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Types of Brain Waves

/sz
Delta Spectrum (0.5-4 hz)
202
Theta Spectrum (5-7 hz)
203
—~
Alpha Spectrum (8-12 hz)
204
—~
Beta Spectrum (13-38hz)
/\305

Gamma Spectrum (38-50 hz)

Fig. 2
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participant to determine electrode
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training session

Y
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Setup training and system
parameters (EEG measurement
parameters, sample rates,
feedback modality, efc.)
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Continuously and automatically
acquire brain wave signals (eg.,
using EEG) over designated period
at designated sample rate
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3047

Process analog signal to amplify,
filter or perform post processing
and convert to digital signal

g
€
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30567

Deconstruct/translate/classify
signal and measure amplitude of
desired brain wave and send
parameters to feedback generator

&

%

Y

306~

Determine and generate feedback
{e.g., audio, visual, or tactile/
haptic) and present to participant

.
<

Y

307

Present output (e.g., power
spectrum, brain wave charts, etc.)

Fig. 3

(Perform automatically
and continuously until
termination condition)

(Perform automatically
and continuously until
termination condition)

(Perform automatically
and continuously until
termination condition)

(Perform automatically
and continuously until
termination condition)

(Perform automatically
and continuously untit
termination condition)
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Channel 2
Channel 4

FIG. 9B

Channel 3

Frequency (Hz)
Channel 1
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Al-Assisted Optimum 1300
Feedback Modality Selection

Y

[{gve2 )

Initialize each of “n” machine learning engines with pre-
13017 trained models of historic data and “m” different soundtracks

A4
Determine participant training modality based upon
13027 designated goals (e.g., training alpha brain waves at F3, F4,
P3, P4 electrode placement with synchrony between lateral
points)

Y

Determine Al-assist “interview” questions, feelings, and

1303 memories for determined modality

<
«
‘r

1304~ For each of m” soundtracks selected from library of
soundtracks

Y

For each of “n” machine learning engines (e.g., can be in
parallel) 1) train the current model with live EEG data from
participant using determined interview questions, feelings
1305~ and memories, 2) keep best “x” of “n” performing models for
next soundtrack, reset worst “y” of “n” to default model data
for next soundtrack

1306

Yes

soundtracks to
process?

No Fig. 13A
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Y

Determine which of “m” soundtracks produced the best
desired EEG parameter values (and/or synchrony) and
which produced the worst and continue to train the resulting
best “x” of *n” models for another subsession

13067 >

Y

Store information regarding “normal” patterns of brain waves
for this participant for determined modality (e.g., for alpha,
what do the periods of maintained state, drop offs, and rises
look like — amplitude, length for later comparison)

1307~

Fig. 13B
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Al-Based Adaptive 1400
Feedback Generation

i
<

Y

Over course of next “t” sessions, randomly mix in
14014 other soundtracks to substitute for “best” and
“‘worst” known so far and evaluate response vis-a-
vis desired EEG paramter values (and/or

synchrony)

Significant

1408

participant changes

detected
?

Yes

Indicate need to schedule another Al-Assisted
Optimum Feedback Modality Selection session
using two current models (from step above) as part

140371 of the initialized set of models (instead of default
data)
Y 1404
Brain M No
or other reasons to trigger
transition
?
Yes
1405
\’\ Keep Me In (Al-Assist to trigger
transition)

Fig. 14

(Perform continuously until
termination condition)
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‘Keep Mg In” (Al 1500
Assist)

Y

1501~_|

Determine reason for intervention
{o trigger desired brain state, the

desired brain state and feedback
modalities

N
’

Y

15027~

Depending upon the desired
revised brain state and modality,
try a series of interventions starting
with the first until successful

1503 l

rain transition to
desired state or no

No

more interventions

1504

Store any relevant new learning
with participant’s learning data

Fig. 15
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Examples:

Adjust sound
Transition soundtrack
Turn off adaptive
learning

Flash lights

Apply EMF stim
Apply tDCS

Audible instructions
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MULTIPLE FREQUENCY
NEUROFEEDBACK BRAIN WITH WAVE
TRAINING TECHNIQUES, SYSTEMS, AND
METHODS

RELATED APPLICATIONS

[0001] Any and all applications for which a domestic
priority claim is identified in the Application Data Sheet of
the present application are hereby incorporated by reference
under 37 CFR 1.57.

TECHNICAL FIELD

[0002] The present disclosure relates to methods, tech-
niques, and systems for providing neurofeedback and for
training brain wave function and, in particular, to methods,
techniques, and systems for artificial intelligence-assisted
processing and monitoring of brain wave function and
optimization of neurofeedback training.

BACKGROUND

[0003] Neurofeedback has been used as a biofeedback
mechanism to teach a brain to change itself based upon
positive reinforcement through operant conditioning where
certain behaviors, for example, the brain being in a desired
state of electrical activity, are rewarded. To reward desired
brain wave activity, biofeedback in the form of an appro-
priate visual, audio, or tactile response is generated. For
example, some applications use a particular discrete sound
like a “beep” or “chime” or use, for example, a desired result
in a video game. Neurofeedback has been used for both
medical and non-medical, research and clinical purposes, for
example to inhibit pain, induce better performance, focused
attention, sleep, or relaxation, to alleviate stress, change
mood, and the like, and to assist in the treatment of condi-
tions such as epilepsy, attention deficit disorder, and depres-
sion.

[0004] Typical neurofeedback uses a brain/computer inter-
face to detect brain activity by taking measurements to
record electroencephalogram (“EEG”) activity and rewards
desired activity through some type of output. EEG measures
changes in electric potentials across synapses of the brain
(the electrical activity is used to communicate a message
from one brain cell to another and propagates rapidly). It can
be measured from a brain surface using electrodes and
conductive media attached to the head surface of a partici-
pant (or through internally located probes). Once measured,
the EEG activity can be amplified and classified to deter-
mine what type of brain waves are present and from what
part of the brain based upon location of the measurement
electrodes, signal frequency patterns, and signal strength
(typically measured in amplitude). In some scenarios, Quan-
titative EEG (“QEEG”), known also as “brain mapping” has
been used to better visualize activity (for example using
topographic and/or heat map visualizations) in the partici-
pant’s brain while it is occurring to determine spatial struc-
tures and locate errors where the brain activity is occurring.
In some cases, QEEG has been used to assist in the detection
of brain abnormalities.

[0005] To date, neurofeedback use for training a partici-
pant’s brain (“brain training”) has been restricted to training
one modality (brain wave classification type or other desired
kind of activity) at a time. Typically, a Fourier Transform (or
Fast Fourier Transform, known as an “FFT”) is used to

Mar. 3, 2022

transform the raw signal into a distribution of frequencies so
that brain state can be determined. The large amount of data
received from an individual EEG recording can present lots
of difficulties to effective measurement. M. Teplan, Funda-
mental of EEG Measurement, in Measurement Science
Review, Vol. 2, Sec. 2, 2002, provides a detailed background
of EEG measurement. Some of the problems that exist with
current technologies include that many samples are required
to obtain sufficient data, it is difficult to obtain the data
timely, the data may be polluted or distorted by impedance
or background (or other bodily function) noise and thus
achieving an acceptable signal-to-noise ration may be dif-
ficult. For example, it may be desirable to reduce both
patient and technology related artifacts, such unwanted body
movements and AC power line noise, to obtain a clearer
signal. Further, the storage requirements for the signal data
may be overwhelming for an application. For example, one
hour of eight channels of 14-bit signal sampled at 500 hertz
(Hz) may occupy 200 Megabytes (MB) of memory. (Id. at

p- 9)
BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent
application publication with color drawings will be provided
by the Office upon request and payment of the necessary fee.
[0007] FIG. 1 is a block diagram of an example Brain
Training Feedback System environment implemented using
example Brain Wave Processing and Monitoring Systems
and/or example Artificial Intelligence (Al)-Assisted Brain
Wave Processing and Monitoring Engines.

[0008] FIG. 2 is an example diagram of various types of
brain waves that can be monitored by an example Brain
Training Feedback System.

[0009] FIG. 3 is an example overview flow diagram of an
example process for implementing an example Brain Train-
ing Feedback System using one or more example Brain
Wave Processing and Monitoring Systems and/or example
Al-Assisted Brain Wave Processing and Monitoring
Engines.

[0010] FIG. 4 is an example block diagram of components
of an example Brain Wave Processing and Monitoring
System.

[0011] FIG. 5 is an example block diagram of components
of example Al-Assisted Brain Wave Processing and Moni-
toring Engines.

[0012] FIGS. 6, 7A-7B, 8, and 9A-9D are example screen
displays from an example Brain Training Feedback System
environment using one or more example Brain Wave Pro-
cessing and Monitoring Systems and/or example AI-As-
sisted Brain Wave Processing and Monitoring Engines.
[0013] FIG. 10 is an example block diagram of a comput-
ing system for practicing embodiments of a Brain Wave
Processing and Monitoring.

[0014] FIG. 11 is an example block diagram of a comput-
ing system for practicing embodiments of an Al-Assisted
Brain Wave Processing and Monitoring Engine.

[0015] FIG. 12 is an example block diagram of inputs and
outputs provided to an example Al-Assisted Brain Wave
Processing and Monitoring Engine (machine learning com-
putation engine) to perform signal processing and classifi-
cation of detected brain wave signals.
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[0016] FIGS. 13A-13B are an example flow diagram of
code logic provided by an example Al-Assisted Brain Wave
Processing and Monitoring Engine to set optimal feedback
modalities.

[0017] FIG. 14 is an example flow diagram of code logic
provided by an example Al-Assisted Brain Wave Processing
and Monitoring Engine perform adaptive feedback genera-
tion during a session.

[0018] FIG. 15 is an example flow diagram of code logic
provided by example Al-assisted adaptive feedback genera-
tion code logic to trigger desired brain state.

DETAILED DESCRIPTION

[0019] Embodiments described herein provide enhanced
computer- and network-based methods, techniques, and
systems for providing neurofeedback and for training brain
wave function. Example embodiments provide a Brain
Training Feedback System (“BTFS”), which enables par-
ticipants involved in brain training activities to learn to
evoke/increase or suppress/inhibit certain brain wave activ-
ity based upon the desired task at hand. For example, the
participant may desire to train to more consistent and
powerful use of alpha waves, commonly associated with
non-arousal such as relaxation or reflectiveness (but not
sleeping). The BTFS provides a feedback loop and a brain/
computer interface which measures, classifies, and evaluates
brain electrical activity in a participant from EEG data and
automatically provides biofeedback in real-time or near
real-time to the participant in the form of, for example,
audio, visual, or tactic (haptic) output to evoke, reinforce,
inhibit, or suppress brain activity responses based upon a
desired goal.

