US 20230136363A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0136363 A1

Pandit et al.

43) Pub. Date: May 4, 2023

(54) METHODS AND SYSTEMS FOR STORAGE Publication Classification
VIRTUAL MACHINE MIGRATION (51) Int. CL
BETWEEN CLUSTERS OF A NETWORKED
GOG6F 9/455 (2006.01)
STORAGE SYSTEM (52) U.S. CL
(71) Applicant: NETAPP, INC., San Jose, CA (US) CPC .. GOG6F 9/45558 (2013.01); GOGF 2009/4557
(2013.01); GOGF 2009/45595 (2013.01); GO6F
(72) Inventors: Atul Ramesh Pandit, [.os Gatos, CA 2009/45583 (2013.01)
(US); Kalaivani Arumugham,
Sunnyvale, CA (US); Akhil Kaushik, S ABSTRACT
Bangalore (IN); Ching-Yuk Paul Ngan, Methods and systems for Vserver migration are provided.
Redwood City, CA (US); Kazunobu One method includes maintaining a state of a migrate
Nishime, Milpitas, CA (US); Rakesh operation for migrating a plurality of source storage volumes
Bhargava M R, Bangalore (IN); managed by a source storage virtual machine (Vserver) of a
William R. Taylor, San Jose, CA (US) source cluster to a plurality of destination storage volumes
of a destination cluster of a networked storage environment;
(73) Assignee: NETAPP, INC., San Jose, CA (US) restarting a process at a healthy node of the source cluster or
’ ’ ” ’ the destination cluster to continue the migrate operation, in
response to detecting an unhealthy node at the source cluster
(21) Appl. No.: 17/729,900 or the destination cluster executing the process; retrying a
task associated with the migrate operation experiencing
(22) Filed: Apr. 26, 2022 intermittent failure for a certain number of times, and upon
successful execution, continuing the migration operation;
(30) Foreign Application Priority Data and checking the state of the migrate operation and in
response to the state of the migrate operation, continuing the
Oct. 29, 2021 (IN) eoeeeeieieeeeeee 202141049497 migrate operation or restarting the migration operation.
Ap ﬁ;ﬁm e Application 126N
1824, Host Host 102N
Management y . [User 108A
 Systern 132 | Connection :
Management] { System)
Module 134 R Storage Storage
- System 120A System 120N
Storage Storage
Cloud Provider Operating Operating
3.?% System 1244 System 124N

CERpUE
o

Communication
interface 112

Cloud Storage Manager

122
;
Cloud Cloud
Storage 0OS | Storage
1E4O 128

Cloud Yolume | Cloud Layer
142 138

i

Stcra ul
Subsystem116

100

May 4, 2023 Sheet 1 of 22 US 2023/0136363 Al

Patent Application Publication

L Old

aoL SET A7
JjeArT pnojny | BUWNIOA PROLD)

S 8 | T

sfieiols s abeiolg

POy ple;
GrTwssAsong m%w
__ofleing
Ty 18Beuspy 8bRIOIS DNOIG
LT eoBLe] ST
w UoHEOIUINWWOSS 1 ainduion
z T e
NPClL WeisAg Vhal WislsAg 5oL
BuneiadQ Bunesado 1BPIAGI] PrIOID)
ofeing . ofieing
NGZT weishAg YOeT weisAg s
sbeioig abesois T e EET eINpo
NEOL 4880 W9ISAR wswesbeuspy
! cwmowac@u_ - T WesAG TS
Yaot sesny - 7 0 a wewebeusy
NCOL 1S0H 180H §EOL
[— % B

uoieonddy

Yo a
« ¢ i
@ e T
NS !
: e
M I A
A SINPOW YA | lleniesp
=) wiswebeuwiy w
s DN r |
aQ B SINPOW PR ainpopy |
= | obeiolg | | womien P oFT weishs
~ ~ ~ w swabeuepy
w i
= | v
” Zole AN B “
« SINPOY] jE——| SINPOJY 0le H W ¢ ¥0e
& aBei0}g womah | P opugvi 07z M- WIBISAS JUBID
< : ONIHOLIMS AT g g L
2 T8 onpony | 2802 171 waLsnio A
= wewsbeueyy] =FUON ~ 90C W~
(_ womeN
= 0 gp S [T¥02
2 ri — : WESAS JUBHD
e o172 L VLG A_
- ST MWMMM ot
L g sfeiols ; e
2 <> = M : N Yeee
S ane A . . (NAS
= 707 | einpow H o) jeniesp,
> FAON LuswebBeuepy | -
z N
g L W 002

May 4, 2023 Sheet 3 of 22 US 2023/0136363 Al

Patent Application Publication

Ye Olid
— T o

A4 Juged pie
afeiolg meMMmmw \\\\..\T/ ¢ vuc/l 702
e WOJ40] ampnaserEd Mw ﬁwﬂwmw

- - uonsnBuuen
H w o M

p— abeioy p—

gle 2 ﬁ ssdepy mmoo‘ﬁw Ule
Jaidepy SSB0IY P Jjaidepy
abeioig J2ISHD S L HIOMIBN

i
mmm,\w
d20¢ Vel
[eTeIN JOSSI00IH H088800CI
LIBISAG
SunelsdD
\ afeing
LRE A

1802 voe omEn

May 4, 2023 Sheet 4 of 22 US 2023/0136363 Al

Patent Application Publication

He Ol
o eS|
m NoLE Yers
w N BLITHOA L SUWIOA
! | !
H w
S b
N[osy Yehe
N SDON L SPON

BOC 918N UCHBUNSD(

FZE ((WAS.)

FUIOB Y [eMHA 1 — o —

abri01s) JorBsA
UORBURSSQ

-

-
-

-

e

m TE55

m

| NOTE || VOES

PN SWINOA L SWIMNOA

T [

i |

NEET | | VEEE
N SDON L 8PON

PT J9ISNiD 83n0s

a1eiBin

G2¢ (LWAS)
SUILDBIN BNIHA
afei0ig) IBAIEsSA

N70C

WsAS JuslD

L ¥0¢
LLISISAS JUSlD

N

0oe

May 4, 2023 Sheet S of 22 US 2023/0136363 Al

Patent Application Publication

pee

o€ Oid

P auild Ble(]

EFT euibuz oulAg

TET suibug ouAsy

Hove

{sinpowy Jo) 218077 BACIND

OFe SINPDOW ICAU0 D QSQ.‘M@

§ET auBld joAU0D

YGFE (einpopy
10} 0B johueD 81Els

8¢ eueid
wsuebeuryy

I7E einpo
weweabeueyy dnoigy

TP oibo wswabeuepy

FPC (a0iaes uoneondey
uoRRInByUo]) YO

HEFE emnpopy dnjeg

FEE 0IBNSSLNI0 2By

YEPE SINPOW Hoslo-8id

May 4, 2023 Sheet 6 of 22 US 2023/0136363 Al

Patent Application Publication

o0y

HCEP g0y uonsunse(

"zE Je1sniD
UoiBUnSS(

jateras
SSWNIOA BIR(] LUOHBURSS(]

HOLY S8UWNOA
EIEDEISIA UOHBLINSS(]

aFT ewbug culsy

U575 Biep Lonembyuos
Jealesp peiRIBiy

HEPE euibuzg ouAs

H57h sinpopy
STBNIU-OINY + S1B8ID

TP olnpO HWLWOD)

TZEF 9NPpoW HUWIOs-8id

g8TT ainpop dnuesi)

HOCE SiNpoN e8]

K7

SINDOW [0JUCT S1I1G

H91y SNPOW Hody

HoPE
BINPOW 10AU0D dnoun

HE P SINDOW JBAOING

cov

Vi Old

¥

7T |npow

wsuwwbeuzp dnoio

Uy WU JBABSA

doiy Bl
UcHBeUnSs(

FET Jomasauni0 a1eibyn

g5 T% waby uonainbyuc)

Hive SHO

A0TP ueby Buljod

(42
(ify) eompow) Josn

HO0 2iNPOW aunfle 4

&

g7
BN BUIN0Y
sinpoyy VeEY
Sle¥ials
drnuge|d aay S
YRCE Seunjop,
VPR Binpon BlE(] 90IN0%
PO
_ YOO s8UINiof
VB8FE
suiBUY BIEDRISIN 90IN08
ouAsy CEA
giep vonenbyuos
Yove IJBAIBSA
aubug
UC%@ @@.Nm
BINPOW sziRRiul
-OINY + 81eal
oib 1Y+ BI801Y
SNpORN
TPeT SINPOR HUIWOD-81
LOaY YCEr Binpomn ¥ d
Yort .‘
SINPOW YOIV sinpow seg
tehii¥lely!
anossy FEFE SINPORW BAOIND
Yoy euli] JUR—
80In0g TF1F weby uonemnbyueg
v80r N TP Su0
IBAIBS A
POV sinpopy YOTF wely Buiiod
b eeIBin PP sInpop e
830G YOOP sinpow sinjied

M gr Oid
S o BeE esniD g7e
N LOIBURSS(] BB 80IN0
“ - =1 | azoy vorE ST 89S
S Hovo 1 suBus ouAG g
< aubug oulg |
~ | YEFE sinpon
m Hovy TEPE anpon el lelg

80Bdg [BUISH | jonuo) dnous _—

dnoss 4
a e f=15(50 aneds [BuS
e BRON 82UN0

o Por IBAIBSA BPON UOHBUNLSS(] PON S
g UolRLIS 8
m J20v Yore " 0cE
= H6E I] 110U DUAS JOMBS A, 90UN0G
- suibu3 auks m FEes seunion
o |
K YorT ainpon RiR(] 804108
< GIVE eINpo | g ol 1010 D) dNOUS
> el [OHUIO D) NOUEY qGr oy s
< Ggcy sswnjop, @ TEEE

BIB{] UCHBUNSS(] legpf Yate BRON S0UN0Y
- SPON UCHEUNSE(]
-3 I S NN HE ittt I A (SR DS
= — OOy eoedg JBs
= glep uonenByuos | - YOTE ssunjon e e

sinpopy juswsbeueyy dnol IBNIBS

£ soniesp poreBipy ||| LVE SINPOW Juswe W 3] BIEPEIO BOIN0S SABSA
=
.m 5515 ueby Yoy s.EEw Yriv weby | | YEsE g
g HE0F WQ 18MesA H LoneinBiuon GFPE S U0 [t VPV SUD Hyogembiyuod I senssp
j=3
= G0Ly SaWnioA ==
m BIEDEISR UGBUNSS(] WMMWMMMMW
= .
g FF (i) eoepeiu) Jesy) — ZFE J01RA80U0I0 SIRIBIN 82INog
A

Patent Application Publication = May 4, 2023 Sheet 8 of 22 US 2023/0136363 A1

Start pre-check stage of the setup phase of a
migration operation
B502

¥

Create a destination Vserver, lock the deslination
Vserver and preserve destination Vserver identifier
during the pre-check stage
_ B504
A
Establish Vserver domain CRS replication between the
source and destination cluster B506

!

Create destination cluster volumes and LiFs for the
migrate operation 8508

¥

Establish a mirroring relationship belween source and
destination volumes in a consistency group
astablished for the migration operation 8510

:

Complete setup phase and enter the transfer phase
8512

N

Setup Phase 500

FIG. 5A

Patent Application Publication = May 4, 2023 Sheet 9 of 22 US 2023/0136363 A1

Enter the transfer phase B514

'

Initialize the CG with source Vserver volumes
B516

i

Execute baseline transfer of source Vserver volumes
fo destination clusier ?518

!

Upon completing the baseline transfer, execute
incremental transter for all nodes B520

i

Determine that all nodes are ready for cut-over B522

'

Automatically move o pre-commit phase of the cut-
over phase of the migrate operation, if auto-cutover is
enabled, otherwise wait for client system to invoke the

pre-commit phase B524

™

Transfer Phase 501

FIG. 5B

Patent Application Publication = May 4, 2023 Sheet 10 of 22 US 2023/0136363 Al

Enter the pre-commif phase B530

LGEK source VSarver configuration (o prevent any
changes
B532

Apply configuration updates on destination Vserver
B534

Disable snapshot creation, pause any cloud backup
relationship on source Vserver and quiesce any mirroring
relationship on source Vserver such that all nodes are
ready for the cut-over phase B536

Execute all asynchronous transfers and transition to
synchronous transfer configuration for all volumes in
the CG B538

;

Move {o commit phase of the cut-over phase of the
migrate operation, after all items are in the "INSYNC”
state B540

™

Cut-over Fre-commit 503

FIG. 5C

Patent Application Publication = May 4, 2023 Sheet 11 of 22 US 2023/0136363 Al

Enter the cut-over commit phase B544

Disable auto-resync oplion and enable a cut-over timer
at the source B546

;

Disable access (o source Vserver B548

!

Start cut-over timer on the destination cluster 328 BE5D

i

Drain and fence source Vserver transfer for volume
daia; take a final snapshot and convert destination
volumes to readiwrite volumes B552

'

Move {0 post commit stage in response to the cut-over
timer not expiring, otherwise fail the migrate operation
B554

N

Cut-over Commit 505

FIG. 5D

Patent Application Publication = May 4, 2023 Sheet 12 of 22 US 2023/0136363 Al

Start cut-over Post Commit phase B584

!

Set PONR state at source and destination cluster
B568

;

Disable source and destination cut-over fimer B568

'

initialize destination Vserver B570

Move to Post-cut-over stage and the final cleanup
stage of the migrate operation B572

N

Cut-over Post Commit
507

FIG. 5E

Patent Application Publication = May 4, 2023 Sheet 13 of 22 US 2023/0136363 Al

Start Post cut-over phase B580Q

i

Delete mirroring relationships on destination cluster
B582

v

Delete all snapshots, except the final snapshot 2584

:

Apply final configuration {o destination volumaes at the
destination cluster 2586

!

Start final (or auto) clean up phase B588

¥

Release CG mirroring relationships on source cluster
and delete snapshot created for the migrate operation
B590

:

Delete source volumes, source LiFs and source
Vserver, after performing data integrity checks B582

Delete a final snapshot at the destinalion cluster B84

i

Update migrate job status information in RDB B596

Post Cut-over and Final
Cleanup

FiG. 5F 509

Patent Application Publication = May 4, 2023 Sheet 14 of 22 US 2023/0136363 Al

fﬁﬁﬁ
{ 602
&’{ PreCheckStarted }
4 604
% { Setup
4 608
o L Transferring
4 608
s { ReadyForCutover
610~ 626~
Pause 4 612 Cutover 4+ 628
{ ,
(PauseStarted }@ { PreCommit }ummm@«
L 616 | 614 {630
i Paused } (Pause?aé%ed} { SourceCommit }
632
(DestCommit }
618~ ‘ 4 634
Abort v 520 { PostCommit }
A
{ bortStarted } i 636
L 622 | 624 (Compiete)
[Aborted | { AbortFailed | |\
x L 638
{ PostCutover M
4 640
{ SrcCleanup M
642 v 644

Migration Migration
Complete Failed

FIG. 6

Patent Application Publication @ May 4, 2023 Sheet 15 of 22 US 2023/0136363 Al

Receive “"pause” command {0 pause a migrate
operation B702

i

Abort data replication between the source and
destination cluster B704

v

Undo pre-commit stage operation, if the pause
occurred during the pre-commit stage B706

:

Unlock source Vserver B708

!

Update migrate operation state {o pause B710

i

Either resume or abort the migrate operation B712

N

Migration Pause State
700

FIG. 7A

Patent Application Publication = May 4, 2023 Sheet 16 of 22 US 2023/0136363 Al

For the migrate operation, determine that the source
Vserver has a volume with a cloud backup relationship
8728

v

Fail the migrate operation, if the destination cluster does
not have a license o mirror the migrated volumes to the
cloud layer
B30

v

in response to the destination cluster having a cloud
backup license, continue {o mirror source volumes
untif the cut-over pre-commit phase _BY32

Y

Quiesce the transfer to the cloud layer, during the pre-
commit phase, and upon completion of the migrale
operation, during the post-cut-over phase, rebuilt the
metadata files for the cloud backup relationship at the
destination cluster 3734

b

726

FIG. 78

Patent Application Publication = May 4, 2023 Sheet 17 of 22 US 2023/0136363 Al

in response to a source volume having a space
guarantee, select a destination aggregate with enough
storage capacity to store data for the source volume,
upon migration B738

Track the number of IOPS for the source volumes at the

source cluster
B740

é

Determine the headroom on the available destination
aggregates B742

Select a destination aggregate based on the tracked
IOPS, the available headroom, size of the source volume
and available space at the destination aggregate B744

=

Volume Placement
7358

FIG. 7C

Patent Application Publication = May 4, 2023 Sheet 18 of 22 US 2023/0136363 Al

Select a destination port at the destination cluster in an
address space that has conneclivily {0 a source cluster
port in @ same subnst as the destination port 2748

:

Transmit a packet to the destination port {o determine if
the destination port is reachable
B750

Y

if there is no conneclivily to the destinalion port, select
another port from a broadeast domain associated with
the subnet of the source port {0 create a data LiF
B752

N

LIF Placement
7486

FIG. 7D

US 2023/0136363 Al

May 4, 2023 Sheet 19 of 22

Patent Application Publication

v — EVRSE
ES7E seaoio-sod | | EaL8 Duluuiteqg
afeys dnueelo | | woy uogeiedo | | W04 vanesRdD THIE oisE
woy uoneledo s sjesbiu pEisey 7578 HULOD Sy
sesbiw eSS & SYSE) Isisuel) -2 WOH e sysE) ISAD-ING
HBlsaH & L) ING oYy W0 HoBY WO 1IN0 Moeg
¥) 3
% [578 1578 - TET
e SYSE] JBAO-IND syse) dnes 5 wﬁmm WL HUIIOY peLels
787 USSR -8l JBACN
syser dnuzop 150d 1IN0 Moeg 10 100 ¥oeg Migisuel | d G JBACIND
N0 MoBg 4 4
S5 BSTE 1OA0-IND

dnues|sy 1Bt

1504

SETE uousiedo
21eBiu BnLuoD

INISSaooNS
Aoy

smzs ot
WSLND oBUD

bold
oo

vold

Aiesll 8008 0}
SO0UNCS 8 IO} HEAA

TT78 uoneisdo
S1eiBiu anunuos
pug sisenbel

BUIPUEISING $8800.

4

Aoy
pasneuys

!

i

Gl/4
spou Aulesy
B uo ssan0d

pejiel Lelg

celd
SBUHL N O} MSE}
wacdwap! Ansy

i

PRAR: RS
O} 24Ny
wodey

Lold
£ 8poU JaLiouR U

IoRASeyII) umedy

S84

beid
JOLD HIOMIBU

JBISTI0-BAIL

foy

S84

Go4d
anfe]

B UL

{

Glid
ainjie -4 8PoN

"

viid (PR
JOVBIISBUDIO

f

bLid
anpe 4
$58004d

ON

104

GCcig 0 04

!

BO7% uonsiedo
21281t
uEsal pue
Leay Je1sno
- J3Ul JOHUOU
o3 gol B e1eain

!

£L0.4 palors)

J0U SEY HWNOd
JIeAIBS A

B0IN0S LBISEY

0.4
& 388)804d

Ul JBAO-IND 8]

f

«0/4
SnjE 4 AN
IS0~ I8

Patent Application Publication = May 4, 2023 Sheet 20 of 22 US 2023/0136363 Al

Execute failure handling during the selup phase,
based on when the failure occurred during the setup
phase B716

Y

Abort transfer operation, retain snapshots that were
taken prior to the failure and update migration operation
state, inresponse to a failure during the transfer phase

8718

v

Release mirroring relationships, uniock source Vserver
and abort configuration replication, inresponse (o a
failure durning the pre-commit stage of the cut-over
phase B720

Y

in response to a failure occcurring during the cut-over
comimit stage, Undo source Vserver fencing, remove any
mirroring relationships, restart the source Vserver and
perform recovery based on where the failure occurred
R7Z2

:

Perform error recovery based on a failed PONR state
update B724

X

Failure Handling
714

FIG. 7F

US 2023/0136363 Al

8 Did
L'eLe AR AV VA AN (474
dOVHOLS SLNID
WOHA/OL WOHAOL
N 4
i m 4
~ — m | a0y
g 808 | | YIAVT8SI0OV
> SHIARIA FOVHOLS W | WHOMLIN
— m
S F08 | m
S HIAYT | m 208
> SSIOOV TOVHOLS m | H3AYTI00010¥d
= m m
m

08 HHOYNYWN WILEAS 14

/7

90¢

Patent Application Publication

US 2023/0136363 Al

May 4, 2023 Sheet 22 of 22

Patent Application Publication

MIOAMISN WDI4/O 1

6 Old

-

216 [Q06
1eydepy abriolg
HICMISN SSBIA somea ot
m m
momn\m oha BIRMYD
(6 MHOS 706
_— TR AJouiopw JOSE330 A

5B y06

US 2023/0136363 Al

METHODS AND SYSTEMS FOR STORAGE
VIRTUAL MACHINE MIGRATION
BETWEEN CLUSTERS OF A NETWORKED
STORAGE SYSTEM

[0001] Cross-reference to Related Applications: This pat-
ent application claims priority under 35 U.S.C. 119(a) to the
Provisional Indian Patent Application, Serial No.
202141049497, entitled “METHODS AND SYSTEMS
FOR STORAGE VIRTUAL MACHINE MIGRATION
BETWEEN CLUSTERS OF A NETWORKED STORAGE
SYSTEM?, filed on Oct. 29, 2021, the disclosure of which
is incorporated herein by reference in its entirety.

[0002] Technical Field: The present disclosure relates to
storage systems and more particularly, to storage virtual
machine (also referred to as a “Vserver”)) migration from a
source cluster to a destination cluster of a networked storage
environment.

[0003] Background: Various forms of storage systems are
used today. These forms include direct attached storage,
network attached storage (NAS) systems, storage area net-
works (SANs), and others. Storage systems are commonly
used for a variety of purposes, such as providing multiple
users with access to shared data, backing up data and others.
[0004] A storage system typically includes at least one
computing system (may also be referred to as a “server” or
“storage server”), which is a computer processing system
configured to store and retrieve data on behalf of one or
more client computing systems (“clients”). The storage
system may be presented to a client system as a virtual
storage system (also interchangeably referred to as a storage
virtual machine (“SVM”) or “Vserver” throughout this
specification) with storage space for storing information.
The Vserver is associated with a physical storage system but
operates as an independent system for handling client input/
output (I/O) requests.

[0005] A Vserver may be migrated from one source cluster
to a destination cluster. The term cluster in this sense means
a configuration that includes a plurality of nodes/modules
(e.g., network modules and storage modules) to enable
access to networked storage. It is desirable to efficiently
complete a migration operation from the source cluster to
the destination cluster with minimal disruption to client
computing systems that use the Vserver to store and retrieve
data. Continuous efforts are being made to develop tech-
nolgy for efficiently migrating a Vserver from one cluster to
another.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing features and other features will now
be described with reference to the drawings of the various
aspects. In the drawings, the same components have the
same reference numerals. The illustrated aspects are
intended to illustrate, but not to limit the present disclosure.
The drawings include the following Figures:

[0007] FIG. 1 shows an example of a storage environment,
used according to one aspect of the present disclosure;
[0008] FIG. 2 shows a block diagram of a cluster-based
storage system in a networked storage environment, used
according to one aspect of the present disclosure;

[0009] FIG. 3A shows an example of a node used in a
cluster-based storage system, used according to one aspect
of the present disclosure;

May 4, 2023

[0010] FIG. 3B shows migration of a source Vserver from
a source cluster to a destination cluster, according to one
aspect of the present disclosure;

[0011] FIG. 3C shows a high-level block diagram of an
architecture of a system for migrating the source Vserver,
according to one aspect of the present disclosure;

[0012] FIG. 4A shows a detailed block level diagram of a
system for migrating the source Vserver, according to one
aspect of the present disclosure;

[0013] FIG. 4B shows another block level diagram of a
system for migrating the source Vserver, according to one
aspect of the present disclosure;

[0014] FIG. 5A shows a setup phase of a migrate operation
to migrate the source

[0015] Vserver to the destination cluster, according to one
aspect of the present disclosure;

[0016] FIG. 5B shows a transfer phase of the migrate
operation to migrate the source Vserver to the destination
cluster, according to one aspect of the present disclosure;
[0017] FIG. 5C shows a pre-commit stage of a cut-over
phase of the migrate operation to migrate the source Vserver
to the destination cluster, according to one aspect of the
present disclosure;

[0018] FIG. 5D shows a commit stage of the cut-over
phase of the migrate operation to migrate the source Vserver
to the destination cluster, according to one aspect of the
present disclosure;

[0019] FIG. 5E shows a post commit phase of the migrate
operation to migrate the source Vserver to the destination
cluster, according to one aspect of the present disclosure;
[0020] FIG. 5F shows a post cut-over phase and a final
clean up phase of the migrate operation to migrate the source
Vserver to the destination cluster, according to one aspect of
the present disclosure;

[0021] FIG. 6 shows a state diagram for the migrate
operation to migrate the source Vserver to the destination
cluster, according to one aspect of the present disclosure;
[0022] FIG. 7A shows a pause phase of the migrate
operation to migrate the source Vserver to the destination
cluster, according to one aspect of the present disclosure;
[0023] FIG. 7B shows a process for handling cloud
backup during the migrate operation to migrate the source
Vserver to the destination cluster, according to one aspect of
the present disclosure;

[0024] FIG. 7C shows a process for volume placement of
the migrate operation to migrate the source Vserver to the
destination cluster, according to one aspect of the present
disclosure;

[0025] FIG. 7D shows logical interface (“LIF”) placement
for the migrate operation to migrate the source Vserver to
the destination cluster, according to one aspect of the present
disclosure;

[0026] FIG. 7E shows a process flow for failure handling
of the migrate operation to migrate the source Vserver to the
destination cluster, according to one aspect of the present
disclosure;

[0027] FIG. 7F shows another process flow for failure
handling of the migrate operation to migrate the source
Vserver to the destination cluster, according to one aspect of
the present disclosure;

[0028] FIG. 8 shows a block diagram of a storage oper-
ating system, used according to one aspect of the present
disclosure; and

US 2023/0136363 Al

[0029] FIG. 9 shows an example of a processing system
used according to one aspect of the present disclosure.

DETAILED DESCRIPTION

[0030] Inone aspect, innovative technology is provided to
migrate a Vserver (also referred to as a storage virtual
machine (“SVM”), or a virtual storage system) from a
source cluster to a destination cluster of a networked storage
system. Vservers are typically used in a storage cluster
architecture, described below. Typically, a data center may
use multiple clusters. A Vserver is a data container in a
clustered storage system that enables access to storage. It is
desirable to move a Vserver from one cluster to another with
minimal or non-disruption. Non-disruption in this context
means a maximum acceptable duration when a client appli-
cation executed by a client computing system does not
receive a response from the networked storage system. The
innovative technology disclosed herein enables efficient
transfer of Vserver configuration information along with
constituent data volumes that store application data and
volume metadata from the source cluster to the destination
cluster. From a client system’s perspective there is no
disruption to data access.

[0031] In one aspect, the Vserver migration process
includes various phases, including a setup phase, a transfer
phase, a cutover commit phase, post cutover phase and a
final cleanup phase, described below in detail. The various
aspects of the present disclosure include at least the follow-
ing innovative features of the various phases of a migrate
operation:

[0032] Setup Phase: Group Control (by a storage module
(e.g., 216, FIG. 2)): During this phase, a group is created of
the volumes belonging to a source Vserver (e.g., 320, FIG.
3C) in the storage module. Group control exists close to a
data transfer engine (e.g., 348/349, FIG. 3C) in the storage
module, which allows for efficient interaction between a
control plane (e.g., 338, FIG. 3C) and a data transfer engine
in a data plane (e.g., 340, FIG. 3C) that transfers data to a
destination cluster (e.g., 328, FIG. 3B).

[0033] Orchestration (Failure Handling): Separate master
processes (e.g., 342 and 404, FIG. 4A) are executed in the
source cluster (e.g., 326, FIG. 3C) and destination cluster
(e.g., 328, FIG. 4A) to handle failure scenarios. Recovery is
based on idempotent principle (implemented by all compo-
nents). Types of failure handling includes—<cluster failure,
node failure, process failure, network port failure, network
partitioning and others, as described below in detail.
[0034] LIF (Logical Interface) or volume placement
includes granular volume and aggregate placement that
supports volume to aggregate maps at the destination cluster.
Volume placement is based on properties including capacity,
storage tiers, user preference and others as described below
in detail. LIF placement ensures volume affinity to avoid
cross-node traffic after migrating; and source volume con-
figuration is preserved.

[0035] Transfer Phase: During this phase, data transfers
are performed using an asynchronous transfer engine (e.g.,
348, FIG. 4A); and a migration operation can be “paused”
for additional control within a migrate outage window,
described below in detail.

[0036] Cutover Pre-commit Phase: During this phase,
relationships are transferred to a synchronous engine to
ensure a short cutover window. NFS (Network File System)
delegations are revoked to prepare for cutover.

May 4, 2023

[0037] Cutover Commit Phase: During this phase, locking
mechanism (PONR (Point of no return) technique) is used to
avoid split-brain scenarios and a persistent state at replicated
databases (e.g., 432A/432B, FIG. 4A) is maintained on both
the source and destination clusters. PONR in the cutover
phase means that the source Vserver cannot be accessed
from the source cluster, as described below in detail. A
snapshot can be taken at the point of cutover for data
integrity check after cutover. The term snapshot in this
context means a point-in-time copy that captures all the
information in a storage volume.

[0038] Post Cutover Phase: During this phase, the last
volume configuration is fetched and applied on the destina-
tion cluster.

[0039] Cleanup Phase: During this phase, a source
Vserver is preserved for data integrity before deletion. This
allows for the source Vserver to be brought back as a
primary Vserver, if there is a failure, as described below in
detail.

[0040]

the terms “component” “module”, “system,” and the like are
intended to refer to a computer-related entity, either soft-
ware-executing general-purpose processor, hardware, firm-
ware, and a combination thereof. For example, a component
may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of
execution, a program, and/or a computer. By way of illus-
tration, both an application running on a server and the
server can be a component. One or more components may
reside within a process and/or thread of execution and a
component may be localized on one computer and/or dis-
tributed between two or more computers. Also, these com-
ponents can execute from various computer readable media
having various data structures stored thereon.

[0041] The components may communicate via local and/
or remote processes such as in accordance with a signal
having one or more data packets (e.g., data from one
component interacting with another component in a local
system, distributed system, and/or across a network such as
the Internet with other systems via the signal). Computer
executable components can be stored, for example, on
non-transitory computer readable media including, but not
limited to, an ASIC (application specific integrated circuit),
CD (compact disc), DVD (digital video disk), ROM (read
only memory), flash memory, hard disk, EEPROM (electri-
cally erasable programmable read only memory), or any
other storage device, in accordance with the claimed subject
matter.

[0042] Storage Environment 100: FIG. 1 shows an
example of a networked operating environment 100 (also
referred to as system 100) used according to various aspects
of the present disclosure. As an example, system 100 may
include a plurality of storage systems 120A-120N (may also
be referred to as storage server/storage servers/storage con-
troller/storage controllers 120, and also referred to as an
“on-premise” storage system 120) executing a storage oper-
ating system 124 A-124N (may also be referred to as storage
operating system 124 or storage operating systems 124). In
one aspect, the storage system 120 (or a cloud storage OS
140, described below in detail) can be organized into any
suitable number of Vservers, in which each Vserver repre-
sents a single storage system namespace with a separate
network access. Hach Vserver has a specific client domain
and a security domain that are separate from a client system

As a preliminary note, as used in this disclosure,

29 <

US 2023/0136363 Al

and a security domain of other Vservers. Moreover, each
Vserver can span one or more physical nodes, each of which
can hold storage associated with one or more Vservers.

[0043] Each Vserver is addressable by client systems and
handles input/output (also referred to as “I/O” or “I0”)
commands, just like storage system 120. Each Vserver is
associated with a physical storage system (e.g., a storage
sub-system116). Each Vserver is assigned a unique access
address that is used by a client computing system to access
the storage system 120. For example, each Vserver is
assigned an Internet Protocol (IP) address (also referred to as
a LIF) that is used by a client system to send I/O commands.
The IP address from an IP address space may be assigned
when the Vserver is configured using a management module
134 executed by a management system 132.

