WO 2006/039183 A2 | |00 000 0 000 OO0 IO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 April 2006 (13.04.2006)

lﬂb A 0.0 00

(10) International Publication Number

WO 2006/039183 A2

(51) International Patent Classification:
GOGF 9/32 (2006.01)

(21) International Application Number:
PCT/US2005/034010

(22) International Filing Date:
21 September 2005 (21.09.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/955,643 30 September 2004 (30.09.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WOLRICH,
Gilbert [US/US]; 4 Cider Mill Road, Framingham,
MA 01701 (US). ROSENBLUTH, Mark [US/US]; 4
Crestview Drive, Uxbridge, MA 01569 (US). ADILETTA,
Matthew [US/US]; 244 Sawyer Road, Bolton, MA 01740
(US). WILKINSON, Hugh [US/US]; 14 Towbridge
Street, Newton, MA 02459 (US). NIELL, Jose [US/US];
4 Pasture Way, Franklin, MA 02038 (US). NARAYANAN,
Rajagopal [IN/US]; 1035 Aster Avenue, #2200, Sunny-
vale, CA 94086 (US). JAIN, Sanjeev [IN/US]; 3 Mallard
Circle, Shrewsbury, MA 01545 (US).

(74) Agents: VINCENT, Lester, J. et al.; Blakely Sokoloff
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).
(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: EXPANSION OF COMPUTE ENGINE CODE SPACE BY SHARING ADJACENT CONTROL STORES USING
INTERLEAVED PROGRAM ADDRESSES

(57) Abstract: Method and apparatus to support expansion of compute engine code space by sharing adjacent control stores using
interleaved addressing schemes. Instructions corresponding to an original instruction thread are partitioned into multiple interleaved
sequences that are stored in respective control stores. During thread execution, instructions are retrieved from the control stores in
a repeated order based on the interleaving scheme. For example, in one embodiment two compute engines share two control stores.
Thus, instructions for a given thread are sequentially loaded from the control stores in an alternating manner. In another embodiment,
four control stores are shared by four compute engines. In this case, the instructions in a thread are interleave using four stores, and
each store is accessed every fourth instruction in the code sequence. Schemes are also provided for handling branching operations
to maintain synchronized access to the control stores.

10

15

20

25

WO 2006/039183 PCT/US2005/034010

EXPANSION OF COMPUTE ENGINE CODE SPACE BY SHARING ADJACENT
CONTROL STORES USING INTERLEAVED PROGRAM ADDRESSES

FIELD OF THE INVENTION
[0001] The field of invention relates generally to computer networking
equipment and, more specifically but not exclusively relates to techniques for

sharing computer engine code space across multiple processing elements.

BACKGROUND INFORMATION

[0002] Network devi.ces,‘ such as switches and routers, are designed to forward
network traffic, in the form of péckets, at high line rates. One of the most
important considerations for handling network traffic is packet throughput. To
accomplish this, special-purpose processors known as network processors have
been developed to efficiently process very large numbers of packets per second.
In order to process a packet, the network processor (and/or network equipment
employing the network processor) needs to extract data from the packet header
indicating the destination of the packet, class of service, etc., store the payload
data in memory, perform packet classification and queuing operations, determine
the next hop for the packet, select an appropriate network port via which to
forward the packet, efc. These operations are collectively referred to as “packet
processing.”

[0003] Modern network processors perform packet processing using multiple
multi-threaded processing elements (referred to as microengines or compute
engines in network processors manufactured by Intel® Corporation, Santa Clara,
California), wherein each thread performs a specific task or set of tasks in a
pipelined architecture. During packet processing, numerous accesses are
performed to move data between various shared resources coupled to and/or
provided by a network processor. For example, network processors commonly

store packet metadata and the like in static random access memory (SRAM)

10

15

20

25

WO 2006/039183 PCT/US2005/034010

stores, while storing packets (or packet payload data) in dynamic random access
memory (DRAM)-based stores. In addition, a network processor may be coupled
to cryptographic processors, hash units, general-purpose processors, and
expansion buses, such as the PCI (peripheral component interconnect) and PCI
Express bus.

[0004] In general, the various packet-processing compute engines of a network
processor, as well as other optional processing elements, will function as
embedded specific-purpose processors. In contrast to conventional general-
purpose processors, the compute engines do not employ an operating system to
host applications, but rather directly execute “application” code using a reduced
instruction set. For example, the microengines in Intel’'s IXP2xxx family of network
processors are 32-bit RISC processors that employ an instruction set including
conventional ARISC (reduced instruction set computer) instructions with additional
features specifically tailored for network processing. Because microengines are
not general-purpose processors, many tradeoffs are made to minimize their size
and power consumption.

[0005] One of the tradeoffs relates to instruction store space, ie., space

allocated for storing instructions. Since silicon real-estate for network processors

~ is limited and needs to be allocated very efficiently, only a small amount of silicon

is reserved for storing instructions. For example, the compute engine control
store for an Intel IXP1200 holds 2K instruction words, while the IXP2400 holds 4K
instructions words, and the IXP2800 holds 8K instruction words. For the IXP2800,
the 8K instruction words take up approximately 30% of the compute engine area
for Control Store (CS) memory.

[0006] One technique for addressing the foregoing instruction space limitation
is to limit the application code to a set of instructions that fits within the Control
Store. Under this approach, each CS is loaded with a fixed set of application

instructions during processor initialization, while additional or replacement
2

10

15

20

25

WO 2006/039183 ' PCT/US2005/034010

instructions are not allowed to be loaded while a microengine is running. Thus, a
given application program is limited in size by the capacity of the corresponding
CS memory. In contrast, the requirements for instruction space continues to grow
with the advancements provided by each new generation of network processors.

[0007] Another approach for increasing instruction space is to employ an
instruction cache. Instruction caches are used by conventional general-purpose
processors to store recently-accessed code, wherein non-cached instructions are
loaded into the cache from an external memory (backing) store (e.g., a DRAM
store) when necessary. In general, the size of the instruction space now becomes
limited by the size of the backing store. While replacing the Control Store with an
instruction cache would provide the largest increase in instruction code space (in
view of silicon costs), it would need to overcome many complexity and
performance issues. The complexity issues arise mostly due to the multiple
program contexts (multiple threads) that execute simultaneously on the compute
engines. The primary performance issues with employing a compute engine
instruction cache concern the backing store latency and bandwidth, as well as the
cache size. In view of this and other considerations, it would be advantageous to

provide increased instruction space without significantly impacting other network

processor operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing aspects and many of the attendant advantages of this
invention will become more readily appreciated as the same becomes better
understood by reference to the following detailed description, when taken in
conjunction with the accompanying drawings, wherein like reference numerals
refer to like parts throughout the various views unless otherwise specified:

[0009] Figure 1 is a schematic diagram illustrating an instruction store sharing
scheme under which two control stores are shared between two compute engines,

according to one embodiment of the invention;
3

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0010] Figure 2a shows an instruction sequence corresponding to an
exemplary original instruction thread that is employed to illustrate how the
instruction thread is interleaved under the embodiments disclosed herein;

[0011] Figure 2b is a schematic diagram of an exemplary interleaving scheme
under which even instructions for the original instrﬁction thread of Figure 2b are
stored in a first control store, while odd instructions are stored in a second control
store;

[0012] Figure 2c shows sequences of instructions that are loaded in executed
in accordance with an exemplary execution of the instruction thread using the two
compute engines;

[0013] Figure 3a is.a schematic diagram illustrating the loading and execution
of instructions for the two compute engines corresponding to an initial (starting)
timeframe;