[0020] For the purposes of this disclosure, “real time” or
“real-time” refers to almost real time, near real time, or time
that is perceived by a user as substantially simultaneously
responsive to activity. Also, although described in terms of
human participants, the techniques used here may be applied
to other mammalian subjects other than humans.

[0021] Example embodiments provide a Brain Training
Feedback System which provides improvements over prior
techniques by allowing for the simultaneous or concurrent
training of multiple modalities (target brain wave training or
desired brain-related events) and the training of “synchrony”
for a specific frequency or set of frequencies. Synergistic
outcomes are possible with multiple frequency training.
Here, synchrony refers to the production of the waveform
coherence (same desired brain activity) at multiple (two or
more) different locations of the brain at the same time. The
locations may be located in different hemispheres (left and
right, side to side), or they may be located front and back.
In some scenarios, concurrent or simultaneous training of
multiple modalities can facilitate parallel development of
new neural pathways in the brain of the participant at a linear
rate equivalent to the single modality training multiplied by
the number of modalities trained. The BTFS also provides
improved results over classic neurofeedback systems by
incorporating the use of customized soundtracks (and not
just discrete sounds lacking contextual data). Customized
soundtracks improve the brain training process by continu-
ous modulation of incentive salience and dopamine release
by providing the brain being trained with a pleasing and
continuous reward that varies in intensity according to the
subject brain’s own performance. The customized
soundtracks enable the training of multiple modalities by
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providing discrete but aurally integrated rewards across
modalities. In addition, BTFS examples can incorporate
surround sound to give precise feedback to a participant
regarding the source location of one or more signals. Current
neurofeedback systems do not provide this information to
participants in audio form. This feature improves the brain
training process by providing directional detail to the brain
being trained about the action performed that produced a
reward. This allows the subject brain to more accurately and
rapidly discern the discrete action that is being rewarded.
[0022] In addition, example Brain Training Feedback Sys-
tems overcome the challenges of prior computer implemen-
tations used for neurofeedback by incorporating machine
learning techniques where and when desired. Machine learn-
ing can be incorporated by components of the BTFS to
perform one or more of the following activities:

[0023] deconstruct (decompose or filter) and classify
signal data for improved real time performance and
accuracy and using less expensive equipment, because
machine learning algorithms can perform signal clas-
sification with fewer EEG data samples and can func-
tion at a slower sampling rate enabling incorporation of
less expensive and/or less complex amplifiers/AD con-
verters;

[0024] model brain wave signal patterns for each par-
ticipant on a customized basis which is capable of
adapting over time as the participant’s EEG behavior
changes (as the brain “learns/improves”);

[0025] enable multiple brain wave modality training
simultaneously;

[0026] selectively choose feedback rewards and opti-
mize feedback generation on a per-participant basis,
which is optimized for the participant based upon
individualized responses and can be adapted over mul-
tiple sessions or over time;

[0027] provide participant customized and automated
artificial intelligence (Al)-assisted “boosting” to
enhance the brain training, for example, to trigger a
desired response at particular times or responsive to
particular conditions based upon the modeled signal
patterns and by selective or concurrent application of
other stimuli (such as flashing lights, applying electro-
magnetic stimulation or transcranial direct current
stimulation (tDCS)—low voltage current, audio, or
silence).

Other uses are contemplated.

[0028] Also, although machine different types of machine
learning engines and algorithms can be used, in one example
scenario, the BTFS uses a long short term memory (LSTM)
recurrent neural network (RNN) to customize electrode
mapping, to customize feedback generation for a participant,
and to provide automated Al-assisted boosting. Incorpora-
tion of LSTMs provides vast efficiency enhancements over
FFT techniques, because signal input can be processed and
results output for each inputted raw signal—it is not neces-
sary to collect a large multiple of samples (e.g., 256) to
derive output ever 1 or 2 seconds. See, e.g., 4 Beginner’s
Guide to Recurrent Networks and LSTMs, found online at
“deeplearning4j.org,” downloaded Jul. 1, 2018; Colah,
Understanding LSTM Networks, posted online at “colah.
github.io/posts/2015-08-Understanding-L.STMs,”  down-
loaded Jul. 1, 2018; GOGGLE, Tutorial on Recurrent Neu-
ral Networks, posted online at TENSORFLOW (open
source) website “tensorflow.org/tutorials/recurrent,” down-
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loaded Jul. 1, 2018; and Hochreiter and Schmidhuber, Long
Short-Term Memory, Neural Computation, Volume 9, Issue
8, p. 1735-1780 (1997); which provide background on
LSTMs and RNNs. The LSTMs of example BTFSes pro-
duce output and feedback generation at a much faster rate
than FFTs thus improving accuracy and timeliness of the
feedback to the participant, which ultimately improves the
speed and efficacy of brain training.

[0029] Whereas current neurofeedback systems are expen-
sive and complex to use (often requiring highly trained
technicians and clinicians), the incorporation of these fea-
tures into example Brain Training Feedback Systems
enables provisioning of low cost, easy-to-use, home-based
neurofeedback systems by storing massive amounts of data
and performing computationally intensive processing over
the network using streamed sequences of EEG data. The
pipelined architecture of LSTM brain training engines (and
models) enable this type of processing.

[0030] FIG. 1 is a block diagram of an example Brain
Training Feedback System environment implemented using
example Brain Wave Processing and Monitoring Systems
and/or example Artificial Intelligence (AI)-Assisted Brain
Wave Processing and Monitoring Engines of the present
disclosure. The BTFS environment 100 provides a brain/
computer interaction feedback loop which monitors and
measures BEEG signals (brain activity) received from par-
ticipant 101 via electrodes 103a¢ and 1037 of electrode cap
102 and provides feedback to participant 101 via feedback
generator 130. The feedback generated by feedback genera-
tor 130 may be visual, audio, or tactile and may comprise
multiple subsystems, screens, displays, speakers, vibration
or touch devices or the like. The Brain Training System 102
itself refers to one or more of the computer or electrical
components shown in the BTFS environment 100—depend-
ing upon whether certain components are provided external
to the BTFS by others (e.g., third parties, existing systems,
etc.).

[0031] For example, one form of the BTFS 102 (which
uses FFT technology) uses Brain Wave Processing and
Monitoring System (BWPMS) 120 and signal acquisition/
amplifier 110 via paths 105 and 112, respectively, to acquire,
deconstruct, and analyze/classify signals received. The sig-
nal is amplified (and optionally analog filtered) by signal
amplifier 110, which converts the analog signal to digital
format using one or more A/D converters and passes the
digital signal along path 112 to the BWPMS 120. The
BWMPS 120 further transforms and/or processes the signal
into its constituent frequencies, potentially applying digital
filtering to isolate aspects of the signal and/or to remove
artifacts. The processed signal data is then stored locally as
part of the BWPMS 120 or remotely in data repositories 170
connected via network 150 (for example, the Internet).
Network 150 may be wired or wireless or a wide-area or
local-area (or virtual) network. Based upon the desired
training (e.g., the designated modality), the BWMPS 120
determines what type of feedback to generate based for
example on prior session configuration parameters and
causes generation of the determined feedback via feedback
generator 130. Through this neurofeedback process, the
brain training is effectuated and the participant “learns”
(unconsciously) to adjust brain activity.

[0032] Another form of the BTFS 102 incorporates
machine learning and artificial intelligence techniques to
deconstruct and analyze or classify received EEG signals
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(brain activity) from participant 101 via amplifier 110 and to
cause feedback to participant 101 via feedback generator
130. In this BTFS form, paths 112 and 122 (labeled by
double lines) are replaced by communication paths 111, 161,
and 123 (labeled by single lines) that are network connected
via network 150. A set of Al-Assisted Brain Wave Process-
ing and Monitoring Engines (ABWPME) 160, which are
connected to the BTFS environment 100 via path 161,
provide a plurality of models (one or more of the same or
using different machine learning algorithms) for decon-
structing, analyzing or classifying amplified signals received
via communication path 111 into processed signal data
(which is stored in data repositories 170). Depending upon
the particular BTFS 102 or BTFS environment 100 configu-
ration, the ABWPE 160 components may be hardware,
software, or firmware components of a single or virtual
machine, or any other architecture that can support the
models. A separate (distinct) ABWPE 160 component may
be allocated based upon participant, session, channel (elec-
trode source), signal modality, or the like. The ABWPE 160
components are also responsible for determining and caus-
ing feedback to be provided to participant 101 via feedback
generator 130 (and communication path 131).

[0033] Both forms of the BTFS 102 may also include
components 120 and 110 network-connected for other rea-
sons, such as to store signal data in data repositories 170 and
to interact with another system or another user 180 who may,
for example, be remotely monitoring the neurofeedback
session via connection 181. For example, a clinician/monitor
140 or other type of system administrator may be present in
either BTFS environment 100 to help interpret or facilitate
the brain training activities. In addition, third parties (not
shown) such as researchers or data analyzers (or merely
interested observers with appropriate permissions) may be
remotely monitoring the neurofeedback session via connec-
tion 181.

