wo 2014/004021 A2 ||]I INF 10V O Y O T

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

3 January 2014 (03.01.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/004021 A2

(51
eay)

(22)

(25)
(26)
(30)

1

(72)
1

International Patent Classification: Not classified

International Application Number:
PCT/US2013/044500

International Filing Date:
6 June 2013 (06.06.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/532,085 25 June 2012 (25.06.2012) US

Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College
Boulevard, Santa Clara, California 95054 (US).

Inventors; and

Applicants (for US only): CHANG, Luke [US/US]; 1623
SW Sahnow Dr., Aloha, Oregon 97006 (US). NATU, Ma-
hesh, S. [US/US]; 202 Peppermint Tree Terrace, Unit 1,
Sunnyvale, California 94086 (US). VASH, James, R.
[US/US]; 85 Grist Mill Road, Littleton, Massachusetts
01460 (US). SEBOT, Michelle, M. [US/US]; 3067 NW
Wilson St., Portland, Oregon 97210 (US). SAFRANEK,

(74

(8D

(84)

Robert, J. [US/US]; 1300 SW Park Ave., Apt. 1115, Port-
land, Oregon 97201 (US).

Agents: BURNETT, Alan, R. et al.; R. Alan Burnett, PS.,
c/o CPA Global, P.O. Box 52050, Minneapolis, MN 55402

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: TUNNELING PLATFORM MANAGEMENT MESSAGES THROUGH INTER-PROCESSOR INTERCONNECTS

132~

Non-Legacy Socket

Ring § =» iF

™ (g4

Transform logic
Message_/

- e PCU
Channel

Remote)
HO

PCie |

Manageable
Device

138

Legacy Sockst

Messaga/
Channel

Legacy
HG

DMPCle

"Basaboard §
Management ¢
Env ine E!\ﬂaﬂagemem
gne ;. Controller
i

(57) Abstract: Methods and apparatus for tunneling plat-
form management messages through inter-processor inter-
connects. Platform management messages are received from
a management entity such as a management engine (ME) at
a management component of a first processor targeted for a
managed device operatively coupled to a second processor.
Management message content is encapsulated in a tunnel
message that is tunneled from the first processor to a second
management component in the second processor via a sock-
et-to-socket interconnect link between the processors. Once
received at the second management component the encapsu-
lated management message content is extracted and the ori-
ginal management message is recreated. The recreated man-
agement message is then used to manage the targeted device
in a manner similar to if the ME was directly connected to
the second processor. The disclosed techniques enable man-
agement of platform devices operatively coupled to pro-
cessors in a multi-processor platform via a single manage-
ment entity.

WO 2014/004021 A2 WK 00T 000 OO A

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

TUNNELING PLATFORM MANAGEMENT MESSAGES
THROUGH INTER-PROCESSOR INTERCONNECTS

TECHNICAL FIELD

The field of invention relates generally to management of computer
systems and, more specifically but not exclusively relates to tunneling management
messages between processors using inter-processor interconnects.

BACKGROUND ART

A typical server platform consists of multiple processor sockets, memory
subsystem and a number of PCI Express controllers. The level of robust platform
management is one of the key attributes that distinguishes a server from platform
targeted for individual use, such as Personal Computers, laptops, notebooks,
tablets, efc. The management of a server platform is typically orchestrated by the
BMC (Baseboard Management Controller). The BMC allows the platform to be
remotely managed through use of an application or web-based interface
comprising a remote management console and uses a sideband path into the
network controller to facilitate communications between the BMC and the remote
management console. Since server management is a complex task, the BMC
offloads some of the responsibilities to a Management Engine (ME). The ME is
configured to perform various platform management tasks via communication with
platform components over applicable interconnects, and communicates component
operating parameters and associated data back to the BMC.

There are several manageability applications that require relatively high
bandwidth (~10 MB/s), low latency communication paths between various
components. Media redirection (mounting a remote drive) and Video redirection
are two examples of such applications. In the current server platforms, a fast
sideband bus such as RMII (Reduced Media Independent Interface) or an internal
bus is used to meet these needs. A dedicated sideband bus increases component
costs (more pins) and limits motherboard placement options. Internal busses limit
mix and match configurations such as supporting media redirection using a discrete
LAN or discrete graphics component.

Management Component Transport Protocol (MCTP) is a standard
developed by Distributed Management Task Force (DMTF) for transporting

manageability packets across various interconnects. “MCTP PCle VDM Transport

-1-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

Binding Protocol” is a DMTF-authored specification that defines how MCTP packets may
be sent over PCI Express (PClIe). MCTP over PCle enables high bandwidth management
traffic to be multiplexed over PCle busses (i.e. interconnect fabric and/or PCle links).
Since most management components are already hooked up to one of these busses, this
approach eliminates the need for a separate high bandwidth bus and enables more flexible
arrangement of manageability components. Each of these components can be an “MCTP
endpoint” and exchange messages over the existing fabric. When transported over PCle,
MCTP packets take the form of a Vendor Defined Message (VDM). In addition, MCTP
or more generically PCI Express VDMs can be utilized for managing the processors
themselves (e.g. processor thermals, power and errors).

Modern server platforms typically employ multiple processors and each processor
may have MCTP over PCle endpoints attached to it. However, in order to access the
MCTP over PCle endpoint using conventional techniques, there needs to be an ME
associated with each processor. For example, a server platform employing four processors
would require four ME’s. Another issue with traditional management platform
architectures is the BMC uses a Platform Environmental Control Interface (PECI) pin for
managing processors. This works fine as long as there is only one management controller
in the system and milliseconds access latency is acceptable. There are configurations
where an ME needs access to processor instrumentation for Power Capping purposes. In
addition, there are new emerging usages such as power/performance characterization
which can benefit from 10-100 microseconds access latency.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will
become more readily appreciated as the same becomes better understood by reference to
the following detailed description, when taken in conjunction with the accompanying
drawings, wherein like reference numerals refer to like parts throughout the various views
unless otherwise specified:

Figure 1 is a high-level block diagram illustrating an overview of an architecture
that enables a single management entity to perform management operations relating to
devices accessed via multiple processors by tunneling management messages between
processors over a QPI link;

Figure 2 shows the layers of the QPI protocol stack;

Figure 3 is a schematic diagram illustrating the structure of a full-width QPI link;

Figure 4 shows a packet format for an MCTP message;
2-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

Figure 5 is a table containing a description of information in various fields
of the MCTP message of Figure 4;

Figure 6 shows a packet format corresponding to a PCle VDM message;

Figure 7 shows a QPI tunnel packet header and data packet configured to
embed content derived from a PCle VDM message having the format shown in
Figure 6;

Figure 8 is a schematic block diagram illustrating selected components of
an exemplary processor and platform configuration via which aspects of the
embodiments disclosed herein may be implemented;

Figure 9 is a block diagram illustrating management logic for implementing
packet routing, tunneling, extraction, and recreation, according to one embodiment;
and

Figure 10 is a flowchart illustrating operations and logic for performing
platform management operations associated with manageable devices operatively
coupled to multiple processors using a single management entity and management
message tunneling, according to one embodiment.