[0044] System 100 also includes a plurality of computing
systems 102A-102N (shown as host 102, 102A-102N and
may also be referred to as a “host system 1027, “host
systems 1027, “server 102” or “servers 102”) and user
systems 108A-108N (may also be referred to as “user
system 108,” “user systems 108,” “client system 108 or
“client systems 108) that may access storage space pro-
vided by a cloud layer 136 and/or the storage-subsystem 116
managed by the storage systems 120 (or Vservers) via a
connection system 118 such as a local area network (LAN),
wide area network (WAN), the Internet and others. The
storage-subsystem 116 includes a plurality of storage
devices 114A-114N (may also be referred to as storage
device/storage devices/disk/disks 114). It is noteworthy that
the term “disk™ as used herein is intended to mean any
storage device/space and not to limit the adaptive aspects to
any particular type of storage device, for example, hard
disks.

[0045] In one aspect, the storage system 120 uses the
storage operating system 124 to store and retrieve data from
the storage sub-system 116 by accessing the storage devices
114. Data is stored and accessed using read and write
requests that are also referred to as input/output (I/O)
requests. The storage devices 114 may be organized as one
or more RAID groups. The various aspects disclosed herein
are not limited to any storage device type or storage device
configuration.

[0046] In one aspect, system 100 includes the cloud layer
136 having a cloud storage manager (may also be referred to
as “cloud manager”) 122, and a cloud storage operating
system (may also be referred to as “Cloud Storage OS”) 140
having access to cloud storage 128. The cloud storage
manager 122 enables configuration and management of
storage resources.

[0047] The system and techniques described above are
applicable and especially useful in the cloud computing
environment where storage is presented and shared across
different platforms. Cloud computing means computing
capability that provides an abstraction between the comput-
ing resource and its underlying technical architecture (e.g.,
servers, storage, networks), enabling convenient, on-de-
mand network access to a shared pool of configurable
computing resources that may be rapidly provisioned and
released with minimal management effort or service pro-
vider interaction. The term “cloud” is intended to refer to a
network, for example, the Internet and cloud computing
allows shared resources, for example, software and infor-
mation to be available, on-demand, like a public utility.

May 4, 2023

[0048] Typical cloud computing providers deliver com-
mon business applications online which are accessed from
another web service or software like a web browser, while
the software and data are stored remotely on servers. The
cloud computing architecture uses a layered approach for
providing application services. A first layer is an application
layer that is executed at client computers. In this example,
the application allows a client to access storage via a cloud.
After the application layer is a cloud platform and cloud
infrastructure, followed by a “server” layer that includes
hardware and computer software designed for cloud specific
services.

[0049] As an example, a cloud provider 104, provides
access to the cloud layer 136 and its components via a
communication interface 112. A non-limiting example of the
cloud layer 136 is a cloud platform, e.g., Amazon Web
Services (“AWS”) provided by Amazon Inc., Azure pro-
vided by Microsoft Corporation, Google Cloud Platform
provided by Alphabet Inc. (without derogation of any trade-
mark rights of Amazon Inc., Microsoft Corporation or
Alphabet Inc.), or any other cloud platform. In one aspect,
communication interface 112 includes hardware, circuitry,
logic and firmware to receive and transmit information using
one or more protocols. As an example, the cloud layer 136
can be configured as a virtual private cloud (VPC), a
logically isolated section of a cloud infrastructure that
simulates an on-premises data center with the on-premise,
storage system 120.

[0050] Inone aspect, the cloud manager 122 is provided as
a software application running on a computing device or
within a virtual machine (“VM”) for configuring, protecting
and managing storage objects. In one aspect, the cloud
manager 122 enables access to a storage service (e.g.,
backup, restore, cloning or any other storage related service)
from a “micro-service” made available from the cloud layer
136. In one aspect, the cloud manager 122 stores user
information including a user identifier, a network domain for
a user device, a user account identifier, or any other infor-
mation to enable access to storage from the cloud layer 136.
[0051] Software applications for cloud-based systems are
typically built using “containers,” which may also be
referred to as micro-services. Kubernetes is an open-source
software platform for deploying, managing and scaling
containers including the cloud storage OS 140, and the cloud
manager 122. Azure is a cloud computing platform provided
by Microsoft Corporation (without derogation of any third-
party trademark rights) for building, testing, deploying, and
managing applications and services including the cloud
storage OS 140, and cloud manager 122. Azure Kubernetes
Service enables deployment of a production ready Kuber-
netes cluster in the Azure cloud for executing the cloud
storage OS 140, and the cloud manager 122. It is noteworthy
that the adaptive aspects of the present disclosure are not
limited to any specific cloud platform.

[0052] The term micro-service as used herein denotes
computing technology for providing a specific functionality
in system 100 via the cloud layer 136. As an example, the
cloud storage OS 140, and the cloud manager 122 are
micro-services, deployed as containers (e.g., “Docker” con-
tainers), stateless in nature, may be exposed as a REST
(representational state transfer) application programming
interface (API) and are discoverable by other services.
Docker is a software framework for building and running
micro-services using the Linux operating system kernel

US 2023/0136363 Al

(without derogation of any third-party trademark rights). As
an example, when implemented as docker containers, docker
micro-service code for the cloud storage OS 140, and the
cloud manager 122 is packaged as a “Docker image file”. A
Docker container for the cloud storage OS 140, and the
cloud manager 122 is initialized using an associated image
file. A Docker container is an active or running instantiation
of' a Docker image. Each Docker container provides isola-
tion and resembles a lightweight virtual machine. It is
noteworthy that many Docker containers can run simulta-
neously in a same Linux based computing system. It is
noteworthy that although a single block is shown for the
cloud manager 122 and the cloud storage OS 140, multiple
instances of each micro-service (i.e., the cloud manager 122
and the cloud storage OS 140) can be executed at any given
time to accommodate multiple user systems 108.

[0053] Inone aspect, the cloud manager 122 and the cloud
storage OS 140 can be deployed from an elastic container
registry (ECR). As an example, ECR is provided by AWS
(without derogation of any third-party trademark rights) and
is a managed container registry that stores, manages, and
deploys container images. The various aspects described
herein are not limited to the Linux kernel or using the
Docker container framework.

[0054] An example of the cloud storage OS 140 includes
the “CLOUD VOLUMES ONTAP” provided by NetApp
Inc., the assignee of this application. (without derogation of
any trademark rights) The cloud storage OS 140 is a
software defined version of a storage operating system 124
executed within the cloud layer 136 or accessible to the
cloud layer 136 to provide storage and storage management
options that are available via the storage system 120. The
cloud storage OS 140 has access to cloud storage 128, which
may include block-based, persistent storage that is local to
the cloud storage OS 140 and object-based storage that may
be remote to the cloud storage OS 140.

[0055] In another aspect, in addition to cloud storage OS
140, a cloud-based storage service is made available from
the cloud layer 136 to present storage volumes (shown as
cloud volume 142). An example of the cloud-based storage
service is the “Cloud Volume Service,” provided by NetApp
Inc. (without derogation of any trademark rights). The term
volume or cloud volume (used interchangeably throughout
this specification) means a logical object, also referred to as
a storage object, configured to store data files (or data
containers or data objects), scripts, word processing docu-
ments, executable programs, and any other type of struc-
tured or unstructured data. From the perspective of a user
system 108, each cloud volume can appear to be a single
storage drive. However, each cloud volume can represent the
storage space in one storage device, an aggregate of some or
all the storage space in multiple storage devices, a RAID
group, or any other suitable set of storage space. The various
aspects of the present disclosure may include both the Cloud
storage OS 140 and the cloud volume service or either one
of them.

[0056] As an example, user systems 108 are computing
devices that can access storage space at the storage system
120 via the connection system 118 or from the cloud layer
136 presented by the cloud provider 104 or any other entity.
The user systems 108 can also access computing resources,
as a VM (e.g., compute VM 110) via the cloud layer 136. A
user may be the entire system of a company, a department,
a project unit or any other entity. Each user system is

May 4, 2023

uniquely identified and optionally, may be a part of a logical
structure called a storage tenant (not shown). The storage
tenant represents a set of users (may also be referred to as
storage consumers) for the cloud provider 104 that provides
access to cloud-based storage and/or compute resources
(e.g., 110) via the cloud layer 136 and/or storage managed
by the storage system 120.

[0057] In one aspect, host systems 102 are configured to
also execute a plurality of processor-executable applications
126 A-126N (may also be referred to as “application 126” or
“applications 126”), for example, a database application, an
email server, and others. These applications may be
executed in different operating environments, for example, a
virtual machine environment, Windows, Solaris, Unix (with-
out derogation of any third-party rights) and others. The
applications 126 use storage system 120 or cloud storage
128 to store information at storage devices. Although hosts
102 are shown as stand-alone computing devices, they may
be made available from the cloud layer 136 as compute
nodes executing applications 126 within VMs (shown as
compute VM 110).

[0058] Each host system 102 interfaces with the manage-
ment module 134 of a management system 132 for manag-
ing backups, restore, cloning and other operations for the
storage system 120. The management module 134 is used
for managing and configuring various elements of system
100. Management system 132 may include one or more
computing systems for managing and configuring the vari-
ous elements of system 100. Although the management
system 132 with the management module 134 is shown as a
stand-alone module, it may be implemented with other
applications, for example, within a virtual machine environ-
ment. Furthermore, the management system 132 and the
management module 134 may also be referred to inter-
changeably throughout this specification.

[0059] Inone aspect, the storage system 120 provides a set
of storage volumes directly to host systems 102 via the
connection system 118. In another aspect, the storage vol-
umes are presented by the cloud storage OS 140, and in that
context a storage volume is referred to as a cloud volume
(e.g., 142). The storage operating system 124/cloud storage
OS 140 present or export data stored at storage devices
114/cloud storage 128 as a volume (or a logical unit number
(LUN) for storage area network (“SAN”) based storage).

[0060] The storage operating system 124/cloud storage
OS 140 are used to store and manage information at storage
devices 114/cloud storage 128 based on a request generated
by application 126, user 108 or any other entity. The request
may be based on file-based access protocols, for example,
the Common Internet File System (CIFS) protocol or Net-
work File System (NFS) protocol, over the Transmission
Control Protocol/Internet Protocol (TCP/IP). Alternatively,
the request may use block-based access protocols for SAN
storage, for example, the Small Computer Systems Interface
(SCSI) protocol encapsulated over TCP (iSCSI) and SCSI
encapsulated over Fibre Channel (FC), object-based proto-
col or any other protocol.

[0061] In a typical mode of operation, one or more /O
requests are sent over connection system 118 to the storage
system 120 or the cloud storage OS 140, based on the
request. Storage system 120/cloud storage OS 140 receives
the 1/O requests, issues one or more I/O commands to
storage devices 114/cloud storage 128 to read or write data

US 2023/0136363 Al

on behalf of the host system 102 and issues a response
containing the requested data over the network 118 to the
respective host system 102.

[0062] Although storage system 120 is shown as a stand-
alone system, i.e., a non-cluster-based system, in another
aspect, storage system 120 may have a distributed architec-
ture; for example, a cluster-based system that may include a
separate network module and storage module, described
below in detail. Briefly, the network module is used to
communicate with host systems 102, while the storage
module is used to communicate with the storage devices
114.

[0063] Alternatively, storage system 120 may have an
integrated architecture, where the network and data compo-
nents are included within a single chassis. The storage
system 120 further may be coupled through a switching
fabric to other similar storage systems (not shown) which
have their own local storage subsystems. In this way, all the
storage subsystems can form a single storage pool, to which
any client of any of the storage servers has access.

[0064] As an example, one or more of the host systems
(for example, 102A-102N) or a compute resource (not
shown) of the cloud layer 136 may execute a VM environ-
ment where a physical resource is time-shared among a
plurality of independently operating processor executable
VMs (including compute VM 110). Each VM may function
as a self-contained platform, running its own operating
system (OS) and computer executable, application software.
The computer executable instructions running in a VM may
also be collectively referred to herein as “guest software.” In
addition, resources available within the VM may also be
referred to herein as “guest resources.”

[0065] The guest software expects to operate as if it were
running on a dedicated computer rather than in a VM. That
is, the guest software expects to control various events and
have access to hardware resources on a physical computing
system (may also be referred to as a host system) which may
also be referred to herein as “host hardware resources”. The
host hardware resource may include one or more processors,
resources resident on the processors (e.g., control registers,
caches, and others), memory (instructions residing in
memory, e.g., descriptor tables), and other resources (e.g.,
input/output devices, host attached storage, network
attached storage or other like storage) that reside in a
physical machine or are coupled to the host system.
[0066] Communication between the storage management
application 118 and storage system 120 may be accom-
plished using any of the various conventional communica-
tion protocols and/or application programming interfaces
(APIs), the details of which are not germane to the technique
being introduced here. This communication can be done
through the network 106 or it can be done via a direct link
(not shown) between the management system 132 and one
or more of the storage systems.

[0067] Clustered Networked Storage System: The aspects
disclosed above have been described with respect to a
non-cluster-based storage system 120 that may have a tra-
ditional monolithic architecture where a storage server has
access to a dedicated storage subsystem. However, the
adaptive aspects can be implemented in a cluster-based
system that has a distributed architecture and where Vserv-
ers (222A-222N) can be migrated from one cluster to
another. The cluster-based system is described below in
detail.

May 4, 2023

[0068] FIG. 2 depicts an illustrative aspect of a storage
environment 200 including a plurality of client systems
204.1-204.2 (similar to clients 108.1-109.N and host 102), a
clustered storage system 202 and at least one network 206
communicably connecting the client systems 204.1-204.2
and the clustered storage system 202. As shown in FIG. 2,
the clustered storage system 202 includes a plurality of
nodes 208.1-208.3, a cluster switching fabric 210, and a
plurality of mass storage devices 212.1-212.3 (similar to
114, FIG. 1)

[0069] Each of the plurality of nodes 208.1-208.3 is con-
figured to include a network module, a storage module , and
a management module , each of which can be implemented
as a separate processor executable, or machine implemented
module. Specifically, node 208.1 includes a network module
214.1, a storage module 216.1, and a management module
218.1, node 208.2 includes a network module 214.2, a
storage module 216.2, and a management module 218.2, and
node 208.3 includes a network module 214.3, a storage
module 216.3, and a management module 218.3.

[0070] The network modules 214.1-214.3 include func-
tionality that enables the respective nodes 208.1-208.3 to
connect to one or more of the client systems 204.1-204.2
over the computer network 206, while the storage modules
216.1-216.3 connect to one or more of the storage devices
212.1-212.3 that are part of a storage sub-system, similar to
116.

[0071] The management modules 218.1-218.3 provide
management functions for the clustered storage system 202.
Accordingly, each of the plurality of server nodes 208.1-
208.3 in the clustered storage server arrangement provides
the functionality of a storage server.

[0072] A switched virtualization layer including a plural-
ity of virtual interfaces (VIFs) 220 is provided below the
interface between the respective network modules 214.1-
214.3 and the client systems 204.1-204.2, allowing storage
212.1-212.3 associated with the nodes 208.1-208.3 to be
presented to the client systems 204.1-204.2 as a single
shared storage pool. For example, the switched virtualiza-
tion layer may implement a virtual interface architecture.
FIG. 2 depicts only the VIFs 220 at the interfaces to the
network modules 214.1, 214.3 for clarity of illustration.
[0073] The clustered storage system 202 can be organized
into any suitable number of Vservers 222A-222N;, in which
each Vserver represents a single storage system namespace
with separate network access. As mentioned above, each
Vserver has a user domain and a security domain that are
separate from the user and security domains of other virtual
storage systems. Client systems 204 can access storage
space via a Vserver from any node of the clustered system
202.

[0074] Each of the nodes 208.1-208.3 may be defined as a
computer adapted to provide application services to one or
more of the client systems 204.1-204.2. In this context, a
Vserver is an instance of an application service provided to
a client system. The nodes 208.1-208.3 are interconnected
by the switching fabric 210, which, for example, may be
embodied as a Gigabit Ethernet switch or any other switch
type.

