Trigger Dispenser
This application is a continuation of U.S. patent application Ser. No. 14/523,290 filed on Oct. 24, 2014, which is a continuation of U.S. patent application Ser. No. 13/821,685 filed on Mar. 8, 2013, now U.S. Pat. No. 8,870,033 issued on Oct. 28, 2014, which claims benefit of International Patent Application No. PCT/IB2011/051496 filed on Apr. 7, 2011, which claims benefit of Italian Patent Application No. BS2010A000155 filed on Sep. 16, 2010. The entire disclosures of the above applications are incorporated herein by reference. The present disclosure relates to a manually operated dispenser device of a liquid, generally trigger-operated. This section provides background information related to the present disclosure which is not necessarily prior art. Such dispenser devices, known as in the trade “trigger pumps”, are extremely widespread, with an annual production of several hundred million pieces. They are in fact widely used in the household cleaning sector, for treating fabrics and in the world of hobbies etc. For the production of such devices to economically worthwhile, the plants need to be able to produce and assemble an extremely large number of pieces. Consequently, even slight improvements to the production process of the components and in the assembly process of the same may entail significant economic benefits. In particular, it is essential that the device is easy to assemble even when it has internal components which are asymmetric or off axis. All this must necessarily marry with increasingly restrictive requirements regarding functionality of the devices, reliability and the type of jet dispensed. This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features. The purpose of the present invention is to realise a manually operated dispenser device of a liquid, in particular trigger-operated, which satisfies the aforesaid requirements. Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure. The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure. Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings. Example embodiments will now be described more fully with reference to the accompanying drawings. With reference to the appended drawings, reference numeral 1 globally denotes a manually operated dispenser device of a liquid. The dispenser device comprises a container C to contain the liquid to be dispensed, comprising a neck N made by an annular wall W around a container axis X, which defines by means of an annular rim B, a container aperture A for access to the inside of the same. The dispenser device 1 comprises a dispenser head 20 attached to the container C to manually aspirate the liquid from the container and dispense it to the outside. The head 20 is pre-assembled and in general sent for filling of the container separately from it. After filling the container with liquid, the head is coupled to the container. The head 20 further comprises an auxiliary body 2 attached to the neck N of the container C, at the aperture A of the same, to close it peripherally forming a seal. In particular, the auxiliary body 2 comprises a main portion 4, inserted through the aperture A in the neck N, provided with a main surface 4 Preferably, the auxiliary body 2 has, on the outer side, an annular groove 4 The auxiliary body 2 has a primary liquid aspiration duct 8 extending along the container axis X; coaxial to said container axis X. In one embodiment variation, the primary liquid aspiration duct 8 is eccentric to the container axis X, that is radially distanced from it. The primary liquid aspiration duct 8 passes through the thickness of the main portion 4, placing the compartment inside the container in communication with the main surface 4 In particular, preferably, the primary liquid aspiration duct 8 is defined through a first tube 10, coaxial to the container axis X. Preferably, a flexible or rigid suction tube is connectable to the tube 10, which extends as far as the bottom of the container, to suck up the liquid. Moreover, the auxiliary body 2 has a primary air aspiration duct 12, radially distanced from the primary liquid aspiration duct 8, passing through the thickness of the main portion 4, to place the outer environment or main surface 4 In particular, preferably, the primary air aspiration duct 12 is defined through a second tube 14, radially distanced from the first tube 10. Moreover, the head 20 comprises a frame 22 to support the other components and form some passages for the liquid. The auxiliary body 2 is attached to the frame 22. The frame 22 has a pressure chamber 24, annularly defined by a chamber wall 25, extending along a pressure axis Y, preferably incident to the container axis X, for example orthogonally. The head 20 comprises a piston 26, sealingly sliding in the pressure chamber 24 along the pressure axis Y, between a rest position, wherein the volume of the pressure chamber 24 is maximum, and a limit dispensing position, wherein the volume of the pressure chamber 24 is minimal, passing through intermediate dispensing positions. Preferably, the piston 26 comprises a head seal 26 The head 20 further