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MONITORING ACCESSES OF A THREAD TO
MULTIPLE MEMORY CONTROLLERS AND
SELECTING A THREAD PROCESSOR FOR
THE THREAD BASED ON THE
MONITORING

RELATED APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 13/538,971, filed on Jun. 29, 2012,
entitled “MONITORING ACCESSES OF A THREAD TO
MULTIPLE MEMORY CONTROLLERS AND SELECT-
ING A THREAD PROCESSOR FOR THE THREAD
BASED ON THE MONITORING”, which is hereby incor-
porated herein by reference in its entirety and for all pur-
poses.

BACKGROUND

Field

[0002] Embodiments relate to software threads. In particu-
lar, embodiments relate to threads that access multiple
memory controllers.

Background Information

[0003] Software is commonly executed as multiple soft-
ware threads or threads. Commonly, multiple thread proces-
sors, each operable to process one or more threads, are
included in a device so that multiple threads may be pro-
cessed concurrently. This helps to increase processing
throughput and/or reduce processing time. An operating
system typically schedules each thread for processing on a
thread processor at the time when the threads are first
activated.

[0004] Commonly, during operation the threads running
on the different thread processors may access data in a
shared memory. For example, a thread running on a thread
processor may access the shared memory when desired data
is not found in a local cache or other local memory. Often,
the threads access the shared memory through a shared
memory controller that is directly connected to the shared
memory.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0005] The invention may best be understood by referring
to the following description and accompanying drawings
that are used to illustrate embodiments of the invention. In
the drawings:

[0006] FIG. 1 is a block diagram of an embodiment of a
thread processor apparatus having multiple memory con-
troller access based thread processor selection logic that is
operable to select a thread processor for a thread based on
accesses to multiple memory controllers.

[0007] FIG. 2 is a block diagram of an embodiment of a
method of monitoring accesses by a thread to multiple
memories and/or memory controllers and selecting a thread
processor for a thread based on the monitored accesses to the
multiple memories and/or memory controllers.

[0008] FIG. 3 is a block diagram of an embodiment of a
method of monitoring accesses by a first thread running on
a first thread processor to multiple memories, selecting a
second thread processor for the first thread based on the

May 11,2017

monitoring, and initiating migration of the first thread from
the first thread processor to the selected second thread
processor.

[0009] FIG. 4 is a block diagram of an embodiment of a
method of monitoring accesses by a first thread running on
a first thread processor to multiple memories, selecting a
second thread processor for a second instance of the first
thread based on the monitoring, and initiating scheduling of
the second instance of the first thread on the selected second
thread processor.

[0010] FIG. 5 is a block diagram of an example embodi-
ment of a chip multi-processor (CMP) including multiple
tiles each having one or more cores and multiple memory
controller access based core selection logic that is operable
to select a core for a thread based on accesses by a thread to
multiple memory controllers.

[0011] FIG. 6 is a block diagram of an embodiment of a
memory controller access monitor unit located on an inte-
grated circuit and a thread processor selector unit located off
of the integrated circuit.

[0012] FIG. 7 is a block diagram illustrating an embodi-
ment in which a thread installation initiation unit of an
integrated circuit communicates or cooperates with a thread
installation unit of an operating system to install a thread.
[0013] FIG. 8 is a block diagram illustrating an embodi-
ment in which a thread installation unit of an integrated
circuit autonomously performs thread installation without
needing an operating system to perform the thread installa-
tion.

[0014] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention.

[0015] FIG. 9B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the invention.

[0016] FIG. 10A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 1002 and with its local subset of the Level 2 (L2)
cache 1004, according to embodiments of the invention.
[0017] FIG. 10B is an expanded view of part of the
processor core in FIG. 10A according to embodiments of the
invention.

[0018] FIG. 11 is a block diagram of a processor 1100 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the invention.

[0019] FIG. 12, shown is a block diagram of a system
1200 in accordance with one embodiment of the present
invention.

[0020] FIG. 13, shown is a block diagram of a first more
specific exemplary system 1300 in accordance with an
embodiment of the present invention.

[0021] FIG. 14, shown is a block diagram of a second
more specific exemplary system 1400 in accordance with an
embodiment of the present invention.

[0022] FIG. 15, shown is a block diagram of a SoC 1500
in accordance with an embodiment of the present invention.
[0023] FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
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DETAILED DESCRIPTION

[0024] In the following description, numerous specific
details, such as, for example, specific apparatus, specific
types and interrelationships of system components, logic
partitioning/integration details, specific sets of operations,
specific equations, and the like, are set forth. However, it is
understood that embodiments of the invention may be
practiced without these specific details. In other instances,
well-known circuits, structures and techniques have not
been shown in detail in order not to obscure the understand-
ing of this description.

[0025] FIG. 1 is a block diagram of an embodiment of a
thread processor apparatus 100 having multiple memory
controller access based thread processor selection logic 101
that is operable to select a thread processor for a thread
based on accesses to multiple memory controllers. The
apparatus includes a first thread processor 102-1, a second
thread processor 102-2, a third thread processor 102-3, a
fourth thread processor 102-4, and one or more intervening
thread processor(s) 102-5 that are coupled between the third
and fourth thread processors. Other embodiments may
include either fewer or more thread processors. For example,
various other embodiments may include three, four, more
than five, at least eight, at least ten, at least sixteen, at least
twenty, at least thirty-two, at least fifty, at least sixty-four, at
least eighty, or more thread processors. The thread proces-
sors are coupled together by an interconnect 104.

[0026] Each thread processor may represent a hardware
thread processor that includes circuitry (e.g., integrated
circuitry) or other hardware that is capable of processing or
running one or more threads. Each thread may represent a
portion of software (e.g., a group of instructions) that can be
processed separately from (e.g., independently from and/or
concurrently with) other portions (e.g., threads). In some
embodiments, the thread processors may represent cores or
other processors of a single semiconductor substrate (e.g., an
integrated circuit die) that are coupled together by an on-die
or on-substrate interconnect (e.g., a mesh, torus, ring, etc.).
In some embodiments, one or more or all of the thread
processors may be multi-threaded. The multi-threaded
thread processors may each be operable to switch between
processing two or more threads. In some embodiments, one
or more or all of the thread processors may be single-
threaded. Each single-threaded thread processor may be
operable to process a single thread.

[0027] Threads running on the thread processors may
access data from a first shared memory 106-1 and a second
shared memory 106-2. In the illustrated embodiment, a first
memory controller 108-1 is directly coupled with the first
thread processor 102-1. Likewise, a second memory con-
troller 108-2 is directly coupled with the second thread
processor 102-2. The first memory controller is operable to
couple with, and provide access to, the first shared memory
106-1. The second memory controller is operable to couple
with, and provide access to, the second shared memory
106-2. In the illustration, the memories are shown in dashed
lines to indicate that they are not necessarily part of the
apparatus, but rather may be system-level components
included in a system in which the apparatus is deployed.
[0028] Threads running on thread processors other than
the first thread processor access the first memory through the
first memory controller, the directly coupled first thread
processor, and any intervening thread processors that are
coupled or disposed between the thread processors on which
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the threads are running and the first thread processor. Like-
wise, threads running on thread processors other than the
second thread processor access the second memory through
the second memory controller, the directly coupled second
thread processor, and any intervening thread processors that
are coupled or disposed between the thread processors
running the threads and the second thread processor.
Accesses to the memory controllers through such interven-
ing thread processors generally tend to take more time (i.e.,
have greater access latencies) than accesses from the thread
processor that is directly coupled with the memory control-
ler. In general, the more intervening thread processors
between the accessed memory controller and the thread
processor running the thread, the greater the latency tends to
be. Such increased latencies tend to reduce performance and
are generally undesirable.

[0029] In addition, accesses to the memory controllers
through such intervening thread processors generally tend to
consume more power and/or generate more heat than
accesses to the memory controllers from the thread proces-
sor that is directly coupled with the memory controller. In
general, the more intervening thread processors between the
accessed memory controller and the thread processor run-
ning the thread, the greater the power consumption and/or
heat generation tends to be. The increased power consump-
tion and/or heat generation may be due in part to the need to
convey additional electrical signals (e.g., additional signal-
ing) through additional structures (e.g., additional thread
processors, additional interconnect lengths, etc.). Moreover,
in some embodiments, one or more of the intervening thread
processors may initially be in a relatively lower power mode
(e.g., an idle mode, a sleep mode, a clock off mode, a clock
gated mode, etc.), and may need to be transitioned to a
relatively higher power mode in order to convey the access
to the memory controller.

[0030] Insome embodiments, a thread running on a thread
processor may access at least two memories and/or at least
two memory controllers. Without limitation, there are vari-
ous possible reasons why the thread may access two or more
memories and/or memory controllers. One possible reason is
data sharing between multiple threads (e.g., a first thread
primarily accessing a first memory may access data of a
second thread in a second memory). Another possible reason
is that data for a thread may be stored in multiple memories
each directly coupled with a different memory controller.
For example, a thread may need more memory space than a
single memory is able to provide so the memory space may
be spread across two or more different memories. Yet
another possible reason is memory interleaving. Certain
operating systems perform memory interleaving in which
memory space is intentionally allocated across multiple
memories, each directly coupled to a different memory
controller, in order to help increase the overall memory
access bandwidth.

