DISTANCE MEASURING APPARATUS HAVING DISTANCE CORRECTION FUNCTION
The present invention relates to a distance measuring apparatus which measures a distance to an object based on a time of flight of light, and in particular, relates to a distance measuring apparatus having a distance correction function. TOF (time of flight) cameras which output a distance based on the time of flight of light are known as a distance measuring apparatus for measuring the distance to the object. Many TOF cameras use a phase difference method in which measurement light with an intensity modulated over predetermined cycles is irradiated a target measurement space, and a phase difference between the irradiated measurement light and the light reflected by the object in the target measurement space is detected. TOF cameras, which are three-dimensional sensors, cause distance measurement errors due to individual characteristic variations in electronic elements thereof (e.g., light receiving elements, A/D conversion element, etc.), aging of the electronic elements, etc. Regarding individual characteristic variations, though a camera supplier adjusts the variations within target error ranges by calibration performed under specific conditions at the time of shipment, distance measurement errors may increase depending on differences in usage environment (in particular temperature), aging, etc. These distance measurement errors differ individually. Japanese Unexamined Patent Publication (Kokai) No. 2015-175752 discloses a distance image generation device which uses a light-time-of-flight-type distance image sensor. The distance image generation device performs distance image smoothing by determining filter parameters (size, coefficient, frame number, etc.) used for smoothing for objects of a known size. Japanese Unexamined Patent Publication (Kokai) No. 2015-056057 discloses a method for estimating the posture of a marker using a TOF camera. In this posture estimation method, the marker is detected from a camera image, the marker area is extracted from a distance image, an optimal plane is estimated from the extracted distance image, and the position and posture of the marker are estimated from the estimated plane. Japanese Unexamined Patent Publication (Kokai) No. 2014-070936 discloses an erroneous pixel detection device for detecting erroneous pixels of a TOF camera. The erroneous pixel detection device compares a distance correction TOF image, which is a TOF image (bright image) which has been corrected based on a distance image, with a captured image acquired from an imaging camera, and detects erroneous pixels having measurement errors in the distance image based on the comparison results. Actual reference light produces timing delays and waveform blunting relative to ideal light emission timing of the reference light due to individual characteristics of the electronic elements of TOF cameras, in particular, semiconductor laser (LD), transistors, resistors, etc. (refer to However, during actual use of the TOF camera, the timing delay and waveform blunting (i.e., simple delay) corresponding to the offset Δt fluctuate due to ambient temperature, changes in temperature depending on heat generation of components, etc., time-dependent change of the individual characteristics, etc., whereby the distance measurement values may also change. Specifically, the distance measurement value of each pixel in TOF camera will vary. Though attempts have been made to mount a temperature sensor inside the TOF camera to detect such fluctuations and to change a correction amount in accordance with the detected temperature, such a solution does not fully solve problems due to issues relating to the position and accuracy of the temperature sensor. Thus, there is a need for a distance measuring apparatus that easily enables accurate distance correction. An aspect of the present disclosure provides a distance measuring apparatus, including a light emitting section which emits reference light to a target measurement space at a predetermined light emission timing, and a plurality of light receiving elements which are two-dimensionally arranged and which receive incident light from the target measurement space at a predetermined image capture timing, wherein the distance measuring apparatus outputs a distance image to an object in the target measurement space based on light reception amounts of the light receiving elements and a two-dimensional image corresponding to the distance image, the distance measuring apparatus further including a reference object distance calculation section which calculates a distance to the reference object based on the two-dimensional image in which a reference object including a plurality of feature points having obvious three-dimensional coordinate correlations is captured, and a correction amount calculation section which calculates a correction amount for correcting the distance image by comparing the calculated distance to the reference object with a distance measurement value to the reference object in the distance image. The embodiments of the present disclosure will be described in detail below with reference to the attached drawings. In the drawings, identical or similar constituent elements have been assigned the same or similar reference numerals. Furthermore, the embodiments described below do not limit the technical scope of the inventions described in the claims or the definitions of terms. The light emitting section 11 is constituted by a light source such as a light-emitting diode (LED) or LD which emits, for example, near-infrared (NIR) light, and emits reference light L1 which is intensity modulated on a predetermined cycle based on a light emission timing signal from an emission/image capture timing control section 14. The reference light L1 is diffused by a diffusion plate 15 and emitted to the target measurement space. The light receiving section 12 is constituted by an image sensor such as a CCD or CMOS including, for example, an RGB filter, NIR filter, etc., and receives incident light L2 via an optical system 16 including a collecting lens or the like. The incident light L2 includes ambient light in addition to the reference light reflected by the object. The light receiving section 12 includes four light receiving elements in which each pixel receives red light, blue light, green light, and NIR light. Alternatively, the light receiving section 12 may comprise a single light receiving element in which each pixel receives only NIR light. The light receiving element 17 is constituted by, for example, a photodiode or capacitor. A light receiving element 17 which receives NIR light receives light at a plurality of image capture timings which are delayed by a predetermined phase with respect to the light emission timing of the reference light L1 based on an image capture timing signal from the emission/image capture timing control section 14. For example, light reception amounts Q1to Q4are acquired at image capture timings Et1 to Et4, which are out of phase by 0°, 90°, 180°, and 270°, respectively, with respect to the ideal light emission timing of the reference light. A light receiving element 17 which receives red light, blue light, and green light acquires the light reception amounts over a predetermined