comprises manual actuation devices suitable to move the piston 26 manually in the pressure chamber 24. Preferably, the actuation means comprise a trigger 28, suitable to act on the piston 26, for example anchored to it, and engaged with the frame 22, for example hinged so as to rotate with it or sliding in translation on it. Preferably, moreover, the head 20 comprises elastic return means able to permanently influence the piston 26 or trigger 28 to return the piston 26 to the rest position. The frame 22 further presents a dispenser duct 30 extending along a dispensing axis Z, between a distal extremity 32, at the aperture towards the outside, and an opposite proximal extremity 34. Preferably, the pressure axis Y is parallel and separate from the dispenser axis Z. The head 20 further comprises, preferably, a nozzle 38, attached to the distal extremity 32 of the dispenser duct 30, to enable dispensing of the liquid in the desired manner. The pressure chamber 24 is suitable for being placed in fluidic communication with the dispenser duct 30. In particular, the head 20 comprises valve dispenser means suitable for allowing the transit of liquid from the pressure chamber 24 to the dispenser duct 30 when, during the dispensing phase, the piston 26 moves from the rest position towards the dispenser limit position, and the liquid exceeds a predefined pressure threshold. For example, the valve dispenser means comprise an elastically deformable diaphragm 40, attached to the frame 22. Moreover, the frame 22 has a secondary liquid aspiration duct 50, which co-operates in the connection of the pressure chamber 24 with the compartment inside the container. Preferably, the secondary liquid aspiration duct 50 comprises an axial section 50 Moreover, the head 20 comprises valve dispenser means suitable for allowing the transit of liquid from the secondary aspiration duct 50 towards the pressure chamber 24 when, during a return phase, the piston 26 moves towards the rest position from the dispenser limit position, and prevents transit of the liquid from the pressure chamber 24 towards the secondary liquid aspiration duct 50 during said dispensing phase. Preferably, said valve aspiration means comprise an elastically deformable aspiration diaphragm 52, fitted between the pressure chamber 24 and the secondary liquid aspiration duct 50. The frame 22 comprises a support plate 60, by means of which the frame 22 engages with the auxiliary body 2. The plate 60 has a functional surface 62 on the outside, which the secondary liquid aspiration duct 50 comes out on, in a radially distanced position from the container axis X that is at least partially misaligned from the primary liquid aspiration duct 8. Preferably the secondary liquid aspiration duct 50, and in particular the axial section 50 When the head 20 is attached to the container, the functional surface 62 of the frame 22 is axially distanced from the main surface 4 The primary liquid aspiration duct 8, the joining compartment 64 and the secondary liquid aspiration duct 50 thereby form a liquid aspiration passage which places the compartment inside the container in communication with the pressure chamber 24 of the head 20. Moreover, preferably, the frame 22 comprises an annular lip 66, projecting in the direction of the container axis X from the functional surface 62 of the plate 60, inserted in the groove 4 Moreover, the frame 22 comprises a tubular aspiration insert 70, projecting from the functional surface 62 and inserted so as to form a seal in the aspiration tube 14 of the auxiliary body 2, defining within it a secondary air aspiration duct 72. The insert 70 therefore crosses the joining compartment 64 destined for transit of the liquid. The primary air aspiration duct 12 and the secondary air aspiration duct 72 are therefore in communication with each other and form a separate air, aspiration passage sealed from the liquid aspiration passage. In particular, the secondary air aspiration duct 72 comprises an aspiration hole 80 made through the chamber wall 25. Preferably, when the piston 26 is in the rest position, the hole 80 is separated from the pressure chamber 24 by the head seal 26 In an initial rest configuration, the piston 26 is in the rest position, the valve dispenser means are closed, the valve aspiration means are closed, the air aspiration passage towards the outside is closed; the presence of liquid to dispense in the pressure chamber 24 is presumed. In the dispensing phase, the piston 26 completes a dispensing stroke from the rest position to the limit dispensing position by manual activation of the trigger 28. By effect of the liquid in the pressure chamber 24, the liquid aspiration valve means remain closed, preventing the backflow of liquid towards the container. By effect of the pressurised liquid, the valve dispenser means open, making the liquid travel from the pressure chamber 24 to the dispenser duct 30, thereby enabling dispensing from the nozzle 38. When the trigger is released, the elastic return means move the piston 26 or the trigger 28 from the dispensing limit position towards the rest position. In