[0014] Figure 3b is a schematic diagram illustrating the loading and execution
of instructions for the two compute engines corresponding to an second
timeframe;

[0015] Figure 3c is a schematic diagram illustrating the loading and execution
of instructions for the two compute engines corresponding to an third timeframe,

the figure further illustrating an exemplary resynchronization scheme employing a

~ no operation (NOP) instruction;

[0016] Figure 3d is a schematic diagram illustrating the loading and execution
of instructions for the two compute engines corresponding to an fourth timeframe,
the figure further illustrating resumption of the instruction sequence load and
execution on the second compute engine;

[0017] Figure 4 is a schematic diagram illustrating an instruction store sharing
scheme under which four control stores are shared between four compute

engines, according to one embodiment of the invention;

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0018] Figure 5 is a schematic diagram of an exemplary interleaving scheme
under which every fourth instruction in the original instruction thread of Figure 2b
is stored in a corresponding control store;

[0019] Figure 6 is a schematic diagram of a circuit architecture that may be
employed to implement the control store sharing scheme of Figure 1, according to
one embodiment of the invention; and

[0020] Figure 7 is a schematic diagram of a line card that includes a network

processor that implements network processor architectures of Figures 1 and 6.

DETAILED DESCRIPTION

[0021] Embodiments of methods and apparatus for expansion of compute
engine code space by sharing adjacent control stores using interleaved program
addresses are described herein. In the following description, numerous specific
details are set forth, such as implementations using Intel IPX® network processor
architectures, to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize, however, that the
invention can be practiced without one or more of the specific details, or with other
methods, components, materials, etc. In other instances, well-known structures,
materials, or operations are not shown or described in detail to avoid obscuring
aspects of the invention. |

[0022] Reference throughout this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or éharacteristic described
in connection with the embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in one embodiment” or
“in an embodiment” in various places throughout this specification are not
necessarily all referring to the same embodiment. Furthermore, the particular
features, structures, or characteristics may be combined in any suitable manner in

one or more embodiments.

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0023] Figure 1 shows an architecture 100 iII_ustrating one embodiment of a
scheme for sharing code stores between a pair of compute engines.
Architecture 100 includes two compute engines 102 and 104, which are used to
execute interleaved instructions 106 and 108 that are stored in control stores 110
and 112, respectively. Each of control stores 110 and 112 are coupled to a pair of
multiplexers 114 and 116, which are employed to selectively choose from which
control store a next instruction is to be loaded from based on whether the
instruction is an odd instruction or an even instruction, as explained below in
further detail. Furthermore, the multiplexers are illustrative of instruction load logic
circuitry that is employed to select the appropriate instructions and control stores
from which such instructions are loaded into the compute engines.

[0024] An exemplary portion of a set of instructions corresponding to an
instruction thread 200 is shown in Figure 2a. These instructions are used for
illustrative purposes in connection with the figures described below, such that the
interleaved instruction schemes may be more easily understood.

[0025] As is normally the case, instruction thread 200 includes a set of
sequential instructions (with branches) that are loaded and executed in order,
except in instances in which an instruction defines a branch operation. For
simplicity and clarity, the details for only the branch instructions are depicted in
Figure 2a — all other instructions are simply represented by a sequential
instruction number.

[0026] The left-hand column in Figure 2a contains a list of original instruction
addresses 202, wherein each address corresponds to a location for its adjacent
instruction once the thread is compiled and linked using a conventional sequential
storage scheme. The “n” nomenclature is used to illustrate that the physical
location of the instructions in memory may begin at some offset n from the base or
zeroth address of the memory in which the instructions would be physically stored

(if stored in the conventional sequential manner). Original instruction
6

10

15

20

25

WO 2006/039183 PCT/US2005/034010

addresses 202 are referred to as “original instruction addresses” for reference
purposes. In an actual implementation of the interleaved storage schemes
described below, these addresses will not physically exists, but are rather virtual
addresses.

[0027] Figure 2b shows exemplary sets of interleaved instructions
corresponding to instruction thread 200, wherein the sequential instructions for the
thread are stored in an alternating manner in control stores 110 and 112. More
specifically, “even” instructions are stored in control store 110 and “odd”
instructions are stored in control store 112. In general, control stores 110 and 112
comprise some type of RAM-based memory (e.g., DRAM, SRAM, etc.).
Accordingly, each of the control stores contains instructions having a physical
(RAM) address. For illustrative purposes, an original instruction address for each
instruction is also shown. This represents the ordering of an original instruction
thread prior to be partitioned into even and odd sequences to form the alternating -
interleaved instructions, as described below in further detail.

[0028] The physical and original instruction addresses for control store 110 are
depicted in a physical address column 204 and an original instruction address
column 206, while the physical and original instruction addresses for control
store 112 are depicted in a physical address column 208 and an original
instruction address column 210. The address values for the physical addresses
will depend on the underlying physical addressing scheme. For example, in one
embodiment a 32-bit addressing scheme is employed. For convenience, the base
physical address for each of control stores 110 and 112 have been depicted at
beginning at base addresses BASE 1 and BASE 2, respectively. Meanwhile, the
original instruction addresses for each of the control stores have been selected to
begin at 0 for control store 110 and at 1 for control store 112.

[0029] Under conventional practices, each of control stores 110 and 112 would

contain a separate set of sequentially-ordered instructions similar to instruction
7

10

15

20

25

WO 2006/039183 PCT/US2005/034010

thread 200, with the instructions being targeted for execution on one of compute
engines 102 and 104, respectively. During operation, a first (initial) instruction
identified by a program counter (PC) would be loaded into a compute engine,
followed by loading and execution of instructions in the sequential order. The
sequential load and execution of instructions would continue until any branch
operations were required by a given instruction. Under this circumstance, the
program counter would be written with the branch target address, or “jump” to the
location of a next instruction defined by the branch; this next instruction would be
loaded and executed, followed by load and execution of the immediately following
instructions in sequence until another branch operation occurs. This process
would be repeated until the execution of the instruction thread was completed.
Under typical network processor operations, instances of instruction threads are
started and completed in an ongoing matter.

[0030] In contrast to the foregoing conventional load and execution scheme,
the embodiments of Figures 1 and 2b take a different approach. Rather than have
instructions stored sequentially in a single control store, the original instructions
are interleaved by storing even instructions (sequentially) in one control store,
while storing odd instructions (sequentially) in the other control store. For
example, even instructions (beginning with an instruction 0) for a given program or
application thread (depicted as instructions for instruction thread 200) are
sequentially stored in control store 110, while the corresponding odd instructions
are stored in control store 112. An instruction is defined as even or odd based on
the least significant bit (LSB) of its original instruction address. (It is noted that the
offset n will always be an even number, such that the number following n in the
original instruction address defines whether the instruction is even or odd.)

[0031] During operation, a respective program counter is used to locate the
next instruction to be loaded and executed by compute engines 102 and 104. In

one embodiment, the program counter values are combined with an even-odd-
8

10

15

20

25

WO 2006/039183 PCT/US2005/034010

even-odd ... logic sequence that is applied as inputs to multiplexers 114 and 116
to determine 1) which instruction is the next to be loaded from each control store;
2) which compute engine those instructions are to be loaded into; and 3) whether
those instructions may be immediately loaded for execution or if a delay cycle for
one of the compute engines needs to be employed to resynchronize the
alternating control store instruction load sequence.

