SELF-TAPPING SCREW
The invention relates to a self-tapping screw. The invention further relates to a method for forming such a screw. The invention further relates to an assembly of a self-tapping screw and a piece of work. Self-tapping screws are generally known, and for instance are used in house-construction, in commercial and industrial building and in the shipbuilding industry for pleasure cruising, in particular for yachts. In harsh conditions, such as in areas near the sea or at sea, high demands are placed on the strength and corrosion resistance of the used screws. Self-tapping screws, having a thread that increases in height from the distal (insertion) end and formed out of stainless steel, may not always be suitable due to possible galvanic corrosion. Stainless steel may also impose limits on the achievable color schemes. Self-tapping screws of synthetic material are used for connection to construction parts of unreinforced synthetic material, such as the Ejot Delta PT P. Such self-tapping screws having a thread that increases in height from the distal (insertion) end substantially work using radial displacement of the material of the construction part. They are less suitable for a reliable connection with construction parts made of hard materials, such as for instance a reinforced polyester boat deck. In that case, the material in which the screw hole has to be tapped, will be harder than the material of the screw It is an object of the invention to provide a self-tapping screw made of synthetic material that is suitable for use in hard materials. It is an object of the invention to provide a self-tapping screw that is suitable for transmitting high forces in aggressive conditions. It is an object of the invention to provide a self-tapping screw that is suitable for marine conditions. It is an object of the invention to provide a self-tapping screw which, at least as regards the head, has a large degree of freedom in design and coloring. It is an object of the invention to provide a method for manufacturing a self-tapping screw made of synthetic material. According to one aspect, the invention provides a self-tapping screw made of synthetic material, having a shank on which a thread is formed, which shank defines a screw center line, wherein the screw has a proximal end and a distal insertion end, wherein the shank comprises a first portion and a second portion, wherein the second portion is situated proximal relative to the first portion, in particular connects to the first portion, wherein the thread has the same pitch in the first and second portions, wherein the thread has a complete thread cross-section in the second portion, wherein in the first portion, in the direction of the thread, the thread is divided into thread segments having an incomplete thread cross-section, wherein the thread segments have a leading end and a trailing end, wherein relative to the screw center line, the leading end of the one thread segment extends further in radial direction than the leading end of the thread segment preceding it and forms a cutting edge, and wherein in at least the majority of the thread segments the thread top in question, for at least substantially its full length, starting with the leading end, when considered in thread direction, is situated at a constant radial distance from the screw center line. In that way it can be promoted that the material of the construction part that is being tapped in is cut loose, using the cutting edge. Torque in the shank arising while tapping, can remain limited and the gripping force yielded by the fastened screw can be enhanced. Furthermore, the stability of the screw may thus be enhanced during tapping. Placing the self-tapping screw, for instance in pieces of work made of thermo-setting materials, may thus be facilitated. The area of the thread top situated at a constant radial distance from the screw center line may then, counting from the leading end, in thread direction, cover the full length of the thread segment in question, at least almost the full length, that means up to at least almost the trailing end of said thread segment. In one embodiment the stepwise increase of the radial distance of the thread top at the location of the leading ends of the consecutive thread segments is the same each time, so that a stepwise, evenly increasing cutting effect can be achieved. The thread segments situated next to each other in axial direction, may define thread fields in between them, wherein for at least the majority of the thread fields, when considered in a direction parallel to the said thread direction, having a proximal directional component, the radial distance of the thread field in question to the screw center line at least remains the same each time (so may increase), preferably, however is constant. In a further elaboration thereof, in the first portion a number of the thread fields situated closest to the distal end are situated on a conoid of a cone converging in distal direction, the cone having a circular base and a cone center line coinciding with the screw center line, wherein the conoid is at an angle of a maximum of a few degrees to the screw center line. This promotes the discharge of loosened material. In a further elaboration, when considered in a direction parallel to the thread direction for thread fields that are consecutive to each other, the radial distance of the one thread field to the screw center line exceeds the radial distance of the thread field preceding it to the screw center line, wherein the increase is