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CAMERA-RADAR DATA FUSION FOR EFFICIENT OBJECT DETECTION

TECHNICAL FIELD

[0001] The instant specification generally relates to systems and applications that detect
and classify objects and, in particular, to autonomous vehicles and vehicles deploying driver
assistance technology. More specifically, the instant specification relates to camera-radar data
fusion for faster and more resource-efficient detection of objects, including but not limited to

vehicles, pedestrians, bicyclists, animals, and the like.

BACKGROUND

[0002] An autonomous (fully or partially self-driving) vehicle (AV) operates by sensing an
outside environment with various electromagnetic (e.g., radar and optical) and non-
electromagnetic (e.g., audio and humidity) sensors. Some autonomous vehicles chart a driving
path through the environment based on the sensed data. The driving path can be determined
based on Global Navigation Satellite System (GNSS) data and road map data. While the GNSS
and the road map data can provide information about static aspects of the environment
(buildings, street layouts, road closures, etc.), dynamic information (such as information about
other vehicles, pedestrians, streetlights, etc.) is obtained from contemporaneously collected
sensing data. Precision and safety of the driving path and of the speed regime selected by the
autonomous vehicle depend on timely and accurate identification of various objects present in the
driving environment and on the ability of a driving algorithm to process the information about

the environment and to provide correct instructions to the vehicle controls and the drivetrain.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure is illustrated by way of examples, and not by way of
limitation, and can be more fully understood with references to the following detailed description
when considered in connection with the figures, in which:

[0004] FIG. 1 is a diagram illustrating components of an example autonomous vehicle
(AV), in accordance with some implementations of the present disclosure.

[0005] FIGS. 2A-2B are diagrams illustrating example architectures of a part of a
perception system thatis capable of efficient detection and classification of objects, in
accordance with some implementations of the present disclosure.

[0006] FIG. 3 is a diagram illustrating an example method of generating a fused bird’s-eye
view (BEV) grid from multi-scale BEV grids, in accordance with some implementations of the

present disclosure.
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[0007] FIGS. 4A-4B illustrate example methods of implementing camera-radar data fusion
to generate a fused bird’s-eye view (BEV) grid for efficient object detection, in accordance with
some implementations of the present disclosure.

[0008] FIGS. 5SA-5B illustrate example methods of implementing a bird’s-eye view (BEV)
grid generated using camera-radar data fusion for efficient object detection, in accordance with
some implementations of the present disclosure.

[0009] FIG. 6 depicts a block diagram of an example computer device capable of
implementing camera-radar data fusion to generate a fused bird’s-eye view (BEV) grid for

efficient object detection, in accordance with some implementations of the present disclosure.

SUMMARY

[0010] In one implementation, disclosed is a method that includes obtaining, by a
processing device, input data derived from a set of sensors associated with an autonomous
vehicle (AV), extracting, by the processing device from the input data, a plurality of sets of
features, generating, by the processing device using the plurality of sets of features, a fused
bird’s-eye view (BEV) grid. The fused BEV grid is generated based on a first BEV grid havinga
first scale and a second BEV grid having a second scale different from the first scale. The method
further includes providing, by the processing device, the fused BEV grid for object detection.
[0011] In another implementation, disclosed is a system thatincludes a memory and a
processing device, operatively coupled to the memory, configured to obtain input data derived
from a set of sensors associated with an autonomous vehicle (AV), extract, from the input data, a
plurality of sets of features, generate, using the plurality of sets of features, a fused bird’s-eye
view (BEV) grid. The fused BEV grid is generated based on a first BEV grid having a first scale
and a second BEV grid having a second scale different from the first scale. The processing
device is further configured to provide the fused BEV grid for object detection.

[0012] In yet another implementation, disclosed is a non-transitory computer-readable
storage medium havinginstructions stored thereon that, when executed by a processing device,
cause the processing device to perform operations including obtaining input data derived from a
set of sensors associated with an autonomous vehicle (AV). The set of sensorsincludes at least
one camera and at least one radar, and the input datainclude a set of camera data obtained from
the at least one camera and a set of radar data obtained from the at least one radar. The operations
further include extracting, from the input data, a plurality of sets of features. The plurality of sets
of features includesa set of camera data features generated from the set of cameradata and a set

of radar data features generated from the set of radar data. The operations further include



WO 2023/158642 PCT/US2023/013055

generating, using the plurality of sets of features, a fused bird’s-eye view (BEV) grid. The fused
BEYV grid is generated based on a first BEV grid having a first scale and a second BEV grid
havinga second scale different from the first scale. The operations further include providing the

fused BEV grid for object detection.

DETAILED DESCRIPTION

[0013] Although various implementations can be described below, for the sake of
illustration, using autonomous driving systemsand driver assistance systems as examples, it
should be understood that the techniques and systems described herein can be used for tracking
of objects in a wide range of applications, including aeronautics, marine applications, traffic
control, animal control, industrial and academic research, public and personal safety, or in any
other application where automated detection of objects is advantageous.

[0014] In one example, for the safety of autonomousdriving operations, it can be desirable
to develop and deploy techniques of fast and accurate detection, classification, and tracking of
various road users and other objects encountered on or near roadways, such as road obstacles,
construction equipment, roadside structures, and the like. An autonomous vehicle (as well as
various driver assistance systems) can take advantage of a number of sensors to facilitate
detection of objects in a driving environment and determine the motion of such objects. The
sensors typically includeradio detection and ranging sensors (radars), light detection and ranging
sensors (lidars), digital cameras of multiple types, sonars, positional sensors, and the like.
Different types of sensors provide different and often complementary benefits. For example,
radars and lidars emit electromagnetic signals (radio signals or optical signals) that reflect from
the objects and carry information allowing to determine distances to the objects (e.g., from the
time of flight of the signals) and velocities of the objects (e.g., from the Doppler shift of the
frequencies of the signals). Radars and lidars can cover an entire 360-degree view, e.g., by using
a scanning transmitter of sensing beams. Sensing beams can cause numerous reflections covering
the driving environmentin a dense grid of return points. Each return point can be associated with
the distance to the corresponding reflecting object and a radial velocity (a component of the
velocity alongthe line of sight) of the reflecting object.

[0015] Some systems and methods of object identification and trackinguse various sensing
modalities, such as lidars, radars, cameras, etc., to obtain images of the environment. The images
can then be processed by trained machine learning models to identify locations of various objects
in the images (e.g., in the form of boundingboxes), state of motion of the objects (e.g., speed, as

detected by lidar or radar Doppler effect-based sensors), object types (e.g., a vehicle or
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pedestrian), and so on. Motion of objects (or any other evolution, such as splitting of a single
object into multiple objects) can be performed by creating and maintaining tracks associated with
a particular object.

[0016] Using multiple sensing modalities (e.g., lidars, radars, cameras) to obtain often
complementary data improves precision of object detection, identification, and tracking but
comes at a substantial costin sensing hardware and processing software. For example, a lidar
sensor can provide valuable information about distances to various reflecting surfaces in the
outside environment. A lidar sensor, however, is an expensive optical and electronic device that
operates by actively probing the outside environment with optical signals and requires
considerable maintenance and periodic calibration. Lidar returns (the point cloud) have to be
processed, segmented into groups associated with separate hypothesized objects, and matched
with objects detected using other sensing modalities (e.g., cameras), which requires additional
processing and memory resources. Cameras, on the other hand, operate by passively collecting
light (and/or infrared electromagnetic waves) emitted (or reflected) by objects of the environment
and are significantly simpler and cheaper in design, installation, and operations. Consequently,
various driver assistance systems that do not deploy lidars (for costs and maintenance reasons)
are typically equipped with one or more cameras. Cameras can also be more easily installed at
various stationary locations and used for traffic monitoring and control, public and private safety
applications, and the like. Being based on optical or infrared imaging technology, cameras have
certain advantages over radars, which, while allowing detection of distances to (and velocities of)
objects, operate in a range of wavelengths that has intrinsically lower resolution compared with
cameras. An ability to detect and identify objects based on camera-only images is, therefore,
beneficial.

[0017] Cameras, however, produce projections of a three-dimensional (3D) outside
environment onto a tvo-dimensional imaging surface (e.g., an array of camera’s light detectors),
which may be a plane or a curved surface. This gives rise to two related challenges. On one hand,
distances to objects (often referred to depths of the objects in the image) are not immediately
known (though can often be determined from the context of the imaged objects). On the other
hand, camera images have perspective distortions causing the same number of pixels separating
images of objects to correspond to different distances between objects depending on the depths of
the objects. Additionally, objects whose depictions are proximate to each other can nonetheless
be separated by a significant distance (e.g., a car and a pedestrian visible behind the car).
Machine learning techniques of object detection sometimes attempt to map objects from the

perspective view to the top-down view, also known as the bird’s-eye view (BEV), in which
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objects are represented on a convenient manifold, e.g., a plane viewed from above and
characterized by a simple set of Cartesian coordinates. Objectidentification and tracking can
subsequently be performed directly within the BEV representation. Success of such techniques
depends on accurate mapping of the objects to the BEV representation. This, in turn, can rely on
precise estimates of distances to various objects since misplacing of the objects within the BEV
representation can result not only in an error in ascertaining a distance to a road user but may also
lead to a loss of important contextual information.

[0018] Aspects and implementations of the present disclosure address these and other
challenges by enabling methods and systems that can implement camera-radar data fusion and
multi-scale BEV grids. In particular, the disclosed techniques provide for an end-to-end
perception model (EEPM) that can include a set of neural networks (NNs) trained to process
input data from a set of sensorsof an AV. For example, the input data can include camera data
and radar data. The input data can be used to generate a fused BEV grid formed by fusing
together a plurality of BEV grids. More particularly, at least two of the BEV grids can have a
different scale (e.g., resolution and/or size). For example, a first BEV grid can have a first scale
and a second BEV grid can have a second scale different from the first scale. Each BEV grid can
be generated by transforming a respective set of features extracted from the input data into a
respective set of points, and voxelizing the sets of points to generate the plurality of BEV grids.
Accordingly, a BEV grid can also be referred to as a BEV voxel grid.

[0019] For example, a set of camera data features can be extracted from the camera data,
and the set of camera data features can be transformed into a set of pixel points. Transforming the
set of camera data features into the set of pixel points caninclude projecting three-dimensional
(3D) camera data onto a two-dimensional (2D) space. As another example, a set of radar data
features can be extracted from the radar data, and the set of radar data features can be
transformed into a set of radar points. Transforming the set of radar data features into the set of
radar points can include transforming a coordinate representation of the radar data. For example,
if the radar data has a polar coordinate representation, the coordinate representation of the radar
data can be transformed into a Cartesian coordinate representation.

