CABLE RELEASE DEVICE
The present application claims priority to United Kingdom Application No. 1815720.6 filed Sep. 26, 2018, the entirety of the disclosure of which is expressly incorporated herein by reference. Not Applicable. This invention relates to a power cable connector emergency breakaway device. Offshore floating structures, such as a wind turbine, are typically un-manned and held in position using mooring lines to anchor the floating structure to the seabed. External electrical power cables may then be connected to the power cores on the deck of the floating structure via connectors whereby, the connectors generally are of a T shaped design and interlock with each other to provide a rotationally adjustable routing position. Alternatively, cable connections have been made by hard wiring the electrical cables into a junction box, which are generally large in size, or by using elongate coupled connectors that can be mated and de-mated quickly. However, the coupled connectors have the drawback in that they cannot be de-mated whist hot due to the internal expanding of the connection ring that connects the electrical cables to the coupled connectors. Before the external electrical power cables can be coupled to the deck power cores, the cables are passed through an I- or J-tube which is integrally mounted to the floating structure. These tubes are commonly used to provide a structurally stable platform for guiding cables to be passed through the tube, whereby the tube offers structural support for mounting and terminating the cables to structures such as an offshore floating structure. Once the cables have been terminated, via an I- or J-tube, they can then be coupled to the deck power cores via suitable connectors. In the event of a mooring line failure, for example due to a storm or a collision between a floating structure or vessel, severe localised damage can be done to both the floating structure and the integrally mounted tubes by the load from the connected, external electrical power cables. If the securing structure is unable to release the electrical power cables from the deck power cores or whatever connection is provided to the structure, then significant damage may be done to elements of the tubes and or supporting structure some of which may be difficult and/or expensive to repair on site. For example, floating structures that use cast concrete with cast in steel mounting points. Such structures tend to have mechanisms in place to ensure the release of cables under extreme conditions or in emergency situations. The cables are typically connected and supported by hang-off assemblies which carry the mechanical load of the cable whilst allowing the cables to be connected electrically to other components without significant mechanical load bearing function. However, in an emergency situation, the mechanical loads may become such that managed separation of the cable from the structure is desirable. In these situations, the hang-off assembly may include components which are designed to fail to release the main attachment point for the cable from the structure. However, the cable may be terminated in an electrical connector for providing the connection to the deck power cores and these connections may provide a significant mechanical connection too. This may prevent the release of the cable from the structure. This can be particularly exacerbated when the connections are under electrical load which can lead to higher mechanical coupling strength due to the expansion of connection elements such as the loaded spring or expanding ring. The loaded spring, or expanding ring, acts as an electrical interface between a cable and a connector and, under a high current load expands such that the loaded spring, or expanding ring, locks the connector and cable together, preventing the connector from releasing the cable. If the electrical connector is sufficiently strong, it may prevent the separation of the power cables from the structure which can lead to the damage mentioned above. This damage can be difficult, time consuming and expensive to repair offshore especially compared to the cost of re-instating the electrical power cable if it is released as desired by the release mechanism. The present invention aims to overcome or at least ameliorate one or more of the problems set out above. According to the present invention, there is provided a cable breakaway system for use with a power cable connector provided on a power cable, the power cable connector having an outer insulating sheath provided around the outer circumference of at least a part of the connector into which the cable is received, and a bearing surface within the sheath, the cable breakaway system including at least one cable breakaway device comprising: a main body having a channel passing therethrough for receiving at least a part of a power cable; and at least one cutting protrusion extending away from the main body, wherein movement of the power cable in a first direction through the channel causes the power cable connector to move towards the cable breakaway device such that the sheath of the connector engages the at least one cutting protrusion of the breakaway device, cutting the sheath and allowing the bearing surface to move toward and subsequently make contact with a portion of the main body. Preferably, the power cable connector further comprises a lug mounted to the bearing surface, wherein the body of the cable breakaway device can contact