
(19) World Intellectual Property Organization

(43) International Publication Date 8 June 2006 (08.06.2006)

PCT

(10) International Publication Number WO 2006/060746 A2

- (51) International Patent Classification: H01L 25/00 (2006.01)
- (21) International Application Number:

PCT/US2005/043825

(22) International Filing Date:

5 December 2005 (05.12.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/633,078

3 December 2004 (03.12.2004) US

- (71) Applicant (for all designated States except US): IN-FRARED SOLUTIONS, INC. [US/US]; 3550 Annapolis Lane North, #70, Plymouth, Minnesota 55447-5333 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): JOHNSON, Kirk, R. [US/US]; 12045 Tilton Trail N., Rogers, Minnesota 55374 (US). MCMANUS, Thomas, J. [US/US]; 4255 Deerwood Lane N., Plymouth, Minnesota 55441 (US).
- (74) Agents: SEGELBAUM, Charles, D. et al.; FREDRICK-SON & BYRON, P.A., 200 South Sixth Street, Suite 4000, Minneapolis, Minnesota 55402-1425 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VISIBLE LIGHT AND IR COMBINED IMAGE CAMERA WITH A LASER POINTER

(57) Abstract: Methods and apparatuses for registering on a camera display separate fields of view of a visible light camera module and an infrared camera module by focusing the IR camera module. The fields of view can be displayed in several display modes including 1) full screen visible, infrared and/or blended, 2) picture-in-a-picture such as partial infrared image in a full screen visible image, and 3) infrared color alarms in visible-light images.

WO 2006/060746 PCT/US2005/043825

VISIBLE LIGHT AND IR COMBINED IMAGE CAMERA WITH A LASER POINTER

BACKGROUND

25

30

Many infrared cameras today produce an image (IR image) of a scene using only energy in the far-infrared portion of the electromagnetic spectrum, typically in the 8-14 micron range. Images obtained using these cameras assign colors or gray-levels to the pixels composing the scene based on the intensity of the IR radiation reaching the camera's sensor elements. Because the resulting IR image is based on the target's temperature, and because the colors or levels displayed by the camera do not typically correspond to the visible light colors of the scene, it can be difficult, especially for novice users of such a device, to accurately relate features of interest (e.g. hot spots) in the IR scene with their corresponding locations in the visible-light scene viewed by the operator. In applications where the infrared scene contrast is low, infrared-only images may be especially difficult to interpret.

An infrared scene is a result of thermal emission and, not all, but most infrared scenes are by their very nature less sharp compared to visible images which are a result of reflected visible light. For example, considering an electric control panel of an industrial machine which has many electrical components and interconnections, the visible image will be sharp and clear due to the different colors and well defined shapes. The infrared image may appear less sharp due to the transfer of heat from the hot part or parts to adjacent parts.

To address this problem of better identifying temperature spots of interest, some cameras allow the operator to capture a visible-light image (often called a "control i mage") of the scene using a separate visible light camera built into the infrared camera. The FLIR ThermaCam® P65 commercially available from FLIR Systems of Wilsonville, Oregon is an example of such a camera. These cameras provide no capability to automatically align, or to merge the visible-light and infrared images in the camera. It is left to the operator to manually correlate image features of interest in the infrared image with corresponding image features in the visible-light image.

Alternatively, some infrared cameras employ a laser pointer that is either built into, or affixed to the camera. The FLIR ThermaCam® E65 commercially available from FLIR Systems of Wilsonville, Oregon is an example of such a camera. This laser pointer projects a visible point or area onto the target, to allow the user to visually identify that portion of the target

scene that is being displayed by the infrared camera. Because the laser pointer radiation is in the visible spectrum, it is not visible in the infrared image. As a result, the laser pointer is of limited value in infrared cameras. This can be problematic when the location of a hot or cold spot is difficult to identify. For example, large industrial control p anels often have many components that are similar in shape and packed tightly together. It is sometimes difficult to determine the exact component that is causing a thermal event, such as a hot spot in the infrared camera image.

Other infrared temperature measurement instruments may employ either a single temperature measurement sensor, or a very small number of temperature sensors arrayed in a grid pattern. Single point instruments typically provide a laser pointing system to identify the target area by illuminating the point or area viewed by the single temperature sensor element, e.g. Mikron M120 commercially a vailable from Mikron Infrared Inc. of O akland, New Jersey. Alternatively, some systems employ an optical system that allows the user to visually identify the point in the target scene that is being measured by the instrument by sighting through an optical path that is aligned with the temperature sensor, e.g. Mikron M90 commercially available from Mikron Infrared Inc. of Oakland, New Jersey. Instruments with more than one sensor element typically provide a very crude infrared image made up of a small number of scene pixels, each with a relatively large instantaneous field of view (IFOV), e.g. IRISYS IRI 1011 commercially available from Advanced Test Equipment of San Diego, California. It can be very difficult to accurately identify features of interest using such images.

It is often difficult to focus infrared images because the infrared images do not typically have sharp resolution. For example, because of heat transfer by multiple processes from hot locations to adjoining locations, the images do not always have sharp resolution. This makes focusing the infrared image user subjective. It is desirable to make the focusing of infrared images less subjective.

SUMMARY

5

10

15

20

25

30

Certain embodiments of this invention combine a video-rate and/or still infrared camera, with a video-rate and/or still visible-light camera in one instrument so that the scene can be simultaneously viewed and recorded in both visible-light and infrared. The two images are registered (corrected for parallax error) and sized to match each other, so that the infrared scene and the visible scene overlay each other in the resulting image. The operator can

choose to view the infrared image, the visible light image, or an alpha-blended (fused) combination of the two. Because the two images are matched by the camera, the operator can easily correlate features of interest in the infrared and visible light images simply by noting where the features of interest overlap in the two images. Novices may choose to view only the visible-light image and read temperatures in the visible image using data from the not displayed, but associated infrared image.

5

10

15

20

Low contrast infrared scenes, when blended with the visible-light image, result in a combined image with much higher apparent contrast. The need for a laser pointer is eliminated in many applications because enough contrast exists in the visible light image to identify the location of the features of interest in the infrared image.

Embodiments of the invention allow manufacturers to produce high quality infrared cameras at a lower cost by using smaller lower-cost infrared sensors, e.g. sensors containing fewer detector elements, and/or less sensitive sensors or sensor/lens combinations. By using a matching visible-light image, the user has the capability to identify the infrared target based on its visible-light image, rather than on its infrared image alone.

Certain embodiments of the invention provide a method of displaying visible light (VL) images and/or infrared (IR) images. The method includes providing a camera having a VL camera module, an IR camera module, and a display. The VL camera module and IR camera modules have respective first and second fields of view (FOVs). The method includes focusing the IR camera module on a target scene to create a focused second FOV. The focusing of the IR camera module registers at least a portion of the first FOV corresponding to the focused second FOV with the second FOV. The method also includes displaying an image of either the registered first FOV, the focused second FOV, or a blended image of the registered first FOV and the focused second FOV.

Certain embodiments of the invention provide a method of displaying visible light (VL) images and/or infrared (IR) images. The method includes providing a VL camera module, an IR camera module, and a display. The VL camera module and IR camera modules have respective first and second fields of view (FOVs) and produce images of the respective FOVs. The method includes displaying at least portions of the images on the display. The method also includes registering the images from the VL camera module and the IR camera

module on the display by displacing the images relative to each other until they are registered via the use of a manual adjustment mechanism.

Certain embodiments of the invention include a camera that produces visible and infrared images. The camera comprises a visible camera module having a VL sensor and VL optics and an IR camera module having an IR sensor and IR optics. The VL camera module is displaced from the IR camera module so that the modules see a target scene from different views causing a parallax error. The camera include means for eliminating the parallax error and a display for concurrently displaying images from the IR camera module and the VL camera module such that the images register without parallax error.

