geaaattea teeeagga agaattgg eetggattet 480 gttgggetag eacattaga tgteetgtt teetaeeea ataagaetea teeeaaeta 540 ateeeaaaa ttaatgaaga tggaaatgg attteeaee ataagaete eteetae 540 ateeeaaaatt taatgaaga tggaaatgg attteeaee ateageat teeeaaeta 540 eeteeaggg aggegatet agtgatatt gtaeeaeett teegtgett eeteeteaa 660 ggaatgeeag aggeggatet agtgtatgt aaetatgeea gaacagaa etteettaaa 720 ttggaaeggg acatgaaaat caattgeet gggaaaattg taattgeeag attgggaaa 780 gttteeagag gaaataagt taaeaatgee eagetggeag gggeeaaag agteattee 840 taeteegaee etggetaea ecttgeteet ggggaaattg taattgeeag atggggaat gegetget 960 etteetggag gtggtgteea gegtggaaat ateetaaate tgaatggte aggageeet 960 etteetaggag gtgtgteea egeggaaat getattage gtggaattge agaggeetgt 1020 ggtetteeaa gtateetgt teateeaat ggataetag atgeeagaa geteeteaa 1080 aaaatgggtg getetae tggaaatta agetagag ageteeaa agtgeeetaa 1140 aaaatgggtg getetae tggaaattt tetaecaaa aagteeaga geeeateee 1200		
accgactogg otgtggocae ogogocgo ocogoctggo tgtgogotgg gogoctggtg 240 ctggogggtg gottettet octeoggotto otettegggt ggttataaa atoeteeaat 300 gaagetaeta acattaetee aaageataat atgaaageat ttttggatga attgaaaget 360 gagaacatea agaagttett atataattti acacagatae cacattiage aggaacagaa 420 caaaaettte agettgeaaa geaaatteaa teeeagtag aagaattegg oetggattet 480 gttgagetag cacattatga tgteetgttg teetaeceaa ataagaetea teecaaatae 540 ateetaataa ttaatgaaga tggaaatga attteaae ateateate teesaaete 600 ceteeagga atgaaaatgi tteggatatt gtaceacett teagtgett oteteetaa 660 ggaatgeeag agggogatet agtgatagt aactatgee gaaetgaaga otteettaaa 720 ttggaacggg acatgaaaat caatgeete gggaaaattg taattgeeag atatgggaaa 780 gttteeagag gaaataagt taaaaatgee eagetggeag gggeeaagg agteettee 840 taeteeggae etgegetee gegtggaaat ateetaaate tgaatggtge aggagaeet 960 ctteeeggag gtggtgteea gegtggaaat ateetaage gtggaattge aggageetgt 1020 ggtetteeaa gtatteetg teateeeatt ggataett gataegge gtggaattge aggageetgt 1020 ggtetteeaa gtateeeg aaatggaata gettatagg atgeeaga geteetaa 1140 aaaatgggtg geteageee accagatage agetggagag gaagteeeaa agteeeaga 1140 aaaatgggtg geteageee accagatage agetggagag gaagteeeaa agteeeae 1200		
ctggegggtg gettettet ecteggette ettettegget ggttataaa ateeteeaa 300 gaagetaeta acattaetee aaageataat atgaaageat ttttggatga attgaaaget 360 gagaacaatea agaagttett atataatttt accaagatae eaeattage aggaacagaa 420 eaaaaettee agettgeaaa geaaatteaa teeeaggaa aagaatttgg eetggateet 480 gttgagetag eaeattaga tgteetgttg teetaeceaa ataagaetea teeeaaetee 540 ateeteaataa ttaatgaaga tggaaatgag attteeaee eaeetatatt tgaaeceaet 600 eeteeaggat atgaaaatg tteeggatatt gtaeceaeet teagtgett eeteetaa 660 ggaatgeeag aggeegate agetagtatt gtaeceaeet teagtgett eeteetaaa 720 tteggaaeggg acatgaaaat eaattgete gggaaaattg taattgeeag atatgggaaa 780 gtttteeagag gaaataagt taaaatge eagetggeag gggeeaaagg agteettee 840 taeteeggae etgetgetee gegtgaaat ateetaaate tgaatggtee aggagaeeet 960 etteeetggag gtggtgteea gegtggaaat gettatage gtggaattge agaggetgtt 1020 ggtetteeea gtateeega acagatag agetggagag gageteeaa agteeegaa gteeeteag 1140 aaaaatgggtg geteageee aceagatage agetggagag gaagteeaa agteeeteag 1140		
gagaacatca agaagttett atataatttt acacagatac cacatttage aggaacagaa 420 caaaacttte agettgeaaa geaaatteaa teeeagtgga aagaattegg eetggattet 480 gttgagetag cacattatga tgteetgtt teetaceaa ataagaetea teeeaactae 540 atereaataa ttaatgaaga tggaaatgag attteeaae eateatatt tgaaceaeet 600 ceteeaggat atgaaaatgt tteggatatt gtaceaeet teagtgettt eeteetaa 660 ggaatgeeag aggeegatet agtgtatgtt aaetatgee gaaetgaaga etteettaaa 720 ttggaaeggg acatgaaaat eaattgete gggaaattg taattgeeag atatgeeag attgeeaga 780 gttteeagag gaaataaggt taaaaatgee eagetggeag eetateeta 840 taeteeta ettegeteet gggaaat eetateetaet tgaatgee gggeeaagg agteettee 840 etteetagag gtggtgteea gegtggaaat ateetaate tgaatggte aggagaeete 960 etteetaag gtateetgt teateeaatt ggataetatg atgeeaga geteetagaa 1080 aaaatgggtg geteageee aceegatage agetggagag gaagteetaa agtgeeetee 1140		300
caaaacttte agettgeaaa geaatteaa teecagtgga aagaatttgg eetggattet 480 gttgagetag eacattatga tgteetgtg teetaceeaa ataagaetea teecaaetae 540 ateteeaataa ttaatgaaga tggaaatgag attteeaaea eateattatt tgaaceaeet 600 eeteeaggat atgaaaatgt tteggatatt gtaceaeett teagtgettt eteeteeaa 660 ggaatgeeag agggegatet agtgatagtt aaetatgeee gaaetgaaga etteettaaa 720 ttggaaeggg acatgaaaat eaattgetet gggaaaattg taattgeeag atatgggaaa 780 gtttteagag gaaataaggt taaaaatgee cagetggeag gggeeaaagg agteattee 840 taeteegaee etgetgaeta ettegetee ggggtgaagt eetateeaga tggttggaat 900 etteetggag gtggtgteea gegtggaaat ateetaaate tgaatggtge aggageaeet 960 eteeaaegg gtaeeeega aatgaatat gettatagge gtggaattge agaggeetgtt 1020 ggtetteeaa gtateeega aaatgaatat ggataetatg atgeeegaa geteetagaa 1080 aaaatgggtg geteageeee accagatage agetggaag gaagteteeaa agteeateee 1140 aatgttggae etggettae tggaaactt tetaeeeaaa aagteaagat geeeateee 1200	gaagctacta acattactcc aaagcataat atgaaagcat ttttggatga attgaaagct	360
gttgagctag cacattatga tgtcctgttg teetaceeaa ataagaetea teecaactae 540 ateteaataa ttaatgaaga tggaaatgag attteaaca cateattatt tgaaceacet 600 eeteeaggat atgaaaatgt tteggatatt gtaeceacet teagtgettt eteteetaa 660 ggaatgeeag agggegatet agtgtatgtt aaetatgeae gaaetgaaga ettettaaa 720 ttggaaeggg acatgaaaat eaattgete gggaaaattg taattgeeag atatgggaaa 780 gttteagag gaaataaggt taaaaatgee eagetggeag gggeeaaagg agteatee 840 taeteegaee etgetgaeta ettgeteet ggggtaagt eetateeaga tggttggaat 900 etteetggag gtggtgteea gegtggaaat ateetaaate tgaatggtge aggagaeeet 960 eteecaeceag gttaeceage aaatgaatat gettatagge gtggaattge agagggeettt 1020 ggtetteeaa gtatteetgt teateeaatt ggataetatg atgeeeagaa geteetagaa 1080 aaaatgggtg geeeageee aceagatage agetggaagg gaagteteaa agtgeeetae 1140 aatgttggae etggetttae tggaaaettt tetaeaeaa aagteaagat geeeateee 1200	gagaacatca agaagttett atataatttt acacagatae cacatttage aggaacagaa	420
atctcaataa ttaatgaaga tggaaatgag attttcaaca catcattatt tgaaccacct 600 cctccaggat atgaaaatgt tteggatatt gtaecaectt teagtgettt eteteetaa 660 ggaatgeeag agggegatet agtgtatgtt aaetatgeee gaaetgaaga ettettaaa 720 ttggaaeggg acatgaaaat eaattgetet gggaaaattg taattgeeag atatgggaaa 780 gtttteagag gaaataaggt taaaaatgee cagetggeag gggeeaaagg agteattee 840 taeteegaee etgetgaeta etttgeteet ggggtgaagt eetateeaga tggttggaat 900 etteetggag gtggtgteea gegtggaaat ateetaaate tgaatggtge aggagaeeet 960 eteeacaeeag gttaeeeage aaatgaatat gettatagge gtggaattge agaggetgtt 1020 ggtetteeaa gtatteetgt teateeaatt ggataetatg atgeeacagaa geteetagaa 1080 aaaaatgggtg geteageaee aceagatage agetggaagg gaagteetaa agtgeeetae 1140 aatgttggae etggetttae tggaaaett teetaeeaa aagteeagat geeeateeea 1200	caaaactttc agettgcaaa gcaaattcaa teecagtgga aagaatttgg eetggattet	480
cctccaggat atgaaaatgt ttcggatatt gtaccacctt tcagtgcttt ctctcctcaa660ggaatgccag agggcgatct agtgtatgtt aactatgcac gaactgaaga cttctttaaa720ttggaacggg acatgaaaat caattgctct gggaaaattg taattgccag atatgggaaa780gttttcagag gaaataaggt taaaaatgcc cagctggcag gggccaaagg agtcattctc840tactccgacc ctgctgacta ctttgctcct ggggtgaagt cctatccaga tggttggaat900cttectggag gtggtgtcca gcgtggaaat atcctaaatc tgaatggtge aggagaccct960ctcacaccag gttacccage aaatgaatat gcttatagge gtggaattge agaggctgtt1020ggtcttccaa gtattcctgt tcatccaatt ggatactatg atgcacagaa gctcctagaa1080aaaatgggtg gctcagcace accagatage agctggagag gaagtctcaa agtgcctac1140aatgttggae ctggctttae tggaaactt tcacacaa aagtcaagat gcacatccae1200	gttgagctag cacattatga tgtcctgttg tcctacccaa ataagactca tcccaactac	540
ggaatgccag agggcgatct agtgtatgtt aactatgcac gaactgaaga cttctttaaa 720 ttggaacggg acatgaaaat caattgctct gggaaaattg taattgccag atatgggaaa 780 gttttcagag gaaataaggt taaaaatgcc cagctggcag gggccaaagg agtcattctc 840 tactccgacc ctgctgacta ctttgctcct ggggtgaagt cctatccaga tggttggaat 900 cttcctggag gtggtgtcca gcgtggaaat atcctaaatc tgaatggtgc aggagaccct 960 ctcacaccag gttacccagc aaatgaatat gcttataggc gtggaattgc agaggctgtt 1020 ggtcttccaa gtattcctgt tcatccaatt ggatactatg atgcacagaa gctcctagaa 1080 aaaatgggtg gctcagcacc accagatagc agctggaag gaagtctcaa agtgccctac 1140 aatgttggac ctggctttac tggaaacttt tctaccacaa aagtcaagat gcacatccac 1200	ateteaataa ttaatgaaga tggaaatgag atttteaaca cateattatt tgaaceaeet	600
ttggaacggg acatgaaaat caattgetet gggaaaattg taattgecag atatgggaaa 780 gtttteagag gaaataaggt taaaaatgee cagetggeag gggeeaaagg agteattete 840 taeteegaee etgetgaeta etttgeteet ggggtgaagt eetateeaaa tgggtggaat 900 etteetggag gtggtgteea gegtggaaat ateetaaate tgaatggtge aggagaeeet 960 eteacaeeag gttaeeeage aaatgaatat gettatagge gtggaattge agaggetgtt 1020 ggtetteeaa gtatteetgt teateeaatt ggataetatg atgeeaegaa geteetagaa 1080 aaaatggggt geteageaee aceagatage agetggagag gaagteteaa agtgeeetae 1140 aatgttggae etggetttae tggaaaettt tetaeeaaa aagteaagat geaeateea 1200	cctccaggat atgaaaatgt ttcggatatt gtaccacctt tcagtgcttt ctctcctcaa	660
gttttcagag gaaataaggt taaaaatgcc cagctggcag gggccaaagg agtcattctc 840 tactccgacc ctgctgacta ctttgctcct ggggtgaagt cctatccaga tggttggaat 900 cttcctggag gtggtgtcca gcgtggaaat atcctaaatc tgaatggtgc aggagaccct 960 ctcacaccag gttacccagc aaatgaatat gcttataggc gtggaattgc agaggctgtt 1020 ggtcttccaa gtattcctgt tcatccaatt ggatactatg atgcacagaa gctcctagaa 1080 aaaatggggtg gctcagcacc accagatagc agctggaagt tctaccaaa agtgccatca 1140 aatgttggac ctggctttac tggaaacttt tctacacaaa aagtcaagat gcacatccac 1200	ggaatgccag agggcgatct agtgtatgtt aactatgcac gaactgaaga cttctttaaa	720
tactccgacc ctgctgacta ctttgctcct ggggtgaagt cctatccaga tggttggaat 900 cttcctggag gtggtgtcca gcgtggaaat atcctaaatc tgaatggtgc aggagaccct 960 ctcacaccag gttacccagc aaatgaatat gcttataggc gtggaattgc agaggctgtt 1020 ggtcttccaa gtattcctgt tcatccaatt ggatactatg atgcacagaa gctcctagaa 1080 aaaatggggtg gctcagcacc accagatagc agctggagag gaagtctcaa agtgccctac 1140 aatgttggac ctggctttac tggaaacttt tctacacaaa aagtcaagat gcacatccac 1200	ttggaacggg acatgaaaat caattgctct gggaaaattg taattgccag atatgggaaa	780
ctteetggag gtggtgteea gegtggaaat ateetaaate tgaatggtge aggagaeeet 960 eteacaeeag gttaeeeage aaatgaatat gettatagge gtggaattge agaggetgtt 1020 ggtetteeaa gtatteetgt teateeaatt ggataetatg atgeaeagaa geteetagaa 1080 aaaatggggtg geteageaee aceagatage agetggagag gaagteteaa agtgeeetae 1140 aatgttggae etggetttae tggaaaettt tetaeeaaa aagteaagat geaeateee 1200	gttttcagag gaaataaggt taaaaatgcc cagctggcag gggccaaagg agtcattctc	840
ctcacaccag gttacccagc aaatgaatat gcttataggc gtggaattgc agaggctgtt 1020 ggtcttccaa gtatteetgt teatecaatt ggataetatg atgeacagaa geteetagaa 1080 aaaatggggtg geteageace accagatage agetggagag gaagteteaa agtgeeetae 1140 aatgttggae etggetttae tggaaaettt tetacacaaa aagteaagat geacateeae 1200	tactccgacc ctgctgacta ctttgctcct ggggtgaagt cctatccaga tggttggaat	900
ggtcttccaa gtattcctgt tcatccaatt ggatactatg atgcacagaa gctcctagaa 1080 aaaatggggtg gctcagcacc accagatagc agctggagag gaagtctcaa agtgccctac 1140 aatgttggac ctggctttac tggaaacttt tctacacaaa aagtcaagat gcacatccac 1200	ctteetggag gtggtgteea gegtggaaat ateetaaate tgaatggtge aggagaeeet	960
aaaatggggtg gctcagcacc accagatagc agctggagag gaagtctcaa agtgccctac 1140 aatgttggac ctggctttac tggaaacttt tctacacaaa aagtcaagat gcacatccac 1200	ctcacaccag gttacccagc aaatgaatat gcttataggc gtggaattgc agaggctgtt	1020
aatgttggac ctggctttac tggaaacttt tctacacaaa aagtcaagat gcacatccac 1200	ggtetteeaa gtatteetgt teateeaatt ggataetatg atgeaeagaa geteetagaa	1080
	aaaatgggtg gctcagcacc accagatagc agctggagag gaagtctcaa agtgccctac	1140
tctaccaatg aagtgacaag aatttacaat gtgataggta ctctcagagg agcagtggaa 1260	aatgttggac ctggctttac tggaaacttt tctacacaaa aagtcaagat gcacatccac	1200
	tctaccaatg aagtgacaag aatttacaat gtgataggta ctctcagagg agcagtggaa	1260