[0031] If a thread that accesses at least two memories
and/or at least two memory controllers is running on a thread
processor that is unnecessarily farther removed from one or
more of the at least two memories and/or at least two
memory controllers than it need be, then this may tend to
unnecessarily increase memory access latency (which may
tend to reduce performance) and/or tend to unnecessarily
increase energy consumption. For example, as shown in the
illustration, a second thread 110-2 running on the fourth
thread processor 102-4 would access the first and second
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memories 106 and/or the first and second memory control-
lers 108 with relatively higher latencies and/or relatively
higher power consumption, whereas a first thread 110-1
running on the third thread processor 102-3 would access the
first and second memories 106 and/or the first and second
memory controllers 108 with relatively lower latencies
and/or relatively lower power consumption. As shown, in
some embodiments, the third thread processor 102-3 may be
located or disposed along a shortest path 112 coupling the
first and second memory controllers (e.g., an interconnect
path most directly coupling the first and second memory
controllers), whereas the fourth thread processor would need
to additionally traverse the one or more intervening thread
processors 102-5 to reach the third thread processor 102-3
and/or the shortest path 112. In some embodiments, the
shortest path may include a first thread processor that is
directly coupled to the first memory controller, a second
thread processor that is directly coupled to the second
memory controller, and multiple thread processors that are
coupled most directly between the first and second thread
processors. It is not required that the third thread processor
be located or disposed along the shortest path but often this
will provide the lowest access latencies. Especially for the
relatively memory access intensive threads (e.g., the threads
that access the memory controllers most frequently), such
accesses through unnecessary intervening thread processors
may tend to significantly reduce performance and/or
increase power consumption.

[0032] Referring again to FIG. 1, the apparatus includes
multiple memory controller access based thread processor
selection logic 101 that is operable to select a thread
processor for a thread based on accesses to multiple memory
controllers. As used herein, multiple refers to at least two. In
some embodiments, the logic 101 may include a memory
controller access monitor unit 114. The memory controller
access monitor unit is operable to monitor accesses (e.g.,
read and/or write accesses), by threads to both the first and
second memory controllers. Different ways of monitoring
the accesses are contemplated. In some embodiments, the
memory controller access monitor unit may be operable to
monitor a proportion of instructions processed by the thread
that are cache misses (e.g., per-thread misses per thousand
instructions) with respect to local caches of the thread
processors. In other embodiments, embodiments, the
memory controller access monitor unit may be operable to
monitor a count of cycle stalls for the thread (e.g., a
per-thread stall cycles hardware counter). Other ways of
monitoring the accesses are also possible. In some embodi-
ments, the memory controller access monitor unit may be
operable to determine the relative proportions of accesses to
the first and second memory controllers. The relative pro-
portions may be expressed as percentages, fractions, ratios,
total numbers of accesses to each of the first and second
memory controllers, etc. As one specific example, the
memory controller access monitor unit may be operable to
monitor or determine that approximately 70% of the
memory accesses of the second thread are to the first
memory controller, whereas approximately 30% of the
memory accesses of the second thread are to the second
memory controller. In some embodiments, the memory
controller access monitor unit may also monitor memory
access latencies, queuing delays, and/or other parameters
associated with accessing the memory controllers and/or
memories.
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[0033] Insome embodiments, a shared memory controller
access monitor unit may be coupled with all of the thread
processors and operable to monitor the memory controller
accesses of threads running on all of the thread processors.
In other embodiments, the memory controller access moni-
tor unit may be a distributed memory controller access
monitor unit that includes a plurality of distributed memory
controller access monitor units. In some embodiments, each
of the distributed memory controller access monitor units
may be a part of and/or coupled with a different correspond-
ing one of the thread processors and operable to monitor the
memory controller accesses of a thread running on the
corresponding thread processor. In other embodiments, each
of the distributed memory controller access monitor units
may be coupled with two or more corresponding thread
processors and operable to monitor the memory controller
accesses of threads running on the corresponding thread
processors. The memory controller access monitor unit may
be implemented in hardware, firmware, software, or a com-
bination thereof. In some embodiments, the memory con-
troller access monitor unit includes at least some hardware
(e.g., transistors and/or integrated circuitry).

[0034] Referring again to FIG. 1, a thread processor
selector unit 116 is coupled with the memory controller
access monitor unit 114. The thread processor selector unit
is operable to select thread processors for threads based on
the monitoring of the accesses by threads to both the first and
second memory controller. The thread processor selector
unit may be implemented in hardware, firmware, software,
or a combination thereof. In some embodiments, the thread
processor selector unit may be located on-die with a thread
processor and may include at least some hardware (e.g.,
transistors and/or integrated circuitry), although this is not
required. In other embodiments, the thread processor selec-
tor unit may be at least partly implemented as a part of an
operating system.

[0035] In some embodiments, the thread processor selec-
tor unit may be operable to select a thread processor that
takes into account the memory accesses to both the first and
second memories and/or both the first and second memory
controllers. In some embodiments, the thread processor may
be selected to strike a balance between the times (e.g.,
memory access latencies) needed to access the memories
and/or memory controllers and the relative proportions (e.g.,
the fractions or percentages) of accesses for a thread to the
memories and/or memory controllers. For example, memory
access latencies to the various memories and/or memory
controllers may be weighted or otherwise emphasized based
on the proportion of the accesses to these memories and/or
memory controllers. In one aspect, the memory access
latencies may represent the overall latencies from the time a
thread processor attempts to obtain (e.g., fetch) the data until
the data is provided to the thread processor. As one particular
example, if a thread accesses a first memory 70% of the time
and a second memory 30% of the time, then a thread
processor on a direct path coupling the first and second
memory controllers and approximately 70% of the way to
the memory controller corresponding to the first memory
may be selected.

[0036] In some embodiments, the thread processor selec-
tor unit may be operable to select a thread processor that has
minimal, near minimal, optimal, or near optimal weighted
average memory access latency to two or more memories
and/or two or more memory controllers in which the
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weighted average memory access latency may weight or
emphasize the memory access latencies to two or more
memories and/or two or more memory controllers based on
the proportions of accesses to the two or more memories
and/or two or more memory controllers. In some embodi-
ments, an overall or average memory access latency
weighted based on the relative proportions of accesses from
the selected thread processor may be better than that of a
majority, a vast majority, almost all, or all other thread
processors. Memory access latencies and proportions of
accesses are not the only parameters that may be used to
select a thread processor. In the above-mentioned embodi-
ments, or other embodiments entirely, a thread processor
may be selected based also or alternatively on queuing
delays associated with accessing the first and second memo-
ries (e.g., a first queuing delay associated with accessing the
first memory and a second queuing delay associated with
accessing the second memory). In one aspect, the queuing
delay may represent a cumulative queuing delay incorpo-
rating all of the queuing delays for all of the hops through
the intervening thread processors as well as the queuing
delay within the memory controller. Often, the largest pro-
portion of the cumulative queuing delay is attributable to the
memory controller. It is to be appreciated that in some
embodiments, the selection of the thread processor may also
be based on other factors, such as, for example, current
workload of the thread processors, processing capabilities of
the thread processors, putting two threads that communicate
with one another closer together, instantaneous queuing
delays associated with different thread processors, and vari-
ous combinations of such parameters.

[0037] To further illustrate certain concepts, consider a
detailed approach for selecting a thread processor. Assume
that a thread accesses a first memory controller (MC1) and
a second memory controller (MC2). Of the accesses to the
first and second memory controllers, T % are to the first
memory controller and (100-T)% are to the second memory
controller. The thread has a first access latency (L.1) to the
first memory controller and a second access latency (L.2) to
the second memory controller. The thread has a first queuing
delay (Q1) to the first memory controller and a second
queuing delay (Q2) to the second memory controller. The
queuing delays may be average queuing delays monitored
during runtime. There is a minimum hop count (H), for
example measured in number of intervening thread proces-
sors, which is needed to provide interconnect between the
first and second memory controllers. Each hop of the mini-
mum hop count may take a fixed number of cycles (C) to
traverse. Let the parameter X represent the location of the
selected thread processor in terms of hops along the mini-
mum hop count away from the first memory controller
(MC1). In other words, the location of the selected thread
processor is X hops away from MC1 and (H-X) hops away
from MC2. The location of the selected thread processor
may be determined from the following equations:

Weighted average access time to MC1=T*(L1+Q1+
X*C) Equation 1

Weighted average access time to MC2=(100-17)*

(L2+Q2+(H-X)*C) Equation 2

[0038] In one embodiment, to determine the value of X,
the weighted average time to access MC1 may be made
equal to the weighted average time to access MC2. In some
embodiments, T, L1, L.2, Q1, Q2, and C are all known (e.g.,
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estimated from runtime information), such that X is the only
variable. Equations 1 and 2 may be solved for the value of
X in order to select the thread processor at a given location
along the minimum hop path between MC1 and MC2.

[0039] This is just one specific detailed example of a
suitable approach for selecting a thread processor. Other
embodiments may base the selection on either more or less
information. For example, if queuing delay is not an impor-
tant factor for the particular implementation, it may option-
ally be omitted. As yet another option, if either latency or
queuing delay is regarded as more significant than the other
for the particular implementation, then they may be empha-
sized accordingly in the equation (e.g., with a weighting
factor). Various other factors may also optionally be con-
sidered as will be apparent to those skilled in the art and
having the benefit of the present disclosure.