5

20

25

30

10 Certain embodiments of the invention include a computer-readable medium programmed with instructions for performing a method of registering images from multiple camera modules. The instructions can cause a programmable processor to perform several steps. These steps include receiving a first image that includes a target from a visible light (VL) camera module and a second image that includes the target from an infrared (IR) camera module. The VL camera module and IR camera modules have respective first and second fields of view (FOVs). The steps also include determining the distance from at least one of the camera modules to the target, correcting a parallax error using the determined distance, registering the first and second images corrected for parallax, and displaying the registered images on a display.

Certain embodiments of the invention provide an infrared camera with a laser pointer to help identify locations of points-of-interest, such as hot spots and/or to aid the focusing of the infrared camera. Many of these embodiments also include a visible light camera that is mounted together with the infrared camera and the laser pointer. Many of these embodiments also include a display that can selectively display the infrared image from the infrared camera, the visible-light image from the visible-light camera, and/or an alpha-blended version of both images. The infrared and visible light cameras may have separate fields of view that create parallax error. The camera can correct the parallax error and register the images on the display from the separate fields of view. The laser pointer can be used to aid in the registration process. In many of these embodiments, the infrared camera is calibrated to identify the location of the laser spot in the infrared image using parallax calibration data as a function of the infrared camera focus distance. Once the camera calculates the location of the laser spot, the camera can generate a computer-generated laser spot reference in the displayed

image. This spot may be moved into alignment with the actual laser spot visible in the displayed image in order to focus the infrared camera. This spot may also be used to annotate an image to show the location of the laser when the actual laser spot is not visible in the displayed image.

5 Certain embodiments of the invention provide a display that shows a visible light image of a target scene and an infrared image or an alpha-blended form of the visible light and infrared image of the target scene that meets certain alarm criteria. Such alarms include absolute hot threshold, absolute cold threshold, relative hot threshold, relative cold threshold, absolute range or isotherms. In some embodiments, the alarm may be signified by a flashing of the imagery, by an audible alarm, or by a vibration alarm.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1 and 2 are front and rear perspective views of a camera according to an embodiment of the invention.

Figure 3 shows a block diagram of a representative camera system according to an embodiment of the invention that can be used to practice embodiments of the invention.

Figure 4 is a diagram showing the optical path and sensor configuration of the camera.

Figure 5 shows geometrically, the derivation of the parallax equation.

Figure 6 shows the (Full-Screen, Full-Sensor infrared)/(Full-Screen, Partial-Sensor Visible-Light) scene display mode.

Figure 7 shows combined visible-light and infrared images uncorrected for parallax error.

Figure 8 shows the same images corrected for parallax error.

Figures 9 and 10 are cross-sectional views of an infrared camera module with a magnet and Hall-Effect sensor according to an embodiment of the invention.

Figure 11 shows the (Partial-Screen, Partial-Sensor infrared)/(Full-Screen, Full-Sensor Visible-Light) scene display mode. In this mode, the camera uses all of the visible-light sensor elements to fill the display.

- Figure 12 shows the (Partial-Screen, Full-Sensor infrared)/(Full-Screen, Partial-Sensor Visible-Light) scene display mode. In this mode, the camera uses all of the available infrared sensor elements to provide an infrared image that fills only a central area of the camera display.
- Figure 13 shows the (Partial-Screen, Full-Sensor infrared)/(Full-Screen, Full-Sensor Visible-Light) scene display mode. In this mode, the camera uses all of the infrared and all of the visible-light sensor elements to construct the displayed images.
 - Figures 14-16 show respectively, an infrared only image of an insulated cup, a visible-light only image of the cup and a partial alpha-blended image of the cup.
- Figure 17 shows an example of a "hot threshold" alarm mode display.
 - Figure 18 shows a typical infrared image of a low infrared contrast scene.
 - Figure 19 shows the same scene with an alpha-blended visible-light image, yielding a much higher apparent contrast.
- Figures 20-23 show, respectively, a visible-light image with a laser spot, a visible-light image with the laser spot and a computer generated laser marker aligned with the laser spot, an infrared only image with the computer generated laser marker and hot spot not aligned, and an infrared only image with the computer generated laser marker and hot spot aligned.
 - Figures 24-26 show, respectively, a visible-light only image with a laser point, an alphablended visible-light/infrared image with a laser point and hot spot not aligned, and an alphablended visible-light/ infrared image with a laser point spot aligned.
 - Figures 27-28 s how, r espectively, an infrared only image with a computer generated laser pointer and hot spot not aligned and an infrared only image with the computer generated laser pointer and hot spot aligned.
- Figures 29-30 show, respectively, a visible-light only image with a laser spot and a computer generated laser marker not aligned and a visible-light only image with the laser spot and computer generated laser marker aligned.

DETAILED DESCRIPTION

20

System Description

5

10

30

Figures 1 and 2 are perspective views of the front and the back of a camera 10 according to an embodiment of the invention. The housing includes an infrared camera module and a visible-light camera module. In particular, the camera 10 includes a camera housing 12, a Visible-Light (VL) lens 13, an infrared lens 14, focus ring 16 and a laser pointer 18 as well as various electronics located within the housing as will be described with reference to Figure 3. In an embodiment, an LED torch/flash 17 is located on each side of the VL lens 13 to aid in providing e nough light in dark environments. A display 20 is located on the back of the camera so that infrared images, visible light images and/or blended images of Infrared and Visible-Light may be viewed. In addition, target site temperature (including temperature measurement spot size) and distance readings may be displayed. Also located on the back of the camera are user controls 22 to control the display mode and activate or deactivate the laser pointer.

Figure 3 shows a block diagram of a representative camera system according to an embodiment of the invention that can be used to practice embodiments of the invention.

The Visible-Light camera module includes a CMOS, CCD or other types of visible-light camera, LED torch/flash and a laser pointer. This camera streams RGB image display data (e.g. 30 Hz) to the FPGA for combination with infrared RGB image data and then sends the combined image data to the display.

The Analog Engine interfaces with and controls the infrared sensor, and streams raw infrared image data (e.g. 30 Hz) to the DSP. The DSP performs computations to convert the raw infrared image data to scene temperatures, and then to RGB colors corresponding to the scene temperatures and selected color palette. For example, U.S. Patent No. 6,444,983 entitled "Microbolometer Focal Plane Array With Controlled Bias," assigned to the present assignee, is incorporated herein in its entirety, discloses such an infrared camera. The DSP then streams the resulting infrared RGB image display data to the FPGA where it is combined with the VL RGB image data and then sends the combined image data to the display.

The Embedded Processor Card Engine includes a general-purpose microprocessor that provides a graphical user interface (GUI) to the camera operator. This GUI interface consists of menus, text, and graphical display elements that are sent to the FPGA, where they are buffered in SRAM and then sent to the display.

The MSP430 interfaces with the user interface including camera buttons, mouse, LCD backlight, and the smart battery. It reads these inputs and provides the information to the embedded processor card engine where it is used to control the GUI and provides other system control functions.

The FPGA drives the display(s) (LCD and/or TV, for example) with combined visible-light image data, infrared image data, and GUI data. The FPGA requests both the visible-light and infrared image data from the VL and infrared camera modules and alpha-blends them together. It also alpha-blends the resulting display image with the GUI data to create a final blended image that is sent to the LCD display. Of course the display associated with the embodiments of the invention is not limited to an LCD-type display. The FPGA operates under control of the DSP, which is further controlled by the embedded processor card engine. The degree of image alpha-blending and the display mode, i.e. picture-in-a-picture, full screen, color alarm and zoom mode, is controlled by the user through the GUI. These settings are sent from the embedded processor card engine to the DSP which then configures the FPGA properly.

Optical Configuration

5

10

15

20

25

30

Embodiments of the invention combine an engine of a real-time visible-light camera with an engine of a real-time infrared camera close to each other in the same housing such that the optical axes are roughly parallel to each other.