ccagacagat atgtcattct gggaggtcac cgggactcat gggtgtttgg tggtattgac 1320 cctcagagtg gagcagctgt tgttcatgaa attgtgagga gctttggaac actgaaaaag 1380 gaagggtgga gacctagaag aacaattttg tttgcaagct gggatgcaga agaatttggt 1440 1500 gettatatta atgetgaete atetatagaa ggaaaetaea etetgagagt tgattgtaea 1560 ccgctgatgt acagcttggt acacaaccta acaaaagagc tgaaaagccc tgatgaaggc 1620 tttgaaggca aatctcttta tgaaagttgg actaaaaaaa gtccttcccc agagttcagt 1680 ggcatgccca ggataagcaa attgggatct ggaaatgatt ttgaggtgtt cttccaacga 1740 cttggaattg cttcaggcag agcacggtat actaaaaatt gggaaacaaa caaattcagc 1800 ggctatccac tgtatcacag tgtctatgaa acatatgagt tggtggaaaa gttttatgat 1860 ccaatqttta aatatcacct cactqtqqcc caqqttcqaq qaqqqatqqt qtttqaqcta 1920 gccaatteea tagtgeteee tittgattgt egagattatg etgtagtitt aagaaagtat 1980 getgacaaaa tetacagtat ttetatgaaa catecacagg aaatgaagae atacagtgta 2040 tcatttgatt cacttttttc tgcagtaaag aattttacag aaattgcttc caagttcagt 2100 gagagactcc aggactttga caaaagcaag catgtcatct atgctccaag cagccacaac 2160 aagtatgcag gggagtcatt cccaggaatt tatgatgctc tgtttgatat tgaaagcaaa 2220 gtggaccctt ccaaggcctg gggagaagtg aagagacaga tttatgttgc agccttcaca 2280 gtgcaggcag ctgcagagac tttgagtgaa gtagcctaag aggattcttt agagaatccg 2340 tattgaattt gtgtggtatg tcactcagaa agaatcgtaa tgggtatatt gataaatttt 2400 2460 aaaaaaaaa aa 2472 <210> SEQ ID NO 43 <211> LENGTH: 719 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 43 Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg 10 1 Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe 25 Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu 40 Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu 55 60 Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile 65 70 75 80 Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile 85 90 95 Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His 100 105 110 Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile 115 120 125 Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe

	120					105					1.4.0				
	130					135					140				
Glu 145	Pro	Pro	Pro	Pro	Gly 150	Tyr	Glu	Asn	Val	Ser 155	Asp	Ile	Val	Pro	Pro 160
Phe	Ser	Ala	Phe	Ser 165	Pro	Gln	Gly	Met	Pro 170	Glu	Gly	Asp	Leu	Val 175	Tyr
Val	Asn	Tyr	Ala 180	Arg	Thr	Glu	Asp	Phe 185	Phe	Lys	Leu	Glu	Arg 190	Asp	Met
Lys	Ile	Asn 195	Cys	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val
Phe	Arg 210	Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly
Val 225	Ile	Leu	Tyr	Ser	Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255	Gly
Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270	Gly	Tyr
Pro	Ala	Asn 275	Glu	Tyr	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285	Ala	Val	Gly
Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Tyr	Tyr 300	Asp	Ala	Gln	Lys
Leu 305	Leu	Glu	Lys	Met	Gly 310	Gly	Ser	Ala	Pro	Pro 315	Asp	Ser	Ser	Trp	Arg 320
Gly	Ser	Leu	Lys	Val 325	Pro	Tyr	Asn	Val	Gly 330	Pro	Gly	Phe	Thr	Gly 335	Asn
Phe	Ser	Thr	Gln 340	Lys	Val	Lys	Met	His 345	Ile	His	Ser	Thr	Asn 350	Glu	Val
Thr	Arg	Ile 355	Tyr	Asn	Val	Ile	Gly 360	Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro
Asp	Arg 370	Tyr	Val	Ile	Leu	Gly 375	Gly	His	Arg	Asp	Ser 380	Trp	Val	Phe	Gly
Gly 385	Ile	Asp	Pro	Gln	Ser 390	Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400
Ser	Phe	Gly	Thr	Leu 405	Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile
Leu	Phe	Ala	Ser 420	Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr
Glu	Trp	Ala 435	Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala
Tyr	Ile 450	Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val
Asp 465	Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495	Ser
Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510	Arg	Ile
Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525	Gln	Arg	Leu
Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540	Trp	Glu	Thr	Asn

-continued	-cont	inued
------------	-------	-------

Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val Tyr Glu Thr Tyr Glu Leu Val Glu Lys Phe Tyr Asp Pro Met Phe Lys Tyr His Leu Thr Val Ala Gln Val Arg Gly Gly Met Val Phe Glu Leu Ala Asn Ser Ile Val Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser 645 650 Lys His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala $<\!210\!>$ SEQ ID NO 44 <211> LENGTH: 750 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 44 Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile 65 70 75 80 Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe Glu Pro Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met

			180					185					190		
Lys	Ile	Asn 195	Суз	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val
Phe	Arg 210	Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly
Val 225	Ile	Leu	Tyr	Ser	Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255	Gly
Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270	Gly	Tyr
Pro	Ala	Asn 275	Glu	Tyr	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285	Ala	Val	Gly
Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Tyr	Tyr 300	Asp	Ala	Gln	Lys
Leu 305	Leu	Glu	Lys	Met	Gly 310	Gly	Ser	Ala	Pro	Pro 315	Asp	Ser	Ser	Trp	Arg 320
Gly	Ser	Leu	Lys	Val 325	Pro	Tyr	Asn	Val	Gly 330	Pro	Gly	Phe	Thr	Gly 335	Asn
Phe	Ser	Thr	Gln 340	Lys	Val	Lys	Met	His 345	Ile	His	Ser	Thr	Asn 350	Glu	Val
Thr	Arg	Ile 355	Tyr	Asn	Val	Ile	Gly 360	Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro
Asp	Arg 370	Tyr	Val	Ile	Leu	Gly 375	Gly	His	Arg	Asp	Ser 380	Trp	Val	Phe	Gly
Gly 385	Ile	Asp	Pro	Gln	Ser 390	Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400
Ser	Phe	Gly	Thr	Leu 405	Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile
Leu	Phe	Ala	Ser 420	Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr
Glu	Trp	Ala 435	Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala
Tyr	Ile 450	Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val
Asp 465	Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495	Ser
Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510	Arg	Ile
Ser	Гла	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525	Gln	Arg	Leu
Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540	Trp	Glu	Thr	Asn
Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555	Tyr	Glu	Thr	Tyr	Glu 560
	Val	Glu	Lys	Phe 565		Asp	Pro	Met	Phe 570		Tyr	His	Leu	Thr 575	
Ala	Gln	Val	Arg 580		Gly	Met	Val	Phe 585		Leu	Ala	Asn	Ser 590		Val
			550					565					590		

Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp 705 710 715 720 Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala 725 730 735 Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala <210> SEQ ID NO 45 <211> LENGTH: 671 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 Ile Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln 10 15 1 5 Ile Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe Glu Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val Phe Arg Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Gly Val Gln Arg Gly Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val

-continued

		195					200					205			
Gly	Leu 210	Pro	Ser	Ile	Pro	Val 215	His	Pro	Ile	Gly	Tyr 220	Tyr	Asp	Ala	Gln
Lys 225	Leu	Leu	Glu	Lys	Met 230	Gly	Gly	Ser	Ala	Pro 235	Pro	Asb	Ser	Ser	Trp 240
Arg	Gly	Ser	Leu	Lys 245	Val	Pro	Tyr	Asn	Val 250	Gly	Pro	Gly	Phe	Thr 255	Gly
Asn	Phe	Ser	Thr 260	Gln	LYa	Val	Lys	Met 265	His	Ile	His	Ser	Thr 270	Asn	Glu
Val	Thr	Arg 275	Ile	Tyr	Asn	Val	Ile 280	Gly	Thr	Leu	Arg	Gly 285	Ala	Val	Glu
Pro	Asp 290	Arg	Tyr	Val	Ile	Leu 295	Gly	Gly	His	Arg	Asp 300	Ser	Trp	Val	Phe
Gly 305	Gly	Ile	Asp	Pro	Gln 310	Ser	Gly	Ala	Ala	Val 315	Val	His	Glu	Ile	Val 320
Arg	Ser	Phe	Gly	Thr 325	Leu	Lys	Lys	Glu	Gly 330	Trp	Arg	Pro	Arg	Arg 335	Thr
Ile	Leu	Phe	Ala 340	Ser	Trp	Asp	Ala	Glu 345	Glu	Phe	Gly	Leu	Leu 350	Gly	Ser
Thr	Glu	Trp 355	Ala	Glu	Glu	Asn	Ser 360	Arg	Leu	Leu	Gln	Glu 365	Arg	Gly	Val
Ala	Tyr 370	Ile	Asn	Ala	Asp	Ser 375	Ser	Ile	Glu	Gly	Asn 380	Tyr	Thr	Leu	Arg
Val 385	Asp	Cys	Thr	Pro	Leu 390	Met	Tyr	Ser	Leu	Val 395	His	Asn	Leu	Thr	Lys 400
Glu	Leu	Lys	Ser	Pro 405	Asp	Glu	Gly	Phe	Glu 410	Gly	ГЛЗ	Ser	Leu	Tyr 415	Glu
Ser	Trp	Thr	Lys 420	Lys	Ser	Pro	Ser	Pro 425	Glu	Phe	Ser	Gly	Met 430	Pro	Arg
Ile	Ser	Lys 435	Leu	Gly	Ser	Gly	Asn 440	Asp	Phe	Glu	Val	Phe 445	Phe	Gln	Arg
Leu	Gly 450	Ile	Ala	Ser	Gly	Arg 455	Ala	Arg	Tyr	Thr	Lys 460	Asn	Trp	Glu	Thr
Asn 465	Lys	Phe	Ser	Gly	Tyr 470	Pro	Leu	Tyr	His	Ser 475	Val	Tyr	Glu	Thr	Tyr 480
Glu	Leu	Val	Glu	Lys 485	Phe	Tyr	Asp	Pro	Met 490	Phe	ГЛа	Tyr	His	Leu 495	Thr
Val	Ala	Gln	Val 500	Arg	Gly	Gly	Met	Val 505	Phe	Glu	Leu	Ala	Asn 510	Ser	Ile
Val	Leu	Pro 515	Phe	Asp	Сүз	Arg	Asp 520	Tyr	Ala	Val	Val	Leu 525	Arg	Lys	Tyr
Ala	Asp 530	Lys	Ile	Tyr	Ser	Ile 535	Ser	Met	Lys	His	Pro 540	Gln	Glu	Met	ГЛа
Thr 545	Tyr	Ser	Val	Ser	Phe 550	Asp	Ser	Leu	Phe	Ser 555	Ala	Val	Lys	Asn	Phe 560
Thr	Glu	Ile	Ala	Ser 565	Гла	Phe	Ser	Glu	Arg 570	Leu	Gln	Asp	Phe	Asp 575	Гла
Ser	Asn	Pro	Ile 580	Val	Leu	Arg	Met	Met 585	Asn	Asp	Gln	Leu	Met 590	Phe	Leu
Glu	Arg	Ala 595	Phe	Ile	Asp	Pro	Leu 600	Gly	Leu	Pro	Asp	Arg 605	Pro	Phe	Tyr

Arg His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu 610 615 620 Ser Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val 625 630 635 640 Asp Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala 655 645 650 Ala Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala 665 660 670 <210> SEQ ID NO 46 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 46 31 ggggtctaga cctcctttga ttagtatatt c <210> SEQ ID NO 47 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 47 atcttcgcta tctgtcgccg cggcgcgtgc ttcagtttgt tgcgc 45 <210> SEQ ID NO 48 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 48 gcgcaacaaa ctgaagcagc ggccgcggcg acagatagcg aagat 45 <210> SEQ ID NO 49 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 49 tgtaggtgta tetecatget egagagetag gegateaatt te 42 <210> SEQ ID NO 50 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 50 42 qqaattqatc qcctaqctct cqaqcatqqa qatacaccta ca <210> SEQ ID NO 51