[0040] Insome embodiments, the thread processor may be
selected for the same thread for which the memory accesses
were monitored and that thread may be migrated to the
selected thread processor. In other embodiments, the thread
processor may be selected for another instance (e.g., a
subsequent instance) of the thread for which the memory
accesses were monitored and the other instance of the thread
may be scheduled on the selected thread processor. By way
of example, information about the monitoring of the
accesses to memory controllers may be stored or otherwise
preserved for a thread of a particular type. When other
instances of the thread of the particular type are to be run,
the preserved information may be accessed, and the other
instances of the thread of the particular type may be sched-
uled on thread processors selected based on the monitored
accesses to the first and second memory controllers. The
instances may represent subsequently run instances of the
thread, multiple copies of the thread running concurrently,
etc.

[0041] The thread processor selector unit may output or
otherwise provide the selected thread processor 120. As will
be explained further below, in some embodiments, another
component may initiate installation of a thread on the
selected thread processor and/or may install a thread on the
selected thread processor. As used herein, installing a thread
on a thread processor broadly encompasses either schedul-
ing the thread on the thread processor, migrating the thread
already installed on another thread processor to the thread
processor, instantiating the thread on the thread processor, or
otherwise configuring the thread for access to system
resources (e.g., execution units, registers, etc.) of the thread
processor. Advantageously, installing the thread on the
selected thread processor may help to improve performance
due to reduced latencies of accessing one or both of the
memories. In the case of out-of-order execution, which is
not required, multiple memory requests may be issued
aggressively within the instruction window to improve hard-
ware utilization and/or reduce stall time. The selected thread
processor may help to balance memory access latencies to
the different memories so that none of them, especially the
ones most frequently accessed, are unbalanced and/or exces-
sively large relative to others. This may help to avoid an
excessively slow memory access stalling or strangling over-
all progress. Moreover, this may also help to reduce power
consumption (e.g., by reducing the amount of electrical
signaling, by reducing the number of hardware structures
through which electrical signals are conveyed, by avoiding
needing to wake thread processors, etc.).
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[0042] Some threads are relatively more memory access
intensive than others. For example, some threads frequently
access memory, whereas other threads less frequently access
memory, rarely access memory, or never access memory. In
some embodiments, the thread processor selector unit may
select a thread processor for only a portion or subset of the
relatively more memory access intensive threads. As shown,
in some embodiments, the apparatus may optionally include
an intensity determination unit 118. The intensity determi-
nation unit is operable to determine whether or not threads,
for which accesses to the memory controllers were moni-
tored, are memory access intensive threads. The determina-
tion may be made in different ways in different embodi-
ments. In some embodiments, the determination may be
based on an absolute level of memory access intensity. For
example, it may be determined whether the memory access
level meets (e.g., is equal to or greater than, is greater than,
etc.) a predetermined threshold. In other embodiments, the
determination may be based on a relative level of memory
access intensity. For example, the memory access level for
a thread may be compared with those of other threads and it
may be determined whether the memory access level of the
thread is within a predetermined proportion of the most
memory access intensive threads.

[0043] If the thread is determined to be a memory access
intensive thread, then the thread processor selector unit may
select a thread processor for the thread, as previously
described. Alternatively, if the thread is determined not to be
a memory access intensive thread, then the thread processor
selector unit may optionally omit selecting a thread proces-
sor for the thread and/or initiation of installation of the
thread on a selected thread processor may optionally be
omitted. Alternatively, in other embodiments, the thread
processor selector unit may optionally select thread proces-
sors for all threads regardless of their memory access
intensity levels, and in some embodiments threads may
optionally be installed on the selected select thread proces-
sors for all threads regardless of their memory access
intensity levels. In the illustrated embodiment, the intensity
determination unit is part of the thread processor selector
unit. Alternatively, the intensity determination unit may be
separate from the thread processor selector unit and coupled
with the memory controller access monitor unit and the
thread processor selector unit.

[0044] It is to be appreciated that this is just one illustra-
tive example embodiment. Other embodiments may have
either fewer or more thread processors. Other embodiments
may have more than two memory controllers and more than
two corresponding share memories. In other embodiments,
the thread processors may be coupled together in different
configurations or arrangements. Still other embodiments are
contemplated.

[0045] FIG. 2 is a block diagram of an embodiment of a
method 230 of monitoring accesses by a thread to multiple
memories and/or memory controllers and selecting a thread
processor for a thread based on the monitored accesses to the
multiple memories and/or memory controllers. In some
embodiments, the operations and/or method of FIG. 2 may
be performed by and/or within the apparatus of FIG. 1.
Alternatively, the operations and/or method of FIG. 2 may
be performed by and/or within an entirely different appara-
tus. Moreover, the apparatus of FIG. 1 may perform opera-
tions and/or methods either the same as or entirely different
than those shown in FIG. 2.
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[0046] A plurality of threads may be run on a plurality of
thread processors, at block 231. In some embodiments, the
thread processors may represent cores or other processors of
a single semiconductor substrate (e.g., an integrated circuit
die) that are coupled together by an on-die or on-substrate
interconnect (e.g., a mesh, torus, ring, etc.).

[0047] Memory accesses, of a first thread of the plurality
that is running on a first thread processor of the plurality,
may be monitored to both a first memory through a first
memory controller and a second memory through a second
memory controller, at block 232. Different ways of moni-
toring the accesses are contemplated. In some embodiments,
a proportion of instructions processed by the thread that are
cache misses (e.g., per-thread misses per thousand instruc-
tions) with respect to local caches of the thread processors
may be monitored. In other embodiments, a count of cycle
stalls for the thread (e.g., a per-thread stall cycles hardware
counter) may be monitored. Other ways of monitoring the
accesses are also contemplated. In some embodiments, the
relative proportions of accesses to the first and second
memories and/or memory controllers may be determined. In
some embodiments, memory access latencies, queuing
delays, and/or other parameters associated with accessing
the memory controllers and/or memories may also be moni-
tored.

[0048] A second thread processor of the plurality may be
selected for a thread based on the monitoring of the memory
accesses of the first thread to both the first and second
memories and/or memory controllers, at block 233. In some
embodiments, the second thread processor may be selected
for the same first thread for which the memory accesses were
monitored (i.e., at bock 232) and the first thread may be
migrated to the selected second thread processor. In other
embodiments, the second thread processor may be selected
for another instance (e.g., a subsequent instance) of the first
thread for which the memory accesses were monitored (i.e.,
at bock 232) and the other instance of the first thread may be
scheduled on the selected second thread processor.

[0049] In some embodiments, the second thread processor
may be selected to take into account the memory accesses to
both the first and second memories and/or their correspond-
ing memory controllers. The selected second thread proces-
sor may balance the overall time needed to access the first
and second memories and/or memory controllers. In some
embodiments, the balance may be based on the relative
proportions (e.g., the fractions or percentages) of accesses
for the first thread to the first and second memories and/or
memory controllers. For example, memory access latencies
to the first and second memories and/or memory controllers
may be weighted or otherwise emphasized based on the
proportion of the accesses to the memories and/or memory
controllers. In some embodiments, the second thread pro-
cessor may be selected to have minimal, near minimal,
optimal, or near optimal weighted average memory access
latency to the first and second memories and/or memory
controllers. In some embodiments, in addition to and/or
instead of latencies and proportions, the second thread
processor may also or alternatively be selected based on
queuing delays associated with accessing the first and sec-
ond memories (e.g., a first queuing delay associated with
accessing the first memory and a second queuing delay
associated with accessing the second memory).

[0050] Referring again to FIG. 2, installation of the thread,
for which the second thread processor was selected, is
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initiated on the second thread processor, at block 234. As
will be described further below, in some embodiments,
circuitry (e.g., integrated circuitry) or other hardware of an
integrated circuit die or other semiconductor substrate may
initiate the installation of the thread on the second thread
processor, and an operating system may perform the actual
installation of the thread on the second thread processor. In
other embodiments, circuitry (e.g., integrated circuitry) or
other hardware of an integrated circuit die or other semi-
conductor substrate may both initiate and perform the instal-
lation of the thread on the second thread processor. Advan-
tageously, installing the thread on the selected second thread
processor may help to improve performance due to reduced
latencies of accessing one or both of the memories. More-
over, this may also help to reduce power consumption.

[0051] The method 230 has been described in a relatively
basic form, but operations may optionally be added to and/or
removed from the method. For example, other embodiments
may optionally omit block 233 and/or block 234, such as, for
example, if the method is one performed by integrated
circuitry and an operating system performs the operation of
block 233 and/or block 234. As another example, other
embodiments may optionally add an operation to migrate or
otherwise move an initial thread existing on the second
thread processor from the second thread processor to some
other thread processor prior to installation of the thread on
the second thread processor. In some embodiments, if the
initial thread accesses two or more memories and/or
memory controllers it may optionally be migrated to a thread
processor selected based on the accesses to the two or more
memories and/or memory controllers to balance the access
latencies as described elsewhere herein, although this is not
required. As another option, if the initial thread is a low
memory access intensity thread, or at least lower than the
thread that is to be installed on the selected second thread
processor, it may be migrated to another thread processor in
a less prime location (e.g., to a farther away thread proces-
sor) in order to free the prime location for the thread with the
higher memory access intensity. In addition, while the block
flow diagrams show operations in series presentation, alter-
nate embodiments may optionally perform the operations in
different order, combine certain operations, overlap certain
operations, etc.

[0052] FIG. 3 is a block diagram of an embodiment of a
method 330 of monitoring accesses by a first thread running
on a first thread processor to multiple memories, selecting a
second thread processor for the first thread based on the
monitoring, and initiating migration of the first thread from
the first thread processor to the selected second thread
processor. In some embodiments, the operations and/or
method of FIG. 3 may be performed by and/or within the
apparatus of FIG. 1. Alternatively, the operations and/or
method of FIG. 3 may be performed by and/or within an
entirely different apparatus. Moreover, the apparatus of FIG.
1 may perform operations and/or methods either the same as,
or entirely different than, those shown in FIG. 3.

[0053] The method includes running a plurality of threads
on a plurality of thread processors, at block 331. Memory
accesses, of the first thread of the plurality of threads that is
running on the first thread processor of the plurality of thread
processors, are monitored to both a first memory through a
first memory controller and a second memory through a
second memory controller, at block 332.
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[0054] A determination is optionally made whether or not
the first thread, for which the memory accesses were moni-
tored, is a memory access intensive thread, at block 335. The
determination may be made in different ways in different
embodiments. In some embodiments, the determination may
be based on an absolute level of memory access intensity for
the first thread. For example, it may be determined whether
the memory access level of the first thread meets (e.g., is
equal to or greater than, is greater than, etc.) a predetermined
memory access threshold. By way of example, the threshold
may represent a total number of memory accesses per unit
time, a total number of memory accesses per number of
instructions processed, etc. In other embodiments, the deter-
mination may be based on a relative level of memory access
intensity of the first thread relative to other threads. For
example, the memory access level for the first thread may be
compared with the memory access levels of all of the other
threads and it may be determined whether the memory
access level of the first thread is within a predetermined
proportion of the most memory access intensive threads
(e.g., thirty percentage of the most memory access intensive
threads, the top 10 most memory intensive threads, etc.).

[0055] If the first thread is determined not to be a memory
access intensive thread (i.e., “no” is the determination at
block 335), then method may return to block 332. In such
case, at least at this point, a second thread processor will not
be selected for the first thread nor will the first thread be
migrated away from the first thread processor. Alternatively,
if the first thread is determined to be a memory access
intensive thread (i.e., “yes” is the determination at block
335), then the method may advance to block 333 where a
second thread processor is selected for the first thread.
Accordingly, the determination at block 335 optionally
allows thread processors to be selected for a portion or
subset of the relatively more memory access intensive
threads. Alternatively, in other embodiments, such a deter-
mination may optionally be omitted, and thread processors
may be selected for all threads regardless of their memory
access intensity levels. In a still further embodiment, such a
determination may optionally be omitted, and thread pro-
cessors may be selected for all threads that access two or
more memories and/or memory controllers.

[0056] At block 333, the second thread processor is
selected for the first thread based on the monitoring of the
memory accesses of the first thread to both the first and
second memories. The selection of the second thread pro-
cessor may be performed substantially as previously
described. In some embodiments, the second thread proces-
sor is selected to balance, weight, or take into consideration
memory access times (e.g., memory access latencies and/or
queuing delays) to the first and second memories in propor-
tion to the relative proportions of accesses to the first and
second memories.

[0057] At block 334, migration of the first thread from the
first thread processor to the selected second thread processor
is initiated. In some embodiments, circuitry (e.g., integrated
circuitry) or other hardware of an integrated circuit die or
other semiconductor substrate having at least one thread
processor may initiate the migration of the first thread from
the first thread processor to the second thread processor, and
an operating system may perform the actual migration of the
first thread from the first thread processor to the second
thread processor. In other embodiments, circuitry (e.g.,
integrated circuitry) or other hardware of an integrated
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circuit die or other semiconductor substrate having at least
one thread processor may both initiate and perform the
actual migration of the first thread from the first thread
processor to the second thread processor. Accordingly, some
embodiments provide for multiple memory controller access
pattern and/or multiple memory access pattern aware thread
migration. Advantageously, the ability to migrate the first
thread to the selected second thread processor may help to
improve performance due to reduced latencies of accessing
one or more of the first and second memories. Moreover, the
ability to migrate the first thread to the selected second
thread processor may also help to reduce power consump-
tion.

[0058] FIG. 4 is a block diagram of an embodiment of a
method 430 of monitoring accesses by a first thread running
on a first thread processor to multiple memories, selecting a
second thread processor for a second instance of the first
thread based on the monitoring, and initiating scheduling of
the second instance of the first thread on the selected second
thread processor. In some embodiments, the operations
and/or method of FIG. 4 may be performed by and/or within
the apparatus of FIG. 1. Alternatively, the operations and/or
method of FIG. 4 may be performed by and/or within an
entirely different apparatus. Moreover, the apparatus of FIG.
1 may perform operations and/or methods either the same as,
or entirely different than, those shown in FIG. 4.

[0059] The method includes running a plurality of threads
on a plurality of thread processors, at block 431. Memory
accesses, of the first thread of the plurality of threads that is
running on the first thread processor of the plurality of thread
processors, are monitored to both a first memory through a
first memory controller and a second memory through a
second memory controller, at block 432.

[0060] A determination is optionally made whether or not
the first thread, for which the memory accesses were moni-
tored, is a memory access intensive thread, at block 435. The
determination may be made substantially as previously
described. If the first thread is determined not to be a
memory access intensive thread (i.e., “no” is the determi-
nation at block 435), then method may return to block 432.
Alternatively, if the first thread is determined to be a
memory access intensive thread (i.e., “yes” is the determi-
nation at block 435), then the method may advance to block
436. In other embodiments, such a determination may
optionally be omitted, and thread processors may be selected
for all threads and/or all threads that access multiple memo-
ries, regardless of their memory access intensity levels.

[0061] At block 436, memory access monitoring informa-
tion may optionally be preserved for the first thread. In some
embodiments, this may include storing the memory access
monitoring information. By way of example, in some
embodiments, preserving the memory access monitoring
information may include preserving information pertaining
to proportions of accesses of the first thread to the first and
second memories, memory access latencies for the first
thread to the first and second memories, queuing delays
associated with accesses by the first thread to the first and
second memories, or the like, or some combination thereof.
Alternatively, if a second instance of the first thread is to be
scheduled while the memory accesses are being monitored,
instead of sometime thereafter (e.g., after the first thread has
stopped running), then preserving the memory access moni-
toring information may optionally be omitted.
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[0062] At block 433, the second thread processor is
selected for a second instance of the first thread based on the
monitoring of the memory accesses of the first thread to both
the first and second memories. The second instance of the
first thread may represent a thread of the same type as the
first thread and/or that is otherwise expected to have similar
memory access characteristics to those of the first thread. In
some embodiments, the first thread and the second instance
of'the first thread may represent the same or substantially the
same algorithm, routine, sequence of instructions, portion of
an application, or the like. As one example, the second
instance of the first thread may represent an instance of the
first thread that is run after the first thread has run and
completed/stopped. In some cases, the first thread and the
second instance of the first thread may represent an algo-
rithm or routine run multiple times sequentially in different
iterations of a loop. As another example, the second instance
of the first thread may be a duplicate or copy of the first
thread that is spawned to run concurrently with the first
thread. For example, many duplicates or copies of the first
thread may be spawned and run concurrently (e.g., to handle
a large number of connections, etc.). The selection of the
second thread processor may be performed substantially as
previously described. In some embodiments, the second
thread processor is selected to balance, weight, or take into
consideration memory access times (e.g., memory access
latencies and/or queuing delays) to the first and second
memories in proportion to the relative proportions of
accesses to the first and second memories by the first thread.

[0063] At block 434, scheduling of the second instance of
the first thread on the selected second thread processor is
initiated. In some embodiments, circuitry (e.g., integrated
circuitry) or other hardware of an integrated circuit die or
other semiconductor substrate having at least one thread
processor may initiate the scheduling of the second instance
of the first thread on the second thread processor, and an
operating system may perform the actual scheduling of the
second instance of the first thread on the second thread
processor. In other embodiments, circuitry (e.g., integrated
circuitry) or other hardware of an integrated circuit die or
other semiconductor substrate having at least one thread
processor may both initiate and perform the actual sched-
uling of the second instance of the first thread on the second
thread processor. Advantageously, scheduling the second
instance of the first thread on the selected second thread
processor may help to improve performance due to reduced
latencies of accessing one or more of the first and second
memories. Moreover, scheduling the second instance of the
first thread on the selected second thread processor may also
help to reduce power consumption.

[0064] FIG. 5 is a block diagram of an example embodi-
ment of a chip multi-processor (CMP) 500 including mul-
tiple tiles 540 each having one or more cores 502 and
multiple memory controller access based core selection
logic 514, 516 that is operable to select a core 502 for a
thread based on accesses by a thread to multiple memory
controllers 508. In some embodiments, the CMP of FIG. 5
may perform the operations and/or methods of any of FIGS.
2-4. Alternatively, the CMP of FIG. 5 may perform entirely
different operations and/or methods. Moreover, the opera-
tions and/or methods of FIGS. 2-4 may be performed by
CMPs either the same as, or entirely different than, that of
FIG. 5.
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[0065] In the illustrated embodiment, there are nine tiles,
although other embodiments may include either more or less
tiles. For example, in other embodiments there may be
16-tiles, 32-tiles, 64-tiles, 80-tiles, or some other number. In
some embodiments, all of the tiles are included on a same
integrated circuit die or semiconductor substrate. Each tile
includes one or more cores 502. Each of the cores represents
a thread processor. Each core is operable to process one or
more threads. The tiles and/or cores are coupled together, or
otherwise in communication, through interconnects 504. By
way of example, the interconnects may be on-die or on-
substrate mesh, torus, ring, or network interconnects. Each
tile may include a switch or router (not shown) to connect
the tile to the interconnect. Each tile also includes one or
more levels of cache 542. In the illustrated embodiment,
each tile also includes a distributed memory controller
access monitor unit. Alternatively, in another embodiment,
distributed memory controller access monitor units may be
shared by two or more cores. In yet another embodiment, a
single shared memory controller access monitor unit may be
shared by all of the cores.