[0034] FIG. 2 is an example diagram of various types of
brain waves that can be monitored by an example Brain
Training Feedback System. For example, the brain wave
signal types illustrated in FIG. 2 may be monitored by BTFS
environment 100 of FIG. 1. Other types of signal patterns
such as spikes, spindles, sensorimotor rhythm, and syn-
chrony may also be monitored. Brain waves are classified
according to their frequency (typically in hertz), that reflects
how fast or slow they are—how many times the wave
oscillates in a second, and its amplitude (typically measured
in microvolts). Stronger signals result in higher amplitudes.
Slower signals (fewer oscillations per second) are associated
with less conscious brain activity. For example, brain signals
in the delta spectrum 201 occur in the frequency range on
average of 0.5-4 Hz and are associated with dreamy, vision-
ary sleep (REM or deep sleep). Brain signals in the theta
spectrum 202 occur in the frequency range on average of 5-7
Hz and are present when someone is about to go to sleep. For
example, you may know you had a great idea but when you
awake you can no longer remember it. Brain signals in the
alpha spectrum 203 occur in the frequency range on average
of'8-12 Hz and are present when someone is fully conscious
but not active. It is sometimes considered the “visionary”
state because it is the slowest fully conscious state which a
majority of the brain population can access when awake.
Many brain training applications address improvements
with regard to this state. Participants are typically instructed
to close their eyes to work in this modality and doing so is
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prone to induce a transition from beta to alpha waves. Brain
signals in the beta spectrum 204 occur in the frequency
range on average of 12-38 Hz and are associated with full
consciousness, for example, talking, active muscle innerva-
tion, etc. Brain signals in the gamma spectrum 205 occur in
the frequency range on average of 38-50 Hz and, although
not well known because they occur so quickly, are associ-
ated with more focused energy. The frequency values vary
somewhat depending upon the literature, but the ideas are
basically the same—slower (lower) frequency of brain
waves are associated with more “sleepful” lack of activity.
Brain wave patterns are unique to each individual and
accordingly they can be used as a kind of “fingerprint” of the
participant.

[0035] FIG. 3 is an example overview flow diagram of an
example process for implementing an example Brain Train-
ing Feedback System using one or more example Brain
Wave Processing and Monitoring Systems and/or example
Al-Assisted Brain Wave Processing and Monitoring
Engines. For example, the logic of FIG. 3 may be imple-
mented by the BWPMS 120 or the ABWPMEs 160 of FIG.
1. This logic is not specific to a particular component and,
as discussed with reference to FIG. 1, may be performed by
different components and distributed depending upon the
particular configuration of the BTFS.

[0036] For example, in block 301, the BTFS determines
electrode placement for a particular brain training session. A
session is indicative of a particular time that a participate
uses the neurofeedback system for brain training. Its dura-
tion may be determined in seconds, minutes, hours, or days.
Typically, a session constitutes a length of time of approxi-
mately ninety minutes. A brain training session is associated
with a particular signal modality (frequency, event, or set of
modalities). For example, a session may be for “alpha wave
training” or for “synchrony of alpha and theta,” etc. Once
this training objective is set, it is possible to determine
electrode placement. In some cases, an administrator (clini-
cian, observer, monitor, etc.) performs what is known in the
industry as “brain mapping” to determine desired electrode
placement. In some cases, quantitative EEG (qEEG) visu-
alization and brain mapping is used using an 18-channel
qEEG/LORETA (low resolution electromagnetic tomogra-
phy) helmet to obtain an initial picture of how the partici-
pant’s brain is working before engaging in brain training
using the BTFS.

[0037] Any type of electrodes may be integrated with the
BTFS systems described herein; however, example BTFS
systems are currently implemented with silver-silver chlo-
ride electrodes with conductive material (wet electrodes).
Other implementations (wet and dry) are supported. Also, in
the examples described herein, the electrode placement is
performed by activating particular electrodes in, for
example, an electrode helmet/cap such as cap 102 of FIG. 1.
In current examples, four (4) electrode placements are
operative, with a ground electrode, and a reference elec-
trode. A ground electrode is typically placed on the forehead.
A reference electrode, typically placed at the mastoid pro-
cess (behind the ear), is used to provide the potential
differential which constitutes the EEG measurement. Thus,
each participant is associated with four associated channels
(the active electrodes) being measured at 200 Hz to 10000
Hz, depending upon the application, in a particular session.
With the advent of better processing techniques available
through machine learning BTFS examples as discussed
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below, it is contemplated that a BTFS could handle more
channels of signals at once, for example, six (6). Many
current neurofeedback systems use 2 channels. Four chan-
nels provide good audio special separation for 7.1 surround
sound applications used with BTFS examples. Some appli-
cations are contemplated with 6 channels.

[0038] The electrodes may be arrangement according to
any scheme. Typical schemes follow the standardized Inter-
national 10-20 (10/20) System which specifics placement
and distances between electrodes. An alternative system, the
10-10 (10/10) System may also be used. (The second 10 or
20 refers to percentage distances between the landmarks
used to place electrodes.) This standard is used to help
consistency of placement of electrodes. Common place-
ments for the electrodes include:

[0039] F3-F4-P3-P4
[0040] C3-C4-P3-P4
[0041] Fz-Pz-P3-P4
[0042] Cz-Pz-P3-P4

F stands for Frontal, T for Temporal, C, for Central, P for
Parietal, and O for Occipital lobe. The number refers to a
position, namely even numbers for right hemisphere and odd
numbers for left. A further description of these locations is
found in Trans Cranial Technologies Ltd., 10/20 System
Positioning Manual, Hong Kong, 2012. Ground is typically
located on either left or right forechead at or close to Fpl or
Fp2. Reference is typically placed at either the left or right
mastoid process (behind the ear). Different placements can
be used to stimulate different brain activity. For example, a
brain that shows a lot of central but low front alpha may
benefit from a F3/F4 placement rather than a C3/C4 place-
ment to stimulate the brain to bring alpha forward. As
another example, a brain with well distributed alpha may
benefit from a Fz/Pz placement to encourage coherence and
synchrony.

[0043] In a machine learning assisted implementation of
the BTFS, it is contemplated that trained models can also be
used to determine optimal placement of electrodes for a
participant in return sessions. That is, if training has not been
as effective as predicted, the ABWPMEs 160 can include
models for determining and testing different electrode place-
ment schemes.

[0044] The logic of block 302 sets up training and system
parameters including what frequencies are to be monitored,
sample rates (how frequent are the signal measurements
taken), starting feedback modalities etc. As explained further
below, there are many techniques that can be incorporated to
determine the feedback modalities including administrator
set, participant set, and determined automatically by one or
more of the ABWPME 160 engines. The feedback modali-
ties may incorporate audio, sound, or haptic (tactile) feed-
back. For example, in some instances, the participant is
shown a visual representation (for example a spectral chart
of frequencies) during the session. In other instances, light
is used. In yet other instances and typically for the BTFS, a
soundtrack is determined that is specifically targeted for the
signal modality being trained. For example, different
soundtrack motifs may be stored in a library and from these
a motif is selected for a particular individual. For example,
according to a storm motif, rain, wind, and thunder sounds
may be used to give (separate) feedback for alpha, theta, and
gamma brain activity, respectively. This way a participant’s
brain can get feedback of all three brain waves simultane-
ously. Soundtracks are typically of actual sounds like rain,
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wind, rolling thunder, cellos (or other orchestral musical
instruments), choirs, babbling brooks, etc. Changes in
amplitude within a frequency can control the volume and
“density” (character) of the sound. Thus, for example, if the
participant is generating stronger (more amplitude) alpha
waves, then the rain may be louder than the wind and
thunder sounds.

[0045] Logic blocks 303-307 happen continuously and are
typically executed by different BTFS components in paral-
lel. Thus, they are indicated as being performed automati-
cally and continuously until some termination condition
occurs, for example, termination of the session. As described
with respect to FIG. 1, these blocks are performed by the
different components including, for example, the signal
acquisition/amplifier 110, the BWPMS 120 or the
ABWPME (AlJ) engines 160, or the feedback generator 130.
[0046] In block 303, the BTFS logic continuously and
automatically (through the use of the computing systems/
engines and amplifier) acquires brain wave signals over the
measured channels (for example, the four channels
described above), for example using the signal acquisition/
amplifier 110 of FIG. 1. This signal acquisition occurs over
a designated period of time and at a designated rate, for
example as set in block 302.

[0047] In block 304, the BTFS logic processes the analog
signal to amplify, to perform analog filtering or post-pro-
cessing, and to convert the raw analog signal received from
the electrodes to a digital signal. This logic is typically
performed by the signal acquisition/amplifier 110 of FIG. 1,
which includes an A/D converter. In one example BTFS, the
A/D converter is an AD8237 analog amplifier; however
other amplifiers can be incorporated including custom
amplifiers. In addition, the “raw” signal packets are typically
stored in the data repository (for example, repository 170 of
FIG. 1.) They are raw in the sense of not yet deconstructed
into frequencies and analyzed/classified but they have been
processed by the amplifier, and thus, some post-processing
may have been performed.

[0048] In block 305, the BTFS logic receives the stored
raw (A/D processed) data signals, reviews them according to
a sliding window in the case of an FFT-based BTFS,
deconstructs and analyzes/classifies the signal into its con-
stituent frequencies (and amplitudes per frequencies) and
other measurements and then stores the deconstructed/ana-
lyzed/classified signal data into the data repository. (In an
Al-based BTFS, the logic may also review the stored raw
data signals for other reasons such as for efficiency and for
analyzing soundtrack performance, although this review is
not needed to deconstruct the signal as discussed below.) For
example, in the case of an FFT-based BTFS (such as BTFS
120), the BTFS (a server/service thereof responsible for
processing a channel) stores FFT buckets of frequency data.
For example, an FFT-based BTSF may generate and store a
table (e.g., an array) that stores information in 0.5 Hz
buckets ever 40 msec or so, for example as shown in Table
1:
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The values in the frequency buckets are measures of ampli-
tude (strength of the signal) in, for example, microvolts. A
large amount of raw signal data is required to generate the
FFT arrays.

[0049] In some examples, the BTFS does perform addi-
tional post-processing for example to notch-filter out 50-65
Hz frequencies (corresponding to typical AC power signal in
the United States) to remove undesired impedance or noise.
[0050] In the case of an Al-based BTSF, the signal is
processed by one or more machine learning models and the
output stored as well in the data repository 170. The output
of such models, for example, using an LSTM recurrent
neural net implementation is described below with reference
to FIG. 12. Unlike the FFT-based BTSF, an Al-based BTSF
can process single samples at a time (it learns in a streamed
sequence maintaining its own internal memory) to decon-
struct the signal into constituent frequencies.

[0051] In block 306, the BTFS determines what feedback
to generate and based upon what parameters and causes the
feedback to be presented to the participant. In block 307, the
feedback is actually presented to the participant. For
example, the logic for blocks 306-307 may be performed in
combination with the BTFS 120 (or the ABWPMEs 160)
and the feedback generator 130 of FIG. 1.