<211> LENGTH: 42

- <212> TYPE: DNA <213> ORGANISM: Artificial
<220> FEATURE: <223> OTHER INFORMATION: chemically synthesized
<400> SEQUENCE: 51
aaacggattt atttagatcc cgggttatgg tttctgagaa ca 42
<210> SEQ ID NO 52
<211> LENGTH: 42 <212> TYPE: DNA
<213> ORGANISM: Artificial <220> FEATURE:
<223> OTHER INFORMATION: chemically synthesized
<400> SEQUENCE: 52
tgttctcaga aaccataacc cgggatctaa ataaatccgt tt 42
<210> SEQ ID NO 53
<211> LENGTH: 28 <212> TYPE: DNA
<213> ORGANISM: Artificial <220> FEATURE:
<223> OTHER INFORMATION: chemically synthesized
<400> SEQUENCE: 53
gggggtcgac cagctcttct tggtgaag 28
<210> SEQ ID NO 54
<211> LENGTH: 680 <212> TYPE: PRT
<pre><213> ORGANISM: Artificial <220> FEATURE:</pre>
<pre><220 FEIGHE: <223> OTHER INFORMATION: chemically synthesized</pre>
<400> SEQUENCE: 54
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30
Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Ala Ser
35 40 45 Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr
50 55 60
Ile Gln Gly Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly 65 70 75 80
Asp Ala Val Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn 85 90 95
Glu Tyr Ile Val Val Glu Lys Lys Lys Ser Ile Asn Gln Asn Asn 100 105 110
Ala Asp Ile Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly
115 120 125
Ala Leu Val Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val 130 135 140
Leu Pro Val Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly 145 150 155 160
Met Thr Asn Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser
165 170 175

											-	con	tin	ued	
Asn	Val	Asn	Asn 180	Ala	Val	Asn	Thr	Leu 185	Val	Glu	Arg	Trp	Asn 190	Glu	Lys
Tyr	Ala	Gln 195		Tyr	Pro	Asn	Val 200	Ser	Ala	Lys	Ile	Asp 205	Tyr	Asp	Asp
Glu	Met 210	Ala	Tyr	Ser	Glu	Ser 215		Leu	Ile	Ala	Lys 220	Phe	Gly	Thr	Ala
Phe 225		Ala	Val	Asn	Asn 230		Leu	Asn	Val	Asn 235	Phe	Gly	Ala	Ile	Ser 240
Glu	Gly	Lys	Met	Gln 245		Glu	Val	Ile	Ser 250	Phe	Lys	Gln	Ile	Tyr 255	Tyr
Asn	Val	Asn	Val 260		Glu	Pro	Thr	Arg 265	Pro	Ser	Arg	Phe	Phe 270	Gly	Lys
Ala	Val	Thr 275		Glu	Gln	Leu	Gln 280	Ala	Leu	Gly	Val	Asn 285	Ala	Glu	Asn
Pro	Pro 290	Ala	Tyr	Ile	Ser	Ser 295	Val	Ala	Tyr	Gly	Arg 300	Gln	Val	Tyr	Leu
Lys 305	Leu	Ser	Thr	Asn	Ser 310	His	Ser	Thr	Lys	Val 315	Lya	Ala	Ala	Phe	Asp 320
Ala	Ala	Val	Ser	Gly 325		Ser	Val	Ser	Gly 330	Asp	Val	Glu	Leu	Thr 335	Asn
Ile	Ile	Lys	Asn 340	Ser		Phe	Lys	Ala 345		Ile	Tyr	Gly	Gly 350	Ser	Ala
Lys	Asp	Glu 355			Ile	Ile	Asp 360	Gly	Asn	Leu	Gly	Asp 365		Arg	Asp
Ile	Leu 370	Lys	Lys	Gly	Ala	Thr 375	Phe	Asn	Arg	Glu	Thr 380		Gly	Val	Pro
Ile 385			Thr	Thr	Asn 390			Гла	Asp	Asn 395		Leu	Ala	Val	Ile 400
	Asn	Asn	Ser		Tyr	Ile	Glu	Thr			ГÀа	Ala	Tyr		
Gly	Lys	Ile				His	Ser	Gly	410 Gly	Tyr	Val	Ala		415 Phe	Asn
Ile	Ser		420 Asp		Val	Asn		425 Asp	Leu	Glu	Ile		430 Gly	Gly	Trp
Glu	-	435 Glu	Lys	His	Ser			Trp	Gln	Val		445 Val	Ala	Ser	Arg
Gly	450 Arg	Ala	Val	Суз	Gly	455 Gly		Leu	Val	His	460 Pro	Gln	Trp	Val	Leu
465					470			Lys		475					480
				485				Thr	490					495	
			500				_	505	-				510		
ніз	ъer	Phe 515	Pro	ніз	Pro	ьeu	Tyr 520	Asp	riet	ъer	ьeu	Leu 525	гЛа	ASN	Arg
Phe	Leu 530	Arg	Pro	Gly	Asp	Asp 535	Ser	Ser	His	Asp	Leu 540	Met	Leu	Leu	Arg
Leu 545	Ser	Glu	Pro	Ala	Glu 550	Leu	Thr	Asp	Ala	Val 555	Lys	Val	Met	Asp	Leu 560
Pro	Thr	Gln	Glu	Pro 565		Leu	Gly	Thr	Thr 570	Cys	Tyr	Ala	Ser	Gly 575	Trp
Gly	Ser	Ile	Glu	Pro	Glu	Glu	Phe	Leu	Thr	Pro	Lys	Lys	Leu	Gln	Cys

-concinded		
580 585 590		
Val Asp Leu His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro 595 600 605		
Gln Lys Val Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly 610 615 620		
Lys Ser Thr Cys Ser Gly Asp Ser Gly Gly Pro Leu Val Cys Tyr Gly 625 630 635 640		
Val Leu Gln Gly Ile Thr Ser Trp Gly Ser Glu Pro Cys Ala Leu Pro 645 650 655		
Glu Arg Pro Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys Trp Ile 660 665 670		
Lys Asp Thr Ile Val Ala Asn Pro 675 680		
<pre><210> SEQ ID NO 55 <211> LENGTH: 13294 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 55</pre>		
aatteeggat gageatteat eaggegggea agaatgtgaa taaaggeegg ataaaaettg	60	
tgettatttt tetttaeggt etttaaaaag geegtaatat eeagetgaae ggtetggtta	120	
taggtacatt gagcaactga ctgaaatgcc tcaaaatgtt ctttacgatg ccattgggat	180	
atatcaacgg tggtatatcc agtgattttt ttctccattt tagcttcctt agctcctgaa	240	
aatetegata aeteaaaaaa taegeeeggt agtgatetta ttteattatg gtgaaagttg	300	
gaacetetta egtgeegate aaegteteat tttegeeaaa agttggeeea gggetteeeg	360	
gtatcaacag ggacaccagg atttatttat tetgegaagt gatetteegt cacaggtatt	420	
tattcggcgc aaagtgcgtc gggtgatgct gccaacttac tgatttagtg tatgatggtg	480	
tttttgaggt gctccagtgg cttctgtttc tatcagctgt ccctcctgtt cagctactga	540	
cggggtggtg cgtaacggca aaagcaccgc cggacatcag cgctagcgga gtgtatactg	600	
gcttactatg ttggcactga tgagggtgtc agtgaagtgc ttcatgtggc aggagaaaaa	660	
aggetgeace ggtgegteag eagaatatgt gataeaggat atatteeget teetegetea	720	
ctgactcgct acgctcggtc gttcgactgc ggcgagcgga aatggcttac gaacggggcg	780	
gagattteet ggaagatgee aggaagatae ttaacaggga agtgagaggg eegeggeaaa	840	
gccgtttttc cataggetee geeeeetga caageateae gaaatetgae geteaaatea	900	
gtggtggcga aacccgacag gactataaag ataccaggcg tttccccctg gcggctccct	960	
cgtgcgctct cctgttcctg cctttcggtt taccggtgtc attccgctgt tatggccgcg	1020	
tttgtctcat tccacgcctg acactcagtt ccgggtaggc agttcgctcc aagctggact	1080	
gtatgcacga accccccgtt cagtccgacc gctgcgcctt atccggtaac tatcgtcttg	1140	
agtccaaccc ggaaagacat gcaaaagcac cactggcagc agccactggt aattgattta	1200	
gaggagttag tettgaagte atgegeeggt taaggetaaa etgaaaggae aagttttggt	1260	
gactgcgctc ctccaagcca gttacctcgg ttcaaagagt tggtagctca gagaaccttc	1320	
gaaaaaccgc cctgcaaggc ggtttttcg ttttcagagc aagagattac gcgcagacca	1380	