[0066] In the illustrated embodiment, the top right, top
left, bottom right, and bottom left tiles each have a corre-
sponding directly coupled memory controller 508. In some
embodiments, the memory controllers are on the same die or
substrate as the cores. In other embodiments, the memory
controllers may be on a separate die or substrate than the
cores. As shown, at least some interior tiles do not have a
corresponding directly coupled memory controller, although
some may. In other embodiments, different configurations of
coupling memory controllers to tiles known in the arts may
be used. Each of the memory controllers is operable to
couple with and provide access to a corresponding memory
506. A system interface 544 is operable to provide an
interface for the CMP to an external signaling medium (e.g.,
a chipset or system in which the CMP is deployed).

[0067] The CMP includes the multiple memory controller
access based core selection logic 514, 516 that is operable to
select a core 502 for a thread based on accesses by a thread
to multiple memory controllers 508. Each of the distributed
memory controller access monitor units is operable to moni-
tor accesses to the memories and/or memory controllers for
the corresponding core(s) of the tile in which it is included.
The monitoring of these accesses may be performed as
described elsewhere herein. A core selector unit 516 is
operable to select a core for a thread based on the monitoring
of the accesses. The core may be selected as described
elsewhere herein for the selection of thread processors. A
selected core 520 may be output. As shown, in one example
embodiment, the CMP upon monitoring that a thread 510-1
on a core 502 relatively far removed from the top left and
bottom left memory controllers is accessing the top left and
bottom left memory controllers, may move the thread 510-1
to a thread 510-2 on a core 502 closer to both the top left and
bottom left memory controllers. In some embodiments, the
thread 510-2 may be moved to a core on a shortest path
coupling the two most frequently accessed memory control-
lers, although this is not required.

[0068] FIG. 6 is a block diagram of an embodiment of a
memory controller access monitor unit 614 located on an
integrated circuit 600 and a thread processor selector unit
616 located off of the integrated circuit. The memory
controller access monitor unit may provide memory access
monitoring information (e.g., percentages of accesses to
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memory controllers, access latencies, queuing delays, etc.)
to the thread processor selector unit, which may output a
selected thread processor 620. In some embodiments, the
thread processor selector unit is implemented as part of an
operating system or other software.

[0069] FIG. 7 is a block diagram illustrating an embodi-
ment in which a thread installation initiation unit 750 of an
integrated circuit 700 communicates or cooperates with a
thread installation unit 754 of an operating system 752 to
install a thread. The integrated circuit includes a thread
processor selector unit 716 and the thread installation ini-
tiation unit 750. The integrated circuit also includes the
thread processors (not shown). The thread processor selector
unit is operable to select and output a selected thread
processor as described elsewhere herein. The thread instal-
lation initiation unit is operable to receive the selected thread
processor and initiate installation of a thread on the selected
thread processor. By way of example, the thread installation
initiation unit may access and change one or more bits in a
register that is used as a communication interface between
the integrated circuit and the operating system. The thread
installation initiation unit may be implemented in logic of
the integrated circuit including hardware, firmware, soft-
ware, or a combination thereof. The operating system 752
(e.g. an operating system module stored in a memory)
includes the thread installation unit 754 (e.g., a thread
scheduler unit, thread migration unit, etc.). The thread
installation unit is operable to install the thread on the
selected thread processor. In some embodiments, the thread
installation unit may be operable to install the thread on a
thread processor selected based at least in part on a relative
proportion of accesses by a thread to both the first and
second memories and/or based at least in part on latencies of
access by the thread to both the first and second memories.
Currently, many operating systems are primarily responsible
for thread installation (e.g., scheduling, migration, etc.). The
approach of this embodiment complies with such existing
functionality.

[0070] FIG. 8 is a block diagram illustrating an embodi-
ment in which a thread installation unit 856 of an integrated
circuit 800 autonomously performs thread installation with-
out needing an operating system to perform the thread
installation. The integrated circuit includes a thread proces-
sor selector unit 816 and the thread installation unit 856. The
thread processor selector unit is operable to select and output
a selected thread processor as described elsewhere herein.
The thread installation unit is operable to receive the
selected thread processor and install a thread on the selected
thread processor. By way of example, the thread installation
unit may represent a thread migration unit and/or a thread
scheduling unit. The thread installation unit may be imple-
mented in logic of the integrated circuit including hardware,
firmware, software, or a combination thereof. The approach
of this embodiment allows a thread to be installed on a
selected thread processor using hardware of the integrated
circuit without needing the involvement of the operating
system. In some cases, the operating system may be
informed e.g., through the integrated circuit modifying bits
in a register, sending a message to the operating system, etc.
[0071] In the description above, specific approaches for
selecting a thread processor based on accesses to two or
more memories and/or memory controllers have been
described. In other embodiments, either more elaborate or
less elaborate approaches may be used to select a thread
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processor as compared to those described. The more elabo-
rate approaches may take into consideration additional fac-
tors and/or parameters. Examples of such include, but are
not limited to, the “cost” of relocating a thread initially
running on a desired destination thread processor to free it
up, different interconnect bandwidths, accesses of other
threads (e.g., to use the most desirable thread processors for
the threads with the most frequent accesses), etc. The less
elaborate approaches may take into consideration less infor-
mation. For example, in one contemplated embodiment of a
less elaborate approach, the destination core may be selected
to be halfway between the two memory controllers used by
the thread. Although such an approach may not improve the
memory access latency as much as the approaches described
above, it may nevertheless improve memory access latency
somewhat which may be sufficient for the particular imple-
mentation.

[0072] In the above-described embodiments, for simplic-
ity, a thread processor has been emphasized as being
selected for a thread based on accesses to two memories
and/or two memory controllers. In other embodiments, this
may be based on accesses to three or more memories and/or
three or more memory controllers.

Exemplary Core Architectures, Processors, and Computer
Architectures

[0073] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

[0074] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention. FIG. 9B is a block diagram
illustrating both an exemplary embodiment of an in-order
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architecture core and an exemplary register renaming, out-
of-order issue/execution architecture core to be included in
a processor according to embodiments of the invention. The
solid lined boxes in FIGS. 9A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-
order issue/execution pipeline and core. Given that the
in-order aspect is a subset of the out-of-order aspect, the
out-of-order aspect will be described.

[0075] In FIG. 9A, a processor pipeline 900 includes a
fetch stage 902, a length decode stage 904, a decode stage
906, an allocation stage 908, a renaming stage 910, a
scheduling (also known as a dispatch or issue) stage 912, a
register read/memory read stage 914, an execute stage 916,
a write back/memory write stage 918, an exception handling
stage 922, and a commit stage 924.

[0076] FIG. 9B shows processor core 990 including a
front end unit 930 coupled to an execution engine unit 950,
and both are coupled to a memory unit 970. The core 990
may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 990 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

[0077] The front end unit 930 includes a branch prediction
unit 932 coupled to an instruction cache unit 934, which is
coupled to an instruction translation lookaside buffer (TLB)
936, which is coupled to an instruction fetch unit 938, which
is coupled to a decode unit 940. The decode unit 940 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control sig-
nals, which are decoded from, or which otherwise reflect, or
are derived from, the original instructions. The decode unit
940 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. In one embodiment, the core 990
includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit
940 or otherwise within the front end unit 930). The decode
unit 940 is coupled to a rename/allocator unit 952 in the
execution engine unit 950.

[0078] The execution engine unit 950 includes the rename/
allocator unit 952 coupled to a retirement unit 954 and a set
of one or more scheduler unit(s) 956. The scheduler unit(s)
956 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 956 is coupled to the physical register
file(s) unit(s) 958. Each of the physical register file(s) units
958 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 958 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers.



US 2017/0132039 Al

The physical register file(s) unit(s) 958 is overlapped by the
retirement unit 954 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement unit 954 and the physical
register file(s) unit(s) 958 are coupled to the execution
cluster(s) 960. The execution cluster(s) 960 includes a set of
one or more execution units 962 and a set of one or more
memory access units 964. The execution units 962 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
956, physical register file(s) unit(s) 958, and execution
cluster(s) 960 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 964).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0079] The set of memory access units 964 is coupled to
the memory unit 970, which includes a data TLB unit 972
coupled to a data cache unit 974 coupled to a level 2 (L2)
cache unit 976. In one exemplary embodiment, the memory
access units 964 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 972 in the memory unit 970. The instruction
cache unit 934 is further coupled to a level 2 (1.2) cache unit
976 in the memory unit 970. The 1.2 cache unit 976 is
coupled to one or more other levels of cache and eventually
to a main memory.

[0080] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 900 as follows: 1) the instruction
fetch 938 performs the fetch and length decoding stages 902
and 904; 2) the decode unit 940 performs the decode stage
906; 3) the rename/allocator unit 952 performs the allocation
stage 908 and renaming stage 910; 4) the scheduler unit(s)
956 performs the schedule stage 912; 5) the physical register
file(s) unit(s) 958 and the memory unit 970 perform the
register read/memory read stage 914; the execution cluster
960 perform the execute stage 916; 6) the memory unit 970
and the physical register file(s) unit(s) 958 perform the write
back/memory write stage 918; 7) various units may be
involved in the exception handling stage 922; and 8) the
retirement unit 954 and the physical register file(s) unit(s)
958 perform the commit stage 924.

