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(57) Abstract: The described aspects and implementations enable efficient detection and classification of objects with machine learning
models that deploy a bird's-eye view representation and are trained using depth ground truth data. In one implementation, disclosed are
system and techniques that include obtaining images, generating, using a first neural network (NN), feature vectors (FVs) and depth
distributions pixels of images, wherein the first NN is trained using training images and a depth ground truth data for the training
images. The techniques further include obtaining a feature tensor (FT) in view of the FVs and the depth distributions, and processing
the obtained FTs, using a second NN, to identify one or more objects depicted in the images.
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OBJECT IDENTIFICATION IN BIRD’S-EYE VIEW REFERENCE FRAME WITH
EXPLICIT DEPTH ESTIMATION CO-TRAINING

TECHNICAL FIELD

[0001] The instant specification generally relates to systems and applications that detect
and classify objects and, in particular, to autonomous vehicles and vehicles deploying driver
assistance technology. More specifically, the instant specification relates to processing of
perspective camera images using machine learning techniques for faster and more resource-
efficient detection and classification of objects, including but not limited to vehicles, pedestrians,

bicyclists, animals, and the like.

BACKGROUND

[0002] An autonomous (fully or partially self-driving) vehicle (AV) operates by sensing an
outside environment with various electromagnetic (e.g., radar and optical) and non-
electromagnetic (e.g., audio and humidity) sensors. Some autonomous vehicles chart a driving
path through the environment based on the sensed data. The driving path can be determined
based on Global Navigation Satellite System (GNSS) data and road map data. While the GNSS
and the road map data can provide information about static aspects of the environment
(buildings, street layouts, road closures, etc.), dynamic information (such as information about
other vehicles, pedestrians, street lights, etc.) is obtained from contemporaneously collected
sensing data. Precision and safety of the driving path and of the speed regime selected by the
autonomous vehicle depend on timely and accurate identification of various objects present in the
driving environment and on the ability of a driving algorithm to process the information about

the environment and to provide correct instructions to the vehicle controls and the drivetrain.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure is illustrated by way of examples, and not by way of
limitation, and can be more fully understood with references to the following detailed description
when considered in connection with the figures, in which:

[0004] FIG. 1 is a diagram illustrating components of an example autonomous vehicle
(AV) deploying a model that uses bird’s-eye view and is trained using depth ground truth data for
efficient detection and classification of objects, in accordance with some implementations of the

present disclosure.
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[0005] FIG. 2 is a diagram illustrating example architecture of a part of a perception
system that is capable of efficient detection and classification of objects, in accordance with
some implementations of the present disclosure.

[0006] FIG. 3A is a schematic diagram illustrating example operations of a model that uses
bird’s-eye view and is trained using depth ground truth data for efficient detection and
classification of objects, in accordance with some implementations of the present disclosure.
[0007] FIG. 3B is a schematic illustration of one implementation of a model that uses
bird’s-eye view and is trained using depth ground truth data for efficient detection and
classification of objects.

[0008] FIG. 3C illustrates a model in which a depth-estimation network is pre-trained
using depth ground truth data, in accordance with some implementations of the present
disclosure.

[0009] FIG. 4A is a schematic diagram illustrating a distillation framework for training of
a bird’s-eye view model using depth ground truth data, in accordance with some implementations
of the present disclosure.

[0010] FIG. 4B is a schematic diagram illustrating another implementation of a distillation
framework for training of a bird’s-eye view model using depth ground truth data, in accordance
with some implementations of the present disclosure.

[0011] FIG. 5 is a schematic diagram illustrating operations of a bird’s-eye view model
that provides instance segmentation and semantic segmentation, in accordance with some
implementations of the present disclosure.

[0012] FIG. 6 is a schematic diagram illustrating operations of a bird’s-eye view model
that uses temporal aggregation, in accordance with some implementations of the present
disclosure.

[0013] FIG. 7 illustrates an example method of deploying a model that uses a bird’s-eye
view representation and is trained using depth ground truth data for efficient detection and
classification of objects, in accordance with some implementations of the present disclosure.
[0014] FIG. 8 illustrates an example method of using depth ground truth data for training a
model that deploys a bird’s-eye view representation, for efficient detection and classification of
objects, in accordance with some implementations of the present disclosure.

[0015] FIG. 9 depicts a block diagram of an example computer device capable of operating
and/or training a model that uses bird’s-eye view and is trained using depth ground truth data for
efficient detection and classification of objects, in accordance with some implementations of the

present disclosure.
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SUMMARY

[0016] In one implementation, disclosed is a method that includes obtaining one or more
perspective cameraimages of an environment and generating, using a first neural network (NN),
for each pixel of a set of pixels of the one or more perspective camera images, a feature vector
(FV), and a depth distribution for a portion of the environment imaged by a corresponding pixel.
The first NN is trained using a plurality of training images and a depth ground truth data for the
plurality of trainingimages. The method further includes obtaining, for each pixel of the set of
pixels, a feature tensor (FT) in view of (i) the FV for a respective pixel and (ii) the depth
distribution for the respective pixel. The method further includes processing the obtained FTs,
using a second NN, to identify one or more objects in the environment.

[0017] In another implementation, disclosed is a method of training a student model, the
method includes obtaining a training image and processing, using a first NN of the student
model, the training image to generate a plurality of FVs, and a plurality of depth distributions.
Each FV of the plurality of FVs and each depth distribution of the plurality of depth distributions
are associated with a respective pixel of a plurality of pixels of the training image. The method
further includes obtaining a plurality of ground truth FVs generated by a first NN of a teacher
model, each ground truth FV of the plurality of ground truth FVs being associated with a
respective pixel of the plurality of pixels of the training image. The method further includes
obtaining a plurality of ground truth depth indicators, each ground truth depth indicator of the
plurality of ground truth depth indicators being associated with a respective pixel of at least a
subset of the plurality of pixels of the training image. The method further includes adjusting
parameters of the first NN of the student model. The adjustment is based on a comparison of the
plurality of FVs with the plurality of ground truth FVs, and further based on a comparison of the
plurality of depth distributions with the plurality of ground truth depth indicators.