DESCRIPTION OF THE EMBODIMENTS

Embodiments of methods and apparatus for tunneling platform
management messages through inter-processor interconnects are described herein.
In the following description, numerous specific details are set forth (such as use of
PCle and QPI) to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize, however, that the
invention can be practiced without one or more of the specific details, or with other
methods, components, materials, efc. In other instances, well-known structures,
materials, or operations are not shown or described in detail to avoid obscuring
aspects of the invention.

In accordance with aspects of the embodiments disclosed herein, the
foregoing deficiencies are addressed through a novel approach that enables a single
ME or other management entity in a platform to be used to implement management
operations of manageable devices in a multi-processor platform by tunneling
platform management messages across inter-processor interconnects. In some
embodiments, PCle management packets are tunneled over socket-to-socket QPI
interconnects. Intel® Corporation introduced the first version of the QuickPath

Interconnect® (QPI) protocol and related architecture in 2009. QPI was initially
-3-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

implemented as a point-to-point processor interconnect replacing the Front Side Bus on
platforms using high-performance processors, such as Intel® Xeon®, and Itanium®
processors. QPI is scalable, and is particularly advantageous in systems having multiple
processors employing shared memory resources. QPI transactions employ packet-based
transfers using a multi-layer protocol architecture. Recently introduced platform
architectures and corresponding processors include use of socket-to-socket QPI links,
enabling high-bandwidth communication between entities on different processors over
QPI links.

Figure 1 illustrates a high-level block diagram illustrating an overview of an
exemplary implementation of the approach using a single management engine 100 to
perform ME operations for two processors, depicted as a legacy socket 102 and a non-
legacy socket 104. In server platforms employing multiple processors, the boot processor
(that is, the processor used to perform system booting via loading of corresponding boot
code and initialize various platform components) is referred to as a “legacy” socket, while
other processors in the system are referred to as non-legacy sockets.

Legacy socket 102 includes a legacy Integrated Input-Output (IIO) block 106
coupled to ME 100 via a DMI (Direct Memory Interface) or PCle link 108, coupled to a
Power Control Unit110 via a message channel 112, and coupled to a ring
interconnect 114. Legacy IO block 106 further includes a PCle block 116 and
transformation logic 117. Ring interconnect 114 is also connected to a QPI interface
(I/F) 118 including a QPI agent 120.

Non-legacy socket 104 has a similar configuration to legacy socket 102, except
that it employs a remote 11O block 122 rather than a legacy 110 block 106 and that it is not
directly connected to ME 100. The other components of non-legacy socket 104 include a
PCle block 124, transformation logic 125, a ring interconnect 126, a PCU 128, a message
channel 130, and a QPI interface 132 including a QPI agent 134.

Remote 1O block 122 is further depicted as being connected to a manageable
device 136. As used herein, a “manageable” device corresponds to any platform device
that may receive management messages relating to management operations performed by
a management entity. Although shown as being directly connected to an 11O block, a
manageable device may generally be operatively coupled to an 11O block via one or more
connections. For example, in the context of PCle, there may be several levels of
hierarchy, with a PCle end device located at a level in the hierarchy that is not directly

connected to a PCle interface or PCle block in the 110 block.
4-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

Figure 1 further shows a socket-to-socket QPI link 138, that is coupled
between QPI interfaces 118 and 132. Support for socket-to-socket QPI links has
been recently introduced, and, in connection with associated interfaces and
protocols, enables components on different processors to communicate over a
high-bandwidth interconnect.

In addition to employing a management engine, other management entities
may be employed for performing platform management operations. For example,
Figure 1 further depicts a Baseboard Management Controller (BMC) 140 coupled
to legacy 11O block 106. The use of dashed lines here indicates that this is an
optional configuration.

In accordance with teachings disclosed herein, tunneling transformation
logic in the 11O blocks in combination with the socket-to-socket QPI links and
associated interfaces enable management of components and manageable device
associated with multiple processors from a single ME or other management entity,
such as a BMC. This functionality is facilitated, in part, through the use of PCle
management packets that are tunneled through QPI interconnects, as described in
detail below. In order to better understand how PCle management packets are
tunneled through QPI, the following brief overview of QPI is provided.

Overview of QuickPath Interconnect

QPI transactions are facilitated via packetized messages transported over a
multi-layer protocol. As shown in Figure 2, the layers include a Physical layer, a
Link layer, a Transport layer, and a Protocol layer. At the Physical layer, data is
exchanged in 20-bit phits (Physical Units). At the link layer phits are aggregated
into 80-bit flits (flow control units). At the Protocol layer, messages are
transferred between agents using a packet-based transport.

The Physical layer defines the physical structure of the interconnect and is
responsible for dealing with details of operation of the signals on a particular link
between two agents. This layer manages data transfer on the signal wires,
including electrical levels, timing aspects, and logical issues involved in sending
and receiving each bit of information across the parallel lanes. As shown in Figure
3, the physical connectivity of each interconnect link is made up of twenty
differential signal pairs plus a differential forwarded clock. Each port supports a
link pair consisting of two uni-directional links to complete the connection

between two components. This supports traffic in both directions simultaneously.
-5-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

Components with QPI ports communicate using a pair of uni-directional point-to-
point links, defined as a link pair, as shown in Figure 3. Each port comprises a Transmit
(Tx) link interface and a Receive (Rx) link interface. For the illustrated example,
Component A has a Tx port that is connected to Component B Rx port. One uni-
directional link transmits from Component A to Component B, and the other link transmits
from Component B to Component A. The "transmit" link and "receive" link is defined
with respect to a specific QPI agent. The Component A transmit link transmits data from
Component A Tx port to Component B Rx port. This same Component A transmit link is
the Port B receive link.

The second layer up the protocol stack is the Link layer, which is responsible for
reliable data transmission and flow control. The Link layer also provides virtualization of
the physical channel into multiple virtual channels and message classes. After the
Physical layer initialization and training is completed, its logical sub-block works under
the direction of the link layer, which is responsible for flow control. From this link
operational point onwards, the logical sub-block communicates with the Link layer at a flit
granularity (80 bits) and transfers flits across the link at a phit granularity (20 bits). A flit
is composed of integral number of phits, where a phit is defined as the number of bits
transmitted in one unit interval (UI). For instance, a full-width QPI link transmits and
receives a complete flit using four phits. Each flit includes 72 bits of payload and 8 bits of
CRC.

The Routing layer is responsible for ensuring that messages are sent to their proper
destinations, and provides the framework for directing packets through the interconnect
fabric. If a message handed up from the Link layer is destined for an agent in another
device, the Routing layer forwards it to the proper link to send it on. All messages
destined for agents on the local device are passed up to the protocol layer.