[0020] The EEPM can be trained using sensor dropout scenarios, in which some of the
sensors are removed or non-operational (e.g., atleast one camera and/or at least one radar). For
example, a right-side facing camera can be removed and the information about the objects in the
portion of space covered by the right-side facing camera can be provided by other sensing
modalities (e.g., lidar and/or radar sensors). Training scenarios can also include a complete

dropout of a particular sensing modality, e.g., dropout of lidar data feed, such that all information
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about the environment is provided by camerasand radars. This trains the output of EEPM to be
robust against failure of individual sensors and entire sensing modalities. Depending on
computational complexity and sophistication of training, EEPM can be used in various levels of
driving automation, including Level 2 driving assistance systems, Level 3 contextual autonomous
driving, Level 4 predominantly autonomous driving, Level 5 fully autonomous driving, and other
implementations.

[0021] Advantages of the described implementations include (but are not limited to) fast
and accurate detection, identification, and tracking of objects in a way that avoids large
computational overheads of processing of data of multiple sensing modalities. Since the machine
learning models trained and deployed as disclosed herein are capable of efficient object detection
based on input data (e.g., cameradata and radar data), the EEPM models described herein can be
deployed on a variety of platforms (e.g., AVs) including systems with modest computational
resources.

[0022] FIG. 1 is a diagram illustrating components of an example autonomous vehicle
(AV) 100, in accordance with some implementations of the present disclosure. Autonomous
vehicles can include motor vehicles (cars, trucks, buses, motorcycles, all-terrain vehicles,
recreational vehicles, any specialized farming or construction vehicles, and the like), aircraft
(planes, helicopters, drones, and the like), naval vehicles (ships, boats, yachts, submarines, and
the like), spacecraft (controllable objects operating outside Earth atmosphere) or any other self-
propelled vehicles (e.g., robots, factory or warehouse robotic vehicles, sidewalk delivery robotic
vehicles, etc.) capable of being operated in a self-driving mode (without a human input or with a
reduced human input).

[0023] Vehicles, such as those described herein, may be configured to operate in one or
more different driving modes. For instance, in a manual drivingmode, a driver may directly
control acceleration, deceleration, and steering via inputs such as an accelerator pedal, a brake
pedal, a steering wheel, etc. A vehicle may also operate in one or more autonomous driving
modes including, for example, a semi or partially autonomous driving mode in which a person
exercises some amount of direct or remote control over driving operations, or a fully autonomous
driving mode in which the vehicle handles the driving operations without direct or remote control
by a person. These vehiclesmay be known by different names including, for example,
autonomously driven vehicles, self-driving vehicles, and so on.

[0024] As described herein, in a semi-autonomous or partially autonomous driving mode,
even though the vehicle assists with one or more driving operations (e.g., steering, braking and/or

accelerating to perform lane centering, adaptive cruise control, advanced driver assistance

-6-



WO 2023/158642 PCT/US2023/013055

systems (ADAS), or emergency braking), the human driver is expected to be situationally aware
of the vehicle’s surroundings and supervise the assisted driving operations. Here, even though the
vehicle may perform all driving tasks in certain situations, the human driver is expected to be
responsible for taking control as needed.

[0025] Although, for brevity and conciseness, various systems and methods may be
described below in conjunction with autonomousvehicles, similar techniques can be used in
various driver assistance systems that do not rise to the level of fully autonomous driving
systems. In the United States, the Society of Automotive Engineers (SAE) have defined different
levels of automated driving operations to indicate how much, or how little, a vehicle controls the
driving, although different organizations, in the United States or in other countries, may
categorize the levels differently. More specifically, disclosed systems and methods canbe used in
SAE Level 2 driver assistance systems that implement steering, braking, acceleration, lane
centering, adaptive cruise control, etc., as well as other driver support. The disclosed systems and
methods can be used in SAE Level 3 driving assistance systems capable of autonomous driving
under limited (e.g., highway) conditions. Likewise, the disclosed systems and methods can be
used in vehicles that use SAE Level 4 self-driving systems that operate autonomously under most
regular driving situations and require only occasional attention of the human operator. In all such
driving assistance systems, accurate lane estimation canbe performed automatically without a
driver input or control (e.g., while the vehicle is in motion) and result in improved reliability of
vehicle positioning and navigation and the overall safety of autonomous, semi-autonomous, and
other driver assistance systems. As previously noted, in addition to the way in which SAE
categorizes levels of automated driving operations, other organizations, in the United States or in
other countries, may categorize levels of automated driving operations differently. Without
limitation, the disclosed systems and methods herein can be used in driving assistance systems
defined by these other organizations’ levels of automated driving operations.

[0026] A drivingenvironment 101 caninclude any objects (animate or inanimate) located
outside the AV, such as roadways, buildings, trees, bushes, sidewalks, bridges, mountains, other
vehicles, pedestrians, piers, banks, landing strips, animals, birds, and so on. The driving
environment 101 can be urban, suburban, rural, and so on. In some implementations, the driving
environment 101 can be an off-road environment (e.g., farming or other agricultural land). In
some implementations, the driving environment 101 can be anindoor environment, e.g., the
environment of an industrial plant, a shipping warehouse, a hazardous area of a building, and so
on. In some implementations, the driving environment 101 can be substantially flat, with various

objects moving parallel to a surface (e.g., parallel to the surface of Earth). In other
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implementations, the driving environment 101 can be three-dimensional and caninclude objects
that are capable of movingalong all three directions (e.g., balloons, fallingleaves, etc.).
Hereinafter, the term “driving environment” should be understood to include all environments in
which an autonomous motion (e.g., SAE Level 5 and SAE Level 4 systems), conditional
autonomous motion (e.g., SAE Level 3 systems), and/or motion of vehicles equipped with driver
assistance technology (e.g., SAE Level 2 systems) can occur. Additionally, “driving
environment” can include any possible flying environment of an aircraft (or spacecraft) or a
marine environment of a naval vessel. The objects of the driving environment 101 can be located
at any distance from the AV, from close distances of several feet (or less) to several miles (or
more).

[0027] The example AV 100 can include a sensing system 110. The sensing system 110
can include various electromagnetic (e.g., optical, infrared, radio wave, etc.) and non-
electromagnetic (e.g., acoustic) sensing subsystems and/or devices. The sensing system 110 can
include one or more lidars 112, which canbe a laser-based unit capable of determining distances
to the objects and velocities of the objects in the driving environment 101. The sensing system
110 can include one or more radars 114, which can be any system that utilizes radio or
microwave frequency signals to sense objects within the driving environment 101 of the AV 100.
The lidar(s) 112 and or radar(s) 114 canbe configured to sense both the spatial locations of the
objects (including their spatial dimensions) and velocities of the objects (e.g., usingthe Doppler
shift technology). Hereinafter, “velocity” refers to both how fast the objectis moving (the speed
of the object) as well as the direction of the object’s motion. Each of the lidar(s) 112 and radar(s)
114 can include a coherent sensor, such as a frequency-modulated continuous-wave (FMCW)
lidar or radar sensor. For example, lidar(s) 112 and/or radar(s) 114 can use heterodyne detection
for velocity determination. In some implementations, the functionality of a ToF and coherent
lidar (or radar) is combined into a lidar (or radar) unit capable of simultaneously determining
both the distance to and the radial velocity of the reflecting object. Such a unit can be configured
to operate in an incoherent sensing mode (ToF mode) and/or a coherent sensing mode (e.g., a
mode that uses heterodyne detection) or both modes at the same time. In some implementations,
multiple lidars 112 and/or radar 114s can be mounted on AV 100.

[0028] Lidar 112 (and/or radar 114) can include one or more optical sources (and/or
radio/microwave sources) producing and emitting signals and one or more detectors of the
signals reflected back from the objects. In some implementations, lidar 112 and/or radar 114 can
perform a 360-degree scanning in a horizontal direction. In some implementations, lidar 112

and/or radar 114 can be capable of spatial scanning alongboth the horizontal and vertical
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directions. In some implementations, the field of view canbe up to 60 degreesin the vertical
direction (e.g., with at least a part of the region above the horizon being scanned with lidar or
radar signals). In some implementations (e.g., aecrospace applications), the field of view canbe a
full sphere (consisting of two hemispheres).

[0029] The sensing system 110 can further include one or more cameras 118 to capture
images of the driving environment 101. Cameras 118 can operatein the visible part of the
electromagnetic spectrum, e.g., 300-800 nm range of wavelengths (herein also referred for
brevity as the optical range). Some of the optical range cameras 118 can use a global shutter
while other cameras 118 can use a rolling shutter. The images can be two-dimensional
projections of the driving environment 101 (or parts of the driving environment 101) onto a
projecting surface (flat or non-flat) of the camera(s). Some of the cameras 118 of the sensing
system 110 can be video cameras configured to capture a continuous (or quasi-continuous)
stream of images of the driving environment 101. The sensing system 110 can also include one
or more sonars 116, for active sound probing of the driving environment 101, e.g., ultrasonic
sonars, and one or more microphones for passive listening to the sounds of the driving
environment 101. The sensing system 110 can also include one or more infrared range (IR)
sensors 119. For example, IR sensor(s) 119 can include an IR camera. IR sensor(s) 119 canuse
focusing optics (e.g., made of germanium-based materials, silicon-based materials, etc.) that is
configured to operate in the range of wavelengths from microns to tens of microns or beyond. IR
sensor(s) 119 can include a phased array of IR detector elements. Pixels of IR images produced
by IR sensor(s) 119 can be representative of the total amount of IR radiation collected by a
respective detector element (associated with the pixel), of the temperature of a physical object
whose IR radiation is being collected by the respective detector element, or any other suitable
physical quantity.

[0030] The sensing data obtained by the sensing system 110 can be processed by a data
processing system 120 of AV 100. For example, the data processing system 120 canincludea
perception system 130. The perception system 130 can be configured to detect and track objects
in the driving environment 101 and to recognize the detected objects. For example, the
perception system 130 can analyze images captured by the cameras 118 and can be capable of
detecting traffic light signals, road signs, roadway layouts (e.g., boundaries of traffic lanes,
topologies of intersections, designations of parking places, and so on), presence of obstacles, and
the like. The perception system 130 can further receive radar sensing data (Doppler data and ToF
data) to determine distances to various objects in the environment 101 and velocities (radial and,

in some implementations, transverse, as described below) of such objects. In some
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implementations, the perception system 130 can use radar data in combination with the data
captured by the camera(s) 118, as described in more detail below.