smaller than the increase of the radial distance of the thread tops at the location of the leading ends of the thread segments to the screw center line. In the second portion, the thread may be continuous in thread direction, at least in a portion connecting to the proximal end of the thread. In one embodiment, in the second portion the thread defines thread fields between consecutive windings, which thread fields are situated on a straight circle-cylindrical plane. In the second portion, the thread may be continuous, and the thread fields may define a continuous helical thread field. In one embodiment, in the first portion at least a number of thread fields that are situated closest to the second portion are situated on the same circle-cylindrical plane as the thread fields in the second portion. In a further development thereof, at least substantially all thread fields in the first portion are situated on the same circle-cylindrical plane as the thread fields in the second portion. This may be all thread fields in the first portion, or substantially all thread fields, with the exception of one or more of the thread fields that are situated closest to the distal end of the shank. In a further development of the screw according to the invention, the leading ends of the thread segments form at least one group of cutting surfaces, which cutting surfaces are situated in one leading plane that is parallel to the screw center line. The leading plane may contain the screw center line. The leading ends of the thread segments may form two or more groups of cutting surfaces, which cutting surfaces per group are each time situated in one leading plane that is parallel to the screw center line, wherein the leading planes, when considered in circumferential direction, are arranged in a regularly distributed fashion, when considered in projection/cross-sectional planes perpendicular to the screw center line, wherein in particular two leading planes are situated in one common plane. This may be advantageous in manufacturing the screw, in an injection mold, which may in particular be divided at the location of the said common plane, wherein the sharp cutting edges can be formed at the leading ends. In a further development of the screw according to the invention, the trailing ends of the thread segments form at least one group of end surfaces, which end surfaces are situated in one trailing plane that is at least substantially parallel to the screw center line. In distal direction, the trailing plane may converge relative to the screw center line at an angle of a maximum of a few degrees. Each trailing plane can, when considered in planes of projection/cross-section perpendicular to the screw center line, each time include obtuse angles, preferably right angles with the leading plane consecutive thereto. In radial direction, the trailing plane may be spaced apart from the screw center line, thus not containing the center line. The trailing ends of the thread segments may form two or more groups of end surfaces, which end surfaces per group are each time situated in one trailing plane, wherein the end surfaces are arranged in a regularly distributed fashion in circumferential direction, when considered in projection/cross-sectional planes perpendicular to the screw center line. Discharging cut out material can be improved, if between trailing and leading planes that are consecutive to each other in thread direction a recess extending in a direction parallel to the screw center line is formed, which recess is bounded by the trailing and leading planes in question, wherein the trailing and leading planes extend up into the body of the shank. In that way the discharge of loosened material can be further improved. The recess may continue into the second portion. The recess forms a deepening relative to both connecting thread segments and connecting thread fields. According to further developments, one or more of the following measures may have been taken. An urging away of material during the tapping process is further counteracted if the incomplete thread cross-sections of the thread segments are congruent to the corresponding portions of the thread cross-section of the second portion. In other words: when considered in cross-section, the incomplete thread cross-sections —as regards their own cross-sectional surface—fit on the complete thread cross-sections of the second portion. The thread segments may have a top angle that equals that of the thread in the second portion. In one embodiment of the thread with in the first and second portions proximal flanks on the proximal side and distal flanks on the distal side, when considered in a longitudinal plane of cross-section containing the screw center line, the angle of the proximal flanks relative to the screw center line can be constant, and/or, when considered in a longitudinal plane of cross-section containing the screw center line, the angle of the distal flanks relative to the screw center line can be constant. The angle for the proximal flanks can then equal the one for the distal flanks. An urging away of material during the tapping process is further counteracted if in a straight-circular cylinder plane, the center line of which contains the screw center line and which plane intersects the thread, the distance between the intersections of the distal and proximal flanks of the thread is constant in the first and second portions. In one embodiment, when considered in planes of longitudinal cross-section in which the screw center line is situated, the flat thread