[0018] In another implementation, disclosed is a system that includes a memory and a
processing device. The processing device is configured to obtain one or more perspective camera
images of an environment and generate, using a first NN, for each pixel of a set of pixels of the
one or more perspective camera images, a FV, and a depth distribution for a portion of the
environment imaged by a corresponding pixel. The first NN is trained using a plurality of
trainingimages and a depth ground truth data for the plurality of trainingimages. The processing
device is further configured to obtain, for each pixel of the set of pixels, a FT in view of (i) the
FV fora respective pixel and (i) the depth distribution for the respective pixel. The processing
device is further configured to process the obtained FTs, using a second NN, to identify one or

more objects in the environment.
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DETAILED DESCRIPTION

[0019] Although various implementations can be described below, for the sake of
illustration, using autonomous driving systems and driver assistance systems as examples, it
should be understood that the techniques and systems described herein can be used for tracking
of objects in a wide range of applications, including aeronautics, marine applications, traffic
control, animal control, industrial and academic research, public and personal safety, or in any
other application where automated detection of objects is advantageous.

[0020] In one example, for the safety of autonomousdriving operations, it can be desirable
to develop and deploy techniques of fast and accurate detection, classification, and tracking of
various road users and other objects encountered on or near roadways, such as road obstacles,
construction equipment, roadside structures, and the like. An autonomous vehicle (as well as
various driver assistance systems) can take advantage of a number of sensors to facilitate
detection of objects in a driving environment and determine the motion of such objects. The
sensors typically includeradio detection and ranging sensors (radars), light detection and ranging
sensors (lidars), digital cameras of multiple types, sonars, positional sensors, and the like.
Different types of sensors provide different and often complementary benefits. For example,
radars and lidars emit electromagnetic signals (radio signals or optical signals) that reflect from
the objects and carry information allowing to determine distances to the objects (e.g., from the
time of flight of the signals) and velocities of the objects (e.g., from the Doppler shift of the
frequencies of the signals). Radars and lidars can cover an entire 360-degree view, e.g., by using
a scanning transmitter of sensing beams. Sensing beams can cause numerous reflections covering
the driving environment in a dense grid of return points. Each return point can be associated with
the distance to the corresponding reflecting object and a radial velocity (a component of the
velocity along the line of sight) of the reflecting object.

[0021] Existing systems and methods of object identification and tracking use various
sensing modalities, e.g., lidars, radars, cameras, etc., to obtain images of the environment. The
images can then be processed by trained machine learning models to identify locations of various
objects in the images (e.g., in the form of bounding boxes), state of motion of the objects (e.g.,
speed, as detected by lidar or radar Doppler effect-based sensors), type of the object (e.g., a
vehicle or pedestrian), and so on. Motion of objects (or any other evolution, such as splitting of a
single object into multiple objects) can be performed by creating and maintaining tracks
associated with a particular object.

[0022] Using multiple sensing modalities (e.g., lidars, radars, cameras, etc.) to obtain often

complementary data improves precision of object detection, identification, and tracking but
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comes at a substantial cost in sensing hardware and processing software. For example, a lidar
sensor can provide valuable information about distances to various reflecting surfaces in the
outside environment. A lidar sensor, however, is an expensive optical and electronic device that
operates by actively probing the outside environment with optical signals and requires
considerable maintenance and periodic calibration. Lidar returns (the point cloud) have to be
processed, segmented into groups associated with separate hypothesized objects, and matched
with objects detected using other sensing modalities (e.g., cameras), which requires additional
processing and memory resources. Cameras, on the other hand, operate by passively collecting
light (and/or infrared electromagnetic waves) emitted (or reflected) by objects of the environment
and are significantly simpler and cheaper in design, installation, and operations. Consequently,
various driver assistance systems that do not deploy lidars (for costs and maintenance reasons)
are typically equipped with one or more cameras. Cameras can also be more easily installed at
various stationary locations and used for traffic monitoring and control, public and private safety
applications, and the like. Being based on optical or infrared imaging technology, cameras have
certain advantages over radars, which, while allowing detection of distances to (and velocities of)
objects, operate in a range of wavelengths that has intrinsically lower resolution compared with
cameras. An ability to detect and identify objects based on camera-only images is, therefore,
beneficial.

[0023] Cameras, however, produce projections of a three-dimensional (3D) outside
environment onto a two-dimensional imaging surface (e.g,, an array of camera’s light detectors),
which may be a plane or a curved surface. This gives rise to two related challenges. On one hand,
distances to objects (often referred to depths of the objects in the image) are not immediately
known (though can often be determined from the context of the imaged objects). On the other
hand, camera images have perspective distortions causing the same number of pixels separating
images of objects to correspond to different distances between objects depending on the depths of
the objects. Additionally, objects whose depictions are proximate to each other can nonetheless
be separated by a significant distance (e.g., a car and a pedestrian visible behind the car). The
existing machine learning techniques of object detection sometimes attempt to map objects from
the perspective view to the top-down view, also known as the bird’s-eye view (BEV), in which
objects are represented on a convenient manifold, e.g., a plane viewed from above and
characterized by a simple set of Cartesian coordinates. Object identification and tracking can
subsequently be performed directly within the BEV representation. Success of such techniques
depends on accurate mapping of the objects to BEV. This, in turn, requires precise estimates of

distances to various objects since misplacing of the objects within the BEV can result not only in
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an error in ascertaining a distance to a road user but may also lead to a loss of important
contextual information.