[0075] Although FIG. 2 depicts three network modules
214.1-214.3, the storage modules 216.1-216.3, and the man-
agement modules 218.1-218.3, any other suitable number of
network modules, storage modules, and management mod-
ules may be provided. There may also be different numbers

US 2023/0136363 Al

of network modules, storage modules, and/or management
modules within the clustered storage system 202. For
example, in alternative aspect s, the clustered storage system
202 may include a plurality of network modules and a
plurality of storage modules interconnected in a configura-
tion that does not reflect a one-to-one correspondence
between the network modules and storage modules.

[0076] The client systems 204.1-204.2 of FIG. 2 may be
implemented as general-purpose computers or VMs config-
ured to interact with the respective nodes 208.1-208.3 in
accordance with a client/server model of information deliv-
ery. In the presently disclosed aspect, the interaction
between the client systems 204.1-204.2 and the nodes 208.
1-208.3 enable the provision of network data storage ser-
vices. Specifically, each client system 204.1, 204.2 may
request the services of one of the respective nodes 208.1,
208.2, 208.3, and that node may return the results of the
services requested by the client system by exchanging
packets over the computer network 206, which may be
wire-based, optical fiber, wireless, or any other suitable
combination thereof. The client systems 204.1-204.2 may
issue packets according to file-based access protocols, such
as the NFS or CIFS protocol, when accessing information in
the form of files and directories.

[0077] In a typical mode of operation, one of the client
systems 204.1-204.2 transmits an NFS or CIFS request for
data to one of the nodes 208.1-208.3 within the clustered
storage system 202, and the VIF 220 associated with the
respective node receives the client request. It is noted that
each VIF 220 within the clustered system 202 is a network
endpoint having an associated IP address, and that each VIF
can migrate from network module to network module. The
client request typically includes a file handle for a data file
stored in a specified volume on at storage 212.1-212.3.
[0078] Storage System Node: FIG. 3A is a block diagram
of' a node 208.1 that is illustratively embodied as a storage
system comprising of a plurality of processors 302A and
302B, a memory 304, a network adapter 310, a cluster
access adapter 312, a storage adapter 316 and local storage
313 interconnected by a system bus 308. The local storage
313 comprises one or more storage devices utilized by the
node to locally store configuration information (e.g., in a
configuration data structure 314).

[0079] Node 208.1 may manage a plurality of storage
volumes for a Vserver that is migrated from one cluster to
another. The system and processes for migrating Vservers
are described below in more detail.

[0080] The cluster access adapter 312 comprises a plural-
ity of ports adapted to couple node 208.1 to other nodes of
cluster 100. In the illustrative aspect, Ethernet may be used
as the clustering protocol and interconnect media, although
it will be apparent to those skilled in the art that other types
of protocols and interconnects may be utilized within the
cluster architecture described herein. In alternate aspects
where the network and storage modules are implemented on
separate storage systems or computers, the cluster access
adapter 312 is utilized by the network and storage modules
for communicating with other network and storage modules
in the cluster 100.

[0081] Each node 208.1 is illustratively embodied as a
dual processor storage system executing a storage operating
system 306 (similar to 124, FIG. 1) that preferably imple-
ments a high-level module, such as a file system, to logically
organize the information as a hierarchical structure of named

May 4, 2023

directories and files on storage 212.1. However, it will be
apparent to those of ordinary skill in the art that the node
208.1 may alternatively comprise a single or more than two
processor systems. Illustratively, one processor 302A
executes the functions of the network module 104 on the
node, while the other processor 302B executes the functions
of the storage modue 216.

[0082] The memory 304 illustratively comprises storage
locations that are addressable by the processors and adapters
for storing programmable instructions and data structures.
The processor and adapters may, in turn, comprise process-
ing elements and/or logic circuitry configured to execute the
programmable instructions and manipulate the data struc-
tures. It will be apparent to those skilled in the art that other
processing and memory means, including various computer
readable media, may be used for storing and executing
program instructions pertaining to the invention described
herein.

[0083] The storage operating system 306, portions of
which is typically resident in memory and executed by the
processing elements, functionally organizes the node 208.1
by, inter alia, invoking storage operations in support of the
storage service implemented by the node.

[0084] The network adapter 310 comprises a plurality of
ports adapted to couple the node 208.1 to one or more clients
204.1/204.2 over point-to-point links, wide area networks,
virtual private networks implemented over a public network
(Internet) or a shared local area network. The network
adapter 310 thus may comprise the mechanical, electrical
and signaling circuitry needed to connect the node to the
network. Illustratively, the computer network 206 may be
embodied as an Ethernet network or a Fibre Channel net-
work. Each client 204.1/204.2 may communicate with the
node over network 206 by exchanging discrete frames or
packets of data according to pre-defined protocols, such as
TCP/IP. In one aspect, LIF placement for a migrated Vserver
involves selecting a port of the network adapter 310, as
described below in detail.

[0085] The storage adapter 316 cooperates with the stor-
age operating system 306 executing on the node 208.1 to
access information requested by the clients. The information
may be stored on any type of attached array of writable
storage device media such as solid-state drives, optical,
magnetic tape, bubble memory, storage class memory, elec-
tronic random-access memory, micro-electromechanical and
any other similar media adapted to store information, includ-
ing data and parity information. However, as illustratively
described herein, the information is preferably stored on
storage device 212.1. The storage adapter 316 comprises a
plurality of ports having input/output (I/O) interface cir-
cuitry that couples to the storage devices over an [/O
interconnect arrangement, such as a conventional high-
performance, FC link topology. It is noteworthy that instead
of separate network adapter 310 and storage adapter 316,
node 208.1 may use a converged adapter that performs the
functionality of a storage adapter and a network adapter.
[0086] Vserver Migration: FIG. 3B shows an example of
migrating a source Vserver 320 from a source cluster 326 to
a destination Vserver 324 at a destination cluster 328.
Clusters 326 and 328 are similar to cluster 202 described
above with respect to FIG. 2 having a plurality of nodes 208.
The Vserver 320 is presented to clients 204. The clients 204
can read and write data using source storage volumes
330A-330N (may also be referred to as source volume or

US 2023/0136363 Al

source volumes 330) at the source cluster 326. The storage
volumes may be managed by one or more nodes 333A-333N
(similar to nodes 208 of FIG. 2) of the source cluster 326.
[0087] Upon migration, the destination storage volumes
332A-332N (may also be referred to as destination volume
or destination volumes 332) are managed by nodes 335A-
335N (similar to nodes 208 of FIG. 2) of the destination
cluster 328. For efficiently migrating the Vserver 320, the
source volumes 330 are configured as a logical structure,
referred to as consistency group (“CG”) 331 that is uniquely
identified. The CG 331 is used to implement group control
for migrating the source volumes of Vserver 320 to the
destination cluster 328, as described below in detail.
[0088] To migrate Vserver 320 during a migration opera-
tion, first the destination Vserver 324 is created at the
destination cluster 328 during a setup phase. The destination
volumes 332 are then created at the destination cluster 328
to store information associated with source volumes 330 at
the source cluster 326. Details regarding the various migrate
operation phases are provided below in detail.

[0089] Architecture 334: FIG. 3C shows a block diagram
of an architecture 334 for executing the various phases of a
migrate operation to migrate the source Vserver 320 from
the source cluster 326 to the destination cluster 324, accord-
ing to one aspect of the present disclosure. As an example,
architecture 334 includes a management plane 336, a control
plane 338 and a data plane 340, according to one aspect of
the present disclosure. The management plane 338 may be
implemented by a management module 218 (FIG. 2) and
includes a migrate Orchestrator 342 (also referred to as
Orchestator 342) that executes or interfaces with a plurality
of threads/modules, e.g., a pre-check module 343 A, a set-up
module 343B and management logic 343C that are
described below. The migrate Orchestrator 342 also inter-
faces with a configuration replication service (CRS) 344 that
replicates configuration information of the source Vserver
320 to the destination cluster 328, also described below in
detail. The configuration information pf the source Vserver
320 includes a source Vserver name, identifier, universal
identifier (“UUID), nodes that are associated with the
Vserver, client systems that can access the Vserver with
associated permissions, the volume identifiers identifying
volumes 330 or any other information. The configuration
information also includes information regarding the vol-
umes, e.g., volume identifiers, volume size, volume attri-
butes e.g., if the volumes have a space guarantee, if the
volume is thin provisioned, any quality of service associated
with the volumes, access control information indicating the
permissions associated with each volume 330 or any other
information. The management plane 336 also includes a
group management module 347 that manages migration of
information for source volumes 330 as a CG (e.g., 331, FIG.
3B), also described below in detail.

[0090] The control plane 338 executes a group control
module 346 that includes or interfaces with state control
logic 345A, cut-over logic 345B. The state control logic
345A maintains the state of the migrate operation, as
described below, while the cut-over logic 345B controls a
cut-over phase of the migrate operation, also described
below in detail.

[0091] The data plane 340 includes an asynchronous
engine 348 that enables asynchronous transfer of data of the
plurality of source volumes 330 in the CG 331. The data
plane 340 also includes a synchronous engine 349 that is

May 4, 2023

used to transfer information to the destination cluster 328
during a cutover phase. In one aspect, the data plane is
implemented at the storage modules 216 that is closer to the
storage devices 212. This improves the overall efficiency for
migrating the Vserver 320, as described below in detail.
[0092] System 400: FIGS. 4A-4B shows examples of an
innovative architecture 400 to enable migration between the
source cluster 326 and the destination cluster 328, according
to one aspect of the present disclosure. The following
provides a brief description of the various components of
FIGS. 4A/4B, and a brief introduction of certain terms used
in this disclosure, according to one aspect of the present
disclosure.

[0093] Cluster Communication 402: The source cluster
326 and the destination cluster 328 communicate using
connection 402. The connection 402 uses a network con-
nection for transferring information between the cluster
nodes.

[0094] Monarch Node: A node (e.g., 335A, FIG. 3C) on
the destination cluster 328 that hosts a primary group control
module 3468 in a storage module (e.g., storage module 216,
FIG. 2).

[0095] Owning Node: A node (e.g., 335A) on the desti-
nation cluster 328 that hosts the migrate Orchestrator 342.
[0096] Cluster Persistent Storage (CPS): A processor
executable service that offers metadata volume (MDV)
storage (e.g., 430A/430B) for use by cluster applications
such as CRS 344.

[0097] Vserver Director Module (VDM): A component in
the master CRS process that manages creation and flow of
a Vserver stream. The Vserver DM (e.g., 408A/408B) is
used to create and update source Vserver configuration (e.g.,
426A) objects on the destination cluster 328.

[0098] Vserver Stream: A CRS construct that connects the
source Vserver 320 of the source cluster 326 to the desti-
nation Vserver 324 at the destination cluster 328. Configu-
ration baselines and updates made to the source Vserver 320
flow over the Vserver stream to the destination cluster 328.
[0099] Source Cutover Timer 412A: A timer at the source
cluster 326 used by the cutover logic 345B to track the
progress of a cutover workflow, as described below. If the
timer 412A expires before the cutover workflow reaches a
point of no return (PONR), the migrate operation is aborted
on the source cluster 326. A similar destination cutover timer
412B is used in the destination cluster 328.

[0100] PONR: PONR is a stage within the cutover work-
flow, which is reached after all destination volumes 428B/
430B (similar to 332A-332N of FIG. 3C) have been con-
verted to read/write volumes and before starting the
destination Vserver 324 LIF. PONR means that the source
cluster 326 cannot start the source Vserver 320 from a
source cluster node.

[0101] Migrate Orchestrator 342: This is a processor
executable thread within a management module space (e.g.,
the management plane 336, FIG. 3C) to perform and manage
various migrate operation related tasks in the background
once a Ul (User Interface))REST endpoint 444 returns a
confirmation to a client system to begin the migrate opera-
tion. This thread runs at a node (e.g., 335, FIG. 3C) of the
destination cluster 328. This thread creates the destination
Vserver 324 on the destination cluster 328 with the same
Vserver name and Vserver identifier of the source Vserver
320.

US 2023/0136363 Al

[0102] CRS (344A/344B): The Vserver migrate operation
uses the CRS 344A/344B for configuration information
replication. CRS 344A/344B provides a framework to rep-
licate configuration data 426 A from the source cluster 326 to
the destination cluster 328 (shown as 426B at the destination
cluster 328). The Vserver migrate operation uses this mod-
ule/service to replicate objects in a Vserver domain. When
the destination cluster 328 receives the configuration infor-
mation, each object/module can control how this object is
created/modified on the destination cluster 328. For volume
objects received by the destination cluster 328, the system
auto-picks where the volume is created based on aggregate
capability, headroom, and space availability on destination
aggregates, as described below in detail. In the alternative,
a client system has an option to provide a list of aggregates
where the destination volumes should be created.

[0103] Config Agent 414A/414B: This module operates
between the CRS 344A/344B and Vserver DM 408A/408B,
respectively. A CRS stream is created by the Orchestator 342
between the source cluster 326 and destination cluster 328 to
replicate Vserver scoped objects and operations; and this
module interacts with CRS 344 to setup metadata volumes
430B required for configuration replication, interacts with
the source cluster 326 and destination cluster 328 to handle
CRS configuration baseline replication, and also handles
failures in configuration replication by retrying operations
when necessary.

[0104] Polling Agent 410A/410B: This module provides a
framework to create polling tasks to poll for an event or
completion of a task for the migrate operation. Different
components use this module to poll. e.g., every T second.
This module iterates through a list of pending polling objects
and polls for events/asynchronous tasks. The polling object
is deleted when a corresponding event occurs, or a task is
completed. For example, this module is used by the Config
Agent 414A/414B to poll for completion of a baseline
configuration information transfer and start a next step in the
migrate operation.

[0105] Migrate RDB (Replicated Database) table (s)
432A/432B: The RDB tables 432A/432B maintain a list of
Vserver migrate operations on both the source cluster 326
and destination cluster 328 and a state of the migrate
operation, at any given time. The Vserver migrate operation
uses “Group Synchronous” mirroring relationships and
maintains RDB entries on both the source cluster 326 and
destination cluster 328 to track the mirroring relationships.
In one aspect, as a non-limiting example, SnapMirror (with-
out derogation to any trademark rights) technology, pro-
vided by NetApp Inc, the assignee of this application is used
to mirror information between source and destination cluster
nodes. The adaptive aspects of the present disclosure are not
limited to any specific mirroring technology.

[0106] Failure Module 406A/406B: This module rehosts
migrate operation threads if a failure is detected during the
migrate operation. This module is registered on both the
source and destination clusters 326 and 328, respectively, for
a callback when the cluster nodes go online or offline. If the
owning node becomes unresponsive or the management
module becomes unhealthy, the Orchestrator 342 is rehosted
on another node. The owning node information, and a state
of the migrate operation are tracked persistently in the
migration RDB tables 432A/432B. This persistent informa-
tion provides information to the failure module 406A/4068B
as to the recovery steps. For example, if the migrate opera-

May 4, 2023

tion is in the cutover phase, and if the node on which the
cutover timer thread runs dies, the cutover timer thread is
restarted on another node. When the failure module receives
notification, it performs recovery operations based on a
current state of the migrate operation, if the owning node
becomes unresponsive.

[0107] Migrate Source Management Module 404: This
module operates in the source cluster 326 and may be used
for updating RDB table 432A entries, perform pre-checks,
and execute post migration operations or execute abort
operations.

[0108] Group Management Module 347A: This module
interfaces/reuses the management module to manage group
synchronous relationships. Following are some of the opera-
tions performed by this module: creates group synchronous
relationship initialization when a migrate operation is
started, creates a CG 331 representing the source Vserver
(e.g., 320, FIG. 3C) with the Vserver volumes (e.g. 430A/
428A or 330A/330N (FIG. 3C) and starts an appropriate
“Group workflow” based on the migrate operation. Seed
items and item-mapping to respective destination cluster
storage module based on the source-to-destination volume
mapping is executed by the Configuration Agent 414B.

[0109] Group Control Module 346A/346B: This module is
executed in the storage module (i.e., the storage module) to
perform group workflow for the migrate operation, as
described below in detail.