[0052] Regardless of whether it is an FFT-based or Al-
based BTFS, the BTFS typically tracks multiple moving
averages of signals to determine whether effectiveness of the
training over time, trends, etc. These can be used to adjust
the training feedback. In one example, moving averages are
computed over 5, 50, and 200 samples although other
moving averages may be used. This is used currently to
make directional predictions such as if the 50-sample mov-
ing average (SMA) crosses the 200 SMA going up, then the
current trend of the wave is up and vice-versa if the 50 SMA
crosses in the other direction. The 5 SMA may be used as an
indicator to set the volume of the feedback.

[0053] For example, in one example BTFS, which plays a
soundtrack for brain training of a selected modality (as
opposed to a discrete single tone) each soundtrack has some
number of sub-tracks, for example, a low, medium, and high
and the selected sub-track depends upon a calculation of
training performance based upon a moving average. For
example, if the participant’s brain is producing 30% or less
of'its capacity, the low (of the selected soundtrack) is played.
For example, if the soundtrack is “rain” the participant may
hear a slight pitter-patter of drizzly rain. The volume of the
low soundtrack depends on where the participant brain
activity is occurring within in the 0%-30% range. If the
activity is at 30%, the participant will hear the low
soundtrack at full volume, decreasing proportionally until
the sound reaches 0% volume at 0% amplitude for that brain
wave signal.

[0054] Continuing this example, between 30-70%, the
BTFS causes the low soundtrack to be played at 100%
volume plus the medium soundtrack at a volume propor-
tional to the where the participant brain activity is occurring

TABLE 1
Time 05Hz 1.0Hz 15Hz 20Hz 25Hz 3.0Hz 127 Hz
07:25.123 22 4.1 3.7 23 12 43 12

07:25.173 2.3 4.0 3.5 2.4 1.3 4.5
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within the 30-70% range. For example, when the soundtrack
is rain, a heavier rain shower sound would be generated with
the volume changing depending on where in the 30-70%
range the amplitude of the measured and classified signal
falls.

[0055] Above 70%, the BTFS causes both low and
medium soundtracks to be played at full volume, plus the
heavy soundtrack. The volume of the heavy soundtrack is
again determined by how much above 70% the amplitude of
the participant’s brain activity falls. For rain, the heavy
soundtrack may be, for example, a very heavy rainfall.
[0056] Other and/or different motifs, other soundtracks,
and subdivisions of soundtracks can be similarly incorpo-
rated. The basic premise is to build on a soundtrack based
upon the strength of the brain signal activity so that the
participant’s brain can detect and react to the differences.
Having a soundtrack as opposed to an individual sound, also
allows example BTFSes to generate and cause feedback to
presented for simultaneous and concurrent modality train-
ing. For example, if a storm motif is used and rain is used
to train for alpha wave performance, then wind may be used
to train theta and thunder may be used to train for gamma
and each can complement the other feedback. Also, in BTFS
examples that use surround sound technology, feedback may
be generated specific to brain signal source location. For
example, the BTFS may cause feedback in the form of a
torrential downpour on the front left speaker and a quiet
drizzle on the rear right, corresponding to difference in
amplitudes of the signals that correspond to the electrode
channels associated with each of the speakers. This gives the
participant’s brain additional “information” not present in
current systems and allows the participant to better train
both strengths and weaknesses.

[0057] Also, the BTFS can adjust the soundtrack over time
based upon actual performance as the participant’s brain
activity changes over time. For example, as a participant
becomes better at producing an alpha wave, the more
difficult it becomes for the participant to earn a “heavy”
reward (the heavy soundtrack) because the baseline for
computation of the 0-30%, 30-70%, and over 70% of
possible activity changes. Conversely, the worse a partici-
pant performs, the easier it becomes to earn heavy rewards.
In an example BTFS, the system uses the sample moving
averages described above to perform these calculations. For
example, if a participant is generating 200 SMA of 2
microvolts (uV) of alpha and then suddenly generates 3 uV,
then the participant is rewarded for this substantial gain by
a substantial burst of noise (volume boost). However, if the
participant continues to generate the 3 uV, then the sound
gradually tapers off because the 3 uV has become a new
“normal” for that participant. Conversely, if a participant is
generating 10 uV of alpha and then generates 11 uV, the gain
results in a mild volume boost not as noticeable.

[0058] In addition to soundtracks, as described elsewhere
herein, visual feedback (such as spectral charts) as well as
tactile feedback (vibrations, electromagnetic shock) may
also be presented to the participant.

[0059] FIG. 4 is an example block diagram of components
of an example Brain Wave Processing and Monitoring
System. For example, the BWPMS 120 of FIG. 1 may be
implemented as shown in FIG. 4. The Brain Wave Process-
ing and Monitoring System comprises one or more func-
tional components/modules that work together to process
digital signals on a per channel basis received from the
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amplifier (for example, amplifier 110 of FIG. 1). Processing
may include the acts and logic described with reference to
blocks 301-306 of FIG. 3. For example, a BWPMS may
comprise an electrode placement determiner 411, a session
parameter setup unit 412, a signal processing and classifi-
cation engine 413, a user interface 414, a feedback param-
eter generation unit 415, a brain wave results presentation
engine 416, a statistical processing unit 417, and/or a data
storage unit 418. One or more of these components/modules
may or may not be present in any particular embodiment.

[0060] The electrode placement determiner 411 may be
used to facilitate placement of electrodes on the participant
using, for example, a 10-20 (10/20) topological mapping as
described above. It may retrieve and transmit to or be
communicatively connected to a qEFEG/LORETA device for
presenting relevant information to the clinician/administra-
tor (or whoever is responsible for making decisions of where
to place electrodes).

[0061] The session parameter setup unit 412 facilitates
setting up parameters such as what signal modality is being
trained (e.g., what type of brain wave), desired outcomes
(e.g., increase alpha wave activity), selected feedback
modalities for the various frequencies and/or activity being
trained (e.g., storm motif), and other information regarding
the participant and session.

[0062] The signal processing and classification engine 413
performs the logic described above with reference to block
305 of FIG. 3. It receives the amplified digital signals as
described via amplifier output 402, runs Fourier Transforms
(FFTs) on the data to populate processed signal data for
storage in data storage unit 418 or remotely, for example, in
data repository 170. In some BTFSes, the processed data is
stored locally and then transmitted on a periodic basis to
remote storage.

[0063] Processed signals are then analyzed by the signal
processing and classification engine 413 to cause the feed-
back parameter generation unit 415 to generate appropriate
feedback parameters such as the soundtrack selection and
volume attributes discussed above with reference to block
306 of FIG. 3. The feedback parameter generation unit 415
then interfaces with the feedback generator 403 (e.g., feed-
back generator 130 of FIG. 1) to cause the determined
feedback to be generated. For example, this may cause the
appropriate soundtrack to be played on speakers in the room
occupied by the participant.

[0064] The user interface 414 interfaces to a user respon-
sible for administering the system, such as a clinician, EEG
technician, neurologist, etc. The interface may present dis-
play screens and implement configurations as described
below with reference to FIGS. 6-9D.

[0065] The brain wave results presentation engine 416
may optimize the presentation of graphical information such
as the frequency spectral charts shown in FIGS. 9A and 9B.
In some instances, these results are displayed to a partici-
pant, so the brain wave results presentation engine 416 may
interface with a presentation device associated with the
participant to display the desired information.

[0066] The statistical processing unit 417 provides statis-
tical algorithms to aid processing the analyzed data and may
house the sample moving average calculations and other
rules used to determine feedback parameters.

[0067] FIG. 5 is an example block diagram of components
of example Al-Assisted Brain Wave Processing and Moni-
toring Engines. For example, one or more of the ABWPMEs
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160 of FIG. 1 may be implemented as shown in FIG. 5. The
example Al-Assisted Brain Wave Processing and Monitor-
ing Engines comprise one or more functional components/
modules that work together and with the BWPMS (e.g.,
BWPMS 401 of FIG. 4) to process digital signals on a per
channel basis received from the amplifier (for example,
amplifier 110 of FIG. 1). Note that the ABWPMEs 160 are
specialized machine learning modules/servers/services
which work in conjunction with certain modules of the
BWPMS (which can remain responsible for the user inter-
face, storage, feedback parameter interface to the feedback
generator and statistical processing) or substitute for (or
supplement) other modules of the BWPMS (such as the
electrode placement determiner 411, the session parameter
set up 412, the signal processing and classification engine
413, and the feedback parameter generation unit 415) to
provide the acts and logic described with reference to blocks
301-306 of FIG. 3.

[0068] For example, an BWPME 501 may comprise an
Al-assisted electrode placement determiner 511; an Al-
assisted optimum feedback modality engine 512, an Al-
assisted signal processing and classification engine 513, and
an Al-assisted adaptive feedback generation component 515.
One or more of these components/modules may or may not
be present in any particular embodiment. As described
above, example BW PMEs 501 may communicate with
other portions of a BTFS remotely, such as via a network
(e.g., network 150 in FIG. 1).

[0069] The Al-assisted electrode placement determiner
511 is responsible for assisting in initial determination of
electrode placement. Although not currently deployed, it is
contemplated that as more Al-assisted brain training is
performed, machine learning modules can be used in con-
junction with qEEG/LORETA topological techniques to
automatically designate potentially optimal electrode place-
ment for a particular participant based upon models of other
participants with similar topological brain wave activity
patterns. That is, the Al-assisted electrode placement deter-
miner 511 can use the output of qEEG mapping (showing
certain factors/characteristics) and, possibly in combination
with the participant’s history (taken for example, at an intake
interview) to determine optimal electrode placement using
knowledge from electrode placement efficacy for other
participants with similar topological brain wave activity
patterns.

[0070] The Al-assisted optimum feedback modality
engine 512 is responsible for automatically selecting the
most optimal feedback modalities based upon an “inter-
view” with the participant and various history and param-
eters. This interview involves presenting various types of
feedback (such as different soundtracks and sounds to elicit
certain response both positive and negative) and to measure
and analyze the resultant brain activity. Depending upon the
goals, the optimal feedback may be a largest value, a
smallest value, or even a predetermined value. One of the
outcomes of the interview process is to determine how the
participant’s brain individually reacts to enable the BTFS to
customize the feedback for that particular user given par-
ticular objectives and to train the various machine learning
computation engines that will later be used (the Al-assisted
signal processing and classification engines 513) to process
the signal data.
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[0071] Goals of this interview process include determin-
ing the following:

[0072] which sounds does this brain like for each fre-
quency band (e.g., which sounds produce the highest
amplitude and synchrony for each band);

[0073] which sounds does this brain dislike;

[0074] which sounds make this brain the most predict-
able (e.g., how well can the machine learning algo-
rithms determine where a received data stream is likely
to move next)

[0075] what the data looks like when the brain deliber-
ately tries to suppress particular frequencies, and can it
determine a reliable trigger model (to elicit the sup-
pression or evocation)

[0076] what the data looks like when the brain is
producing a spindle of brain waves in each frequency
and can it determine an accurate model for the brain of
this participant for detecting an entrance to a spindle.