- C	ontinued
aaacgatctc aagaagatca tcttattaat cagataaaat attto	tagcc ctcctttgat 1440
tagtatattc ctatcttaaa gttactttta tgtggaggca ttaac	atttg ttaatgacgt 1500
caaaaggata gcaagactag aataaagcta taaagcaagc atata	atatt gcgtttcatc 1560
tttagaagcg aatttcgcca atattataat tatcaaaaga gaggg	gtggc aaacggtatt 1620
tggcattatt aggttaaaaa atgtagaagg agagtgaaac ccatg	aaaaa aataatgcta 1680
gtttttatta cacttatatt agttagtcta ccaattgcgc aacaa	actga agcaaaggat 1740
gcatctgcat tcaataaaga aaattcaatt tcatccatgg cacca	ccage ateteogeet 1800
gcaagteeta agaegeeaat egaaaagaaa caegeggatg aaate	gataa gtatatacaa 1860
ggattggatt acaataaaaa caatgtatta gtataccacg gagat	gcagt gacaaatgtg 1920
ccgccaagaa aaggttacaa agatggaaat gaatatattg ttgtg	gagaa aaagaagaaa 1980
tccatcaatc aaaataatgc agacattcaa gttgtgaatg caatt	tcgag cctaacctat 2040
ccaggtgctc tcgtaaaagc gaattcggaa ttagtagaaa atcaa	ccaga tgttctccct 2100
gtaaaacgtg attcattaac actcagcatt gatttgccag gtatg	actaa tcaagacaat 2160
aaaatagttg taaaaaatgc cactaaatca aacgttaaca acgca	gtaaa tacattagtg 2220
gaaagatgga atgaaaaata tgctcaagct tatccaaatg taagt	gcaaa aattgattat 2280
gatgacgaaa tggcttacag tgaatcacaa ttaattgcga aattt	ggtac agcatttaaa 2340
gctgtaaata atagcttgaa tgtaaacttc ggcgcaatca gtgaa	gggaa aatgcaagaa 2400
gaagtcatta gttttaaaca aatttactat aacgtgaatg ttaat	gaacc tacaagacct 2460
tccagatttt tcggcaaagc tgttactaaa gagcagttgc aagcg	cttgg agtgaatgca 2520
gaaaateete etgeatatat eteaagtgtg gegtatggee gteaa	gttta tttgaaatta 2580
tcaactaatt cccatagtac taaagtaaaa gctgcttttg atgct	gccgt aagcggaaaa 2640
tctgtctcag gtgatgtaga actaacaaat atcatcaaaa attct	tcctt caaagccgta 2700
atttacggag gttccgcaaa agatgaagtt caaatcatcg acggo	aacct cggagactta 2760
cgcgatattt tgaaaaaagg cgctactttt aatcgagaaa cacca	ggagt tcccattgct 2820
tatacaacaa actteetaaa agacaatgaa ttagetgtta ttaaa	aacaa ctcagaatat 2880
attgaaacaa cttcaaaagc ttatacagat ggaaaaatta acatc	gatca ctctggagga 2940
tacgttgctc aattcaacat ttcttgggat gaagtaaatt atgat	ctcga gattgtggga 3000
ggctgggagt gcgagaagca ttcccaaccc tggcaggtgc ttgtg	gcctc tcgtggcagg 3060
gcagtetgeg geggtgttet ggtgeaceee eagtgggtee teaca	gctgc ccactgcatc 3120
aggaacaaaa gcgtgatctt gctgggtcgg cacagcctgt ttcat	cctga agacacaggc 3180
caggtatttc aggtcagcca cagetteeca caccegetet aegat	atgag ceteetgaag 3240
aatcgattcc tcaggccagg tgatgactcc agccacgacc tcatg	ctgct ccgcctgtca 3300
gageetgeeg ageteaegga tgetgtgaag gteatggaee tgeee	accca ggagccagca 3360
ctggggacca cctgctacgc ctcaggctgg ggcagcattg aacca	gagga gttcttgacc 3420
ccaaagaaac ttcagtgtgt ggacctccat gttatttcca atgac	gtgtg tgcgcaagtt 3480
cacceteaga aggtgaceaa gtteatgetg tgtgetggae getgg	acagg gggcaaaagc 3540
acctgctcgg gtgattctgg gggcccactt gtctgttatg gtgtg	cttca aggtatcacg 3600
tcatggggca gtgaaccatg tgccctgccc gaaaggcctt ccctg	

-continued	
cattaccgga agtggatcaa ggacaccatc gtggccaacc cctaaactag tgactacaag	3720
gacgatgacg acaagtgata cccgggatct aaataaatcc gtttttaaat atgtatgcat	3780
ttcttttgcg aaatcaaaat ttgtataata aaatcctata tgtaaaaaac atcatttagc	3840
gtgactttct ttcaacagct aacaattgtt gttactgcct aatgttttta gggtatttta	3900
aaaaagggcg ataaaaaacg attgggggat gagacatgaa cgctcaagca gaagaattca	3960
aaaaatattt agaaactaac gggataaaac caaaacaatt tcataaaaaa gaacttattt	4020
ttaaccaatg ggatccacaa gaatattgta ttttcctata tgatggtatc acaaagctca	4080
cgagtattag cgagaacggg accatcatga atttacaata ctacaaaggg gctttcgtta	4140
taatgtetgg etttattgat acagaaacat eggttggeta ttataattta gaagteatta	4200
gcgagcaggc taccgcatac gttatcaaaa taaacgaact aaaagaacta ctgagcaaaa	4260
atottaogoa ottittotat gitticoaaa oootaoaaaa acaagittoa tacagootag	4320
ctaaatttaa tgatttttcg attaacggga agcttggctc tatttgcggt caacttttaa	4380
teetgaeeta tgtgtatggt aaagaaaete etgatggeat caagattaea etggataatt	4440
taacaatgca ggagttagga tattcaagtg gcatcgcaca tagctcagct gttagcagaa	4500
ttatttccaa attaaagcaa gagaaagtta tcgtgtataa aaattcatgc ttttatgtac	4560
aaaatcgtga ttatctcaaa agatatgccc ctaaattaga tgaatggttt tatttagcat	4620
gtcctgctac ttggggaaaa ttaaattaaa tcaaaaacag tattcctcaa tgaggaatac	4680
tgttttatat tttattcgaa taaagaactt acagaagcat tttcatgaac gcgtacgatt	4740
getteaceaa gaagagetgg tegacegatg eeettgagag eetteaacee agteagetee	4800
ttccggtggg cgcgggggcat gactatcgtc gccgcactta tgactgtctt ctttatcatg	4860
caactogtag gacaggtgoo ggoagogoto tgggtoattt toggogagga oogotttogo	4920
tggagegega egatgategg eetgtegett geggtatteg gaatettgea egeeeteget	4980
caagcetteg teaetggtee egecaceaaa egttteggeg agaageagge cattategee	5040
ggcatggcgg ccgacgcgct gggctacgtc ttgctggcgt tcgcgacgcg aggctggatg	5100
gcetteecea ttatgattet tetegettee ggeggeateg ggatgeeege gttgeaggee	5160
atgetgteea ggeaggtaga tgaegaeeat eagggaeage tteaaggate getegegget	5220
cttaccagee taaettegat cattggaeeg etgategtea eggegattta tgeegeeteg	5280
gcgagcacat ggaacgggtt ggcatggatt gtaggcgccg ccctatacct tgtctgcctc	5340
cccgcgttgc gtcgcggtgc atggagccgg gccacctcga cctgaatgga agccggcggc	5400
acctegetaa eggatteace acteeaagaa ttggageeaa teaattettg eggagaaetg	5460
tgaatgogoa aaccaaccot tggoagaaca tatocatogo gtoogocato tocagoagoo	5520
gcacgcggcg catctcggct ttcgatttgt ttttgaatgg tttatccgat aaagaagttg	5580
aagaacaaac tggaatcaat cgccgaacgt ttagaaggta tcgagcaaga tataacgtga	5640
cagtcgatca aagaaaaaac aatgaaaaga gggatagtta atgagtacgg ttattttagc	5700
tgaaaaacca agccaggcat tagcctacgc aagtgcttta aaacaaagca ccaaaaaaga	5760
cggttatttt gagatcaaag acccactatt tacagatgaa acgtttatca cctttggttt	5820
tgggcattta gtggaattag cagaaccagg tcattatgac gaaaagtggc aaaattggaa	5880
acttgaatct ttgccgattt ttcctgatcg atacgatttt gaagttgcaa aagataaggg	5940