The camera according to the embodiments of the invention places the engine or module of a real-time visible-light camera in the housing of a real-time infrared camera. The placement is such that the visible and infrared optical axes are as close as practical and roughly parallel to each other, for example, in the vertical plane of the infrared optical axis. Of course other spatial arrangements are possible. The visible light camera module, i.e., VL optics and VL sensor array, are chosen to have a larger field of view (FOV) than the infrared camera module. Figure 4 is a diagram showing the optical path and sensor configuration of the camera. As shown in the diagram, there are two distinct optical paths and two separate sensors. One for visible-light, and one for infrared. Because the optical paths for the sensors are different, each sensor will "see" the target scene from slightly different vantage points thereby resulting in parallax error. As will be described in detail hereinafter, the parallax error is corrected electronically using software manipulations. This provides the capability to

electronically correct the displayed images for parallax. In certain embodiments, the visible-light optics and sensor are chosen so that their respective field of views (FOV) are different, i.e. one is larger than the other. For instance, in one embodiment, the VL FOV is greater than the infrared FOV. This provides cost effectiveness. Presently, for a given number of pixel sensors, visible light sensor arrays are much cheaper than infrared sensor arrays. Accordingly, for a given field of view and resolution (instantaneous field of view), visible light sensor arrays are cheaper than infrared sensor arrays.

In certain embodiments, the visible light optics are such that the visible light camera module remains in focus at all usable distances. Only the infrared lens needs focus adjustment for targets at different distances.

Parallax Correction and Display Modes

5

10

15

20

25

30

Figure 5 shows geometrically, the derivation of the parallax equation (eq. 1). As can be seen by the equation, parallax can be reduced by minimizing the distance (q) between the visible-light and infrared optical apertures, and also by choosing short focal length lenses. The camera design will typically physically fix (q). In certain embodiments, the focal lengths of the visible-light and infrared lens (f) can be altered in the field by changing lenses, or using optical systems that include multiple focal lengths or continuous zoom. In the embodiments with fixed focal length lenses, the focal lengths remain constant during operation once the lenses are installed. Hence, during camera operation, parallax is simply a function of distance (d) to the target. In the embodiment shown, the focal length (f) of each lens is the same. In alternate embodiments, the focal lengths (f) of the infrared lens and the visible lens may differ from each other.

The camera corrects the visible-light and infrared images for parallax and provides several different methods to display the registered images to the operator. These methods are described below. In general, parallax error corrections are based on the infrared focus distance as will be described hereinafter. However, parallax error may also be corrected by determining the distance from the target image (other than via focus distance) by schemes known to those of ordinary skill in the art.

The camera according to the embodiments of the invention can operate in one of three display modes; 1) full screen visible, infrared and/or blended, 2) picture-in-a-picture such as partial infrared image in a full screen visible image, and 3) infrared color alarms in visible-

light images. In any one of these display modes, temperatures will be recorded and can be displayed in the infrared portion of the image. Temperatures can also be displayed on a visible-light only image from the recorded but not displayed infrared image.

5

10

15

20

25

30

In the full screen display mode, an operator has a choice of selecting for display a full screen visible-light only image, a full screen infrared only image, or a full screen blend of visiblelight and infrared images. In an embodiment of the invention, the display is about 320 by 240 pixels and is represented by the dashed-line box shown in Figure 6. The infrared sensor has 160 by 120 pixels and the visible-light sensor has 1280 by 1024 pixels. These particular dimensions are given by way of example and are not limiting to any of the embodiments of the invention. Thus, the infrared sensor, the VL sensor and display may each be individually larger or smaller than the particular examples given. Figure 6 shows a diagram of the mode where the full 160 by 120 infrared image is interpolated to fill the camera display. Based on the display mode chosen, a portion of the 1280 by 1024 visible-light image is windowed to match the infrared window. Since the number of selected visible-light sensor elements does not necessarily match the 320 by 240 pixels of the camera display, the visible-light image is scaled to match the camera display. After parallax error correction, each resulting infrared display pixel will represent the same instantaneous field of view (IFOV) as its corresponding visible-light display pixel. Because the two images are matched, the camera operator can easily identify points-of-interest in the infrared image with objects in the visible-light image simply by noting where the features of interest overlie each other in the two images. In the embodiment shown in Figure 6, the display mode is entitled "Full-Screen, Full-Sensor Infrared and Full-Screen, Partial-Sensor Visible-Light display mode." Additional display modes are discussed further below.

Parallax error between the visible-light image and the infrared image is corrected automatically by the camera. This process is referred to as registering. In order to apply the proper parallax correction, the camera must first determine the distance to the target object of interest. One method to determine the target distance is to sense the focus position of the infrared lens using a Hall-effect sensor. Figures 9 and 10 show a sectional view of camera 10 taken from front to rear through the center of infrared lens 14. Referring to Figs. 9 and 10, a Hall-Effect sensor 30 is fixed in the housing 32 with respect to the infrared sensor array 34 to sense the proximity of a magnet 36 attached to the back of the IR lens 14. As the focus of the lens is changed via rotation of focus ring 16, the distance f' between the magnet 36 and the

Hall-Effect sensor 30 changes, resulting in an output from the Hall-Effect sensor that is proportional to focus position. (The focus of the lens could be changed by moving the lens or moving the infrared sensor array.) This focus position is used to derive an estimate of the distance to the target. The infrared lens focus position provides an especially convenient estimate of distance because typical infrared lenses have a low F-number, resulting in a shallow depth of field. The Hall-Effect sensor may, in one embodiment, be fixed on the infrared sensor array. In addition, the positions of the Hall-Effect sensor and magnet may be reversed from that shown.

5

10

15

20

25

In the embodiment shown in Figs. 9 and 10, the magnet 36 is a ring that encircles an interior surface of the focus ring 16 facing the infrared sensor array 34. The Hall-Effect sensor 30 is fixed in the camera housing 32 a small distance from of the infrared sensor array 34. The distance between the Hall-Effect sensor and the magnet represents the distance f' shown in Figs. 9 and 10. Figure 9 shows the lens positioned for near focus and Figure 10 shows the lens positioned for far focus in which case the magnet is closer to the Hall-Effect sensor than in Figure 9. Mechanisms and methods other than those described above for a Hall effect sensor may, of course, be employed to determine the distance to target. Such equivalent mechanisms or methods would be known to those with skill in the art. The Hall-Effect sensor is one convenient method.

Estimating the distance between the target and the camera is a valuable safety feature. For example, OSHA has specific safety distance requirements when inspecting high voltage electrical cabinets. Thus, using the camera according to the embodiments of the invention, one can display the distance to the target on the display so that the camera operator is assisted in complying with OSHA's safety requirements.

In addition, it can be valuable to know the size of the spot on the target that is being measured (instantaneous field of view spot size). Because the spot size is a function of distance and the embodiments of the invention have the ability to measure (or rather estimate) distance that is needed to correct parallax error, spot size can be calculated as a function of distance and displayed to the camera operator via the display.

The lens position sensor value to focus distance correlation for each infrared lens is determined at the factory and stored with other camera calibration data in the camera's non-volatile memory. This calibration data includes X and Y image offsets calculated for each

focus distance. By utilizing the sensed infrared lens focus position and the factory calibration data, the correct X and Y sensor offsets of the partial area from the visible-light sensor to be displayed can be computed and used to select the appropriate visible-light sensor area for the current infrared focus distance. That is, as the focus distance of the infrared lens is changed, different areas of the visible-light sensor image are extracted and displayed, resulting in registration of the infrared and visible-light images for objects at the focus distance. Figure 7 shows combined picture-in-a-picture display of visible-light and infrared images misaligned, i.e. uncorrected for parallax error. Figure 8 shows the same images corrected for parallax error. Referring to Figure 7, the center quarter of the display shows a blurry (unfocused) and unregistered infrared-only image 40 placed within the surrounding framework of a visible only image 42. The rectangular dark sections 44 in the image are misaligned (unregistered) showing the parallax error resulting from the unfocused infrared image 44. Referring to Figure 8, the rectangular dark sections 44 in the infrared image 40 are registered with the portions of such sections 44 in the visible only image 42, showing that infrared image is now properly focused. Figures 7 and 8 highlight a method by which a user of camera 10 could focus the infrared image 40 by merely rotating focus ring 16 until image 40 is properly registered. Although Figures 7 and 8 show the center quarter of the display as infrared only, this same method and technique could be used for a blended visible and infrared image, whether the images are shown picture in picture, full display, alarm mode, or other display modes.