The Protocol layer serves multiple functions. It manages cache coherence for the
interface using a write-back protocol. It also has a set of rules for managing non-coherent
messaging. Messages are transferred between agents at the Protocol level using packets.
The Protocol layer manages delivery of messages across multiple links, involving multiple
agents in multiple devices.

MCTP over PCle

The Management Component Transport Protocol (MCTP) is a protocol defined by
the DMTF Platform Management Component Intercommunications sub-team of the

DMTF Pre-OS Workgroup. MCTP is designed to support communications between
-6-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

different intelligent hardware components that make up a platform management
subsystem that is provides monitoring and control functions inside a managed
system. MCTP is independent of the underlying physical bus properties, as well as
the "data-link" layer messaging used on the bus. The physical and data-link layer
methods for MCTP communication across a given medium are defined by
companion "transport binding" specifications, such as MCTP over PCle Vendor
Defined Messaging (VDM) and MCTP over SMBus/I°C. This approach enables
future transport bindings to be defined to support additional buses such as USB,
RMII, and others, without affecting the base MCTP specification. Various
specifications relating to MCTP including the MCTP base specification and are
published by DMTF and generally available at www.dmtf.org.

One implementation of MCTP is targeted for use over PCle, and thus is
referred to as MCTP over PCle. Implementation details for MCTP over PCle are
defined by the Management Component Transport Protocol PCle VDM Transport
Binding Specification. This specification includes definitions for a packet format,
physical address format, message routing, and discovery mechanisms for MCTP
over PCle VDM communications.

A processor architecture supporting MCTP over PCle includes various
facilities for routing of MCTP message packets in accordance with the MCTP base
specification. The basic unit of data transfer in MCTP is the “MCTP packet.” One
or more MCTP packets are used to transfer an “MCTP message.” The base MCPT
protocol defines the common fields for MCTP packets and how they are used. This
includes defining fields such as source and destination address fields, fields that
identify which packets belong to a particular MCTP message, and fields that define
what type of communication traffic is being carried in the MCTP message. The
base protocol also defines the processes used for assembling MCTP messages,
routing MCTP packets, and handling error conditions such as dropped or missing
packets.

An MCTP endpoint is the function within a device that terminates the
communication protocol of MCTP and handles MCTP Control commands. MCTP
uses a logical address called the endpoint ID (EID) for addressing and routing
MCTP packets to and from endpoints. In MCTP a bus is defined as an
interconnect between platform components that share a common physical layer

address space. A bus may be made up of multiple segments. A bus segment is a
27-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

portion of a bus that is electrically separated from other segments that form a bus, but still
shares a common physical address space with other segments.

Each MCTP bus has a bus owner. Bus Owners are responsible for assigning EIDs
to any MCTP devices on that bus. A bus owner may also have additional media-specific
responsibilities, such as device discovery and assignment of physical addresses. MCTP
Bridges are devices that connect to two or more MCTP busses and are responsible for
routing MCTP packets between those busses. A bridge will typically also be the bus owner
for at least one of the busses to which it connects.

MCTP allows multiple bridges, busses, and bus owners to be interconnected to
form an “MCTP network.” Because bus owners are responsible for assigning EIDs to any
devices that are on the bus that it owns, MCTP provides a mechanism that enables bus
owners to be allocated a pool of endpoint IDs that can subsequently be assigned or
allocated to other devices. The ultimate source of EIDs for the entire MCTP network
comes from what is referred to as the “topmost bus owner.”

MCTP packets are routed based on their EIDs. MCTP bridges maintain a set of
information referred to as the “routing table” that tracks the relationship between the
physical addresses and bus with which an EID is associated. When an incoming packet is
received, this information is used to route the packet to the appropriate bus. If the source
and target busses use different physical media the bridge is also responsible for translating
the physical layer formatting of the packet as required by the target medium. The
information in the routing table is also used for handling requests to resolve an EID into a
physical address and to support a capability to query individual bridges and bus owners for
their routing information. This latter capability provides a way to obtain a snapshot of the
MCTP network’s routing configuration. The MCTP bridging function forwards packets
based on endpoint addressing information on a per packet basis. Otherwise, bridging does
not interpret message content, or handle message type-specific protocol behavior for
routed packets. Bridging does not do intermediate assembly or disassembly of routed
packets. Message assembly and disassembly is handled solely by the destination and
source endpoints, respectively.

The type of communication payload in an MCTP Message is identified by an
enumeration called the “MCTP Message Type.” MCTP is designed to be able to carry
packets for multiple message types across a common communications medium. The
MCTP base protocol specification includes definition of a message type for MCTP

Control messages and message types that support Vendor-defined MCTP messages.
-8-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

Different message types are identified by a message type field that is carried in the
header of an MCTP message.

The Transport Binding specifications are documents that describe how
MCTP is implemented on a particular physical medium. This includes the
definition of MCTP packet formatting for the medium, source and destination
physical addressing handling, physical layer data integrity, and medium-specific
timing parameters.

Figure 4 shows an MCTP over PCle packet format, according to one
embodiment. The fields grouped by labels “PCle Medium-Specific Header” and
“PCle Medium-Specific Trailer” are specific to carrying MCTP packets using
PCIe VDMs. The fields grouped by labels “MCTP Transport Header” and “MCTP
Packet Payload” are common fields for all MCTP packets and messages and are
specified the MCTP Base Specification. Further descriptions for the MCTP over
PCle packet format are shown in Figure 5.

The PCle VDM header format is common for MCTP messages sent over
PCle. It includes various fields relating basic MCTP message structure, as well as
fields in which vendor-specific information can be entered. As part of the basic
routing requirements for routing MCTP messages over PCle, these fields include a
PCI Requester ID and a PCI Target ID. The PCI Request ID is the EID (i.e.,
logical address) of the PCI Requester, that is the PCle entity from which a request
(for an associated service) originates. The PCI Target ID corresponds to the EID
of the PCle entity for which the (request) message is targeted.

The MCTP packet payload begins at Byte 16 and can extend up to Byte 80,
yielding a total payload of up to 64 bytes. This portion of the packet also
corresponds to the PCle VDM data. This particular packet configuration shows an
example of a PECI message, as identified by the Vendor Define Message Type
Code field. The message format also includes MCTP Message data in the MCTP
Packet Payload including a Write Length (WL) byte, a Read Length (RL) byte, and
an MCTP command.

Under the conventional approach, the PCle VDM extension to MCTP
enables various MCTP messages to be routed to targeted MCTP endpoints using
PCle wiring and protocols. However, as discussed above, this only works for

MCTP endpoints that are on the same processor that an ME is connected to. This

9.

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

is a significant limitation for modern server platforms employing multiple processors.