-cont.	Indea
aaagcagttt aaaattgttg cagaacttct caaaaaggca aatacaatt	a ttgttgcaac 6000
agatagcgac agagaaggtg aaaatatcgc ctggtcgatt atccataaa	g caaatgeett 6060
ttcaaaagat aaaacattta aaagactatg gatcaatagc ttagaaaaa	g atgtaatccg 6120
aagcggtttt caaaatttgc aacctggaat gaattactat cccttttat	c aagaagcgca 6180
aacacgccaa attgccgatt ggttgatcgg catgaacgca agccctttg	t atacgttaaa 6240
tttacaacag aagggcgtac aaggtacatt ttcactagga cgtgttcaa	a cgcccacctt 6300
atacettatt tttcagegee aggaageeat agagaatttt aaaaaagaa	c cttttttcga 6360
ggtggaagct agtataaaag taaaccaagg gtcgtttaag ggcgttcta	a gececacaca 6420
gcgttttaaa acccaagagg agcttttagc ttttgtttct tctaaacaa	g ctaaaatagg 6480
caatcaagag gggataattg ctgatgttca aaccaaagag aagaaaacg	a atagteegag 6540
tttgttttct ttaagtagtt tgcaatcaaa agtcaatcag ctttataaa	g cgacagcgag 6600
ccaaacttta aaagctattt cttttttaat aacttaaaaa taaacttaa	t gtaacagcaa 6660
gcacagtcaa ggtatacacc tttgacaaaa aatagcacat tctctatcg	a aaatttttgc 6720
ttattttta aattattttg ggaaattttc ccaatccctt tttctaact	c aaaaaatata 6780
atcactcaaa atttaaaagg gcgcacttat acatcatttt aaaaaattg	a tgtaacgtgc 6840
taagttcaaa acaaagggcg cacttataca cgattttcaa tcttgtata	t ttctaacgaa 6900
aagcgtgcgc caaaaaaccc ccttcgtcaa ttttgacagg gggcttttt	g atgtaaaaat 6960
ttctatcgaa atttaaaaat tcgcttcact catgttataa agacttaaa	a taaaataact 7020
ctttaaaatc ttttgctagt tgttcttcaa tatttttat tcggtgcat	c ttccaagtaa 7080
agtataacac actagactta tttactacgt ttcataagtc attaatgcg	t gtgctctgcg 7140
aggctagttt ttgtgcaagc acaaaaaatg gactgaataa atcagtcca	t aagttcaaaa 7200
ccaaattcaa aatcaaaacc acaagcaacc aaaaaatgtg gttgttata	c gttcataaat 7260
tttatgatca cttacgtgta taaaattaaa ttcactttca aaatctaaa	a actaaatcca 7320
atcatctacc ctatgaatta tatcttgaaa ttcattcata aatagtgaa	g catggtaacc 7380
atcacataca gaatgatgaa gttgcagagc aactggtata taaatttta	t tattctcact 7440
ataaaattta cctatcgtaa taataggcaa taaaaagctg ctattgtta	c caatatttaa 7500
attaaatgaa ctaaaatcaa tccaaggaat cattgaaatc ggtatggtg	t tttcaggtat 7560
cggtttttta ggaaacattt cttctttatc tttatattca agcaagtca	t ttttataatt 7620
attataaaaa gaaatgaagt ttttatcaga ttcagtccaa atgttagta	a atttttcagt 7680
ttgcttatta aaaactgtat acaaaggatt taacttatcc caataacct	a atttattctc 7740
actattaatt cotgttotaa acactttatt tttatttaca acttocata	a ttgcataaat 7800
taaagaggga taaatttcat atcctttctt ttttatcata tctttaaac	a aagtaatatc 7860
aatttettta gtaatgetat aagtagtttg etgattaaaa tagtgttea	a aatattettt 7920
totatoccaa tittotaatt caataatatt aaaagtoata tataactto	c tcctaaattt 7980
taaattttta tatttaggag gaataateet etgattttt eataegtta	t gtcacctcgt 8040
aaatattaat tatactgaat tagcaatttt tatcaaataa aacttattt	t acttccaaaa 8100
cctaaattca cgttgccaaa aatcaatctg cttttgcaat tgtttttcg	t tcgcttttaa 8160
agtogattto attaattoog ttaaatcaat tggagatatt tototaato	a attttttaaa 8220
_ 555	

-continued	
tttagtetta gtattettae ttagetttee ceacataett tetteatgea acaaagtata	8280
aaccatagct tgctcattaa ttttttctaa agtagcccac gcaggtttca agatgtgtaa	8340
atcattaaaa caatcattcc agtaatcaac catatctctt tttaattcaa cttctacacg	8400
ccataaatgt tcagacacaa cttcaacatc tgcgttatct ttacgttctt gtttttatt	8460
ataaatteta ataaatetat cactateacg gacaceaaaa tattttgttt etggettgee	8520
attacgacca taaaaaacag ttttcttaac tgctttatca gtcattgcat agtaatcgct	8580
caaatcatct tcaaaatcaa aagctaagtc taatcttgta aaaccgtcat cttccatgta	8640
gtcgataata ttttgtttta accaaatcat ttcttcatgt gtgagtttat tgggattaaa	8700
ttcaacacgc atattacgtc tatcccaagt atctgctttt actttgtcat attcgatata	8760
aactttttct tgaagtgcct tagctttaaa ctttgtttga agtatatccc aaagtcgtat	8820
ttgtggctct acactcataa agtcagatag ctttttagca ttagttttgt tcaaatttcc	8880
aacgattgtc atggcatcaa aacttaatgc gggttgagat tttcccaaag tttgaccact	8940
taaccggcta ttacttaacc ggctattaga gacggaacta actcaacgct agtagtggat	9000
ttaatcccaa atgagccaac agaaccagaa ccagaaacag aacaagtaac attggagtta	9060
gaaatggaag aagaaaaaag caatgatttc gtgtgaataa tgcacgaaat cattgcttat	9120
ttttttaaaa agcgatatac tagatataac gaaacaacga actgaataaa gaatacaaaa	9180
aaagagccac gaccagttaa agcctgagaa actttaactg cgagccttaa ttgattacca	9240
ccaatcaatt aaagaagtcg agacccaaaa tttggtaaag tatttaatta ctttattaat	9300
cagatactta aatatetgta aacceattat ategggtttt tgagggggatt teaagtettt	9360
aagaagatac caggcaatca attaagaaaa acttagttga ttgccttttt tgttgtgatt	9420
caactttgat cgtagcttct aactaattaa ttttcgtaag aaaggagaac agctgaatga	9480
atateeett tgttgtagaa aetgtgette atgaeggett gttaaagtae aaatttaaaa	9540
atagtaaaat tcgctcaatc actaccaagc caggtaaaag taaaggggct atttttgcgt	9600
atcgctcaaa aaaaagcatg attggcggac gtggcgttgt tctgacttcc gaagaagcga	9660
ttcacgaaaa tcaagataca tttacgcatt ggacaccaaa cgtttatcgt tatggtacgt	9720
atgcagacga aaaccgttca tacactaaag gacattctga aaacaattta agacaaatca	9780
atacettett tattgatttt gatatteaca eggaaaaaga aaetatttea geaagegata	9840
ttttaacaac agctattgat ttaggtttta tgcctacgtt aattatcaaa tctgataaag	9900
gttatcaagc atattttgtt ttagaaacgc cagtctatgt gacttcaaaa tcagaattta	9960
aatctgtcaa agcagccaaa ataatctcgc aaaatatccg agaatatttt ggaaagtctt	10020
tgccagttga tctaacgtgc aatcattttg ggattgctcg tataccaaga acggacaatg	10080
tagaattttt tgatcccaat taccgttatt ctttcaaaga atggcaagat tggtctttca	10140
aacaaacaga taataagggc tttactcgtt caagtctaac ggttttaagc ggtacagaag	10200
gcaaaaaaca agtagatgaa ccctggttta atctcttatt gcacgaaacg aaattttcag	10260
gagaaaaggg tttagtaggg cgcaatagcg ttatgtttac cctctttta gcctacttta	10320
gttcaggcta ttcaatcgaa acgtgcgaat ataatatgtt tgagtttaat aatcgattag	10380
atcaaccctt agaagaaaaa gaagtaatca aaattgttag aagtgcctat tcagaaaact	10440
atcaaggggc taatagggaa tacattacca ttctttgcaa agcttgggta tcaagtgatt	10500

-continued
00110111000

				-contir	nued	
taaccagtaa	agatttattt	gtccgtcaag	ggtggtttaa	attcaagaaa	aaaagaagcg	10560
aacgtcaacg	tgttcatttg	tcagaatgga	aagaagattt	aatggcttat	attagcgaaa	10620
aaagcgatgt	atacaagcct	tatttagcga	cgaccaaaaa	agagattaga	gaagtgctag	10680
gcattcctga	acggacatta	gataaattgc	tgaaggtact	gaaggcgaat	caggaaattt	10740
tctttaagat	taaaccagga	agaaatggtg	gcattcaact	tgctagtgtt	aaatcattgt	10800
tgctatcgat	cattaaatta	aaaaaagaag	aacgagaaag	ctatataaag	gcgctgacag	10860
cttcgtttaa	tttagaacgt	acatttattc	aagaaactct	aaacaaattg	gcagaacgcc	10920
ccaaaacgga	cccacaactc	gatttgttta	gctacgatac	aggctgaaaa	taaaacccgc	10980
actatgccat	tacatttata	tctatgatac	gtgtttgttt	ttetttgetg	tttagtgaat	11040
gattagcaga	aatatacaga	gtaagatttt	aattaattat	tagggggaga	aggagagagt	11100
agcccgaaaa	cttttagttg	gcttggactg	aacgaagtga	gggaaaggct	actaaaacgt	11160
cgagggggcag	tgagagcgaa	gcgaacactt	gatcttttaa	gttgctatca	tttataggtc	11220
aatagagtat	acctatttgt	cctaatatga	ttttagcagt	ataattgact	tggtgaatag	11280
gtcatttaag	ttgggcataa	taggaggagt	aaaatgaaaa	aatttattta	tcgagtttta	11340
gaaaatgacg	aagtggtggc	tattttaat	gagcaacaat	atgcgcaaga	ttttatcgct	11400
tacgaaaaga	caatttctga	taagcaattt	gaaattgaaa	aagtagatat	tgctgattgg	11460
ttattgcaac	cgagagaatt	ttagaggttg	gttgaaaatg	gctaaaattg	gttatgcacg	11520
tgtcagtagc	aaagaacaga	acttagatcg	gcaattacaa	gcgttacagg	gcgtttctaa	11580
ggtcttttca	gacaaattaa	gcggtcaatc	ggtcgaacgc	ccacaattac	aagctatgct	11640
taactatatt	cgtgaagggg	atattgttat	tgttactgaa	ttagatcgat	taggacgaaa	11700
taataaagaa	ttaacagaat	tgatgaatca	aattcaaatt	aaggggggcaa	ccctggaagt	11760
cttaaattta	ccctcaatga	atggtattga	agatgaaaat	ttaaggcgtt	tgattaatag	11820
ccttgtcatt	gaattgtaca	agtatcaagc	agaatcagaa	cgaaaaaaaa	ttaaggaacg	11880
tcaggcacaa	ggaatcgaaa	ttgctaagaa	aaaaggcaaa	ttcaaaggtc	gtcagcataa	11940
atttaaagaa	aatgatccac	gtttaaagtc	gggcagcgtt	gggtcctggc	cacgggtgcg	12000
catgatcgtg	ctcctgtcgt	tgaggacccg	gctaggctgg	cggggttgcc	ttactggtta	12060
gcagaatgaa	tcaccgatac	gcgagcgaac	gtgaagcgac	tgctgctgca	aaacgtctgc	12120
gacctgagca	acaacatgaa	tggtcttcgg	tttccgtgtt	tcgtaaagtc	tggaaacgcg	12180
gaagtcccct	acgtgctgct	gaagttgccc	gcaacagaga	gtggaaccaa	ccggtgatac	12240
cacgatacta	tgactgagag	tcaacgccat	gagcggcctc	atttcttatt	ctgagttaca	12300
acagtccgca	ccgctgccgg	tageteette	cggtgggcgc	ggggcatgac	tatcgtcgcc	12360
gcacttatga	ctgtcttctt	tatcatgcaa	ctcgtaggac	aggtgccggc	agcgcccaac	12420
agtcccccgg	ccacgggggcc	tgccaccata	cccacgccga	aacaagcgcc	ctgcaccatt	12480
atgttccgga	tctgcatcgc	aggatgctgc	tggctaccct	gtggaacacc	tacatctgta	12540
ttaacgaagc	gctaaccgtt	tttatcaggc	tctgggaggc	agaataaatg	atcatatcgt	12600
caattattac	ctccacgggg	agagcctgag	caaactggcc	tcaggcattt	gagaagcaca	12660
cggtcacact	gcttccggta	gtcaataaac	cggtaaacca	gcaatagaca	taagcggcta	12720
tttaacgacc	ctgccctgaa	ccgacgaccg	ggtcgaattt	gctttcgaat	ttctgccatt	12780
5	5 5	5 5 5			2	