the return phase, the piston 26 performs a return stroke from the dispensing limit position towards the return position. The negative pressure which is formed in the pressure chamber 24 closes the dispenser valve means. The negative pressure which is formed in the pressure chamber 24 opens the liquid aspiration valve means and the liquid transits from the compartment inside the container into the pressure chamber 24, through the primary liquid aspiration duct 8, the joining compartment 64 and the secondary liquid aspiration duct 50. At least for a part of the return phase, the air aspiration passage is in communication with the outside environment, so that the air can be aspirated into the compartment inside the container. The air aspiration passage, and in particular the secondary air aspiration duct 72, is fluidically separated from the liquid aspiration passage, and in particular from the joining compartment 64, so that there is no leakage of liquid. According to a further embodiment, the container C comprises an annular container wall 200 around the container axis X and an auxiliary liquid aspiration duct 202, made entirely in said lateral wall of the container C. In other words, the container wall 200 comprises a portion of functional wall 204, for example positioned head-on with the container, that is on the side destined for the liquid to come out, and an auxiliary wall 206, in one piece with the container wall 200, inside the container C, which runs along the portion of functional wall 204, so as to form with it the auxiliary liquid aspiration duct 202. Said duct 202 is open near the bottom of the container, to aspirate the liquid contained in it. Preferably, said duct 202 starts from an engagement mouth 208, axially distanced from the neck N of the container C. The primary liquid aspiration duct 8, at least partially eccentric to the container axis X, is suitable for inserting in the engagement mouth 208 of the auxiliary liquid aspiration duct 202. For example, advantageously, the primary liquid aspiration duct 8 comprises a first section 8 Preferably, moreover, the primary liquid aspiration duct 8 comprises, in the terminal part suitable for insertion in the engagement mouth 208, a flexible coupling portion 210, made in a less rigid material than the material of the remaining part of the primary liquid aspiration duct 8. Preferably, the flexible coupling portion 210 is made in one piece with the remaining part of the duct 8, for example by means of a co-moulding process. For example, the flexible coupling portion 210 is made in Ethylene-Vinyl-Acetate (EVA) or in a material from the group of thermoplastic elastomers (TPE); the remaining part of the tube is rather made preferably made from high density polyethylene (PEHD). Advantageously, this makes insertion of the duct 8 in the engagement mouth 208 particularly easy. Preferably, moreover, the primary liquid aspiration duct 8 and the secondary liquid aspiration duct 50 are positioned on diametrically opposite sides the container axis X. In particular, for example, the first section 8 Innovatively, the dispenser device according to the present invention, despite having asymmetric components and off-axis ducts, retains considerable assembly simplicity. In particular, advantageously, the head ensures a good seal with the container, thanks to the interposition of the auxiliary body between the frame and neck, of the container, made in particularly suitable material for forming a seal with the neck of the container. Moreover, advantageously, the head ensures a good internal seal between the frame and auxiliary body, made in materials suitable for such purpose. Advantageously, moreover, the dispenser device ensures aspiration of the air in the container preventing the leakage of liquid in said duct. According to a further advantageous aspect, the dispenser device ensures aspiration of the air in the container preventing liquid from escaping from the air aspiration passage, for example when the device is inclined. In particular, according to a further advantageous aspect, the connection system of the head and container is particularly suitable in the case of containers with liquid aspiration ducts built-in to the container, for which the built-in duct is strongly off-axis with the aspiration duct of the frame and therefore needs an intermediate fluidic connection structure. It is clear that a person skilled in the art may make modifications to the dispenser device described above so as to satisfy contingent requirements, all contained within the sphere of protection as defined by the appended claims. The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure. A trigger dispenser device (1) envisages a secondary liquid aspiration duct (50) in communication with the dispenser duct, and a primary liquid aspiration duct (8) in communication with the container, off-axis with each other. Between these, a joining compartment (64) is provided communicating upstream with the primary liquid aspiration duct (8) and communicating downstream with the secondary liquid aspiration duct (50) to form the fluidic connection between them. In particular, the container (C) is of the type with built-in suction pipe. 1. A pump system, comprising:
a trigger sprayer comprising a valve body, the valve body comprising:
a circumferential connection projection extending downward off the valve body; at least one seal ring projecting from the circumferential connection projection; and at least one connector; a dip tube connector comprising:
at least one connector lip snapped over the at least one connector and attaching the dip tube connector to the valve body; at least one plug seal ring sealed against the at least one seal ring; and a fluid chamber formed between the dip tube connector and valve body. 2. The pump system of a connector head in the dip tube connector, wherein the at least one connector lip is positioned on a periphery of the connector head; and a port extending off of the connector head, comprising a port outlet in the connector head and a port inlet in an end of the port opposite the connector head. 3. The pump system of 4. A pump system, comprising:
a trigger sprayer comprising a valve body, the valve body comprising:
a circumferential connection projection extending downward off the valve body; at least one seal ring projecting from the circumferential connection projection; and at least one connector; a dip tube connector attached to the valve body, the dip tube connector comprising:
a connector head; a port extending off of the connector head, the port comprising an outlet in the connector head and an inlet opposite the outlet; at least one connector lip connected to the at least one connector; at least one plug seal ring sealed against the at least one seal ring; a fluid chamber formed between the dip tube connector and valve body, wherein the outlet of the port is in communication with the fluid chamber. 5. The pump system of 6. The pump system of 7. The pump system of 8. A dispenser system, comprising:
a container; a container aperture in the top of the container; a functional wall in the container; an auxiliary liquid aspiration opening in the functional wall; a dispenser head attached to the container relative to the container aperture, the dispenser head including a frame; at least one connector in the frame; an auxiliary body, comprising a collar attached with the at least one connector and retaining the auxiliary body with the frame; and a duct formed between the frame and the auxiliary body. 9. The dispenser system of an auxiliary body head, wherein the collar is positioned about a periphery of the auxiliary body head; and a liquid aspiration duct extending off of the auxiliary body head, comprising a duct outlet in the auxiliary body head and a duct inlet in an end of the liquid aspiration duct opposite the auxiliary body head and seated in the auxiliary liquid aspiration opening. 10. The dispenser system of 11. The dispenser system of an annular lip extending downward of the frame towards the container; the annular lip providing a seal at a lower outer edge projecting from the annular lip; and an annular groove in the auxiliary body, wherein the annular groove seals against the seal at the lower outer edge of the annular lip. 12. A dispenser device for dispensing a liquid from a container, comprising:
a dispenser head including a frame, the frame comprising:
an annular lip extending downward of the frame; the annular lip providing a seal at a lower outer edge thereof; and a connector; an auxiliary body comprising:
a collar attached to the connector and attaching the auxiliary body to the frame; and an annular groove sealed against the seal at the lower outer edge of the annular lip; and a duct formed between the auxiliary body and the frame. 13. The dispenser device of an auxiliary body head in the auxiliary body, wherein the collar is positioned on a periphery of the auxiliary body head; and a liquid aspiration duct extending off of the auxiliary body head, comprising a duct outlet in the auxiliary body head and a duct inlet in an end of the liquid aspiration duct opposite the auxiliary body head. 14. The dispenser device of 15. A dispenser device for dispensing a liquid from a container, comprising:
a dispenser head including a frame, the frame comprising:
an annular lip extending downward of the frame; the annular lip providing a seal at a lower outer edge thereof; and a connector; an auxiliary body attached to the frame, the auxiliary body comprising:
an auxiliary body head; a liquid aspiration duct extending off of the auxiliary body head, the liquid aspiration duct comprising an outlet in the auxiliary body head and an inlet opposite the outlet; a collar attached to the connector; an annular groove sealed against the seal at the lower outer edge of the annular lip; and a duct formed between the auxiliary body and the frame, wherein the outlet of the liquid aspiration duct is in communication with the duct formed between the auxiliary body and the frame. 16. The dispenser device of 17. The dispenser device of 18. The dispenser device of CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD
BACKGROUND
SUMMARY
DRAWINGS
DETAILED DESCRIPTION