10

15

20

25

30

Note that objects within the scene that are not at the focus distance will still exhibit a parallax error. Nearer objects will exhibit a larger parallax error than objects beyond the focus distance. In practice, parallax error becomes negligible beyond a focus distance of approximately 8 feet for lenses used with typical infrared cameras. Also note that parallax errors can only be corrected down to a limited close focus distance to the camera (typically about 2 feet). This distance is determined by how much "extra" field of view the visible-light sensor provides as compared to the infrared sensor.

When an image is captured, the full visible-light image and the full infrared image with all of the ancillary data are saved in an image file on the camera memory card. That part of the visible-light image not displayed which lies outside of the camera display dimensions when the image was taken is saved as part of the visible-light image. Later, if an adjustment in the registration between the infrared and visible-light image is needed, either in the camera or on a computer, the full visible-light image is available.

The camera allows the operator to adjust the registration of the visible-light and infrared image after an infrared/Visible-light image pair is captured and stored in memory. One way to accomplish this is to use the infrared lens position as an input control. This allows the operator to fine-tune the registration, or to manually register objects in the scene that were not at the infrared focus distance when the images were captured, simply by rotating the focus ring on the lens.

5

10

15

20

The visible-light image, when it is the only displayed image, is displayed preferably in color, although it need not be. When it is blended with the infrared image, the visible-light image is converted to gray scale before it is blended so that it only adds intensity to the colored infrared image.

Figure 11 shows the scene display mode entitled "Partial-Screen, Full-Sensor Infrared and Full-Screen, Partial-Sensor Visible-Light display mode." In this mode, the camera uses all of the available infrared sensor elements to provide an infrared image that fills only a central area of the camera display. Standard image processing techniques (e.g. scaling and windowing, for example) are used to fit the infrared image into the desired area of the display. The IFOV of the visible-light image is adjusted to match the IFOV of the infrared image and then a portion of the visible-light image is selected to fill the full display and to match the infrared image in the center of the display. The center quarter of the display can be infrared only, visible-light only or a blend of the two. The remaining three-quarters of the display (outer framework) is visible-light only.

The camera uses the same technique in this mode as that described for the full screen mode to correct for parallax.

Alternatively, instead of matching the visible-light image to the infrared image just the opposite may be done. Figures 12 and 13 illustrate this technique. Figure 12 shows a picture-in-a-picture "Partial-Screen, Partial-Sensor infrared and Full-Screen, Full-Sensor Visible-Light scene display mode." In this mode, the camera uses all of the visible-light sensor elements to fill the display. If the number of visible-light sensor elements does not match the number of display pixels, the camera uses standard imaging techniques to create an image that fills the display screen. A portion of the available infrared sensors is chosen to

provide the infrared image. The infrared image is windowed and matched so that the resulting infrared display pixels provide the same IFOV as the visible-light image display pixels.

The camera uses similar techniques to those described for Figure 6 to correct for parallax. However, in this mode, different areas of the infrared sensor are selected to match the center region of the visible-light image as the infrared focus distance is changed. Note that in this mode, the infrared image is always displayed in a fixed position in the middle of the display.

Figure 13 shows the "Partial-Screen, Full-Sensor infrared and Full-Screen, Full-Sensor Visible-Light scene display mode." In this mode, the camera uses all of the infrared and all of the visible-light sensor elements to construct the displayed images. The visible-light image is scaled to completely fill the display. The infrared image is windowed and scaled so that the IFOV of the resulting display pixels match the visible-light image. The resulting image is displayed over the matching area of the visible-light image.

Like the previously described mode, parallax is corrected by moving the infrared image scene to align it with the visible-light image scene.

Alpha-Blending

5

10

15

20

Alpha-blending is a process of ratioing the transparency/opaqueness of two images superimposed on one pixel. If the Alpha = maximum, then the first image is opaque and the second is transparent and is so written to the display. If Alpha = 0, then the first image is transparent and the second image is opaque and is so written to the display. Values inbetween cause 'blending' (alpha blending) between the two sources, with the formula Display = Source 1*(Alpha/max Alpha) + Source 2*((max Alpha-Alpha)/max Alpha).

Figures 14-16, show respectively, an infrared only image of an insulated cup, a visible light (VL) only image of the cup, and a partial alpha-blending of the infrared and VL images.

The camera will enable the operator to adjust the alpha blending of the visible and infrared images from the extremes of infrared-only (Fig. 14) or visible-only (Fig. 15) to any combination of alpha blending between these two extremes (Fig. 16). Note that although the infrared image is not visible in Figure 15, the underlying infrared image data is used to display the correct object temperature 52 in the visible light image. Thus, as the cursor is

moved over the visible-light image, the temperature 52 associated with the cursor's location on the image is displayed.

The infrared and visible-light images can be displayed in either color or grayscale. When color is used to portray temperatures in the infrared image, the visible image in the overlap area can be displayed in grayscale only so that it doesn't excessively corrupt the infrared palette colors.

When an image is saved, both the visible and infrared images are saved individually so reconstructing images with different alpha blending can be accomplished later either in the camera, or with PC software.

10 Alarm Modes

5

15

25

The camera supports several different visual alarm modes. These modes are used to call the operator's attention to areas of interest in the visible-light image by displaying an alphablended or infrared only image in areas that meet the alarm criteria as set by the user. Figure 17 shows an example of the "hot threshold" alarm mode. Only those pixels in the infrared image that exceed a set temperature threshold (hotspots 60) are displayed. In the color alarm mode, the visible-light image 62 is switched to gray scale so that the infrared image stands out with no ambiguity. The camera can provide alarm modes, such as those described below. Other alarm modes are also possible.

Absolute hot threshold – infrared pixels above a defined temperature are alpha-blended with corresponding visible-image pixels.

Absolute cold threshold - infrared pixels below a defined temperature are alpha-blended with corresponding visible-image pixels.

Relative hot threshold – A temperature range is defined by the user. The temperature range is relative to the current hottest pixel (or average of a set number of hottest pixels) in the scene or from a previous scene or reference scene. Infrared pixels above the threshold defined by the current hottest pixel(s) in the scene minus a user defined or predetermined temperature range are alpha-blended with their corresponding visible-image pixels. For example, if the temperature range is 5 degrees, and the current hottest pixel(s) in the scene is 100 degrees, for

example, all infrared pixels above 95 degrees in the scene will be alpha-blended with corresponding visible-light pixels.

- Relative cold threshold A temperature range is defined by the user. The temperature range is relative to the current coldest pixel (or average of a set number of coldest pixels) in the scene or from a previous scene or reference scene. Infrared pixels below the threshold defined by the current coldest pixel(s) in the scene plus a user defined or predetermined temperature range are alpha-blended with their corresponding visible-image pixels. For example, if the temperature range is 5 degrees, and the current coldest pixel(s) in the scene is 10 degrees, all infrared pixels below 15 degrees in the scene will be alpha-blended with corresponding visible-light pixels.
- Absolute range (isotherm) The operator enters a temperature range. Infrared pixels with a temperature within the set range are alpha-blended with their corresponding visible-light pixels. For example, the user enters a range of 80-100 degrees. All infrared pixels with a temperature value within the 80-100 degree range are alpha-blended.
- Alarm flash mode To further call attention to areas of interest, the camera may
 provide a mode whereby the alpha-blended areas are "flashed" by alternately
 displaying the alarmed pixels as visible-light only, and then either alpha-blended or
 infrared only.

The alarm modes identified above may also be indicated audibly or via vibration. Such audible or vibrational alarms may be useful in situations where hotspots are small enough to otherwise go unnoticed in the visual display. In embodiments that include audible or vibration alarms, the camera can generate such an alarm to alert the camera operator when, for instance, the camera detects an out of specification temperature or any of the other alarms modes identified above. Referring back to Figure 3, the camera may include an alarm module connected to the FPGA that provides audible or vibrational alarms. The vibration mechanism can be similar to that used in cellular phones to alert persons of an incoming call.