This shortcoming is addressed by combining MCTP over PCle messaging
techniques with the QPI protocol and QPI interconnect structures to enable MCTP
management message content to be tunneled between processors. Accordingly, from the
perspective of an ME or other management entity, the platform MCTP endpoints simply
appear within the same EID address space, regardless of what processor they are
physically associated with.

An example of packet formats configured to support embedding of an MCTP over
PCle PECI message in a QPI message are shown in Figures 6 and 7, wherein
crosshatching is used to indicate how fields in the two formats are mapped. In this
example, Figure 6 shows a PCle VDM message 600 format corresponding to a PECI
message, while Figure 7 shows a QPI tunnel packet header 700 in which data
corresponding to selected fields of VDM message 600 are to be embedded. Similar field
mappings may be implemented for other types of VDM and/or MCTP message formats.

As discussed above with reference to Figure 3, QPI employs a link with a width of
20 lanes, wherein each lane carries a respective bit of data to form a 20-bit phit that is
transmitted during each QPI clock cycle, and an 80-bit flit is delivered every four QPI
clock cycles. As shown in Figure 7, Lanes L0O-L17 are used to carry payload data (in this
instance the packet header data is the payload), while lanes C0O and C1 are used for CRC
data, with the CRC bits labeled CRC 0-CRC 7. Accordingly, each flit includes 72 bits of
payload data and 8 bits of CRC data.

Returning to Figure 6, data in the fields spanning Byte 0 of message 600 are
mapped to a PCle Header Byte 0 in QPI tunnel packet header 700, while the vendor
defined message code of Byte 7 are mapped to a PCle message code field 704. A
combination of bits [4:0] of PCle header Byte 3 concatenated with bits [2:0] of Byte 11
comprising the Vendor ID code of message 600 is mapped to a PCle Header Byte
3[4:0](length) + VID[2:0] encoding field 706, while the PCle TAG field corresponding to
Byte 6 is mapped to a PCle Header Byte 6 field 708.

Bytes 4 and 5 of message 600 comprises a 16-bit EID of a PCI Requester which in
this example corresponds to the legacy ME Bus Device Function (BDF). This is mapped
to a PCle Header Byte 4 field 710 and a PCle Header Byte 5 field 712. Bytes 8 and 9 of
message 600 correspond to a 16-bit EID of a PCI Target device, which in this example is
either the BDF for a PCU or a Validation Control Unit (VCU). The 16-bit value in these

two fields are mapped to a Header Byte 8 field 714 and a PCle Header Byte 9 field 716 of
-10-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

QPI tunnel packet header 700. Using a similar field naming scheme, the data in
Bytes 12, 13, 14, and 15 of message 600 are respectively mapped to a PCle Header
Byte 12 field 718, a PCle Header Byte 13 field 720, a PCle Header Byte 14
field 722, and a PCle Header Byte 15 field 724.

The remaining data in message 600 corresponding to Bytes 16-24 comprise
the PCle VDM payload data. This data is mapped to a 64 Byte QPI data
packet 726 that is appended to QPI tunnel packet header 700 to form a QPI
message that is transferred over a socket-to-socket QPI link. Applicable padding is
appended to the data for Bytes 16-24 to fill out the 64 Byte QPI data packet, along
with applicable CRC data corresponding to the QPI protocol.

It is noted that several fields are not mapped. In message format 600 this
includes the fields in Byte 1, and bits [7:2] of Byte 2. The values of these fields
are known to both of the PCle-to-QPI message encapsulation logic and QPI-to-
PCle message extraction logic. Accordingly, these values do not need to be
included in the QPI messages, as the corresponding field data can be generated by
the QPI-to-PCle message extraction logic on the receiving end of the tunneled QPI
message. In addition, it is further noted that there is no MCTP Transport Header
data in a PCle VDM message format. Accordingly, Bytes 16-19 in the MCTP
PClIe message format are shifted up by 4 Bytes in the PCle VDM message format.

Figure 8 shows a system 800 including four sockets and detailing the
architecture of processors in Sockets 0 and 3, in accordance with one embodiment.
System 800 is illustrative of an advanced system architecture including SoC
(System on a Chip) processors (CPU’s) supporting multiple processor cores 802,
cach coupled to a respective node 204 on a ring interconnect, labeled and referred
to herein as Ring0 and Ring3 (corresponding to CPU’s installed in CPU sockets 0
and 3, respectfully). For simplicity, the nodes for each of the Ring0 and Ring3
interconnects are shown being connected with a single line. As shown in detail
806, in one embodiment each of these ring interconnects include four separate sets
of “wires” or electronic paths connecting each node, thus forming four rings for
cach of Ring0 and Ring3. In actual practice, there are multiple physical electronic
paths corresponding to cach wire that is illustrated. It will be understood by those
skilled in the art that the use of a single line to show connections herein is for
simplicity and clarity, as each particular connection may employ one or more

electronic paths.
-11-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

In the context of system 800, data may be routed using independent message
classes. Under one embodiment of a ring interconnect architecture, independent message
classes may be implemented by employing respective wires for each message class. For
example, in the aforementioned embodiment, each of Ring0 and Ring3 include four ring
paths or wires, labeled and referred to herein as AD, AK, IV, and BL. Accordingly, since
the messages are sent over separate physical interconnect paths, they are independent of
one another from a transmission point of view.

In one embodiment, data is passed between nodes in a cyclical manner. For
example, for each real or logical clock cycle (which may span one or more real clock
cycles), data is advanced from one node to an adjacent node in the ring. In one
embodiment, various signals and data may travel in both a clockwise and
counterclockwise direction around the ring. In general, the nodes in Ring0 and Ring 3
may comprise buffered or unbuffered nodes. In one embodiment, at least some of the
nodes in Ring0 and Ring3 are unbuffered.

Each of Ring0 and Ring3 include a plurality of nodes 804. Each node labeled
Cbo n (where n is a number) is a node corresponding to a processor core sharing the same
number # (as identified by the core’s engine number 7). There are also other types of
nodes shown in system 800 including QPI nodes 0-0, 0-1, 3-0, and 3-1, 11O nodes, and
PCIe nodes. Each of QPI nodes 0-0, 0-1, 3-0, and 3-1 is operatively coupled to a
respective QPI Agent 0-0, 0-1, 3-0, and 3-1. The IIO node in Socket 0 is operatively
coupled to an I1O block 106, while the 110 node in Socket 3 is operatively coupled to an
ITO block 122. The PCle nodes for Socket 0 and Socket 3 are operatively coupled to PCle
interfaces 812 and 814, respectively. Further shown are a number of nodes marked with
an “X”; these nodes are used for timing purposes. It is noted that the QPI, 11O, PCle and
X mnodes are merely exemplary of one implementation architecture, whereas other
architectures may have more or less of each type of node or none at all. Moreover, other
types of nodes (not shown) may also be implemented.

Each of the QPI agents 0-0, 0-1, 3-0, and 3-1 includes circuitry and logic for
facilitating transfer of QPI packets between the QPI agents and the QPI nodes they are
coupled to. This circuitry includes ingress and egress buffers, which are depicted as
ingress buffers 216, 218, 220, and 222, and egress buffers 224, 226, 228, and 230.

System 800 also shows two additional QPI Agents 1-0 and 2-1, each corresponding
to QPI nodes on rings of CPU sockets 1 and 2 (both rings and nodes not shown). As

-12-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

before, each QPI agent includes an ingress and egress buffer, shown as ingress
buffers 232 and 234, and egress buffers 236 and 238.

The QPI agents 0-0 and 1-0 are configured to facilitate transfer of QPI
packets over a socket-to-socket QPI link (aka tunnel, when tunneling MCTP over
PCle packets over QPI) 136-0-1 between Socket 0 and Socket 1. Similarly, QPI
agents 0-1 and 3-0 are configured to facilitate transfer of QPI packets over a
socket-to-socket QPI link 136-0-3 between Socket 0 and Socket 3, while QPI
agents 2-1 and 3-1 are configured to facilitate transfer of QPI packets over a
socket-to-socket QPI link 136-2-3 between Socket 2 and Socket 3. In one
embodiment there is a similar socket-to-socket QPI link between Socket 1 and
Socket 2 (not shown due to lack of drawing space).

In the context of maintaining cache coherence in a multi-processor (or
multi-core) environment, various mechanisms are employed to assure that data
does not get corrupted. For example, in system 800, each of processor cores 802
corresponding to a given CPU is provided access to a shared memory store
associated with that socket, as depicted by memory stores 840-0 or 840-3, which
typically will comprise one or more banks of dynamic random access memory
(DRAM). For simplicity, the memory interface circuitry for facilitating connection
to the shared memory store is not shown; rather, the processor cores in each of
Ring0 and Ring3 are shown respectively connected to the memory store via a
home agent node 0 (HA 0) and a home agent node 3 (HA 3).

It is also common to have multiple levels of caches, with caches closest to
the processor core having the least latency and smallest size, and the caches further
away being larger but having more latency. For example, a typical configuration
might employ first and second level caches, commonly referred to as L1 and L2
caches. Another common configuration may further employ a third level or L3
cache.

In the context of system 800, the highest level cache is termed the Last
Level Cache, or LLC. For example, the LLC for a given core may typically
comprise an L3-type cache if L1 and L2 caches are also employed, or an L2-type
cache if the only other cache is an L1 cache. Of course, this could be extended to
further levels of cache, with the LLC corresponding to the last (i.e., highest) level

of cache.

13-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

In the illustrated configuration of Figure 8, each processor core 802 includes a
processing engine 842 coupled to an L1 or L1/L.2 cache 844, which are “private” to that
core. Meanwhile, each processor core is also co-located with a “slice” of a distributed
LLC 846, wherein each of the other cores has access to all of the distributed slices. Under
one embodiment, the distributed LLC is physically distributed among N cores using N
blocks divided by corresponding address ranges. Under this distribution scheme, all N
cores communicate with all N LLC slices, using an address hash to find the “home” slice
for any given address. Suitable interconnect circuitry is employed for facilitating
communication between the cores and the slices; however, such circuitry is not show in
Figure 8 for simplicity and clarity.

As further illustrated, each of nodes 804 in system 800 is associated with a cache
agent 848, which is configured to perform messaging relating to signal and data initiation
and reception in connection with a coherent cache protocol implemented by the system,
wherein each cache agent 848 handles cache-related operations corresponding to addresses
mapped to its collocated LLC 846. In addition, in one embodiment each of home agents
HAO and HA3 employ respective cache filters 850 and 852, and the various caching and
home agents access and update cache line usage data stored in a respective directory 854-0
and 854-3 that is implemented in a portion of shared memory 840-0 and 840-3. It will be
recognized by those skilled in the art that other techniques may be used for maintaining
information pertaining to cache line usage.

In accordance with one embodiment, a single QPI node may be implemented to
interface to a pair of CPU socket-to-socket QPI links to facilitate a pair of QPI links to
adjacent sockets. This is logically shown in Figure 8 by dashed ellipses that encompass a
pair of QPI nodes within the same socket, indicating that the pair of nodes may be
implemented as a single node. For instance, QPI nodes 0-0 and 0-1 may comprise a single
node. In addition, the QPI agents include routing logic that enables QPI packets to be
routed between processors that are not directly connected via a socket-to-socket QPI link,
wherein packets arriving at a QPI node over a first socket-to-socket QPI link and destined
for another processor are routed to a second socket-to-socket QPI link without being
placed on a ring.

In one embodiment, Ring0 and Ring3 are implemented using QPI interconnect
segments and the QPI protocol. During each QPI clock cycle, QPI packet data are
transferred across QPI segments between nodes using multiple physical interconnects and

in both clockwise and counterclockwise directions. During each segment transfer
-14-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

sequence, there is a pause cycle after the data arrives at each node, during which
the data at a given node may be buffered if it is destined for an agent attached to
the node, or data buffered by an agent awaiting to be transferred to the ring may be
added if there is no arriving data on a given interconnect segment (referred to as an
empty packet). Accordingly, the nodes are referred to as ring stops or ring stop
nodes.

QPI packets are routed via corresponding logical addresses for destination
agents coupled to the nodes. During each pause cycle, a packet is inspected by the
agent or agents attached to the node to determine whether the packet is destined for
that agent. If it is, then the packet is “taken off the ring” and buffered by the agent.
If it is not, the packet data is forwarded to the next ring stop during the next
transfer cycle.

Putting a packet onto the ring employs a similar, albeit reverse, process.
Packets to be put onto the ring are buffered by an agent, which detects if a packet
corresponding to a current pause cycle for an interconnect segment (or message
class) applicable to the buffered packet is an empty packet. If so, the buffered
packet data is added at the node and made available for transfer to an adjacent node
during the next transfer cycle. If the packet arriving at the node for the
interconnect segment of message class is not empty then it is merely forward on
during the next transfer cycle, and no packet data is added to the ring at the node
during the current cycle.

Returning to the QPI routing aspect, QPI employs the use of a virtual
networking scheme employing associated logical addressing and message class
identifiers. QPI employs various node identifies in packet headers use for routing,
including an ID for a destination node (DNID). QPI also employs routing
information from which the destination Ring can be identified. The QPI agents
coupled to the QPI nodes maintain routing information that an agent uses to
determine whether a packet is destined for another ring, and thus requires transfer
across a socket-to-socket QPI link associated with the QPI agent. This
functionality is used to route traffic between sockets (i.e., between processors)
using socket-to-socket QPI links.

Typically, the majority of QPI messages that are transferred during
processor operations comprise coherent messages that are employed for

maintaining cache coherency. These messages are implemented using coherent
-15-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

message classes and employ addressing schemes for facilitating coherent memory
transactions. QPI also supports use of non-coherent messages (and an associated non-
coherent message class). In one embodiment, the QPI messages used for QPI tunneling
comprise non-coherent messages.