[0110] Create and Auto Initialize Module (or API) 425A/
425B: This module/AP]I is used when migration is started or
resumed by a client system. This module creates a CG
synchronous relationship between the source cluster 326 and
destination cluster 328 with a single CG 331 containing all
the volumes in the Vserver 320; establishes the group
relationships, starts a baseline transfer (auto-initialize), and
back-to-back asynchronous transter using the asynchronous
engines 348A/348B. This module can be used even if the
volumes at the destination cluster 328 are already partially
initialized due to a prior paused/failed migrate operation.
This module reuses already transferred data without requir-
ing a re-transfer of all the data in the volume. This module
can also be used if some of the volumes are already
initialized, and some were added after a pause/failure. This
module monitors back-to-back asynchronous transfers of
each volume, and when all the volumes reach the “Ready for
Cutover” criteria, it declares “Ready for Cutover” status to
the Orchestrator.

[0111] Cutover Pre-Commit Module 422A/422B: This
module may be part of the cut-over module 345A/345B and
is used when the Orchestrator 342 has completed cutover
pre-commit processing. The workflow executed by this
module converts existing asynchronous mirroring relation-
ships into synchronous relationships; waits for ongoing
back-to-back transfer to complete, starts a last asynchronous
transfer, and then transitions to an “INSYNC” state. In one
aspect, each volume independently reaches the “INSYNC”
state without coordinating with other nodes and other vol-
umes in the CG 331. Once all the volumes reach the
INSYNC state, the module declares a “Cutover Pre-Commit
Complete” status to the Orchestrator 342. The Orchestrator
342 using the polling agent 410B periodically polls for this
status update. The INSYNC state indicates that the volumes
at the destination cluster 328 are synchronized with the
volumes at the source cluster 326.

US 2023/0136363 Al

[0112] Cutover-Commit Module 424A/424B: This mod-
ule may be part of the cut-over module 345A/345B and is
used when the Orchestrator 342 has completed the cutover
pre-commit phase, the cutover-source commit steps and
calls to perform a cutover commit operation. The following
steps are performed for each volume: drain and fence at the
source cluster 326, which quiesces and drains any outstand-
ing 1/Os, transfer any metadata tracked outside the volume
to the destination cluster 326, and convert all volumes to
read/write volumes to make the volumes read-writable at the
destination cluster 328. When the cutover-commit is com-
pleted, the Orchestrator 342 is notified. The progress of the
commit phase can also be monitored through polling by the
polling agent 410B.

[0113] Delete Module 420A/420B: This module is used to
delete the mirroring relationships created on the destination
cluster 328. This module is used when the migrate operation
completes/pauses/fails or after a user initiated “abort” opera-
tion is complete. At the destination cluster 328, there are
three options that can be used to control what snapshots are
deleted, namely: RETAIN_ALL_SNAPSHOTS: If the
pause or migrate operation failed, then this input is used to
retain the snapshots created for the migrate operation.
Retaining the snapshots enables resume of data copy from
where the operation was stopped, when the migrate opera-
tion is resumed/restarted later.

[0114] RETAIN_NO_SNAPSHOTS: This option is used
to delete destination cluster 328 snapshots when the migrate
operation completes. This deletes all snapshots created dur-
ing the various phases of the migrate operation; and
RETAIN_ONLY_FINAIL,_SNAPSHOT: This option is used
to delete all the snapshots except a final snapshot. The final
snapshot is retained to perform a data integrity check
between the source cluster 326 and the destination cluster
328, as described below in detail.

[0115] Cleanup Module 418A/418B: This module is used
to delete mirroring relationships created at the source cluster
326 from the destination cluster 328. This module is used
when the migrate operation completes/pauses/fails, or a
client-initiated abort operation is completed. At the source
cluster 326, a “relationship-info-only” parameter controls
whether snapshots created for the migrate operation are
deleted during release. The relationship-info-only=true set-
ting is used when the pause or migrate operation failed.
Retaining the snapshots allows mirroring to resume data
copy from where it was stopped when the migrate operation
is resumed/restarted later and allows a previously INSYNC
relationship to revert to INSYNC without re-initializing the
destination volumes 428B/430B. When the relationship-
info-only parameter is set to “false” then this option is used
to delete snapshots at the source cluster 326 when the
migrate operation is completed.

[0116] Abort Module 416A/416B: This module is used to
pause an existing migrate operation. This aborts the ongoing
transfer of the entire CG 331. The mirroring relationship
could be initializing or performing back-to-back transfer.
This module is not used if the migrate operation is already
in the cutover phase (i.e., the pre-commit/commit/post-
commit phase). Once the CG mirroring is aborted, this
module provides a notification to the Orchestrator 342 for
abort completion. Once the abort command completes suc-
cessfully, the system can assume that transfers which were
running will stop.

May 4, 2023

[0117] Synchronous Engine 349A-349B: This module is
used to transfer information for CG 331 between the source
cluster 326 and the destination cluster synchronously, after
a baseline transfer has been completed, as disclosed below.
[0118] Asynchronous Engine 348A-348B: This module is
used to transfer information for CG 331 between the source
cluster 326 and the destination cluster asynchronously, dur-
ing the baseline transfer has been completed, as disclosed
below.

[0119] It is noteworthy that although the various modules
of FIG. 4A are shown in separate blocks, these modules may
be combined in any order and may be located or interface
with each other in any order.

[0120] FIG. 4B shows another example of the architecture
400 and its various modules described above with respect to
FIG. 4A. In FIG. 4B, the various modules at the source
cluster 326 and the destination cluster 328 are split in the
user space 440A/440B and kernel space 442A/442B, respec-
tively. The source nodes 333A/33B interface with the des-
tination nodes 335A/335B using connections 402A-402D.
The various modules of FIG. 4B have been described above
with respect to FIG. 4A and for brevity sake, are not
described again.

[0121] FIGS. 5A-5F show process flow diagrams for the
various phases/stages of a migrate operation to migrate the
source Vserver 320, according to one aspect of the present
disclosure. The following describes the various phases/
stages of the migrate operation with respect to FIGS. 5A-5F
using the various components described above with respect
to FIGS. 4A-4B.

[0122] Setup Phase 500: FIG. 5A shows the setup phase
process 500 of a migrate operation. In one aspect, the setup
phase of the disclosed technology has various innovative
features, including creating the CG 331 (FIG. 3C) with the
source storage volumes (e.g., 330A-330N, FIG. 3C or 428A
and 430A of FIGS. 4A/4B) belonging to the source Vserver
320 in the storage module. This enables group control close
to a data transfer engine in the storage module, which allows
for efficient interaction between the control plane 338 and a
data transfer engine (e.g., 348 and/or 349, FIG. 3C) of the
data plane 340. Separate master processes (e.g., 404 and
342, FIG. 4A) are executed in the source cluster 326 and
destination cluster 328, respectively, to handle failure sce-
narios in the setup phase. Recovery is based on idempotent
principle (implemented by all components). As described
below in detail, different types of failure can be handled,
including cluster failure, node failure, process failure, net-
work port failure, and network partitioning. Volume and
aggregate granular placement support volume to aggregate
maps on the destination cluster 328. Volume placement
during the setup phase is based on properties such as
capacity, storage tiers (i.e. performance and/or capacity
tiers) and others. LIF placement is executed to ensure
affinity to volumes to avoid cross-node traffic after migrat-
ing. Source volume configuration is preserved at the desti-
nation cluster 326. In another aspect, a client system can
specify the aggregates where the destination volumes can be
placed. The client system can also specify which node or
port LIFs at the destination cluster 326 are to be used for the
destination Vserver 324, after migration.

[0123] In one aspect, the setup phase of the migrate
operation involves updating RDB tables 432A/432B at both
the source cluster 326 and destination cluster 328 nodes to
track migrate operation processing. The Orchestrator 342

US 2023/0136363 Al

thread is created on a node in the destination cluster 328 to
perform various operations, described below. The node on
which the Orchestrator 342 is running is tracked persistently
by the RDB table 432B using “owning node” information.
This enables restarting the Orchestrator 342 on other nodes,
if the owning node fails.

[0124] The setup phase further includes creating the des-
tination Vserver 324 at a node of the destination cluster 328.
The destination Vserver 324 and the source Vserver 320 that
is being migrated have the same name and UUID (universal
identifier). The destination Vserver ID is different than the
source Vserver ID. The destination Vserver uses the same
MSID (master set identifier) as used by the source Vserver
320 for the volume that will be created later by the Con-
figuration Agent 414B. The MSID is a volume identifier that
does not change. The destination Vserver 324 created at this
stage is placed in a “stopped” state and is enabled after the
migration operation, as described below in detail.

[0125] The setup phase further includes setting up CRS
transfer streams to replicate configuration information from
the source cluster to the destination cluster. This replicates
the objects within a Vserver-domain. As part of the CRS
replication, definition of different objects is called to create
objects on the destination cluster 328. This creates volumes
and LIFs on the destination cluster 328. Certain objects may
need special handling when they are created on the desti-
nation cluster 328. For example, the source Vserver 320 may
contain a volume that is a destination of a mirroring rela-
tionship (i.e., the source Vserver 320 receives information
mirrored from another Vserver or any other entity). Because
the migrate operation also uses mirroring technology, after
CRS replication with no special handling, the volume will
result in two mirroring sources (one Vserver migrate source,
and another mirror source of the volume). To avoid such
problems, CRS skips applying this configuration informa-
tion until the migration operation is in the post-cutover
phase. Once the volumes are created on the destination
cluster, a group synchronous mirroring relationship is cre-
ated with the CG 331 containing the source volumes 430A/
428A in the source Vserver 320. This uses module 4258,
described above. The mirroring relationship uses a new
“Migrate” policy. This policy and its information are stored
persistently and is available inthe management module and
the storage module of the source cluster 326. The “Migrate”
policy may not include an “auto-cutover” bit because the
auto-cutover functionality is managed by the Orchestrator
342.

[0126] Referring to FIG. 5A, process 500 begins in block
B502, when a plurality of pre-check operations is executed
at both the source cluster 326 and the destination cluster 328.
The RDB tables 432A/432B are created. The orchestrator
342 is initialized on an owning node of the destination
cluster 328. An entry is created in the RDB tables 432A/
432B identifying the owning node, the orchestrator 342, the
migrate operation (e.g., a job identifier) and a state value
indicating the setup phase of migrate operation. The state
control module 345A updates the initial state of the migrate
operation.

[0127] In block B504, the orchestrator 342 creates the
destination Vserver 324 with a same Vserver name and
UUID as the source Vserver 320. The destination Vserver
324 identifier may be different from the Vserver 320 iden-
tifier. The orchestrator thread 342 configures the state of

May 4, 2023

destination Vserver 324 as “stopped”, which indicates that
the destination Vserver 324 is not ready for use yet.
[0128] In block B506, a CRS stream is created by the
configuration agent 414A to replicate the Vserver configu-
ration data 426 A at the destination cluster 328. Thereafter, in
block B508, the destination storage volumes 428B/430B are
selected and configured. In one aspect, storage volumes are
selected based on properties such as capacity, fabric-pool,
and others. In one aspect, the destination storage volumes
428B/430B are selected from a list of qualified aggregates.
The list may be provided by a client system. In another
aspect, the volumes are selected based on encryption
requirements. In yet another aspect, destination volumes are
selected based on available storage capacity, especially if the
source volumes have a space guarantee. In another aspect,
the destination volumes are selected based on performance
criteria, e.g., latency, number of IOPS, available perfor-
mance capacity or any other parameters, as described below
in detail. The management system 132 (FIG. 1) collects
storage volume performance data on a regular basis and this
information is then used to select the destination volumes for
the migrate operation.

[0129] Furthermore, in block B508, LIFs are created for
the destination Vserver 324. LIF selection or placement is
executed to ensure affinity to volumes to avoid cross-node
traffic after migrating. In one aspect, a destination port from
a given IP address space in the destination cluster 328 is
selected based on level 2 (I.2) connectivity with a source
cluster port. The ports may be located at network adapters
used in the source and destination clusters to communicate
with each other. Both the destination and source ports are
within a same subnet. This prevents any data outage, after
the migrate operation is complete.

[0130] In block B510, after the destination volumes are
created at the destination cluster 328, a group mirroring
relationship is created by generating the CG 331 with all the
source volumes that will be mirrored to the destination
volumes as a group. This relationship is generated by
module 425B. This information is stored as part of the
“migrate” policy and stored in both the storage module and
the management module. An “auto-cutover” bit is also
established by the orchestrator 342, if desired by the user.
The auto-cutover bit may be stored in a job object that is
created by the orchestrator 342 to track the migrate opera-
tion or at any other location. Thereafter, in block B512, the
process moves to the transfer phase 501, described below
with respect to FIG. 5B.

[0131] Transfer Phase 501: The transfer phase 501 of the
migrate operation, as shown in FIG. 5B is executed using the
asynchronous engine 348A and synchronous engine 349A
(FIG. 4A) using the group level mirroring relationships for
the CG 331 created during the setup phase. The transfer
phase 501 can be paused and then resumed, as described
below in detail. The transfer phase 501 includes reusing the
RDB tables 432A/432B to track group level mirroring
relationships created with a migrate policy. The transfer
phase performs an initial baseline transfer of the source
volumes 428 A/430A to the destination volumes 428B/430B
managed by different nodes (e.g., 333A/333B, FIG. 4B) of
the source cluster 326. Each node’s group control module
346 A coordinates completion of the baseline transfer of the
volumes hosted on that node. A master group control module
at a master node coordinates cross-node baseline transfer
completions. When the baseline transfers are in-progress,

US 2023/0136363 Al

the source volumes 428A/430A continue to accept incoming
1/Os that result in new changes. To keep the destination
volumes 428B/430B closely synchronized with the source
volumes, a new incremental snapshot of source volumes is
taken to replicate any incremental changes, as described
below. This is executed continuously so that data on the
destination volumes 428B/430B is close to the data on the
source volumes 428A/430A. This is referred to as “back-
to-back transfers”. In addition to data replication, the snap-
shots of the volumes are also replicated to the destination
cluster. This includes user-created, system-created sched-
uled snapshots, snapshots created for other use cases such as
Asynchronous/Synchronous/cloud backupmirroring rela-
tionships, described below in detail.

[0132] Also, during the transfer phase, new snapshot cre-
ations are allowed, and any newly created snapshots are also
replicated to the destination cluster 328. This is controlled
by having a “mirror all snapshots” rule within the migrate
policy. If the minoring relationship is using the migrate
policy, each volume reaches “Ready for Cutover” criteria
when the last few (e.g.,3) back-to-back transfers are com-
plete within a certain duration, e.g., 5 minutes. When all the
nodes/volumes reach “Ready for Cutover” criteria, the mas-
ter group control module declares the CG 331 as “Ready for
Cutover”. The Orchestrator 342 uses the polling agent 410B
to check on the progress and status of this phase.

[0133] Even after declaring “Ready for Cutover”, the
group control module 346A continues to perform back-to-
back transfers including transferring user created or sched-
uled snapshots so that the destination volumes keep up with
the changes at the source volumes. It is possible that after
declaring “Ready for Cutover”, additional snapshots created
on the source cluster before the Orchestrator 342 disables
source snapshot creation may need to be transferred. These
snapshots are transferred either as the back-to-back phase
continues waiting for the cutover input from the Orchestra-
tor 342 or are transferred during the “cutover-pre-commit”
phase that is described below.

[0134] Furthermore, during the transfer phase, CRS rep-
lication from the source cluster 326 to the destination cluster
328 continues, and the Orchestrator 342 continues to poll the
status of the “Create+Auto Initialize” operation. If this
operation fails, for a re-try able error, the Orchestrator 342
retries the “Create+Auto Initialize” operation. The “Create+
Auto Initialize” is an idempotent operation and the Orches-
trator 342 can continue calling this API (425B, FIG. 4A)
without performing any cleanup or undo steps.

[0135] At this stage of the transfer process, the migrate
operation is ready for a cutover phase. If an auto-cutover
option is off, then the process waits for a user input to invoke
the cutover phase. If the auto-cutover is on, the migrate
operation state goes from “Transfer” to “Cutover phase.” As
an example, the auto-cutover may be enabled as a default
setting. It is noteworthy that while waiting to start the
cutover phase, the back-to-back transfer workflow contin-
ues. The Orchestrator 342 continues to poll on the operation
UUID created for the “Create+Auto Initialize” operation to
monitor the progress or status of the background transfers.
If the operation fails and it is not fatal, the Orchestrator 342
retries by retrying the “Create+Auto initialize operation.