PC Software

5

10

15

20

25

All of the image display techniques described for the camera can also be implemented in software that runs on a PC host computer and can be applied to images captured by the camera.

ADVANTAGES

The advantages have already been stated above. The infrared image will not only be sharper with much more detail, it will be surrounded with a visual image showing exactly what and where the infrared targets are. Parallax error will be automatically corrected, yielding a visible-light control image that is correctly registered with the infrared image. Infrared cameras can be made with smaller less expensive detector arrays, yet display the apparent detail and contrast of very expensive infrared cameras with large and ultra-sensitive detector arrays. Figure 18 shows a typical infrared image of a low infrared contrast scene. Figure 19 shows the same scene with an alpha-blended visible-light image, yielding a much higher apparent contrast with target site temperature measurement.

USES

This camera can be used in all phases of infrared thermography where current infrared cameras are used today and in the future. In the case of the simplest uses such as an electricians tool, the camera can be made inexpensively with a small infrared detector array and yet have very high performance -- high image quality with high spatial resolution and accurate temperature. In the case of high-end thermography the camera can be made at a lower cost and have images with greater apparent detail than the most expensive infrared cameras. The camera will eliminate the need to take separate visible-light images to be included in thermography reports.

Laser Pointer

25

30

Various applications are possible using the laser embodiments of the present invention. As previously mentioned, because the laser pointer radiation is in the visible spectrum, it is not visible in the infrared image. As a result, the laser pointer is of limited value in infrared cameras. This is problematic when the location of a hot or cold spot is difficult to identify. For example, large industrial control panels often have many components that are similar in shape and packed tightly together. It is sometimes difficult to determine the exact component that is causing a hot spot in the infrared camera image. In addition, in building inspection

applications where a wall appears uniform in the visible image but shows a defect in the infrared image, the laser pointer of the embodiments of the invention can be used to identify the exact location of the defect on the wall. For roof leak detection applications, it can greatly aid the thermographer in marking the area suspected of needing repair. The camera operator can outline the wet area by adjusting the camera pointing so that the laser spot seen in the image outlines the suspected wet area in the image and thus also outlines the suspected wet area on the roof with the laser beam so that it can be correctly marked. In an R&D application where the target is complex such as a printed wiring board assembly, the laser pointer embodiments of the invention may aid in identifying the location of the infrared point of interest.

5

10

15

20

25

30

The laser pointer of the embodiments of the invention is used to accurately identify the location of infrared points-of-interest and to easily aid the focusing of the infrared optics. Figures 2 4-26 s how an associated sequence of events. The laser pointer can be turned on using one of the camera's programmable buttons or by other mechanisms by the camera operator. At a reasonable distance, the laser pointer spot 100 on the target can be seen in the visible-light image (Fig. 24) and in the blended visible-light and infrared image that has been corrected for parallax error (Fig. 25). Once the laser spot is identified in the blended image (Fig. 25), the camera operator can adjust the camera pointing until the laser spot in the blended image matches the spot of interest 102 in the infrared image (Fig. 26). The laser beam then marks the target at the point-of-interest (Fig. 26).

Because the camera according to the embodiments of the invention has been calibrated in the factory to identify the location of the laser spot in the infrared image using parallax calibration data as a function of infrared camera module focus distance, the camera operator does not need to see displayed the laser spot in the VL image. If the target is at a distance and/or has a low reflection for the laser wavelength, the laser spot may be too weak for the VL camera to show prominently on the camera display but it can still be seen on the target by the human observer. Figures 27 and 28 show an associated sequence of events. In this case, the infrared focus is adjusted as normally done by observing the sharpness of the infrared image. A computer-generated laser spot reference mark 200 is registered with the infrared image so that a representative mark (e.g., circle) is displayed on the infrared image (Fig. 27). The camera operator then adjusts the camera pointing until the laser calibration mark 200 lies

over the infrared point-of-interest 202 (Fig. 28). Once that happens, the laser beam then strikes the target at the point of interest.

Alternatively, the camera operator first focuses the infrared image using an infrared display image only, switches to the visible-light display where the laser 210 will be shown in the display as seen in Figure 20. The operator marks the laser spot 210 on the display with a marking 212 such as a circle (see Figure 21) and then switches the display back to the infrared only (see Figure 22) where the marking 212 is registered with the infrared image and it is displayed on the infrared image, positioned in the center quarter of the display area. The operator then adjusts the camera pointing so that the mark 212 on the infrared display matches the thermal spot of interest 214 on the infrared display. (see Figure 23) Once that happens, the laser beam then strikes the target at the point of interest.

Using the Laser Pointer to Focus the Infrared Image

5

10

15

20

25

With calibration data correcting for parallax between the laser pointer and the infrared image and the ability to see the actual laser spot in the VL image, a process for monitoring and aiding the infrared focus is possible. Figures 29 and 30 show an associated sequence of events. In this case, the location of the laser spot 220 is visible in the VL image (Fig. 29). The camera according to the embodiments of the invention has been calibrated in the factory to generate a computer-generated laser spot reference mark 222 that indicates the location of the laser spot in a focused infrared image using parallax calibration data as a function of infrared camera module focus distance. This reference mark may be displayed in the IR image or the VL image (that overlaps the IR image). In Figure 29, the reference mark 222 is shown in the VL only image. As the infrared lens is adjusted, the mark moves in the VL image showing the spot where the laser dot would be in the infrared image. When the infrared mark is coincident with the laser dot seen in the VL image (Fig. 30), the focus adjustment may stop and the infrared camera module is in focus. This allows the most novice operator to focus the infrared lens and eliminates the subjective nature of focusing.

WHAT IS CLAIMED IS:

5

25

30

- 1. A method of displaying visible-light (VL) images and/or infrared (IR) images, the method comprising:
- providing a camera having a VL camera module, an IR camera module, and a display, the VL camera module having a first field of view (FOV), the IR camera module having a second FOV different from the first FOV;

focusing the IR camera module on a target to create a focused second FOV;

- the focusing of the IR camera module registering at least a portion of the first FOV corresponding to the focused second FOV with the focused second FOV; and
- displaying an image of either the registered first FOV, the focused second FOV, or a blended image of the registered first FOV and the focused second FOV.
 - 2. The method of claim 1, further including wherein determining a value indicative of the distance between the IR camera module and the target.
- The method of claim 1, wherein focusing the IR camera module on the target
 comprises moving a lens of the IR camera module with respect to a sensor array of the IR camera module.
 - 4. The method of claim 3, wherein the sensor array comprising 160 pixels by 120 pixels.
 - 5. The method of claim 1, wherein the VL camera module, the IR camera module, and the display are mounted in a camera housing.
- A method of displaying visible-light (VL) images and/or infrared (IR) images, the method comprising:
 - providing a camera having a VL camera module and an IR camera module and a display, the VL camera module having a first field of view (FOV), the IR camera module having a second FOV different from the first FOV, the VL camera module producing an image of the first FOV, the IR camera module producing an image of the second FOV;
 - displaying at least portions of the images from the VL camera module and the IR camera module on the display;
 - registering the images from the VL camera module and IR camera module on the display by displacing the images from the VL camera module and the IR camera module relative to each other until registered via a manual adjustment mechanism.
 - 7. The method of claim 6, wherein the manual adjustment is the focus mechanism for the IR camera module.