[0024] Aspects and implementations of the present disclosure address these and other
challenges of the existing technology by enabling methods and systems that use depth-informed
training of machine learning object detection, classification, and tracking models. In particular,
the disclosed techniques include a system of neural networks (NNs) trained to process
perspective cameraimages. A first NN can be configured to associate context with various pixels
(e.g., in the form of a feature vector) and further estimate a probability for the pixels to have a
number of discretized depth values. As described in more detail below, the first neural network
can be trained using training camera images annotated with ground truth that includes depth data
for at least some pixels of the images. The depth data can be obtained by a suitable sensor
capable of detecting distances to objects, e.g., a lidar, radar, sonar, or any other distance-aware
sensor. During inference, the trained first NN can process a new set of perspective camera
images and can estimate the depth to various pixels, e.g., as probability P(d) that a given pixel
depicts an object (or a part of an object) that is located at a distance d from the camera. The
distance distribution can be combined with the feature vector FV (c) (where ¢ is a context space
index) of the pixel to obtain a feature tensor FT (¢, d) that characterizes both the likely locations
(depths or distances d to the object) and the object’s context. Feature tensors for various pixels
with coordinates w, h within the image can be used to obtain a combined feature tensor
{FT(c, d)W,h} — CFT(c,d,w, h) for the whole image. A mapping transformation d,w,h —
x,y, z from perspective coordinates, w, h,d (width, height, depth) to a set of Cartesian
coordinates x, y, z may then be performed. Subsequently, the combined feature tensor in the new
coordinates, CFT (c, x, y,z), can be projected onto a horizontal surface, e.g., by averaging or
summing elements of the combined feature tensor along a vertical pillar of pixels, to obtain a
BEV projected context tensor, PCT (¢, x,y) = 2;CFT (¢, x,v,z;). The projected context tensor
PCT(c,x,y) can then be processed by a second trained NN that identifies objects, extracts
semantic information (e.g., a type of the objects), precise localization of the objects, and the like.
[0025] Numerous variations of these techniques are described herein. In some
implementations, the first NN can include a first subnetwork trained to output depth distributions
P(d) and a separate second NN trained to output feature vectors FV (c). In some
implementations, the first NN and the second NN can be trained concurrently. In such
implementations, the first NN and the second NN are subnetworks of an end-to-end model

architecture that is trained jointly. In some implementations, the first NN can be trained first
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using both the training images and the depth ground truth with the second NN trained next, using
the trainingimages but not the depth ground truth. Any number of images taken at the same time
(or at approximately the same time) can be processed concurrently, e.g, multiple images taken
by a surround-view camera (SVC) taken during a single cycle of the camera. In some

implementations, images taken at different times can be processed concurrently. For example,

images taken at a specific time t; can be used to generate a respective BEV context tensor

PCT(c, x, y; tj). Multiple BEV context tensors can thenbe processed at once by the second NN.
Multiple depictions of the same objects at the same or different locations at multiple times can
increase the likelihood of a correct segmentation and identification of objects in the images. In
some implementations, the second NN can have a common backbone and multiple classification
heads. For example, oneclassification head can trained to output semantic segmentation of the
inputimages. A second classification head canbe trained to output geometric centers of various
objects. A third classification head can be trained to output distances of various pixels in the
BEYV representation to the geometric centers of the objects. The combined output of the
classification heads can be used to provide identification of the boundaries of the objects together
with classifications (types, classes) of the objects. In some implementations, training of the first
NN and/or second NN can be performed using a teacher-student distillation framework. More
specifically, an output of a teacher model, trained using data obtained using multiple sensing
modalities (cameras, lidars, radars, sonars, and the like) can be used as a ground truth to train the
NNs of a student model. The student model can be a distillation of the teacher model, e.g., a
model having a reduced number of neuron layers and/or neurons within specific layers. As a
result, the student model can maintain a substantial functionality of the teacher model while
being more readily deployable on-board a vehicle having less potent processing and memory
resources.

[0026] Described implementations depart from the conventional object detection and
classification paradigm in supplementing BEV segmentation techniques with efficient co-training
of the models using depth ground truth data. Advantages of the described implementations
include (but are not limited to) fast and accurate detection, identification, and tracking of objects
in a way that avoids large computational overheads of processing of data of multiple sensing
modalities. Since the machine learning models trained and deployed as disclosed herein are
capable of efficient object detection based on camera images, the models can be deployed on a
variety of platforms (e.g., autonomous vehicles and vehicles equipped with driver-assisted

technology) including systems with modest computational resources.
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[0027] FIG. 1 is a diagram illustrating components of an example autonomous vehicle
(AV) 100 deploying a model that uses bird’s-eye view and is trained using depth ground truth
data for efficient detection and classification of objects, in accordance with some
implementations of the present disclosure. Autonomous vehicles can include motor vehicles
(cars, trucks, buses, motorcycles, all-terrain vehicles, recreational vehicles, any specialized
farming or construction vehicles, and the like), aircraft (planes, helicopters, drones, and the like),
naval vehicles (ships, boats, yachts, submarines, and the like), spacecraft (controllable objects
operating outside Earth atmosphere) or any other self-propelled vehicles (e.g., robots, factory or
warehouse robotic vehicles, sidewalk delivery robotic vehicles, etc.) capable of being operated in
a self-driving mode (without a human input or with a reduced human input).

[0028] Vehicles, such as those described herein, may be configured to operate in one or
more different driving modes. For instance, in a manual driving mode, a driver may directly
control acceleration, deceleration, and steering via inputs such as an accelerator pedal, a brake
pedal, a steering wheel, etc. A vehicle may also operate in one or more autonomous driving
modes including, for example, a semi or partially autonomous driving mode in which a person
exercises some amount of direct or remote control over driving operations, or a fully autonomous
driving mode in which the vehicle handles the driving operations without direct or remote control
by a person. These vehicles may be known by different names including, for example,
autonomously driven vehicles, self-driving vehicles, and so on.