[0136] Referring now to FIG. 5B, the transfer phase entry
begins in block B514. In block B516, the source volumes

May 4, 2023

428A/430A are initialized based on the migrate policy that
was created by module 425B for the migrate operation
during the setup phase.

[0137] In block B518, a baseline transfer of the source
volumes 428A/430B for each node (e.g., 333A and 333B,
FIG. 4B) is executed. In one aspect, to execute the baseline
transfer, a snapshot (i.e., a point in time copy) of the source
volumes 428A/430A is taken and transferred to the desti-
nation nodes (e.g., 335A/335B, FIG. 4B). The baseline
transfer may be executed using the asynchronous engine
348A. Once the baseline transfer is completed for all source
nodes, the process executes incremental transfer at the
source volumes, since baseline transter. This may be
executed by taking an incremental snapshot of the source
volumes. Thereafter, in block B522, the process determines
if all the volumes are “ready for cut-over”. In one aspect, this
is based on completing the baseline and incremental transfer.
Once the “ready for cut-over” stage is reached, the migrate
operation moves to a pre-commit phase of the cut-over
phase. If the auto-cutover option is enabled, then the migrate
operation automatically moves to the pre-commit phase in
block B524, otherwise, a user input is used to move the
pre-commit phase. It is noteworthy that the system continues
to allow taking snapshots of the source volumes during the
transfer phase, even after the baseline transfer and incre-
mental transfer. These snapshots are transferred during the
pre-commit phase, when the source Vserver access is dis-
abled, as described below.

[0138] Cutover phase: In one aspect, the cutover phase
may be user initiated or initiated automatically when the
auto-cutover option is enabled. The auto-cutover can be
enabled or disabled by setting a bit value associated with the
source Vserver 320, a user or any other system. The auto-
cutover setting is available to the Orchestrator thread 342 to
initiate the cut-over phase. In one aspect, the Orchestrator
342 starts the cutover phase, which has multiple stages, e.g.,
a pre-commit stage to prepare the source cluster 326 and the
destination cluster 328 to enter an “outage window”; a
commit stage when the outage window occurs with no user
system data access; a source commit stage that prevents
access to data from the source cluster 326 in preparation to
transfer control over to a destination node in the destination
cluster 328; a destination commit stage to restore access to
the migrated Vserver 324 from the destination cluster 328;
and a post-commit stage when access is restored via the
destination cluster 328. The following provides a description
of the various stages of the cutover phase:

[0139] Pre-commit stage 503: FIG. 5C shows a process
flow 503 for the pre-commit stage/phase of the cut-over
phase for migrating the source Vserver 320 to the destination
cluster 328 as Vserver 324. The pre-commit stage transfers
the mirroring relationships to the synchronous engine 349B
to ensure a short cutover window. The term cutover window
means a duration during which the cut-over phase needs to
be completed for the migrate operation to succeed. The
pre-commit stage begins with starting a “Pre-Commit
Timer,” shown as the source timer 412A (FIG. 4A) on the
source cluster 326. The source timer 412A is set to X
minutes, e.g., 120 minutes, within which this stage has to be
completed. The source timer 412A detects cases where the
pre-commit stage fails or is likely to fail and hence can’t
progress to the next, commit stage.

[0140] The source timer 412A is disabled when the pro-
cess moves to the commit stage, back to the transfer phase

US 2023/0136363 Al

due to errors or if the migrate operation fails. When the
source timer 412A expires, the migrate operation is failed,
and the pre-commit steps are undone. The migrate operation
state is updated to indicate a “Migrate failed” state. During
pre-commit, the source Vserver 320 configuration is locked
i.e., no changes can be made after the lock is in place. The
process waits for pending configuration replication to com-
plete and for the configuration changes to apply on the
destination cluster 328. If the source Vserver 320 contains
volumes that are mirroring destinations, then the configu-
ration update for those volumes is postponed till the post
cutover stage, described below.

[0141] The Orchestrator 342 co-ordinates the various calls
for the pre-commit stage. These calls can be used to perform
various pre-commit stage tasks, e.g., if a mirroring subsys-
tem chooses not to replicate snapshots when it transitions to
the synchronous engine 349A, it can perform steps to
disallow snapshot creation at this stage; for mirroring to the
cloud layer 136, it can choose to quiesce and abort transfers
to the cloud layer 136; and if the source Vserver 320 is the
destination of another mirroring relationship, quiesce and
abort the relationship from its source Vserver.

[0142] Once the various subsystems have completed pre-
commit tasks, the group control module 3468 is called to
transfer from the asynchronous engine 348A to the synchro-
nous engine 349A. This group control workflow includes
stopping and waiting for completion of a previous mirroring
workflow which was performing back-to-back transfers;
starting a new group workflow to perform the following
operations independently across volumes and nodes: wait
for ongoing snapshot transfers to complete; perform any
additional back-to-back transfers if the destination volume
hasn’t converged to the source volume; perform a last
asynchronous transfer; and transition from an asynchronous
to a synchronous state and wait for the volume to reach an
“INSYNC” state. Once all the destination cluster nodes
(e.g., 335A/335B, FIG. 4B) reach the “INSYNC” state,
declare to the Orchestrator 342 that the pre-commit stage is
complete. All NFS delegations are revoked to prepare for the
commit stage of the cut-over phase, as described below in
detail.

[0143] Referring now to FIG. 5C, the pre-commit stage is
entered in block B530, after the transfer phase of the migrate
operation is successfully completed. In block B532, the
orchestrator thread 342 locks the source Vserver 320 con-
figuration to prevent any changes. In block B534, any
configuration updates that are pending at the source cluster
326 are applied to the destination Vserver 324. In block
B536, non-migrate operation related snapshot creation is
disabled at the source Vserver 320, any mirroring relation-
ships that mirror source volumes to the cloud layer 136 are
paused and any other mirroring relationships where the
source Server 320 volumes are the destination or source for
a mirroring operations are paused. This ensures that the
configuration and data is not likely to change at the source
cluster 326. Thereafter, in block B538, all asynchronous
transfers of source Vserver 320 snapshots to the destination
cluster 328 are completed. The transfer process is then
moved to the synchronous engine 349A that synchronously
transfers information for the plurality of nodes 333A/33B at
the source cluster 326. The process determines if all the
source volumes are ready for cut-over within a cut-over
duration. If yes, then the status of all the volumes is updated
to “INSYNC” in block B540. This information is stored at

May 4, 2023

RDB tables 432A/432B. If the volumes are not ready for the
commit phase, the pre-commit stage is failed. If successful,
the migrate operation moves the commit state that is
described below in detail with respect to FIG. 5D.

[0144] Cutover commit stage 505: FIG. 5D shows a pro-
cess 503 for the cutover commit stage that is intended to
complete this stage within a “total outage window” i.e., a
duration when client system 1/0s are delayed for processing.
A persistent state for the commit stage is maintained at both
the clusters 326 and 328, e.g., at the RDB tables 432A/432B.
The commit stage begins in block B544, after a successful
pre-commit stage, described above with respect to FIG. 5C.
[0145] In block B546, an auto-resync feature is disabled.
This stops execution of any mirroring relationships associ-
ated with the source volumes. The source timer 412A is
started in the source cluster 320 owning node and then in
block B548, access to the source Vserver 320 is stopped.
The migrate operation is failed if the source timer 412A
expires and the source Vserver 320 is restarted to process
1/O requests.

[0146] Inblock B550, the destination cut-over timer 412B
is started. In block B552, the group control module 3468 is
started to control the workflow of a commit stage idempo-
tent operation. The workflow includes the following: drain
and fence any I/O on the source cluster 326; replicate any
content stored outside the source volumes to the destination
cluster; take a final snapshot of the source volumes, prior to
allowing new I/Os to be processed from the destination
cluster 328, which enables data integrity checks between the
source cluster 326 and the destination cluster 328; and
convert the destination volumes from a read-only configu-
ration to read/write volumes to allow reads and writes from
the destination cluster 328. It is noteworthy that the desti-
nation Vserver 324 is not yet operational, therefore, client
generated 1/0s are still not processed from the destination
cluster 328. At this point, if a failure occurs, the source
Vserver 320 can be restarted. If the migrate operation
doesn’t transition to a next stage, i.e., the PONR (Point of
No Return) stage within a certain duration, the destination
timer 412B expires and the source Vserver 320 is restarted
on the source cluster 326.

[0147] Once the cutover commit stage is completed in
block B554, the Orchestrator 342 is notified. To handle any
missed notification, the cutover completion status is also
polled by the Orchestrator 342. For any errors that can be
retried, the Orchestrator 342 can restart the migration from
the beginning of the transfer phase. If the commit stage fails,
the source Vserver 320 is restarted and the source cutover
timer 412A is disabled. The migrate operation can then be
restarted from the transfer phase. The destination volumes
428B are reconverted to DP (i.e., read-only) volumes, if they
were converted to read/write configuration during the com-
mit stage.

[0148] Post Commit stage 507: FIG. 5E shows the post
commit stage 507 that begins in block B564, according to
one aspect of the present disclosure. During the post commit
stage 507, in block B566, the migrate operation state is
updated to the PONR state on the source and destination
cluster RDBs 432A/432B, respectively, to prevent the
source cluster 326 starting the source Vserver 320 again. In
block B568, the source cutover commit timer 412A and the
destination timer 412B are cancelled. In block B570, the
destination Vserver 324 is started on a destination cluster
node (e.g., 335A or 335B, FIG. 4B). Thereafter, in block

US 2023/0136363 Al

B572, the migrate operation moves to a post cut-over phase
and then a final clean-up stage that are both described below
in detail with respect to FIG. 5F.

[0149] Post Cutover phase and Final Cleanup phase 509:
FIG. 5F shows the process 509 for the post cut-over phase
and the final cleanup phase of the migrate operation, accord-
ing to one aspect of the present disclosure. Although both
phases are shown within FIG. 5F, the final cleanup phase
occurs after completion of the post cut-over phase that
begins in block B580. In block B582, all mirroring relation-
ships are first deleted on destination cluster 328. Thereafter,
in block B584, the snapshots created for the migrate opera-
tion on the destination cluster 328 are deleted, except for the
final snapshot. In block B586, the final configuration
retrieved from the source Vserver 320 are applied to the
destination Vserver 324. If there is an error during post
cutover, the Orchestrator 342 retries to fix the error. If the
source Vserver 320 contained any volumes that were con-
figured as destination volumes for a mirroring relationship,
then the mirroring objects that were not applied on the
destination cluster 328 in the earlier phases of the migrate
operation are applied. Thereafter, the final cleanup phase is
started in block B588.

[0150] In one aspect, the final cleanup is controlled by an
“auto-source-cleanup” setting in the migrate policy. If the
“auto-source-cleanup” option is not set, the process stays in
this phase till the client system invokes a “source-cleanup”
operation. Once the client system invokes the “source-
cleanup” operation or if auto-source-cleanup option is set,
the operation moves to a final cleanup phase in block B588.
Thereafter, in block B590, all mirroring relationships of the
source volumes at the source cluster 320 are deleted from
RDBs 432A/432B. All snapshots taken of the source
Vserver 320 are deleted.

[0151] In block B592, data integrity checks are performed
to ensure that the final snapshot of the destination Vserver
324 is the same as the source Server 320. The enables the
source Vserver 320 to be brought back online if there is a
failure. Thereafter, the source volumes 428 A/430A, the LIFs
associated with the source Vserver 320, any other objects
created for or by the source Vserver 320 and the source
Vserver 320 are deleted. In block B594, the final snapshot of
the destination volumes 428B/430B is also deleted. The
status of the migrate operation is then updated in block
B596.

[0152] State Diagram 600: FIG. 6 shows a state diagram
600 for tracking the various phases of the migrate operation
described above in detail. The migration operation states are
tracked by a state control logic 345A (FIG. 4A) or by any
other module. As mentioned above, the migration operation
states are persistently stored at both the source cluster 326
and the destination cluster 328, so that if the migrate
operation is paused, failed or aborted, appropriate action can
be taken.

[0153] The migration operation begins with a pre-check
state 602, and after the pre-check, the setup phase state 604
is reached, described above with respect to FIG. 5A. Once
setup phase is complete, the transfer state 606 is reached,
described above with respect to FIG. 5B. After the transfer
phase is completed, the migrate operation transitions to a
“ready for cut-over” state 608, also described above with
respect to FIG. 5B. When all the source volumes are ready
for cut-over, the migrate operation transitions to the cut-over
phase 626. Within this phase there are multiple stages/states,

May 4, 2023

namely the pre-commit state 628 described above with
respect to FIG. 5C, the source commit state 630 and the
destination commit state 632, described above with respect
to FIG. 5D. After the destination commit state, the migrate
operation transitions to the post commit state 634. State 636
indicates the completion of the post commit state described
above with respect to FIG. S5E. The migrate operation then
moves to the post-cutover state 638 and the source (or final
cleanup state) 640, both described above with respect to
FIG. 5F. State 642 indicates successful completion of the
migrate operation, while state 644 indicates a failure. The
migrate operation failure is described below with respect to
FIGS. 7E and 7F.

[0154] The state diagram 600 also shows the pause state
610 that indicates the migrate operation has been paused.
The start of the pause stage is indicated by state 612, while
a successful pause operation is shown by state 616. If the
pause attempt fails, then it is shown by state 614. Details of
the pause process are provided below with respect to FIG.
7A.

[0155] Inone aspect, the migrate operation can be aborted,
as shown by state 618. The abort state can be reached from
the pause states 616, pause failed state 614 or other failed
states. It is noteworthy that the abort state can be reached
from other states as well, e.g., the abort state may be reached
before reaching the cut-over stage. State 620 indicates that
the abort process has started, while state 622 indicates a
successful abort operation. If an abort attempt fails, it is
indicated by state 624.

[0156] Migrate Pause Operation 700: FIG. 7A shows the
migration pause operation 700, according to one aspect of
the present disclosure. Depending upon the size of the
source Vserver 320 that is migrated, the migrate operation
may be a long operation. The technology disclosed herein
allows a client system to pause the migrate operation for one
or more reasons, e.g., to perform operations that were not
allowed while the migration is in progress and reduce
network usage or any other reason. The migrate pause option
is before the cutover commit stage described above. When
the migration operation enters a “pausing state,” (612, FI1G.
6) data replication and configuration information replication
between the source cluster 326 and the destination cluster
328 is paused. However, objects created on the destination
cluster 328 such as volumes, snapshots, LIFs and others are
left intact. The destination Vserver 324 on the destination
owning node (e.g., 335A) remains locked, and no modifi-
cation to the destination Vserver 324 is permitted. The
source Vserver 320 is unlocked for example, to enable
volume deletion/addition/move, LIF changes and other
operations. The mirroring relationships between the source
cluster 326 and destination cluster 328 are deleted. It is
noteworthy that the Orchestrator 342 and other migrate
operation threads check for a pending pause request, prior to
starting any extensive operation or when the Orchestrator
342 is restarted.

[0157] In one aspect, to pause the migration operation, a
command is received in block B702. The RDB tables
432A/432B are updated to indicate a pending migrate pause
status. During this state, no other migrate operation is
allowed on the source Vserver 320. In block B704, during
this state, any data replication between the source cluster
326 and destination cluster 328 is aborted. If the CG 331 is
still performing initialization (i.e., a baseline transfer, as
described above), it terminates the ongoing initialized work-

US 2023/0136363 Al

flow. To stop configuration replication, a state of the Vserver
CRS stream is set to “down” on both the source cluster 326
and the destination cluster 328.

[0158] If the migrate state is in the cutover pre-commit
stage, then in block B706, the steps already performed
during the pre-commit stage are undone. The progress of
undoing the steps from this stage are tracked persistently so
that if the Orchestrator 342 or any other thread become
unresponsive, the pause operation could still be idempotent.
If the source Vserver 320 contains mirroring destinations,
the mirroring relationship is resumed and the source Vserver
320 is unlocked in block B708. The CG 331 mirroring
relationships are removed, and any snapshots taken prior to
the pausing state are preserved. Thereafter, in block B710,
the migrate operation state is then moved to a “Paused” state
(616, FIG. 6). During the “Paused” state, only “Resume” or
“Abort” operations can be performed.