[0032] An exemplary execution sequence corresponding to the instructions
sequences shown in Figure 2b are shown in Figure 2c and schematically
illustrated in Figures Sa-d. During ongoing operations, each of compute
engines 102 and 104 execute multiple instruction threads corresponding to the
instructions stored in control stores 110 and 112. The execution of multiple
threads is enabled via hardware multithreading, wherein a respective context for
each thread is maintained throughout execution of that thread. This is in contrast
to the more common type of software-based multithreading provided by modern
operating systems, wherein the context of multiple threads is switched using time-
slicing, and thus (technically) only one thread is actually executing at any point in
time.

[0033] In general, hardware multithreading is enabled by providing a set of
context registers for each thread. These registers include a program counter for
each thread, as well as other registers that are used to store temporal data, such
as instructions, operands, etc. However, an independent control store is not
provided for each thread. Rather, the instructions for each thread are stored in a
single control store. This is enabled by having each thread executing instructions
at a different location in the set of instructions at any given point in time, while
having only one thread “active” at a time. Furthermore, under a typical pipelined
processing scheme, the execution of various packet-processing functions are
staged, and the function latency (e.g., amount of time to complete the function)

corresponding to a given instruction thread is predictable. Thus, the “spacing”
9

10

15

20

25

WO 2006/039183 PCT/US2005/034010

between threads running on a given compute engine stays substantially even,
preventing situations under which different hardware threads attempt to access
the same instruction at the same time.

[0034] For illustrative purposes, the following discussion will concern execution
of only a single thread instance on each of compute engines 102 and 104.
However, it will be understood that similar operations corresponding to load and
execution of other instruction thread instances may be performed (substantially)
concurrently on each of the cémpute engines. v

[0035] In the example depicted in Figure 2b, it is assumed the point of
execution of a first thread executing on compute engine 102 is at instruction (Inst)
0, as depicted by a program counter PC1. Meanwhile, the point of execution of a
second thread executing on compute engine 104 is at an instruction 33, as
depicted by a program counter PC2. Instruction 0 is located at an original
instruction address of “n” in control store 110, and a physical address “P” from
base address BASE 1. In one embodiment, base address BASE 1 is simply O.
Meanwhile, instruction 33 is located at an original instruction address “n”+33 in
control store 112, and a physical address of P+15 from base address BASE 2.
[0036] Figure 3a depicts the instruction load at a time point 0 (e.g., an initial
point in time at time=0, the condition shown in Figure 2b). At this point in time,
program counter PC1 ccl:ntains a code sequence value (0) plus the offset n, with
the combined value used to identifying the location of the first instruction O in
control store 110 using a original-to-interleaved address translation scheme
described below. Meanwhile, program counter PC2 contains a code sequence
value of 33 plus the offset n, which is used identifying the location of instruction 33
in control store 112 using the translation scheme.

[0037] In response to each processing cycle that doesn't include an
immediately-preceding branch, the instructions pointed to by the program

counters PC1 and PC2 are loaded into multiplexers 114 and 116, with one
10

10

15

20

25

WO 2006/039183 PCT/US2005/034010

instruction being loaded into one of the multiplexers, while the other instruction is
loaded into the other multiplexer. The logic for determining the control store from
which each multiplexer is loaded is determined by the EVEN or ODD input to that
multiplexer for the given cycle.
[0038] During each processing cycle, the EVEN-ODD inputs to each of
multiplexers 114 and 116 alternate. Furthermore, the EVEN-ODD inputs for
multiplexes 114 and 116 are opposite one-another for each cycle, e.g., one input
value is EVEN, while the other input value is ODD. This results in instructions
being loaded into a given compute engine from the two control stores in an
alternating manner. This alternating sequence continues until a branch operation
is encountered, as described in further detail below.
[0039] As shown in Figure 3a, the input for multiplexer 114 is EVEN, or logic
“0”, while the input to multiplexer 116 is ODD, or logic “1”. Under the illustrated
configuration, a logic O input for multiplexer 114 means this multiplexer will load
the instruction identified by program counter PC1 from control store 110.
Similarly, a logic 1 input for multiplexer 116 will load the instruction identified by
program counter PC2 from control store 112. During the next pipelined stage, the
instructions stored in multiplexers 114 and 116 are loaded into compute
engines 102 and 104, respectively.
[0040] As discussed above, each instruction will actually be accessed via its
interleaved address, which corresponds to the physical address at which the
instruction is actually stored in the applicable control store. The interleaved
address, in turn, may be derived from the current PC value, as follows:
INTERLEAVED ADDRESS=LSB + PC(MSB...1) (1).
Under the foregoing equation, the first portion of the interleaved address, which
identifies the control store in which the instruction is stored, is derived from the
LSB of the original instruction address. The second portion of the interleaved

address, which represents the location of the instruction (address) relative to the
11

10

15

20

25

WO 2006/039183 PCT/US2005/034010

base address of the control store, may be derived by simply dropping the LSB
from the original instruction address uAsing a bit-shift operation, thus leaving all the
bits from the most significant bit (MSB) to the second least significant bit. In one
embodiment, the base addresses for control stores 110 and 112 (BASE 1 and
BASE 2) are not employed during this address translation (e.g., the base address
values are simply 0).
[0041] Under the scheme illustrated in Figure 2b,

P =INT(n/2) 2)
wherein P is the physical address (offset) for each of control stores 110 and 112,
and the INT function rounds down to the nearest integer. This translation may be
performed by doing a simple bit shift to remove the LSB of the PC count value.
Thus, the physical address in control store 102 for Inst 0 is P, and the physical
address for instruction 33 in control store 112 is P+16.
[0042] Figure 3b shows control store and multiplexer configurations
corresponding to a second cycle at time=1. At the conclusion of each cycle, the
program counter values are incremented by one (unless a branch instruction
exists from the current instruction). Thus the value for program counter PC1 is
now n+1, while the value for program counter PC2 is now n+34. Furthermore,
program counter PC1 now points to an instruction stored in control store 112,
while program counter PC2 points to an instruction stored in control store 110.
The program counter count for each thread has simply been incremented by one
in the normal manner. However, the control store from which the next instruction
for each thread is accessed has been switched. Thus, the new instruction to be
loaded and executed on compute engine 102 is an instruction 1 located at
physical address P in control store 112. Meanwhile, the new instruction to be
loaded and executed on compute engine 104 is an instruction 34 (Br Label 1)

located at physical address P+17 in control store 110.

12

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0043] Figure 3b also shows a situation wherein the instructions in control
stores 110 and 112 are loaded into compute engines 104 and 102, respectively,
using a cross-connected data path. As befofe, the logic to determine which
control store to load from is provided by the ODD or EVEN inputs to
multiplexers 114 and 116. In this instance, an ODD input to multiplexer 114

instructs this multiplexer to load an instruction from control store 112 (the control

store that stores the ODD instructions). Similarly, the EVEN input to

multiplexer 116 instructs this multiplexer to load an instruction from control
store 110 (the control store that stores the EVEN instructions). As a corollary
process, the operation of retrieving a next instruction from a given control store
places that instruction in an output buffer coupled to the input side of each of
multiplexers 102 and 104 (6utput buffer not shown for clarity).

[0044] In connection with the instruction load operations illustrated in Figure 3b
at time=1, an instruction depicted as a branch label instruction is forwarded to
multiplexer 116 and then loaded into and executed on compute engine 104.
Execution of this instruction, Br Label 1, causes the program counter (PC2) for
compute engine 104 to be vectored to the instruction at Label 1 (instruction 12),
having an original instruction address n+12. It is noted that the actual instruction
will not reference a label, but will rather reference an original instruction address
corresponding to the next instruction to jump to.