The processors in Socket 0 and Socket 3 include a respective 11O block 900-0 and
900-3 coupled to a respective 11O node. Each of 11O blocks 900-0 and 900-3 is also
coupled to a Utility Box (UBOX) 856, which in turn is coupled in communication with a
PCU 858 over a message channel. The UBOX is used on a processor for routing various
messages between processor components, such as between a PCU and an 110 block.

Figure 9 shows further details of an 11O block 900, according to one embodiment.
The blocks and routing shown in Figure 9 is simplified in order to focus on the MCTP
over PCle-to-QPI tunneling aspects. In addition to the blocks shown in Figure 9, a typical
1O block includes additional functional blocks, logic and routing.

The blocks for 11O block 900 include a DMI block 902 and three PCle blocks 904,
906, and 908. Communication with a Ring is handled by an 11O agent 910, which is
depicted as being coupled to an 11O node. A portion of logic comprising MCTP over
PCle-to-QPI tunneling transformation logic includes a VDM EID to Node ID map 912, an
MCTP over PCle-to-QPI packet generation block 914, and a QPI-to-MCTP over PCle
extraction/packet recreation block 916. 11O block 900 also includes MCTP over PCle
management logic 918 comprising an MCTP routing table 920, an MCTP over PCle
packetization block 922, and an MCTP over PCle de-packetization block 924.

Figure 10 is a flowchart depicting logic and operations for effecting transfer of
MTCP over PCle messages via QPI tunneling using aspects of the embodiments disclosed
herein. With reference to Figure 10 and Figures 8 and 9, the process begins in a
block 1000 in which a management engine originates an MTCP over PCle message
including the destination address of the target device to which the message is to be
delivered. Target devices are also referred to herein as a destined manageable device.
Under MTCP, the destination address of the target device is the EID of the target device.
The operation in PCle is typical of a conventional MCTP over PCle message request
issued from an ME. Accordingly, in a block 1002, the MCTP over PCle message is sent
over a DMI or PCle link to the 11O block to which the management engine is coupled
(e.g., the Legacy Socket in accordance with the embodiment shown in Figure 1 or the 11O
block 900-0 in Socket 0 in accordance with the embodiment shown in Figure 8, both of

which are also referred to as the local socket or processor).
-16-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

As per conventional MCTP over PCle message handling, routing for the
packet is performed to determine where the packet is to be routed, as shown in a
block 1004. Under conventional MCTP over PCle message routing, all destined
manageable devices are accessible via the processor to which the ME is coupled.
However, the embodiments herein support routing MCTP over PCle messages to
manageable devices that are connected to other processors in the platform using
QPI tunneling. Accordingly, there is logic in MCTP routing table 920 or another
component (not shown) that determines whether the message is to be routed to
another processor over a socket-to-socket QPI tunnel, as depicted by a decision
block 1006.

If the routing is on-chip (meaning a route to the target device can be made
from the local processor), the message is routed in the conventional manner using
MCTP over PCIe management logic 918, as shown in a block 1008. However, if
the routing is off-chip (meaning the routing requires traversal of at least one
socket-to-socket QPI tunnel), further operations are performed to facilitate QPI
tunneling.

These begin at a block 1010, wherein selected portions (e.g., data in
selected fields) of the MCTP over PCle Message content is extracted and mapped
into fields of a QPI message header and data packet(s) via tunneling transformation
logic in the IIO block, e.g., via MCTP over PCle-to-QPI packet generation
block 914. Since QPI packets are routed via Node IDs (and not EIDs), the node of
the 110 block via which the target device is to be accessed is also determined, and
corresponding address information is added to the QPI packet header. In the
illustrated embodiment, information for mapping between EIDs and Node IDs is
provided via VDM EID to Node ID map 912.

At this point, the QPI tunnel packet header and data payload packet(s) are
generated and ready for transfer to the appropriate destination 110 block via one or
more socket-to-socket QPI tunnels. The packet data is forwarded to 110 agent 910,
where it is buffered waiting to be placed on the ring of the local processor. The
QPI tunnel message is then put on the local processor ring and routed over one or
more socket-to-socket QPI tunnels to the destined 11O block, as depicted in a
block 1012.

Suppose that a QPI tunnel packet is to be routed from 11O block 900-0 on

Socket 0 to 11O block 900-3 on Socket 3. The packet would be put on Ring0 at the
-17-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

ITO node and routed clockwise around the ring to QPI node 0-1, where it is routed over
socket-to-socket QPI Link [] to QPI node 3-0 via operations facilitated by QPI agents 0-1
and 2-0. Once on Ring3, the packet is routed clockwise to the 110, where it is accessed by
110 block 900-3.

Once received at the destined (remote) IIO block, logic in IIO agent 910
determines whether the packet is a QPI tunnel packet. If so, the packet is forwarded to
QPI-to-MCTP over PCle extraction/packet recreation block 916, wherein the MCTP over
PClIe field data embedded in the QPI tunnel packet header and payload is extracted, and
the original MCPT over PCle packet is recreated, as shown in a block 1014. The recreated
MCTP over PCle message is then forwarded to MCTP over PCle management logic 918,
where it is handled in a manner similar to as if it was received from a management engine
coupled to the destined 110 block, as shown in a block 1016. For example, depending on
the particular target device or type of message the packet might be routed to the target
device via one of PCle blocks 904, 906, or 908, via DMI block 902, or via another 10
block (not shown). Alternatively, full or partial de-packetizing could be performed by
MCTP over PCle de-packetization block 924.

The techniques and embodiments disclosed herein provide significant advantages
over conventional approaches used for platform management. For example, in accordance
with teachings herein, a single management entity such as an ME or BMC can be used to
access manageable devices operatively coupled to multiple processors in a multi-processor
platform. Accordingly, the ME is no longer limited to being able to only access
manageable devices operatively coupled to the processor it is coupled to. In addition, the
use of QPI tunneling and QPI interconnect structures and protocols supports very-high
bandwidth message transfers, such that the relative latency resulting from management
message transfers between management logic in separate processors is substantially
insignificant. The net result is the management messaging performance level is similar to
as if an ME was connected directly to each processor.

In addition enabling a management entity to delivery management messages to
managed devices that are external to processors (such as, but not limited to PCle devices),
the management entity is also enabled to access manageable components with the
processors, again as if a management entity was directly connected to each processor.
Moreover, the techniques disclosed herein are scalable, providing support for new and

future processor architectures employing a large number of cores.

-18-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

Although illustrated in the context of processors employing ring
interconnect architectures, processors employing other interconnect architectures,
such as 2D mesh fabric interconnect structures, may also be used.

Reference throughout this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in one embodiment” or
“in an embodiment” in various places throughout this specification are not
necessarily all referring to the same embodiment. Furthermore, the particular
features, structures, or characteristics may be combined in any suitable manner in
one or more embodiments.