These goals are achieved by playing particular soundtracks
in combination with audible commands to cause the partici-
pant to recall various kind of emotion evoking memories
(e.g., happy, sad, loving, angry, etc. memories). Details of
these interview techniques are described further below with
reference to FIGS. 13A-13B.

[0077] The Al-assisted signal processing and classification
engines 513 provide the machine learning modules (algo-
rithms and trained model instances) for processing the raw
digital signal data received from the amplifier (e.g., ampli-
fier output from amplifier 110 of FIG. 1 via communication
path 111 or from the BW PMS 120). As briefly explained,
one of the outcomes of the interview process performed by
the Al-assisted optimum feedback modality engine 512 is
determining the best performing machine learning models
for the particular participant based upon real measurement
of data. In one example Al-based BTFS, five separate
machine learning models are used to process each channel
for a participant, two models of which have been individu-
ally optimized for the participant. (So, for example, in a
four-channel system, there are five machine learning models
for each of the four channels, twenty in total.) In some
example BTFSes, the models are long short-term memory
(LSTM) recurrent neural network (RNN) engines. In one
such environment, open source libraries and tools for
GOOGLE’s TENSORFLOW are utilized. Other libraries,
packages, languages, RNN and LSTM implementations may
be similarly incorporated. In addition, other example BTFS
implementations incorporate different numbers of models
and different types of models, as well as possibly mixing
types of models (some LSTM based RNN and others) to
implement a different type of ensemble voting. A further
discussion of the inputs and outputs to a typical Al-assisted
signal processing and classification engine 513 is described
below with reference to FIG. 12.

[0078] The Al-assisted adaptive feedback generation com-
ponent 515 customizes and adapts the feedback generation
for the participant over time as the participant becomes
better (or worse) at brain training. In addition, in some
example BTFSes, the Al models used for signal processing
and classification can be trained to automatically and
dynamically identify certain types of events (triggers) such
as when signal patterns are about to rise or fall and, in
response, cause an intervention to facilitate “boosting” the
participant brain into a desired state. For example, if patterns
are recognized for the participant that show that the partici-
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pant is about to fall asleep or lose concentration while
training for alpha wave performance, the BTFS can auto-
matically cause special feedback to try to get the participant
back on track, for example, a burst of sound, flash of light,
electromagnetic stimulation, or transcranial direct current
stimulation (tDCS). This helps the participant “pull-up” or
“push-down” brain activity similar to how a person can
innervate and relax muscles and is termed “Keep Me In.”
Example algorithms and techniques for adapting feedback
generation are described further with respect to Figures C
and D below.

[0079] To begin a typical BTFS brain training session, a
participant enters a darkened room, a “pod” (not shown),
which implements a controlled environment, the size of a
small sitting area, for the duration of the session. In BTFS
examples, the pod includes a comfortable place to sit and
wear the electrodes (e.g., a reclining chair), and potentially
presentation or feedback devices such as a display screen
and surround sound speakers. Lighting and sound are both
controlled and can be customized for the participant.
[0080] FIGS. 6-9C are example screen displays from an
example Brain Training Feedback System environment
using one or more example Brain Wave Processing and
Monitoring Systems and/or example Al-Assisted Brain
Wave Processing and Monitoring Engines. Other BTFS
examples may have other display screens, in other orders,
and with other content.

[0081] FIG. 6 is an example screen display of electronic
output corresponding to four different example Brain Train-
ing Feedback System pods. The output is a summary session
control panel displayed to monitor the ongoing sessions, for
example by the administrator 140 in FIG. 1. The summary
screen 600 represents for each pod a running average of the
processed signal data on all “n” (e.g., four) channels of a
participant over the entire session. For example, sub-region
601 shows a running average of the four channels of waves
for the participant in “Pod 2” over the entire session.
[0082] FIGS. 7A and 7B are an example screen display of
aportion of FIG. 6 illustrating details of one of the electronic
output from one of the pods. In particular, this is a detailed
view of the output 601 for Pod 2 shown in FIG. 6. Sub-
region 700 (left side of output 601) shows a running average
of all four channels of processed signal data for the partici-
pant in Pod 2 over time for each second (x-axis) and the
average amplitude, normalized to center on zero (y-axis).
Sub-region 710 (right side of output 601) shows a distinct
chart for each type of signal being measured (which may or
may not be what is being trained). As observable from key
711 and the lines looking from topmost to bottom-most in a
minute time-period 715, an average (running average) alpha
signal is shown in blue; an average theta signal is shown in
brown; an average delta signal is shown in purple; and an
average gamma signal is shown in green. Selection of the Ul
control 712 (e.g., link labeled “Stop Session™) allows the
administrator to stop and start a session in the viewed pod
(e.g., pod 2 in FIG. 6). Section of the UI control 714 (e.g.,
link labeled “Chart”) allows the administrator to navigated
to FIG. 8 described below. Selection of the UI control 713
(e.g., link labeled “Session Options”) allows the adminis-
trator to navigate to FIG. 9A described below.

[0083] When the administrator selects Ul control 714
(e.g., link labeled “Chart”), the BTFS navigates to display-
ing a chart for each individual channel of the participant of
the corresponding pod. FIG. 8 is an example screen display

Mar. 3, 2022

of electronic brain wave output charts from different chan-
nels from one of the pods. For example, the charts shown in
FIG. 8 correspond to each of the four channels for the
participant of pod 2 shown in FIG. 6 in sub-region 601,
when the UI control 714 is selected in that sub-region. Each
of the signals being measured (here alpha, theta, delta,
gamma) is displayed for each channel according to the
colors shown in the key 711. Other colors, other or some of
the signals could also be shown as well as other variations.
As observable from these charts, the alpha activity for this
participant is pronounced and likely what is being trained in
this example.

[0084] When the administrator selects Ul control 713
(e.g., link labeled “Session Options”) the BTFS shows a
(pop-up) control window for setting various controls and
navigating to spectral displays of brain wave activity from
channels of a particular pod. A detailed view of this control
window is described below with reference to FIG. 9C.
Selection of the gear icon (icon 916) allows navigation to the
configuration screen for the current pod (pod 601).

[0085] FIGS. 9A-9D are example screen displays for
setting session configuration and showing spectral displays
of'brain wave activity from channels of a particular pod. The
configuration screens allow the administrator to tune the
currently displayed neurofeedback session on-the-fly (dy-
namically) while the session is underway. The session
control panel 903 is shown in the upper left corner of display
901. The icons 904 are the same controls as those shown in
the pop-up control window (not shown) when control 713 is
selected from sub-region 601 in FIG. 6. Two UI Controls
905 to start the session and perform an impedance test are
also available.

[0086] Forexample, the screen display 901 shown in FIG.
9A displays spectral charts of brain wave activity 910 from
each of the four channels for the participant of pod 2. An
annotated view of display 910 is shown in FIG. 9B. Each
spectral chart is a continuous display over time (z-axis) of
the brain wave activity (all frequencies from 1 Hz-44 Hz,
from right to left (x-axis). The peaks correspond to ampli-
tude in microvolts (y-axis). The landscape scrolls away from
the viewer so that the most recent reading appears in front
and the entire graph displays about 30 seconds of activity.
The flatter blue areas are wave frequencies that the partici-
pant is not currently producing. Peaked green (progressing
to yellow, then red for higher amplitudes) show wave
frequencies being produced at higher amplitude levels. In
the illustrated example, the participant is generating a peak
along the 10 Hz on channel 1 and producing less on channel
2 but is still producing some activity. On channel 3, the
participant is producing very high activity (high amplitude)
over a wider spread of frequencies (7-12 Hz). On channel 4,
the participant is producing waves of similar frequencies to
channel 3, but weaker signals.

[0087] The session control panel 903 shown in the upper
left corner of display 901 allows the administrator to control
the current session being displayed. FIG. 9C is a detailed
view of session control panel 903. The UI control 917
(labeled “Config”) allows navigation to options for control-
ling the parameters of the session. An example display for
controlling parameters is described below with reference to
FIG. 9D. The UI control 918 (labeled “Start/Stop™) allows
the administrator to stop and start the current session. The Ul
controls on the left hand side of the session control panel 901
include people icon 910 for choosing the participant and
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account management; phone icon 911 for engaging in a
communication session with the participant (the participant
can contact the administrator for help or advice during the
session from the pod); speaker icon 912 for adjust sound in
the pod; light icon 913 for adjusting color of the LED
lighting inside of the pod; waves icon 914 for toggling a
real-time feedback display for the participant in the pod
(which could contain instructions, spectral activity, or other
content); gear icon 915 for navigating to the session con-
figuration displays (FIG. 9A); and hammer/screwdriver icon
916 for navigating to the summary session control panel
(FIG. 6).

[0088] FIG. 9D is an example screen display enabling
parameter set up for the current session of the participant
being administered. This screen may be displayed, for
example, as part of the logic for block 302 in FIG. 3. From
this display, an administrator can set parameters for syn-
chrony rewards as well as for specific brain wave rewards.
For example, control area 920 is used to set the rewards for
synchrony of one or more brain wave types. For example, Ul
control 921a and 922 allow setting rewards for alpha and
beta waves, respectively. Each of the menus for setting
synchrony awards, for example, Ul control (menu) 9215
(not shown), allows selection of a sound for example, a
gong, bell, high chime, low chime, “ohm” (chanting sound),
cello (continuous reward), or none. Control areas 931-934
allow the administrator to indicate electrode placement and
the reward for each brain wave type for each of channels 1-4,
respectively. For example, the placement menu 931a for
setting electrode placement for channel 1 allows the admin-
istrator to select from all 10-20 electrode placement loca-
tions. Hach frequency reward menu, for example, menus
931b-g, allows selection a sound from a menu including
rain, thunder, creek, wind, space, cello, violin, choir, bells,
or none. The BTFS can be easily customized to add more
and/or different sounds to any of these menus. In addition,
other user interface controls and displays can be similarly
incorporated for an example BTFS.