catc	cgct															
	-	ta t	tato	cactt	ta ti	ccago	gcgta	a gca	aacca	aggc	gtt	aag	ggc a	accaa	ataact	12840
gcct	taaa	aaa a	aatta	acgco	cc cá	geeet	tgeea	a cto	cate	gcag	taci	gtt	gta a	attca	attaag	12900
catt	ctgo	ccg a	acato	ggaag	ge ea	atca	caaa	ggo	catga	atga	acci	gaa	tcg d	ccago	eggeat	12960
cagc	acct	tg t	cgco	cttgo	cg ta	ataat	tatti	c gco	ccato	ggtg	aaaa	acgg	ggg (gaag	gaagtt	13020
gtcc	atat	tg g	gccad	gtt	ca aa	atcaa	aaact	ggt	gaaa	actc	acco	cagg	gat t	gget	gagac	13080
gaaa	aaca	ata t	tcto	caata	aa a	ccct	ttag	g gaa	aatag	ggcc	aggi	ttt	cac d	gtaa	acacgc	13140
caca	tctt	gc g	gaata	atato	gt g1	cagaa	aacto	g ccé	ggaaa	atcg	tcg	ggt	att d	cacto	ccagag	13200
cgat	gaaa	ac ç	gttto	cagtt	t go	ctcat	tggaa	a aa	ggtg	gtaa	caa	gggt	gaa 🤇	cacta	atccca	13260
tatc	acca	igc t	caco	cgtct	t t	catto	gccat	acq	3g							13294
<210 <211 <212 <213 <400	> LE > TY > OF	ENGTH PE : RGANI	H: 36 PRT [SM:	58 List	ceria	a mor	nocyt	cogei	nes							
Met 1					His	Arg	Pro	Thr	Trp 10	Ile	Glu	Ile	Asp	Arg 15	Ala	
Ala	Ile	Arg	Glu 20	-	Ile	Lys	Asn	Glu 25		Asn	Гла	Leu	Pro 30		Ser	
Val	Asp	Leu 35		Ala	Val	Val	Lys 40		Asn	Ala	Tyr	Gly 45		Gly	Ile	
Ile	Glu 50		Ala	Arg	Thr	Ala 55		Glu	Ala	Gly	Ala 60		Gly	Phe	Cys	
Val. 65		Ile	Leu	Asp	Glu 70		Leu	Ala	Leu	Arg 75		Ala	Gly	Phe	Gln 80	
Asp .	Asp	Phe	Ile	Leu 85		Leu	Gly	Ala	Thr 90		Lys	Glu	Asp	Ala 95		
Leu	Ala	Ala	Lys 100		His	Ile	Ser	Leu 105		Val	Phe	Arg	Glu 110		Trp	
Leu	Glu	Asn 115		Thr	Leu	Glu	Ala 120		Leu	Arg	Ile	His 125		Lys	Val	
Asp	Ser 130		Met	Gly	Arg	Leu 135		Ile	Arg	Thr	Thr 140		Glu	Ala	Arg	
Arg		Glu	Ala	Thr			Asn	Asp	His			Gln	Leu	Glu	-	
145 Ile	Tyr	Thr	His		150 Ala	Thr	Ala	Asp		155 Leu	Glu	Thr	Ser	-	160 Phe	
Glu	Gln	Gln		165 Ala	Гла	Phe	Gln		170 Ile	Leu	Thr	Ser		175 Lys	Lys	
			180					185					190			
Arg	Pro	Thr 195	Tyr	Val	His	Thr	Ala 200	Asn	Ser	Ala	Ala	Ser 205	Leu	Leu	Gln	
Pro	Gln 210	Ile	Gly	Phe	Asp	Ala 215	Ile	Arg	Phe	Gly	Ile 220	Ser	Met	Tyr	Gly	
Leu 225	Thr	Pro	Ser	Thr	Glu 230	Ile	Lys	Thr	Ser	Leu 235	Pro	Phe	Glu	Leu	Lys 240	
Pro	Ala	Leu	Ala	Leu 245	Tyr	Thr	Glu	Met	Val 250	His	Val	ГЛа	Glu	Leu 255	Ala	

Glu Trp Val Ala Thr Leu Pro Ile Gly Tyr Ala Asp Gly Leu Ile Arg His Tyr Ser Gly Phe His Val Leu Val Asp Gly Glu Pro Ala Pro Ile Ile Gly Arg Val Cys Met Asp Gln Thr Ile Ile Lys Leu Pro Arg Glu 305 310 Phe Gln Thr Gly Ser Lys Val Thr Ile Ile Gly Lys Asp His Gly Asn Thr Val Thr Ala Asp Asp Ala Ala Gln Tyr Leu Asp Thr Ile Asn Tyr Glu Val Thr Cys Leu Leu Asn Glu Arg Ile Pro Arg Lys Tyr Ile His <210> SEQ ID NO 57 <211> LENGTH: 289 <212> TYPE: PRT <213> ORGANISM: Listeria monocytogenes <400> SEOUENCE: 57 Met Lys Val Leu Val Asn Asn His Leu Val Glu Arg Glu Asp Ala Thr Val Asp Ile Glu Asp Arg Gly Tyr Gln Phe Gly Asp Gly Val Tyr Glu Val Val Arg Leu Tyr Asn Gly Lys Phe Phe Thr Tyr Asn Glu His Ile Asp Arg Leu Tyr Ala Ser Ala Ala Lys Ile Asp Leu Val Ile Pro Tyr Ser Lys Glu Glu Leu Arg Glu Leu Leu Glu Lys Leu Val Ala Glu Asn Asn Ile Asn Thr Gly Asn Val Tyr Leu Gl
n Val Thr Arg Gly Val Gl
n $% \mathbb{C}^{2}$ Asn Pro Arg Asn His Val Ile Pro Asp Asp Phe Pro Leu Glu Gly Val Leu Thr Ala Ala Ala Arg Glu Val Pro Arg Asn Glu Arg Gln Phe Val Glu Gly Gly Thr Ala Ile Thr Glu Glu Asp Val Arg Trp Leu Arg Cys Asp Ile Lys Ser Leu Asn Leu Leu Gly Asn Ile Leu Ala Lys Asn Lys Ala His Gln Gln Asn Ala Leu Glu Ala Ile Leu His Arg Gly Glu Gln Val Thr Glu Cys Ser Ala Ser Asn Val Ser Ile Ile Lys Asp Gly Val Leu Trp Thr His Ala Ala Asp Asn Leu Ile Leu Asn Gly Ile Thr Arg Gln Val Ile Ile Asp Val Ala Lys Lys Asn Gly Ile Pro Val Lys Glu Ala Asp Phe Thr Leu Thr Asp Leu Arg Glu Ala Asp Glu Val Phe Ile Ser Ser Thr Thr Ile Glu Ile Thr Pro Ile Thr His Ile Asp Gly Val Gln Val Ala Asp Gly Lys Arg Gly Pro Ile Thr Ala Gln Leu His Gln

260 265 270 Tyr Phe Val Glu Glu Ile Thr Arg Ala Cys Gly Glu Leu Glu Phe Ala 280 275 285 Lys <210> SEQ ID NO 58 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEOUENCE: 58 gtgctcgaga ttgtgggagg ctgggagtg 29 <210> SEQ ID NO 59 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: chemically synthesized <400> SEQUENCE: 59 29 gatactagtt taggggttgg ccacgatgg <210> SEQ ID NO 60 <211> LENGTH · 10 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 60 His Cys Ile Arg Asn Lys Ser Val Ile Leu 5 1 10

What is claimed:

1. A recombinant *Listeria* strain expressing a folate hydrolase 1 (FOLH1) peptide, wherein either (a) the sequence of said FOLH1 peptide is a sequence selected from the group consisting of SEQ ID No: 41, 43, 44, and 45; or (b) said FOLH1 peptide is an immunogenic fragment of a larger FOLH1 peptide, wherein the sequence of said larger FOLH1 peptide is selected from the group consisting of SEQ ID No: 41, 43, 44, and 45.