[0159] A previously paused migrate operation is resumed
using a “Vserver migrate resume” operation. The resume
operation is in effect the idempotent version of the “Vserver
migrate start” operation. It performs all the operations
performed for the source Vserver 320 to restart the migra-
tion. One difference between a new Vserver migrate opera-
tion vis-a-vis a Vserver resume operation is that some or all
the required objects on the destination cluster 328 may
already be present, hence the objects at the destination
cluster are reconciled with the source cluster 326 by the CRS
344B. For the resume operation, the migrate operation will
restart from the setup phase, but it will not result in recopy-
ing the entire data and configuration information, instead
only an incremental copy operation is used that replicates
changed information. This saves time and is hence more
efficient.

[0160] Cloud Backup Process 726: The source Vserver
320 may have one or more volumes (e.g.,428A/430A) that
may have a cloud backup relationship. This means that the
snapshot of the volumes are backed up to a data store in the
cloud layer 136.

[0161] FIG. 7B shows a process 726 for handling the
cloud backup relationships during a migrate operation as
described above. In block B728, the process first determines
that one of source volumes 428A/430B has a cloud backup
relationship. This information is obtained from volume
configuration data that is accessible to the Orchestrator 342.
In block B730, the migrate operation checks if the successful
of the migrate operation will result in a capacity-based
license violation and whether the destination cluster 328 has
network access to the cloud layer 136. This information is
stored as cluster configuration data and available to the
Orchestrator 342. In block B730, the migration is failed, if
the destination cluster 328 does not have a license to mirror
the volumes migrated from the source cluster 326 to the
cloud layer 136.

[0162] If the destination cluster 326 has the appropriate
license, then in block B732, the data transfer to the cloud
object storage continues during the migration operation till
the source Vserver 320 reaches the cutover pre-commit
phase. It is noteworthy that cloud storage uses different data
format on a cloud object store compared to the storage
system 120. For example, L0 (level 0) volume blocks that
store data are packed together in a single cloud block. The
mapping between a virtual volume block number (VVBN)
to the cloud back number (CBN) are tracked in a metafile
“vmap metafile”.

May 4, 2023

[0163] In block B734, transfer to the cloud layer 136 is
paused using a “quiesce” operation on the cloud backup
relationship. The cloud backup specific metafiles are rebuilt
on the destination cluster 328 and no metafile is replicated
to the destination cluster 328. In the post cutover phase, new
mapping between VVBN to cloud block number is con-
structed.

[0164] Volume Placement (736): FIG. 7C shows a process
736 for volume placement, according to one aspect of the
present disclosure. The volume placement occurs during the
setup phase of the migrate operation, described above with
respect to FIG. 5A. In one aspect, the volume placement at
the destination cluster 328 is based on a list of qualified
aggregates. If a source volume (428A/430A) is configured
with a space guarantee, then only a destination aggregate
with enough storage room is used. The destination aggregate
is picked from a list of qualified aggregate based on: tracking
the number of TOPS for the source volumes 428A/430A
processed by the source Vserver 320 at the source cluster
326 (block B746). This information is managed by the
management module 134 that retrieves TOPS data for each
volume from the storage system 120 and if applicable, the
cloud layer 136.

[0165] The available headroom on the destination aggre-
gates is determined in block B742. This is based on tracking,
by the management module 134, the latency and a maximum
number of TOPS (and/or utilization) processed by the des-
tination aggregates. In this context, latency means a delay in
processing an 1/O request and may be measured using
different metrics for example, a response time. Headroom in
this context means available performance capacity of a
destination aggregate at any given time. Headroom can be
based on a relationship between latency and a maximum
number of TOPS (or utilization) that can be processed by
each destination aggregate. At a high level, the available
headroom at any given time can be defined by the following
relationship:

Headroom=0Optimal Point/Optimal Point-Operational
Point

[0166] A latency v. IOPS curve is generated, where
latency is plotted on the Y-axis and maximum TOPS (or
utilization) is plotted on the X-axis. An optimal point, after
which latency shows a rapid increase represents maximum
(or optimum) utilization of a resource beyond which an
increase in workload is associated with higher throughput
gains than latency increase. Beyond the optimal point, if the
workload increases at the destination aggregate, the through-
put gains or utilization increase is smaller than the increase
in latency. An operational point shows a current throughput
of a destination aggregate.

[0167] Inblock B744, the destination aggregate is selected
based on the tracked IOPS, available headroom, size of the
source volume and the available space on the destination
aggregate. If the source volume is thin-provisioned, then the
size of the source volume could larger than the actual space
used by the volume. In that case, the actual space used is
considered for volume placement, instead of the presented
volume size. The volume placement operation will use the
logical volume size plus extra space required for any space
efficiency violation when it looks for a destination aggre-
gate.

[0168] LIF Placement 746: As part of the CRS replication,
the data LIFs on the source Vserver 320 are replicated to the
destination cluster 328. FIG. 7D shows the process for

US 2023/0136363 Al

creating LIFs on the destination cluster 328, according to
one aspect of the present disclosure. In block B748, one of
the ports (e.g., a port at the network adapter 310, FIG. 3A)
on the destination cluster 328 in each IP address space that
has 1.2 (Level or Layer 2) connectivity to a source cluster
port in the same subnet as the destination data LIF port is
selected. L2 in this context is a broadcast Media Access
Control (MAC) level network. In block B750, a LIF man-
ager (not shown) performs [.2 ping from the destination port
to the source port. This ensures that the selected destination
port is reachable, and there will be no data outage once the
migrate operation is complete. The external clients 108 will
also be able to communicate through the selected destination
port.

[0169] If the destination data port has no [.2 connectivity
to the source data port, then in block B752, the LIF manager
checks if there is a subnet object on the destination cluster
328 that maps to the same subnet of the source LIF. If such
a subnet object exists, then it picks any port from a broadcast
domain associated with the source subnet to create a desti-
nation LIF. Prior to migration any IP address space and/or
VLAN are created on the destination cluster 328. The
number of LIFs created on the destination Vserver 324 are
the same as that on the source Vserver 324. Any additional
LIFs that need to be created, if the topology of the destina-
tion cluster 328 is different from the source cluster 326, are
created after the migration is complete. It is noteworthy, that
the LIF connectivity checks described herein are optional
and the migrate operation can be executed without conduct-
ing the LIF connectivity checks. Furthermore, if the source
cluster 326 and the destination cluster 328 are not in the
same [.2 network, the migrate operation can be executed if
connectivity is available via a .3 (Level or Layer 3) network
that is governed by managing network transmission using IP
addresses. As an example, the BGP (Border Gateway Pro-
tocol) and virtual IP (VIP) address can be used for LIF
migration. The VIP LIFs, being virtual, are not tied to any
particular node/port. The prerequisite is the existance of a
BGP LIF on each node in the destination cluster 328. BGP
is a standardized exterior gateway protocol designed to
exchange routing and reachability information among
autonomous systems on the Internet. BGP is classified as a
path-vector routing protocol, and it makes routing decisions
based on paths, configured network policies, or rule-sets.

[0170] Migrate Operation Failure Handling 701: FIG. 7E
shows an example of a process flow 701 for handling
different failure conditions that may occur during the various
phases/stages of the migrate operation described above. In
one aspect, an inter-cluster network failure may be detected
in block B703, while the migration operation is in progress.
The inter-cluster, network failure may be detected by a
network access layer (e.g., 806, FIG. 8). The inter-cluster
network failure may result in a degraded or loss of network
connection between the source cluster 326 and the destina-
tion cluster 328. The failure may be detected or reported to
the failure modules 406 A/406B, depending on which cluster
or node detects the network failure. In block B705, the
process determines if the migration is in the cut-over phase.
This information is available from the migrate operation
state (FIG. 6) that is stored at RDBs 432A/432B. If yes, then
the source Vserver 320 is restarted if the PONR stage has not
been reached. If the migrate operation is not in the cut-over
phase, then in block B709, a job object is created to monitor
the health of the inter-cluster communication. The migrate

May 4, 2023

operation is restarted and the process moves to block B729
that is described below in detail.

[0171] As another example, a process involved with the
migrate operation may fail in block B711. In block B713, the
failure module 406A/4068 determines if the failed process
is the orchestrator 342. If not, then the failed process is
restarted at a healthy node in block B715. Thereafter, in
block B717, any outstanding requests for the failed process
are processed and the migrate operation continues. If the
failed process is the orchestrator 342, then the process
moves to block B721, described below.

[0172] Inblock B719, a failure is detected at a destination
node (e.g., 335A-335B). The orchestrator 342 is started at a
new healthy node in block B721. The migrate operation then
waits for the resources at the new node to become available
in block B723. The process then moves to block B729, also
described below in detail.

[0173] In yet another example, the process determines if
there is an intermittent failure in block B725. If yes, the
process moves to block B733, described below in detail. If
not, then the intermittent failure is reported to a client system
in block B727 and the process moves to block B729,
described below.

[0174] In another example, a network error may occur
within the source cluster 326 or the destination cluster 328
in block B731. The network error may occur due to soft-
ware/hardware failure within the affected cluster. In block
B733, the migrate operation tries a failing idempotent task
for a certain number of times (e.g., N times). If successful,
the migrate operation continues, otherwise, the process
moves to block B729.

[0175] In block B729, a current status of the migrate
operation is obtained from the state diagram of FIG. 6 that
is updated and stored at RDB 432A/432B. If the migrate
operation is in the cut-over phase (B737), then the cut-over
tasks are undone in block B739 and the process moves to
block B743. If the migrate operation is in the cut-over
pre-commit stage (B741), then the pre-commit steps are
undone in block B743. If the migrate operation is in the
transfer phase (B745), then the transfer phase tasks are
undone and the process moves to block B751. If the migrate
operation is in the setup configuration phase (B749), then the
setup tasks are undone on block B751 and the migrate
operation is restarted in block B753.

[0176] If the migrate operation is in the post cut-over
phase (block B759), then the post cut-over tasks are undone
in block B761 and the migrate operation is restarted from the
post-cut-over phase in block B763. If the migrate operation
is in the final (or source) cleanup stage (B765), then the
cleanup tasks are undone in block B767 and the migrate
operation is restarted from the cleanup stage.

[0177] FIG. 7F shows another process flow 714 to handle
the various failure conditions that may occur during a
migrate operation. The failure handling is executed by the
failure module 406A/406B in conjunction with the other
modules, e.g., the orchestrator 342. The migrate operation
enters a failed stage when the migrate operation cannot be
auto-healed due to failures that may require manual inter-
vention. After an error is fixed, a client system (e.g., 108,
FIG. 1) can resume the migrate operation or can abort the
migrate operation. The migrate failure handling is similar to
the migrate pausing process described above. In another
aspect, the failure handling state can be combined with the
pause handling operations for failures that occurred prior to

US 2023/0136363 Al

the cutover phase. In one aspect, failure handling depends on
the state of the migrate operation when the failure occurred,
as described below with respects to blocks B716, B718,
B720, B722 and B724 of FIG. 7F.

[0178] Setup phase Failure Handling (B716): If the
migrate operation fails during a pre-check operation; the
failure is reported to the user. If the migrate operation fails
during an asynchronous pre-check stage, the operation state
at the RDB is updated to the “migrate_failed” state with the
appropriate reason. If the migrate operation fails after the
destination Vserver 324 is created, then the destination
Vserver 324 is not deleted but it stays locked. If the migrate
operation failed during volume creation at the destination
cluster 326, the CRS streams are aborted and the migrate
operation state is updated to “migrate_failed” state.

[0179] Transfer Phase (B718): If the migrate operation
failed during this phase, then the transfer operation to
transfer snapshots of the source volumes 428A/430A is
aborted, the mirroring relationships are released, the CRS
streams are aborted, the snapshots taken during the transfer
phase are retained and the migrate operation state is updated
to migrate_failed state.

[0180] Cutover Pre-Commit (B720): If the migrate opera-
tion failed during this stage of the migrate operation, then a
transfer operation transferring source volume 428A/430A
snapshots is aborted, the mirroring relationships are
released, the CRS streams are aborted, the snapshots taken
before the failure are retained and the migrate operation state
is updated to migrate_failed. If the source Vserver 320 is
locked, then it is unlocked.

[0181] Cutover Commit (B722): If a failure is triggered on
the source cluster 326 e.g., the source cutover timer 412A
expired, then PONR updates are disallowed from the des-
tination cluster 328, drain and fence steps are undone on the
source cluster 326, if it was already performed and the
mirroring relationships are removed. The source Vserver
320 is restarted and unlocked. If the destination cluster 328
cannot communicate with the source cluster 326 to stop the
source Vserver, then the source cluster 326 performs its
recovery. The destination cluster 328 deletes all the snap-
shots for the migrate operation, deletes the mirroring rela-
tionships, and the migrate operation state is updated to
migrate_failed state. If commit stage returns an error, then
the source cluster 326 performs the recovery based on the
source cutover timer 412A. The snapshots prior to the failure
are retained and any cutover commit steps are undone. If any
of the destination volumes 428B/430B were configured as
read/write volumes, they are rolled back to a read-only state.
The final snapshot is also deleted.

[0182] Cutover Post Commit (B724): If a PONR state
update fails on the source cluster 326, then the source cluster
326 performs its error recovery as explained above. The
destination cluster 328 performs the same error recovery as
described above. If a PONR update request/response timed
out, then the destination cluster 328 assumes that the PONR
update didn’t make it to the source cluster 326. This will
prevent the source Vserver 320 to be brought on-line at both
the source and the destination clusters. If PONR update fails
at the destination cluster 328, the source cluster 326 will not
start the source Vserver 320.

[0183] In one aspect, various methods and systems for
migrating a Vserver are provided. One method includes
generating (B502, by the processor, a consistency group
(CG) (e.g., 331, FIG. 3B) having a plurality of source

May 4, 2023

storage volumes (330, FIG. 3B) managed by a source
Vserver (320, FIG. 3B) of a source cluster (326, F1G. 3B) for
a migrate operation to migrate the plurality of the source
storage volumes as a group to a plurality of destination
storage volumes (332, FIG. 3B) of a destination cluster (328,
FIG. 3B); establishing (B504, FIG. 5A), by the processor, a
mirroring relationship between the source cluster and the
destination cluster for managing asynchronous transfer of
the plurality source storage volumes in the CG to the
plurality of destination storage volumes during a transfer
phase of the migrate operation; replicating (B518, FIG. 5B),
by the processor, a logical interface of the source cluster to
the destination cluster, the logical interface providing a
network address to access the source cluster; and automati-
cally selecting (FIG. 7C), by the processor, a destination port
at the destination cluster, associated with the replicated
logical interface. The method further includes determining,
by the processor, an inter-cluster failure (B703, FIG. 7E)
between the source cluster and the destination occurring
while the migrate operation is at a point of no return
(PONR); and restarting (B707, FIG. 7E), by the processor,
the source Vserver at the source cluster and the migrate
operation.

[0184] The method further includes undoing (B751, FIG.
7E), by the processor, any tasks executed during a setup
phase of the migrate operation, in response to a failure
condition occurring during the setup phase; and restarting
(B753, FIG. 7E), by the processor, the migrate operation.
The method also includes undoing (B718, FIG. 7F), by the
processor, any tasks executed during a transfer phase and a
setup phase of the migrate operation, in response to a failure
condition occurring during the transfer phase; and restarting,
by the processor, the migrate operation.

[0185] The method also includes undoing (B720, FIG.
7F), by the processor, any tasks executed during a cut-over
pre-commit phase, a transfer phase and a setup phase of the
migrate operation, in response to a failure condition occur-
ring during the cut-over pre-commit phase; and restarting,
by the processor, the migrate operation. The method further
includes retrying, by the processor, the task associated with
the migrate operation, in response to a network error
detected at the source cluster, the destination cluster or both
the source and the destination cluster.