[0045] Continuing with the cycle at a time=2 depicted in Figure 3c, the next
instructions to be loaded are instruction 2 at original instruction address n+2
(physical address P+1 in control store 110) and instruction 12 at original
instruction address n+12 (physical address P+6 in control store 110). Under the
illustrated embodiment, an instruction may be loaded when the logic level of the
multiplexer input and the least significant bit of the original instruction address
match. Thus, an even instruction may be loaded into a multiplexer having an

EVEN input, while an odd instruction may be loaded into a multiplexer having an
13

10

15

20

25

WO 2006/039183 PCT/US2005/034010

ODD input. Accordingly, the instruction load from control store 110 into
multiplexer 114 and henceforth to compute engine 102 is allowed to proceed in
the normal manner described above. In contrast to the foregoing, an odd
instruction may not be loaded into a multiplexer having an EVEN input, and an
even instruction may not be loaded into a multiplexer having an ODD input. Thus,
instruction 12 at address n+12 may not be loaded into multiplexer 116, since the
multiplexer input is ODD, while the instruction is an even instruction.

[0046] The reason for this latter rule is to prevent concurrent accesses to the
same control store during a given cycle. This is not allowed because each control
store only has (or is otherwise associated with) a single output buffer, making it
impossible to output more than one instruction at a time.

[0047] Under one embodiment, the foregoing situation is remedied by causing
one of the compute engines to be delayed for a cycle. In one embodiment, the
compute engine corresponding to the instruction sequence that was branched is
“stalled” for one cycle by issuing a NOP (no operation) instruction to it, as depicted
on the right hand portion of Figure 3c, where compute engine 104 is issued a
NOP instruction from multiplexer 116. As an option, the NOP instruction may be
provided via another data path (not shown) rather than via multiplexer 116.

[0048] During the cycle shown at time=3 in Figure 3d, the next instruction in
the first execution sequence (Inst 3) located at original instruction address n+3 is
loaded into compute engine 102 from control store 112 via multiplexer 114, while
instruction 12 is loaded from control store 110 into compute engine 104 via
multiplexer 116. Note in this instance that Inst 3 is a branch instruction (Br Label
2) to an even instruction at original instruction address n+22. Under this
condition, the instruction sequence is odd instruction, jump to even instruction.
Since this follows the EVEN-ODD-EVEN-ODD ... pattern, the next instruction (Inst
22 at physical address P+11 in control store 110) is allowed to be loaded into

compute engine 102 without requiring a delay.
14

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0049] Figure 4 shows an architecture 400 corresponding to @én embodiment of
control stbre sharing scheme that supports sharing four control stores that are
shared among four compute engines. Each of compute engines 402, 404, 406
and 408 is coupled to each of control stores 410, 412, 414, and 416 via respective
multiplexers 418, 420, 422 and 424 and associated bus lines 426. As shown in
further detail in Figure 5, each of control stores 410, 412, 414, and 416 store
portions of interleaved instructions corresponding to instruction thread 200,
wherein the instructions are partitioned into four sets based on the least two
significant bits in each instructions original instruction address. These instruction
sets include an [00] instruction set 430, a [01] instruction set 432, a [10] instruction
set 434, and a [11] instruction set 436.

[0050] Under the embodiment of Figure 4, instructions for a given compute
engine are loaded from respective control stores in a sequence following the
pattern 00, 01, 10, 11, 00, 01, 10, 11 ... As depicted by the input sequence to
each of compute engines 402, 404, 406 and 408, the input sequence is staggered
by 1-bit between adjacent compute engines.

[0051] Details of the four-way instruction interleave scheme corresponding to
the exemplary instruction thread 200 of Figure 2 are shown in Figure 5. As
before, each instruction in a given control store has a corresponding physical
address that is relative to a zeroth base address for the control store. These
physical addresses are depicted in physical address columns 500, 502, 504, and
506. As before, virtual addresses corresponding to the original address of
instruction thread 200 are shown adjacent to each instruction, as depicted in
original instruction address columns 508, 510, 512, and 514. Also as before, the
original instruction address columns are not present in an actual implementation,
but are rather provided to assist in understanding how the four-way control store

sharing scheme operates.

15

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0052] As discussed above, the instructions from instruction thread 200 are
partitioned into control stores 420, 432, 434, and 436 based on the least two
significant bits of their original instruction addresses. Accordingly, the instruction
sequence in each control store skips three instructions (i.e., every fourth
instruction is stored), with the original address of the first instruction in each
control store being staggered by a single bit. For example, the instructions in [00]
control store 430 include the instructions having original instruction addresses that
have a value of [00] for their least two significant bits. Thus, the instruction order
is 0, 4, 8, 12, 16 ..., with corresponding original instruction addresses of n, n+4,
n+8, n+12, n+16 Similarly, the instruction order in [01] control store 432
contains an ordered list of instructions having original instruction addresses that
include [01] for their least two significant bits. Thus, the instruction order in [01]
control store 432 is 1, 5, 9, 13, 17 ..., with corresponding original instruction
addresses of n+1, n+5, n+9, n+13, n+17 ...

[0053] The processing operations employed for loading and executing
interleaved instructions under architecture 400 are somewhat analogous to similar
operations employed for architécture 100 discussed above. However, in this
instance, a given control store is accessed for a given instruction thread instance
once every fourth cycle, rather than once every other cycle. For example, if
execution of instruction thread 200 is initiated from its starting point on compute
engine 402, the instruction sequence load will be Inst 0 from [00] control
store 430, Inst 1 from [01] control store 432, Inst 2 from [02] control store 434, Inst
3 from [11] control store 436, etc.

[0054] The logic for performing branching is also somewhat analogous to the
previous EVEN-ODD-EVEN-ODD ... scheme. The same requirement for
synchronization exists, such that a given control store can only be accessed via a

single compute engine (through its multiplexer) during any single cycle. To

16

10

15

20

25

WO 2006/039183 PCT/US2005/034010

ensure this exists, a branch to another control store may encounter 0-3 wait
cycles, depending on the control stores involved.

[0055] For example, suppose that compute engine 404 is currently executing
instruction 33, which is located in [01] control store 432. The next instruction (34)
is retrieved from [10] control store 434. Following this, the next instruction should
be loaded from [11] control store 436, based on the 00, 01, 10, 10 ... sequence.
However, Inst 34 is a branch instruction that jumps execution to instruction 12
stored in [00] control store 430. Since there are two control stores (in the
sequence) from the location of Inst 34 and the next instruction to be loaded and
executed (Inst 12), a single wait cycle will be employed for compute engine 404 to
resynchronize the instruction load sequences.

[0056] A similar jump occurs in response to execution of Inst 3 (Br Label 2). In
this instance, the next instruction (Inst 22) is located in a control store that is one-
place to the left of the branch instruction. As a result, two wait cycles will be
employed for the compute engine executing the thread when progressing from
Inst 3 to Inst 22.

[0057] Following similar logic, when a branch instruction and the jumped-to
instruction are located in the same control store, three wait cycles will be
employed to resynchronize the instruction load sequence. Conversely, if the
jumped-to instruction is located in the control store that is one place to the right of
the control store containing the branch instruction, the instruction load may
proceed directly without any wait cycles, since this control store is the control
store from which the next instruction would normally be loaded from.