tops of the thread segments in the first thread portion extend parallel to the screw center line. The same may be then the case for the flat thread tops of the thread in the second portion. As noted above, the screw can be manufactured using an injection molding process. This provides a broad choice in color and materials, geared to the intended use. For tapping in relatively hard materials, the screw may be manufactured of a fiber-reinforced synthetic material, in particular fiberglass-reinforced. For instance, fiber-reinforced synthetic material having a minimum of 30 wt. % of fiber material is possible, or a fiber-reinforced synthetic material having a minimum of 50 wt. % of fiber material, or a fiber-reinforced synthetic material having a minimum of 60 wt. % of fiber material. The basic material may be a thermoplastic synthetic material, such as a polyamide, in particular polyarylamide. Possibly, that using a screw according to the invention, grindings in the contact area between the surface of the thread segment and the material of the construction part, in the area trailing to the leading end, may enhance the formation of the thread. In the screw to be used according to the invention, the material of the thread segment in question in (proximal) thread direction, up to the trailing end, is situated on/within the contour of the leading end/cutting edge. In an embodiment suitable for pleasure craft, a screw according to the invention has a head provided with a profile for engagement by a driving tool, and with an edge-shaped elevation for entering a snap connection with a snap cap or snap button or press stud, for instance of a tarpaulin. The edge-shaped elevation may in particular have a circumferential surface which at least partially diverges in proximal direction. In that way a confining action can be exerted in proximal direction on a spring that is usually incorporated in the snap cap/press stud. The edge-shaped elevation may have a circular cross-section, when considered in planes perpendicular to the screw center line. When considered in planes of longitudinal cross-section containing the screw center line, the circumferential surface may have a smooth or buckled concave course. For instance, it may show a course according to a generating line of a cone, having a cone center line coinciding with the screw center line. Other shapes are possible, such as a compound course, for instance first having a portion according to a generating line of a cylinder and in proximal direction changing into a generating line of a cone diverging in proximal direction. The screw described in this paragraph may be part of an assembly having a snap cap or snap button or press stud, designed for entering said snap connection. According to an aspect the invention provides a self-tapping screw made of synthetic material having a shank on which a thread is formed, which shank defines a screw center line, wherein the screw has a proximal end and a distal insertion end, wherein the shank comprises a first portion and a second portion, wherein the second portion is situated proximal relative to the first portion, in particular connects to the first portion, wherein the thread has the same pitch in the first and second portions, wherein the thread has a complete thread cross-section in the second portion, wherein in the first portion, in the direction of the thread, the thread is divided into thread segments having an incomplete thread cross-section, wherein the thread segments have a leading end and a trailing end, wherein relative to the screw center line, the leading end of the one thread segment extends further in radial direction than the leading end of the thread segment preceding it and forms a cutting edge, and wherein in at least the majority of the thread segments the thread top in question, when considered in thread direction, from its leading end up to its trailing end, is situated at a radial distance from the screw center line, which distance at a leading end is constant at the most. Said radial distance may be constant or decreasing, when considered in (proximal) thread direction. In the screw to be used according to the invention, the material of the thread segment in question in (proximal) thread direction, towards the trailing end, is situated on/within the contour of the leading end/cutting edge. The aspects according to the invention stated above applicable here, including the aspects described in the characterizing parts of claims 1-31, the contents of which must be considered inserted herein, can also be applied in this. A portion of the thread segment in question that extends from the cutting edge and having a constant radial distance to the screw center line, may connect to a portion of said thread segment having a radial distance that decreases in proximal thread direction. According to a further aspect the invention provides an assembly of a screw according to the invention and a piece of work (construction part) in which the screw has been screwed in a self-tapping process. Such as for instance may be the case in a boat, the piece of work may be plate-shaped, wherein the second portion is in threaded engagement with the plate, in particular the first portion can extend beyond the plate. The plate may have been made of a thermo-setting synthetic material, in particular a thermo-setting polyester, wherein the thermo-setting synthetic material in particular is fiber-reinforced, in particular is fiberglass-reinforced. The screw and hole into which tapping has to take place, may be geared to each other, and namely such that the piece of work has a hole for receiving the screw, wherein the hole has a radius exceeding the largest radius of the material of the screw relative to the screw center line in a distal end plane of the screw. The hole may have a radius exceeding the radial distance of the thread top at the leading end of the most distal thread segment to the screw center line. The hole may then have a radius that is smaller than the radial distance of the thread top at the leading end of the thread segment following in proximal direction to the screw center line. The hole may have a diameter exceeding the diameter of the shank of the screw. In that way the manufacturing tolerances of the hole do not need to be depended on so much. According to a further aspect the invention provides a method for by means of injection molding manufacturing a screw according to the invention, which provides a lot of freedom in design. As noted above, if the leading ends of the thread segments form at least one group of cutting surfaces, which cutting surfaces are situated in one leading plane that is parallel to the screw center line, use can be made of an injection mold that is partitioned according to a plane of division coinciding with the leading plane. The cutting edges will then also sit in the plane of division, as a result of which they can be configured sharp. Advantageously, the plane of division may coincide with two diametrically opposing leading planes. In one embodiment, the screw to be manufactured has a flange, wherein the molding material is introduced into the injection mold via a port debouching in a surface of the injection mold against which the distally oriented surface of the flange abuts during molding. In particular for fiber-reinforced materials, such an approach may be advantageous for distributing the material in the mold when filling it and for the orientation of the fibers in the synthetic molding material. The effect of post pressing in the molding process is also enhanced in that way. The aspects and measures described in this description and the claims of the application and/or shown in the drawings of this application may where possible also be used individually. Said individual aspects and other aspects may be the subject of divisional patent applications relating thereto. This particularly applies to the measures and aspects that are described per se in the sub claims. The invention will be elucidated on the basis of an exemplary embodiment shown in the attached drawings, in which: On the proximal side, the screw 1 in The shank 6 has a screw center line S and is provided with a thread 8 having a constant pitch, in which two portions can be distinguished, namely a first portion 8 The first thread segments 10 The segments 10 Adjacent to, between the thread segments 10 The first thread segments 10 The leading end surfaces 10 The screw 1 can be manufactured in an injection molding process, wherein the mold can be divided according to plane V1, V2. The synthetic material for the screw can be injected in said mold via a port situated on the distally oriented surface 4 The synthetic material for the screw can be a polyamide, preferably a polyarylamide, in particular be (fiberglass) reinforced, having a content of (glass)fibers of at least 30 wt. %, preferably at least 50 wt. %, even more preferably at least 60 wt. %. The hardness of the material of the formed screw 1 can be relatively high, at least Shore D85, preferably at least Shore D90, more preferably at least Shore D95, according to ISO 868. The edge 3 (see When placing the screw 1, Once the screw 1 has been placed with the distal end in the hole 101 in direction A, the screw can be rotated in the direction B by using a suitable tool, such as an electric screw driver. The leading end surface 10 While cutting in the hole wall 103, the constant radial distance of the thread top 15 The depicted screw 1, together with the head 2 and the edge 4, is suitable to form a fastening location for a snap button or press stud of for instance a tarpaulin for a pleasure craft. This is schematically shown in The result is that the tarpaulin 200 is secured to the plate 100, wherein the parts for it are resistant against marine conditions. When the tarpaulin 200 is removed, the head 2 remains visible, however, during the molding process it can be given a color that renders its presence less annoying or not annoying at all. The invention is/inventions are not at all limited to the embodiments discussed in the description and shown in the drawings. The above description is included to illustrate the operation of preferred embodiments of the invention and not to limit the scope of the invention. Starting from the above explanation many variations that fall within the spirit and scope of the present invention will be evident to an expert. Variations of the parts described in the description and shown in the drawings are possible. They can be used individually in other embodiments of the invention(s). Parts of the various examples given can be combined together. Self-tapping screw made of synthetic material having a shank on which a thread is formed, which shank defines a screw center line, —wherein the screw has a proximal end and a distal insertion end, —wherein the shank comprises a first portion and a second portion, —wherein the second portion is situated proximal relative to the first portion, in particular connects to the first portion, —wherein the thread has the same pitch in the first and second portions, —wherein the thread has a complete thread cross-section in the second portion, —wherein in the first portion, in the direction of the thread, the thread is divided into thread segments having an incomplete thread cross-section, —wherein the thread segments have a leading end and a trailing end, —wherein relative to the screw center line, the leading end of the one thread segment extends further in radial direction than the leading end of the thread segment preceding it and forms a cutting edge, characterized in that —in at least the majority of the thread segments the thread top in question, for at least substantially its full length, starting with the leading end, when considered in thread direction, is situated at a constant radial distance from the screw center line. 1. Self-tapping screw made of synthetic material having a shank on which a thread is formed, which shank defines a screw center line,
wherein the screw has a proximal end and a distal insertion end, wherein the shank comprises a first portion and a second portion, wherein the second portion is situated proximal relative to the first portion, in particular connects to the first portion, wherein the thread has the same pitch in the first and second portions, wherein the thread has a complete thread cross-section in the second portion, wherein in the first portion, in the direction of the thread, the thread is divided into thread segments having an incomplete thread cross-section, wherein the thread segments have a leading end and a trailing end, wherein relative to the screw center line, the leading end of the one thread segment extends further in radial direction than the leading end of the thread segment preceding it and forms a cutting edge, characterized in that
in at least the majority of the thread segments the thread top in question, for at least substantially its full length, starting with the leading end, when considered in thread direction, is situated at a constant radial distance from the screw center line. 2. Screw according to wherein the increase of the radial distance of the thread top at the location of the leading ends of the consecutive thread segments is the same each time. 3. Screw according to wherein the thread segments situated next to each other in axial direction, define thread fields in between them, wherein for at least the majority of the thread fields, when considered in a direction parallel to the said thread direction, the radial distance of the thread field in question to the screw center line at least remains the same. 4. Screw according to wherein for at least the majority of the thread fields, when considered in a direction parallel to the said thread direction, the radial distance of the thread field in question to the screw center line is constant. 5. Screw according to wherein in the first portion a number of the thread fields situated closest to the distal end are situated on a conoid of a cone converging in distal direction, the cone having a circular base and a cone center line coinciding with the screw center line, wherein the conoid is at an angle of a maximum of a few degrees to the screw center line. 6. Screw according to wherein, when considered in a direction parallel to the thread direction for thread fields that are consecutive to each other, the radial distance of the one thread field to the screw center line exceeds the radial distance of the thread field preceding it to the screw center line, wherein the increase is smaller than the increase of the radial distance of the thread tops at the location of the leading ends of the thread segments to the screw center line. 7. Screw according to any one of the preceding claims,
wherein the thread in the second portion is continuous and the thread fields define a continuous helical thread field. 8. Screw according to any one of the preceding claims, or according to the preamble of 9. Screw according to wherein in the first portion at least a number of thread fields that are situated closest to the second portion are situated on the same circle-cylindrical plane as the thread fields in the second portion, wherein, preferably, at least substantially all thread fields in the first portion are situated on the same circle-cylindrical plane as the thread fields in the second portion. 10. Screw according to any one of the preceding claims,
wherein the leading ends of the thread segments form at least one group of cutting surfaces, which cutting surfaces are situated in one leading plane that is parallel to the screw center line. 11. Screw according to wherein the leading plane contains the screw center line. 12. Screw according to 13. Screw according to any one of the preceding claims,
wherein the trailing ends of the thread segments form at least one group of end surfaces, which end surfaces are situated in one trailing plane that is at least substantially parallel to the screw center line, preferably in distal direction at an angle of a maximum of a few degrees converging relative to the screw center line. 14. Screw according to wherein each trailing plane, when considered in planes of cross-section perpendicular to the screw center line, each time includes right angles with the subsequent leading plane. 15. Screw according to wherein in radial direction the trailing plane is spaced apart from the screw center line. 16. Screw according to wherein the trailing ends of the thread segments form two or more groups of end surfaces, wherein the end surfaces are arranged in a regularly distributed fashion, when considered in cross-sectional planes perpendicular to the screw center line. 17. Screw according to any one of the preceding claims, in combination with 18. Screw according to any one of the preceding claims,
wherein the incomplete thread cross-sections of the thread segments are congruent to the corresponding portions of the thread cross-section of the second portion. 19. Screw according to any one of the preceding claims,
wherein the thread segments have a top angle that equals that of the thread in the second portion. 20. Screw according to any one of the preceding claims,
wherein in the first and second portions the thread has proximal flanks on the proximal side and distal flanks on the distal side, wherein, when considered in a longitudinal plane of cross-section containing the screw center line, the angle of the proximal flanks relative to the screw center line is constant, and/or wherein, when considered in a longitudinal plane of cross-section containing the screw center line, the angle of the distal flanks relative to the screw center line is constant, wherein, preferably, the angle for the proximal flanks equals the one for the distal flanks. 21. Screw according to any one of the preceding claims,
wherein in the first and second portions the thread has proximal flanks on the proximal side and distal flanks on the distal side, wherein in a straight-circular cylinder plane, the center line of which contains the screw center line and which plane intersects the thread, the distance between the intersections of the distal and proximal flanks of the thread is constant in the first and second portions. 22. Screw according to any one of the preceding claims, manufactured using an injection molding process. 23. Screw according to any one of the preceding claims, manufactured from a fiber-reinforced synthetic material, in particular fiberglass-reinforced. 24. Screw according to 25. Screw according to 26. Screw according to 27. Screw according to any one of the claims, 23-26, manufactured from a thermoplastic synthetic material. 28. Screw according to any one of the preceding claims,
having a head provided with a profile for engagement by a driving tool, and with an edge-shaped elevation for entering a snap connection with a snap cap or snap button. 29. Screw according to wherein the edge-shaped elevation has a circumferential wall diverging in proximal direction, following in particular a conoid with cone center line coinciding with the screw center line. 30. Screw according to any one of the preceding claims,
wherein, when considered in planes of longitudinal cross-section in which the screw center line is situated, the thread tops of the thread segments in the first thread portion extend parallel to the screw center line. 31. Screw according to wherein, when considered in planes of longitudinal cross-section in which the screw center line is situated, the thread tops of the thread in the second thread portion extend parallel to the screw center line. 32. Screw according to the preamble of wherein in at least the majority of the thread segments the thread top in question, for at least substantially its full length, starting with the leading end, when considered in thread direction, is situated at a constant or decreasing radial distance from the screw center line. 33. Self-tapping screw made of synthetic material having a shank on which a thread is formed, which shank defines a screw center line,
wherein the screw has a proximal end and a distal insertion end, wherein the proximal end forms a head provided with a profile for engagement by a driving tool, and with an edge, in particular edge-shaped elevation, for entering a snap connection with a snap cap or snap button. 34. Screw according to wherein the edge, edge-shaped elevation has a circumferential surface, which at least partially diverges in proximal direction, wherein the edge, edge elevation, preferably has a circular cross-section, in planes perpendicular to the screw center line. 35. Screw according to 36. Screw according to wherein between the head and the shank, the screw comprises a flange. 37. Screw according to any one of the 38. Assembly of a screw according to any one of the preceding claims, and a piece of work in which the screw is screwed in a self-tapping process. 39. Assembly according to 40. Assembly according to 41. Assembly according to wherein the piece of work has a hole for receiving the screw, wherein the hole has a radius exceeding the largest radius of the material of the screw relative to the screw center line in a distal end surface of the screw. 42. Assembly according to wherein the hole has a radius exceeding the radial distance of the thread top at the leading end of the most distal thread segment to the screw center line. 43. Assembly according to wherein the hole has a radius that is smaller than the radial distance of the thread top at the leading end of the thread segment following in proximal direction to the screw center line. 44. Assembly according to 45. Boat provided with a number of assemblies according to any one of the 46. Boat according to 47. Method for by injection molding manufacturing a screw according to any one of the 48. Method according to 49. Method according to 50. Screw provided with one or more of the characterizing measures described in the attached description and/or shown in the attached drawings. 51. Method provided with one or more of the characterizing measures described in the attached description and/or shown in the attached drawings.BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETAILED DESCRIPTION OF THE DRAWINGS