[0186] In yet another aspect, methods and systems for
Vserver migration are provided. One method includes
executing (B518, FIG. 5B), by the processor, a transfer
phase of a migrate operation for migrating a source Vserver
of a source cluster to a destination cluster, the transfer phase
using asynchronous baseline transfer to transfer data and
configuration of a plurality of source storage volumes con-
figured in a CG for the migrate operation to a plurality of
destination storage volumes of a destination cluster, the
asynchronous baseline transfer is managed as a group;
updating (B540, FIG. 5C), by the processor, a state of each
of the plurality of source storage volumes to a sync state
indicating completion of a pre-commit phase of the migrate
operation to initiate a commit phase of the migrate opera-
tion; locking (B548, FIG. 5D), by the processor, the source
Vserver to prevent any configuration changes for a certain
duration during the commit phase, while persistently main-
taining a state of the migrate operation at both the source
cluster and destination cluster; generating (B552, FIG. 5D),
by the processor, a snapshot of the plurality of destination
storage volumes for performing data integrity checks

US 2023/0136363 Al

between data stored at the source cluster and migrated data
at destination cluster, after completing the commit phase;
transitioning (B550, FIG. 5D), by the processor, the migrate
operation state to a point of no return state (PONR), upon
completing the commit phase and initializing (b552, FIG.
5D) the Vserver at the destination cluster for processing
input/output requests; and retaining, by the processor, a
snapshot of the source Vserver and restarting the source
Vserver, if the migrate operation fails.

[0187] The method further includes entering (610, FIG. 6),
by the processor, a pause state during the transfer phase of
the migration operation; and aborting (618, FIG. 6), by the
processor, the migrate operation from the pause state and
deleting objects created for the migrate operation. The
method further includes applying (B554, FIG. 5D), by the
processor, a last configuration of the plurality of source
volumes at the destination cluster, after completing the
commit phase. The method further includes cancelling
(B568, FIG. 5E), by the processor, a timer at the source
cluster, in response to reaching the PONR state of the
migrate operation, the timer used to track the certain dura-
tion for the commit phase.

[0188] The method further includes updating (B552, FIG.
5D), by the processor, during the commit phase, configura-
tion of the plurality of destination storage volumes for
allowing read and write operations from the destination
cluster. The method further includes executing, by the pro-
cessor, a migrate orchestrator thread (342, FIG. 4B) in a user
space (440B, FIG. 4B) of an owning node of the destination
cluster for managing tasks associated with the migrate
operation. The method further includes executing, by the
processor, a failure thread (406B, FIG. 4A) in a user space
of an owning node of the destination cluster and in a user
space of an owning node of the source cluster for managing
failure conditions during the migrate operation.

[0189] Methods and systems for Vserver migration are
provided. One method includes maintaining (FIG. 6), by the
processor, a state of a migrate operation for migrating a
plurality of source storage volumes managed by a source
Vserver of a source cluster to a plurality of destination
storage volumes of a destination cluster of a networked
storage environment; restarting (B721, FIG. 7E), by the
processor, a process at a healthy node of the source cluster
or the destination cluster to continue the migrate operation,
in response to detecting an unhealthy node at the source
cluster or the destination cluster executing the process;
retrying (B733, FIG. 7E), by the processor, a task associated
with the migrate operation experiencing intermittent failure
for a certain number of times, and upon successful execu-
tion, continuing the migration operation; and checking
(B729, FIG. 7E), by the processor, the state of the migrate
operation and in response to the state of the migrate opera-
tion, continuing the migrate operation or restarting the
migration operation.

[0190] The method further includes determining (B703,
FIG. 7E), by the processor, an inter-cluster failure between
the source cluster and the destination occurring while the
migrate operation is at a point of no return (PONR); and
restarting (B707, FIG. 7E), by the processor, the source
Vserver at the source cluster and the migrate operation. The
method further includes undoing (B751, FIG. 7E), by the
processor, any tasks executed during a setup phase of the
migrate operation, in response to a failure condition occur-

May 4, 2023

ring during the setup phase; and restarting (B753, FI1G. 7E),
by the processor, the migrate operation.

[0191] The method further includes undoing (B716 and
B718, FIG. 7F), by the processor, any tasks executed during
a transfer phase and a setup phase of the migrate operation,
in response to a failure condition occurring during the
transfer phase; and restarting, by the processor, the migrate
operation. The method further includes undoing (B720, FIG.
7F), by the processor, any tasks executed during a cut-over
pre-commit phase, a transfer phase and a setup phase of the
migrate operation, in response to a failure condition occur-
ring during the cut-over pre-commit phase; and restarting,
by the processor, the migrate operation. The method further
includes retrying, by the processor, the task associated with
the migrate operation, in response to a network error
detected at the source cluster, the destination cluster or both
the source and the destination cluster.

[0192] Operating System: FIG. 8 illustrates a generic
example of storage operating system 306 executed by node
208.1, according to one aspect of the present disclosure. The
storage operating system 306 manages all the storage vol-
umes and conducts read and write operations.

[0193] In one example, storage operating system 306 may
include several modules, or “layers” executed by one or both
of network module 214 and storage module 216. These
layers include a file system manager 800 that keeps track of
a directory structure (hierarchy) of the data stored in storage
devices and manages read/write operations, i.e., executes
read/write operations on storage in response to client 204.
1/204.2 requests.

[0194] The storage operating system 306 may also include
a protocol layer 802 and an associated network access layer
806, to allow node 208.1 to communicate over a network
with other systems, such as clients 204.1/204.2. Protocol
layer 802 may implement one or more of various higher-
level network protocols, such as NFS, CIFS, Hypertext
Transfer Protocol (HTTP), TCP/IP and others, as described
below.

[0195] Network access layer 806 may include one or more
drivers, which implement one or more lower-level protocols
to communicate over the network, such as Ethernet. Inter-
actions between clients 204.1/204.2 and mass storage
devices 212.1 are illustrated schematically as a path, which
illustrates the flow of data through operating system 306.
[0196] The operating system 306 may also include a
storage access layer 804 and an associated storage driver
layer 808 to allow the storage module 216 to communicate
with a storage device. The storage access layer 804 may
implement a higher-level storage protocol, such as RAID,
while the storage driver layer 808 may implement a lower-
level storage device access protocol, such as FC or SCSI.
[0197] As used herein, the term “storage operating sys-
tem” generally refers to the computer-executable code oper-
able on a computer to perform a storage function that
manages data access and may, in the case of a node 208.1,
implement data access semantics of a general-purpose oper-
ating system. The storage operating system can also be
implemented as a microkernel, an application program oper-
ating over a general-purpose operating system, such as
UNIX® or Windows XP®, or as a general-purpose operat-
ing system with configurable functionality, which is config-
ured for storage applications as described herein.

[0198] In addition, it will be understood to those skilled in
the art that the invention described herein may apply to any

US 2023/0136363 Al

type of special-purpose (e.g., file server, filer or storage
serving appliance) or general-purpose computer, including a
standalone computer or portion thereof, embodied as or
including a storage system. Moreover, the teachings of this
disclosure can be adapted to a variety of storage system
architectures including, but not limited to, a network-at-
tached storage environment, a storage area network and a
storage device directly attached to a client or host computer.
The term “storage system” should therefore be taken broadly
to include such arrangements in addition to any subsystems
configured to perform a storage function and associated with
other equipment or systems. It should be noted that while
this description is written in terms of a write any where file
system, the teachings of the present invention may be
utilized with any suitable file system, including a write in
place file system.

[0199] Processing System: FIG. 9 is a high-level block
diagram showing an example of the architecture of a pro-
cessing system that may be used according to one aspect.
The processing system 900 can represent management sys-
tem 132, client 104 or storage system 1120, for example.
Note that certain standard and well-known components
which are not germane to the present invention are not
shown in FIG. 9.

[0200] The processing system 900 includes one or more
processor(s) 902 and memory 904, coupled to a bus system
905. The bus system 905 shown in FIG. 9 is an abstraction
that represents any one or more separate physical buses
and/or point-to-point connections, connected by appropriate
bridges, adapters and/or controllers. The bus system 905,
therefore, may include, for example, a system bus, a Periph-
eral Component Interconnect (PCI) bus, a HyperTransport
or industry standard architecture (ISA) bus, a small com-
puter system interface (SCSI) bus, a universal serial bus
(USB), or an Institute of Electrical and Electronics Engi-
neers (IEEE) standard 1394 bus (sometimes referred to as
“Firewire”).

[0201] The processor(s) 902 are the central processing
units (CPUs) of the processing system 900 and, thus, control
its overall operation. In certain aspects, the processors 902
accomplish this by executing software stored in memory
904. A processor 902 may be, or may include, one or more
programmable general-purpose or special-purpose micro-
processors, digital signal processors (DSPs), programmable
controllers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a com-
bination of such devices.

[0202] Memory 904 represents any form of random-ac-
cess memory (RAM), read-only memory (ROM), flash
memory, or the like, or a combination of such devices.
Memory 904 includes the main memory of the processing
system 900. Software 906 which implements the process
steps described above with respect to FIGS. 5A-5F, 6 and
7A-7F may reside in and execute (by processors 902) from
memory 904.

[0203] Also connected to the processors 902 through the
bus system 905 are one or more internal mass storage
devices 910, and a network adapter 912. Internal mass
storage devices 910 may be or include any conventional
medium for storing large volumes of data in a non-volatile
manner, such as one or more magnetic or optical based disks.
The network adapter 912 provides the processing system
900 with the ability to communicate with remote devices

May 4, 2023

(e.g., storage servers 20) over a network and may be, for
example, an Ethernet adapter, a Fibre Channel adapter, or
the like.
[0204] The processing system 900 also includes one or
more input/output (I/O) devices 908 coupled to the bus
system 905. The /O devices 908 may include, for example,
a display device, a keyboard, a mouse, etc.
[0205] Thus, innovative technology for migrating a stor-
age virtual machine have been described. Note that refer-
ences throughout this specification to “one aspect” or “an
aspect” means that a particular feature, structure, or char-
acteristic described in connection with the aspect is included
in at least one aspect of the present invention. Therefore, it
is emphasized and should be appreciated that two or more
references to “an aspect” or “one aspect” or “an alternative
aspect” in various portions of this specification are not
necessarily all referring to the same aspect. Furthermore, the
features, structures or characteristics being referred to may
be combined as suitable in one or more aspect s of the
invention, as will be recognized by those of ordinary skill in
the art.
[0206] While the present disclosure is described above
with respect to what is currently considered its preferred
aspects, it is to be understood that the disclosure is not
limited to that described above. To the contrary, the disclo-
sure is intended to cover various modifications and equiva-
lent arrangements within the spirit and scope of the
appended claims.
What is claimed is:
1. A method, comprising:
maintaining, by the processor, a state of a migrate opera-
tion for migrating a plurality of source storage volumes
managed by a source storage virtual machine (Vserver)
of a source cluster to a plurality of destination storage
volumes of a destination cluster of a networked storage
environment;
restarting, by the processor, a process at a healthy node of
the source cluster or the destination cluster to continue
the migrate operation, in response to detecting an
unhealthy node at the source cluster or the destination
cluster executing the process;
retrying, by the processor, a task associated with the
migrate operation experiencing intermittent failure for
a certain number of times, and upon successful execu-
tion, continuing the migration operation; and

checking, by the processor, the state of the migrate
operation and in response to the state of the migrate
operation, continuing the migrate operation or restart-
ing the migration operation.

2. The method of claim 1, further comprising:

determining, by the processor, an inter-cluster failure

between the source cluster and the destination occur-
ring while the migrate operation is at a point of no
return (PONR); and

restarting, by the processor, the source Vserver at the

source cluster and the migrate operation.

3. The method of claim 1, wherein the process is an
orchestrator thread executed at the destination cluster to
manage a plurality of phases of the migrate operation.

4. The method of claim 1, further comprising:

undoing, by the processor, any tasks executed during a

setup phase of the migrate operation, in response to a
failure condition occurring during the setup phase; and
restarting, by the processor, the migrate operation.

US 2023/0136363 Al
19

5. The method of claim 1, further comprising:

undoing, by the processor, any tasks executed during a
transfer phase and a setup phase of the migrate opera-
tion, in response to a failure condition occurring during
the transfer phase; and

restarting, by the processor, the migrate operation.

6. The method of claim 1, further comprising:

undoing, by the processor, any tasks executed during a

cut-over pre-commit phase, a transfer phase and a setup
phase of the migrate operation, in response to a failure
condition occurring during the cut-over pre-commit
phase; and

restarting, by the processor, the migrate operation.

7. The method of claim 1, further comprising:

retrying, by the processor, the task associated with the

migrate operation, in response to a network error
detected at the source cluster, the destination cluster or
both the source and the destination cluster.

8. A non-transitory, machine readable storage medium
having stored thereon instructions comprising machine
executable code, which when executed by a machine, causes
the machine to:

maintain a state of a migrate operation for migrating a

plurality of source storage volumes managed by a
source storage virtual machine (Vserver) of a source
cluster to a plurality of destination storage volumes of
a destination cluster of a networked storage environ-
ment;

restart a process at a healthy node of the source cluster or

the destination cluster to continue the migrate opera-
tion, in response to detecting an unhealthy node at the
source cluster or the destination cluster executing the
process;

retry a task associated with the migrate operation expe-

riencing intermittent failure for a certain number of
times, and upon successful execution, continuing the
migration operation; and

check the state of the migrate operation and in response to

the state of the migrate operation, continuing the
migrate operation or restarting the migration operation.

9. The non-transitory, machine readable storage medium
of claim 8,

wherein the machine executable code further causes the

machine to:
determine an inter-cluster failure between the source
cluster and the destination occurring while the migrate
operation is at a point of no return (PONR); and

restart the source Vserver at the source cluster and the
migrate operation.

10. The non-transitory, machine readable storage medium
of claim 8,

wherein the process is an orchestrator thread executed at

the destination cluster to manage a plurality of phases
of the migrate operation.

11. The non-transitory, machine readable storage medium
of claim 8,

wherein the machine executable code further causes the

machine to:

undo any tasks executed during a setup phase of the

migrate operation, in response to a failure condition
occurring during the setup phase; and

restart the migrate operation.

12. The non-transitory, machine readable storage medium
of claim 8,

May 4, 2023

wherein the machine executable code further causes the
machine to:

undo any tasks executed during a transfer phase and a
setup phase of the migrate operation, in response to a
failure condition occurring during the transfer phase;
and

restart the migrate operation.

13. The non-transitory, machine readable storage medium

of claim 8,

wherein the machine executable code further causes the
machine to:

undo any tasks executed during a cut-over pre-commit
phase, a transfer phase and a setup phase of the migrate
operation, in response to a failure condition occurring
during the cut-over pre-commit phase; and

restart the migrate operation.

14. The non-transitory, machine readable storage medium

of claim 8,

wherein the machine executable code further causes the
machine to:

retry the task associated with the migrate operation, in
response to a network error detected at the source
cluster, the destination cluster or both the source and
the destination cluster.

15. A system, comprising:

a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions; and
a processor coupled to the memory to execute the

machine executable code to:

maintain a state of a migrate operation for migrating
a plurality of source storage volumes managed by
a source storage virtual machine (Vserver) of a
source cluster to a plurality of destination storage
volumes of a destination cluster of a networked
storage environment;

restart a process at a healthy node of the source
cluster or the destination cluster to continue the
migrate operation, in response to detecting an
unhealthy node at the source cluster or the desti-
nation cluster executing the process;

retry a task associated with the migrate operation
experiencing intermittent failure for a certain
number of times, and upon successful execution,
continuing the migration operation; and

check the state of the migrate operation and in
response to the state of the migrate operation,
continuing the migrate operation or restarting the
migration operation.

16. The system of claim 15, wherein the machine execut-

able code further causes to:

determine an inter-cluster failure between the source
cluster and the destination occurring while the migrate
operation is at a point of no return (PONR); and

restart the source Vserver at the source cluster and the
migrate operation.

17. The system of claim 15, wherein the machine execut-

able code further causes to:

undo any tasks executed during a setup phase of the
migrate operation, in response to a failure condition
occurring during the setup phase; and

restart the migrate operation.

18. The system of claim 15, wherein the machine execut-

able code further causes to:

US 2023/0136363 Al May 4, 2023
20

undo any tasks executed during a transfer phase and a
setup phase of the migrate operation, in response to a
failure condition occurring during the transfer phase;
and

restart the migrate operation.

19. The system of claim 15, wherein the machine execut-

able code further causes to:

undo any tasks executed during a cut-over pre-commit
phase, a transfer phase and a setup phase of the migrate
operation, in response to a failure condition occurring
during the cut-over pre-commit phase; and

restart the migrate operation.

20. The system of claim 15, wherein the machine execut-

able code further causes to:

retry the task associated with the migrate operation, in
response to a network error detected at the source
cluster, the destination cluster or both the source and
the destination cluster.

#* #* #* #* #*