either the lug or the bearing surface to release the power cable from the connector. In this way, the power cable breakaway device can be used with a variety of power cable connectors that comprise lugs of differing shapes and sizes. Depending on the size of the lug, the upper lip of the cable breakaway device is able to contact either the lug or the bearing surface of a power cable connector to release the power cable from a floating structure. Advantageously, the sharp protrusions are a pair of cutting blades and are pivotally mounted to the body of the cable breakaway device such that a power core of the power cable may pass through the channel of the breakaway device without binding. This allows simpler and safer installation of the breakaway device as the cutting blades do not catch the body of a power core being passed through the breakaway device during installation. Favourably, the protrusions and particularly the cutting blades are coated with a low shore hardness polymeric material to aid in preventing corrosion of the cutting blade material and to prevent inadvertent cutting or injury during handling. Preferably, the cutting blades are hooked to help in constraining and directing the radially displaced electrical stress sleeve and rubber body of the power cable connector into the blade edges of the cutting blades to ensure reliable cutting. Advantageously, a plurality of cutting blades may be radially mounted about the centre axis of the elongate channel. Here, the use of additional cutting blades allows the cable breakaway device to cut the sheath in several places to ensure the sheath does not engage the breakaway device and reduce the impact of the coble connector bearing surface on the breakaway device. Favourably, the power cable can be disconnected in both an energised and non-energised state. In this way, no prior planning and/or preparation is required for the disconnection of a power cable from a floating structure using the cable breakaway device allowing for a vastly more flexible and safer power cable release protocol. Preferably, the pulling of the power cable in a first direction to separate the electrical connection can be done manually to allow remote controlled disconnection of the power cable. The pre-emptive ability to release a power cable from a floating structure allows potential damage to the floating structure, by an impending dangerous event, to be mitigated. This may be achieved by initiating the separation of the cable from the structure by separating the hang-off element in s similar way to separation under extreme conditions. The initiation may be done by mechanically separating the hang-off elements so that the mechanical load on the cable is transferred to the electrical connections. Advantageously, the body of the cable breakaway device is cylindrical to facilitate the stripping of the electrical stress sleeve and rubber body layers of the power cable connector. More preferably, the upper portion, at the end where the sheath meets the breakaway device may be tapered. The tapered body aids in guiding the displaced layers into the cutting blades. A plurality of cable breakaway devices may be used with a plurality of power cable connectors and power cores, and the plurality of power cores may vary in length such that when the power cable is pulled in a first direction, the power cores connected to the power cable connectors engage the cable breakaway devices sequentially so that they are released in a cascading manner Releasing the power cores in a cascading manner ensures that each power core can be pulled through the hang-off assembly without becoming entangled which may obstruct and/or stop the cable release process. In a second aspect of the invention, there is provided a method for a method for disconnecting a power cable from a power cable connector having a sheath and a bearing surface within the sheath, the method comprising: directing at least a portion of the cable through a channel in a cable breakaway device for connection to a power cable connector; drawing the cable through the channel in a direction away from the connector, to cause the sheath of the cable connector to engage one or more cutting protrusions, provided on the outer surface of a breakaway device, to cut the sheath such that the sheath is displaced as the cable is drawn; further drawing the cable until the sheath is displaced sufficiently to allow the bearing surface to engage the cable breakaway device preventing relative movement of the bearing surface and cable breakaway device; and continuing to draw the cable until the cable is separated from the power cable connector. Favourably, the method further comprises a hang-off assembly having a fixed portion and a detachable portion connected to and supported by the fixed portion by a shear pin, wherein the power cable is connected to the detachable portion to support the power cable, the method comprising: inducing a load between the fixed portion and the detachable portion to cause the shear pin to fail due to the induced load, such that the detachable portion becomes separated from and unsupported by the fixed portion; and allowing the detachable portion to move away from the fixed portion, drawing the cable through the hang-off assembly such that at least a portion of the cable is drawn through the channel as a result of the load in the cable due to the separation of the detachable portion from the fixed portion. In this way, the floating structure can