[0058] Details of an architecture 600 in accordance with one embodiment for
implementing the EVEN-ODD two-way control store sharing scheme discussed
above are shown in Figure 6. Under architecture 600, the aforementioned
compute engines 102 and 104 comprise microengines ME 1 and ME 2. A

respective set of instruction load logic is provided for each of the microengines, as
17

10

15

20

25

WO 2006/039183 PCT/US2005/034010

depicted by an ME 1 instruction load logic block 602 and an ME 2 instruction load
logic block 604. Architecture 600 further includes a shared instruction load logic
block 606.

[0059] ME 1 instruction load logic block 602 includes bit shifters 608 and 610,
a multiplexer 612, control store 110, and a multiplexer 614. Similarly, ME 2
instruction load logic block 604 includes bit shifters 616 and 618, a
multiplexer 620, control store 112, and a multiplexer 622. Shared instruction load
logic block includes microaddress pipe registers 624 and 626, multiplexers 628
and 630, microword pipe registers 632 and 634, and multiplexers 636 and 636.
[0060] The operation of the instruction load logic proceeds as follows. As a
first example, the operation of an instruction load for microengine ME 1 is
described. In one embodiment, the process is initiated by a new cycle activation
in response to a rising clock edge. Immediately prior to this, the value in program
counter PC1 is incremented. The PC1 count value, which references the next
microaddress 640 to load, is provided as an input to each of bit shifters 608 and
610. Bit shifter 608 drops the MSB of the PC1 count value, so as to produce an
address value 642 corresponding to [MSB-1:0]. In contrast, bit shifter 610 shifts
all of the bits of the PC1 count value to the right by one, to produce an ME 1
address value 644 includes bits [MSB:1] of the program counter PC1 count value.
[0061] The [MSB-1:0] address value 642 is provided as one of the inputs into
multiplexer 612, with the other input corresponding to a shared microaddress 646
that is generated by shared instruction load logic block 606. A Shared_Mode
control input 648 is provided to multiplexer 612 to control its output. This control
input is used as a logic input that defines whether control store sharing is in effect
or not in effect. In the illustrated embodiment, a logic 0 Shared_Mode input
indicates sharing is turned off, while a logic 1 Shared_Mode input indicates that

control stores 110 and 112 are being shared. The other Shared_Mode control

18

10

15

20

25

WO 2006/039183 PCT/US2005/034010

inputs depicted in Figure 6 perform a similar function with respect to their
respective multiplexers.l

[0062] In effect, [MSB-1:0] address value 642 corresponds to the address for a
next instructidn under a conventional instruction thread storage scheme (e.g., all
instructions for the thread are stored in control store 110), while shared address
value 646 defines a translated address that is used to locate a next instruction that
may be provided to either microengine ME 1 or ME 2, depending on the logic level
of the control inputs to the architectdre’s multiplexers.

[0063] The output of multiplexer 612 is provided as an input address to control
store 110. In response, an instruction located at the input address is provided as
an output microword 650 (e.g., instruction) by control store 110. The output
microword is provided as an input to multiplexers 614, 636, and 638. An input
microword 652 that is output by shared instruction load logic block 606 is provided
as a second input to multiplexer 614. Based on the logic level of Shared_Mode
control input 654, either output microword 650 or input microword 652 will be
provided as an output microword instruction 656 to microengine ME 1.

[0064] Returning to the upper left-hand corner of the diagram, [MSB:1] ME 1
address value 644 is provided as a first input to e'ach of multiplexers 628 and 630.
Similarly, a [MSB:1] ME 2 address value 658 output by bit shifter 616 of ME 2
instruction load logic block 604 is provided as second inputs to multiplexers 628
and 630. The outputs value (either [MSB:1] ME 1 address value 644 or [MSB:1]
ME 2 address value 644) for multiplexers 628 and 630 will depend on the current
values of their respective ODD-EVEN-ODD-EVEN ... control inputs 660 and 662.
In practice, one of these inputs will be EVEN, while the other will be ODD, and the

two control inputs will switch logic levels with each alternating cycle.

- [0065] In one embodiment, the output of multiplexer 630, which comprises

shared microaddress 646, is temporarily stored in microaddress pipe register 624

as part of a pipelined staging sequence. Similarly, the output of multiplexer 628,
19

10

15

20

25

WO 2006/039183 PCT/US2005/034010

which comprises a shared microaddress 664, is temporarily stored in
microaddress pipe register 626 as part of a pipelined staging sequence.

[0066] In a manner similar to the generation and use of output microword 650,
ME 2 instruction load logic block 604 generates an output microword 666, which Is
used as inputs to each of multiplexers 622, 636, and 638. As before, the
microwords that will be output by multiplexers 636 and 638 will depend on the
logic levels of their respective ODD-EVEN-ODD-EVEN ... control inputs 668 and
670. These microwords, which respectively comprise ME 1 microword in 652 and
an ME 2 microword in 672 are temporally-stored in microword pipe registers 632
and 634 as part of the pipelined staging sequence.

[0067] In general, the operation of ME 2 instruction load logic block 604 is
analogous to the operation of ME 2 instruction load logic block 602 discussed
above. However, in this case, the instruction load process is initiated by the
program counter PC2 value, and produces a microword instruction 674 that is
provided as the next instruction to be loaded into and executed on microengine
ME 2.

[0068] Figure 7 shows an exemplary implementation of a network
processor 700 that employs elements of the network processor architectures of
Figures 1 and 6. In this implementation, network processor 700 is employed in a
line card 702. In general, line card 702 is illustrative of various types of network
element line cards employing standardized or proprietary architectures. For
example, a typical line card of this type may comprises an Advanced
Telecommunications and Computer Architecture (ATCA) modular board that is
coupled to a common backplane in an ATCA chassis that may further include
other ATCA modular boards. Accordingly the line card includes a set of
connectors to meet with mating connectors on the backplane, as illustrated by a
backplane interface 704. In general, backplane interface 704 supports various

input/output (I/0) communication channels, as well as provides power to line
20

10

15

20

25

WO 2006/039183 PCT/US2005/034010

card 702. For simplicity, only selected I/O interfaces are shown in Figure 7,
although it will be understood that other I/O and power input interfaces also exist.
[0069] Network processor 700 includes n microengines 706, which are
analogous to compute engines 102 and 104 of Figure 1 and microengines ME 1
and ME 2 of Figure 6. In one embodiment, n=8, while in other embodiment n=16,
24, or 32. Other numbers of microengines 706 may also me used.

[0070] In the illustrated embodiment, respective pairs of microengines 706
share corresponding pairs of control stores 708 in the manner depicted by
architectures 100 and 600 described above. Each microengine 706 includes a
respective set of one or more PC counters 710 (depending on how many
concurrent hardware threads are supported), and receives instructions from the
output of a respective multiplexer 710. (It will be understood that multiplexers 710
are generally illustrative of the circuitry and logic shown in architecture 600; a
single pair of multiplexers are shown here for simplicity.) In another embodiment,
control stores may be shared between four microengines using a control store
sharing and instruction thread interleaving scheme analogous to those shown in
Figures 4 and 5. Furthermore, the respective sets of microengines that share
control stores may be configured as a single set, or may be clustered in groups of
microengines.

[0071] Each of microengines 706 is connected to other network processor
components via sets of bus and control lines referred to as the processor
“chassis”. For clarity, these bus sets and control lines are depicted as an internal
interconnect 712. Also connected to the internal interconnect are an SRAM
controller 714, a DRAM controller 716, a general purpose processor 718, a media
switch fabric interface 720, and a PCI (peripheral component interconnect)
controller 722. Other components not shown that may be provided by network
processor 700 include, but are not limited to, scratch memory, hash units,

encryption units, and a CAP (Control Status Register Access Proxy) unit.
21

10

15

20

25

WO 2006/039183 PCT/US2005/034010

[0072] The SRAM controller 714 is used to access an extenal SRAM
store 724 via an SRAM interface 726. Similarly, DRAM controller 716 is used to
access an external DRAM store 728 via a DRAM interface 730. In one
embodiment, DRAM store 728 employs DDR (double data rate) DRAM. In other
embodiment DRAM store may employ Rambus DRAM (RDRAM) or reduced-
latency DRAM (RLDRAM).