In the description and claims, the terms "coupled" and "connected," along
with their derivatives, may be used. It should be understood that these terms are
not intended as synonyms for each other. Rather, in particular embodiments,
"connected" may be used to indicate that two or more elements are in direct
physical or electrical contact with each other. "Coupled" may mean that two or
more elements are in direct physical or electrical contact. However, "coupled” may
also mean that two or more elements are not in direct contact with each other, but
yet still co-operate or interact with each other.

Not all components, features, structures, characteristics, efc. described and
illustrated herein need be included in a particular embodiment or embodiments. If
the specification states a component, feature, structure, or characteristic "may",
"might", "can" or "could" be included, for example, that particular component,
feature, structure, or characteristic is not required to be included. If the
specification or claim refers to "a" or "an" element, that does not mean there is
only one of the element. If the specification or claims refer to "an additional”
clement, that does not preclude there being more than one of the additional
clement.

As used herein, the terms logic, block, and component, when used in the
context of a processor, may be used interchangeably. For example, management
logic, a management block, or a management component may all refer to the same
element or entity in a processor. The term logic also generally encompasses any
form of embedded circuitry and, optionally, any firmware or microcode that may

be implemented by the embedded circuitry for performing corresponding
-19-

10

15

WO 2014/004021 PCT/US2013/044500

operations implemented by the logic. For example, logic may comprise embedded
programmable logic circuitry, or an embedded processor, microcontroller, or the like that
executes firmware or microcode to facilitate embedded logic functionality. Under
terminology known to those skilled in the art, logic as used herein also may be referred to
as a block, a functional block, and IP (Intellectual Property) block (or simply an IP),
embedded logic, efc.

The above description of illustrated embodiments of the invention, including what
is described in the Abstract, is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and examples for, the invention
are described herein for illustrative purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the relevant art will recognize.

These modifications can be made to the invention in light of the above detailed
description. The terms used in the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the specification and the drawings.
Rather, the scope of the invention is to be determined entirely by the following claims,

which are to be construed in accordance with established doctrines of claim interpretation.

20-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

CLAIMS

What is claimed is:
1. A method comprising:

in a platform including a plurality of processors, facilitating communication
of platform management messages between management logic in the plurality of
processors to enable management of components embedded in and/or devices
operatively coupled to the plurality of processors via a management entity coupled
to a first processor of the plurality of processors.
2. The method of claim 1, wherein the management messages comprise Peripheral
Component Interconnect Express (PCle) management messages.
3. The method of claim 2, wherein PCle comprises a first interconnect protocol, the
method further comprising tunneling PCle management messages between processors
using a second interconnect protocol.
4. The method of claim 3, wherein the PCle management messages are tunneled
between processors using QuickPath Interconnect (QPI) tunnel messages sent between
processors over at least one socket-to-socket QPI link.
5. The method of claim 4, wherein at least one PCle management message is routed
from the first processor to a third processor via a second processor using a first socket-to-
socket QPI link coupled between the first and the second processors, and a second socket-
to-socket QPI link coupled between the second processor and the third processor.
6. The method of claim 2, wherein the PCle management messages comprise
Management Component Transport Protocol (MCTP) over PCle messages.
7. The method of claim 1, wherein first management logic is embedded in a first
Input/Output (IO) block in a first processor and second management logic is embedded in
a second 10 block in a second processor, the method further comprising transferring a
platform management message from the first IO block to the second 10 block by
performing operations including,

routing the platform management message along a portion of a first ring
interconnect in the first processor from a first node communicatively coupled to the first
10 block to second node on the first ring interconnect;

routing the platform management message from the second node to a third node on
second ring interconnect of a second processor via a socket-to-socket interconnect link;

and

21-

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

routing the platform management message along a portion of the second ring
interconnect from the third node to a fourth node communicatively coupled to the 10
block.
8. The method of claim 1, further comprising employing mapping information that
maps address information for target devices to which platform management messages may
be sent to address information corresponding to components via which that target devices

may be accessed.

9. The method of claim 1, wherein the management entity comprises a management
engine.
10. An apparatus comprising:

logic configured to generate a first interconnect tunnel message in which data
corresponding to a first PCle management message is embedded; and

logic configured to receive a second interconnect tunnel message in which data
corresponding to a second PCle management message is embedded and recreate the
second PCle management message.

11. The apparatus of claim 10, further comprising a first interface configured to
facilitate communication with a management entity communicatively coupled to the
apparatus during operation of the apparatus.

12. The apparatus of claim 10, wherein the PCle management messages comprises an
MCTP over PCle management message;

13. The apparatus of claim 10, wherein the tunnel message comprises a QuickPath
Interconnect (QPI) tunnel message.

14. The apparatus of claim 10, further comprising a second interface configured to be
communicatively coupled to a node on a ring interconnect of a processor.

15. The apparatus of claim 10, wherein the apparatus comprises a functional block on
a processor.

16. A computing platform, comprising:

a plurality of manageable devices;

a plurality of processors including a first processor and a second processor coupled
in communication via a first socket-to-socket interconnect, each processor including
management logic and operatively coupled to at least one manageable device; and

a management entity, coupled in communication with the first processor,

wherein the first processor is configured to receive a first management message

from the management entity, and employ its management logic to encapsulate
22

10

15

20

25

30

WO 2014/004021 PCT/US2013/044500

management message content derived from the first management message in a first
tunnel message that is tunneled over the first socket-to-socket interconnect to the
management logic in the second processor, and wherein management logic in the
second processor is configured to extract the management message content from
the first tunnel message, recreate the first management message, and employ the
recreated first management message to perform a management operation
associated with a device that is operatively coupled to the second processor.
17. The computing platform of claim 16, wherein the management messages comprise
Peripheral Component Interconnect Express (PCle) management messages, and wherein
the manageable devices comprise PCle devices.
18. The computing platform of claim 16, wherein first socket-to-socket interconnect
comprise a QuickPath Interconnect (QPI) socket-to-socket link, and the tunnel message
comprises a QPI tunnel message.
19. The computing platform of claim 16, further comprising:
a third processor; and
a second socket-to-socket interconnect between the second and third processors,
wherein the first, second, and third processors are configured to facilitate
routing of tunnel messages to enable a second tunnel message generated by the
management logic in the first processor to be routed to management logic in the
third processor by tunneling the second tunnel message over the first socket-to-
socket interconnect and the second socket-to-socket interconnect.
20. The computing platform of claim 16, wherein the management messages comprise

Management Component Transport Protocol (MCTP) over PCle messages.

21. The computing platform of claim 16, wherein the management entity comprises a
Management Engine (ME).
22. The computing platform of claim 16, wherein the management entity comprises a

Baseboard Management Controller (BMC).