[0089] Example embodiments described herein provide
applications, tools, data structures and other support to
implement a Brain Training Feedback System to be used for
training a participant’s brain to evoke/increase or suppress/
inhibit certain brain wave activity based upon the desired
task at hand. Other embodiments of the described techniques
may be used for other purposes, including for other non-
medical and for medical uses. In the following description,
numerous specific details are set forth, such as data formats
and code sequences, etc., in order to provide a thorough
understanding of the described techniques. The embodi-
ments described also can be practiced without some of the
specific details described herein, or with other specific
details, such as changes with respect to the ordering of the
logic, different logic, etc. Thus, the scope of the techniques
and/or functions described are not limited by the particular
order, selection, or decomposition of aspects described with
reference to any particular routine, module, component, and
the like.

[0090] Also, although certain terms are used primarily
herein, other terms could be used interchangeably to yield
equivalent embodiments and examples. In addition, terms
may have alternate spellings which may or may not be
explicitly mentioned, and all such variations of terms are
intended to be included.
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[0091] FIG. 10 is an example block diagram of a comput-
ing system for practicing embodiments of a Brain Wave
Processing and Monitoring System. Note that one or more
general purpose virtual or physical computing systems suit-
ably instructed or a special purpose computing system may
be used to implement an BWPMS. However, just because it
is possible to implement the a BWPMS on a general purpose
computing system does not mean that the techniques them-
selves or the operations required to implement the tech-
niques are conventional or well known. Further, the
BWPMS may be implemented in software, hardware, firm-
ware, or in some combination to achieve the capabilities
described herein.

[0092] The computing system 1000 may comprise one or
more server and/or client computing systems and may span
distributed locations. In addition, each block shown may
represent one or more such blocks as appropriate to a
specific embodiment or may be combined with other blocks.
Moreover, the various blocks of the Brain Wave Processing
and Monitoring System 1010 may physically reside on one
or more machines, which use standard (e.g., TCP/IP) or
proprietary interprocess communication mechanisms to
communicate with each other.

[0093] In the embodiment shown, computer system 1000
comprises a computer memory (“memory”) 1001, a display
1002, one or more Central Processing Units (“CPU”) 1003,
Input/Output devices 1004 (e.g., keyboard, mouse, CRT or
LCD display, etc.), other computer-readable media 1005,
and one or more network connections 1006. The BWPMS
1010 is shown residing in memory 1001. In other embodi-
ments, some portion of the contents, some of, or all of the
components of the BWPMS 1010 may be stored on and/or
transmitted over the other computer-readable media 1005.
The components of the BWPMS 1010 preferably execute on
one or more CPUs 1003 and manage the brain training and
neurofeedback, as described herein. Other code or programs
1030 and potentially other data repositories, such as data
repository 1020, also reside in the memory 1001, and
preferably execute on one or more CPUs 1003. Of note, one
or more of the components in FIG. 10 may not be present in
any specific implementation. For example, some embodi-
ments embedded in other software may not provide means
for user input or display.

[0094] In a typical embodiment, the BWPMS 1010
includes one or more electrode placement determiner 1011,
one or more session parameter setup units 1012, one or more
signal processing and classification engines 1013, one or
more statistical processing units 1014, one or more feedback
parameter generation units 1015, one or more brain wave
results presentation engines 1016, and a BWMPS data
repository 1018 containing e.g., the client data, statistics,
analytics, etc. These components operate as described with
reference to FIGS. 3 and 4. In at least some embodiments,
the statistical (post) processing unit 1014 is provided exter-
nal to the BWPMS and is available, potentially, over one or
more networks 1050. Other and/or different modules may be
implemented. In addition, the BWPMS may interact via a
network 1050 with application or client code 1055 that e.g.
uses results computed by the BWPMS 1010, one or more
Al-Assisted Brain Wave Processing and Monitoring Engines
1060, one or more feedback generators 1065, and/or one or
more third-party signal acquisition systems 1065. Also, of
note, the data repository 1018 may be provided external to
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the BWPMS as well, for example in a knowledge base
accessible over one or more networks 1050.

[0095] In an example embodiment, components/modules
of the BWPMS 1010 are implemented using standard pro-
gramming techniques. For example, the BWPMS 1010 may
be implemented as a “native” executable running on the
CPU 103, along with one or more static or dynamic libraries.
In other embodiments, the BWPMS 1010 may be imple-
mented as instructions processed by a virtual machine. A
range of programming languages known in the art may be
employed for implementing such example embodiments,
including representative implementations of various pro-
gramming language paradigms, including but not limited to,

object-oriented, functional, procedural, scripting, and
declarative.
[0096] The embodiments described above may also use

well-known or proprietary, synchronous or asynchronous
client-server computing techniques. Also, the various com-
ponents may be implemented using more monolithic pro-
gramming techniques, for example, as an executable running
on a single CPU computer system, or alternatively decom-
posed using a variety of structuring techniques known in the
art, including but not limited to, multiprogramming, multi-
threading, client-server, or peer-to-peer, running on one or
more computer systems each having one or more CPUs.
Some embodiments may execute concurrently and asyn-
chronously and communicate using message passing tech-
niques. Equivalent synchronous embodiments are also sup-
ported.

[0097] In addition, programming interfaces 1017 to the
data stored as part of the BWPMS 1010 (e.g., in the data
repository 1018) can be available by standard mechanisms
such as through C, C++, C#, and Java APIs; libraries for
accessing files, databases, or other data repositories; through
scripting languages such as XML, ECMAscript, Python or
Perl; or through Web servers, FTP servers, or other types of
servers providing access to stored data. The data repository
1018 may be implemented as one or more database systems,
file systems, or any other technique for storing such infor-
mation, or any combination of the above, including imple-
mentations using distributed computing techniques.

[0098] Also, the example BWPMS 1010 may be imple-
mented in a distributed environment comprising multiple,
even heterogeneous, computer systems and networks. Dif-
ferent configurations and locations of programs and data are
contemplated for use with techniques of described herein. In
addition, the BWPMS components may be physical or
virtual computing systems and may reside on the same
physical system. Also, one or more of the modules may
themselves be distributed, pooled or otherwise grouped,
such as for load balancing, reliability or security reasons. A
variety of distributed computing techniques are appropriate
for implementing the components of the illustrated embodi-
ments in a distributed manner including but not limited to
TCP/IP sockets, RPC, RMI, HTTP, Web Services (Websock-
ets, XML-RPC, JAX-RPC, SOAP, etc.) and the like. Other
variations are possible. Also, other functionality could be
provided by each component/module, or existing function-
ality could be distributed amongst the components/modules
in different ways, yet still achieve the functions of an
BWPMS.

[0099] Furthermore, in some embodiments, some or all of
the components of the BWPMS 1010 may be implemented
or provided in other manners, such as at least partially in
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firmware and/or hardware, including, but not limited to one
or more application-specific integrated circuits (ASICs),
standard integrated circuits, controllers executing appropri-
ate instructions, and including microcontrollers and/or
embedded controllers, field-programmable gate arrays (FP-
GAs), complex programmable logic devices (CPLDs), and
the like. Some or all of the system components and/or data
structures may also be stored as contents (e.g., as executable
or other machine-readable software instructions or struc-
tured data) on a computer-readable medium (e.g., a hard
disk; memory; network; other computer-readable medium;
or other portable media article to be read by an appropriate
drive or via an appropriate connection, such as a DVD or
flash memory device) to enable the computer-readable
medium to execute or otherwise use or provide the contents
to perform at least some of the described techniques. Some
or all of the components and/or data structures may be stored
on tangible, non-transitory storage mediums. Some or all of
the system components and data structures may also be
stored as data signals (e.g., by being encoded as part of a
carrier wave or included as part of an analog or digital
propagated signal) on a variety of computer-readable trans-
mission mediums, which are then transmitted, including
across wireless-based and wired/cable-based mediums, and
may take a variety of forms (e.g., as part of a single or
multiplexed analog signal, or as multiple discrete digital
packets or frames). Such computer program products may
also take other forms in other embodiments. Accordingly,
embodiments of this disclosure may be practiced with other
computer system configurations.

[0100] FIG. 11 is an example block diagram of a comput-
ing system for practicing embodiments of an Al-Assisted
Brain Wave Processing and Monitoring Engine. Note that
one or more general purpose virtual or physical computing
systems suitably instructed or a special purpose computing
system may be used to implement an ABWPME. However,
just because it is possible to implement the a ABWPME on
a general purpose computing system does not mean that the
techniques themselves or the operations required to imple-
ment the techniques are conventional or well known. Fur-
ther, the ABWPME may be implemented in software, hard-
ware, firmware, or in some combination to achieve the
capabilities described herein.

[0101] The computing system 1100 may comprise one or
more server computing systems or servers on one or more
computing systems and may span distributed locations. In
addition, each block shown may represent one or more such
blocks as appropriate to a specific embodiment or may be
combined with other blocks. Moreover, the various blocks of
the Al-Assisted Brain Wave Processing and Monitoring
Engines 1010 may physically reside on one or more
machines, which use standard (e.g., TCP/IP) or proprietary
interprocess communication mechanisms to communicate
with each other and with other parts of the system

[0102] In the embodiment shown, computer system 1100
comprises a computer memory (“memory”) 1101, a display
1102, one or more Central Processing Units (“CPU”) 1103,
Input/Output devices 1104 (e.g., keyboard, mouse, CRT or
LCD display, etc.), other computer-readable media 1105,
and one or more network connections 1106. These compo-
nents operate similarly to those mentioned above with
respect to FIG. 10. The ABWPMEs 1110 are shown residing
in memory 1101. The components of the ABWPMEs 1110
preferably execute on one or more CPUs 1103 and manage
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the brain training and neurofeedback, as described herein. In
a typical embodiment, the ABWPMEs 1010 includes one or
more Al-assisted electrode placement determiners 1111, one
or more Al-assisted optimum feedback modality engines
1112, one or more Al-based signal processing and classifi-
cation engines 1113, and one or more Al-assisted adaptive
feedback generation engines. These components operate as
described with reference to FIGS. 3 and 5.