[0029] As described herein, in a semi-autonomous or partially autonomous driving mode,
even though the vehicle assists with one or more driving operations (e.g., steering, braking and/or
accelerating to perform lane centering, adaptive cruise control, advanced driver assistance
systems (ADAS), or emergency braking), the human driver is expected to be situationally aware
of the vehicle’s surroundings and supervise the assisted driving operations. Here, even though the
vehicle may perform all driving tasks in certain situations, the human driver is expected to be
responsible for taking control as needed.

[0030] Although, for brevity and conciseness, various systems and methods may be
described below in conjunction with autonomous vehicles, similar techniques can be used in
various driver assistance systems that do not rise to the level of fully autonomous driving
systems. In the United States, the Society of Automotive Engineers (SAE) have defined different
levels of automated driving operations to indicate how much, or how little, a vehicle controls the
driving, although different organizations, in the United States or in other countries, may
categorize the levels differently. More specifically, disclosed systems and methods canbe used in

SAE Level 2 driver assistance systems that implement steering, braking, acceleration, lane



WO 2024/035658 PCT/US2023/029667

centering, adaptive cruise control, etc., as well as other driver support. The disclosed systems and
methods can be used in SAE Level 3 driving assistance systems capable of autonomous driving
under limited (e.g., highway) conditions. Likewise, the disclosed systems and methods can be
used in vehicles that use SAE Level 4 self-driving systems that operate autonomously under most
regular driving situations and require only occasional attention of the human operator. In all such
driving assistance systems, accurate lane estimation can be performed automatically without a
driver input or control (e.g., while the vehicle is in motion) and result in improved reliability of
vehicle positioning and navigation and the overall safety of autonomous, semi-autonomous, and
other driver assistance systems. As previously noted, in addition to the way in which SAE
categorizes levels of automated driving operations, other organizations, in the United States or in
other countries, may categorize levels of automated driving operations differently. Without
limitation, the disclosed systems and methods herein can be used in driving assistance systems
defined by these other organizations’ levels of automated driving operations.

[0031] A drivingenvironment 101 caninclude any objects (animate or inanimate) located
outside the AV, such as roadways, buildings, trees, bushes, sidewalks, bridges, mountains, other
vehicles, pedestrians, piers, banks, landing strips, animals, birds, and so on. The driving
environment 101 can be urban, suburban, rural, and so on. In some implementations, the driving
environment 101 can be an off-road environment (e.g farming or other agricultural land). In
some implementations, the driving environment can be an indoor environment, e.g., the
environment of an industrial plant, a shipping warehouse, a hazardous area of a building, and so
on. In some implementations, the driving environment 101 can be substantially flat, with various
objects moving parallel to a surface (e.g., parallel to the surface of Earth). In other
implementations, the driving environment can be three-dimensional and can include objects that
are capable of moving along all three directions (e.g, balloons, falling leaves, etc.). Hereinafter,
the term “driving environment” should be understood to include all environments in which an
autonomous motion (e.g., SAE Level 5 and SAE Level 4 systems), conditional autonomous
motion (e.g., SAE Level 3 systems), and/or motion of vehicles equipped with driver assistance
technology (e.g., SAE Level 2 systems) can occur. Additionally, “driving environment” can
include any possible flying environment of an aircraft (or spacecraft) or a marine environment of
a naval vessel. The objects of the driving environment 101 can be located at any distance from
the AV, from close distances of several feet (or less) to several miles (or more).

[0032] The example AV 100 can include a sensing system 110. The sensing system 110
can include various electromagnetic (e.g., optical, infrared, radio wave, etc.) and non-

electromagnetic (e.g., acoustic) sensing subsystems and/or devices. The sensing system 110 can
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include one or more lidars 112, which canbe a laser-based unit capable of determining distances
to the objects and velocities of the objects in the driving environment 101. The sensing system
110 can include one or more radars 114, which can be any system that utilizes radio or
microwave frequency signals to sense objects within the driving environment 101 of the AV 100.
The lidar(s) 112 and or radar(s) 114 can be configured to sense both the spatial locations of the
objects (including their spatial dimensions) and velocities of the objects (e.g., using the Doppler
shift technology). Hereinafter, “velocity” refers to both how fast the object is moving (the speed
of the object) as well as the direction of the object’s motion. Each of the lidar(s) 112 and radar(s)
114 can include a coherent sensor, such as a frequency-modulated continuous-wave (FMCW)
lidar or radar sensor. For example, lidar(s) 112 and/or radar(s) 114 can use heterodyne detection
for velocity determination. In some implementations, the functionality of a ToF and coherent
lidar (or radar) is combined into a lidar (or radar) unit capable of simultaneously determining
both the distance to and the radial velocity of the reflecting object. Such a unit can be configured
to operate in an incoherent sensing mode (ToF mode) and/or a coherent sensing mode (e.g., a
mode that uses heterodyne detection) or both modes at the same time. In some implementations,
multiple lidars 112 and/or radar 114s can be mounted on AV 100.

[0033] Lidar 112 (and/or radar 114) can include one or more optical sources (and/or
radio/microwave sources) producing and emitting signals and one or more detectors of the
signals reflected back from the objects. In some implementations, lidar 112 and/or radar 114 can
perform a 360-degree scanning in a horizontal direction. In some implementations, lidar 112
and/or radar 114 can be capable of spatial scanning along both the horizontal and vertical
directions. In some implementations, the field of view can be up to 90 degrees in the vertical
direction (e.g., with at least a part of the region above the horizon being scanned with lidar or
radar signals). In some implementations (e.g., aerospace applications), the field of view can be a
full sphere (consisting of two hemispheres).