be evacuated or be left unmanned whilst still allowing activation of the separation mechanism. Specific embodiments of the invention will now be described in detail by reference to the attached drawings in which-: An embodiment of the invention is described below. This would typically be used with floating structures that need to be connected to an external power connection for the transmission and/or receipt of electrical power. Under some circumstances such structures may require an electrical power cable connection to be rapidly released from the structure such as during a storm or collision event. A typical floating structure layout that might utilise an embodiment of the invention will now be described. Once the power cable 700 has been mounted using the hang-off assembly 500, the individual power cores 1 within the power cable 700 are exposed and are subsequently connected to the deck power cores 40 via multiple power cable connectors 300; one connector 300 With reference to The cutting blades (5 This may include tilting the blade edge 111 away from the main body 108. In some embodiments, the main body 108 may comprise more than two cutting blades (5 With reference to With reference to Excessive tension is typically induced in the power cable 700 by extreme weather conditions surrounding the floating structure 600, for example in the event of a 50, 100 or 1000 year storm. Strong ocean waves and currents, brought on by a storm, can cause the power cable 700 to be dragged back and forth from the floating structure 600, storm conditions can also overload the mooring lines 51 or anchor 52. Other factors can cause excessive loading of the cable 700. For example, a collision of another vessel with the floating structure can displace it from its normal location, or the floating structure may lose one or more of its mooring lines. As a result, a high load can be induced in the power cable 700 leading to a potentially hazardous situation. This generally leads to downwards tension in the cable with respect to where the power cable 700 is mounted to the hang-off assembly 500. The power cable 700 is mounted to the inner portion 41 of the hang-off assembly. Tensile stress induced in the power cable 700 is transferred to the pins 45. If the tension in the cable 700 is such that the load transferred to the pins 45 exceeds the pre-determined break-away strain required to cause the shear pins 45 to fail, the shear pins 45 fail and allow the power cable 700 and the sliding inner portion 41 to be pulled through the hang-off assembly 500 via the pull-line 501 As the power cable connector 300 is drawn downwards, the electrical stress sleeve rim 2 The displaced electrical stress sleeve rim 2 The upper lip 113 of the main body 108 continues to separate the electrical stress sleeve 2 If the diameter of the lug 3 In the case where the upper lip 113 makes contact with the bearing surface 99, the movement of the upper part of the power cable connector 300 is prevented inducing a substantial load in the mounting stud 4 In the case of the upper lip 113 making contact with the lower part of the lug 3 Generally, the bearing surface 99, or lug 3 The action of the cutting blades (5 Cutting the electrical stress sleeve 2 Where the mounting stud 4 The sequence for the release of a power core 1 from a power cable connector 300, described above, occurs for each power core 1, 1′, 1″ that is connected through a respective power cable connector breakaway device 107 The electrical stress sleeve 2 The cutting of the electrical stress sleeve 2 The tapered shape of the main body 108, in conjunction with the cutting and bifurcation of the sleeve 2 The power cable connectors 300 are easier, cheaper and less time-consuming to replace compared to replacing and/or repairing damage done to the tube 9 and/or floating structure 600. In this way, the power cable connector breakaway device 107 allows the power cores 1 to be released from the power cable connectors 300 without damaging the tube 9 and/or floating structure 600. The released power core ends completely pass through the channel 109 of the power cable connector breakaway device 107 and into the guide funnel 10. The power cable 700 continues to draw the detached inner portion 41 of the hang-off assembly 500 and the released power core ends towards the latch assembly 400 provided below the hang-off assembly 500. The power cable passes through the latch assembly 400 and so as the cable is withdrawn, the inner portion 41 and the released power core ends are pulled towards the passage through the centraliser. Eventually, the inner portion 41 and released power core ends completely clear the outer portion 42 of the hang-off assembly 500, and the inner portion 41 then impacts a centraliser 34 provided at the top of the latch assembly 400 (see The latch assembly 400 is attached to the bottom of tube 9 and is remotely engaged during the mounting of the power cable 700, and hang-off assembly 500, see The process for releasing a power cable 700 from a power cable connector 300 using the power cable connector breakaway device 107 may be carried out, as described above, irrespective of whether the power cable 700 is in an energised or non-energised state whereas previously, a power cable could only be released from a floating structure in a non-energised state. In this way, no planning and/or preparation is required for the disconnection of a power cable 700 from a floating structure 600 using the power cable connector