[0103] Of note, one or more of the components in FIG. 11
may not be present in any specific implementation. In
addition, the various configurations and options described
with reference to FIG. 10 may be used to implement the
components of the ABWPMEs 1110 and the components of
computer system 1100. As explained above with reference to
FIG. 5, the ABWPMEs may operate as servers in conjunc-
tion with the rest of the components of a BTFS to implement
a neurofeedback system.

[0104] As described with respect to FIGS. 1, 3, and 5, one
form of an example BTFS (e.g., BTFS 102) incorporates
machine learning and artificial intelligence techniques to
deconstruct and analyze or classify received EEG signals
(brain activity) from a participant via an amplifier and to
cause feedback to the participant via a feedback generator.
[0105] FIG. 12 is an example block diagram of inputs and
outputs provided to an example Al-Assisted Brain Wave
Processing and Monitoring Engine (machine learning com-
putation engine) to perform signal processing and classifi-
cation of detected brain wave signals. An example
ABWPME uses an LSTM recurrent neural network to
implement machine learning, although as mentioned other
machine learning modules could be incorporated as well or
instead of these. In one such example, the LSTM engines are
defined using open source libraries and tools for GOOGLE’s
TENSORFLOW. Other libraries, packages, languages, RNN
and LSTM implementations may be similarly incorporated.
[0106] FIG. 12 describes the inputs and outputs to an
ABWPME in two scenarios 1200. The two models
ABWPME 1201 and 1210 are shown as “black boxes”
because they are defined and implemented by the third-party
libraries of TENSORFLOW. Other libraries similarly incor-
porated may be used by defining inputs and outputs similar
to those shown in FIG. 12.

[0107] In one model, the ABWPME 1201 is used for
training for a particular brain wave frequency and consists of
one input 1203 and an output array 1202. The input 1203 is
“raw” digital brain wave data at a particular sampling rate
with values comprising, for example, amplitude expressed in
microvolts. The output array 1202 comprises an array of
deconstructed and classified brain wave data (processed
signal data), for example, “m” readings of 1 Hz activity,
where each value is an amplitude expressed in microvolts.
[0108] In the other model, the ABWPME 1210 is used for
synchrony training and consists of two inputs 1212 and 1213
and an output 1211, which value represents a percentage of
synchrony achieved. This value could be a number or other
discrete value expressing percentage or quality of synchrony
achieved. Inputs 1212 and 1213 contain “raw” digital brain
wave data from two different channels, respectively, at a
particular sampling rate with values comprising, for
example, amplitude expressed in microvolts.

[0109] The LSTMs 1201 and 1210 are capable of operat-
ing on raw data received on a sequential basis (because of
the use of neural networks). Accordingly, the processed
signal data output by the models in the ABWPMEs 1200
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generate processed signal data without using FFTs or other
methods requiring large amounts of sample data.

[0110] FIGS. 13A through 15 illustrate example logic for
the components of an ABWPME as described in FIGS. 5 and
11 using the models described with reference to FIG. 12.
[0111] FIGS. 13A-13B are an example flow diagram of
code logic provided by an example Al-Assisted Brain Wave
Processing and Monitoring Engine to set optimal feedback
modalities. In an example BTFS, logic 1300 can be per-
formed by the Al-assisted optimum feedback modality
engine 512 of FIG. 5 or the engine 1112 of FIG. 11. The logic
1300 is responsible for initial selecting of a customized brain
training feedback and reward structure for a particular
participant.

[0112] Specifically, in block 1301, the logic initializes
each of some number of machine learning models (engines)
with pre-trained models based upon historic participant data
and with some number of different soundtracks. In one
example ABWPME, five machine learning models are
employed for each brain wave frequency (or synchrony)
being trained. Other BTFS examples may use a different
number of models and may employ ensemble voting tech-
niques to derive answers.

[0113] In block 1302, the logic determines (which may be
selected or pre-designated) which modality is being trained
based upon indicated goals, electrode placements, etc.
[0114] In block 1303, the logic determines through the
Al-assisted interview process characteristics of and a “fac-
torization” for the participant. Each participant can then be
described as a vector of parameters which characterize the
participant’s learning capabilities and behaviors. As men-
tioned above with respect to FIG. 5, an ABWPME (e.g.,
Al-assisted optimum feedback modality engine 512) is
responsible for automatically selecting the most optimal
feedback modalities based upon an “interview” with the
participant and various history and parameters. The inter-
view process is used to determine:

[0115] which sounds does this brain like for each fre-
quency band (e.g., which sounds produce the highest
amplitude and synchrony for each band);

[0116] which sounds does this brain dislike;

[0117] which sounds make this brain the most predict-
able (e.g., how well can the machine learning algo-
rithms determine where a received data stream is likely
to move next)

[0118] what the data looks like when the brain deliber-
ately tries to suppress particular frequencies, and can it
determine a reliable trigger model (to elicit the sup-
pression or evocation)

[0119] what the data looks like when the brain is
producing a spindle of brain waves in each frequency
and can it determine an accurate model for the brain of
this participant for detecting an entrance to a spindle.

A spindle is a discrete and bounded burst of neural activity
in a measured frequency. Automatic spindle detection is a
unique capability of BTFS examples described herein and is
made possible by use of the ABWPMEs which can learn
what a spindle looks like for a particular frequency for that
participant. This knowledge (machine learning) can be used
to predict interventions as described below with respect to
FIGS. 14 and 15 when the BTFS detects that a participant is
about to lose a spindle-rich phase, thereby increasing effi-
cacy and efficiency of brain training techniques. For
example, this data can be uses to detect when the partici-
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pant’s brain is performing exercises so that the soundtrack
can be modified to assist (see FIGS. 14 and 15).

[0120] As mentioned, these goals are achieved by playing
particular soundtracks in combination with audible com-
mands to cause the participant to recall various kind of
emotion evoking memories (e.g., happy, sad, loving, angry,
etc. memories). In blocks 1304-1306, the logic determines
and records information for each of the soundtracks and uses
this information to determine some number “x” (e.g., twWo)
of best performing participant trained models to integrate
with the pre-trained models for actual brain feedback train-
ing. Specifically, in block 1304, for each of the total number
of soundtracks being tested, the logic performs a loop in
block 1305 for each machine learning model to 1) train the
model with live EEG data from the participant responsive to
the interview (e.g., questions, tested soundtracks and
sounds, feelings, and memories) and 2) select the best “x”
number of five (or “n”) performing models for the testing the
next soundtrack and reset the remaining worst of five models
for testing the next soundtrack in the loop. In block 1306, the
logic determines whether there are any more soundtracks to
test and, if so, returns to the beginning of the loop in block
1304, otherwise continues to block 1307.

[0121] In block 1307, the logic determines which of the
tested number “m” of soundtracks produced the best desired
EEG parameter values and/or synchrony percentages and
which produced the worst and continues to train the selected

best “x” (e.g., two) performing models in preparation for the
upcoming sub-session (if a session was paused) or session.

[0122] In block 1308, the logic stores information/data
regarding the “normal” patterns of brain waves for this
participant for the selected modality (the characteristics or
factorization) for future use. The information indicates the
parameters for the brain wave signal patterns (e.g., ampli-
tude and duration) for that individual for periods of main-
tained state, drop offs, and rises, which can be used for later
comparisons. The logic then ends.

[0123] FIG. 14 is an example flow diagram of code logic
provided by an example Al-Assisted Brain Wave Processing
and Monitoring Engine perform adaptive feedback genera-
tion during a session. In an example BTFS, logic 1400 can
be performed by the Al-assisted adaptive feedback genera-
tion engine 515 of FIG. 5 or the engine 1115 of FIG. 11. The
logic 1400 is responsible for adapting and/or customizing
the rewards and/or feedback for a particular participant
during a session so that the rewards/feedback adapts as the
participant trains over time (hopefully to become “better” at
producing desired results but could also be “worse”).

[0124] In one example BTFS, the logic of blocks 1401-
1405 is performed in a loop to provide continuous adaptive
feedback generation. In other examples, the logic may be
performed at other times, scheduled times, or responsive to
other inputs.

[0125] Specifically, in block 1401, over the course of the
next selected number of sessions, the ABWPME logic
randomly mixes in other soundtracks (that have not yet been
selected as optimal, for example, through initial screening or
subsequent testing) to evaluate whether other soundtracks
should be substituting as the best and worst performing.

[0126] In block 1402, the logic determines whether sig-
nificant changes in the participant responses are detected
and, if so, continues in block 1403, otherwise continues in
block 1404.
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[0127] In block 1403, the logic determines and indicates
based upon what changes occurred and their significance
whether to schedule another optimum feedback modality
selection (interview) session using the two best current
models (just found) instead of the default data.

[0128] In block 1404, the logic determines whether this
participant’s brain is “stuck” in its training or some other
reason to trigger a transition within the training process. If
so, then the logic continues to block 1405 to modify the
soundtrack dynamically to assist in the triggered transition
as appropriate (executes “Keep Me In” techniques), or if not,
continues to block 1401 to perform continuous adaptive
feedback generation.

[0129] For example, the data accumulated as a result of the
interview process of Figures AA-AB can be used to detect
when the participant’s brain is on the brink of exiting a state,
in the process of transitioning into a different state, about to
create a spindle that should be rewarded, or about to drop
from a spindle. In addition, if a brain has stayed in a
particular state too long (for example, too long re-experi-
encing negative emotion or trauma, the brain may become
“stuck” (for example, detected through suppression of alpha
state) and the BTFS used to trigger a transition to a more
positive flow state. Also, detection that the participant is
falling asleep can be used to trigger a noise to keep the
participant awake.

[0130] More specifically, the interview process is used to
determine the characteristics of this participant’s brain at the
different frequencies (brain states). For example, alpha train-
ing typically produces a distinctive pattern of:

[0131] (1) High alpha amplitude; then

[0132] (2) A precipitous drop in alpha amplitude; then
[0133] (3) A short period of very low alpha (30-60 sec-
onds); then

[0134] (4) A medium spike in alpha amplitude; then
[0135] (5) A moderately fast rise in alpha amplitude; then
[0136] (6) A longer period of time in high alpha amplitude

state (variable duration); then a transition back to the begin-
ning of the pattern (1).

If the participant’s brain deviates from this pattern (particu-
larized to the individual), then the ABWPME can use this
data to determine that the participant’s brain is stuck. Other
brain wave frequencies produce other patterns.

[0137] FIG. 15 is an example flow diagram of code logic
provided by example Al-assisted adaptive feedback genera-
tion code logic to trigger desired brain state. For example, as
described with respect to FIG. 14, when the ABWPME
detects certain conditions in block 1404, the logic of FIG. 15
can be invoked to trigger a transition of the participant’s
brain into a desired state.

[0138] Specifically, in block 1501, the logic determines
the reason for the intervention needed and a desired brain
state and feedback modalities. Then, in blocks 1502-1503,
the logic tries a series of interventions until the participant
transitions to the desired brain state. In particular, in block
1502, the ABWPME may try one or more of: adjusting the
sound, transitioning the soundtrack, turning off adaptive
feedback, flashing lights, applying electro-magnetic stimu-
lation, applying tDCS, audible instructions, visual cues, or
other interventions to attempt to trigger the transition to the
desired state. In block 1503, the logic determines whether
the brain has transitioned to the desired state or whether it
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has exhausted all interventions possible and, if so, continues
in block 1504, otherwise continues back to try the next
intervention in block 1502.

[0139] In block 1504, the logic stores any relevant new
data learned during these interventions, for example,
whether other soundtracks performed better or what stimu-
lations were effect to transition the participant to the desired
state. The logic then ends.

[0140] From the foregoing it will be appreciated that,
although specific embodiments have been described herein
for purposes of illustration, various modifications may be
made without deviating from the spirit and scope of the
invention. For example, the methods, systems, and tech-
niques for performing brain feedback training discussed
herein are applicable to other architectures other than a
client-server architecture. Also, the methods and systems
discussed herein are applicable to differing protocols, com-
munication media (optical, wireless, cable, etc.) and devices
(such as wireless handsets, electronic organizers, personal
digital assistants, portable email machines, game machines,
pagers, navigation devices such as GPS receivers, etc.).

1. A computer-facilitated method in a neurofeedback
system for multiple brain wave training of a brain of a
participant comprising:

determining a first feedback modality corresponding to a

first type of brain wave characterized by a first fre-
quency range and a first threshold corresponding to the
first type of brain wave;

determining a second feedback modality corresponding to

a second type of brain wave characterized by a second
frequency range distinct from the first frequency range
and a second threshold corresponding to the second
type of brain wave; and

over a designated period of time, continuously and auto-

matically performing the following acts under com-
puter-implemented control of the neurofeedback sys-
tem:
receiving an indication of a brain wave signal from one
or more channels corresponding to electrodes placed
on the exterior of a human head to measure brain
activity from multiple locations of the brain of the
participant;
decomposing the indicated brain wave signal into con-
stituent brain wave signals; and
for each constituent brain wave signal,
classifying the constituent brain wave signal as either
corresponding to the first type of brain wave or to
the second type of brain wave;
when the classified signal corresponds to the first
type of brain wave and exceeds the first threshold,
generating a first feedback according to the deter-
mined first feedback modality, the generated first
feedback comprising at least one of audio, video,
or haptic output; and
when the classified signal corresponds to the second
type of brain wave and exceeds the second thresh-
old, generating a second feedback according to the
determined second feedback modality, the gener-
ated second feedback comprising at least one of
audio, video, or haptic output;
wherein the first feedback and the second feedback is
generated so as to be perceived by the participant
as occurring near simultaneously when the brain
of the participant is concurrently producing brain
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waves of both the first type of brain wave and the
second type of brain wave.

2. The method of claim 1 wherein the generating of both
the first feedback and the second feedback facilitates con-
current development of new neural pathways in the brain of
the participant by simultaneous neurofeedback training of
two distinct types of brain waves.

3. The method of claim 1 wherein the decomposing the
indicated brain wave signal into constituent brain wave
signals and, for each constituent brain wave signal, classi-
fying the constituent brain wave signal as either correspond-
ing to the first type of brain wave or to the second type of
brain wave is performed using a Fast-Fourier Transform.

4. The method of claim 1 wherein the decomposing the
indicated brain wave signal into constituent brain wave
signals and, for each constituent brain wave signal, classi-
fying the constituent brain wave signal as either correspond-
ing to the first type of brain wave or to the second type of
brain wave is performed using a neural network.

5. The method of claim 4 wherein the neural network is
a recurrent neural network.

6. The method of claim 5 wherein the recurrent neural
network is a long short-term memory neural network.

7. The method of claim 1 wherein the generating the first
feedback comprises generating the first feedback with an
intensity value reflective of a strength of the received and
classified first signal relative to the first threshold.

8. The method of claim 7 wherein the intensity value is
more intense when the received and classified first signal
exceeds the first threshold.

9. The method of claim 7 wherein the first feedback is an
audio sound track and the intensity is louder when the
received and classified first signal exceeds the a target
amplitude.

10. The method of claim 7 wherein the second feedback
comprises displaying video.

11. The method of claim 1 wherein the generating the first
feedback further comprises generating the first feedback to
a designated one of a plurality of surround sound speakers
based upon a determination of which channel of the two or
more channels of a signal acquisition device corresponds to
source of the classified first signal.

12. The method of claim 11 wherein the generating the
second feedback further comprises generating the second
feedback to a designated second speaker of the plurality of
surround sound speakers based upon a determination of
which channel of the two or more channels of the signal
acquisition device corresponds to source of the classified
second signal, the designated second speaker distinct from
the designated one of the plurality of surround sound speak-
ers.

13. The system of claim 11 wherein the designated one of
the plurality of surround sound speakers is selected to
correspond to the location of the electrode placed on the
exterior of a human head that corresponds to the determined
channel.

14. A non-transitory computer-readable storage medium
containing instructions for controlling one or more computer
processors in a neurofeedback training environment to per-
form a method comprising:

determining a first feedback modality corresponding to a

first type of brain wave characterized by a first fre-
quency range and a first threshold corresponding to the
first type of brain wave;
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determining a second feedback modality corresponding to
a second type of brain wave characterized by a second
frequency range distinct from the first frequency range
and a second threshold corresponding to the second
type of brain wave; and

over a designated period of time, continuously and auto-

matically performing the following acts under com-
puter-implemented control of the neurofeedback sys-
tem:
receiving an indication of a brain wave signal from one
or more channels corresponding to electrodes placed
on the exterior of a human head to measure brain
activity from multiple locations of the brain of the
participant;
decomposing the indicated brain wave signal into con-
stituent brain wave signals; and
for each constituent brain wave signal,
classifying the constituent brain wave signal as either
corresponding to the first type of brain wave or to
the second type of brain wave;
when the classified signal corresponds to the first
type of brain wave and exceeds the first threshold,
generating a first feedback according to the deter-
mined first feedback modality, the generated first
feedback comprising at least one of audio, video,
or haptic output; and
when the classified signal corresponds to the second
type of brain wave and exceeds the second thresh-
old, generating a second feedback according to the
determined second feedback modality, the gener-
ated second feedback comprising at least one of
audio, video, or haptic output;
wherein the first feedback and the second feedback is
generated so as to be perceived by the participant as
occurring near simultaneously when the brain of the
participant is concurrently producing brain waves of
both the first type of brain wave and the second type
of brain wave.

15. The computer-readable storage medium of claim 14
wherein the storage medium is a memory medium on a
computer system communicatively connected to other com-
puter systems over a network.

16. The computer-readable storage medium of claim 14
wherein the decomposing the indicated brain wave signal
into constituent brain wave signals and, for each constituent
brain wave signal, classifying the constituent brain wave
signal as either corresponding to the first type of brain wave
or to the second type of brain wave is performed using a
Fast-Fourier Transform.

17. The computer-readable storage medium of claim 14
wherein the decomposing the indicated brain wave signal
into constituent brain wave signals and, for each constituent
brain wave signal, classifying the constituent brain wave
signal as either corresponding to the first type of brain wave
or to the second type of brain wave is performed using a
neural network.

18. A brain wave neurofeedback training computing sys-
tem comprising:

a brain wave training parameter setup unit, configured to:

determine a plurality of feedback modalities for train-
ing brain activity, each feedback modality corre-
sponding to a distinct brain wave that is character-
ized by a frequency range; and
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determine and provide a first feedback modality and a
first threshold corresponding to a first type of brain
wave activity and a second feedback modality and a
second threshold corresponding to a second type of
brain wave activity, wherein the first and second
thresholds each specify a desired target amplitude for
the corresponding type of brain wave activity;

a signal processing and classification engine, configured
to perform brain wave monitoring and processing by
controlling a processor to automatically and continu-
ously:
receive an indication of the first threshold correspond-

ing to the first type of brain wave activity and an
indication of the second threshold corresponding to
the second type of brain wave activity;

receive a plurality of brain wave signals over two or
more channels of a signal acquisition device, the two
or more channels each corresponding to an electrode
placed on the exterior of a human head that together
measure brain activity from multiple locations of the
brain of the participant;

deconstruct the indicated brain wave signal into con-
stituent brain wave signals and for each constituent
brain wave signal:

classify each constituent brain wave signal as either
corresponding to the first type of brain wave or to
the second type of brain wave;

when the classified signal corresponds to the first
type of brain wave signal, forward instructions to
generate first feedback with corresponding first
parameters; and
when the classified signal corresponds to the second
type of brain wave signal, forward instructions to
generate second feedback with corresponding sec-
ond parameters; and
a feedback generator configured to continuously:
receive instructions to generate first feedback with corre-
sponding first parameters from the signal processing
and classification engine;
generate first feedback to be delivered to the participant
based upon the received instructions with the corre-
sponding first parameters, the generated first feed-
back indicating strength of the received and classi-
fied first signal relative to the first threshold target
amplitude;
receive instructions to generate second feedback with
corresponding second parameters from the signal
processing and classification engine; and
generate second feedback to be delivered to the par-
ticipant based upon the received instructions with the
corresponding second parameters, the generated sec-
ond feedback indicating strength of the received and
classified second signal relative to the second thresh-
old target amplitude,
wherein the generated first and second feedback are
delivered to the participant nearly simultaneously
when the brain of the participant is concurrently
producing brain waves of both the first type of brain
wave and the second type of brain wave.
19. The computing system of claim 18 wherein the
feedback generator generates the first feedback with an
intensity reflective of the corresponding first parameters and
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wherein the intensity is more intense when the received and
classified first signal exceeds the first threshold target ampli-
tude.

20. The computing system of claim 19 wherein the first
feedback is an audio sound track and the intensity is louder
when the received and classified first signal exceeds the first
threshold target amplitude.
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