imaging period. As shown in The distance image generation section 13 generates a distance image 30 to the object in the target measurement space based on the A/D converted values of the light reception amounts Q1to Q4of the NIR light. The distance measurement value Ltofis calculated from, for example, the known formula described below. Td is a phase difference between the reference light and the reflected light, c is a speed of light, and f is a frequency. The generated distance image is stored in a buffer memory 21, and is output to an application 23 via an output control section 22. A two-dimensional image generation section 24 generates a two-dimensional image 31 based on the A/D converted values of the light reception amounts of the RGB light or the NIR light. In other words, the two-dimensional image 31 may be an RGB image (color image), or may be an NIR image (monochrome image). The two-dimensional image 31 is stored in the buffer memory 21, and is output to the application 23 via the output control section 22. As described above with reference to Since the offset Δt changes in accordance with changes in temperature, aging, etc., there is a possibility that the final distance image may also include distance measurement errors. In order to correct such fluctuations of the offset Δt (and to correct the distance image), the distance measuring apparatus 10 of the present embodiment has a distance correction function. The distance measuring apparatus 10 uses the distance to a reference object 25 (refer to The distance measuring apparatus 10 geometrically calculates the distance Lrefto the representative feature point 32 Referring again to The reference object distance calculation section 26 retrieves the two-dimensional image 31, in which the reference object 25 comprising a plurality of feature points 32 (including the representative feature point 32 The correction amount calculation section 27 calculates the correction amount for correcting the distance image by comparing the distance Lrefto the representative feature point 32 The correction amount calculation section 27 stores the correction amount Li in a non-volatile memory 28, and retrieves and reuses the correction amount Li from the non-volatile memory 28 when the distance measuring apparatus 10 is powered on. Alternatively, in applications in which the distance measuring apparatus 10 continuously images the reference marker 25 The emission/image capture timing control section 14 controls the light emission timing or image capture timing based on the correction amount Li. For example, when the correction amount Li is a distance correction value as in the formula described above, the emission/image capture timing control section 14 calculates an offset Δt′ which is corrected based on the formula described below, and shifts the image capture timing or light emission timing so as to delay the image capture timing relative to the light emission timing by only the offset Δt′. The reason that the calculation is multiplied by two is because the reflected light travels twice the distance of the distance measurement value. Alternatively, the distance image generation section 13 may correct the distance image based on the correction amount Li. For example, when the correction amount Li from the correction amount calculation section 27 is valid, in addition to correcting the offset ΔL, the distance image generation section 13 corrects the distance measurement value Ltofby superimposing the correction amount Li as in the formula below. As a distance correction method of other embodiment of the present application, a method in which a plurality of distance values on a plane of the reference object other than the method in which the distances of the representative feature points are used described above will be described based on For example, for a reference marker 25 In a distance image based on the TOF principle, in general, pixels having a high light intensity have a higher precision than pixels having a low light intensity. Thus, when averaging the distance measurement values in the distance image corresponding to the positions of the pixels in the image specified as described above, weighted averaging may be performed by weighting the light intensities of the pixels. As a result, a more accurate correction amount Li can be acquired. The light intensity I is calculated from, for example, the following known formula. According to the embodiment above, since the two-dimensional image 31 and the distance image 30 correspond on a pixel-by-pixel basis, the correction amount for correcting the distance image 30 can be calculated using the distance to the reference object 25, which was geometrically calculated from the two-dimensional image 31. Thus, correction of the distance measurement errors generated due to individual characteristic variations of the electronic elements or aging of the electronic elements can be easily realized. Though various embodiments have been described in the present description, the present invention is not limited to the embodiments described above. Note that various modifications can be made within the scope described in the claims below. A distance measuring apparatus includes a reference object distance calculation section which calculates a distance to a reference object based on a two-dimensional image in which the reference object, which includes a plurality of feature points having obvious three-dimensional coordinate correlations, is captured, and a correction amount calculation section which calculates a correction amount for correcting a distance image by comparing the calculated distance to the reference object with a distance measurement value to the reference object in the distance image. 1. A distance measuring apparatus, comprising a light emitting section which emits reference light to a target measurement space at a predetermined light emission timing, and a plurality of light receiving elements which are two-dimensionally arranged and which receive incident light from the target measurement space at a predetermined image capture timing, wherein the distance measuring apparatus outputs a distance image to an object in the target measurement space based on light reception amounts of the light receiving elements, and a two-dimensional image corresponding to the distance image, the distance measuring apparatus further comprising:
a reference object distance calculation section which calculates a distance to the reference object based on the two-dimensional image in which a reference object including a plurality of feature points having obvious three-dimensional coordinate correlations is captured, and a correction amount calculation section which calculates a correction amount for correcting the distance image by comparing the calculated distance to the reference object with a distance measurement value to the reference object in the distance image. 2. The distance measuring apparatus according to 3. The distance measuring apparatus according to 4. The distance measuring apparatus according to 5. The distance measuring apparatus according to BACKGROUND OF THE INVENTION
1. Field of the Invention
2. Description of the Related Art
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF PREFERRED EMBODIMENTS
Li=