[0031] The perception system 130 can include one or more components to facilitate
detection, classification, and tracking of objects, including an end-to-end perception model
(EEPM) 132 that can be used to process data provided by the sensing system 110. More
specifically, in some implementations, EEPM 132 can receive data from sensors of different
sensing modalities. For example, EEPM 132 can receiveimages from at least some of lidar(s)
112, radar(s) 114, and (optical range) camera(s) 118, IR sensor(s) 119, sonar(s) 116 and the like.
In particular, EEPM 132 can include one or more trained machine-learning models (MLMs) that
are used to process some or all of the above data to detect, classify, and track motion of various
objects in the driving environment 101. EEPM 132 can use multiple classifier headsto determine
various properties of the outside environment, including but not limited to occupation of space
with various objects, types of the objects, motion of the objects, identification of objects that can
be occluded, relation of the objects to the roadway, to other objects, and to the traffic flow.
Various models of EEPM 132 can be trained using multiple sets of images/data, annotated to
identify specific features in the respective sensing data. In some implementations, the perception
system 130 can includea behavior prediction module (BPM) 134 that predicts future motion of
the detected objects.

[0032] The perception system 130 can further receive information from a Global
Navigation Satellite Systerm {(GNSS} positioning subsystem (not shown in FIG. 1), which can
include a GNNS transceiver (not shown), configured to obtain information about the position of
the AV relative to Earth and its surroundings. The positioning subsystem canuse the positioning
data, e.g., GNNS and inertial measurement unit (IMU) data in conjunction with the sensing data
to help accurately determine the location of the AV with respect to fixed objects of the driving
environment 101 (e.g., roadways, lane boundaries, intersections, sidewalks, crosswalks, road
signs, curbs, surrounding buildings, etc.) whoselocations can be provided by map information
124. In some implementations, the data processing system 120 canreceive non-electromagnetic
data, such as audio data (e.g., ultrasonic sensor data from sonar 116 or data from microphone
pickingup emergency vehicle sirens), temperature sensor data, humidity sensor data, pressure
sensor data, meteorological data (e.g., wind speed and direction, precipitation data), and the like.
[0033] The data processing system 120 can further include an environment monitoring and
prediction component 126, which can monitor how the driving environment 101 evolves with
time, e.g., by keepingtrack of the locations and velocities of the animated objects (e.g., relative

to Earth). In some implementations, the environment monitoring and prediction component 126
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can keep track of the changing appearance of the environment due to a motion of the AV relative
to the environment. In some implementations, the environment monitoring and prediction
component 126 can make predictions about how various animated objects of the driving
environment 101 will be positioned within a prediction time horizon. The predictions can be
based on the current state of the animated objects, including current locations (coordinates) and
velocities of the animated objects. Additionally, the predictions can be based on a history of
motion (tracked dynamics) of the animated objects during a certain period of time that precedes
the current moment. For example, based on stored data for a first object indicating accelerated
motion of the first object during the previous 3-second period of time, the environment
monitoring and prediction component 126 can conclude that the first object is resuming its
motion from a stop sign or ared traffic light signal. Accordingly, the environment monitoring
and prediction component 126 can predict, given the layout of the roadway and presence of other
vehicles, where the first object is likely to be within the next 3 or 5 seconds of motion. As
another example, based on stored data for a second object indicating decelerated motion of the
second object during the previous 2-second period of time, the environment monitoring and
prediction component 126 can conclude that the second object is stopping at a stop sign or ata
red traffic light signal. Accordingly, the environment monitoring and prediction component 126
can predict where the second object is likely to be within the next 1 or 3 seconds. The
environment monitoring and prediction component 126 can perform periodic checks of the
accuracy of its predictions and modify the predictions based on new data obtained from the
sensing system 110. The environment monitoring and prediction component 126 can operate in
conjunction with EEPM 132. For example, the environment monitoring and prediction
component 126 can track relative motion of the AV and various objects (e.g., reference objects
that are stationary or moving relative to Earth).

[0034] The data generated by the perception system 130, the GNSS processing module 122,
and the environment monitoring and prediction component 126 can be used by an autonomous
driving system, such as AV control system (AVCS) 140. The AVCS 140 caninclude one or more
algorithms that control how AV is to behave in various driving situations and environments. For
example, the AVCS 140 can include a navigation system for determining a global driving route
to a destination point. The AVCS 140 can also include a driving path selection system for
selecting a particular path through the driving environment 101, which can include selecting a
traffic lane, negotiating a traffic congestion, choosing a place to make a U-turn, selectinga
trajectory for a parking maneuver, and so on. The AVCS 140 can also include an obstacle

avoidance system for safe avoidance of various obstructions (rocks, stalled vehicles, and so on)
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within the driving environment of the AV. The obstacle avoidance system can be configured to
evaluate the size of the obstacles and the trajectories of the obstacles (if obstacles are animated)
and select an optimal driving strategy (e.g., braking, steering, accelerating, etc.) for avoiding the
obstacles.

[0035] Algorithms and modules of AVCS 140 can generate instructions for various systems
and components of the vehicle, such as the powertrain, brakes, and steering 150, vehicle
electronics 160, signaling 170, and other systems and components not explicitly shown in FIG.
1. The powertrain, brakes, and steering 150 can include an engine (internal combustion engine,
electric engine, and so on), transmission, differentials, axles, wheels, steering mechanism, and
other systems. The vehicle electronics 160 caninclude an on-board computer, engine
management, ignition, communication systems, carputers, telematics, in-car entertainment
systems, and other systemsand components. The signaling 170 can include high and low
headlights, stoppinglights, turning and backinglights, horns and alarms, inside lighting system,
dashboard notification system, passenger notification system, radio and wireless network
transmission systems, and so on. Some of the instructions output by the AVCS 140 canbe
delivered directly to the powertrain, brakes, and steering 150 (or signaling 170) whereas other
instructions output by the AVCS 140 are first delivered to the vehicle electronics 160, which
generates commands to the powertrain, brakes, and steering 150 and/or signaling 170.

[0036] In one example, EEPM 132 can determine that images obtained by camera(s) 118
include depictions of an object and can further classify the object as a bicyclist. The environment
monitoring and prediction component 126 can track the bicyclist and determine that the bicyclist
is travelling with the speed of 15 mph along an intersecting road perpendicular to the direction of
the motion of the vehicle. Responsive to such a determination, the BPM 134 can determine that
the vehicle needs to slow down to let the bicyclist clear the intersection. The AVCS 140 can
output instructions to the powertrain, brakes, and steering 150 (directly or via the vehicle
electronics 160) to: (1) reduce, by modifying the throttle settings, a flow of fuel to the engine to
decrease the engine rpm; (2) downshift, via an automatic transmission, the drivetrain into a lower
gear; and (3) engage a brake unit to reduce (while acting in concert with the engine and the
transmission) the vehicle’s speed. After EEPM 132 and/or the environment monitoring and
prediction component 126 determined that the bicyclist has crossed the intersection, the AVCS
140 can output instructions to the powertrain, brakes, and steering 150 to resume the previous
speed settings of the vehicle.

[0037] The output of EEPM 132 can be used for tracking of detected objects. In some

implementations, tracking can be reactive and can include history of poses (positions and

-12-



WO 2023/158642 PCT/US2023/013055

orientations) and velocities of the tracked objects. In some implementations, tracking can be
proactive and can include prediction of future poses and velocities of the tracked objects. In some
implementations, future predictions can be generated by BPM 134, e.g., based at least partially
on the output of EEPM 132. In some implementations, tracking-by-detection or instance
segmentation can be used instead of building an explicit tracker. For example, an interface of
BPM 134 can include, for each object, a history of recent object locations, extents, headings and
velocities. In some implementations, flow information can be defined with reference to units of
three-dimensional space (voxels). For additional accuracy of prediction, flow information
associated with individual voxels caninclude not only velocities but also kinematic attributes,
such as curvature, yaw rate, and the like. Based on this data, BPM 134 can predict future
trajectories in a way that is advantageous over a more traditional tracking approach. In some
implementations, an alternative approach can be used that deploys a recurrent neural network
(RNN) to smooth and interpolate locations and velocities over time, which may be performed
similarly to operations of a Kalman filter.

[0038] The output of EEPM 132 can be used for vehicle localization. In some
implementations, BPM 134 can use lidar-based global mapping that maps an entire region of 3D
environment around the vehicle. In some implementations, BPM 134 can deploy a simpler
system that uses accelerometry, odometry, GNNS data, as well as camera-based lane mapping to
identify the current position of the vehicle relative to the map data.

[0039] In different implementations, BPM 134 can have different levels of sophistication
depending on the driving environment 101 (e.g., highway driving, urban driving, suburban
driving, etc.). In L2 driving assistance implementations (“hands on the wheel”), where the driver
is expected at any time to take over the vehicle’s control, BPM 134 can have a minimum
functionality and be able to predict behavior of other road users within a shorttime horizon, e.g.,
several seconds. For example, such predictions can include impeding lane changes by other
vehicles (“agents”). BPM 134 can use various cues, such as a turning signal, front wheel turning,
a driver turning the head in the direction of a turn, and the like. BPM 134 can determine if such
impendinglane changes require driver’s attention. In the instances where a lane changing agent
is sufficiently far from the vehicle, AVCS 140 acting on BPM 134 prediction can change the
vehicle’s trajectory (e.g., slow the vehicle down) without driver’s involvement. In the instances
where a change requires immediate driver’s attention, BPM 134 can output a signal to the driver
indicating that the driver should take over controls of the vehicle.

[0040] In L3 driving assistance implementations (“hands off the wheel”), the objective can

be to provide an autonomous driving function for at least a certain time horizon (e.g., X seconds),
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such that if a condition arises that requires the driver’s control, this condition will be predicted at
least X seconds prior to its occurrence. The map data can further include camera and/or radar
images of prominent landmarks (bridges, signs, roadside structures, etc.). In some
implementations, BPM 134 of L3 systems may at any given time output two trajectories, Option
A and abackup Option B, for X'seconds. For example, when traveling on a city street in the
rightmost lane of the street, BPM 134 can compute Option A for the vehicle to remainin the
rightmost lane and can further compute Option B for the vehicle to move over to the left lane if a
parked vehicle veers into the leftmost lane. BPM 134 can predict that within X seconds into the
future the leftlane is to remain available and continue vehicle operations. At some point, BPM
134 can predict that the left lane has a fast-moving agent that is to move close enough to the
vehicle to make the leftlane (and thus Option B) unavailable to the vehicle. Having determined
that Option B is likely to become unavailable, BPM 134 can call the driver to take control of the
vehicle. In yet even more sophisticated systems, where driver’s input is not expected (e.g.,
autonomous L4 driving systems), if Option B disappears, AVCS 140 can stop the vehicle on the
side of the road until the driving situation changes favorably.

[0041] To achieve reliable predictions, BPM 134 can simulate multiple possible scenarios
how different road users can behave in different waysand estimate the probability of various
such scenarios and the corresponding outcomes. In some implementations, BPM 134 can use a
closed-loop approach and determine a distribution of probabilities that, if the vehicle makes a
certain driving path change (or maintains the current driving path), other vehicles are to respond
in a certain way, e.g., to yield to the vehicle or to accelerate or otherwise block the vehicle’s
driving path. BPM 134 can evaluate multiple such scenarios and output probabilities for each or
at least some of the scenarios. In some implementations, BPM 134 can use an open-loop
approach, in which predictions are madebased on the current state of motion of the agents and
the changes of the motion of the vehicle do not affect the behavior of other agents. In some
implementations, predicted locations of variousagents can be represented via future occupancy
heat maps. Further details regarding the EEPM 132 will now be described below with reference
to FIGS. 2A-2B.

[0042] FIG. 2A is a diagram illustrating example network architecture of an end-to-end
perception model (EEPM) 132 that can be deployed as part of a perception system of a vehicle,
in accordance with some implementations of the present disclosure. Input data 201 caninclude
data obtained by various components of the sensing system 110 (as depicted in FIG. 1), e.g,,
lidar(s) 112, radar(s) 114, optical (e.g, visible) range camera(s) 118, IR sensors (s) 119. For
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example, as shown, the input data 201 can include camera data210 and radar data 220. Although
not shown, the input data 201 can further include, e.g., lidar data.

[0043] The input data 201 can includeimages and/or any other data, e.g., voxel intensity,
velocity data associated with voxels, as well as metadata, such as timestamps. The input data 201
can include directional data (e.g., angular coordinates of return points), distance data, and radial
velocity data, e.g., as can be obtained by lidar(s) 112 and/or radar(s) 114. Additionally, the input
data 201 can further includeroadgraph data stored by (or accessible to) perception system 130,
e.g., as part of map information 124. Roadgraph data can include any two-dimensional maps of
the roadway and its surrounding, three-dimensional maps (including any suitable mapping of
stationary objects, e.g., identification of bounding boxes of such objects). It should beunderstood
that this list of input data 201 is not exhaustive and any suitable additional data can be used as
partof input data 201, e.g., IMU data, GNNS data, and the like. Each of the modalities of input
data 201 can be associated with a specific instance of time when the data was acquired. A set of
available data (e.g., alidar image, a radar image, a camera image, and/or an IR camera image,
etc.) associated with a specific instance of time can be referred to as a sensing frame. In some
implementations, the images obtained by different sensors can be synchronized, so that all
images in a given sensing frame have the same (upto an accuracy of synchronization) timestamp.
In some implementations, some images in a given sensing frame can have (controlled) time
offsets.

[0044] An image obtained by any of sensorscan include a corresponding intensity map
I({x;}) where {x} can be any set of coordinates, including three-dimensional (spherical,
cylindrical, Cartesian, etc.) coordinates (e.g., in the instances of lidar and/or radar images), or
two-dimensional coordinates (in the instances of camera data). Coordinates of various objects (or
surfaces of the objects) that reflect lidar and/or radar signals can be determined from directional
data (e.g., polar 8 and azimuthal ¢ angles in the direction of lidar/radar transmission) and
distance data (e.g., radial distance R determined from the ToF of lidar/radar signals). The
intensity map can identify intensity of sensing signals detected by the corresponding sensors.
Similarly, lidar and/or radar sensors can produce Doppler (frequency shift) map, Af ({x;} that
identifies radial velocity of reflecting objects based on detected Doppler shift Af of'the
frequency of the reflected radar signals, V = AAf /2, where A is the lidar/radar wavelength, with
positive values Af > 0 associated with objects that move towards the lidar/radar (and, therefore,
the vehicle) and negative values Af < 0 associated with objects that move away from the

lidar/radar. In some implementations, e.g., in driving environments where objects are moving
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substantially within a specific plane (e.g., ground surface), the radar intensity map and the
Doppler map can be defined using two-dimensional coordinates, such as the radial distance and
azimuthal angle: I(R, ¢), Af (R, ).

[0045] A camera feature network 212 can receive the camera data 210 and extract a set of
camera data features from the camera data 210. For example, the set of camera data features can
include a set of camera data feature vectors. More specifically, a camera data feature canbe a
two-dimensional (2D) camera data feature. Camera data feature network 212 can use any suitable
perspective backbone(s) to obtain the set of camera data features. Examples of suitable
perspective backbonesinclude Resnet, EfficientNet, etc. In some implementations, each camera
sensor (e.g., front-facing camera, rear-facing camera, etc.) can use the same vision backbone
(e.g., same shared weights) in training to avoid learning viewpoint-specific priors to avoid
performance of EEPM 132 to be affected by vehicle yaws. Each camera data feature can be
associated with a particular pixel or a cluster of pixels. Each pixel (or a cluster of pixels) may be
associated with a respective depth distribution and a respective depth feature. In some
implementations, the processed camera data can be downsampled for computational efficiency.
In some implementations, pseudo-cameras can be used. Pseudo-cameras represent crops of the
images from the full resolution images to provide finer detail for longrange tasks. The pseudo-
cameras can have a fixed crop or a crop thatis driven from an output of the coarse resolution
backbone. In some implementations, the crops can be trained directly. In some implementations,
differentiable cropping can be used to train the attention mechanism end-to-end.

[0046] Camera data features can be provided to a camera data feature projection
component 214. The camera data feature projection component 214 can utilize camera data
feature projection to transform the set of camera data featuresinto a set of pixel points. For
example, the set of pixel points can be a pixel point cloud. In some implementations, utilizing
camera data feature projection includes performing a lift transformation with respect to 2D
camera data (e.g., from 2D backbones, sensor intrinsics and extrinsics (or derived intrinsics and
extrinsics for pseudo-cameras)). To do so, the camera data feature transformation component 214
can projectthe 2D camera data to a three-dimensional (3D) space. This projection canbe done
using various depth distribution techniques. During training, depth ground truth canbe available
from other sensor data (e.g., lidar data) and can be used as a structured loss. Output of other
sensors that can provide 2D images (e.g., IR cameras) canbe processed using the same (or
similar) architecture. Accordingly, the camera data feature projection component 214 can provide
a lifted camera “context” combined across the cameras of the AV. Further details regarding

generating the set of pixel points will be described below with reference to FIG. 3.
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[0047] More specifically, the lift transformation can combine depth distributions and the
set of camera features (e.g., feature vectors). As an illustrative example, the lift transformation
can supplement each pixel w, h, described by a feature vector FV (¢),, 5, with depth information
from depth distributions. For example, the lift transformation can compute an outer product of
each feature vector FV (c),, p (of dimensions C X 1) with the corresponding depth distribution
P(d), p (of dimensions D X 1) for the same pixel. The output of the lift transformation can be a
feature that can be represented by, e.g., FV(c) yn ®P(d)y,p, = FT (¢, d)y p, for pixel w, h.

[0048] Feature tensors FT (c, d),, , computed for individual pixels can thenbe used to
obtain a combined feature tensor for the whole image, e.g., by concatenating feature tensors for
different pixels: {FT(C, d) W,h} — CFT(c,d,w, h). The combined feature tensor CFT (¢, d, w, h)
has dimensions C X D X W X H. The combined feature tensor can then undergo a 2D mapping,
More specifically, 2D mapping can produce a projected feature tensor that uses a convenient set
of plane coordinates, e.g., Cartesian coordinates x and y or polar coordinates r and 8 within the
plane of the ground.

[0049] 2D mapping can be a two-part transformation. During the first part, perspective
coordinates d, w, h canbe transformed into 3D Cartesian coordinates d, w, h — x,y, z (or 3D
cylindrical coordinates,w,h — 1, 6,z ), with z being the vertical coordinate (in the direction
perpendicular to the ground). The transformationd,w,h — x, y,z canbe a projective
transformation, parameterized with a focal length of the camera, direction of the optical axis of
the camera, and other similar parameters. In the instances where images are acquired by multiple
cameras (or a camera with a rotating optical axis), the transformationd, w, h = x,y,z can
include multiple projective transformations, e.g., with a separate transformation used for pixels
w, h provided by different cameras.

[0050] During the second part, 2D mapping can project the combined feature tensor
expressed in the new coordinates, CFT (¢, x,y,z), onto a horizontal surface to obtain a projected
(BEV) feature tensor. For example, to obtain the C X W X H projected feature tensor
PCT(c,x,y), the combined feature tensor canbe summed (or averaged) over elements associated
with each vertical pillar of pixels, e.g., PCT (¢, x, y) = %, CFT(c,x,y,2;). In some
implementations, the summation over coordinates z; can be performed with different weights w;
assigned to different coordinates z;: PCT (¢, x, y) = X;w; X CFT(c, x, y,2;), e.g., with larger
weights w; assigned to pixels that image objects within a certain elevations from the ground (e.g,
up to several meters) and lower weights assigned to other elevations (e.g., to eliminate spurious

objects, such as tree branches, electric cables, etc., that do not obstruct motion of vehicles). The
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projected feature tensor can characterize objects and their locations in the BEV in which
perspective distortionshave been reduced (e.g., eliminated).

[0051] A radar data feature network 222 canreceivethe radar data 220 and extract a set of
radar data features from the radar data 220. For example, a radar data feature can be generated for
each radar. Radar data feature network 222 can use any suitable radar backbone(s). Examples of
suitable radar backbones include PointPillars, Range Sparse Net, etc. Each radar modality (e.g.,
intensity, second returns, Doppler shift, radar cross section) can have a different radar backbone
and a feature generation layer. In some implementations, full periods (spins) of lidar/radar
sensors can be used to obtain radar data features. In someimplementations, portions of radar
periods can be used to obtain radar data features. Processing of portions of such periods can
allow EEPM 132 to react faster to new agents (e.g., vehicles, pedestrians, etc.) or sudden
movements of existing agents in some cases and operate at the rate of the fastest sensor.

[0052] The set of radar data features can be provided to a radar data feature transformation
component 224. The radar data feature transformation component 214 can utilize radar data
feature transformation to transform the set of radar data featuresinto a set of radar points. For
example, the set of radar points can be a radar point cloud. Further details regarding generating
the set of radar points will be described below with reference to FIG. 3.

[0053] The set of pixel points generated by the camera data feature projection component
214 and the set of radar points generated by the radar data feature transformation component 224
can be provided to a BEV grid processing component 230. The BEV grid processing component
230 can combine the set of pixel points and the set of radar points to generate a set of BEV grids.
It may be the case that the set of radar data features have a coordinate representation thatis not
computationally efficient for integration into a BEV grid. Thus, in some implementations,
performing the radar data feature transformation can include transforming the coordinate
representation of the set of radar data features to a suitable coordinate representation for
integration into a BEV grid. For example, a computationally efficient representation canbe a
Cartesian coordinate representation. Illustratively, the radar data feature network 222 can process
the radar data 220 in a polar coordinate representation, and transforming the coordinate
representation comprises transforming from the polar coordinate representation to the Cartesian
coordinate representation.

[0054] Using the set of pixel points and the set of radar points to generate the set of BEV
grids can include voxelizing the set of pixel points and the set of radar points to generate one or
more BEV grids. In some implementations, the set of BEV grids includes a plurality of BEV
grids.
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[0055] In some implementations, the set of BEV grids defines a multi-scale BEV space,
where each grid of the set of BEV grids is defined by a respective scale (e.g., resolution and/or
size). The multi-scale BEV space is a shared feature space that can accumulate various available
feature vector modalities. In some instances, a particular set of feature vectors (e.g., lidar features
or roadgraph features) can be unavailable, temporarily or by design. In such instances, the
respective contribution into multi-BEV space can be absent with EEPM 132 processing relying
on other available features (e.g., camera and/or radar data features). The set of BEV grids
defining the multi-BEV space can be recurrent, e.g., some proportion of the features obtained at
time t; can be warped (using a differentiable warp such as a spatial transformer) and aggregated
into new grids attime ¢, obtained together with the new features from time step ¢, e.g., using the
smooth pose delta (i.e., pose change between time t; and time t,). The multi-scale BEV space
can be in a smooth pose consistent frame. The multi-scale BEV space can be spatially consistent
for a period of time used for the aggregation in detection. In some implementations, a process for
clearing distant portions of the grid and shifting values over as the AV moves through the world.
Various priors in the global frame (e.g., elevation tiles, road graph) may undergo an accurate
global-to-smooth transform. Dynamic objects may be represented using a flow field in
combination with an occupancy map to perform additional recurrent aggregation. The multi-scale
BEYV space can be four-dimensional, with three spatial dimensions (e.g., 3D voxel space) and a
time dimension. Each element of multi-scale BEV space can include a voxel, a time associated
with this voxel, and a combined feature vector obtained by combining (e.g., concatenating)
feature vectors output by various feature networks.

[0056] For example, the set of pixel points and the set of radar points can be voxelized to
generate a first BEV grid defined by a first scale, and the set of pixel points and the set of radar
points can be voxelized to generate a second BEV grid defined by a second scale different from
the first scale. The first BEV grid can be a coarse BEV grid havinga higher resolution (e.g.,
smaller voxel size) that can be used to detect objects closer to the AV, and the second BEV grid
can be a fine BEV grid having a lower resolution (e.g., larger voxel size) for that can beused to
detect objects further away from the AV. The sizes and/or resolutions of the BEV grids of the set
of BEV grids can be dependent on the available computational facilities and specific driving
missions, e.g., highway driving can involve grids with larger pixels (than in cases of urban
driving) but extending to longer distances, proportional to the typical speeds involved. For
example, even though fine BEV grids are more accurate than coarse BEV grids, coarse BEV

grids can be used to reduce computational costs.
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[0057] The BEV grid processing component 230 can further extract, for each BEV grid of
the set of BEV grids, a respective set of BEV grid features. For example, the BEV grid
processing component 230 can implement a set of BEV grid feature networks. Each BEV grid
feature network of the set of BEV grid feature networks can extract, from a respective BEV grid
of the set of BEV grids, the respective set of BEV grid features. Each BEV grid feature network
can include any suitable number of layers for processing its respective BEV grid to extract the
respective set of BEV grid features (e.g, layers implementing 3D convolutionsin a ResNet-type
architecture). For example, if the set of BEV grids includes the first BEV grid and the second
BEV grid, then the set of BEV grid feature networks canincludea first BEV grid feature network
for extractinga first set of BEV grid features from the first BEV grid, and a second BEV grid
feature network for extracting a second set of BEV grid features from the second BEV grid. The
BEV grid processing component 230 can then resample each set of BEV grid features to its
respective BEV grid to generate a resampled BEV grid. The BEV grid processing component
230 can then fuse each BEV grid together to generate a fused BEV grid. Further details regarding
the set of BEV grids and the BEV grid processing component 230 will be described below with
reference to FIG. 3.

[0058] The output of BEV grid processing component 230 (e.g., the fused BEV grid) can
then be provided to a set of classifier heads (“heads”) 240. The set of heads 240 can include one
or more heads that each generate a respective output. An output generated by at least one head of
the set of heads 240 can be provided to an object detector 250. The object detector 250 can
include one or more components to generate an object detection prediction based on the output(s)
generated by the set of heads 240. If the set of BEV grids defines a multi-scale BEV space, then
the scale of each BEV grid of the set of BEV grids can be handled in different ways, depending
on a specific implementation. One approach caninclude cutting out, from the coarser scales, the
voxel volume used by finer scales, so that one scale is used for various classification tasks. Such
an approach can deploy special handling of voxels that are located in the vicinity of boundaries
between different scales. Another option is to let each scale detect separately, then perform non-
maximum suppression (NMS) over multiple scales. For example, one or more heads of the set of
heads 240 can be allowed an access to multiple scales, when available. Yet another option can
include enforcing sparsity in feature layers, implementing a threshold on a magnitude, and
performing a sparse aggregation into a global voxel grid. Subsequent tasks can then use this
sparse grid for inferences. Further details regarding the set of heads 240 and the object detector
250 will be described below with reference to FIG. 2B.
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[0059] The EEPM 132 can include one or more additional feature networks (not shown).
For example, the EEPM 132 can include a roadgraph feature network that can process roadgraph
data and output roadgraph features that can include lanes and lane markings, road edges and
medians, traffic lights and stop signs, crosswalks and speed bumps, driveways, parking lots and
curb restrictions, railroad crossings, school zones, and zones inaccessible to traffic. Roadgraph
features can be voxelized into coordinate frames. Roadgraph data can further include an elevation
map. Such prior data can be treated as separate modalities. Such a framework can make it easier
to incorporate new location-based data, such as a heatmap of object occurrences observed in
previous runs. Roadgraph data can be accumulated during previous driving missions for a
particular route. In some instances, where prior data is not available, roadgraph data canbe
limited by available map information 124 for a particular route. As with other modalities,
roadgraph data can be missing, and during training EEPR 132 can be forced to learn to
incorporate road graph data additively rather thanrely on such data.

[0060] FIG. 2B illustrates an architecture of an EEPM 132 including the set of heads 240
and the object detector 250, in accordance with some implementations of the present disclosure.
As shown, the set of heads 240 can include a detection head 242 and a set of additional heads
244,

[0061] The detection head 242 can be used to perform object detection. More specifically,
the detection head 242 can classify boxes of voxels with emphasis on detecting objects.
Examples of objects include agents (e.g., other vehicles), pedestrians, etc. In some
implementations, the detection head 242 can further perform instance aggregation. Various
approaches can be used that aggregate instances both over space and time such that a single
detection or instance is a set of voxels x;, y;, z;, t;. In some implementations, a detection box
approach can beused. More specifically, similar to the PointLens architecture, the detection head
242 can produce parameters for each box densely and then perform non-maximum suppression
(NMS) or weighted aggregation to produce discrete detections. Each voxel can predict an
existence probability, a center offset (dx, dy), abox extent (w, [), and a heading (which can be
sin 8, cos 6). Although the detection box approach may not naturally allow the network to
produce convex hulls, it is possible to use a Star-Poly type approach as an extension to
accomplish this. In some implementations, the detection head 242 can further perform instance
segmentation. In this approach, the network outputs dense per-instance occupancy. Such an
approach can allow for convex hulls or even more general representations of object boundaries,

which can be advantageous for articulated vehicles. For example, the segmentation approach can
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include the following operations: (i) produce a “centerness” output trained using a Gaussian that
is close to the centroid of each object, (i1) produce an object center flow for each voxel within the
object’s bounds (dx, dy), (iii) find peaks in the centerness output using NMS, and (iv) associate
voxels to each center using the center offset output masked using the occupancy map. Additional
attributes can be aggregated using extra semantic heads and the voxel association. In some
implementations, a signed distance field can be used. In this approach, the network can be trained
to output a signed distance field representation. The network canthen find zero crossings of this
field plus containment to identify individual object instances (e.g., using a union-find algorithm).
In some implementations, one or more of the described approaches can be combined.

[0062] Examples of heads of the set of additional heads 244 include a flow head, a
segmentation head, an occupancy head, a semantics head, an occlusion head, a roadgraph head,
etc. The flow head can output any suitable representation of flow (e.g., motion of objects) that
correspondsto various voxels of space (e.g., using motion vectors or the like).

[0063] The occupancy head can determine whether voxels are occupied by an object. More
specifically, the occupancy map gives a probability that a voxel location is inside an obstacle,
e.g., similar to the probability-of-existence. The probability map can be used as a precursor data
product to perform instance segmentation and other semantic inference tasks within the network.
[0064] The semantics head can be used to output the class of an object. For example, the
semantics head can generate intent/semantics signals, including but not limited to such attributes
as human poses, cyclist hand gestures, and the like. Various approaches to semantics tasks can be
used depending on their quality bar. In one approach, a dense voxelized semantic layer can be
deployed that uses the instance mask to look up and aggregate semantic signals. In another
approach, a recurrent neural network can be deployed that uses instance location and extents to
crop relevant features using region of interest (ROI) pooling from individual sensor backbones.
This second approach can be advantageous for quality-critical tasks.

[0065] The occlusion head can output occlusion data related to an occluded object within
the environment. For example, the occlusion data caninclude a probability that an occluded
object exists at a location, a set of attributes of the occluded object (which can be conditioned on
the occluded object being at the location), a probability that the occluded object would be
perceived given the object’s presence, etc. In someimplementations, losses can be weighted
using a probability-of-visibility mask to prevent the network to presciently guess properties about
objects that the network should notbe able to see.

[0066] The roadgraph head can output a reconstructed roadgraph in the vicinity of the

vehicle based on a set of parameters. For example, the set of parameters can include voxel
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occupancy, flow of the motion of detected and classified objects, available map data, etc. The
reconstructed roadgraph can be in a vectorized format (e.g., lanes represented as polylines) or a
heat map format. In some implementations, the reconstructed roadgraph includes an association
of various driving lanes to detected lights indicating whether the traffic is allowed to move in a
particular lane. For example, a set of lights at an intersection can indicate that the rightmost lane
has currently a green light that allows the right turn, two middle lines have red lights forbidding
proceeding through the intersection in the forward direction, and the leftmost lane has a blinking
yellow arrow indicating that the left turn is allowed provided that there is no oncoming traffic.
The reconstructed roadgraph can be used to determine that the side of the street where the vehicle
is located has four lanes and can further determine that the set of lights has four lights. The
reconstructed roadgraph can include identification of the current statuses of each of the set of
streetlights and the associations of each of the streetlights with the respective traffic lanes.
Additionally, the reconstructed roadgraph canincludethe location of stop lines at the
intersection.

[0067] Some of the heads of the set of heads 240 can be independent of additional heads of
the set of heads 240, while some heads of the set of heads 240 can be interdependent of
additional heads of the set of heads. For example, the detection head can be interdependent of at
least the occupancy head, and the occupancy head canbe interdependent of the semantics head.
[0068] In some implementations, the type of the object does not have to be determined and
it can be sufficient to identify an occupancy grid (occupied and unoccupied voxels) and the flow
(motion of the voxels) can be sufficient. For example, in highway drivinguse cases,
identification of the type of an object can be less important than the fact that some object
occupies a particular region of space (as all or most objects on the highways are vehicles). In
urban drivinguse cases, identification of a type of an object can be more important as a much
greater variety of road users can be present (e.g., pedestrians, electric scooters, bicyclists, dogs,
etc.) each with a specific type of motion behavior (e.g., a pedestrian can be moving across a
roadway).

[0069] As further shown, the object detector 250 caninclude a set of prediction
components. Each prediction component of the set of prediction components can generate a
respective prediction, forming a set of predictions. For example, the prediction components can
include a heatmap prediction component 252 and an attribute prediction component 254. The
heatmap prediction component 252 and the attribute prediction component 254 can eachreceive
an output of atleast the detection head 242 and generate heatmap prediction and an attribute

prediction, respectively. Heatmap prediction values can represent the possibilities of an object
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appearing in the BEV grid. Examples of attribute predictions include object velocity predictions,
vehicle lane association predictions (e.g., for telling which lane a vehicle is operating on), etc.
[0070] Each prediction of the set of predictions (e.g., the heatmap prediction and the
attribute prediction) can be combined to obtain a combined prediction, and the combined
prediction can be provided to a bounding box generator 256 to generate a set of candidate
boundingboxes. Each candidate bounding box corresponds to a respective bounding box
prediction for a corresponding object. More specifically, each candidate bounding box of the set
of candidate bounding boxes describesa spatial location prediction of an object thatis detected
from the combined prediction. The set of candidate bounding boxes can include a single
candidate bounding box for the object, or multiple overlapping candidate bounding boxes for the
object.

[0071] The set of bounding box predictions can be provided to a bounding box filter 268 to
select, as a bounding box for the object, an optimal candidate bounding box from the set of
candidate bounding boxes. In some implementations, the bounding box filter 268 utilizes NMS.
Accordingly, the object detector 250 can determine the most likely spatial location of an object
based on a set of BEV grids generated from camera data and radar data.

[0072] FIG. 3 is a diagram 300 illustrating an example method of generating a fused BEV
grid from multi-scale BEV grids, in accordance with some implementations of the present
disclosure. The diagram 300 shows a set of camera data features 310-1 and a set of radar data
features 310-2. The set of camera data features 310-1 can be extracted from camera data and the
set of radar data features 310-2 can be extracted from radar data, as described above with
reference to FIG. 2A.

[0073] At step 315-1, the set of camera data features 310-1 is transformed into a set of pixel
points 320-1 using camera data feature projection. At step 315-2, the set of radar data features
310-2 is transformed into a set of radar points 320-2 using radar data feature transformation. For
example, the set of pixel points 320-1 can be a pixel point cloud, and the set of radar points 320-2
can be a radar point cloud.

[0074] At step 325, the set of pixel points 320-1 and the set of radar points 320-2 are used
to generate a BEV grid 330-1 and a BEV grid 330-2. More specifically, voxelization is
performedto generate the BEV grids 330-1 and 330-2. The BEV grid 330-1 has a different size
and/or resolution than the BEV grid 330-2. More specifically, the BEV grid 330-1 is a coarser
grid and the BEV grid 330-2 is a finer grid.

[0075] At step 335-1, the BEV grid 330-1 is provided to a first BEV grid feature network
of a set of BEV grid feature networks to extract a first set of BEV grid features, and the first set
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of BEV grid features is resampled to the BEV grid 330-1 to generate a resampled BEV grid 340-
1. At step 335-2, the BEV grid 330-2 is provided to a second BEV grid feature network of the set
of BEV grid feature networks to extract a second set of BEV grid features, and the second set of
BEYV grid features is resampled to the BEV grid 330-2 to generate a resampled BEV grid 340-2.
Each BEV grid feature network caninclude any suitable number of layers for processing its
respective BEV grid to extract the respective set of BEV grid features (e.g., layers implementing
3D convolutions in a ResNet—type architecture).

[0076] At step 345, the resampled BEV grids 340-1 and 340-2 are fused together to
generate a fused BEV grid 350. The fused BEV grid 350 can then be provided to a set of heads
(e.g., the set of heads 240 of FIGS. 2A-2B) for further processing (e.g., object detection using
the object detector 250 of FIGS. 2A-2B). Further details regarding the diagram 300 are described
above with reference to FIGS. 2A-2B.

[0077] FIG. 4A is a flow diagram illustrating an example method of implementing camera-
radar data fusion to generate a fused BEV grid for efficient object detection, in accordance with
some implementations of the present disclosure. At least one processing device operatively
coupled to memory can perform method 400 and/or each of their individual functions, routines,
subroutines, or operations. For example, one or more processors can be communicably coupled
to one or more memory devices. Examples of processors include central processing units (CPUs),
graphics processing units (GPUs), tensor processing units (TPUs), application-specific integrated
circuits (ASICs), field-programmable gate arrays (FPGAs), etc. A processing device executing
method 400 can perform instructions issued by various components of the sensing system 110 or
data processing system 120 of FIG. 1, e.g, EEPM 132 In some implementations, method 400
can be directed to systems and components of an autonomous driving vehicle, such as the
autonomous vehicle 100 of FIG. 1. In some implementations, method 400 can be performed by
EEPM 132, or any other similar model, which may be a part of a perception system of an
autonomous vehicle, a vehicle that deploys driver assistance technology, or a part of any other
application platform that uses object detection and classification.

[0078] Method 400 can be used to improve performance of the processing system 120
and/or the autonomous vehicle control system 140. In certain implementations, a single
processing thread can perform method 400. Alternatively, two or more processing threads can
perform method 400, each thread executing one or more individual functions, routines,
subroutines, or operations of method 400. In an illustrative example, the processing threads
implementing method 400 can be synchronized (e.g., using semaphores, critical sections, and/or

other thread synchronization mechanisms). Alternatively, the processing threads implementing
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method 400 can be executed asynchronously with respect to each other. Various operations of
method 400 can be performed in a different order compared with the order shown in FIG. 4A.
Some operations of method 400 canbe performed concurrently with other operations. Some
operations can be optional.

[0079] At operation 410, processing logic obtains input data derived from a set of sensors.
The set of sensors can be associated with an autonomous vehicle (AV). The input data can be
obtained within a driving environment of the AV. For example, the input data can include camera
data derived from at least one camera of the AV, and radar data derived from at least one radar of
the AV. For example, the camera data can be based on real-time images obtained by one or more
cameras of the AV, or by camerasmounted on any other suitable application platform. Cameras
can be optical range cameras and/or IR cameras, including panoramic (surround-view) cameras,
partially panoramic cameras, high-definition (high-resolution) cameras, close-view cameras,
cameras having a fixed field of view (relative to the vehicle), cameras having a dynamic
(adjustable) field of view, cameras having a fixed or adjustable focal distance, camerashavinga
fixed or adjustable numerical aperture, and any other suitable cameras. Optical range cameras can
further include night-vision cameras. Images acquired by cameras can include various metadata
that provides geometric associations between image pixels and spatial locations of objects,
correspondence between pixels of different images, and the like.

[0080] At operation 420, processing logic extracts, from the input data, a plurality of sets of
features. For example, the plurality of sets of features caninclude a set of camera data features
extracted from the camera data and a set of radar features extracted from the radar data.

[0081] At operation 430, processing logic generates a fused BEV grid using the plurality of
sets of features. More specifically, the fused BEV grid can be generated by fusing a plurality of
BEYV grids, where each BEV grid of the plurality of BEV grids is generated from the set plurality
of sets of features. Each BEV grid of the plurality of BEV grids can have a respective scale (e.g.,
size and/or resolution). For example, a first BEV grid can have a coarser resolution than a second
BEYV grid. Further details regarding generating the fused BEV grid are described above with
reference to FIGS. 2A-3 and will now be described below with reference to FIG. 4B.

[0082] FIG. 4B illustrates an example method 430 of generating a fused BEV grid, in
accordance with some implementations of the present disclosure. At least one processing device
operatively coupled to memory can perform method 430 and/or each of their individual
functions, routines, subroutines, or operations. For example, one or more processors can be
communicably coupled to one or more memory devices. Examples of processorsinclude central

processing units (CPUs), graphics processing units (GPUs), tensor processing units (TPUs),
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application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), etc. A
processing device executing method 430 can perform instructionsissued by various components
of the sensing system 110 or data processing system 120 of FIG. 1, e.g., EEPM 132. In some
implementations, method 430 can be directed to systems and components of an autonomous
driving vehicle, such as the autonomous vehicle 100 of FIG. 1. In some implementations,
method 430 can be performed by EEPM 132, or any other similar model, which may be a part of
a perception system of an autonomous vehicle, a vehicle that deploys driver assistance
technology, or a part of any other application platform that uses object detection and
classification.

[0083] Method 430 can be used to improve performance of the processing system 120
and/or the autonomous vehicle control system 140. In certain implementations, a single
processing thread can perform method 430. Alternatively, two or more processing threads can
perform method 430, each thread executing one or more individual functions, routines,
subroutines, or operations of method 430. In an illustrative example, the processing threads
implementing method 430 can be synchronized (e.g., using semaphores, critical sections, and/or
other thread synchronization mechanisms). Alternatively, the processing threads implementing
method 430 can be executed asynchronously with respect to each other. Various operations of
method 430 can be performed in a different order compared with the order shown in FIG. 4B.
Some operations of method 430 canbe performed concurrently with other operations. Some
operations can be optional.

[0084] At operation 432, processing logic transforms each set of features of the plurality of
sets of features into a respective set of points. In some implementations, each set of pointsis a
point cloud. For example, the set of camera data features can be transformed into a set of pixel
points and the set of radar data features can be transformed into a set of radar points.

[0085] For example, transforming the set of camera data features into a set of pixel points
can include utilizing camera data feature projection. The camera data feature projection can
include projecting 2D camera data features to a 3D space. In some implementations, utilizing
camera data feature projection includes performing a lift transformation with respect to the 2D
camera data features (e.g., from 2D backbones, sensor intrinsics and extrinsics (or derived
intrinsics and extrinsics for pseudo-cameras)).

[0086] At operation 434, processing logic generates, using each set of points, a set of BEV
grids. For example, the set of BEV grids can be generated using the set of pixel points and the set
of radar points. More specifically, generating the set of BEV grids can include performing

voxelization using each set of points. The set of BEV grids can include a first BEV grid and a
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second BEV grid. The first BEV grid can have a first scale (e.g,, size and/or resolution) and the
second BEV grid can have a second scale different from the first scale. lllustratively, the first
BEYV grid can be a coarser grid than the second BEV grid.

[0087] It may be the case that the set of radar data features have a coordinate representation
not suitable for integration into a BEV grid. Thus, in some implementations, transforming the set
of radar data features can include transforming the coordinate representation of the set of radar
data features to a suitable coordinate representation for integration into a BEV grid.
Transforming the set of radar features can include transforming from a polar coordinate
representation to a Cartesian coordinate representation.

[0088] At operation 436, processing logic extracts, for each BEV grid of the set of BEV
grids, arespective set of BEV grid features. For example, each BEV grid of the set of BEV grids
can be provided to a respective BEV grid feature network to generate the respective set of BEV
grid features.

[0089] At operation 438, processing logic generates, for each BEV grid using the
respective set of BEV grid features, a resampled BEV grid. At operation 439, processing logic
fuses each resampled BEV grid to generate the fused BEV grid. Further details regarding
operations 432-439 are described above with reference to FIGS. 2A-3.

[0090] Referringback to FIG. 4A, at operation 440, processing logic can provide the fused
BEYV grid for object detection. For example, the fused BEV grid can be provided to an object
detector. Object detection canbe performed to identify at least one object within the driving
environment of the AV. Further details regarding operations 410-440 are described above with
reference to FIGS. 1-3. Further details regarding performing object detection will now be
described below with reference to FIGS. SA-5B.

[0091] FIG. 5A illustrates an example method 500 of implementing a BEV grid generated
using camera-radar data fusion for efficient object detection, in accordance with some
implementations of the present disclosure. Atleast one processing device operatively coupled to
memory can perform method 500 and/or each of their individual functions, routines, subroutines,
or operations. For example, one or more processors canbe communicably coupled to one or
more memory devices. Examples of processors include central processing units (CPUs), graphics
processing units (GPUs), tensor processing units (TPUs), application-specific integrated circuits
(ASICs), field-programmable gate arrays (FPGAs), etc. A processing device executing method
500 can perform instructions issued by various components of the sensing system 110 or data
processing system 120 of FIG. 1, e.g., EEPM 132. In some implementations, method 500 can be

directed to systems and components of an autonomous driving vehicle, such as the autonomous
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vehicle 100 of FIG. 1. In some implementations, method 500 can be performed by EEPM 132, or
any other similar model, which may be a part of a perception system of an autonomous vehicle, a
vehicle that deploys driver assistance technology, or a part of any other application platform that
uses object detection and classification.

[0092] Method 500 can be used to improve performance of the processing system 120
and/or the autonomous vehicle control system 140. In certain implementations, a single
processing thread can perform method 500. Alternatively, two or more processing threads can
perform method 500, each thread executing one or more individual functions, routines,
subroutines, or operations of method 500. In an illustrative example, the processing threads
implementing method 500 can be synchronized (e.g., using semaphores, critical sections, and/or
other thread synchronization mechanisms). Alternatively, the processing threads implementing
method 500 can be executed asynchronously with respect to each other. Various operations of
method 500 can be performed in a different order compared with the order shown in FIG. SA.
Some operations of method 500 canbe performed concurrently with other operations. Some
operations can be optional.

[0093] At operation 510, processing logic obtains a fused BEV grid. For example, the fused
BEV grid can be generated by fusing multiple BEV grids each obtained from sets of features
(e.g., a set of camera features and a set of radar features) in accordance with method 400
described above with reference to FIGS. 4A-4B.

[0094] At operation 520, processing logic performs, using the fused BEV grid, object
detection to identifying at least one object within a driving environment associated with an AV.
Further details regarding performing objection detection are described above with reference to
FIGS. 2A-2B and will now be described below with reference to FIG. SB.

[0095] FIG. 5B illustrates an example method 520 of performing object detection, in
accordance with some implementations of the present disclosure. At least one processing device
operatively coupled to memory can perform method 520 and/or each of their individual
functions, routines, subroutines, or operations. For example, one or more processors can be
communicably coupled to one or more memory devices. Examples of processorsinclude central
processing units (CPUs), graphics processing units (GPUs), tensor processing units (TPUs),
application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), etc. A
processing device executing method 520 can perform instructionsissued by various components
of the sensing system 110 or data processing system 120 of FIG. 1, e.g., EEPM 132. In some
implementations, method 520 canbe directed to systems and components of an autonomous

driving vehicle, such as the autonomous vehicle 100 of FIG. 1. In some implementations,
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method 520 can be performed by EEPM 132, or any other similar model, which may be a part of
a perception system of an autonomous vehicle, a vehicle that deploys driver assistance
technology, or a part of any other application platform that uses object detection and
classification.

[0096] Method 520 can be used to improve performance of the processing system 120
and/or the autonomous vehicle control system 140. In certain implementations, a single
processing thread can perform method 520. Alternatively, two or more processing threads can
perform method 520, each thread executing one or more individual functions, routines,
subroutines, or operations of method 520. In an illustrative example, the processing threads
implementing method 520 can be synchronized (e.g., using semaphores, critical sections, and/or
other thread synchronization mechanisms). Alternatively, the processing threads implementing
method 520 can be executed asynchronously with respect to each other. Various operations of
method 520 can be performed in a different order compared with the order shown in FIG. 5B.
Some operations of method 520 canbe performed concurrently with other operations. Some
operations can be optional.

[0097] At operation 522, processing logic obtains a set of predictions generated using the
fused BEV grid. Each prediction of the set of predictions can be generated based on an output
generated by a set of heads. For example, the set of heads can include a detection head and a set
of other heads. Examples of heads that can beincluded in the set of other heads include a flow
head, a segmentation head, an occupancy head, a semantics head, an occlusion head, a roadgraph
head, etc. In some implementations, the set of predictions includes a heatmap prediction and an
attribute prediction. The heatmap prediction and the attribute prediction can be generated from an
output of at least the detection head.

[0098] At operation 524, processing logic generates, from the set of predictions, a set of
candidate bounding boxes. Generating the set of candidate boundingboxes caninclude
combining each prediction of the set of predictions to obtain a combined prediction, and
generating the set of candidate bounding boxesusing the combined prediction. Each candidate
boundingbox corresponds to a respective bounding box prediction for a corresponding object.
More specifically, each candidate bounding box of the set of candidate bounding boxes describes
a spatial location prediction of an object that is detected from the combined prediction. The set of
candidate bounding boxes caninclude a single candidate bounding box for the object, or multiple
overlapping candidate bounding boxes for the object.

[0099] At operation 526, processing logic selects a bounding box from the set of candidate

boundingboxes. For example, the bounding box canbe an optimal bounding box for the object.
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More specifically, the bounding box can correspond to a most likely spatial location of the
object. Selecting the bounding box from the set of candidate bounding boxes caninclude
applying a filter to the set of candidate boundingboxes. In some implementations, applying the
filter to the set of candidate bounding boxes includes applying NMS. Further details regarding
operations 522-526 are described above with reference to FIG. 2B.

[00100] Referring back to FIG. 5A, at operation 530, processing logic can cause a driving
path of the AV to be modified in view of the at least one object. Further details regarding
operations 510-530 are described above with reference to FIGS. 1-3.

[00101] FIG. 6 depicts a block diagram of an example computer device 600 capable of
implementing camera-radar data fusion to generate a fused BEV grid for efficient object
detection, in accordance with some implementations of the present disclosure. Example computer
device 600 can be connected to other computer devices in a LAN, an intranet, an extranet, and/or
the Internet. Computer device 600 can operate in the capacity of a server in a client-server
network environment. Computer device 600 can be a personal computer (PC), a set-top box
(STB), a server, a network router, switch or bridge, or any device capable of executing a set of
instructions (sequential or otherwise) that specify actions to be taken by that device. Further,
while only a single example computer device is illustrated, the term “computer” shall also be
taken to include any collection of computers that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the methods discussed herein.

[00102] Example computer device 600 can include a processing device 602 (also referred to
as a processor or CPU), a main memory 604 (e.g., read-only memory (ROM), flash memory,
dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), a static
memory 606 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary
memory (e.g., a data storage device 618), which can communicate with each other via a bus 630.
[00103] Processing device 602 (which can include processing logic 603) represents one or
more general-purpose processing devices such as a microprocessor, central processing unit, or
the like. More particularly, processing device 602 can be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets. Processing device 602 can also be
one or more special-purpose processing devices such as an application specific integrated circuit
(ASIC), afield programmable gate array (FPGA), a digital signal processor (DSP), network

processor, or the like. In accordance with one or more aspects of the present disclosure,
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processing device 602 can be configured to execute instructions performing method 400 and/or
method 430 of FIGS. 4A-4B, and/or method 500 and/or method 520 of FIGS. 5A-5B.

[00104] Example computer device 600 can further comprise a network interface device 608,
which can be communicatively coupled to a network 620. Example computer device 600 can
further comprise a video display 610 (e.g., a liquid crystal display (LCD), a touch screen, ora
cathode ray tube (CRT)), an alphanumeric input device 612 (e.g., a keyboard), a cursor control
device 614 (e.g., a mouse), and an acoustic signal generation device 616 (e.g., a speaker).
[00105] Data storage device 618 can include a computer-readable storage medium (or, more
specifically, a non-transitory computer-readable storage medium) 628 on which is stored one or
more sets of executable instructions 622. In accordance with one or more aspects of the present
disclosure, executable instructions 622 can comprise executable instructions performing method
400 and/or method 430 of FIGS. 4A-4B, and/or method 500 and/or method 520 of FIGS. SA-
SB.

[00106] Executable instructions 622 can also reside, completely or at least partially, within
main memory 604 and/or within processing device 602 during execution thereof by example
computer device 600, main memory 604 and processing device 602 also constituting computer-
readable storage media. Executableinstructions 622 can further be transmitted or received over a
network via network interface device 608.

[00107] While the computer-readable storage medium 628 is shown in FIG. 6 as a single
medium, the term “computer-readable storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of operating instructions. The term “computer-
readable storage medium” shall also be taken to include any medium that is capable of storing or
encoding a set of instructions for execution by the machine that cause the machine to perform
any one or more of the methods described herein. The term “computer-readable storage medium”
shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and
magnetic media.

[00108] Some portions of the detailed descriptions above are presented in terms of
algorithms and symbolic representations of operations on data bits within a computer memory .
These algorithmic descriptions and representations are the means used by those skilled in the data
processing arts to most effectively convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical manipulations of physical quantities.

Usually, though not necessarily, these quantities take the form of electrical or magnetic signals
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capable of being stored, transferred, combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers, or the like.

[00109] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as apparent from the following discussion,

it is appreciated that throughout the description, discussions utilizing terms such as “obtaining,”
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“generating,” “providing,” “causing,” “transforming,” “fusing,” “selecting,” “performing,” or the
like, refer to the action and processes of a computer system, or similar electronic computing
device, that manipulates and transforms data represented as physical (electronic) quantities
within the computer system's registers and memories into other data similarly represented as
physical quantities within the computer sy stem memories or registers or other such information
storage, transmission or display devices.

[00110] Examples of the present disclosure also relate to an apparatus for performing the
methods described herein. This apparatus canbe specially constructed for the required purposes,
orit can be a general purpose computer system selectively programmed by a computer program
stored in the computer system. Such a computer program canbe stored in a computer readable
storage medium, such as, but not limited to, any type of disk including optical disks, CD-ROMs,
and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic disk storage media, optical storage media, flash memory
devices, other type of machine-accessible storage media, or any type of media suitable for storing
electronic instructions, each coupled to a computer system bus.

[00111] The methods and displays presented herein are not inherently related to any
particular computer or other apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or it may prove convenient to construct a more
specialized apparatus to perform the required method steps. The required structure for a variety
of these systems will appear as set forth in the description below. In addition, the scope of the
present disclosure is not limited to any particular programming language. It will be appreciated
that a variety of programming languages can be used to implement the teachings of the present
disclosure.

[00112] It is to be understood that the above description is intended to be illustrative, and not
restrictive. Many other implementation examples will be apparent to those of skill in the art upon
reading and understanding the above description. Although the present disclosure describes

specific examples, it will be recognized that the systems and methods of the present disclosure
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are not limited to the examples described herein, but can be practiced with modifications within
the scope of the appended claims. Accordingly, the specification and drawings are to be regarded
in an illustrative sense rather than a restrictive sense. The scope of the present disclosure should,
therefore, be determined with reference to the appended claims, along with the full scope of

equivalents to which such claims are entitled.
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CLAIMS
WHAT IS CLAIMED IS:

1. A method comprising:

obtaining, by a processing device, input dataderived from a set of sensors associated
with an autonomous vehicle (AV);,

extracting, by the processing device fromthe input data, a plurality of sets of features;

generating, by the processing device using the plurality of sets of features, a fused
bird’s-eye view (BEV) grid, wherein the fused BEV grid is generated based on a first BEV grid
havinga first scale and a second BEV grid having a second scale different from the first scale;
and

providing, by the processing device, the fused BEV grid for object detection.

2. The method of claim 1, wherein:

the set of sensors comprises at least one camera and at least one radar;

the input data comprises a set of camera data obtained from the at least one camera and
a set of radar data obtained from the atleast one radar; and

the plurality of sets of features comprisesa set of camera data features generated from

the set of camera data and a set of radar data features generated from the set of radar data.

3. The method of claim 1, wherein generating the fused BEV grid further comprises:

associating each set of features of the plurality of sets of features with a respective set
of points;

generating, using each set of points, a set of BEV grids, the set of BEV grids
comprising the first BEV grid and the second BEV grid;

extracting, for each BEV grid of the set of BEV grids, a respective set of BEV grid
features;

generating, for each BEV grid of the set of BEV grids using the respective set of BEV
grid features, a resampled BEV grid, wherein the first BEV grid is associated with a first
resampled BEV grid and wherein the second BEV grid is associated with a second resampled
BEV grid; and

fusing each resampled BEV grid to generate the fused BEV grid.
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4. The method of claim 3, wherein associating each set of features of the plurality of sets
of features with a respective set of points further comprises:

transforming a set of camera features of the plurality of sets of features into a set of
pixel points; and

transforming a set of radar features of the plurality of sets of features into a set of radar
points, including transforming from a polar coordinate representation to a Cartesian coordinate

representation.

5. The method of claim 1, further comprising performing, by the processing device using
the fused BEV grid, the object detection to identify at least one object using a set of neural
networks.

6. The method of claim 5, wherein performing object detection further comprises:

obtaining a set of predictions generated using the fused BEV grid, wherein the set of
predictions comprises a heatmap prediction and an attribute prediction;

generating, from the set of predictions, a set of candidate bounding boxes, each
candidate bounding box of the set of candidate bounding boxes corresponding to the at least
one object; and

selecting, from the set of candidate bounding boxes, at least one bounding box

corresponding to the at least one object.

7. The method of claim 5, further comprising causing, by the processing device, a driving

path of the AV to be modified in view of the at least one object.

8. A system comprising;
amemory; and
a processing device communicative coupled to the memory, the processing device
configured to:
obtain input data derived from a set of sensors associated with an autonomous
vehicle (AV);
extract, from the input data, a plurality of sets of features;
generate, using the plurality of sets of features, a fused bird’s-eye view (BEV)
grid, wherein the fused BEV grid is generated based on a first BEV grid havinga first

scale and a second BEV grid having a second scale different from the first scale; and
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provide the fused BEV grid for object detection.

9. The system of claim 8, wherein:

the set of sensors comprises at least one camera and at least one radar;
the input data comprises a set of camera data obtained from the at least one camera and a set of
radar data obtained from the at least one radar; and

the plurality of sets of features comprises a set of camera data features generated from

the set of camera data and a set of radar data features generated from the set of radar data.

10.  The system of claim 8, wherein, to generate the fused BEV grid, the processing device
is further configuredto:

associate each set of features of the plurality of sets of features with a respective set of
points;

generate, using each set of points, a set of BEV grids, the set of BEV grids comprising
the first BEV grid and the second BEV grid;

extract, for each BEV grid of the set of BEV grids, a respective set of BEV grid
features;

generate, for each BEV grid of the set of BEV grids using the respective set of BEV
grid features, a resampled BEV grid, wherein the first BEV grid is associated with a first
resampled BEV grid and wherein the second BEV grid is associated with a second resampled
BEV grid; and

fuse each resampled BEV grid to generate the fused BEV grid.

11.  Thesystem of claim 10, wherein, to associate each set of features of the plurality of sets
of features with a respective set of points, the processing device is further configured to:
transform a set of camera features of the plurality of sets of featuresinto a set of pixel
points; and
transform a set of radar features of the plurality of sets of features into a set of radar
points by transforming from a polar coordinate representation to a Cartesian coordinate

representation.
12.  The system of claim 8, wherein the processing device is further configured to perform,
using the fused BEV grid, the object detection to identify at least one object using a set of

neural networks.
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13.  The system of claim 12, wherein, to perform object detection, the processing device is
further configured to:

obtain a set of predictions generated using the fused BEV grid, wherein the set of
predictions comprises a heatmap prediction and an attribute prediction;

generate, from the set of predictions, a set of candidate bounding boxes, each candidate
bounding box of the set of candidate bounding boxes corresponding to the at least one object;
and

select, from the set of candidate boundingboxes, atleast one bounding box

corresponding to the at least one object.

14.  The system of claim 12, wherein the processing deviceis further configured to cause a

driving path of the AV to be modified in view of the at least one object.

15. A non-transitory computer-readable storage medium having instructions stored
thereon that, when executed by a processing device, cause the processing device to perform
operations comprising:

obtaining input data derived from a set of sensors associated with an autonomous
vehicle (AV), wherein the set of sensors comprises at least one camera and at least one radar,
and wherein the input data comprises a set of camera data obtained from the atleast one camera
and a set of radar data obtained from the at least one radar;

extracting, from the input data, a plurality of sets of features, wherein the plurality of
sets of features comprises a set of camera data features generated from the set of camera data
and a set of radar data features generated from the set of radar data;

generating, using the plurality of sets of features, a fused bird’s-eye view (BEV) grid,
wherein the fused BEV grid is generated based on a first BEV grid havinga first scale and a
second BEV grid having a second scale different from the first scale; and

providing the fused BEV grid for object detection.

16.  The non-transitory computer-readable storage medium of claim 15, wherein
generating the fused BEV grid further comprises:

associating each set of features of the plurality of sets of features with a respective set
of points;

generating, using each set of points, a set of BEV grids, the set of BEV grids
comprising the first BEV grid and the second BEV grid,;
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extracting, for each BEV grid of the set of BEV grids, a respective set of BEV grid
features;

generating, for each BEV grid of the set of BEV grids using the respective set of BEV
grid features, a resampled BEV grid, wherein the first BEV grid is associated with a first
resampled BEV grid and wherein the second BEV grid is associated with a second resampled
BEV grid; and

fusing each resampled BEV grid to generate the fused BEV grid.

17.  The non-transitory computer-readable storage medium of claim 16, wherein
associating each set of features of the plurality of sets of features with a respective set of
points further comprises:

transforming the set of camera featuresinto a set of pixel points; and

transforming the set of radar features into a set of radar points, including transforming

from a polar coordinate representation to a Cartesian coordinate representation.

18.  The non-transitory computer-readable storage medium of claim 16, wherein the
operations further comprise performing, using the fused BEV grid, the object detection to

identify at least one object using a set of neural networks.

19.  The non-transitory computer-readable storage medium of claim 18, wherein
performing object detection further comprises:

obtaining a set of predictions generated using the fused BEV grid, wherein the set of
predictions comprises a heatmap prediction and an attribute prediction;

generating, from the set of predictions, a set of candidate bounding boxes, each
candidate bounding box of the set of candidate bounding boxes corresponding to the at least
one object; and

selecting, from the set of candidate bounding boxes, at least one bounding box

corresponding to the at least one object.
20.  The non-transitory computer-readable storage medium of claim 18, wherein the

operations further comprise causing a driving path of the AV to be modified in view of the at

least one object.
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