[0073] General-purpose processor 718 may be employed for various network
processor operations. In one embodiment, control plane operations are facilitated
by software executing on general-purpose processor 718, while data plane
operations are primarily facflitated by instructibn threads executing on
microengines 706.

[0074] Media switch fabric interface 720 is used to interface with the media
switch fabric for the network element in which the line card is installed. In one
embodiment, media switch fabric interface 720 employs a System Packet Level
Interface 4 Phase 2 (SPl4-2) interface 732. In general, the actual switch fabric
may be hosted by one or more separate line cards, or may be built into the
chassis backplane. Both of these configurations are illustrated by switch
fabric 734.

[0075] PCI controller 722 enables the network processor to interface with one
or more PCIl devices that are coupled to backplane interface 704 via a PCI
interface 736. In one embodiment, PCI interface 736 comprises a PCI Express
interface.

[0076] During initialization, coded instructions to facilitate the packet-
processing functions and operations described above are loaded into control
stores 708. In one embodiment, the instructions are loaded from a non-volatile
store 738 hosted by line card 702, such as a flash memory device. Other
examples of non-volatile stores include read-only memories (ROMs),

programmable ROMs (PROMs), and electronically erasable PROMs (EEPROMSs).
22 '

10

15

20

25

WO 2006/039183 PCT/US2005/034010

In one embodiment, non-volatile store 738 is accessed by general-purpose
processor 718 via an interface 740. In another embodiment, non-volatile
store 738 may be accessed via an interface (not shown) coupled to internal
interconnect 712.

[0077] In addition to loading the instructions from a local (to line card 702)
store, instructions may be loaded from an external source. For example, in one
embodiment, the instructions are stored on a disk drive 742 hosted by another line
card (not shown) or otherwise provided by the network element in which line
card 702 is installed. In yet another embodiment, the instructions are downloaded
from a remote server or the like via a network 744 as a carrier wave. In general,
the instructions for a given thread may be initially stored (e.g., prior to being stored
in control stores 708) in an interleaved manner corresponding to the control store
sharing scheme, or may be stored in an original instruction thread form and
dynamically interleaved in the manner illustrated in Figures 2b and 5 above via
operations performed by an interleave application running on general-purpose
processor 718.

[0078] Thus, embodiments of this invention may be used as or to support
software/firmware instructions executed upon some form of processing core (such
as microengines 706) or otherwise implemented or realized upon or within a
machine-readable medium. A machine-readable medium includes any
mechanism for storing or transmitting information in a form readable by a machine
(e.g., a compute engine). For example, a machine-readable medium can include
such as a read only memory (ROM); a random access memory (RAM); a
magnetic disk storage media; an optical storage media; and a flash memory
device, etc. In addition, a machine-readable medium can include propagated
signals such as electrical, optical, acoustical or other form of propagated signals

(e.g., carrier waves, infrared signals, digital signals, efc.).

23

10

WO 2006/039183 PCT/US2005/034010

[0079] The above description of illustrated embodiments of the invention,
including what is described in the Abstract, is not intended to be exhaustive or to
limit the invention to the precise forms disclosed. While specific embodiments of,
and examples for, the invention are described herein for illustrative purposes,
various equivalent modifications are possible within the scope of the invention, as
those skilled in the relevant art will recognize.

[0080] These modifications can be made to the invention in light of the above
detailed description. The terms used in the fo_llowing claims should not be
construed to limit the invention to the specific embodiments disclosed in the
specification and the drawings. Rather, the scope of the invention is to be
determined entirely by the following claims, which are to be construed in

accordance with established doctrines of claim interpretation.

24

10

15

20

25

WO 2006/039183 PCT/US2005/034010

CLAIMS
What is claimed is:

1. A method, comprising:

coupling each of a plurality of compute engines to a plurality of control
stores; and

enabling instances of an instruction thread having respective portions of
instructions stored in the plurality of control stores to be executed via respective

execution threads running on each of the plurality of compute engines..

2. The method of claim 1, further comprising:
enabling multiple instances of the instruction thread to be executed

substantially concurrently on at least one of the plurality of compute engines.

3. The method of claim 1, wherein the plurality of compute engines and
control stores comprise first and second compute engines coupled to each of first

and second compute stores.

4, The method of claim 3, further comprising: ‘

partitioning alternating instructions for an original instruction thread into
even and odd sequences;

storing instructions for the even sequence in the first compute store;

storing instruction for the odd sequence in the second compute store.

5. The method of claim 4, further comprising:

25

10

15

20

25

WO 2006/039183 PCT/US2005/034010

executing an instance of the instruction thread on the first compute engine
by loading and executing instructions from the first and second control stores in an

alternating manner.

6. The method of claim 5, further comprising:

loading a branch instruction from a first control store;

determining if the branch instruction jumps to an instruction stored in the
first or second control store; and

loading the instruction that is jumped to into the first compute engine if the
instruction is stored in the second control store, otherwise stalling the loading of
the instruction for one cycle to resynchronize the alternating load and execution

sequence.

7. The method of claim 1, wherein the plurality of compute engines and

control stores are components integrated on a network processor die.

8. The method of claim 7, further comprising:

integrating circuitry on the network processor die to selectively enable
execution of a first instruction thread stored in a single control store from among
the plurality of control stores to be executed on a first compute engine and to
selectively enable a second instruction thread having portions of its instructions

stored across multiple control stores to be executed on the first compute engine.

9. The method of claim 1, wherein the plurality of compute engines comprise

four compute engines coupled to each of four compute stores.

10. The method of claim 9, further comprising:

26

10

15

20

25

WO 2006/039183 PCT/US2005/034010

partitioning every fourth instruction for an original instruction thread into
first, second, third, and fourth sequences; and
storing the instructions that are partitioned in an interleaved manner across
the four compute stores by,
storing instructions for the first sequence in a first compute store;
storing instruction for the second sequence in a second compute
store;
storing instruction for the third sequence in a third compute store;
and
storing instruction for the fourth sequence in the fourth compute

store.

11, The method of claim 10, further comprising:
executing an instance of the instruction thread on the first compute engine
by loading and executing instructions from the first, second, third, and fourth

control stores in an ordered sequence.

12. The method of claim 11, further comprising:

loading a branch instruction from the first control store into the first compute
engine;

determining if the branch instruction jumps to an instruction stored in the
first, second, third, or fourth control store; and

loading the instruction that is jumped to into the first compute engine if the
instruction is stored in the second control store, otherwise stalling the loading of
the instruction for one or more cycles to resynchronize the ordered load and

execution sequence.

13. The method of claim 1, further comprising:
27

10

15

20

25

WO 2006/039183 PCT/US2005/034010

storing instructions from an original instruction thread having original
instruction addresses into the plurality of control stores, the original instruction
thread including branch instructions referencing original branch addresses;

loading a branch instruction into a first compute engine;

extracting an original branch address referenced by the branch instruction;

performing an interleaved address translation based on the original branch
address to locate the next instruction to load into the first compute engine, the
interleaved address translation identifying the control store the next instruction is

located in and the address of the next instruction within that control store.