23. The computing platform of claim 16, wherein first management logic is embedded
in a first Input-Output (I0) block in the first processor and second management logic is
embedded in a second 10 block in the second processor, and wherein the first and second
processors are configured to transfer a management message from the first 10 block to the

second 10 block by performing operations including,

23-

10

15

WO 2014/004021 PCT/US2013/044500

routing the management message along a portion of a first ring interconnect in the
first processor from a first node communicatively coupled to the first IO block to second
node on the first ring interconnect;

routing the platform management message from the second node to a third node on
a second ring interconnect of a second processor via a socket-to-socket interconnect link;
and

routing the platform management message along a portion of the second ring
interconnect from the third node to a fourth node communicatively coupled to the 10
block.
24. The computing platform of claim 16, wherein the first processor is configured to
employ mapping information that maps address information for each manageable devices
to which management messages may be sent to address information corresponding to a
ring interconnect node corresponding to an 10 block employed for communicating with

the manageable device.

4.

WO 2014/004021 PCT/US2013/044500
1/9

B 134
Non-lLegacy Socket E

\884 R

Messaga/
Channel

Manageable | e s
Device ¢

Tis8

Legacy Socket
¢
~138
. A
f Baseboard
iManagement] ‘
i] tManagement
Engine |
* i Controller
100 140
g Packet ' A
FProtocot g 20K g Protocal
/ \.
4 ~N
Routing ~ag o Routing
e N
(_ Flite ;
Link o o Link
~ \.
- A - >
Physical » Fhits - Physical
/ v

Fig. 2

WO 2014/004021

Camponeant A

QuickPath interconnsact Port

2/9

PCT/US2013/044500

Component B

QuickPath Interconnect Port

Fwd Cik B Bt Revd Clk
18 8 — 10
g i
TX Lanes ; RX Lanes
- B
- -
o i B 0
Link Pair
18 b & 19
— -
— -
RX Lanes A TX Lanes
.4 L
0 g &+ O
Rovd Clk g | Fwd Clk

Fig. 3

PCT/US2013/044500

WO 2014/004021

3/9

P BLy
L -
jaies) ouosdy
“WINIDSIA 8104
A

' Y

{-alivssoi 30 Jepeal e%ond 1811 a4 Ul Juassid Aluo aiAg odi; sBezsep
‘adA} oDesssiy UG PAsRg SSUEA) 19DLoH o8BSO 41O

<75 whg

<47 3ihg

<7 8iAg

<4} 83ig

H
5,

N

peojiey
1I40Rd 100

iapeay;
Srodsueiy
o diOW

apesy sisadg
~UEIRSI Si0d

4

N

B3E0 WJA ®10d

2RESH WAA Si0d

PCT/US2013/044500

4/9

RO
3

Fovout

~§

th

WO 2014/004021

T
SR

SN By

P
o
<
KN
§

N

S

Ty AN

"
NEBR

ek
R

oY

R

£

AN

R§

%,

;4\:. AN

e

PCT/US2013/044500

WO 2014/004021

5/9

9 31y

00s
,.../
¥
S
<0L314g
$04 PUE SO 10K S01AG HLAA JRYID \
; . <71 oig
L 93 oyl
<
<§ a3ig @
%
S
<y nhg L6
-5
L)
&
for B
e n iy J
, 4

21eq WOA 310d |

N

-HRIHDIR S10d

3d

aBessol WGA 2t

WO 2014/004021 PCT/US2013/044500

6/9
700)
e QP! Tunne! Packet Header
¥

A7 RIS LIS LI LIS LI {1t 10 L9 (L8 L7 (8 i J L4 (I3 T E2 { Lt LD [&1 | CO
Virtual ~nolord

DN (2:03 FE {10} | Message Class 3.0 Cp Code (3.0} Metwork | VG Gid (2.0} "4 L Q
] 2.0 h 4 N qieg ransaction S5 CRGCRG

RHRNID (2:0) @3 | 704 RSVD DG 702 ~ Request Transaction 1D (5:0) |ACK|¥EM MY

Q . .

g;t;: Yiral e Message Code CRC CE?C
obt PCle Header Byts 3{4:0}lengih)} CRCICRC

o + ViD[2:8] encoding 103
{ CROICRT
Op00 | RSVD DO 708 RSVD_DC \708 Tunnel Type (3:0) |V 1)
Pe iy RS¥D DG RSVD_IGN REVD_IGN Lgb \»%L
Qb Pol - - e CROICROC

e | son Tunnel Byle & Tunnel Byte 4 5 2
4b00 Tunnel Byte 7 Tunnal Byte § {“};{“ \}k:;“}

64 Byte QP Data Packet

Y
{
N £

PCT/US2013/044500

7/9

WO 2014/004021

A0S

o-0ve~

-0y -~

T n
(A1) zog 0758

Q% e

a% vZ8 x

magmf jet cmﬁ
afiessapy 958 memhmﬁ

SiB0) UCHBLIEUBE]
Augstuny
d 4880 o1 B

' Buyeutn
Mm@é,wmum B0

.VNMW\/ , Mcmmd..m&@
{3 184205 o | ol f €

mm [ey 4 m wmmuﬁ bAHI0S ; 007 suibugy
e Ly ssaii w samatis 705 by i o
% a%%»& -7 b sy o //mwmmm sW\/../\ Eamq 140 M . mcwﬁmﬁmcﬁm%

WO 2014/004021 PCT/US2013/044500
8/9

Managament Engine

HO

o 812

[y S—

VDMED o B

¥ ¥

RCTP over PCls
Fackelization

Agent

1 Packet Generation logic

QP-o-MCTP over PC ,
Extraction/Packet

racregtion
~

' 916

0T

MCTP over PCle
De-packstization

;

t

t

{

‘ v

| MCTP over PCle-to-QP!
; :
[

s

¢

t

i

\,%\

er PCle-0-QF! Tunnaling
Transformation ingio

8918

WO 2014/004021 PCT/US2013/044500
9/9

Management Engine originates MCTP over PCle
Message including destination address of targst
device (MCTP EID)

MCTP over PCle Message sent fo HO Block in
Legacy Socket over DMIEPCle link

Use Conventional MCTP
?\f aver PCle routing |
MCTP over PCle Message content extracted and ¢
mapped into fields of QP! Message Header and Data
Packet via transformation logic in O Block; :
Node 1D for 0O Block in Remote Socket via which
target device is accessed is refrieved from routing
table/map and included in QP Mesaage Header

&1068

{ ::
1010

¥
QP! Message is transferred onto ring in Legacy

Socket and routed over socket-te-socket OP1 ink 1o
fing in Remote Socket to dastined HO block ”

e

¥
QP Message is received at destined HO block where
PCle management data is extracted and the original

MCTP over PCle Message is recreated.

MCTP over PCle Message used for management
operation at Remote Socket in @ manner similar o ¢
how the Message would be handied if the Massage
originated at an ME coupled to Remote Socket |

\1016

Fig. 10

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