- 8. The method of claim 6, wherein the at least portions of the image from the IR camera module is displayed generally centrally within the at least portions of the image from the VL camera module.
- 9. The method of claim 6, wherein the at least portions of the image from the IR camera module is displayed alpha-blended with the at least portions of the image from the VL camera module.
 - 10. The method of claim 6, wherein the at least portions of the image from the IR camera module is displayed without the image from the VL camera module on a portion of the display.
- 10 11. A camera producing visible and infrared images, the camera comprising: a visible camera module having a VL sensor and VL optics; an IR camera module having an IR sensor and IR optics,
 - the VL camera module and the IR camera module being displaced from one another so that the IR and VL camera modules see a target scene from different views causing a parallax error;

means for eliminating the parallax error; and

5

15

25

- a display for concurrently displaying images from the IR camera module and the VL camera module such that the images register without parallax error.
- 12. The camera of claim 11, wherein the visible camera module and the IR camera
 20 modules have separate fields of view, the visible camera module field of view being
 larger than the IR camera module field of view.
 - 13. The camera of claim 11, further including a processor for selecting portions of the images from the IR camera module and the VL camera module that register together.
 - 14. The camera of claim 11, wherein the means for eliminating the parallax error includes a focus mechanism of the IR camera module.
 - 15. The camera of claim 14, wherein the focus mechanism includes a device for determining the distance between the IR optics and a sensor array of the IR camera module.
- 16. A computer-readable medium programmed with instructions for performing a method of registering images from multiple camera modules, the medium comprising instructions for causing a programmable processor to:

 receive a first image that includes a target from a visible light (VL) camera module, the VL camera module having a first field of view (FOV);

5

receive a second image that includes the target from an infrared camera (IR) module, the infrared camera module having a second FOV;

determining the distance from at least one of the camera modules to the target; correcting a parallax error using the determined distance;

- registering the first and second registered images corrected for parallax error; and displaying at least portions of the first and second images on a display with the portions of the first and second images registered.
- 17. The method of claim 16, wherein the distance from the at least one of the camera modules to the target is determined by focusing the second FOV.
- 10 18. The method of claim 17, wherein a Hall-Effect sensor mounted within a focus mechanism in the VL camera module provides data indicating the distance from the at least one of the camera modules to the target.
 - 19. The method of claim 16, further comprising displaying on the display the determined distance between the at least one of the camera modules and the target.
- 15 20. The method of claim 16, further comprising determining and displaying the instantaneous field of view spot size of the at least portions of the first and second images being displayed.

WO 2006/060746 PCT/US2005/043825

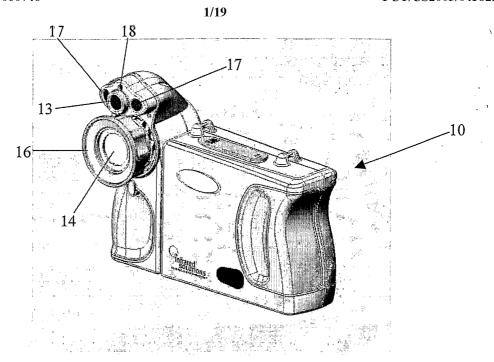


FIG. 1

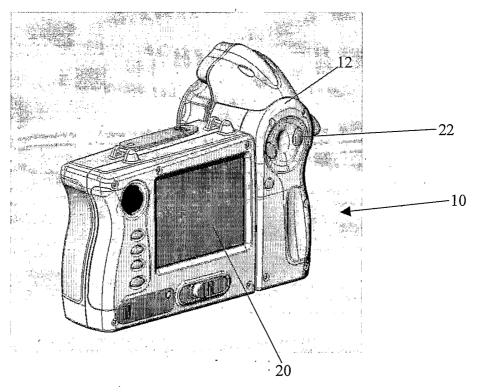
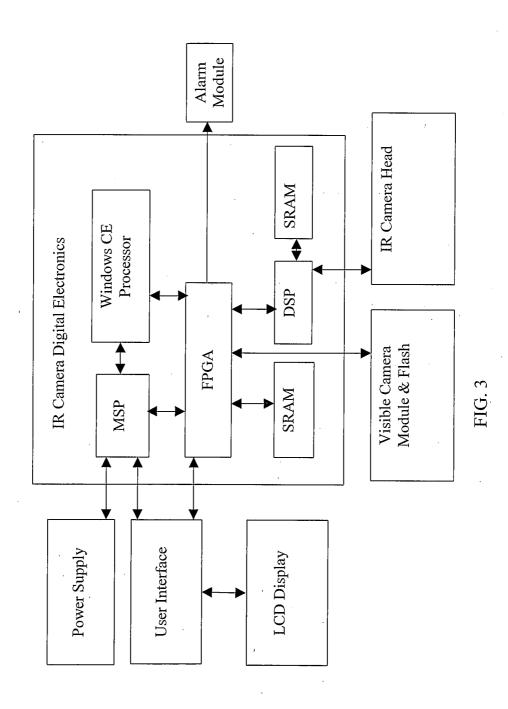
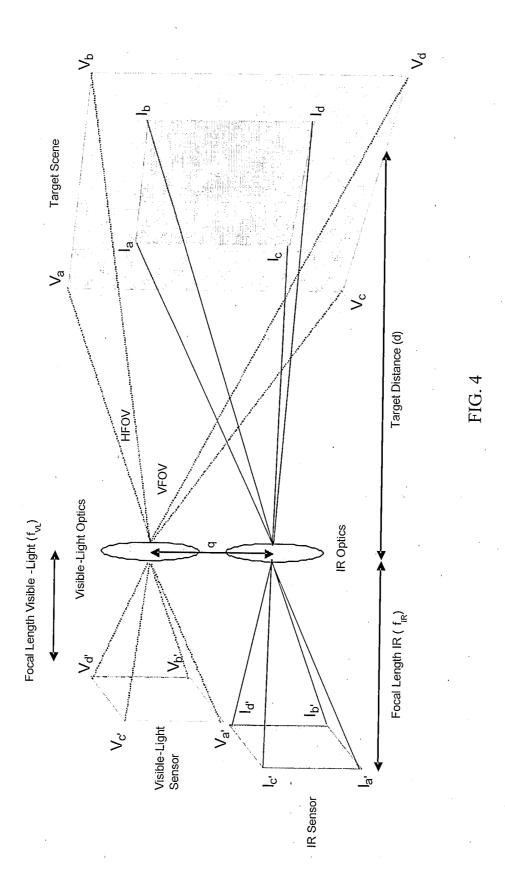




FIG. 2

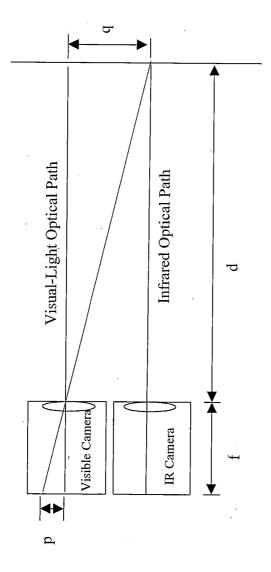


FIG. 5

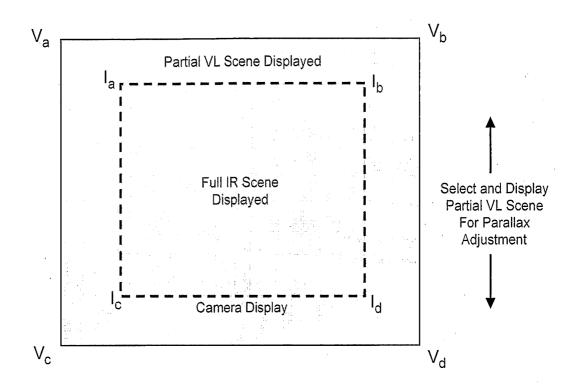
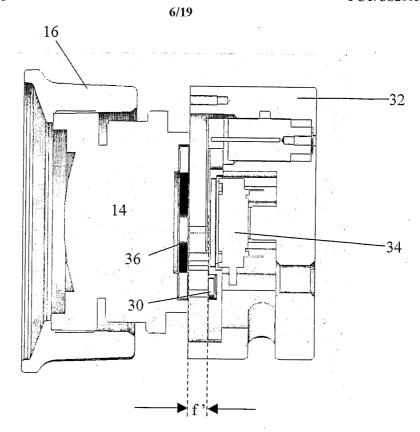
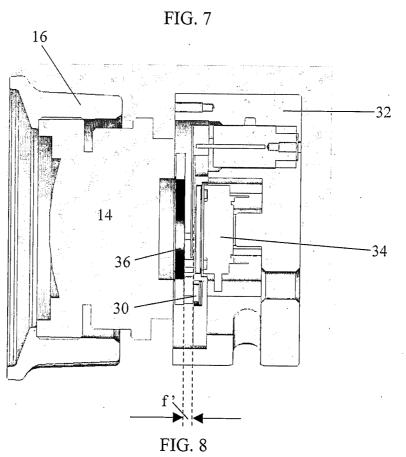