14. The method of claim 13, wherein the instructions for the instruction thread
are interleaved across first and second control stores, and the interleaved address
translation employs the least significant bit of the original branch address to locate

the control store in which the next instruction is stored.

15. The method of claim 13, wherein the instructions for the instruction thread
are interleaved across first, second, third, and fourth control stores, and the
interleaved address translation employs the least two significant bits of the original

branch address to locate the control store in which the next instruction is stored.

16. The method of claim 13, wherein the location of the next instruction within
its control store is determined by shifting bits in the original instruction address by
n/2 bits, wherein n equals the number of control stores in which the interleaved

instructions are stored.

17. An apparatus comprising:

an interconnect comprising a plurality of command and data buses;

28

10

15

20

25

WO 2006/039183 PCT/US2005/034010

a plurality of compute engines, communicatively-coupled to the
interconnect;

a plurality of control stores; and

instruction load logic circuitry, operatively-coupled between the plurality of
compute engines and plurality of control stores to enable each compute engine to
load interleaved instructions corresponding to an instruction thread that are stored

in an interleaved manner across the plurality of control stores.

18. The apparatus of claim 17, wherein the plurality of compute engines and
control stores comprise sets of first and second compute engines operatively
coupled via the instruction load logic circuitry to each of first and second compute

stores.

19. The apparatus of claim 17, wherein the plurality of compute engines and
control stores comprise sets of first, second, third and fourth control stores
operatively-coupled via the instruction load logic circuitry to each of first, second,

third, and fourth control stores.

20. The apparatus of claim 17, wherein each of the plurality of compute
engines includes a plurality of program counters, and each compute engines

supports hardware multithreading.

21. The apparatus of claim 17, further comprising:

a general-purpose processor, communicatively-coupled to the interconnect;
and

a non-volatile store, communicatively-coupled to the processor, to store
instructions that if executed by the general-purpose processor causes operations

to be performed, including,
29

10

15

20

25

WO 2006/039183 PCT/US2005/034010

partitioning an original instruction thread into a plurality of instruction
sequences;
storing the instruction sequences in respective control stores in an

interleaved manner.

22. The apparatus of claim 17, wherein the instruction load logic includes:
at least one bit shifter for each control store; and
a plurality of multiplexers, coupled to an instruction address input and an

instruction output for each of the control stores.

23. A machine-accessible medium, to provide instruction that if executed
perform operations comprising:

partitioning an original instruction thread into a plurality of interleaved
instruction sequences;

storing the interleaved instruction sequences in respective control stores.

24. The machine-accessible medium of claim 23, to provide further instruction
to perform operations comprising:

determining an original instruction address for each instruction in the
original instruction thread;

determining a control store in which each instruction is to be stored as a
function of its original instruction address; and

determining an address in the control store that is determined at which that

instruction it to be stored as a function of its original instruction address.

25. The machine-accessible medium of claim 24, wherein the control store in
which each instruction is to be stored is determined as a function of one or more

least significant bits for the instruction’s original instruction address.
30

10

15

20

25

WO 2006/039183 PCT/US2005/034010

26. A network line card, comprising:
a network processor, including,
a chassis interconnect comprising a plurality of command and data
buses;
a plurality of compute engines, communicatively-coupled to the
chassis interconnect;
a plurality of control stores; and
instruction load logic circuitry, operatively-coupled between the
plurality of compute engines and plurality of control stores to enable each
compute engine to load interleaved instructions corresponding to an
instruction thread that are stored in an interleaved manner across the
plurality of control stores; a backplane interface; and
a System Packet Level Interface 4 Phase 2 (SP14-2) media switch fabric
interface, comprising a portion of the backplane interface, communicatively

coupled to the chassis interconnect.

27. The network line card of claim 26, wherein the plurality of compute engines
and control stores comprise sets of first and second compute engines operatively
coupled via the instruction load logic circuitry to each of first and second compute

stores.

28. The network line card of claim 26, wherein the plurality of compute engines
and control stores comprise sets of first, second, third and fourth control stores
operatively-coupled via the instruction load logic circuitry to each of first, second,

third, and fourth control stores.

29. The network line card of claim 26, further comprising:
31

WO 2006/039183 PCT/US2005/034010

a general-purpose processor, communicatively-coupled to the interconnect;
and
a non-volatile store, communicatively-coupled to the processor, to store
instructions that if executed by the general-purpose processor causes operations
5 to be performed, including,
partitioning an original instruction thread into a plurality of instruction
sequences;
storing the instruction sequences in respective control stores in an
interleaved manner.
10
30. The network line card of claim 26, wherein the network processor further
includes a static random access memory (SRAM) memory controller with SRAM
interface, coupled to the internal interconnect, the line card further including an

SRAM store coupled to the SRAM interface.

32

WO 2006/039183

PCT/US2005/034010
1/8
INST 0 INST 1
2 3
4 5
6 7
8 9
106 1108
100 101
200 | 201
' (110 ’ (112
! 4 d 7
¥ ¥
CONTROL STORE CE 1 CONTROL STORE CE 2
| N 1
| \ 0 1j—EVEN \.0 1 /—ooo
14 ODD A EVEN
EVEN OoDD
COMPUTE ODD COMPUTE EVEN
ENGINE 1 ENGINE 2
(CE 1) (CE2)
Ch02 104

A

100

Fig. 1

WO 2006/039183

ORIGINAL
INSTRUCTION
ADDRESS INSTRUCTION

2/8

Fig. 2a

n
n+1
n+2
n+3
n+4
n+d
n+6
n+7
n+8
n+9

n+10
n+11
n+12
n+13
n+14
n+15

n+22
n+23

n+30
n+31
n+32
n+33
n+34
n+35
n+36
n+37

Inst 0

1

2

BrLabel2 3

—
QO OO N,

1
Label 1 12
13
14
Label 3 15

Label 2 22
23

30

31

32

33

Br Label 1 34
35

36
37

A

202

"

200

PCT/US2005/034010

WO 2006/039183 PCT/US2005/034010

3/8
RAM RAM
(PHYSICAL) ORIG. INST. (PHYSICAL) ORIG. INST.210
ADDRE\S'S A?DRESS ADDRE\SS A?RESS
CS CE1 (EVEN) CS CE2 (ODD)
- —_—). —_
BASE 1 0 : 0 : BASE 2 0 : 1 :
1 (v 21 1 |t 31
|] | |
P Do
| w1
P |y n| Inst 0 PC1 P [intl Inst 1
P+1 |1 n+2! 2 P+1 |! n+3 1g—Br Label 2 3
P+2 || nt4, 4 P+2 || nt5 | 5
oy | : 2 —
: : 8 i : 9
! 10 b 11
P+6 |1 n+12ir> Label1 12 I | 13
! n+14] 14 in+15 | Tabel3 15
| I g
P+11 :n+22: : Label 2 22 :n+23: 23
| 1 | . I
I n+301 30 208 : o 31
| n¥32, 32 P+16 1n+33 | 33 |PC2
P+17 :n+34:f‘—- Br Label 1 34 :n+35: 35
| 36 O 37
| | | I
Loy (I |
204 206
Control Store Offset
INTERLEAVED ADDRESS = LSB + EC(MSB...J)
Fig. 2b
EVEN ODD EVEN ODD EVEN O0DD
EVEN CE(1) n n+1 n+2 n+3 n+22 n+23
ODD EVEN ODD EVEN ODD EVEN
ODDCEQR) 433 n+34 NOP n+12 n+i3 n+1d4

Fig. 2¢

WO 2006/039183 PCT/US2005/034010

4/8

CSCE1 CSCE?2
PC1-n PC2 = n+33

————ATTTZ
e« A Y v 7 4
Fig. 3a 114@ EVEN ﬁZODD

110~ P2

INST 0 6-1NsT 33 TIME=0
A 4 A 4
et o] compute] . [compure] (2L
ENGINE1 [~ ENGINE 27
104
 CSCE1 CSCE2 |
M0 e neaa pct—>net 112
1 l T
Fo | [116
ig. 3b 114m5v&| TIME=1
INST1 BRANCH LABEL 1 (EVEN) (INST 34)
\ 4 A 4
PC1 L0+]| [compure] 10p |COMPUTE PC2{n+34]
ENGINE1 [~ ENGINE 2\
104
CS CE 1 cscE2]
M0 ey 5 e pc2 - n+i2 7112

Fig. 3¢ ,,,)

—_— ¥

! oo, | NOP
i_:z EVEN 16% TIME=2

=

'L‘HZ

INST 2 NOP
A 4 \ 4
Pet COMPUTE] .. [compuTE
ENGINE 1 ENGINE 2}
i1o~) CSCET CS CE2
™ PC2 - n#12 PC1 - n+3

| 116

Fig. 3d 1,5 o

< EVEN
BRANCH LABEL 2 (EVEN) (INST 3) INST 12
4
n+3

TIME=3

PC1

coMPuTE] . |compuTe] |F C2|
ENGINE 1 |~ ENGINE 2+ ~

PCT/US2005/034010

WO 2006/039183

80 90
\ \
€ 3NION3 Z INION3T
O | 31nanon L0 1 31ndW0D
10 | 00
00 vzb L1
W0 0L L0 00— 0L 2/ 01 Lo oo
W WY
\\\
f/
0
~
wn
€30 Z3o
mm@»mJOmhzoo mm@»mJOmhzoo
mrv\ ars
€02 20z
€01 Zo1
61 g1
mmv\\.mr vm¢\\.vr
Ll 0
L 9
€ LSNI Z LSNI
(L1l x0 0Ll x0

L INION3
J1NdWOD

N

(=]

<
S

0 INION3T
L) 31ndwoo

vay

030

mmOAPw TOHLNOD

g

ovvk
002
001
omv\\ ot

¢l

0 LSNI

{o0) " x0

p 8L

PCT/US2005/034010

WO 2006/039183

6/9

S 81
9Ly viy Z\y (%%
/ €0d / Zod / 10d / 00d
90z v0Z
——— =" J— == — [== N _IT\I_ ,\
9ev || 177G | vev ||| Zrs) €% | 101G 2 I
| | } |}] |] |
| | | | | | | |
6¢ lge+u|| 6+d | |8€ lge+u || 6+d | | .€ lig+u)| 6+d | | 9€ lgg+u| | 6+d
ge IGE+U 1 ve 1 10qe.g —{ive+u £e 1EE+U | z€ 1ZE+U 1
1€ gy | 0 log+u || 62 lg+u;| 74 lgz+u |
2 1/Z+ut| 9+d | |92 19z+u1{ 9+d | |G2Z IGZ+Ut 9+d | | ¥ 19Z+U 1| 9+d
€2 lez+u | 27 7 1PGET <4 224y, 12 l1z+u | 02 10z +u |
6l 16} +U | 8l 1 1gpeui| 1 IS 9l 19} +ul
Gl ¢l9ge7 |Gh+U || €+d vl Ul erd | [e) [EL+U | €4d Zh 11898 < | Th+U| €+d
W 01| z+d | [0 o+ul| 2+d | [6 T6ru 1| Z+d | |8 Tg+U 1| Z+d
] HEGIEE [9+U | L+d| [S G+ | b+d| [| 7+ | L+
¢ cigelig —Ple+u | d ZIsy] FHE L Isu] j+u 1l d 0 1sul Tu 1| g
m “ee m ses m “ee m aee m are m “es m m
| | I | | | | |
| | I 1 | I | |
" L “ I 19 " I I S “ b b “ }
| | | .
Iml 0 N _INI_ 0 S _IFI_ 0 | _Iol_ 0
Wieoso J A N\ lewss f A O\ bmoso f A Y\ dowso S

SS3I¥AAY SSIHaav
"1SNI ‘9140 (TVDISAHJ)
nvy

SS3¥AQY SS3I¥Aav SS3daay ssa¥aay - SS3YAAY SSIMHAQY
90S “ISNI'ONO (TWIISAHA) V05 “LSNI'OIMO (WOISAHd) ¢ "ISNI "OI¥0 (TVDISAHd)
WYY vy Wy

PCT/US2005/034010

WO 2006/039183

7/8

009 9 .%.»n&
Law [0l NS\‘ =
_ ge+u |20d A 09 909 209 ¥ __ u |10d
|||||||||||||||||||| m - - fF--" """ —7-T7=T7==—= |||l|._ ~I¢|j|||.|||.|ull|.||||||||l.||||lnl.
| 1 ppOjueAT] !
piomri z3w || 749] 0,97 W acg 759 | | urpaowrl vm@f promrl |3)
I L)~ “adig | 1! 1AW _
229 X 0 o e~ ¥59 "
/T 0N oot ||] > |
3POW”paleys sonmi | 1-venzyppo K \ b apopaseys !
AP L 899 (! 059 _
¢L9y VI edid F K ~— !
99| - o € H— |
ulpiomrd 1 piomri \EL I} N0~ piomrl |
210 ¢AN I J 9€9 " I 13N 3 _
| ¢ 81015 129 | | 81015 |
z11 7| lo4uog R c99 g J] 103u0D |
| 1 ""ppojuang “__ !
029 i v\mo | 219 8¥9 |
_ . _
3po~paseys E ﬂv&ww m “ 0£9 > mwwﬂm_mz _ m I 0 ovos_nuo._wsmm
| |
I ! S |
mwwﬂwm/m: “ “ 099 “ " mmo._%uﬂw (-2 “
“*UBA I 809 . |
oasnl /X g9 [y aeRo vooo 1L poES KW o1-sml
_ ‘o
70d Woi4 v? “ m mmw_a_mmz w “ ! 0d woi4 A__
ssaipper gaW: [0:gSN] v 11:aS] Ry PP _] " | {1:gswl [0:gSw] issesppert | IN "
1929 - !
Z3aN g59/ - ateys™L !l O 090 | W

PCT/US2005/034010

WO 2006/039183

8/8

51 YLy $0. PELN == — - .
L o S \ 0/ -on!
, O/H —O/1
04 JDOV44ILNI INYIgNOVE o ol
0/ !
/ 9e2)> zeL \/ﬁ./ ot — o
"D S
© ®
¥0SSI00Yd ™ 00Z
womaN - Juso| [u $o] sso] [rso] Al % _SZ
(dAL) 802 — Dlyav4
(dAL) L2 - 1LND
o HOLIMS
udd wod | VIGIW
(dAL) Ob2 van] Jwaw sanl lraw
(dAL) 902 M w IMW : ZL.
A/
1O3INNOOYILNI TYNHILNI
8L W W 912+ MW viL
e gan| fzaw vaw| Joaw
4OSSIN0Nd _E zod || lLod 00d]| [¥3TI0HINOO ¥3TI04LNOD
350d¥Nd 7\ 7\ WYYQ WVAS
TYH43INTO N ===
ﬁ eso| [zso 150] oso
ovN\MﬂW omn@ h @NNAW vel
8€.Ly /
T
JHOILS gz,
I71LYIOA-NON Wyda Had WS

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