[0034] The sensing system 110 can further include one or more cameras 118 to capture
images of the driving environment 101. Cameras 118 can operate in the visible part of the
electromagnetic spectrum, e.g., 300-800 nm range of wavelengths (herein also referred for
brevity as the optical range). Some of the optical range cameras 118 can use a global shutter
while other cameras 118 can use a rolling shutter. The images can be two-dimensional
projections of the driving environment 101 (or parts of the driving environment 101) onto a
projecting surface (flat or non-flat) of the camera(s). Some of the cameras 118 of the sensing
system 110 can be video cameras configured to capture a continuous (or quasi-continuous)

stream of images of the driving environment 101. The sensing system 110 can also include one

10



WO 2024/035658 PCT/US2023/029667

or more sonars 116, for active sound probing of the driving environment 101, e.g., ultrasonic
sonars, and one or more microphones for passive listening to the sounds of the driving
environment 101. The sensing system 110 can also include one or more infrared range cameras
119 also referred herein as IR cameras 119. IR camera(s) 119 can use focusing optics (e.g., made
of germanium-based materials, silicon-based materials, etc.) that is configured to operate in the
range of wavelengths from microns to tens of microns or beyond. IR camera(s) 119 caninclude a
phased array of IR detector elements. Pixels of IR images produced by camera(s) 119 can be
representative of the total amount of IR radiation collected by a respective detector element
(associated with the pixel), of the temperature of a physical object whose IR radiation is being
collected by the respective detector element, or any other suitable physical quantity.

[0035] The sensing data obtained by the sensing system 110 can be processed by a data
processing system 120 of AV 100. For example, the data processing system 120 can include a
perception system 130. The perception system 130 can be configured to detect and track objects
in the driving environment 101 and to recognize the detected objects. For example, the
perception system 130 can analyze images captured by the cameras 118 and can be capable of
detecting traffic light signals, road signs, roadway layouts (e.g., boundaries of traffic lanes,
topologies of intersections, designations of parking places, and so on), presence of obstacles, and
the like. The perception system 130 can further receive radar sensing data (Doppler data and ToF
data) to determine distances to various objects in the environment 101 and velocities (radial and,
in some implementations, transverse, as described below) of such objects. In some
implementations, the perception system 130 can use radar data in combination with the data
captured by the camera(s) 118, as described in more detail below.

[0036] The perception system 130 can include one or more modules to facilitate efficient
and reliable detection, identification, and tracking of objects, including an object detection and
classification model with depth co-training (ODCM) 132 that can be used to process data
provided by the sensing system 110. In some implementations, duringinference, ODCM 132 can
receive data from (optical range) camera(s) 118 and/or IR camera(s) 119. During training, as
described in more detail in conjunction with FIG. 2 and FIGs. 4A-B, ODCM 132 can process
data from camera(s) 118 and/or IR camera(s) 119 while using range (distance) data obtained with
at least some of lidar(s) 112, radar(s) 114, sonar(s) 116, and so on. ODCM 132 can include one
or more trained machine-learning models (MLMs) that are used to process the received images to
detect objects depicted in the images and to classify the detected objects.

[0037] The perception system 130 can further receive information from a {3iabal

Mavigation Satellite System {GNSK) positioning subsystem (not shown in FIG. 1), which can
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include a GNNS transceiver (not shown), configured to obtain information about the position of
the AV relative to Earth and its surroundings. The positioning subsystem can use the positioning
data, e.g., GNNS and inertial measurement unit (IMU) data) in conjunction with the sensing data
to help accurately determine the location of the AV with respect to fixed objects of the driving
environment 101 (e.g roadways, lane boundaries, intersections, sidewalks, crosswalks, road
signs, curbs, surrounding buildings, etc.) whose locations can be provided by map information
124. In some implementations, the data processing system 120 can receive non-electromagnetic
data, such as audio data (e.g., ultrasonic sensor data from sonar 116 or data from microphone
picking up emergency vehicle sirens), temperature sensor data, humidity sensor data, pressure
sensor data, meteorological data (e.g., wind speed and direction, precipitation data), and the like.
[0038] The data processing system 120 can further include an environment monitoring and
prediction component 126, which can monitor how the driving environment 101 evolves with
time, e.g., by keepingtrack of the locations and velocities of the animated objects (e.g., relative
to Earth). In some implementations, the environment monitoring and prediction component 126
can keep track of the changing appearance of the environment due to a motion of the AV relative
to the environment. In some implementations, the environment monitoring and prediction
component 126 can make predictions about how various animated objects of the driving
environment 101 will be positioned within a prediction time horizon. The predictions can be
based on the current state of the animated objects, including current locations (coordinates) and
velocities of the animated objects. Additionally, the predictions can be based on a history of
motion (tracked dynamics) of the animated objects during a certain period of time that precedes
the current moment. For example, based on stored data for a first object indicating accelerated
motion of the first object during the previous 3-second period of time, the environment
monitoring and prediction component 126 can conclude that the first object is resuming its
motion from a stop sign or a red traffic light signal. Accordingly, the environment monitoring
and prediction component 126 can predict, given the layout of the roadway and presence of other
vehicles, where the first object is likely to be within the next 3 or 5 seconds of motion. As
another example, based on stored data for a second object indicating decelerated motion of the
second object during the previous 2-second period of time, the environment monitoring and
prediction component 126 can conclude that the second object is stopping at a stop sign or at a
red traffic light signal. Accordingly, the environment monitoring and prediction component 126
can predict where the second object is likely to be within the next 1 or 3 seconds. The
environment monitoring and prediction component 126 can perform periodic checks of the

accuracy of its predictions and modify the predictions based on new data obtained from the
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sensing system 110. The environment monitoring and prediction component 126 can operate in
conjunction with ODCM 132. For example, the environment monitoring and prediction
component 126 can track relative motion of the AV and various objects (e.g., reference objects
that are stationary or moving relative to Earth).