FIG. 6

WO 2006/060746 PCT/US2005/043825

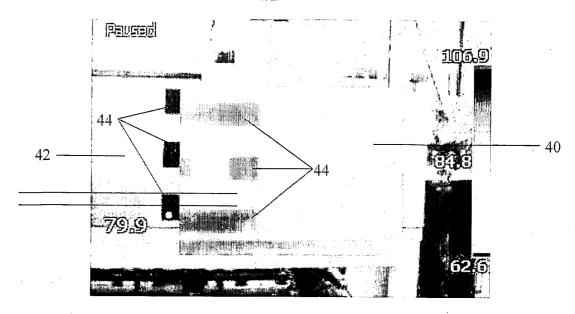


FIG. 9

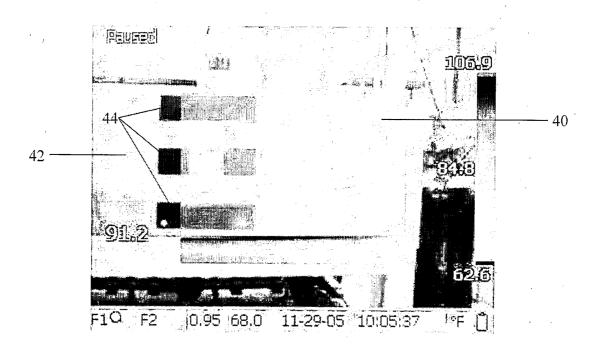
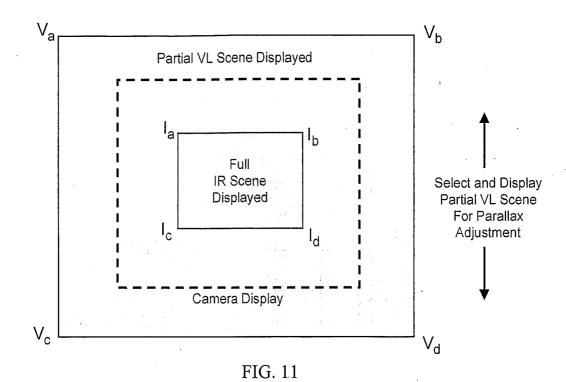



FIG. 10

Full VL Scene Displayed

Partial
IR Scene
Displayed

C

Partial
IR Scene
For Parallax
Adjustment

FIG. 12

Camera Display

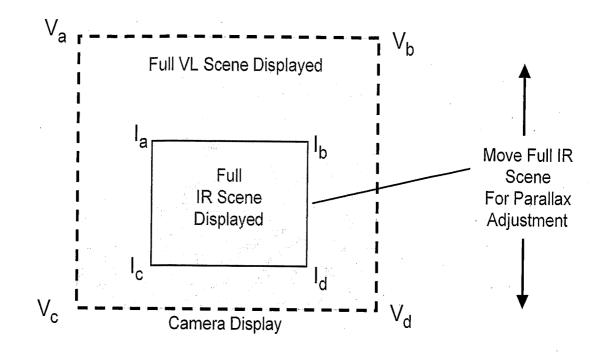
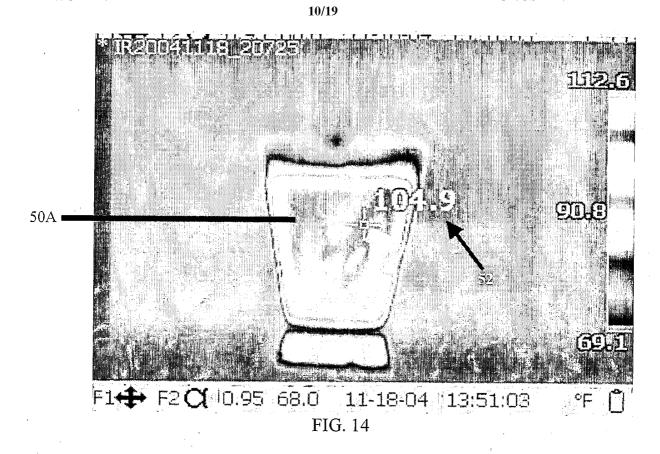