breakaway device 107 allowing for a vastly more flexible and safer power cable release protocol which can be operated in an emergency with no human intervention. The cutting blades (5 The cutting blades (5 In other embodiments, the cutting blades (5 The main body 108 of the power cable connector breakaway device 107 may function successfully using other types of body shape than cylindrical, for example it may have a hexagonal shape and may not have parallel sides. As mentioned above, the tapered portion of the main body 108 is shown as having a generally frusto-conical shape but may also have other shapes which preferably have a generally diverging diameter to help in directing the displaced electrical stress sleeve 2 The remotely controlled load may be initiated in a variety of different ways, some examples being, but not limited to, a pre-charged hydraulic accumulator system, reserve power mechanical activator system, explosive charge system or a combination of the different systems. Here, in the case that an explosive change system is used, the remotely controlled load is an explosive charge 23 A cable breakaway device for use with a power cable connector and a power cable, the power cable connector comprising a sheath and a bearing surface. The cable breakaway device comprising a body with an elongate channel passing therethrough, one or more sharp protrusions radially extending from the body to cut the sheath as the cable is pulled through the channel, allowing the bearing surface to engage the breakaway device without impeding the movement of the connecting device. 1. A cable breakaway system for use with a power cable connector provided on a power cable, the power cable connector having an outer insulating sheath provided around the outer circumference of at least a part of the connector into which the cable is received, and a bearing surface within the sheath, the cable breakaway system including at least one cable breakaway device comprising:
a main body having a channel passing therethrough for receiving at least a part of a power cable; and at least one cutting protrusion extending away from the main body, wherein movement of the power cable in a first direction through the channel causes the power cable connector to move towards the cable breakaway device such that the sheath of the connector engages the at least one cutting protrusion of the breakaway device, cutting the sheath and allowing the bearing surface to move toward and subsequently make contact with a portion of the main body. 2. A cable breakaway system according to 3. A cable breakaway system according to 4. A cable breakaway system according to 5. A cable breakaway system according to 6. A cable breakaway system according to 7. A cable breakaway system according to 8. A cable breakaway system according to 9. A cable breakaway system according to 10. A cable breakaway system according to each power core passes through the channel of a respective cable breakaway device; and the length of the power core between each breakaway device and the respective power cable connector is different for each power core, such that as the power cable is pulled, each of the power cable connectors engages the respective cable breakaway device sequentially. 11. A cable breakaway system according to any one of the preceding claims further comprising:
a hang-off assembly, wherein the hang-off assembly includes a fixed portion for attachment to a structure and a detachable portion for supporting the power cable, wherein the detachable portion is attached to the fixed portion by at least one shear pin, the shear pin being arranged to fail when a load between the fixed portion and the detachable portion exceeds a predetermined value, allowing the fixed portion and the detachable portion to separate. 12. A cable breakaway system according to 13. A cable breakaway device according to 14. A cable breakaway device according to 15. A cable breakaway device according to 16. A method for disconnecting a power cable from a power cable connector having a sheath and a bearing surface within the sheath, the method comprising:
directing at least a portion of the cable through a channel in a cable breakaway device for connection to a power cable connector; drawing the cable through the channel in a direction away from the connector, to cause the sheath of the cable connector to engage one or more cutting protrusions, provided on the outer surface of a breakaway device, to cut the sheath such that the sheath is displaced as the cable is drawn; further drawing the cable until the sheath is displaced sufficiently to allow the bearing surface to engage the cable breakaway device preventing relative movement of the bearing surface and cable breakaway device; and continuing to draw the cable until the cable is separated from the power cable connector. 17. A method according to inducing a load between the fixed portion and the detachable portion to cause the shear pin to fail due to the induced load, such that the detachable portion becomes separated from and unsupported by the fixed portion; and allowing the detachable portion to move away from the fixed portion, drawing the cable through the hang-off assembly such that at least a portion of the cable is drawn through the channel as a result of the load in the cable due to the separation of the detachable portion from the fixed portion.CROSS REFERENCE TO RELATED APPLICATIONS
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION






