US 20210064487A1

a2y Patent Application Publication o) Pub. No.: US 2021/0064487 A1

a9y United States

Shemer et al. 43) Pub. Date: Mar. 4, 2021
(54) SMART FILE LEVEL RESTORE WITH (52) US. CL
RP4VM CPC ... GOGF 11/1484 (2013.01); GO6F 11/1438

(71) Applicant: EMC IP Holding Company LLC,
Hopkinton, MA (US)

(72) Inventors: Jehuda Shemer, Kfar Saba (IL); Alex
Solan, Tel Aviv (IL)

(21) Appl. No.: 16/557,766

—]]
| 107 '
C |

(22) Filed: Aug. 30, 2019
Publication Classification
(51) Imt. ClL
GOG6F 11/14 (2006.01)
GO6F 11/07 (2006.01)
100
r _____ =
| Dedup Logic |
| 151
L e — I
Client
(e.g., host/server)
101
|' _____ =
1 Dedup Logic |
| 152
L i
Client
(e.g., host/server)
102
— Management
Console/Server
160

(2013.01); GOGF 11/0793 (2013.01); GO6F
11/1448 (2013.01)

(57) ABSTRACT

A method, apparatus, and system for recreating a file that
corresponds to a specified point in time (PiT) in a data
storage system is disclosed. The particular PiT and the name
of the file to be restored may be received from a user. A file
system inode structure corresponding to the particular PiT
may be recreated based on an inode event stream stored in
a journal. One or more disk locations associated with the file
to be restored may be determined based on the inode
structure corresponding to the particular PiT. A temporary
file may be constructed with data read from the one or more
disk locations in a storage system of the backup site.
Thereafter, the file to be restored may be obtained, which
may comprise rolling back data of the temporary file to the
particular PiT based on a data stream stored in the journal.

Backup Restore
Module Module
121 122

Storage Service Engine/logic
106

Metadata Metadata
110 119
Data Objects Data Objects
112 13

. Storage .
Storage Unit Systemn Storage Unit

108 109

104

US 2021/0064487 Al

Mar. 4, 2021 Sheet 1 of 6

Patent Application Publication

507 vol o7
yun ebeiolg wayshs uun ebeioyg
abelo)g
TT 47
s100lqQ elEQ s109[qQ ejeq
TIT ot
elepelsN BlepeloN

ocl /
I .

o1607/6uIBU 8o1A8S o6BI0IS

[44)
SINPON
alojsey

(¥4}
SINPON
dnmyjoeg

I "©Old

09T
JoAIg/e|0SU0)

Wwswebeuey

001

0l
(1onsespsoy B9)

uslO

_ st _
_ 21607 dnpaq |

TOT
(1onlosisoy "B a)

wLlD

_ 181 |
_ 21607 dnpaq |

US 2021/0064487 Al

Mar. 4, 2021 Sheet 2 of 6

Patent Application Publication

¢ 'Old

e

s
el

%

Olc

TN fe

‘80z

o,

.
7

ORI

A

Q&

Spout ZIXI oyl

LRpOLY

00c

€ Old

US 2021/0064487 Al

77 weens
| TUBAT BDOU

SEREEREEREEEEREN

-
E3

BRHG BIRO |

ORI oxom
¥

vie

Mar. 4, 2021 Sheet 3 of 6

Vit

N

70¢

Vi

»

wEads B

8

SIUBAD 8poul

rapds

oc

00¢

Patent Application Publication

¥ 'Old

US 2021/0064487 Al

Mar. 4, 2021 Sheet 4 of 6

weans v
wioy sepm Aiddy

Ll UBSOUD 10} SUOREDO|
MOOIG YA DHISID JUSLND

23

[40)7% » ,”ﬁ“,”w”,a.,w,,,,”,”H,w.m,”,“,””,xw,,,m,,h,”,.ww.,

00ty

Patent Application Publication

US 2021/0064487 Al

Mar. 4, 2021 Sheet 5 of 6

Patent Application Publication

S 'Old

ALIS dNXMOVE 3HL 1V TYNANOr 3HL NI d3401S NVY3H1S VIVa vV NO Q3svd
lid dYINDILEVYd dHL Ol JNIL INFHHNO dHL NOYHA AT14 AUVHOCINEL AHL
40 V.LvA MOVE ONITI0Y ONISIHdNOD ‘3H0LSTY 39 OL ITId IHL NIV.LEO

: |
059

ALIS dNMXOVE HL 40 INFLSAS 3OVdOLS
¥ NI SNOILYOOT YSId 0N HO INO FHL NOH4 avad JNIL LINIFHdNO
V OL ONIANOJSHEHOD V1VA HLIM A7 AMVHOdNEL V LONH1ISNOD

i /'Y
0)2°]

Lid Iv1NJILdvd IHL OL ONIANOJSIEHOD FdNLONALS dAONI INILSAS F1Id
JHL NO d3svd lid dvNdlLaVd dHL OL ONIAONOdSIHHOO 340183 3d
OL1 3714 3HL HLIM d31VIO0SSY SNOILYDOT XSIA 350N "0 INO INING31L3d

: |
0€g

31IS dNXOVE V LV T¥YNAHNON vV NI d34d01S
WVIH1S INJAT JAONI NV NO d4Svd 1ld dv1NJILdvd dHL OL
ONIANOdSHHHOD JHNLIONHLS JAONI WALSAS 114 V 31VIHO Y

: |
0cs

1id 4vINJILYvd
JHL OL SANOdSIHHOO LVHL d3401S3d 39 Ol 3114
vV 40 JINVN V ANV (Lid) JINIL NI LNIOd ¥VINJILYvd V JAIF03Y

¢
00S 0lg

US 2021/0064487 Al

Mar. 4, 2021 Sheet 6 of 6

Patent Application Publication

9 'Old

8¢yl

80G1 (8)9InpolN Buissenoid I
(s)eoine(Q obeIO)IS !
A |
e0Gvb 1 - +
wnipsj\ sjgepeay-seindwo) I TO5T _ | 55T _

_ (oipne I | ! (uonnanoums | =05}
s5aT [_ I . _ (DIN ‘Yenisosuel;
8¢9l eJjsweo ‘Josuss | sn|Ays ‘pseoghsy | ssojoum “6°9)

(s)eInpo Buisseooid | od jeliesedjeuss | | ! usensped | @m.osm
| ‘Wod gsn ‘Ba) | | yonoy ‘esnow “69) | soBLIBIL Lom>_>w
| sao1n8(O/l JeUi0 | __ (s)eoineqg induy | HEWI HOMISN
y

O1ST 109UUod8)Y|

€061
AlowWwen

8¢Sl
(s)s|npo Buissesoid

006G}

LOG1L

(s)iossanold

8¢Sl

(s)e|npoyp Buissaooid

r=
_
_
_
_

70Gl
(801n8p
Ae|dsi(q Jo/pue
Jejjouoo Agidsi(

L
_
_
_
_

L

US 2021/0064487 Al

SMART FILE LEVEL RESTORE WITH
RP4VM

FIELD OF THE INVENTION

[0001] Embodiments of the present disclosure relate gen-
erally to data storage systems. More particularly, embodi-
ments of the invention relate to data replication, storage, and
protection in data storage systems.

BACKGROUND

[0002] Computer data is vital to today’s organizations, and
a significant part of protection against disasters is focused on
data protection. Organizations operate with systems that
store and process terabytes of data.

[0003] A conventional data protection system uses data
replication, by creating a copy of the organization’s produc-
tion site data on a secondary backup storage system, and
updating the backup with changes. The backup storage
system may be situated in the same physical location as the
production storage system, or in a physically remote loca-
tion. Data replication systems generally operate either at the
application level, at the file system level, or at the data block
level.

[0004] Current data protection systems try to provide
continuous data protection, which enable the organization to
roll back to any specified point in time (PiT) within a recent
history. Continuous data protection systems may enable
recovery as close as possible to any specified PiT within a
recent history.

[0005] Continuous data protection typically uses a tech-
nology referred to as “journaling,” whereby a log is kept of
changes made to the backup storage. During a recovery, the
journal entries serve as successive “undo” information,
enabling rollback of the backup storage to previous PiTs.
Journaling was first implemented in database systems, and
was later extended to broader data protection.

[0006] With the PiT replication technology, when a minor
data disaster, such as corruption or accidental deletion of one
or several files, occurs, the relevant virtual machine (VM)
(in particular, the VM disk image) can be restored to a PiT
prior to the corruption. However, to restore the whole VM is
a lengthy procedure, which involves the user configuring the
restoration and the system recreating the VM that corre-
sponds to the required PiT.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Embodiments of the invention are illustrated by
way of example and not limitation in the figures of the
accompanying drawings in which like references indicate
similar elements.

[0008] FIG. 1 is a block diagram illustrating a storage
system according to one embodiment of the invention.
[0009] FIG. 2 is a block diagram illustrating the use of the
inode in the second extended (ext2) file system.

[0010] FIG. 3 is a block diagram illustrating various
components usable in implementation of embodiments of
the disclosure.

[0011] FIG. 4 is a block diagram illustrating an example
method for restoring a file corresponding to a particular PiT
according to one embodiment.

[0012] FIG. 5 is a flowchart illustrating an example
method for restoring a file corresponding to a particular PiT
according to one embodiment.

Mar. 4, 2021

[0013] FIG. 6 is a block diagram illustrating a data pro-
cessing system according to one embodiment.

DETAILED DESCRIPTION

[0014] Various embodiments and aspects of the inventions
will be described with reference to details discussed below,
and the accompanying drawings will illustrate the various
embodiments. The following description and drawings are
illustrative of the invention and are not to be construed as
limiting the invention. Numerous specific details are
described to provide a thorough understanding of various
embodiments of the present disclosure. However, in certain
instances, well-known or conventional details are not
described in order to provide a concise discussion of
embodiments of the present disclosures.

[0015] Reference in the specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in conjunction with the
embodiment can be included in at least one embodiment of
the invention. The appearances of the phrase “in one
embodiment” in various places in the specification do not
necessarily all refer to the same embodiment.

[0016] To restore the whole VM is a lengthy procedure,
which involves the user configuring the restoration and the
system recreating the VM that corresponds to the required
PiT.

[0017] Embodiments of the disclosure relate to a method,
apparatus, and system for recreating an individual file that
corresponds to a specified PiT in a data storage system. The
method can be extended to the recreation of several files, a
directory, or a whole file system. In particular, first, the
particular PiT and the name of the file to be restored that
corresponds to the particular PiT may be received. A file
system inode structure corresponding to the particular PiT
may be recreated based on an inode event stream stored in
a journal at a backup site. One or more disk locations
associated with the file to be restored corresponding to the
particular PiT may be determined based on the file system
inode structure corresponding to the particular PiT. A tem-
porary file may be constructed with data corresponding to a
current time read from the one or more disk locations in a
storage system of the backup site. Thereafter, the file to be
restored may be obtained, which may comprise rolling back
data of the temporary file from the current time to the
particular PiT based on a data stream stored in the journal at
the backup site.

[0018] In one embodiment, the inode event stream stored
in the journal at the backup site may comprise a plurality of
inode events captured by a file system agent in a virtual
machine (VM) at a production site and transmitted over time
from the production site to the backup site for journaling.
[0019] In one embodiment, the data stream stored in the
journal at the backup site may comprise a plurality of storage
data writes captured by a splitter at the production site and
transmitted over time from the production site to the backup
site for backup storage and journaling.

[0020] In one embodiment, the inode event stream may
comprise one or more file system inode structures corre-
sponding to past PiTs.

[0021] In one embodiment, recreating the file system
inode structure corresponding to the particular PiT based on
the inode event stream may comprise rolling forward a file
system inode structure corresponding to an earlier PiT to the

US 2021/0064487 Al

particular PiT. In one embodiment, the file system inode
structure corresponding to the earlier PiT may be an initial
file system inode structure.

[0022] In one embodiment, recreating the file system
inode structure corresponding to the particular PiT based on
the inode event stream may comprise rolling back a file
system inode structure corresponding to a later PiT to the
particular PiT.

[0023] FIG. 1 is a block diagram illustrating a storage
system according to one embodiment of the invention.
Referring to FIG. 1, system 100 includes, but is not limited
to, one or more client systems 101-102 communicatively
coupled to storage system 104 over network 103. Clients
101-102 may be any type of clients such as a host or server,
a personal computer (e.g., desktops, laptops, and tablets), a
“thin” client, a personal digital assistant (PDA), a Web
enabled appliance, or a mobile phone (e.g., Smartphone),
etc. Alternatively, any of clients 101-102 may be a primary
storage system (e.g., local data center) that provides storage
to other local clients, which may periodically back up the
content stored therein to a backup storage system (e.g., a
disaster recovery site or system), such as storage system
104. Network 103 may be any type of networks such as a
local area network (LAN), a wide area network (WAN) such
as the Internet, a fiber network, a storage network, or a
combination thereof, wired or wireless. Clients 101-102 may
be in physical proximity or may be physically remote from
one another. Storage system 104 may be located in proxim-
ity to one, both, or neither of clients 101-102.

[0024] Storage system 104 may include or represent any
type of servers or a cluster of one or more servers (e.g., cloud
servers). For example, storage system 104 may be a storage
server used for various different purposes, such as to provide
multiple users or client systems with access to shared data
and/or to back up (or restore) data (e.g., mission critical
data). Storage system 104 may provide storage services to
clients or users via a variety of access interfaces and/or
protocols such as file-based access protocols and block-
based access protocols. The file-based access protocols may
include the network file system (NFS) protocol, common
Internet file system (CIFS) protocol, and direct access file
system protocol, etc. The block-based access protocols may
include the small computer system interface (SCSI) proto-
cols, Internet SCSI or iSCSI, and Fibre channel (FC) pro-
tocol, etc. Storage system 104 may further provide storage
services via an object-based protocol and Hadoop distrib-
uted file system (HDFS) protocol.

[0025] In one embodiment, storage system 104 includes,
but is not limited to, storage service engine 106 (also
referred to as service logic, service module, or service unit,
which may be implemented in software, hardware, or a
combination thereof), optional deduplication logic 107, and
one or more storage units or devices 108-109 communica-
tively coupled to each other. Storage service engine 106 may
represent any storage service related components configured
or adapted to provide storage services (e.g., storage as a
service) to a variety of clients using any of the access
protocols set forth above. For example, storage service
engine 106 may include backup logic 121 and restore logic
122. Backup logic 121 is configured to receive and back up
data from a client (e.g., clients 101-102) and to store the
backup data in any one or more of storage units 108-109.
Restore logic 122 is configured to retrieve and restore

Mar. 4, 2021

backup data from any one or more of storage units 108-109
back to a client (e.g., clients 101-102).

[0026] Storage units 108-109 may be implemented locally
(e.g., single node operating environment) or remotely (e.g.,
multi-node operating environment) via interconnect 120,
which may be a bus and/or a network (e.g., a storage
network or a network similar to network 103). Storage units
108-109 may include a single storage device such as a hard
disk, a tape drive, a semiconductor memory, multiple storage
devices such as a redundant array system (e.g., a redundant
array of independent disks (RAID)), a system for storage
such as a library system or network attached storage system,
or any other appropriate storage device or system. Some of
storage units 108-109 may be located locally or remotely
accessible over a network.

[0027] In response to a data file to be stored in storage
units 108-109, according to one embodiment, deduplication
logic 107 is configured to segment the data file into multiple
segments (also referred to as chunks) according to a variety
of segmentation policies or rules. Deduplication logic 107
may choose not to store a segment in a storage unit if the
segment has been previously stored in the storage unit. In the
event that deduplication logic 107 chooses not to store the
segment in the storage unit, it stores metadata enabling the
reconstruction of the file using the previously stored seg-
ment. As a result, segments of data files are stored in a
deduplicated manner, either within each of storage units
108-109 or across at least some of storage units 108-109.
The metadata, such as metadata 110-111, may be stored in at
least some of storage units 108-109, such that files can be
accessed independent of another storage unit. Metadata of
each storage unit includes enough information to provide
access to the files it contains.

[0028] In one embodiment, storage system 104 further
includes a storage manager or storage controller (not shown)
configured to manage storage resources of storage system
104, such as, for example, storage space and processing
resources (e.g., processor, memory, network resources). The
storage manager or controller may be accessed by an admin-
istrator of management console or server 160 remotely via
a management or configuration interface (not shown). The
administrator can provision and manage storage resources
based on a set of policies, rules, and/or service level agree-
ments. The storage resources may be virtualized into a pool
of virtual storage resources, where underlying physical
storage resources represented by the corresponding virtual
storage resources may be implemented locally, remotely
(e.g., hosted by another storage system), or both. The virtual
storage resources can be provisioned, allocated, and/or
defined by an administrator or automatically by the storage
manager based on a set of software-defined policies. The
virtual storage resources may be represented in one or more
virtual machines (e.g., virtual storage systems) managed by
one or more virtual machine managers (VMMs). Each of the
virtual machines can be provisioned to provide a particular
type of storage services (e.g., file-based, block-based,
object-based, or HDFS) to a client based on a storage policy
or service level agreement associated with that particular
client as part of software-defined storage services.

[0029] A replicator replicates an original file system on a
replicated file system. The replicated file system can be
accessed by both the replicator and clients. To perform file
replication, the replicator may create, delete or modify files
on the replicated file system. In some embodiments, clients

US 2021/0064487 Al

can read files on the replicated file system, but may not
create, delete or modify files. In some embodiments, the
replicator duplicates the replicated file system based on the
original file system during initialization. In some embodi-
ments, to efficiently initialize the replicated file system, the
original file system is copied to the replicated file system via
a network connection or using removable storage media
such as backup tapes or optical storage discs.

[0030] In some embodiments, data segments included in
the original file system are copied to the replicated file
system via removable storage media and initialization is
completed via the network. The replicator updates changes
to the original file system on the replicated file system,
keeping the two file systems synchronized. The replicator
may be implemented as a process and/or device separate
from the storage systems and/or file systems, a process
and/or device that is a part of one or both of the storage
systems and/or file system, or any other appropriate means.
For example, in some embodiments, the replicator is a
standalone device capable of communicating with the file
systems. It determines the necessary updates by communi-
cating with the original file system, and sends the updates to
the replicated file system. The replicated file system is
configured to answer queries, accept the updates, and
modify the contents in the file system accordingly. In some
embodiments, the replicator’s functions are implemented as
separate processes on the storage systems.

[0031] It is possible to represent files in other ways, such
as using a mixture of byte sequences and references to byte
sequences in other files. The byte sequences are treated as
data segment. The identifiers used to reference the segments
are substantially shorter than the segments themselves.
Therefore, using identifiers allows more efficient use of
available storage space. In some embodiments, the data
segments and data segment identifiers are replicated on the
replicated file system. In some embodiments, metadata of
files are also updated. As used herein, metadata includes data
associated with various attributes of the file, such as file
name, file length, date stamp, permission, whether a file has
been removed from the current file system, whether a file has
been renamed, etc.

[0032] In some embodiment, only the files that have been
updated or newly references are replicated. A file is deemed
to have been updated if it has been modified in some way
since the last replication, such as having been edited, cre-
ated, renamed, deleted, had a permission change, etc. If the
file has not been updated, nothing needs to be done to it in
terms of replication. Any data segment that has been previ-
ously stored on the replicated file system, but is newly
referenced by the file being processed is located. In some
embodiments, a data segment is deemed to be newly refer-
enced if it was not referenced by the file at the time of the
last replication, as a data segment that has been added or
modified since the last replication.

[0033] Insome embodiments, a data segment is deemed to
be newly referenced if it was never referenced by the file
during the file’s replication history, or was not referenced
within some number of replications. A data segment may be
previously stored on the replicated file system, but is still
newly referenced by the file if the data segment was previ-
ously stored on the replicated file system by another file, by
a client writing to the replicated file system, or by some other
preloading/initialization mechanism. Since the data seg-
ments have been previously stored, they do not need to be

Mar. 4, 2021

replicated again on the replicated file system. Thus, greater
efficiency in replication is achieved, especially in file sys-
tems where multiple files share a large amount of identical
data. How to locate these previously stored data segments
are discussed in more detail below. Further, data segments
that have not been previously stored on the replicated file
system are located and replicated on the replicated file
system. It is possible in some situations that all the data
segments included in the file have been previously stored on
the replicated file system therefore no additional replication
is necessary. It is also possible that there is no previously
stored data segment and all the data segments in the file need
to be replicated.

[0034] Insome embodiments, a log record is used to track
the file system operations, recording file updates as they
occur. Depending on implementation, the entries in the log
record may include segment references, content handles,
metadata, and other information that can be used for execut-
ing operations to synchronize the replicated file system with
the original file system. There are a number of ways a log
entry is generated, including every time an event (such as
file write) occurs, after several events occur, or at a prede-
termined frequency. In some embodiments, to capture more
update information with fewer log entries, each log entry is
generated only when a key event occurs, such as when a file
closes, after a predetermined idle period has lapsed, when a
snapshot of the file system is created, etc. During replication,
the log record is processed, and updated files are determined
based on log entries indicating file update operations such as
file modification, file creation, etc.

[0035] In some embodiments, a snapshot is taken imme-
diately before a replication starts. The snapshot records
information of the file system at a point in time. It may be
a snapshot of the entire file system, or a snapshot of one or
more individual files. The snapshot may include information
such as data segment references, content handles, etc. In
some embodiments, prior to the next replication operation,
the current states of the system are compared to a snapshot
of the system to determine which files have been updated. In
some embodiments, the current states of a file are compared
to a snapshot of the file to determine whether the file has
been updated.

[0036] In processing data segments, there are a number of
ways to locate data segments that have not been stored
previously on the replicated file system, some of which are
described below although any other appropriate technique
may be used. In some embodiments, log records are used.
Log entries record operations on the original file system. In
some embodiments, when a file is updated, a log entry
including information about the file’s data segment refer-
ences is created. Offsets of the new data segment references,
and other information that may assist in file replication are
also recorded as appropriate. During replication, based on
the log records of the new data segment references, it is
determined whether the data segment being referenced has
been stored already.

[0037] Insome embodiments, upon receiving a query, the
data segment reference on the replicated file system is
looked up by the replicator or the replicated file system in a
database of stored data segment identifiers, to determine
whether such a data segment has been stored previously, and
provides a response based on the lookup result. In some
embodiments, the data segment reference under evaluation
is compared with the data segment references known at the

US 2021/0064487 Al

time of last replication. The comparison can be carried out
by the original file system or by the replicator. If the data
segment reference can be found in existing data segment
references, it indicates that the corresponding data segment
has already been stored. Else, the corresponding data seg-
ment may not have been stored and may need to be repli-
cated. In some embodiments, all such segments are repli-
cated. In other embodiments, a query of the replicator or
replicated file system determines whether the segment is
replicated or not as described above. In all cases, many
segments are not replicated even though new references to
those segments are. Thus, the available bandwidth of the
storage systems and the network connecting them is more
efficiently utilized.

[0038] Insome embodiments, when a file is updated, a log
entry including information about the file’s content handle is
created. In some embodiments, to reduce the amount of
processing, a log entry including content handle information
is created after multiple updates, or upon certain key event
such as when a file is closed. The content handle indirectly
references the data segments included in the file and may be
analyzed to obtain data segment references.

[0039] A file system includes one or more file system
blocks. Some of the file system blocks are data blocks, some
file system blocks may be indirect block, as described above,
or some file system blocks are free blocks that have not yet
been allocated to any file in the file system. In an indirect
mapping protocol, such as the conventional indirect map-
ping protocol of a UNIX-based file system, the indirect
mapping protocol permits any free block of the file system
to be allocated to a file of the file system and mapped to any
logical block of a logical extent of the file. This unrestricted
mapping ability of the conventional indirect mapping pro-
tocol of a UNIX-based file system is a result of the fact that
metadata for each file includes a respective pointer to each
data block of the file of the file system, as described below.
[0040] Referring to FIG. 2, a block diagram 200 illustrat-
ing the use of the inode in the second extended (ext2) file
system is shown. File systems keep metadata regarding each
file location, which may be achieved using the index node
(inode). An inode corresponding to a file may store, among
other things, pointers to the actual disk blocks on which the
file is written. Therefore, the metadata enables a translation
between the file space and the actual disk locations. In
different embodiments, other file system location mapping
schema than the inode may also be utilized.

[0041] Each file of the file system includes an index node
(inode) (e.g., inode 2 202) containing attributes of the file
and a block pointer array containing pointers to data blocks
of' the file. There is one inode for each file in the file system.
Each inode can be identified by an inode number. Several
inodes may fit into one of the file system blocks. The inode
number can be easily translated into a block number and an
offset of the inode from the start of the block. Each inode of
a file contains metadata of the file. Some block pointers of
a file point directly at data blocks (e.g., disk block 1 204 or
disk block 2 206), other block pointers of the file points at
blocks of more pointers, known as an indirect block (e.g.,
block 208).

[0042] There are at least fifteen block pointer entries in a
block pointer array contained in an inode (e.g., inode 2 202)
of a file. The first of up to twelve entries of block pointers
in the inode directly point to the first of up to twelve data
blocks (e.g., disk block 1 204 or disk block 2 206) of the file.

Mar. 4, 2021

If the file contains more than twelve data blocks, then the
thirteenth entry of the block pointer array contains an
indirect block pointer pointing to an indirect block (e.g.,
block 208) containing pointers to one or more additional
data blocks (e.g., disk block 3 210). If the file contains so
many data blocks that the indirect block becomes full of
block pointers, then the fourteenth entry of the block pointer
array contains a double indirect block pointer to an indirect
block that itself points to an indirect block that points to one
or more additional data blocks. If the file is so large that the
indirect block becomes full of block pointers and its descen-
dant indirect blocks are also full of block pointers, then the
fifteenth entry of the block pointer array includes another
level of indirection where the block pointer entry contains a
triple indirect block pointer to an indirect block that points
to an indirect block that points to an indirect block that
points to one or more additional data blocks. Similarly there
exists fourth and fifth level of indirections. Once the indirect
blocks at last level of indirection and its descendant indirect
blocks become full of pointers, the file contains a maximum
permitted number of data blocks. Further, an indirect block
at the last level of indirection is also referred to as a leaf
indirect block.

[0043] The following definitions are employed throughout
the specification and claims.

[0044] A backup site may be a facility where replicated
production site data is stored; the backup site may be located
in a remote site or at the same location as the production site.
[0045] A Data Protection Appliance (DPA), or alterna-
tively and interchangeably, a Replication Protection Appli-
ance (RPA), may be a computer or a cluster of computers,
or a set of processes that serve as a data protection appliance,
and may be responsible for data protection services includ-
ing inter alia data replication of a storage system, and
journaling of I/O requests issued by a host computer to the
storage system.

[0046] A journal may be a record of write transactions
issued to a storage system; it is used to maintain a duplicate
storage system, and to enable rolling back of the duplicate
storage system to a previous point in time.

[0047] A logical unit may be a logical entity provided by
a storage system for accessing data from the storage system.
[0048] A source side may be a transmitter of data within
a data replication workflow. During normal operation a
production site is the source side; and during data recovery
a backup site is the source side.

[0049] A target side may be a receiver of data within a data
replication workflow. During normal operation a backup site
is the target side, and during data recovery a production site
is the target side.

[0050] A splitter may be an agent running either on a
production host, a switch, or a storage array which can
intercept Inputs/Outputs (I/O) and split them to a DPA/RPA
and to the storage array, fail I/O, redirect /O, or do any other
manipulation to the 1/O.

[0051] The marking on splitter may be a mode in a splitter
where intercepted 1/Os are not split to an appliance and the
storage, but changes (metadata) are tracked in a list and/or
a bitmap and I/O is immediately sent down to the 1/O stack.
[0052] Referring to FIG. 3, a block diagram 300 illustrat-
ing various components usable in implementation of
embodiments of the disclosure is shown. The environment
includes two replication protection appliances (RPAs), a
source side RPA 302 and a target side RPA 304. An RPA

US 2021/0064487 Al

performs various data protection services, such as data
replication of a storage system, and journaling of I/O
requests issued by a host computer to source side storage
system data. When acting as a target side RPA, a RPA may
also enable rollback of data to an earlier PiT, and processing
of rolled back data at the target site. Each RPA 302 and 324
is either a physical computer that includes inter alia one or
more conventional CPUs and internal memory or a virtual
machine.

[0053] A VM 306 may be running on a source side host
computer (not shown). The VM image may be stored either
at the host computer or in a separate storage system.
Therefore, RPA 302 and RPA 304 may enable local, remote
and concurrent local and remote replication with continuous
data protection for recovery of VMs to any PiT, wherein a
journal-based implementation holds the PiT information of
all changes made to the protected data.

[0054] Although RPA 302 and RPA 304 are illustrated as
being standalone devices, in different embodiments, they
may be integrated into storage systems, or integrated into
host computers. Both RPAs communicate with their respec-
tive host computers through communication lines such as
fiber channels using, for example, SCSI commands.
[0055] In accordance with an embodiment of the present
disclosure, the host computer on the source side includes a
splitter 308. The splitter 308 may intercept SCSI commands
issued by the host computer, via a host device to a logical
unit that is accessible to the host computer. In accordance
with an embodiment of the present disclosure, The splitter
308 may act on an intercepted SCSI commands issued to a
logical unit, in one of the following ways:

[0056] Send the SCSI commands to its intended logical
unit.
[0057] Redirect the SCSI command to another logical
unit.
[0058] Split the SCSI command by sending it first to the

respective RPA. After the RPA returns an acknowledgement,
send the SCSI command to its intended logical unit.

[0059] Fail a SCSI command by returning an error return
code.
[0060] Delay a SCSI command by not returning an

acknowledgement to the host computer.

[0061] The splitter 308 may handle different SCSI com-
mands, differently, according to the type of the command.
For example, a SCSI command inquiring about the size of
a certain logical unit may be sent directly to that logical unit,
while a SCSI write command may be split and sent first to
the RPA 302. The splitter 308 may also change its behavior
for handling SCSI commands, for example as a result of an
instruction received from the RPA 302.

[0062] Specifically, the behavior of the splitter 308 gen-
erally corresponds to the behavior of its associated RPA 302
with respect to the logical unit of the host device. When an
RPA behaves as a source site RPA for a certain logical unit,
then during normal course of operation, the associated
splitter 308 splits /O requests issued by a host computer to
the host device corresponding to that logical unit. Similarly,
when an RPA behaves as a target device for a certain logical
unit, then during normal course of operation, the associated
splitter fails I/O requests issued by host computer to the host
device corresponding to that logical unit.

[0063] Communication between the splitter 308 and the
RPA 302 may use any suitable protocol, such as fiber

Mar. 4, 2021

channel, or SCSI over fiber channel. The communication
may be direct, or via a logical unit exposed by the RPA.
[0064] In an embodiment of the present disclosure, the
splitter 308 may be a driver located in the host computer.
Alternatively, the splitter 308 may also be located in a fiber
channel switch, or in any other device situated in a data path
between a host computer and a storage system.

[0065] In accordance with an embodiment of the present
disclosure, in production mode RPA 302 acts as a source site
RPA. Thus, the splitter 308 is configured to act as a source
side splitter. Specifically, the splitter 308 replicates SCSI 1/O
requests. A replicated SCSI 1/0 request is sent to RPA 302.
After receiving an acknowledgement from RPA 304, the
splitter 308 then sends the SCSI I/O request to the relevant
logical unit. Only after receiving a second acknowledgement
from the storage system may the host computer initiate
another I/O request.

[0066] When RPA 302 receives a replicated SCSI write
request from the splitter 308, RPA 302 transmits certain I/O
information characterizing the write request, packaged as a
“write transaction”, over a communication channel 312
(e.g., a local area network “LLAN” or a wide area network
“WAN”) to RPA 304 on the target side, for journaling and for
incorporation within target storage system.

[0067] While in production mode, RPA 304 receives rep-
licated data stream from RPA 302, and performs journaling
and writing to the target side storage system. When applying
write operations to the target storage system, RPA 304 acts
as an initiator.

[0068] During a recovery mode, RPA 304 may undo the
write transactions in the journal, so as to restore the pro-
duction side storage system to the state it was at, at an earlier
time. RPA 304 may include a journal processor for manag-
ing the journal 314.

[0069] Therefore, the two RPAs 302, 304, the splitter 308,
and the data stream which comprise the write transactions
(or simply “writes”) stored in the journal 314 enable the
conventional PiT replication and restoration of the VM 306.

[0070] In one embodiment, to enable file level PiT repli-
cation and restoration, the protected VM 306 further
includes a file system agent 316. The file system agent 316
may monitor changes in the inode information in the file
system of the VM 306. Each change in the inode information
may be referred to as an inode event. While in production
mode, the file system agent 316 may capture the inode
events and stream the captured inode events to the backup
site for journaling via the RPA 302 and the RPA 304.

[0071] The RPA 304 may store, in addition to the data
stream, a stream that contains the inode events to the journal
314.

[0072] The inode event stream may comprise the relevant
information from the inode subtree in the file system, e.g.,
the metadata stored in the inodes including the pointers to
the disk blocks that contain the file data. The inode data is
small, yet it represents the whole view of the file block
locations at a specific PiT. Changes in the inode information
relates to changes in the file system. It should be appreciated
that when storing inode change information relating to
delete directory operations, not only the “undo” information
of that directory needs to be stored, but also that of its
children. In other words, in order to enable the reversion of
a directory deletion, the undo information for the whole
directory (sub-)tree needs to be stored.

US 2021/0064487 Al

[0073] In one embodiment, after an inode event is cap-
tured, the full updated inode information is sent to the
backup site for journaling. In another embodiment, after an
inode event is captured, only the change in the inode
information is sent to the backup site for journaling.
[0074] The RPA 302 may send to the backup site inode
events alongside the write transactions. The RPA 304 stores
the inode events in the journal 314 in a separate inode event
stream from the data stream. The file system agent 316 may
scan and retrieve all the inodes during an initialization phase
or when there is a suspicion that some inode events may
have been lost, and the full inode structure may be sent in the
inode event stream to the backup site for journaling.
[0075] Therefore, for any PiT, the RPA 304 may obtain the
corresponding inode structure, if not directly available,
based on the journaled inode event stream, which may
include the initial and/or earlier inode structure, by rolling
forward the initial/earlier inode structure. In another
embodiment, obtaining the inode structure corresponding to
a particular PiT for which the full inode structure is not
directly available based on the inode event stream may
comprise rolling back a later inode structure to the particular
PiT.

[0076] Referring to FIG. 4, a block diagram illustrating an
example method 400 for restoring a file corresponding to a
particular PiT according to one embodiment is shown. With
the assistance of the inode event stream stored in the journal
314, an individual file corresponding to a particular PiT may
be restored. To restore a file corresponding to a particular
PiT, the particular PiT and the name of the file to be restored
may be received from the user. Next, the full inode infor-
mation corresponding to the particular PiT may be recon-
structed using the inode event stream stored in the journal
314. The reconstruction may comprise rolling the inode
events, either back or forward, to the particular PiT.
[0077] After obtaining the full inode information corre-
sponding to the particular PiT, the disk locations for the file
to be restored that corresponds to the particular PiT may be
determined based on the full inode information. In the
storage system (or a logical unit thereof) 402 of the backup
site, the data stored at the disk locations may be read, and
may be assembled into a temporary file 404. It should be
appreciated that because the data retrieved from the storage
system corresponds to a current time, the temporary file 404
is not the same as the desired file that corresponds to the
particular PiT.

[0078] To obtain the file corresponding to the particular
PiT, the data stream stored in the journal 314 may be used
to roll back the data of the temporary file 404 from the
current time to the particular PiT. The data rollback may
comprise reversing/undoing the relevant writes performed
between the particular PiT and the current time, and may be
performed quickly as writes in the data stream that are not
relevant to the file to be restored can be filtered out and
ignored. It should be appreciated that that each block in the
temporary file corresponds to a disk location on the storage
system. The relevant writes to be reversed are specified in
the journaled data stream with disk locations. Therefore, to
reverse the writes in the temporary file, there is a need to
map disk locations to the correct area in the temporary file.
The determination of the mapping is straightforward as there
is a one-to-one mapping.

[0079] After the data rollback is complete, the temporary
file is transformed into the desired file 406 corresponding to

Mar. 4, 2021

the particular PiT. In one embodiment, the user may directly
download the restored file 406. In another embodiment, the
restored file 406 may be automatically copied to the VM 306
at the production site to restore the system.

[0080] Referring to FIG. 5, a flowchart illustrating an
example method 500 for restoring a file corresponding to a
particular PiT according to one embodiment is shown.
Process 500 may be performed by processing logic that
includes hardware (e.g. circuitry, dedicated logic, etc.),
software (e.g., embodied on a non-transitory computer read-
able medium), or a combination thereof. For example,
process 500 may be performed by processor 1501 of FIG. 6.
At block 510, the particular PiT and a name of the file to be
restored that corresponds to the particular PiT may be
received (e.g., from a user). At block 520, a file system inode
structure corresponding to the particular PiT may be recre-
ated based on an inode event stream stored in a journal at a
backup site. At block 530, one or more disk locations
associated with the file to be restored corresponding to the
particular PiT may be determined based on the file system
inode structure corresponding to the particular PiT. At block
540, a temporary file may be constructed with data corre-
sponding to a current time read from the one or more disk
locations in a storage system of the backup site. At block
550, the file to be restored may be obtained, which may
comprise rolling back data of the temporary file from the
current time to the particular PiT based on a data stream
stored in the journal at the backup site.

[0081] In one embodiment, the inode event stream stored
in the journal at the backup site may comprise a plurality of
inode events captured by a file system agent in a virtual
machine (VM) at a production site and transmitted over time
from the production site to the backup site for journaling.
[0082] In one embodiment, the data stream stored in the
journal at the backup site may comprise a plurality of storage
data writes captured by a splitter at the production site and
transmitted over time from the production site to the backup
site for backup storage and journaling.

[0083] In one embodiment, the inode event stream may
comprise one or more file system inode structures corre-
sponding to past PiTs.

[0084] In one embodiment, recreating the file system
inode structure corresponding to the particular PiT based on
the inode event stream may comprise rolling forward a file
system inode structure corresponding to an earlier PiT to the
particular PiT. In one embodiment, the file system inode
structure corresponding to the earlier PiT may be an initial
file system inode structure.

[0085] In one embodiment, recreating the file system
inode structure corresponding to the particular PiT based on
the inode event stream may comprise rolling back a file
system inode structure corresponding to a later PiT to the
particular PiT.

[0086] Note that some or all of the components as shown
and described above may be implemented in software,
hardware, or a combination thereof. For example, such
components can be implemented as software installed and
stored in a persistent storage device, which can be loaded
and executed in a memory by a processor (not shown) to
carry out the processes or operations described throughout
this application. Alternatively, such components can be
implemented as executable code programmed or embedded
into dedicated hardware such as an integrated circuit (e.g.,
an application specific IC or ASIC), a digital signal proces-

US 2021/0064487 Al

sor (DSP), or a field programmable gate array (FPGA),
which can be accessed via a corresponding driver and/or
operating system from an application. Furthermore, such
components can be implemented as specific hardware logic
in a processor or processor core as part of an instruction set
accessible by a software component via one or more specific
instructions.

[0087] FIG. 6 is a block diagram illustrating an example of
a data processing system which may be used with one
embodiment of the invention. For example, system 1500
may represents any of data processing systems described
above performing any of the processes or methods described
above. System 1500 can include many different components.
These components can be implemented as integrated circuits
(ICs), portions thereof, discrete electronic devices, or other
modules adapted to a circuit board such as a motherboard or
add-in card of the computer system, or as components
otherwise incorporated within a chassis of the computer
system. Note also that system 1500 is intended to show a
high level view of many components of the computer
system. However, it is to be understood that additional
components may be present in certain implementations and
furthermore, different arrangement of the components
shown may occur in other implementations. System 1500
may represent a desktop, a laptop, a tablet, a server, a mobile
phone, a media player, a personal digital assistant (PDA), a
personal communicator, a gaming device, a network router
or hub, a wireless access point (AP) or repeater, a set-top
box, or a combination thereof. Further, while only a single
machine or system is illustrated, the term “machine” or
“system” shall also be taken to include any collection of
machines or systems that individually or jointly execute a set
(or multiple sets) of instructions to perform any one or more
of the methodologies discussed herein.

[0088] In one embodiment, system 1500 includes proces-
sor 1501, memory 1503, and devices 1505-1508 via a bus or
an interconnect 1510. Processor 1501 may represent a single
processor or multiple processors with a single processor core
or multiple processor cores included therein. Processor 1501
may represent one or more general-purpose processors such
as a microprocessor, a central processing unit (CPU), or the
like. More particularly, processor 1501 may be a complex
instruction set computing (CISC) microprocessor, reduced
instruction set computing (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, or processor
implementing other instruction sets, or processors imple-
menting a combination of instruction sets. Processor 1501
may also be one or more special-purpose processors such as
an application specific integrated circuit (ASIC), a cellular
or baseband processor, a field programmable gate array
(FPGA), a digital signal processor (DSP), a network pro-
cessor, a graphics processor, a network processor, a com-
munications processor, a cryptographic processor, a co-
processor, an embedded processor, or any other type of logic
capable of processing instructions.

[0089] Processor 1501, which may be a low power multi-
core processor socket such as an ultra-low voltage processor,
may act as a main processing unit and central hub for
communication with the various components of the system.
Such processor can be implemented as a system on chip
(SoC). Processor 1501 is configured to execute instructions
for performing the operations and steps discussed herein.
System 1500 may further include a graphics interface that

Mar. 4, 2021

communicates with optional graphics subsystem 1504,
which may include a display controller, a graphics proces-
sor, and/or a display device.

[0090] Processor 1501 may communicate with memory
1503, which in one embodiment can be implemented via
multiple memory devices to provide for a given amount of
system memory. Memory 1503 may include one or more
volatile storage (or memory) devices such as random access
memory (RAM), dynamic RAM (DRAM), synchronous
DRAM (SDRAM), static RAM (SRAM), or other types of
storage devices. Memory 1503 may store information
including sequences of instructions that are executed by
processor 1501, or any other device. For example, execut-
able code and/or data of a variety of operating systems,
device drivers, firmware (e.g., input output basic system or
BIOS), and/or applications can be loaded in memory 1503
and executed by processor 1501. An operating system can be
any kind of operating systems, such as, for example, Win-
dows® operating system from Microsoft®, Mac OS®/iOS®
from Apple, Android® from Google®, Linux®, Unix®, or
other real-time or embedded operating systems such as
VxWorks.

[0091] System 1500 may further include 10 devices such
as devices 1505-1508, including network interface device(s)
1505, optional input device(s) 1506, and other optional 10
device(s) 1507. Network interface device 1505 may include
a wireless transceiver and/or a network interface card (NIC).
The wireless transceiver may be a WiFi transceiver, an
infrared transceiver, a Bluetooth transceiver, a WiMax trans-
ceiver, a wireless cellular telephony transceiver, a satellite
transceiver (e.g., a global positioning system (GPS) trans-
ceiver), or other radio frequency (RF) transceivers, or a
combination thereof. The NIC may be an Ethernet card.
[0092] Input device(s) 1506 may include a mouse, a touch
pad, a touch sensitive screen (which may be integrated with
display device 1504), a pointer device such as a stylus,
and/or a keyboard (e.g., physical keyboard or a virtual
keyboard displayed as part of a touch sensitive screen). For
example, input device 1506 may include a touch screen
controller coupled to a touch screen. The touch screen and
touch screen controller can, for example, detect contact and
movement or break thereof using any of a plurality of touch
sensitivity technologies, including but not limited to capaci-
tive, resistive, infrared, and surface acoustic wave technolo-
gies, as well as other proximity sensor arrays or other
elements for determining one or more points of contact with
the touch screen.

[0093] IO devices 1507 may include an audio device. An
audio device may include a speaker and/or a microphone to
facilitate voice-enabled functions, such as voice recognition,
voice replication, digital recording, and/or telephony func-
tions. Other IO devices 1507 may further include universal
serial bus (USB) port(s), parallel port(s), serial port(s), a
printer, a network interface, a bus bridge (e.g., a PCI-PCI
bridge), sensor(s) (e.g., a motion sensor such as an acceler-
ometer, gyroscope, a magnetometer, a light sensor, compass,
a proximity sensor, etc.), or a combination thereof. Devices
1507 may further include an imaging processing subsystem
(e.g., a camera), which may include an optical sensor, such
as a charged coupled device (CCD) or a complementary
metal-oxide semiconductor (CMOS) optical sensor, utilized
to facilitate camera functions, such as recording photographs
and video clips. Certain sensors may be coupled to inter-
connect 1510 via a sensor hub (not shown), while other

US 2021/0064487 Al

devices such as a keyboard or thermal sensor may be
controlled by an embedded controller (not shown), depen-
dent upon the specific configuration or design of system
1500.

[0094] To provide for persistent storage of information
such as data, applications, one or more operating systems
and so forth, a mass storage (not shown) may also couple to
processor 1501. In various embodiments, to enable a thinner
and lighter system design as well as to improve system
responsiveness, this mass storage may be implemented via
a solid state device (SSD). However in other embodiments,
the mass storage may primarily be implemented using a hard
disk drive (HDD) with a smaller amount of SSD storage to
act as a SSD cache to enable non-volatile storage of context
state and other such information during power down events
so that a fast power up can occur on re-initiation of system
activities. Also a flash device may be coupled to processor
1501, e.g., via a serial peripheral interface (SPI). This flash
device may provide for non-volatile storage of system
software, including a basic input/output software (BIOS) as
well as other firmware of the system.

[0095] Storage device 1508 may include computer-acces-
sible storage medium 1509 (also known as a machine-
readable storage medium or a computer-readable medium)
on which is stored one or more sets of instructions or
software (e.g., processing module, unit, and/or logic 1528)
embodying any one or more of the methodologies or func-
tions described herein. Processing module/unit/logic 1528
may represent any of the components described above, such
as, for example, a storage service logic, a deduplication
engine, a journal processor, as described above. Processing
module/unit/logic 1528 may also reside, completely or at
least partially, within memory 1503 and/or within processor
1501 during execution thereof by data processing system
1500, memory 1503 and processor 1501 also constituting
machine-accessible storage media. Processing module/unit/
logic 1528 may further be transmitted or received over a
network via network interface device 1505.

[0096] Computer-readable storage medium 1509 may also
be used to store the some software functionalities described
above persistently. While computer-readable storage
medium 1509 is shown in an exemplary embodiment to be
a single medium, the term “computer-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The terms “computer-readable
storage medium” shall also be taken to include any medium
that is capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “computer-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media, or
any other non-transitory machine-readable medium.

[0097] Processing module/unit/logic 1528, components
and other features described herein can be implemented as
discrete hardware components or integrated in the function-
ality of hardware components such as ASICS, FPGAs, DSPs
or similar devices. In addition, processing module/unit/logic
1528 can be implemented as firmware or functional circuitry
within hardware devices. Further, processing module/unit/
logic 1528 can be implemented in any combination hard-
ware devices and software components.

Mar. 4, 2021

[0098] Note that while system 1500 is illustrated with
various components of a data processing system, it is not
intended to represent any particular architecture or manner
of interconnecting the components; as such details are not
germane to embodiments of the present disclosure. It will
also be appreciated that network computers, handheld com-
puters, mobile phones, servers, and/or other data processing
systems which have fewer components or perhaps more
components may also be used with embodiments of the
invention.

[0099] Therefore, embodiments of the disclosure relate to
a method to efficiently recreate a single or several files
corresponding to a particular PiT. A smart file system agent
in the VM that is integrated with RPA system is utilized to
make available the data necessary for the process. Accord-
ingly, the overall user experience when a file gets lost or
corrupted and needs to be restored is improved.

[0100] Some portions of the preceding detailed descrip-
tions have been presented in terms of algorithms and sym-
bolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quanti-
ties.

[0101] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated other-
wise as apparent from the above discussion, it is appreciated
that throughout the description, discussions utilizing terms
such as those set forth in the claims below, refer to the action
and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data
represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

[0102] Embodiments of the invention also relate to an
apparatus for performing the operations herein. Such a
computer program is stored in a non-transitory computer
readable medium. A machine-readable medium includes any
mechanism for storing information in a form readable by a
machine (e.g., a computer). For example, a machine-read-
able (e.g., computer-readable) medium includes a machine
(e.g., a computer) readable storage medium (e.g., read only
memory (“ROM”), random access memory (“RAM”), mag-
netic disk storage media, optical storage media, flash
memory devices).

[0103] The processes or methods depicted in the preceding
figures may be performed by processing logic that comprises
hardware (e.g. circuitry, dedicated logic, etc.), software
(e.g., embodied on a non-transitory computer readable
medium), or a combination of both. Although the processes
or methods are described above in terms of some sequential
operations, it should be appreciated that some of the opera-
tions described may be performed in a different order.
Moreover, some operations may be performed in parallel
rather than sequentially.

US 2021/0064487 Al

[0104] Embodiments of the present disclosure are not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
embodiments of the invention as described herein.
[0105] In the foregoing specification, embodiments of the
invention have been described with reference to specific
exemplary embodiments thereof. It will be evident that
various modifications may be made thereto without depart-
ing from the broader spirit and scope of the invention as set
forth in the following claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense.
What is claimed is:
1. A computer-implemented method, comprising:
receiving a particular point in time (PiT) and a name of a
file to be restored that corresponds to the particular PiT;

recreating a file system inode structure corresponding to
the particular PiT based on an inode event stream stored
in a journal at a backup site;

determining one or more disk locations associated with

the file to be restored corresponding to the particular
PiT based on the file system inode structure corre-
sponding to the particular PiT;

constructing a temporary file with data corresponding to

a current time read from the one or more disk locations
in a storage system of the backup site; and

obtaining the file to be restored, comprising rolling back

data of the temporary file from the current time to the
particular PiT based on a data stream stored in the
journal at the backup site.

2. The method of claim 1, wherein the inode event stream
stored in the journal at the backup site comprises a plurality
of inode events captured by a file system agent in a virtual
machine (VM) at a production site and transmitted over time
from the production site to the backup site for journaling.

3. The method of claim 1, wherein the data stream stored
in the journal at the backup site comprises a plurality of
storage data writes captured by a splitter at the production
site and transmitted over time from the production site to the
backup site for backup storage and journaling.

4. The method of claim 1, wherein the inode event stream
comprises one or more file system inode structures corre-
sponding to past PiTs.

5. The method of claim 1, wherein recreating the file
system inode structure corresponding to the particular PiT
based on the inode event stream comprises rolling forward
a file system inode structure corresponding to an earlier PiT
to the particular PiT.

6. The method of claim 5, wherein the file system inode
structure corresponding to the earlier PiT is an initial file
system inode structure.

7. The method of claim 1, wherein recreating the file
system inode structure corresponding to the particular PiT
based on the inode event stream comprises rolling back a file
system inode structure corresponding to a later PiT to the
particular PiT.

8. A non-transitory machine-readable medium having
instructions stored therein, which when executed by a pro-
cessor, cause the processor to perform data restoration
operations, the operations comprising:

receiving a particular point in time (PiT) and a name of a

file to be restored that corresponds to the particular PiT;

Mar. 4, 2021

recreating a file system inode structure corresponding to
the particular PiT based on an inode event stream stored
in a journal at a backup site;

determining one or more disk locations associated with

the file to be restored corresponding to the particular
PiT based on the file system inode structure corre-
sponding to the particular PiT;

constructing a temporary file with data corresponding to

a current time read from the one or more disk locations
in a storage system of the backup site; and

obtaining the file to be restored, comprising rolling back

data of the temporary file from the current time to the
particular PiT based on a data stream stored in the
journal at the backup site.

9. The non-transitory machine-readable medium of claim
8, wherein the inode event stream stored in the journal at the
backup site comprises a plurality of inode events captured
by a file system agent in a virtual machine (VM) at a
production site and transmitted over time from the produc-
tion site to the backup site for journaling.

10. The non-transitory machine-readable medium of
claim 8, wherein the data stream stored in the journal at the
backup site comprises a plurality of storage data writes
captured by a splitter at the production site and transmitted
over time from the production site to the backup site for
backup storage and journaling.

11. The non-transitory machine-readable medium of
claim 8, wherein the inode event stream comprises one or
more file system inode structures corresponding to past PiTs.

12. The non-transitory machine-readable medium of
claim 8, wherein recreating the file system inode structure
corresponding to the particular PiT based on the inode event
stream comprises rolling forward a file system inode struc-
ture corresponding to an earlier PiT to the particular PiT.

13. The non-transitory machine-readable medium of
claim 12, wherein the file system inode structure corre-
sponding to the earlier PiT is an initial file system inode
structure.

14. The non-transitory machine-readable medium of
claim 8, wherein recreating the file system inode structure
corresponding to the particular PiT based on the inode event
stream comprises rolling back a file system inode structure
corresponding to a later PiT to the particular PiT.

15. A data processing system, comprising:

a processor; and

a memory coupled to the processor to store instructions,

which when executed by the processor, cause the

processor to perform data restoration operations, the

operations including:

receiving a particular point in time (PiT) and a name of
a file to be restored that corresponds to the particular
PiT;

recreating a file system inode structure corresponding
to the particular PiT based on an inode event stream
stored in a journal at a backup site;

determining one or more disk locations associated with
the file to be restored corresponding to the particular
PiT based on the file system inode structure corre-
sponding to the particular PiT;

constructing a temporary file with data corresponding
to a current time read from the one or more disk
locations in a storage system of the backup site; and

obtaining the file to be restored, comprising rolling
back data of the temporary file from the current time

US 2021/0064487 Al Mar. 4, 2021
10

to the particular PiT based on a data stream stored in
the journal at the backup site.

16. The data processing system of claim 15, wherein the
inode event stream stored in the journal at the backup site
comprises a plurality of inode events captured by a file
system agent in a virtual machine (VM) at a production site
and transmitted over time from the production site to the
backup site for journaling.

17. The data processing system of claim 15, wherein the
data stream stored in the journal at the backup site comprises
a plurality of storage data writes captured by a splitter at the
production site and transmitted over time from the produc-
tion site to the backup site for backup storage and journaling.

18. The data processing system of claim 15, wherein the
inode event stream comprises one or more file system inode
structures corresponding to past PiTs.

19. The data processing system of claim 15, wherein
recreating the file system inode structure corresponding to
the particular PiT based on the inode event stream comprises
rolling forward a file system inode structure corresponding
to an earlier PiT to the particular PiT.

20. The data processing system of claim 19, wherein the
file system inode structure corresponding to the earlier PiT
is an initial file system inode structure.

21. The data processing system of claim 15, wherein
recreating the file system inode structure corresponding to
the particular PiT based on the inode event stream comprises
rolling back a file system inode structure corresponding to a
later PiT to the particular PiT.

#* #* #* #* #*