[0081] The core 990 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
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instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 990 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0082] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0083] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 934/974
and a shared L2 cache unit 976, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0084] FIGS. 10A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function
logic, memory 1/O interfaces, and other necessary I/O logic,
depending on the application.

[0085] FIG. 10A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 1002 and with its local subset of the Level 2 (L2)
cache 1004, according to embodiments of the invention. In
one embodiment, an instruction decoder 1000 supports the
x86 instruction set with a packed data instruction set exten-
sion. An L1 cache 1006 allows low-latency accesses to
cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1008 and
a vector unit 1010 use separate register sets (respectively,
scalar registers 1012 and vector registers 1014) and data
transferred between them is written to memory and then read
back in from a level 1 (LL1) cache 1006, alternative embodi-
ments of the invention may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

[0086] The local subset of the .2 cache 1004 is part of a
global 1.2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct
access path to its own local subset of the 1.2 cache 1004.
Data read by a processor core is stored in its [.2 cache subset
1004 and can be accessed quickly, in parallel with other
processor cores accessing their own local L2 cache subsets.
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Data written by a processor core is stored in its own L2
cache subset 1004 and is flushed from other subsets, if
necessary. The ring network ensures coherency for shared
data. The ring network is bi-directional to allow agents such
as processor cores, [.2 caches and other logic blocks to
communicate with each other within the chip. Each ring
data-path is 1012-bits wide per direction.

[0087] FIG. 10B is an expanded view of part of the
processor core in FIG. 10A according to embodiments of the
invention. FIG. 10B includes an [.1 data cache 1006 A part
of the LL1 cache 1004, as well as more detail regarding the
vector unit 1010 and the vector registers 1014. Specifically,
the vector unit 1010 is a 16-wide vector processing unit
(VPU) (see the 16-wide AL U 1028), which executes one or
more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register
inputs with swizzle unit 1020, numeric conversion with
numeric convert units 1022A-B, and replication with repli-
cation unit 1024 on the memory input. Write mask registers
1026 allow predicating resulting vector writes.

Processor with Integrated Memory Controller and Graphics
[0088] FIG. 11 is a block diagram of a processor 1100 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined
boxes in FIG. 11 illustrate a processor 1100 with a single
core 1102A, a system agent 1110, a set of one or more bus
controller units 1116, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1100
with multiple cores 1102A-N, a set of one or more integrated
memory controller unit(s) 1114 in the system agent unit
1110, and special purpose logic 1108.

[0089] Thus, different implementations of the processor
1100 may include: 1) a CPU with the special purpose logic
1108 being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
1102A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1102A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1102A-N
being a large number of general purpose in-order cores.
Thus, the processor 1100 may be a general-purpose proces-
sor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte-
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 1100 may
be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0090] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 1106, and external memory (not shown) coupled to the
set of integrated memory controller units 1114. The set of
shared cache units 1106 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1112 interconnects the integrated
graphics logic 1108, the set of shared cache units 1106, and
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the system agent unit 1110/integrated memory controller
unit(s) 1114, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1106 and cores 1102-A-N.

[0091] In some embodiments, one or more of the cores
1102A-N are capable of multi-threading. The system agent
1110 includes those components coordinating and operating
cores 1102A-N. The system agent unit 1110 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1102A-N and the
integrated graphics logic 1108. The display unit is for
driving one or more externally connected displays.

[0092] The cores 1102A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1102A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

Exemplary Computer Architectures

[0093] FIGS. 12-15 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0094] Referring now to FIG. 12, shown is a block dia-
gram of a system 1200 in accordance with one embodiment
of the present invention. The system 1200 may include one
or more processors 1210, 1215, which are coupled to a
controller hub 1220. In one embodiment the controller hub
1220 includes a graphics memory controller hub (GMCH)
1290 and an Input/Output Hub (IOH) 1250 (which may be
on separate chips); the GMCH 1290 includes memory and
graphics controllers to which are coupled memory 1240 and
a coprocessor 1245; the IOH 1250 is couples input/output
(I/0) devices 1260 to the GMCH 1290. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1240
and the coprocessor 1245 are coupled directly to the pro-
cessor 1210, and the controller hub 1220 in a single chip
with the IOH 1250.

[0095] The optional nature of additional processors 1215
is denoted in FIG. 12 with broken lines. Each processor
1210, 1215 may include one or more of the processing cores
described herein and may be some version of the processor
1100.

[0096] The memory 1240 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 1220 communicates with
the processor(s) 1210, 1215 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 1295.
[0097] In one embodiment, the coprocessor 1245 is a
special-purpose processor, such as, for example, a high-
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throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 1220 may include an integrated graphics accel-
erator.

[0098] There can be a variety of differences between the
physical resources 1210, 1215 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.

[0099] In one embodiment, the processor 1210 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 1210 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 1245. Accordingly,
the processor 1210 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1245.
Coprocessor(s) 1245 accept and execute the received copro-
cessor instructions.

[0100] Referring now to FIG. 13, shown is a block dia-
gram of a first more specific exemplary system 1300 in
accordance with an embodiment of the present invention. As
shown in FIG. 13, multiprocessor system 1300 is a point-
to-point interconnect system, and includes a first processor
1370 and a second processor 1380 coupled via a point-to-
point interconnect 1350. Each of processors 1370 and 1380
may be some version of the processor 1100. In one embodi-
ment of the invention, processors 1370 and 1380 are respec-
tively processors 1210 and 1215, while coprocessor 1338 is
coprocessor 1245. In another embodiment, processors 1370
and 1380 are respectively processor 1210 coprocessor 1245.

[0101] Processors 1370 and 1380 are shown including
integrated memory controller (IMC) units 1372 and 1382,
respectively. Processor 1370 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1376 and
1378; similarly, second processor 1380 includes P-P inter-
faces 1386 and 1388. Processors 1370, 1380 may exchange
information via a point-to-point (P-P) interface 1350 using
P-P interface circuits 1378, 1388. As shown in FIG. 13,
IMCs 1372 and 1382 couple the processors to respective
memories, namely a memory 1332 and a memory 1334,
which may be portions of main memory locally attached to
the respective processors.

[0102] Processors 1370, 1380 may each exchange infor-
mation with a chipset 1390 via individual P-P interfaces
1352, 1354 using point to point interface circuits 1376,
1394, 1386, 1398. Chipset 1390 may optionally exchange
information with the coprocessor 1338 via a high-perfor-
mance interface 1339. In one embodiment, the coprocessor
1338 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0103] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0104] Chipset 1390 may be coupled to a first bus 1316 via
an interface 1396. In one embodiment, first bus 1316 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
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such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

[0105] As shown in FIG. 13, various I/O devices 1314
may be coupled to first bus 1316, along with a bus bridge
1318 which couples first bus 1316 to a second bus 1320. In
one embodiment, one or more additional processor(s) 1315,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
bus 1316. In one embodiment, second bus 1320 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 1320 including, for example, a keyboard and/or
mouse 1322, communication devices 1327 and a storage
unit 1328 such as a disk drive or other mass storage device
which may include instructions/code and data 1330, in one
embodiment. Further, an audio I/O 1324 may be coupled to
the second bus 1320. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 13, a system may implement a multi-drop bus
or other such architecture.

[0106] Referring now to FIG. 14, shown is a block dia-
gram of a second more specific exemplary system 1400 in
accordance with an embodiment of the present invention.
Like elements in FIGS. 13 and 14 bear like reference
numerals, and certain aspects of FIG. 13 have been omitted
from FIG. 14 in order to avoid obscuring other aspects of
FIG. 14.

[0107] FIG. 14 illustrates that the processors 1370, 1380
may include integrated memory and I/O control logic
(“CL”) 1372 and 1382, respectively. Thus, the CL 1372,
1382 include integrated memory controller units and include
1/O control logic. FIG. 14 illustrates that not only are the
memories 1332, 1334 coupled to the CL. 1372, 1382, but also
that 1/0O devices 1414 are also coupled to the control logic
1372, 1382. Legacy /O devices 1415 are coupled to the
chipset 1390.

[0108] Referring now to FIG. 15, shown is a block dia-
gram of a SoC 1500 in accordance with an embodiment of
the present invention. Similar elements in FIG. 11 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 15, an interconnect
unit(s) 1502 is coupled to: an application processor 1510
which includes a set of one or more cores 202A-N and
shared cache unit(s) 1106; a system agent unit 1110; a bus
controller unit(s) 1116; an integrated memory controller
unit(s) 1114; a set or one or more coprocessors 1520 which
may include integrated graphics logic, an image processor,
an audio processor, and a video processor; an static random
access memory (SRAM) unit 1530; a direct memory access
(DMA) unit 1532; and a display unit 1540 for coupling to
one or more external displays. In one embodiment, the
coprocessor(s) 1520 include a special-purpose processor,
such as, for example, a network or communication proces-
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

[0109] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
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(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0110] Program code, such as code 1330 illustrated in FIG.
13, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0111] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0112] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0113] Such machine-readable storage media may include,
without limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

[0114] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

Emulation (Including Binary Translation, Code Morphing,
etc.)