[0039] The data generated by the perception system 130, the GNSS processing module 122,
and the environment monitoring and prediction component 126 can be used by an autonomous
driving system, such as AV control system (AVCS) 140. The AVCS 140 caninclude one or more
algorithms that control how AV is to behave in various driving situations and environments. For
example, the AVCS 140 can include a navigation system for determining a global driving route
to a destination point. The AVCS 140 can also include a driving path selection system for
selecting a particular path through the immediate driving environment, which can include
selecting a traffic lane, negotiating a traffic congestion, choosing a place to make a U-turn,
selecting a trajectory for a parking maneuver, and so on. The AVCS 140 can also include an
obstacle avoidance system for safe avoidance of various obstructions (rocks, stalled vehicles, and
so on) within the driving environment of the AV. The obstacle avoidance system can be
configured to evaluate the size of the obstacles and the trajectories of the obstacles (if obstacles
are animated) and select an optimal driving strategy (e.g., braking, steering, accelerating, etc.) for
avoiding the obstacles.

[0040] Algorithms and modules of AVCS 140 can generate instructions for various systems
and components of the vehicle, such as the powertrain, brakes, and steering 150, vehicle
electronics 160, signaling 170, and other systems and components not explicitly shown in FIG.
1. The powertrain, brakes, and steering 150 can include an engine (internal combustion engine,
electric engine, and so on), transmission, differentials, axles, wheels, steering mechanism, and
other systems. The vehicle electronics 160 can include an on-board computer, engine
management, ignition, communication systems, carputers, telematics, in-car entertainment
systems, and other systems and components. The signaling 170 can include high and low
headlights, stopping lights, turning and backing lights, horns and alarms, inside lighting system,
dashboard notification system, passenger notification system, radio and wireless network
transmission systems, and so on. Some of the instructions output by the AVCS 140 can be
delivered directly to the powertrain, brakes, and steering 150 (or signaling 170) whereas other
instructions output by the AVCS 140 are first delivered to the vehicle electronics 160, which
generates commands to the powertrain, brakes, and steering 150 and/or signaling 170.

[0041] In one example, ODCM 132 can determine that images obtained by camera(s) 118

include depictions of an object and can further classify the object as a bicyclist. The environment
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monitoring and prediction component 126 can track the bicyclist and determine that the bicyclist
is travelling with the speed of 15 mph along an intersecting road perpendicular to the direction of
the motion of the vehicle. Responsive to such a determination, the data processing system 120
can determine that the vehicle needs to slow down to let the bicyclist clear the intersection. The
AVCS 140 can output instructions to the powertrain, brakes, and steering 150 (directly or via the
vehicle electronics 160) to: (1) reduce, by modifying the throttle settings, a flow of fuel to the
engine to decrease the engine rpm; (2) downshift, via an automatic transmission, the drivetrain
into a lower gear; and (3) engage a brake unit to reduce (while acting in concert with the engine
and the transmission) the vehicle’s speed. After ODCM 132 and/or the environment monitoring
and prediction component 126 determined that the bicyclist has crossed the intersection, the
AVCS 140 can output instructions to the powertrain, brakes, and steering 150 to resume the
previous speed settings of the vehicle.

[0042] FIG. 2 is a diagram illustrating example architecture 200 of a part of a perception
system that is capable of efficient detection and classification of objects, in accordance with
some implementations of the present disclosure. An input into the perception system (e.g.,
perception system 130 of FIG. 1) can include multiple camera images 202, which can be training
images (during training phase) or images taken on-board at runtime (during inference phase).
Images 202 can be combined into frames. A frame should be understood as any set of images
depicting an outside environment along any direction relative to the sensing system (e.g., sensing
system 110 of an autonomous vehicle). In particular camera image 202 can refer to panoramic
images taken by a surround-view camera, images taken by directional cameras, e.g., frontal-view
cameras, side-view cameras (SVCs), rear-view cameras, and the like, or any combination thereof.
In some implementations, images obtained by different cameras can be synchronized, so that all
images in a given frame have the same (up to an accuracy of synchronization) timestamp. In
some implementations, some images in a given frame can have (controlled) time offsets, e.g.,
time offsets associated with a scanning motion of the SVC. Camera images 202 canbe processed
by ODCM 132. Additional input into ODCM 132 can include depth data 204, which can be data
obtained using lidar sensor(s), radar sensor(s), sonar sensor(s), and the like. In some
implementations, depth data 204 can be used during training of ODCM 132 but not during the
inference phase. Images 202 and depth data 204 can include directional indexing. More
specifically, various pixels of images 202 and return points of depth data 204 can be associated
with known (e.g., from camera calibration) directions in space. For example, a camera image can
include an intensity map indexed by any suitable set of coordinates characterizing directions in

space, e.g., [(w, h) where w, h can be Cartesian pixel coordinates (within the imaging plane);
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1(8, ¢), where 8 and ¢ are polar and azimuthal angles, respectively; or any other set of
coordinates. In some implementations, multiple sets of coordinates can be used for different
tasks, facilitated by stored mappings (transformations) between different sets. Depth data 204 can
include radial distances R(w, h) to objects associated with specific pixels w, h in images 202,
e.g., as determined from the ToF of lidar/radar/sonar signals.

[0043] Each image 202 can have pixels of various intensities of one color I(w, h) (for
black-and-white images) or multiple colors I (w, h) (for color images). Atleast some images 202
can be infrared (IR) camera images obtained by an array of IR detectors (pixels), which can
operate in the range of wavelengths from microns to tens of microns or beyond. IR images can
include intensity /R(w, h) representative of the total amount of IR radiation collected by a
respective detector. In someimplementations, the IR images can include a pseudo-color map in
which the presence of a particular pseudo-color can be representative of the collected total
intensity /R(w, h) . In some implementations, the collected intensity can be used to determine a
temperature map T (w, h) of the environment. Accordingly, in different implementations,
different representations (e.g., intensity maps, pseudo-color maps, temperature maps, etc.) can be
used to represent the IR camera data.