FIG. 13

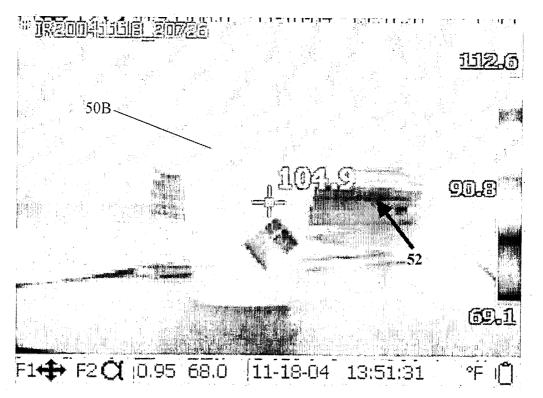


FIG. 15

11/19

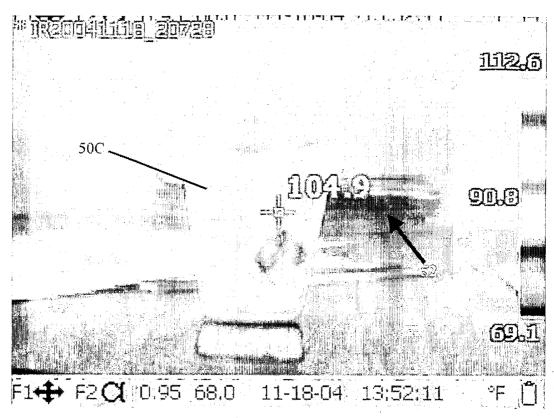


FIG. 16

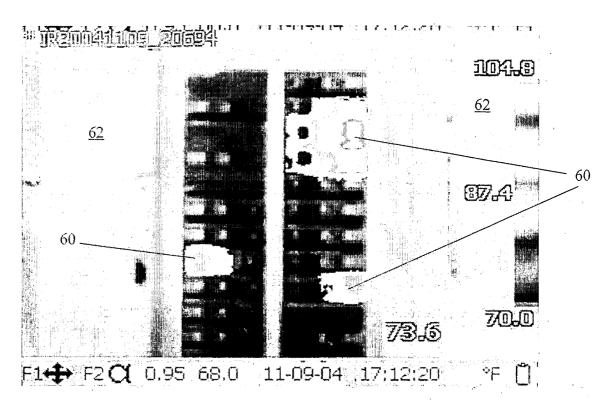


FIG. 17

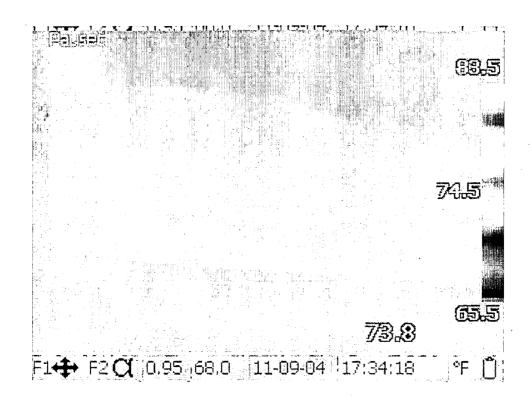


FIG. 18

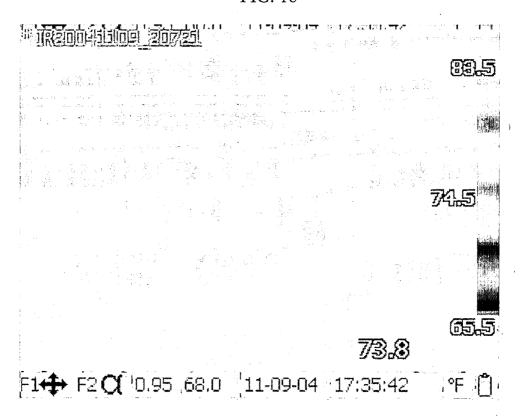



FIG. 19

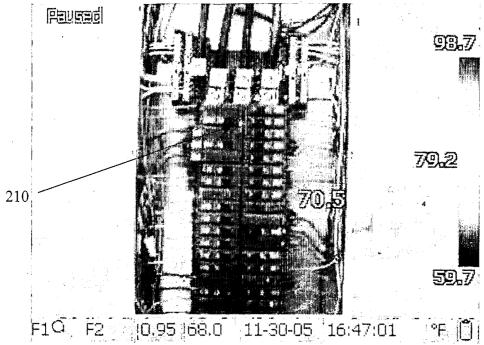
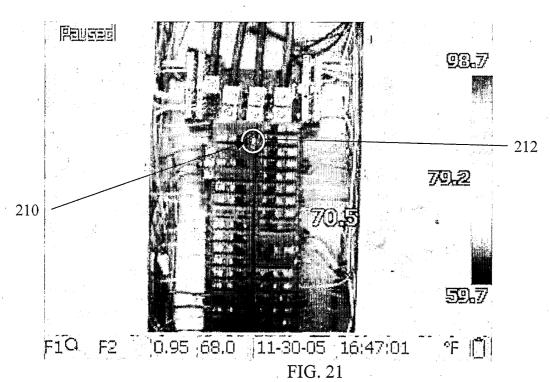



FIG. 20

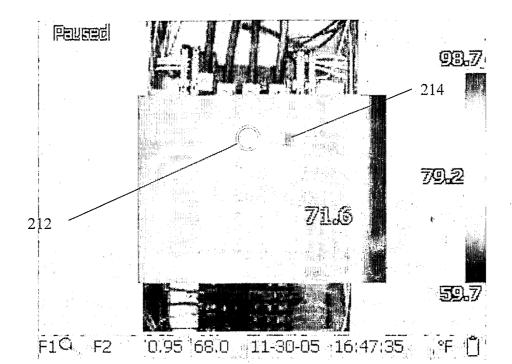


FIG. 22

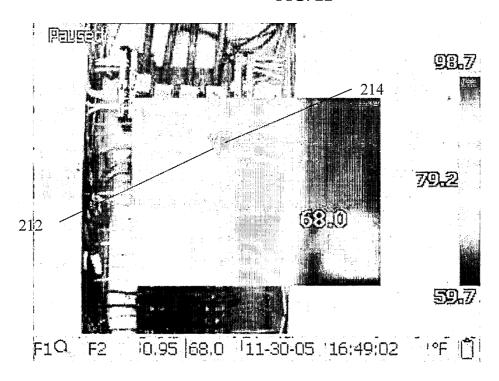
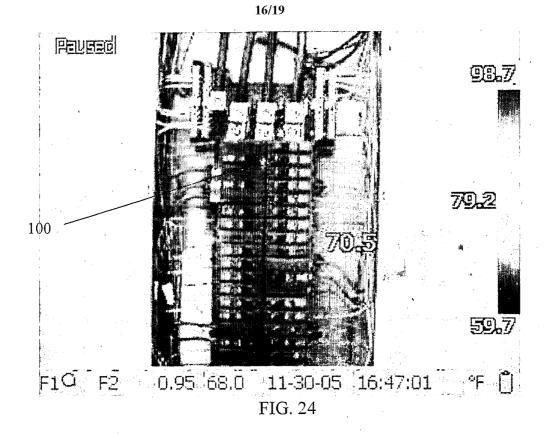
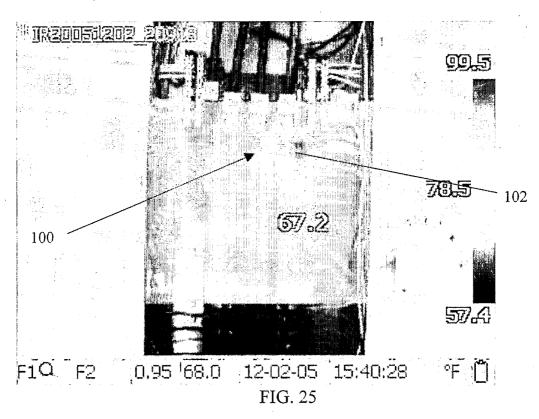




FIG. 23

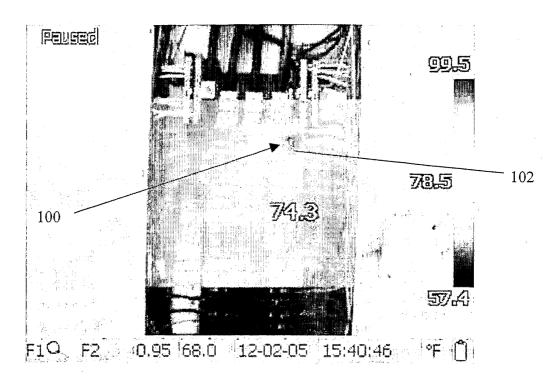


FIG. 26

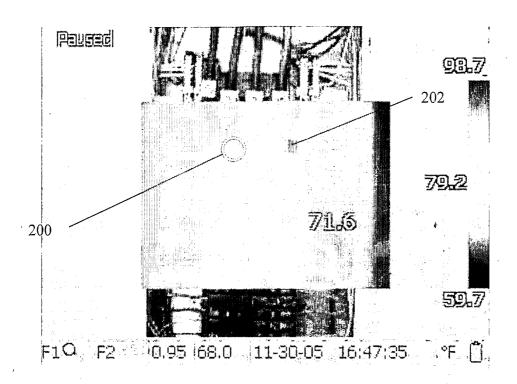


FIG. 27

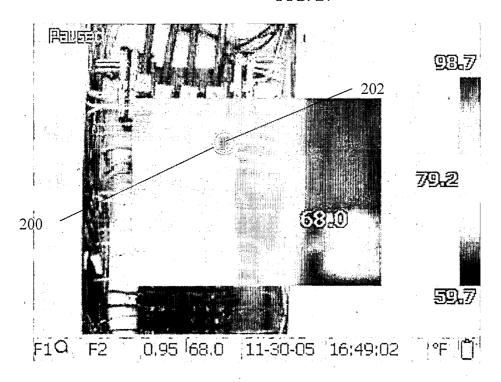
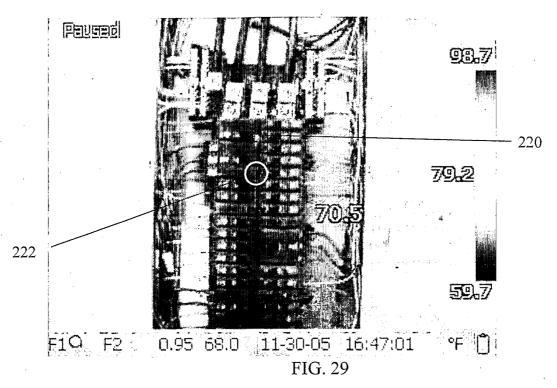
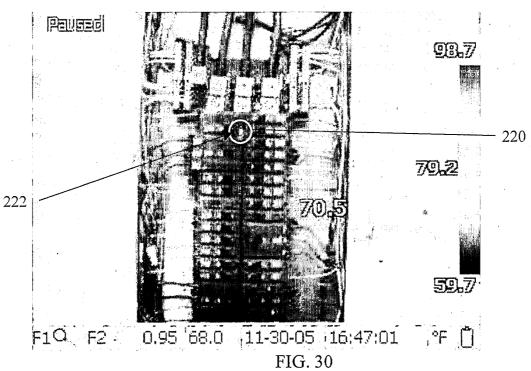




FIG. 28