[0115] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
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ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0116] FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 16
shows a program in a high level language 1602 may be
compiled using an x86 compiler 1604 to generate x86 binary
code 1606 that may be natively executed by a processor with
at least one x86 instruction set core 1616. The processor with
at least one x86 instruction set core 1616 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1604
represents a compiler that is operable to generate x86 binary
code 1606 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1616. Similarly,
FIG. 16 shows the program in the high level language 1602
may be compiled using an alternative instruction set com-
piler 1608 to generate alternative instruction set binary code
1610 that may be natively executed by a processor without
at least one x86 instruction set core 1614 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1612 is used to convert the
x86 binary code 1606 into code that may be natively
executed by the processor without an x86 instruction set
core 1614. This converted code is not likely to be the same
as the alternative instruction set binary code 1610 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1612
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1606.

[0117] In the description and claims, the terms “coupled”
and “connected,” along with their derivatives, may be used.
It should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are
in direct physical or electrical contact. However, “coupled”
may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact
with each other.

[0118] In the description above, for the purposes of expla-
nation, numerous specific details have been set forth in order
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to provide a thorough understanding of the embodiments of
the invention. It will be apparent however, to one skilled in
the art, that one or more other embodiments may be prac-
ticed without some of these specific details. The particular
embodiments described are not provided to limit the inven-
tion but to illustrate it. The scope of the invention is not to
be determined by the specific examples provided above but
only by the claims below. In other instances, well-known
circuits, structures, devices, and operations have been shown
in block diagram form or without detail in order to avoid
obscuring the understanding of the description. It will also
be appreciated, by one skilled in the art, that modifications
may be made to the embodiments disclosed herein, such as,
for example, to the configurations, functions, and manner of
operation and use, of the components of the embodiments.
All equivalent relationships to those illustrated in the draw-
ings and described in the specification are encompassed
within embodiments of the invention. Where considered
appropriate, reference numerals or terminal portions of
reference numerals have been repeated among the figures to
indicate corresponding or analogous elements, which may
optionally have similar characteristics.

[0119] Various operations and methods have been
described. Some of the methods have been described in a
basic form in the flow diagrams, but operations may option-
ally be added to and/or removed from the methods. In
addition, while the flow diagrams show a particular order of
the operations according to example embodiments, it is to be
understood that that particular order is exemplary. Alternate
embodiments may optionally perform the operations in
different order, combine certain operations, overlap certain
operations, etc. Many modifications and adaptations may be
made to the methods and are contemplated. Certain opera-
tions may be performed by hardware components. The
operations may also optionally be performed by a combi-
nation of hardware and software.

[0120] One or more embodiments include an article of
manufacture (e.g., a computer program product) that
includes a machine-accessible and/or machine-readable
medium. The medium may include a mechanism that pro-
vides, for example stores or transmits, information in a form
that is accessible and/or readable by the machine. The
machine-accessible and/or machine-readable medium may
provide, or have stored thereon, one or more or a sequence
of instructions and/or data structures that if executed by a
machine causes or results in the machine performing, and/or
causes the machine to perform, one or more or a portion of
the operations or methods or the techniques shown in the
figures disclosed herein. Examples of suitable machines
include, but are not limited to, computer systems, desktops,
laptops, notebooks, servers, network devices, routers,
switches, and other electronic devices having one or more
processors. Such electronic devices typically include one or
more processors coupled with one or more other compo-
nents, such as one or more storage devices (non-transitory
machine-readable storage media), user input/output devices
(e.g., a keyboard, a touchscreen, and/or a display), and/or
network connections. The coupling of the processors and
other components is typically through one or more busses
and bridges (also termed bus controllers).

[0121] In one embodiment, the machine-readable medium
may include a tangible non-transitory machine-readable
storage media. For example, the tangible non-transitory
machine-readable storage media may include a floppy dis-
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kette, an optical storage medium, an optical disk, a CD-
ROM, a magnetic disk, a magneto-optical disk, a read only
memory (ROM), a programmable ROM (PROM), an eras-
able-and-programmable ROM (EPROM), an electrically-
erasable-and-programmable ROM (EEPROM), a random
access memory (RAM), a static-RAM (SRAM), a dynamic-
RAM (DRAM), a Flash memory, a phase-change memory,
or a combinations thereof. The tangible medium may
include one or more solid or tangible physical materials,
such as, for example, a semiconductor material, a phase
change material, a magnetic material, etc.

[0122] It should also be appreciated that reference
throughout this specification to “one embodiment”, “an
embodiment”, or “one or more embodiments”, for example,
means that a particular feature may be included in the
practice of the invention. Similarly, it should be appreciated
that in the description various features are sometimes
grouped together in a single embodiment, Figure, or descrip-
tion thereof for the purpose of streamlining the disclosure
and aiding in the understanding of various inventive aspects.
This method of disclosure, however, is not to be interpreted
as reflecting an intention that the invention requires more
features than are expressly recited in each claim. Rather, as
the following claims reflect, inventive aspects may lie in less
than all features of a single disclosed embodiment. Thus, the
claims following the Detailed Description are hereby
expressly incorporated into this Detailed Description, with
each claim standing on its own as a separate embodiment of
the invention.

[0123] The following clauses and/or examples pertain to
further embodiments. Specifics in the clauses and/or
examples may be used anywhere in one or more embodi-
ments.

[0124] In one embodiment, a first method includes run-
ning a plurality of threads on a plurality of thread processors.
Memory accesses, of a thread of the plurality that is running
on a first thread processor of the plurality, are monitored to
both a first memory through a first memory controller and a
second memory through a second memory controller. A
second thread processor of the plurality is selected for a
thread based on the monitoring of the memory accesses of
the thread to both the first memory and the second memory.
Installation of the thread, for which the second thread
processor was selected, is initiated on the second thread
processor.

[0125] Embodiments include the first method in which the
second thread processor is selected to improve overall
memory access latency from the second thread processor to
the first and second memories.

[0126] Embodiments include any of the above first meth-
ods in which the second thread processor is selected based
on a relative proportion of the monitored memory accesses
to the first and second memories.

[0127] Embodiments include any of the above first meth-
ods in which the second thread processor is selected based
on a first queuing delay associated with memory accesses to
the first memory and a second queuing delay associated with
memory accesses to the second memory.

[0128] Embodiments include any of the above first meth-
ods in which the second thread processor is selected for the
same thread for which the memory accesses to both the first
and second memories were monitored, and in which initi-
ating includes initiating migration the thread from the first
thread processor to the second thread processor, or in which
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the second thread processor is selected for a second instance
of' the thread for which the memory accesses to both the first
and second memories were monitored, and in which initi-
ating includes initiating scheduling of the second instance of
the thread on the second thread processor.

[0129] Embodiments include any of the above first meth-
ods further including, prior to selecting the second thread
processor, determining that the thread for which the memory
accesses were monitored is a memory access intensive
thread.

[0130] Embodiments include the above first method in
which determining that the thread is the memory access
intensive thread includes determining at least one of: (a) that
the memory accesses of the memory access intensive thread
meet a memory access threshold; and (b) that the memory
accesses of the memory access intensive thread are greater
than a given proportion of other threads running on the
plurality of thread processors.

[0131] Embodiments include any of the above first meth-
ods in which monitoring the memory accesses includes
monitoring at least one of: (a) a proportion of instructions
processed by the thread that are cache misses; and (b) a
count of cycle stalls for the thread.

[0132] Embodiments include any of the above first meth-
ods in which the second thread processor is selected as one
of a plurality of thread processors that are coupled between
a thread processor directly coupled with the first memory
controller and a thread processor directly coupled with the
second memory controller.

[0133] Embodiments include any of the above first meth-
ods in which running the threads on the thread processors
includes running the threads on a plurality of cores of a
multi-core processor.

[0134] Embodiments include any of the above first meth-
ods further including installing the thread on the second
thread processor using thread installation logic of an inte-
grated circuit having the second thread processor.

[0135] In one embodiment, at least one machine-readable
medium includes instructions that in response to being
executed on a machine cause the machine to carry out any
of the above first methods.

[0136] In one embodiment, an apparatus is configured or
operable to perform any of the above first methods.

[0137] In one embodiment, a first apparatus includes a
plurality of thread processors to run a plurality of threads. A
first memory controller is coupled with the plurality of
thread processors. The first memory controller is to couple
with and provide access to a first memory. A second memory
controller is coupled with the plurality of thread processors.
The second memory controller is to couple with and provide
access to a second memory. A memory controller access
monitor unit is coupled with a first thread processor of the
plurality. The memory controller access monitor unit is to
monitor accesses, by a thread of the plurality that is running
on the first thread processor, to both the first memory
controller and the second memory controller. A thread
processor selector unit is coupled with the memory control-
ler access monitor unit. The thread processor selector unit is
to select a second thread processor of the plurality for a
thread based on the monitoring of the accesses by the thread
to both the first memory controller and the second memory
controller.

[0138] Embodiments include the first apparatus in which
the thread processor selector unit is to select the second
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thread processor to improve overall memory access latency
from the second thread processor to the first and second
memories.

[0139] Embodiments include any of the above first appa-
ratus in which the thread processor selector unit is to select
the second thread processor based on a relative proportion of
the monitored accesses to the first and second memory
controllers.

[0140] Embodiments include any of the above first appa-
ratus in which the thread processor selector unit is to select
the second thread processor based on a first queuing delay
associated with memory accesses to the first memory and a
second queuing delay associated with memory accesses to
the second memory.