2. The recombinant *Listeria* strain of claim **1**, wherein said FOLH1 peptide is in the form of a fusion peptide, wherein said fusion peptide further comprises a non-FOLH1 peptide, wherein said non-FOLH1 peptide enhances the immunogenicity of said fragment.

3. The recombinant *Listeria* strain of claim **1**, wherein said non-FOLH1 peptide is selected from the group consisting of a listeriolysin (LLO) peptide, an ActA peptide, and a PEST-like sequence peptide.

4. The recombinant *Listeria* strain of claim **1**, wherein said FOLH1 peptide does not contain an FOLH1 signal sequence.

5. An immunogenic composition comprising the recombinant *Listeria* strain of claim 1 and an adjuvant.

6. The recombinant *Listeria* strain of claim 1, wherein said recombinant *Listeria* strain is a recombinant *Listeria* monocytogenes strain.

7. The recombinant *Listeria* strain of claim 1, wherein said recombinant *Listeria* strain has been passaged through an animal host.

8. The recombinant *Listeria* strain of claim **1**, wherein said *Listeria* strain is an auxotrophic *Listeria* strain.

9. The recombinant *Listeria* strain of claim **8**, wherein said auxotrophic *Listeria* strain is a dal/dat mutant.

10. The recombinant *Listeria* strain of claim **9**, wherein said auxotrophic *Listeria* strain comprises an episomal expression vector comprising a metabolic enzyme that complements the auxotrophy of said auxotrophic *Listeria* strain.

11. The recombinant *Listeria* strain of claim **10**, wherein said auxotrophic *Listeria* further comprises a deletion in the endogenous actA gene.

12. The recombinant *Listeria* strain of claim **10**, wherein said metabolic enzyme is an alanine racemase enzyme.

13. The recombinant *Listeria* strain of claim **10**, wherein said metabolic enzyme is a D-amino acid transferase enzyme.

14. A method of inducing an anti-FOLH1 immune response in a subject, comprising administering to said subject a composition comprising the recombinant *Listeria* strain of claim **1**, thereby inducing an anti-FOLH1 immune response in a subject.

15. A method of treating a folate hydrolase 1 (FOLH1)expressing prostate cancer in a subject, the method comprising the step of administering to said subject a composition comprising the recombinant *Listeria* strain of claim 1, whereby said subject mounts an immune response against said FOLH1 protein-expressing prostate cancer, thereby treating an FOLH1 protein-expressing prostate cancer in a subject.

16. A method of protecting a human subject against a folate hydrolase 1 (FOLH1) protein-expressing prostate cancer, the method comprising the step of administering to said human subject a composition comprising the recombinant *Listeria* strain of claim **1**, whereby said subject mounts an immune response against said FOLH1 protein, thereby protecting a human subject against an FOLH1 protein-expressing prostate cancer.

17. A recombinant polypeptide comprising a folate hydrolase 1 (FOLH1) peptide operatively linked to a non-FOLH1 peptide, wherein said non-FOLH1 peptide is selected from the group consisting of a listeriolysin (LLO) peptide, an ActA peptide, and a PEST-like amino acid sequence.

18. An immunogenic composition comprising the recombinant polypeptide of claim **17** and an adjuvant.

19. A nucleotide molecule encoding the recombinant polypeptide of claim **17**.

20. An immunogenic composition comprising the nucleotide molecule of claim **20** and an adjuvant.

21. A recombinant vector comprising the nucleotide molecule of claim 19.

22. A method of inducing an anti-FOLH1 immune response in a subject, comprising administering to said subject an immunogenic composition comprising the recombinant polypeptide of claim **17**, thereby inducing an anti-FOLH1 immune response in a subject.

23. A method of treating an FOLH1 protein-expressing prostate cancer in a subject, the method comprising the step of administering to said subject an immunogenic composition comprising the recombinant polypeptide of claim **17**, whereby said subject mounts an immune response against said FOLH1 protein-expressing prostate cancer, thereby treating an FOLH1 protein-expressing prostate cancer in a subject.

24. A method of protecting a human subject against an FOLH1 protein-expressing prostate cancer, the method comprising the step of administering to said human subject an immunogenic composition comprising the recombinant polypeptide of claim 17, whereby said subject mounts an immune response against said FOLH1 protein, thereby protecting a human subject against an FOLH1 protein-expressing prostate cancer.

25. A method of inducing an anti-FOLH1 immune response in a subject, comprising administering to said subject an immunogenic composition comprising the nucleotide molecule of claim **19**, thereby inducing an anti-FOLH1 immune response in a subject.

26. A method of treating an FOLH1 protein-expressing prostate cancer in a subject, the method comprising the step of administering to said subject an immunogenic composition comprising the nucleotide molecule of claim **19**, whereby said subject mounts an immune response against said FOLH1 protein-expressing prostate cancer, thereby treating an FOLH1 protein-expressing prostate cancer in a subject.

27. A method of protecting a human subject against an FOLH1 protein-expressing prostate cancer, the method comprising the step of administering to said human subject

an immunogenic composition comprising the nucleotide molecule of claim **19**, whereby said subject mounts an immune response against said FOLH1 protein, thereby protecting a human subject against an FOLH1 proteinexpressing prostate cancer.

28. A recombinant *Listeria* strain expressing: a kallikreinrelated peptidase 3 (KLK3) peptide, wherein the sequence of the KLK3 peptide comprises a sequence selected from the sequences set forth in SEQ ID NO: 27, 29-32, 34, and 36-39, or a sequence greater than 97% identical thereto, wherein the KLK3 peptide is in the form of a fusion peptide and further comprises a non-KLK3 peptide, wherein the non-KLK3 peptide is selected from an ActA peptide and a PEST-like sequence peptide and wherein the non-KLK3 enhances the immunogenicity of the fusion peptide.

29. The recombinant *Listeria* strain of claim **28**, wherein said ActA peptide comprises a sequence selected from the sequences set forth in SEQ ID NO: 1-5, 14, 15 or 61, or a sequence greater than 97% identical thereto.

30. The recombinant *Listeria* strain of claim **28**, wherein the KLK3 peptide does not contain a KLK3 signal sequence.

31. The recombinant *Listeria* strain of claim **28**, wherein the KLK3 peptide contains a KLK3 signal sequence.

32. The recombinant *Listeria* strain of claim **28**, wherein the recombinant *Listeria* strain is an auxotrophic *Listeria* or a recombinant *Listeria monocytogenes* strain.

33. The recombinant *Listeria* strain of claim **28**, wherein the auxotrophic *Listeria* strain is a dal/dat mutant and further comprises a deletion in the endogenous ActA gene.

34. The recombinant *Listeria* strain of claim **32**, wherein the auxotrophic *Listeria* strain comprises an episomal expression vector comprising a metabolic enzyme that complements the auxotrophy of the auxotrophic *Listeria* strain.

35. The recombinant *Listeria* strain of claim **34**, wherein the metabolic enzyme is an alanine racemase enzyme or a D-amino acid transferase enzyme.

36. The recombinant *Listeria* strain of claim **28**, wherein the recombinant *Listeria* strain has been passaged through an animal host.

37. A recombinant polypeptide comprising a kallikreinrelated peptidase 3 (KLK3) peptide operatively linked to a non-KLK3 peptide, wherein the sequence of the KLK3 peptide comprises a sequence selected from the sequences set forth in SEQ ID NO: 27, 29-32, 34, and 36-39, or a sequence greater than 97% identical thereto; wherein the non-KLK3 peptide is selected from an ActA peptide, and a PEST-like amino acid sequence.

38. The recombinant polypeptide of claim **37**, wherein said ActA peptide comprises a sequence selected from the sequences set forth in SEQ ID NO: 1-5, 14, 15 or 61, or a sequence greater than 97% identical thereto.

39. A nucleotide molecule encoding the recombinant polypeptide of claim **37**.

40. An immunogenic composition comprising the recombinant *Listeria* strain of claim **28**.

41. An immunogenic composition comprising the recombinant polypeptide of claim **37**.

42. An immunogenic composition comprising the recombinant the nucleotide molecule of claim 39, and an adjuvant.

43. A recombinant vector comprising the nucleotide molecule of claim **39**.

44. A method of producing the recombinant polypeptide of claim 37, the method comprising the step of chemically

conjugating a polypeptide comprising the KLK3 peptide to a polypeptide comprising the non-KLK3 peptide wherein the non-KLK3 peptide is selected from an ActA peptide and a PEST-like sequence peptide.

45. A method of inducing an anti-KLK3 immune response in a subject, comprising administering to the subject the recombinant *Listeria* strain of claim **28**.

46. A method of inducing an anti-KLK3 immune response in a subject the immunogenic composition comprising the recombinant polypeptide of claim **39**.

47. A method of treating a kallikrein-related peptidase 3 (KLK3)-expressing prostate cancer in a subject, comprising administering to the subject the recombinant *Listeria* strain of claim **28**.

48. A method of treating a kallikrein-related peptidase 3 (KLK3)-expressing prostate cancer in a subject, comprising administering the recombinant polypeptide of claim **37**.

49. A method of protecting a human subject against a kallikrein-related peptidase 3 (KLK3)-expressing prostate cancer, comprising administering to the subject the recombinant *Listeria* strain of claim **28**.

50. A method of protecting a human subject against a kallikrein-related peptidase 3 (KLK3)-expressing prostate cancer, comprising administering to the subject the recombinant polypeptide of claim **37**.

* * * * *