SWITCHED RELUCTANCE MOTOR

22-06-2017 дата публикации
Номер:
WO2017101033A1
Автор: ZHANG, Chun
Принадлежит: 郑州吉田专利运营有限公司
Контакты:
Номер заявки: CN75-09-201526
Дата заявки: 15-12-2015

开关磁阻电动机

技术领域

[1]

本发明属于电机领域,具体就是一种新型结构的开关磁阻电动机。

背景技术

[2]

开关磁阻电动机系统(Switched Reluctance Drive:SRD)是继变频调速系统、无刷直流电动机调速系统之后发展起来的最新一代无级调速系统,是集现代微电子技术、数字技术、电力电子技术、红外光电技术及现代电磁理论、设计和制作技术为一体的光、机、电一体化高新技术。

[3]

开关磁阻电动机调速系统主要由开关磁阻电动机(SRM)、功率变换器、控制器、转子位置检测器四大部分组成。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机的一端。

[4]

开关磁阻电动机调速系统所用的开关磁阻电动机(SRM)是SRD中实现机电能量转换的部件,也是SRD有别于其他电动机驱动系统的主要标志。现有SRM系双凸极可变磁阻电动机,其定、转子的凸极均由普通硅钢片叠压而成。转子既无绕组也无永磁体,定子极上绕有集中绕组,径向相对的两个绕组联接起来,称为“一相”,SR电动机可以设计成多种不同相数结构,且定、转子的极数有多种不同的搭配。相数多、步距角小,有利于减少转矩脉动,但结构复杂,且主开关器件多,成本高,现今应用较多的是四相(8/6)结构和三相(12/8)结构。

[5]

开关磁阻电动机传动系统综合了感应电动机传动系统和直流电动汽车电机传动系统的优点,是这些传动系统的有力竞争者,其主要优点如下:

[6]

1、开关磁阻电动机有较大的电动机利用系数,可以是感应电动机利用系数的1.2~1.4倍。2、电动机的结构简单,转子上没有任何形式的绕组;定子上只有简单的集中绕组,端部较短,没有相间跨接线。因此,具有制造工序少、成本低、工作可靠、维修量小等特点。3、开关磁阻电动机的转矩与电流极性无关,只需要单向的电流激励,理想上公率变换电路中每相可以只用一个开关元 件,且与电动机绕组串联,不会像PWM逆变器电源那样,存在两个开关元件直通的危险。所以,开关磁阻电动机驱动系统SED线路简单,可靠性高,成本低于PWM交流调速系统。4、开关磁阻电动机转子的结构形式对转速限制小,可制成高转速电动机,而且转子的转动惯量小,在电流每次换相时又可以随时改变相匝转矩的大小和方向,因而系统有良好的动态响应。5、SRD系统可以通过对电流的导通、断开和对幅值的控制,得到满足不同负载要求的机械特性,易于实现系统的软启动和四象限运行等功能,控制灵活。又由于SRD系统是自同步系统运行,不会像变频供电的感应电动机那样在低频时出现不稳定和振荡问题。6、由于SR开关磁阻电动机采用了独特的结构和设计方法以及相应的控制技巧,其单位处理可以与感应电动机相媲美,甚至还略占优势。SRD系统的效率和功率密度在宽广的速度和负载范围内都可以维持在教导水平。

[7]

开关磁阻电动机驱动系统的主要缺点是:

[8]

1、有转矩脉动。从工作原理可知,S开关磁阻电动机转子上产生的转矩是由一些列脉冲转矩叠加而成的,由于双凸极结构和磁路饱和非线性的影响,合成转矩不是一个恒定转矩,而有一定的谐波分量,这影响了SR电动机低速运行性能。2、SR电动机传动系统的噪声与震动比一般电动机大。

[9]

上述缺点,本质上是开关磁阻电动机驱动系统即SRD系统的开关磁阻电动机SRM的结构造成的,要想减小转矩脉动及其引起的噪声与震动,就要改变开关磁阻电动机SRM的结构。

[10]

发明内容

[11]

为了减小现有开关磁阻电动机SRM转矩脉动引起的震动和噪音,本发明提供一种全新结构的开关磁阻电动机SRM,具体就是一种开关磁阻电动机,包括定子齿极和动子齿极,动子齿极相对于定子齿极转动配合,所述定子齿极的数目与动子齿极的数目相等;定子齿极沿转动轴方向为层状固定连接,定子齿极厚度对应动子齿极的厚度范围称为动子齿极单元(定子齿极,指的是单个定子齿极;定子齿极厚度是定子齿极铁芯厚度加其外部套设的定子齿极线圈厚度; 另外动子可以是整体成型结构,每层之间为整体连接,也可以是层状排列,每层之间层叠固定连接,所以定子齿极厚度对应动子齿极的厚度范围称为动子齿极为单元,动子齿极单元包括至少一个动子齿极),定子齿极由定子齿极铁芯及其外部套设的定子齿极线圈构成,定子齿极铁芯与动子齿极形成气隙的端组为凹凸配合的圆弧面,定子齿极与动子齿极的配合关系为,无论动子齿极相对于定子齿极旋转到任何角度,至少一层定子齿极中心线与对应动子齿极单元的动子齿极中心线形成夹角α,0<α≤β,β为定子齿极铁芯或者动子齿极沿旋转轴方向的横截面的圆弧对应圆心的角度。

[12]

动子齿极圆弧角度与定子齿极铁芯圆弧角度仅仅相差二者之间的气隙引起的圆弧角度差,由于气隙很小,二者圆弧半径差别也很小,相同齿极宽度对应的圆弧角差别也很小,假设气隙无限小,则凹凸圆弧面对应的角度就相等,所以β即代表定子齿极铁芯圆弧角,又代表动子齿极圆弧角,定子齿极铁芯圆弧角也称为定子齿极圆弧角。

[13]

这样的设置,能够保证始终存在一层,其定子齿极中心线与对应动子齿极单元的动子中心线的夹角小于β,使穿过二者之间气隙的磁场能够对动子齿极产生磁阻转矩;当α=β=360/(2m)时,相当于现有的4/2开关磁阻电动机存在平衡点,也就是死点,需要设置永磁体,当动子停止转动时,将永磁体动子偏离死点,即偏离动子平衡点,而旋转起来以后,动子的旋转惯性使动子转过α=β的位置,就能够使动子偏离死点,使0<α<β,这种结构满足无论动子齿极相对定子齿极旋转到任何角度,存在一层定子齿极的中心线与对应动子齿极中心线的夹角α,0<α<β,使该层定子齿极与对应层的动子齿极之间产生磁场,穿过二者之间气隙的磁场对动子产生磁拉力,动子齿极产生磁阻转矩,使动子齿极转动到磁导最大的位置,即定子齿极中心线与动子齿极中心线重叠的位置,也是定子齿极的端面与动子齿极的端面基本重合的位置,动子齿极带动动子转动相应的角度,之后,另一层定子齿极中心线与动子齿极中心线形成夹角,形成夹角的该层定子齿极使动子齿极单元以相同的方式转动,就能够使动子持续 旋转,如图1-26,图中定子齿极中心线与动子齿极中心线形成夹角随着层数的增加,夹角的大小成等差数列增加,当然,保持各层α的大小不变,将层的序列打乱,就是本技术方案的实施方式,这样的实施方式与图中的区别在于,图中的另一层是相邻层,这里不要求是相邻层。

[14]

所述的开关磁阻电动机,所述无论动子齿极相对于定子齿极旋转到任何角度,至少一层定子齿极中心线与对应动子齿极单元的动子齿极中心线形成夹角α,0<α≤β,指定子齿极的层数为n层,对应动子齿极单元也是n层的长度,沿圆周排布的齿极数为m,假设第一层定子齿极中心线与动子齿极中心线的夹角为360/(nm),则第二层为2*360/(nm),……第n层为n*360/(nm),其中360/(nm)≤β。

[15]

第一层转动360/(nm)角度之后,第二层定子齿极中心线与动子齿极中心线之间的夹角就是360/(nm),其它层依次减少360/(nm)角度,依次转动,最后一层定子齿极与动子齿极中心线夹角为0时,则第一层的角度就是360/(nm),完成一个周期,依次进行下一个周期,使动子持续旋转;当360/(nm)<β/2时,那么就至少有两层定子齿极中心线与动子齿极中心线的夹角α<β,就能够同时有两层定子齿极向对应动子齿极之间产生转矩,假设第一层α=β/2,则第二层为β,第一层和第二层的定子同时与相应动子施加转矩,动子旋转β/2时,则第二层的α=β/2,第三层的α=β,此时第一层停止向动子施加转矩,由第二层、第三层施加转矩,依次切换定子齿极向对应动子施加转矩,使动子持续旋转;同样原理,当α=β/3时,可以三层同时向动子施加转矩,依次类推。

[16]

所述的开关磁阻电动机,在xyz坐标系中,第一层定子齿极所在的平面为xy面,旋转轴的轴线方向为z轴方向,其它层定子齿极沿z轴依次延伸,所述第一层定子齿极中心线与y轴的夹角为360/(nm),第二层为2*360/(nm),……第n层为n*360/(nm),各层动子齿极单元的动子齿极中心线在z方向重合。

[17]

所述的开关磁阻电动机,在xyz坐标系中,第一层定子齿极所在的平面为xy面,旋转轴的轴线方向为z轴方向,其它层定子齿极沿z轴依次延伸,所述 各层定子齿极的中心线在z方向与y轴重合,则第一层动子齿极单元的动子齿极中心线与y轴夹角为360/(nm),第二层为2*360/(nm),……第n层为n*360/(nm)。

[18]

所述的开关磁阻电动机,在xyz坐标系中,第一层定子齿极所在的平面为xy面,旋转轴的轴线方向为z轴方向,其它层定子齿极沿z轴依次延伸,所述第一层定子齿极中心线与y轴夹角为360/(2*nm),第二层为2*360/(2*nm),……第n层为n*360/(2*nm);第一层动子齿极单元的动子齿极中心线与y轴夹角为-360/(2nm),第二层为-2*360/(2nm),……第n层为-n*360/(2nm)。

[19]

所述的开关磁阻电动机,所述定子齿极层数在z轴方向依次延伸,形成直条状定子齿极或者螺旋条状定子齿极,与直条状定子齿极对应的动子齿极为螺旋条状动子齿极;与螺旋条状定子齿极对应的动子齿极为反向螺旋条状动子齿极或者直条状动子齿极,齿极数目为m大于等于1的自然数,n为大于等于2的自然数。

[20]

反向螺旋条状动子齿极称为反螺旋动子条,直条状动子齿极称为直条动子齿极;当然,上述直条状定子齿极、螺旋条状定子齿极、直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极各自由支撑件支撑,这种结构在z轴方向即相邻层之间的定子齿极的磁力线,分别径向穿过各自的气隙,在动子内形成轴向连接,使动子产生转矩。

[21]

所述的开关磁阻电动机,所述直条状定子齿极或者螺旋条状定子齿极的轭部,对应由直条状导磁材料或者螺旋条状导磁材料连接构成直条状串联的u型电磁铁或者螺旋条状串联的u型电磁铁。

[22]

此时,定子齿极铁芯外套设的线圈可以变更为套设在将定子齿极铁芯连接的轭铁上,即直条状导磁材料或者螺旋条状导磁材料上,也可以定子齿极铁芯及轭铁外均套设的线圈,这样的结构,定子齿极铁设置径向磁场、定子齿极铁芯之间的轭铁设置轴向或者螺旋轴向磁场,能够叠加为halbach阵列的单边磁 场,提高开关磁阻电动机的效率,所述定子齿极铁芯与轭铁可以为整体成形结构,如果是硅钢片,组成定子齿极铁芯与轭铁的硅钢片为整体成形结构。

[23]

所述的开关磁阻电动机,所述直条状定子齿极或者螺旋条状定子齿极的圆弧面指向圆心,构成外直条状定子齿极或者外螺旋条状定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为内直条状动子齿极、内螺旋条状动子齿极及内反向螺旋条状动子齿极。

[24]

所述的开关磁阻电动机,所述直条状定子齿极或者螺旋条状定子齿极的圆弧面背离圆心,构成内直条状定子齿极或者内螺旋条状定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为外直条状动子齿极、外螺旋条状动子齿极及外反向螺旋条状动子齿极。

[25]

所述的开关磁阻电动机,所述m为偶数,每层定子齿极的轭部由导磁材料连接形成闭合框架定子齿极,定子齿极之间的导磁材料框架上,套设框架线圈。

[26]

这样能够产生环状的halbach阵列,相应增强定子齿极的磁场强度。

[27]

所述的开关磁阻电动机,所述闭合框架定子齿极的圆弧面指向圆心,构成外闭合框架定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为内直条状动子齿极、内螺旋条状动子齿极及内反向螺旋条状动子齿极。

[28]

所述的开关磁阻电动机,所述闭合框架定子齿极的圆弧面背离圆心,构成内闭合框架定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为外直条状动子齿极、外螺旋条状动子齿极及外反向螺旋条状动子齿极。

[29]

所述的开关磁阻电动机,所述定子齿极为内定子齿极,其m=4,β=45°四个内定子齿极的内定子齿极铁芯呈十字结构。

[30]

这样,四个呈十字状的齿极可以形成两个背靠背的halbach阵列。

[31]

所述的开关磁阻电动机,所述定子齿极为内定子齿极,其m=2,β=90°,两个内定子齿极呈径向的条状结构。

[32]

这样,条状结构的两个内定子齿极的磁场方向相同,充分利用电动机内的空间。

[33]

所述的开关磁阻电动机的定子齿极,所述定子齿极的形状为直齿或者螺旋齿。

[34]

所述的开关磁阻电动机的定子齿极,所述直条状定子齿极或者螺旋条状定子齿极的轭部,对应由直条状导磁材料或者螺旋条状导磁材料连接构成直条状串联的u型电磁铁或者螺旋条状串联的u型电磁铁。

[35]

所述的开关磁阻电动机的定子齿极,所述m为偶数,每层定子齿极的轭部由导磁材料连接形成闭合框架定子齿极,定子齿极之间的导磁材料框架上,套设框架线圈。

[36]

本发明的有益效果是:本发明由于磁极为叠加磁场,增加了电机的功率密度;另外使用两极齿极,齿极圆弧面角度为90°,就减小了转矩脉动,随着层数增多,相邻两层之间的齿极中心线夹角更小,增加了施加磁力转矩的层数,由于层数的增加,施加磁力转矩的层数也就增加,当增加的层数均施加磁力转矩时,仅仅在相邻两层齿极中心线夹角的范围内产生转矩脉动,当层数多夹角小时,又大大减小了转矩脉动,由极大减小了转矩脉动也就极大减小了噪音和振动。

附图说明

[37]

图1是外单螺旋齿极直线排列开关磁阻电机构件组合结构示意图。

[38]

图2是外单螺旋齿极直线排列开关磁阻电机构件组合结构示意图。

[39]

图3是双外螺旋外定子构件直排开关磁阻电机构件组合结构示意图。

[40]

图4是螺旋条状定子齿极构件组合结构示意图。

[41]

图5是片状双螺旋内定子齿极直线排列电机构件组合结构示意图。

[42]

图6是片状双螺旋内定子齿极螺旋排列电机构件组合结构示意图。

[43]

图7是双螺旋外部齿极halbach阵列定子构件直排电机构件组合结构示意图。

[44]

图8是双外螺旋外齿极halbach阵列螺旋排列电机构件组合结构示意图。

[45]

图9是双直齿外齿极halbach阵列直线排列电机构件组合结构示意图。

[46]

图10是双直齿外halbach阵列螺旋排列定子开关磁阻电机构件组合结构示意图。

[47]

图11是十字螺旋内定子齿极直线排列电机构件组合结构示意图。

[48]

图12是内四螺旋halbach阵列环定子齿极直线排列电机构件组合结构示意图。

[49]

图13是内四螺旋halbach阵列环定子齿极螺旋排列电机构件组合结构示意图。

[50]

图14是十字螺旋内定子齿极螺旋排列电机构件组合结构示意图。

[51]

图15是内四螺旋halbach阵列环定子齿极直线排列电机构件组合结构示意图。

[52]

图16是内四螺旋halbach阵列环定子齿极螺旋排列电机构件组合结构示意图。

[53]

图17是十字螺旋内定子齿极螺旋排列电机构件组合结构示意图。

[54]

图18是halbach阵列四螺旋外定子齿极直线排列电机构件组合结构示意图。

[55]

图19是halbach阵列四螺旋外定子齿极直线排列电机构件组合结构示意图。

[56]

图20是halbach阵列四直齿外定子齿极直线排列电机构件组合结构示意图。

[57]

图21是halbach阵列四直齿外定子齿极直线排列电机构件组合结构示意图。

[58]

图22是halbach阵列四直齿外定子齿极螺旋排列电机构件组合结构示意图。

[59]

图23是halbach阵列四螺旋外定子齿极直线排列电机构件组合结构示意图。

[60]

图24是halbach阵列四螺旋外定子齿极螺旋排列电机构件组合结构示意图。

[61]

图25是halbach阵列四螺旋外定子齿极直线排列电机构件组合结构示意图。

[62]

图26是八螺旋外定子齿极螺旋排列电机构件组合结构示意图。

[63]

图27是立体直条状螺旋齿极定子电动机构件组合结构示意图。

[64]

图28是立体螺旋条状螺旋齿极定子电动机构件组合结构示意图。

[65]

图29是halbach阵列螺旋齿极螺旋排列内反向螺旋电动机构件组合结构示意图。

具体实施方式

[66]

实施例1:图1为外单螺旋齿极直线排列开关磁阻电机011,外单螺旋铁芯0211外套设外单螺旋线圈0212构成外单螺旋定子齿极构件0219,两个外单螺旋定子齿极构件0219沿轴向直线排列构成外单螺旋齿极直线排列定子021,其内套设动子齿极031,动子齿极为半圆环沿旋转轴方向螺旋体,螺距为两个外单螺旋定子齿极的长度。

[67]

螺旋铁芯0211的螺距为1000mm,长度为460mm内侧形成螺旋圆弧面,用于与动子配合,形成旋转轴方向的磁回路,螺旋铁芯0211的轭部是与两个螺旋铁芯0211整体成型的轭铁0213,若螺旋铁芯0211的材料为硅钢片,与轭铁0213一体成型的螺旋铁芯0211为,与轭铁0213一体成型的螺旋硅钢片,沿圆周方向叠成整体螺旋单齿极铁芯0211和轭铁0213,图中没有示出,动子齿极的螺距为1000mm,长度为1000mm,就是两个长度为500mm的单螺旋齿极单元螺旋排列在一起,置于单螺旋齿极直线排列定子内。由于单螺旋齿极构件直线排列定子在为两层,当第一层定子齿极中心线与对应动子齿极单元中心线重合时,第二层定子齿极中心线其本处于相反位置,这样在转动过程中由于转动惯性,动子继续旋转使另一个单螺旋齿极对单螺旋齿极螺旋排列动子产生磁拉力,使该动子旋转,以此往复,使该动子持续旋转,当停止转动后,设置在偏离定子齿极位置的永磁体吸引该动子,使其中心线与对应定子齿极中心偏离,使启用时定子齿极能够使动子齿极旋转。

[68]

实施例2:图2为外单螺旋齿极直线排列开关磁阻电机012,螺旋铁芯0221外套设螺旋线圈0222构成定子齿极构件0219,定子齿极构件0229沿轴向直线排列构成外单螺旋齿极直线排列定子022,其内套设动子齿极032,动子齿极032由3个螺旋动子单元0321螺旋排列。每层单螺旋齿极铁芯的长度加上线圈的厚度为333.3mm,铁芯侧方可以设槽,线圈可以环绕设在铁芯侧方的槽内, 三层单螺旋齿极直线排列,构成单螺旋齿极直线排列定子,该定子的轭部设有轭铁连接。

[69]

当第一层定子中心线与动子单元中心线重合时,第二层定子中心线与对应动子单元中心线夹角为120°,使第二层产生磁拉力,当第二层动子单元旋转60°时,第三层动子单元与第三层定子齿极构件刚接触,二者中心线夹角180°,此时,①第三层不产生磁拉力,由第二层继续产生磁拉力,旋转60°,二者中心线重合,第三层两者之间的夹角为60°,以次循环,动子就可以持续旋转;②第三层产生磁拉力,与第三层共同将动子旋转60°,以此循环,那么这60°的扭矩比①的扭矩大;③第三层产生磁拉力,第二层停止磁拉力,使动子旋转60°,此60°的扭矩最小,以此往复循环,可以产生三种不同强度的扭矩,适合不同的需要。当然,上述的方式也适用定子为单螺旋齿极定子构件螺旋排列,配合单螺旋齿极动子单元直线排列的结构。当然将上述的外定子结构换为单螺旋齿极内定子配合单齿极单元外动子的结构也行。

[70]

上述齿极也可以是直齿,此时动子和定子均为直齿。

[71]

实施例3:图3为双外螺旋外定子构件直排开关磁阻电机013,为沿圆周相对设置的两个外螺旋定子齿极铁芯0231,外螺旋定子齿极铁芯0231外套设外螺旋线圈0232构成外螺旋定子齿极,6个外螺旋定子齿极直线排列构成外螺旋定子齿极直排定子构件0239,其内套设动子齿极033,动子齿极033由螺旋动子单元螺旋排列构成整体双螺旋动子0331。螺旋铁芯0231的螺距为660mm,长度为50mm,螺旋线圈0232的厚度为2.5mm,长度为330mm,单个螺旋齿极长度为55mm,6个单个螺旋齿极沿转轴方向直线排列,其轭部由轭铁0233连接,轭铁0223与6个螺旋铁芯0231为整体成形结构或者整体硅钢片沿圆周叠置而成,动子齿极为与定子铁芯配合的沿圆周相对设置的圆弧角为45度的圆环沿轴向螺旋构成的双螺旋结构。其螺距为660mm,长度为330mm包含6个螺旋齿极单元以螺旋的结构排列,动子齿极置于外定子齿极内。

[72]

圆弧角度为:360/m/2=360/4=90°。

[73]

层间齿极中心线夹角为360/2/6=30°。

[74]

当第一层定子齿极中心线与对应定子齿极单元中心线重合时,第二层中心线夹角为30°,第二层为60°,第四层为90°其中第四层为平衡位置,初始启动时,需要第二、第三层单独或共同产生磁力,使第四层脱离平衡位置,转动之后,就可以在平衡位置使第四层单独产生磁力,也就是有3层能够进行排列组合产生磁力,就有多种控制方式,转动30°后,第三、四、五层重复以此循环。

[75]

当仅仅一层导磁时,若同层上下两个齿极指向轴心端同极性,则当定子齿极磁力线穿过气隙,进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单元,然后由相邻动子单元穿过气隙进入相邻定子齿极后,通过轭铁进入导磁定子齿极形成回路。

[76]

同层上下两个齿极指向轴心端相反极性,则定子齿极的磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过支撑板进入下动子齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。

[77]

当两层同时导磁时,相邻两个定子齿极的磁方向相反,这样磁力线由定子齿极穿过气隙进入对应动子齿极单元,然后沿轴方向进入相邻动子齿极单元,穿过气隙进入相邻定子齿极后,通过轭铁至磁力线出发定子齿极形成闭合回路。

[78]

当然,上述支撑板可以删除,由非导磁材料支撑动子齿极,由于导磁材料的比重大,本发明不仅本图例,其它图例使用导磁材料少,能大大减轻电机重量,通过漏磁自行产生磁回路,如果不考虑重量,动子齿极可以如图7为实心体,轭铁可以是管状轭铁,这样可以自行按照磁阻最小原理形成磁回路。

[79]

实施例4:图4为螺旋条状定子齿极构件,共四层螺旋齿极100在旋转轴方向螺旋排列构成螺旋条状螺旋定子齿极,螺旋条状螺旋定子齿极的轭部由配合的螺旋条状导磁材料作为轭铁101,将四个螺旋齿极100构成的螺旋条状螺旋定子齿极的轭部连接构成串磁的U型电磁铁,螺旋齿极100外套设齿极线圈103,螺旋齿极100之间的轭铁102上套设螺旋轭部线圈104,组成的螺旋条状 螺旋齿极定子构件。这样的构件沿圆周均匀设置构成螺旋条状螺旋齿极定子。

[80]

实施例5:图5为片状双螺旋内定子齿极直线排列电机015,片状双螺旋定子齿极铁芯0251外套齿极线圈0252构成片状内双螺旋定子齿极构件,定子齿极构件沿轴向直线排列构成片状双螺旋定子齿极直线排列定子,该定子的中心部位为轭部,6个片状双螺旋内定子齿极铁芯的轭部可以由导磁材料连接,但是一般不用连接。其外套设与其配合的整体双螺旋动子齿极035,螺旋动子单元螺旋排列为螺旋动子条0351,两个螺旋定子条0351由支架0352支撑构成双螺旋动子齿极035。

[81]

使用时,同一片中的磁方向相同,相邻两片的磁方向相反,通过动子构成磁回路,当然也可以在定子中部用轭铁连接,这样就不限定同一片中的磁方向,图中螺旋结构的螺距为660mm,定子构件的长度为55mm,动子长度为330mm。

[82]

实施例6:图6为片状双螺旋内定子齿极螺旋排列电机016,片状双螺旋定子齿极铁芯0261外套齿极线圈0262构成片状内双螺旋定子齿极构件0259,定子齿极构件0259沿轴向螺旋排列构成片状双螺旋定子齿极螺旋排列定子026,其外套设与其配合的整体双螺旋动子齿极036,螺旋动子单元0361直线排列为整体,由支架0362双螺旋动子齿极036,其它与图5例相同。

[83]

当然,螺旋定子齿极构件中部的铁芯可以由轭铁连接,本专利所述的齿极铁芯与轭铁连接,一般来说,齿极铁芯与轭铁是整体成型结构,或硅钢片沿圆周,当然也可以是单个齿极铁芯紧贴轭铁并固定在一起,如捆扎、粘接等。

[84]

实施例7:图7为双螺旋外部齿极halbach阵列定子构件直排电机017,定子为沿圆周相对设置的两个外螺旋定子齿极铁芯0271,由环状轭铁0273连接外螺旋定子齿极铁芯0271外套设外螺旋线圈0272,齿极之间的环状轭铁0273套设轭铁线圈0274构成双外螺旋halbach阵列定子齿极构件0279,该构件沿转轴方向直线排列构成双外螺旋halbach阵列定子027,其内套设动子齿极037,动子齿极是6个片状双螺旋动子单元螺旋排列构成整体双螺旋动子。

[85]

使用时,每个构件构成halbach阵列使两个齿极之间产生磁场,假设仅一层 导磁,则磁力线穿过气隙和实体动子齿极单元,形成回路。当动子齿极为图3的033时,磁力线通过两侧导磁支撑板0332形成磁回路;,动子齿极删除导磁材料支撑板0332时,就通过比较复杂的漏磁形成磁回路。相邻两个构件同时导磁且齿极之间磁方向相反,假设第一层和第二层导磁,磁力线由第一层磁轭汇集到上定子齿极,穿过气隙进入对应动子齿极单元的上齿极(对于实心动子来说,当相邻齿极单元的距离小于动子齿极单元上下齿极之间的距离时或者选定的动子齿极含或者不含支撑板)磁力线大致沿轴向进入相邻动子齿极单元的上齿极,然后穿过气隙进入第二层定子上齿极,分散进入第二层两侧轭铁并汇集到第二层下齿极,由第二层下齿极穿过气隙进入第二层,动子齿极单元的下齿极,然后返回到第一层动子齿极单元的下齿极后,穿过气隙进入第一层定子齿极构件的下齿极,再进入第一层两侧轭铁构成完整回路,当三层同时导磁时主要形成两个这样的磁回路,对实心或有支撑板铁芯来说可以再层内形成回路,没有支撑板的实心动子漏磁形成部分回路,当然也有漏磁,实心动子直径小时在层内就形成磁回路。

[86]

实施例8:图8为双外螺旋外齿极halbach阵列螺旋排列电机018,定子为沿圆周相对设置的两个外螺旋定子齿极铁芯0281,由环状轭铁0283连接,外螺旋定子齿极铁芯0281外套设外螺旋线圈0282,齿极之间的环状轭铁0283套设轭铁线圈0284构成双外螺旋定子齿极halbach阵列构件,该构件沿转轴方向螺旋排列构成双螺旋外齿极halbach阵列螺旋排列定子,其内套设动子齿极038,动子齿极038由直齿动子单元0381直线排列构成整体直线动子。

[87]

实施例9:如图9所示,沿圆周相对设置的双直齿外定子齿极铁芯0291由环状轭铁0293连接双直齿外定子齿极铁芯0291外套线圈0292,齿极之间的环状轭铁套设轭铁线圈0294构成双直齿外定子halbach阵列直排定子构件0299,该构件沿轴向直线排列构成双直齿外halbach阵列直排定子构件029,动子齿极为内外缘45度圆弧形成的直齿构成双直齿内动子齿极单元,6个双直齿内动子齿极单元沿轴向螺旋排列,构成整体双直齿内动子齿极单元螺旋排列动子039, 双直齿内动子齿极单元螺旋排列动子039螺距660mm,长度330mm,其外套设双外直齿定子齿极直线排列定子构成双直齿外齿极halbach阵列直线排列电机019,本实施方式除直齿不同外其它与图7实施例相同。

[88]

实施例10:图10为双直齿外halbach阵列螺旋排列定子开关磁阻电机,如图10,仅仅动子和定子的齿极是直齿,其它与图8相同。

[89]

双直齿外halbach阵列螺旋排列定子构件2109由两个沿圆周相对设置的直齿外齿极铁芯2101构成直齿外定子构件2109外套设线圈2102,直齿外定子铁芯2101的轭部由双环状导磁材料2103连接固定,直齿外定子铁芯2101之间的环状导磁材料2103外套设线圈2104构成直齿外halbach阵列定子构件2109,直齿外halbach阵列定子构件2109沿转轴方向螺旋排列构成直齿外halbach阵列螺旋排列定子210,直齿外halbach阵列螺旋排列定子内设双直齿动子单元直线排列构成双直齿动子310,构成双直齿外halbach阵列螺旋排列定子开关磁阻电机110。

[90]

实施例11:图11为十字螺旋内定子齿极直线排列电机111,十字螺旋内定子齿极铁芯2111外套设齿极线圈2112构成十字螺旋定子齿极构件2119,十字螺旋定子齿极构件2119沿轴向直线排列构成十字内螺旋定子齿极直线排列定子211,其外套设螺旋动子齿极311,螺旋外动子齿极条3111由圆筒支架3112固定,形成整体。

[91]

十字螺旋内定子齿极铁芯2111的螺距为816mm,宽度为30mm,齿极线圈2112的厚度为2mm,螺旋外动子齿极条3111的螺距为816mm,长度为204mm,两层螺旋外动子齿极单元中心线之间的夹角为15°。

[92]

实施例12:图12为内四螺旋halbach阵列环定子齿极直线排列电机112,定子为沿圆周均匀设置的4个螺旋定子齿极铁芯2121,螺旋定子齿极铁芯2121厚度为20mm,螺距为816mm,由环状轭铁2123连接,螺旋定子齿极铁芯2121外套设齿极线圈2122,齿极线圈2122厚度为2mm,齿极之间的环状轭铁2123套设轭铁线圈2124构成内四螺旋halbach阵列环定子齿极构件2129,该构件 沿转轴方向直线排列构成内四螺旋halbach阵列环定子齿极直线排列定子212,其外套设螺旋动子齿极312,螺旋齿极条3121长度为204mm,螺距为816mm,由支架3122固定构成螺旋动子齿极312。

[93]

实施例13:图13为内四螺旋halbach阵列环定子齿极螺旋排列电机113,定子为沿圆周均匀设置的四个螺旋定子齿极铁芯2131,由环状轭铁2133连接,螺旋定子齿极铁芯2131外套设齿极线圈2132,,齿极之间的环状轭铁2133套设轭铁线圈2134构成内四螺旋halbach阵列环定子齿极构件2139,该构件沿转轴方向直线排列构成内四螺旋halbach阵列环定子齿极直线排列定子213,其外套设直排动子齿极313,螺旋齿极条3131由支架3132固定构成直排动子齿极313。

[94]

实施例14:图14为十字螺旋内定子齿极螺旋排列电机114,十字螺旋定子齿极铁芯2141外套设齿极线圈2142构成十字螺旋定子齿极构件,十字螺旋定子齿极构件沿转轴方向螺旋排列构成十字内螺旋定子齿极螺旋排列定子214,其外套设直线动子齿极314,螺旋外动子齿极条3141由支架3142固定形成整体。

[95]

实施例15:图15为内四螺旋halbach阵列环定子齿极直线排列电机115,定子为沿圆周均匀设置的4个直齿定子齿极铁芯2151,由环状轭铁2153连接,直齿定子齿极铁芯2151外套设齿极线圈2152,齿极之间的环状轭铁2153套设轭铁线圈2154构成内四螺旋halbach阵列环定子齿极构件2159,该构件沿转轴方向直线排列构成内四螺旋halbach阵列环定子齿极直线排列定子215,其外套设外螺旋动子齿极315,直齿齿极条3151由支架3152固定构成外螺旋动子齿极315。

[96]

实施例16:图16为内四螺旋halbach阵列环定子齿极螺旋排列电机116,定子为沿圆周均匀设置的4个直齿定子齿极铁芯2161,直齿定子齿极铁芯2161厚度为20mm,由环状轭铁2163连接,直齿定子齿极铁芯2161外套设齿极线圈2162,齿极线圈2162厚度为2mm,齿极之间的环状轭铁2163套设轭铁线圈 2164构成内四螺旋halbach阵列环定子齿极构件,该构件沿转轴方向螺旋排列构成内四螺旋halbach阵列环定子齿极螺旋排列定子216,其外套设直排动子齿极316,直齿齿极条3161长度为204mm,由支架3162固定构成直排动子齿极316。

[97]

实施例17:图17为十字螺旋内定子齿极螺旋排列电机117,十字四螺旋定子齿极铁芯2171外套设齿极线圈2172构成十字螺旋定子齿极构件,十字螺旋定子齿极构件沿转轴方向螺旋排列构成十字内螺旋定子齿极螺旋排列定子217,其外套设直线动子齿极317,直齿外动子齿极条3171由支架3172固定形成整体。

[98]

十字四螺旋定子齿极铁芯2171的螺距为816mm,宽度为30mm,齿极线圈2172的厚度为2mm,直齿外动子齿极条3171的长度为204mm。

[99]

实施例18:图18为halbach阵列四螺旋外定子齿极直线排列电机118,定子为沿圆周均匀设置的螺旋定子齿极铁芯2181,由环状轭铁2183连接,螺旋定子齿极铁芯2181外套设齿极线圈2182,齿极之间的环状轭铁2183套设轭铁线圈2184构成定子齿极构件2189,该构件沿轴向直线排列构成螺旋外定子齿极直线排列定子218,其内套设动子齿极318,动子齿极318是十字四螺旋齿极单元3181螺旋排列构成整体四螺旋动子。

[100]

实施例19:图19为halbach阵列四螺旋外定子齿极直线排列电机119,定子为沿圆周均匀设置的螺旋定子齿极铁芯2191,由环状轭铁2193连接,螺旋定子齿极铁芯2191外套设齿极线圈2192,齿极之间的环状轭铁2193套设轭铁线圈2194构成定子齿极构件2199,该构件沿轴向直线排列构成螺旋外定子齿极直线排列定子219,其内套设动子齿极319,动子齿极319是螺旋齿极单元3191螺旋排列构成整体四螺旋动子,螺旋齿极单元3191由环状动子轭铁3192连接。

[101]

实施例20:图20为halbach阵列四直齿外定子齿极直线排列电机120,定子为沿圆周均匀设置的直齿定子齿极铁芯2201,由环状轭铁2203连接,直齿 定子齿极铁芯2201外套设齿极线圈2202,齿极之间的环状轭铁2203套设轭铁线圈2204构成定子齿极构件2209,该构件沿轴向直线排列构成螺旋外定子齿极直线排列定子220,其内套设动子齿极320,动子齿极320是直齿齿极单元3201螺旋排列构成整体四螺旋动子,直齿齿极单元3201由环状动子轭铁3202连接。

[102]

实施例21:图21为halbach阵列四直齿外定子齿极直线排列电机121,定子为沿圆周均匀设置的直齿定子齿极铁芯2211,由环状轭铁2213连接,直齿定子齿极铁芯2211外套设齿极线圈2212,齿极之间的环状轭铁2213套设轭铁线圈2214构成定子齿极构件2219,该构件沿轴向直线排列构成螺旋外定子齿极直线排列定子221,其内套设动子齿极321,动子齿极321是十字直齿齿极单元3211螺旋排列构成整体四螺旋动子。

[103]

实施例22:图22为halbach阵列四直齿外定子齿极螺旋排列电机122,定子为沿圆周均匀设置的直齿定子齿极铁芯2221,由环状轭铁2223连接,直齿定子齿极铁芯2221外套设齿极线圈2222,齿极之间的环状轭铁2223套设轭铁线圈2224构成定子齿极构件2229,该构件螺旋排列构成螺旋外定子齿极螺旋排列定子222,其内套设动子齿极322,动子齿极322是直齿齿极单元3221直线排列构成整体四直线动子,直齿齿极单元3221由环状动子轭铁3222连接。

[104]

实施例23:图23为halbach阵列四螺旋外定子齿极直线排列电机123,十字定子为沿圆周均匀设置的直齿定子齿极铁芯2231,由环状轭铁2233连接,直齿定子齿极铁芯2231外套设齿极线圈2232,齿极之间的环状轭铁2233套设轭铁线圈2234构成定子齿极构件2239,该构件螺旋排列构成螺旋外定子齿极螺旋排列定子223,其内套设动子齿极323,动子齿极323是十字直齿齿极单元3231直线排列构成整体四直线动子323。

[105]

实施例24:图24为halbach阵列四螺旋外定子齿极螺旋排列电机124,定子为沿圆周均匀设置的螺旋定子齿极铁芯2241,由环状轭铁2243连接,螺旋定子齿极铁芯2241外套设齿极线圈2242,齿极之间的环状轭铁2243套设轭铁 线圈2244构成定子齿极构件2249,该构件螺旋排列构成螺旋外定子齿极螺旋排列定子224,其内套设动子齿极324,动子齿极324是螺旋齿极单元3241直线排列构成整体四直线动子,螺旋齿极单元3241由环状动子轭铁3242连接。

[106]

实施例25:图25为halbach阵列四螺旋外定子齿极直线排列电机125,定子为沿圆周均匀设置的螺旋定子齿极铁芯2251,由环状轭铁2253连接,螺旋定子齿极铁芯2251外套设齿极线圈2252,齿极之间的环状轭铁2253套设轭铁线圈2254构成定子齿极构件2259,该构件螺旋排列构成螺旋外定子齿极螺旋排列定子225,其内套设动子齿极325,动子齿极325是十字螺旋齿极单元3251直线排列构成整体四直线动子。

[107]

实施例26:图26为八螺旋外定子齿极螺旋排列电机126,定子为沿圆周均匀设置的螺旋定子齿极铁芯2251,由螺旋轭铁2263连接,螺旋定子齿极铁芯2251外套设齿极线圈2262,齿极之间的螺旋轭铁2263套设轭铁线圈2264构成定子齿极构件,该构件螺旋排列构成螺旋外定子齿极螺旋排列定子226,其内套设动子齿极326,动子齿极326是直齿齿极单元3261螺旋排列构成整体八螺旋动子。

[108]

实施例27:如图27所示,两个螺旋外定子齿极2271的轭部由环状导磁材料作为轭铁2273将其固定连接,螺旋外定子齿极2271套设齿极线圈2272,螺旋外定子齿极2271之间的轭铁2273上套设轭铁线圈2274,螺旋外定子齿极2271的轭部在旋转轴方向由直条状导磁材料作为直条轭铁2275再次连接。螺旋外定子齿极2271之间的直条状轭铁2275上套设直条轭铁线圈2276构成立体直条状螺旋齿极定子227,其内套设两个沿圆周相对设置的螺旋动子3271构成的双螺旋条状动子327,该两个螺旋动子条3271由支撑件3272支撑固定,构成立体直条状螺旋齿极定子电动机。

[109]

实施例28:如图28所示,两个螺旋外定子齿极2281的轭部由环状导磁材料作为轭铁2283将其固定连接,螺旋外定子齿极2281套设齿极线圈2282,螺旋外定子齿极2281之间的轭铁2283上套设轭铁线圈2284,螺旋外定子齿极 2281的轭部在旋转轴方向由螺旋条状导磁材料作为螺旋条状轭铁2285再次连接,螺旋外定子齿极2281之间的螺旋条状轭铁2285上套设螺旋条状轭铁线圈2286构成立体螺旋条状螺旋齿极定子228,其内套设两个沿圆周相对设置的螺旋动子3281构成的双螺旋直条状动子328,该两个螺旋动子条3281由支撑件3282支撑固定,构成立体螺旋条状螺旋齿极定子电动机。

[110]

实施例29:如图29所示,两个螺旋齿极铁芯2291沿圆周相对设置,两个螺旋齿极铁芯2291的轭部由环状轭铁2293连接,螺旋齿极铁芯2291套设齿极线圈2292,螺旋齿极铁芯2291之间的轭铁2293轭铁线圈2294,构成halbach阵列螺旋齿极定子构件,halbach阵列螺旋齿极定子构件沿转轴方向螺旋排列,构成halbach阵列螺旋齿极螺旋排列定子229,其内设反向双螺旋齿极动子,构成halbach阵列螺旋齿极螺旋排列定子229内设反螺旋动子电动机,halbach阵列螺旋齿极螺旋排列的螺距为660mm,长度为330mm,反向双螺旋齿极动子的螺距为660mm,长度为330mm,只是螺距方向相反,这样三层halbach阵列螺旋齿极定子构件每次转动60°就能够保持持续旋转,六层相当于两个三层的halbach阵列螺旋齿极螺旋排列内反向螺旋电动机串联。

[111]

现有开关磁阻电动机调速系统的功率变换器、控制器、转子位置检测器等,通过适应性修改,就可以应用于本发明。

[112]

本专利公开的数值和数据,例如螺距、宽度、高度等仅仅是说明结构特征,不作为对本发明的限制性解释,



[1]

Provided is a switched reluctance motor, comprising stator tooth poles (0219) and rotor tooth poles (031). The number of stator tooth poles matches that of rotor tooth poles. The rotor tooth poles are rotatably fitted with respect to the stator tooth poles. The stator tooth poles are fixedly connected in layers along a rotation axis. The thickness range of the rotor tooth pole to which the thickness of the stator tooth pole corresponds is referred to as a rotor tooth pole unit. The stator tooth pole is constituted by a stator tooth-pole iron core (0211) and a stator tooth-pole coil (0212) sheathed outside the iron core. An end group forming an air gap of the stator tooth-pole iron core and the rotor tooth pole is an arc face in a concave-convex fit. The fitting relationship of the stator tooth pole and the rotor tooth pole is that no matter which angle the rotor tooth pole rotates to with respect to the stator tooth pole, a centre line of at least one layer of stator tooth pole and a rotor tooth-pole centre line of the corresponding rotor tooth pole unit form an included angle α, 0<α≤β, wherein β is the angle of the corresponding circle centre of the arc of the cross section of the stator tooth-pole iron core or of the rotor tooth pole in the direction of the rotation axis. The switched reluctance motor has a relatively high power density, and reduces noise and vibration by reducing torque ripple.

[2]



一种开关磁阻电动机,包括定子齿极和动子齿极,动子齿极相对于定子齿极转动配合,其特征在于:所述定子齿极的数目与动子齿极的数目相等;定子齿极沿转动轴方向为层状固定连接,定子齿极厚度对应动子齿极的厚度范围称为动子齿极单元定子齿极由定子齿极铁芯及其外部套设的定子齿极线圈构成,定子齿极铁芯与动子齿极形成气隙的端组为凹凸配合的圆弧面,定子齿极与动子齿极的配合关系为,无论动子齿极相对于定子齿极旋转到任何角度,至少一层定子齿极中心线与对应动子齿极单元的动子齿极中心线形成夹角α,0<α≤β,β为定子齿极铁芯或者动子齿极沿旋转轴方向的横截面的圆弧对应圆心的角度。

如权利要求1所述的开关磁阻电动机,其特征在于:所述无论动子齿极相对于定子齿极旋转到任何角度,至少一层定子齿极中心线与对应动子齿极单元的动子齿极中心线形成夹角α,0<α≤β,指定子齿极的层数为n层,对应动子齿极单元也是n层的长度,沿圆周排布的齿极数为m,假设第一层定子齿极中心线与动子齿极中心线的夹角为360/(nm),则第二层为2*360/(nm),……第n层为n*360/(nm),其中360/(nm)≤β。

如权利要求2所述的开关磁阻电动机,其特征在于:在xyz坐标系中,第一层定子齿极所在的平面为xy面,旋转轴的轴线方向为z轴方向,其它层定子齿极沿z轴依次延伸,所述第一层定子齿极中心线与y轴的夹角为360/(nm),第二层为2*360/(nm),……第n层为n*360/(nm),各层动子齿极单元的动子齿极中心线在z方向重合。

如权利要求2所述的开关磁阻电动机,其特征在于:在xyz坐标系中,第一层定子齿极所在的平面为xy面,旋转轴的轴线方向为z轴方向,其它层定子齿极沿z轴依次延伸,所述各层定子齿极的中心线在z方向与y轴重合,则第一层动子齿极单元的动子齿极中心线与y轴夹角为360/(nm),第二层为2*360/(nm),……第n层为n*360/(nm)。

如权利要求2所述的开关磁阻电动机,其特征在于:在xyz坐标系中,第一层定子齿极所在的平面为xy面,旋转轴的轴线方向为z轴方向,其它层定子齿极沿z轴依次延伸,所述第一层定子齿极中心线与y轴夹角为360/(2*nm),第二层为2*360/(2*nm),……第n层为n*360/(2*nm);第一层动子齿极单元的动子齿极中心线与y轴夹角为-360/(2nm),第二层为-2*360/(2nm),……第n层为 -n*360/(2nm)。

如权利要求3-5任一所述的开关磁阻电动机,其特征在于:所述定子齿极层数在z轴方向依次延伸,形成直条状定子齿极或者螺旋条状定子齿极,与直条状定子齿极对应的动子齿极为螺旋条状动子齿极;与螺旋条状定子齿极对应的动子齿极为反向螺旋条状动子齿极或者直条状动子齿极,齿极数目为m大于等于1的自然数,n为大于等于2的自然数。

如权利要求6所述的开关磁阻电动机,其特征在于:所述直条状定子齿极或者螺旋条状定子齿极的轭部,对应由直条状导磁材料或者螺旋条状导磁材料连接构成直条状串联的u型电磁铁或者螺旋条状串联的u型电磁铁。

如权利要求7所述的开关磁阻电动机,其特征在于:所述直条状定子齿极或者螺旋条状定子齿极的圆弧面指向圆心,构成外直条状定子齿极或者外螺旋条状定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为内直条状动子齿极、内螺旋条状动子齿极及内反向螺旋条状动子齿极。

如权利要求7所述的开关磁阻电动机,其特征在于:所述直条状定子齿极或者螺旋条状定子齿极的圆弧面背离圆心,构成内直条状定子齿极或者内螺旋条状定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为外直条状动子齿极、外螺旋条状动子齿极及外反向螺旋条状动子齿极。

如权利要求6所述的开关磁阻电动机,其特征在于:所述m为偶数,每层定子齿极的轭部由导磁材料连接形成闭合框架定子齿极,定子齿极之间的导磁材料框架上,套设框架线圈。

如权利要求10所述的开关磁阻电动机,其特征在于:所述闭合框架定子齿极的圆弧面指向圆心,构成外闭合框架定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为内直条状动子齿极、内螺旋条状动子齿极及内反向螺旋条状动子齿极。

如权利要求10所述的开关磁阻电动机,其特征在于:所述闭合框架定子齿极的圆弧面背离圆心,构成内闭合框架定子齿极;所述直条状动子齿极、螺旋条状动子齿极及反向螺旋条状动子齿极对应为外直条状动子齿极、外螺旋条状动子齿极及外反向螺旋条状动子齿极。

如权利要求6所述的开关磁阻电动机,其特征在于:所述定子齿极为内定子 齿极,其m=4,β=45°四个内定子齿极的内定子齿极铁芯呈十字结构。如权利要求6所述的开关磁阻电动机,其特征在于:所述定子齿极为内定子齿极,其m=2,β=90°,两个内定子齿极呈径向的条状结构。

如权利要求6所述的开关磁阻电动机,其特征在于:所述m为偶数,每层定子齿极的轭部由导磁材料连接形成闭合框架定子齿极,定子齿极之间的导磁材料框架上,套设框架线圈之后,所述直条状定子齿极或者螺旋条状定子齿极的轭部,对应由直条状导磁材料或者螺旋条状导磁材料再连接,直条状导磁材料或者螺旋条状导磁材料作为轭铁再套设直条状轭铁或者螺旋条状轭铁构成立体直条状齿极或者螺旋条状定子齿极定子。

如权利要求1-12所述的开关磁阻电动机的定子齿极,其特征在于:所述定子齿极的形状为直齿或者螺旋齿。

如权利要求7所述的开关磁阻电动机的定子齿极,其特征在于:所述直条状定子齿极或者螺旋条状定子齿极的轭部,对应由直条状导磁材料或者螺旋条状导磁材料连接构成直条状串联的u型电磁铁或者螺旋条状串联的u型电磁铁。

如权利要求10所述的开关磁阻电动机的定子齿极,其特征在于:所述m为偶数,每层定子齿极的轭部由导磁材料连接形成闭合框架定子齿极,定子齿极之间的导磁材料框架上,套设框架线圈。