[0044] In some implementations, architecture 200 can include a normalization module (not
shown in FIG. 2) that can resize each image 202 to match the size of an input into ODCM 132.
In some implementations, the normalization module can further normalize the intensity of the
pixels of images 202 to a preset range of intensities, €.2., [lnin, Imax], Where Ly, 1s the
minimum intensity and I,;4, 1s the maximum intensity that ODCM 132 is configured to process.
In some implementations, the minimum intensity can be zero, I,,;,, = 0. Additionally, the
normalization module can perform other preprocessing of images 202 including filtering,
denoising, and the like.

[0045] The normalized and pre-processed images can be processed by various components
of ODCM 132 to detect presence of objects 232 in the driving environment and to classify the
detected objects 232. ODCM 132 can include any suitable machine-learning models, such as
lookup-tables, geometric shape mapping, mathematical formulas, decision-tree algorithms,
support vector machines, deep neural networks, etc., or any combination thereof. Deep neural
networks can include convolutional neural networks, recurrent neural networks (RNN), fully-
connected neural networks, fully connected neural networks, long short-term memory neural

networks, Boltzmann machines, and so on, or any combination thereof.
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[0046] A depth-estimation network (DEN) 210 can output predictions of depths of objects
imaged by various pixels of image(s) 202. A context feature network (CFN) 220 can output
feature vectors for various pixels. Feature vectors can be multi-element strings of data in a
feature space. Depth predictions and feature vectors can be joined into feature tensors. Feature
tensors can undergo one or more transformations, as described in more detail in conjunction with
FIGs. 3A-C, to map pixel data (intensity and depth) from the perspective view to a top-down
BEYV view. Feature tensors combined into a projected BEV context tensor can be processed by
BEYV feature network 230 that outputs detected/classified objects 232, which can be classified
among a plurality of classes e.g., a car, a truck, a bus, a pedestrian, an unknown object, and the
like.

[0047] Detected/classified objects 232 canundergo post-processing 234, which can include
object tracking that tracks motion of the detected objects across multiple frames of images 202.
Each object can be assigned a detection track and can be characterized by some or all of the
following: bounding boxes for depictions of a particular object across multiple frames, type of
the object, size of the object, pose of the object, motion of the object (e.g., velocity, acceleration,
etc.), and the like. Post-processing 234 can further include generating any graphical, e.g., pixel-
based (e.g., heat map) or vectorized (curve-based) representations of the tracks, including
trajectories, poses, speed regime of various objects, and the like. In some implementations, post-
processing 234 can include processing the detected tracks using one or more models that predict
motion of the detected object, e.g., a model that tracks velocity, acceleration, etc., of the detected
objects. For example, a Kalman filter or any other suitable filter, which combines predicted
motion of a particular object with the detected motion of the object, can be used for more
accurate estimation of the location and motion of the object.

[0048] Detected/classified objects 232 and tracking data generated by post-processing 234
can be provided to AVCS 140. AVCS 140 evaluates the trajectories of the objects in various
tracks and determines whether to modify the current driving trajectory of the vehicle in view of
the location and speed of the tracked objects. For example, if a tracked pedestrian or bicyclist is
within a certain distance from the vehicle, the AVCS 140 can slow the vehicle down to a speed
that ensures that the pedestrian or bicyclist can be safely avoided. Alternatively, AVCS 140 can
change lanes, e.g, if an adjacent lane is free from obstructions, or perform some other driving
maneuver.

[0049] Training can be performed by a training engine 242 hosted by a training server 240,
which can be an outside server that deploys one or more processing devices, e.g., central

processing units (CPUs), graphics processing units (GPUs), etc. In some implementations,

16



WO 2024/035658 PCT/US2023/029667

ODCM 132 can be trained by training engine 242 and subsequently downloaded onto the vehicle
that deploys perception system 130. ODCM 132 can be trained, as illustrated in FIG. 2, using
training data that includes training inputs 244 and corresponding target outputs 246 (correct
matches for the respective training inputs). During training of ODCM 132, training engine 242
can find patterns in the training data that map each traininginput 244 to the corresponding target
output 246.

[0050] In some implementations, ODCM 132 can be trained using images and other
sensing data that have been recorded during driving missions and annotated with ground truth.
For training of depth-estimation network 210 of ODCM 132, ground truth can include distances
to various pixels of images in training inputs 244. Training of BEV feature network 230 can
involve ground truth that includes correct identification of locations (e.g., bounding boxes) of
various objects in training inputs 244 and semantic (e.g., class, type, etc.) information for the
objects. In some implementations, ground truth for training any or all of depth-estimation
network 210, context feature network 220, and BEV feature network 230 can include outputs of
one or more teacher models, as described below in conjunction with FIGs. 4A—B. Ground truth
can include correct linkage of the same objects acrossbatches of multiple images/frames, correct
velocities of the objects, and the like.

[0051] Training engine 242 can have access to a data repository 250 storing multiple
camera/IR camera images 252 and lidar/radar (or sonar) images 254 obtained during driving
situations in a variety of driving environments (e.g., urban driving missions, highway driving
missions, rural driving missions, etc.). During training, training engine 242 can select (e.g.,
randomly), as training data, a number of sets of camera/IR camera images 252 and sets of
lidar/radar images 254. Training data can be annotated with correct object identifications. In
some implementations, annotations can be made by a developer before the annotated training
data is placed into data repository 250. Annotated training data retrieved by training server 240
from data repository 250 can include one or more training inputs 244 and one or more target
outputs 246. Training data can also include mapping data 248 that maps training inputs 244 to
target outputs 246. For example, mapping data 248 can identify a bounding box of a passenger
car in each of a batch of N consecutive frames obtained by a forward-facing camera of a vehicle.
The mappingdata 248 can include an identifier of the training data, a location of the passenger
car, size and identification of the passenger car, speed and direction of motion of the passenger
car, and other suitable information.