[0141] Embodiments include any of the above first appa-
ratus in which the thread processor selector unit is to select
the second thread processor for the same thread for which
the memory controller access monitor unit is to monitor the
accesses to both the first and second memory controllers.
The first apparatus further includes a thread migration
initiation unit to initiate migration of the thread from the first
thread processor to the second thread processor.

[0142] Embodiments include the first apparatus in which
the thread processor selector unit is to select the second
thread processor for a second instance of the thread for
which the memory controller access monitor unit is to
monitor the accesses to both the first and second memory
controllers. The first apparatus further includes a thread
scheduling initiation unit to initiate scheduling of the second
instance of the thread on the second thread processor.
[0143] Embodiments include any of the above first appa-
ratus further including a memory controller access intensity
determination unit coupled with the memory controller
access monitor unit. The memory controller access intensity
determination unit is to determine that the thread, for which
the memory controller access monitor unit is to monitor the
accesses to both the first and second memory controllers, is
a memory access intensive thread.

[0144] Embodiments include any of the above first appa-
ratus in which the memory controller access monitor unit is
to monitor at least one of: (a) a proportion of instructions
processed by the thread that are cache misses; and (b) a
count of cycle stalls for the thread.

[0145] Embodiments include any of the above first appa-
ratus in which the first thread processor is coupled with the
first memory controller through a plurality of intervening
thread processors coupled between the first thread processor
and the first memory controller.

[0146] Embodiments include any of the above first appa-
ratus in which the thread processors include a plurality of
cores of a multi-core processor.

[0147] Embodiments include any of the above first appa-
ratus further including a thread installation unit to install the
thread on the second thread processor. The thread installa-
tion unit includes logic of an integrated circuit having the
second thread processor.

[0148] In one embodiment, a second apparatus includes a
plurality of thread processors to run a plurality of threads. A
first memory controller is coupled with the plurality of
thread processors. The first memory controller is to couple
with and provide access to a first memory. A second memory
controller is coupled with the plurality of thread processors.
The second memory controller is to couple with and provide
access to a second memory. A first means is coupled with a
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first thread processor of the plurality. The first means is for
monitoring accesses, by a thread of the plurality that is
running on the first thread processor, to both the first
memory controller and the second memory controller. A
second means is coupled with the first means. The second
means is for selecting a second thread processor of the
plurality for a thread based on the monitoring of the accesses
by the thread to both the first memory controller and the
second memory controller.

[0149] In one embodiment, a first system includes a first
memory, a second memory, a first memory controller
coupled with the first memory to provide access to the first
memory, and a second memory controller coupled with the
second memory to provide access to the second memory.
The first system also includes a plurality of thread proces-
sors coupled with the first and second memory controllers.
The thread processors are to run a plurality of threads that
access the first and second memories through the first and
second memory controllers. An operating system module is
to be stored in a memory. The operating system module is to
install a thread on a thread processor based at least in part on
a relative proportion of accesses by the thread to both the
first and second memories.

[0150] Embodiments include the first system in which
average memory access latency for accesses from the thread
processor to the first and second memories is less than from
any other thread processor.

[0151] Embodiments include the first system in which the
operating system module is to migrate an existing thread
from the thread processor to another thread processor prior
to installing the thread on the thread processor.

What is claimed is:

1. An apparatus comprising:

a plurality of thread processors of a multi-core processor
to run a plurality of threads;

a first memory controller coupled with the plurality of
thread processors, the first memory controller to couple
with and to provide access to a first memory;

a second memory controller coupled with the plurality of
thread processors, the second memory controller to
couple with and to provide access to a second memory;

a memory controller access monitor unit coupled with a
first thread processor of the plurality of thread proces-
sors, the memory controller access monitor unit to
monitor accesses, by a given thread of the plurality of
threads that is to run on the first thread processor, to
both the first memory controller and the second
memory controller; and

a thread processor selector unit coupled with the memory
controller access monitor unit, the thread processor
selector unit to select a second thread processor of the
plurality of thread processors of the multi-core proces-
sor for a thread based on the monitored accesses by the
given thread to both the first memory controller and the
second memory controller, wherein the second thread
processor is coupled with the first memory controller
through at least one intervening thread processor and is
coupled with the second memory controller through at
least one intervening thread processor.

2. The apparatus of claim 1, wherein the thread processor
selector unit is to select the second thread processor to
improve overall memory access latency from the second
thread processor to the first and second memories.
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3. The apparatus of claim 1, wherein the thread processor
selector unit is to select the second thread processor based on
a relative proportion of the monitored accesses to the first
and second memory controllers.

4. The apparatus of claim 1, wherein the thread processor
selector unit is to select the second thread processor based on
a first queuing delay, which is to incorporate a queuing delay
of an intervening thread processor, and which is to be
associated with memory accesses to the first memory and a
second queuing delay associated with memory accesses to
the second memory.

5. The apparatus of claim 1, wherein the thread processor
selector unit is to select the second thread processor for the
given thread for which the memory controller access moni-
tor unit is to monitor the accesses to both the first and second
memory controllers, and further comprising a thread migra-
tion initiation unit to initiate migration of the given thread
from the first thread processor to the second thread proces-
sor.

6. The apparatus of claim 1, wherein the thread processor
selector unit is to select the second thread processor for a
second thread which is to be of a same type as the given
thread for which the memory controller access monitor unit
is to monitor the accesses to both the first and second
memory controllers, and further comprising a thread sched-
uling initiation unit to initiate scheduling of the second
thread on the second thread processor.

7. The apparatus of claim 1, further comprising a memory
controller access intensity determination unit coupled with
the memory controller access monitor unit, the memory
controller access intensity determination unit to determine
that the given thread, for which the memory controller
access monitor unit is to monitor the accesses to both the
first and second memory controllers, is a memory access
intensive thread.

8. The apparatus of claim 1, wherein the memory con-
troller access monitor unit is to monitor at least one of: (a)
a proportion of instructions processed by the given thread
that are cache misses; and (b) a count of cycle stalls for the
given thread.

9. The apparatus of claim 1, wherein the first thread
processor is coupled with the first memory controller
through a plurality of intervening thread processors coupled
between the first thread processor and the first memory
controller.

10. The apparatus of claim 1, wherein the thread proces-
sors comprise a plurality of cores, and wherein the thread
processor selector unit is to select the second thread pro-
cessor based in part on a queuing delay that is to incorporate
a queuing delay of an intervening thread processor coupled
between the second thread processor and the first memory
controller.

11. The apparatus of claim 1, further comprising a thread
installation unit to install the thread on the second thread
processor, wherein the thread installation unit comprises
logic of an integrated circuit having the second thread
processor.

12. A system comprising:

a first memory;

a second memory;

a first memory controller coupled with the first memory to

provide access to the first memory;

a second memory controller coupled with the second

memory to provide access to the second memory;
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a plurality of thread processors of a chip multi-processor
(CMP) coupled with the first and second memory
controllers, the thread processors to run a plurality of
threads that are to access the first and second memories
through the first and second memory controllers; and

an operating system module stored in a memory, the
operating system module to install a thread on a thread
processor of the plurality of thread processor of the
CMP based at least in part on a relative proportion of
accesses by the thread to both the first and second
memories, wherein the thread processor on which the
thread is to be installed is coupled with the first memory
controller through at least one intervening thread pro-
cessor and is coupled with the second memory con-
troller through at least one intervening thread proces-
SOr.

13. The system of claim 12, wherein an average memory
access latency for accesses by the thread from the thread
processor to the first and second memories is to be less than
from any other thread processor.

14. The system of claim 12, wherein the operating system
module is to migrate an existing thread of the plurality of
threads from the thread processor to another thread proces-
sor of the plurality of thread processors prior to installing the
thread on the thread processor.

15. An apparatus comprising:

a plurality of thread processors of a multi-core processor
to run a plurality of threads;

a first memory controller coupled with the plurality of
thread processors, the first memory controller to couple
with and to provide access to a first memory;

a second memory controller coupled with the plurality of
thread processors, the second memory controller to
couple with and to provide access to a second memory;
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a thread processor selection logic to:

monitor accesses, by a given thread of the plurality of
threads that is to run on the first thread processor, to
both the first memory controller and the second
memory controller; and

select a second thread processor of the plurality of thread

processors of the multi-core processor for a thread
based on the monitored accesses by the given thread to
both the first memory controller and the second
memory controller, wherein the second thread proces-
sor is coupled with the first memory controller through
at least one intervening thread processor and is coupled
with the second memory controller through at least one
intervening thread processor.

16. The apparatus of claim 15, wherein the thread pro-
cessor selection logic is to select the second thread processor
to improve overall memory access latency from the second
thread processor to the first and second memories.

17. The apparatus of claim 15, wherein the thread pro-
cessor selection logic is to select the second thread processor
based on a relative proportion of the monitored accesses to
the first and second memory controllers.

18. The apparatus of claim 15, wherein the thread pro-
cessor selection logic is to select the second thread processor
based on a first queuing delay, which is to incorporate a
queuing delay of an intervening thread processor, and which
is to be associated with memory accesses to the first memory
and a second queuing delay associated with memory
accesses to the second memory.

19. The apparatus of claim 15, wherein the thread pro-
cessor selection logic is to select the second thread processor
for the given thread for which the memory controller access
monitor unit is to monitor the accesses to both the first and
second memory controllers, and further comprising a thread
migration initiation unit to initiate migration of the given
thread from the first thread processor to the second thread
processor.