[0052] Duringtraining of ODCM 132, training engine 242 can use a suitable loss function

245 to evaluate the difference between outputs of ODCM 132 (or various networks and
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subnetworks of ODCM 132) and target outputs 246. In some implementations, different loss
functions 245 can be used for training of depth estimation network 210, context feature network
220, and/or BEV feature network 230. During training of ODCM 132, training engine 242 can
change parameters (e.g., weights and biases) of various networks and subnetworks of ODCM 132
until the model successfully learns how to minimize loss function(s) 245 and successfully
identify and classify target outputs 246, e.g., various objects in the outside environment. In some
implementations, various networks and subnetworks of ODCM 132 can be trained separately,
e.g., with depth estimation network 210 trained prior to training of context feature network 220
and/or BEV feature network 230. In some implementations, various networks and subnetworks
of ODCM 132 can be trained together (e.g., concurrently). For example, depth estimation
network 210, context feature network 220, and/or BEV feature network 230 can be subnetworks
of a single end-to-end neural network architecture that is trained jointly.

[0053] The data repository 250 can be a persistent storage capable of storing camera/IR
camera images, lidar/radar/sonar data, and data structures configured to facilitate detection and
identification, in accordance with implementations of the present disclosure. The data repository
250 can be hosted by one or more storage devices, such as main memory, magnetic or optical
storage disks, tapes, or hard drives, network-attached storage (NAS), storage area network
(SAN), and so forth. Although depicted as separate from training server 240, in an
implementation, the data repository 250 can be a part of training server 240. In some
implementations, data repository 250 can be a network-attached file server, while in other
implementations, data repository 250 can be some other type of persistent storage such as an
object-oriented database, a relational database, and so forth, that can be hosted by a server
machine or one or more different machines accessible to the training server 240 via a network
(not shown in FIG. 2).

[0054] FIG. 3A is a schematic diagram illustrating example operations of a model 300 that
uses bird’s-eye view and is trained using depth ground truth data for efficient detection and
classification of objects, in accordance with some implementations of the present disclosure. The
model illustrated in FIG. 3A can be ODCM 132 of the perception system 130 depicted in FIG. 1
or any other similar model. In some implementations, the model illustrated in FIG. 3A can
include a set of neural networks (NNs), e.g., depth-estimation network (DEN) 310, context
feature network (CFN) 320, BEF feature network (BEF FN) 350, and the like. Although depicted
as separate blocks in FIG. 3A, various illustrated NNs and subnetworks can be parts of the same
NN, which are trained jointly. Neurons in the neural networks are associated with learnable

weights and biases. The neurons can be arranged in layers. Some of the layers can be hidden
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layers. Any of the NNs or subnetworks depicted in FIG. 3A can include multiple hidden neuron
layers and can be configured to perform one or more functions that facilitate detection and
classification of objects.

[0055] Input into DEN 310 and CFN 320 can include one or more images 302, which can
be perspective images acquired by one or more cameras. Any number of images 302 can be
processed concurrently. Input image(s) 302 can depict any portion of the outside environment, up
to a 360-degree panoramic surround view. In some implementations, the total number of pixels in
all image(s) 302 can be W X H, where W is the number of pixels along a first direction (e.g., the
horizontal direction) and H is the number of pixels along a second direction (e.g., the vertical
direction). In some implementations, “pixel” of image 302 can correspond to a single element of
a charged-coupled device (CCD) of a camera. In some implementations, “pixel” of image 302
can be a downsampled combination (superpixel) corresponding to multiple CCD elements of a
camera. For example, one or more images of the cameras can have a number of pixels that is
different from W X H, e.g., the dimensions of inputs of trained DEN 310 and CFN 320. In such
implementations, camera images may first be rescaled (e.g., using techniques of interpolation,
downsampling/upsampling, and the like) to the target input size W X H. Similarly, depth data
304 can be rescaled to the target input size W X H. In some implementations, depth data304 can
be available for only a subset of the W X H pixels, e.g., one depth value every N pixels.
[0056] Image(s) 302 can be in any suitable digital format (JPEG, TIFF, GIG, BMP, CGM,
SVG, and so on). Image(s) 302 can be represented via one or more intensity matrices Iy (w, h),
where 0 <w < W, and 0 < h < H, with color index k having a single value (for black-and-
white images), three values (for RGB images), four values (for CMYK images), and so on. The
intensity values I can assume continuous or discrete values between 0 and 1 (or between any
other chosen limits, e.g., 0 and 255).

[0057] DEN 310 can be any suitable NN trained to identify a set of depth distributions 312
for various pixels, e.g., a probability P(d),, , that a given pixel w, h depicts an object that is
located at a distance d from the camera. In someimplementations, distance d can be discretized
among a number D of intervals, Ad;,Ad, ... Adp. The intervals Ad; need not be of equal size,
and can increase with the distance, e.g., Ad; < Ad, < --- < Adp. The last interval Ady can
extend from a certain distance (e.g., 100 m, 200 m, etc.) to infinite distances.

[0058] DEN 310 can be trained using training images depicting objects in various
environments and using depth data 304 as ground truth. Depth data 304 can be provided by lidar

(radar, sonar, etc.) sensor(s) and can include actual distances d (W, h) to the objects (or parts
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of the objects) that are imaged by corresponding camera pixels w, h. During training stage,
training engine 242 of FIG. 2 can change parameters (e.g., weights and biases) of neurons of
DEN 310 to minimize a loss function, which characterizes a difference between a center (e.g.,
average, median, etc.) of the distribution P(d),, , output by DEN 310 and the ground truth
distance dryye (W, h). In some implementations, the distributions P(d),,  can be modeled as a
categorical distribution, a Laplace distribution, a Gaussian distribution, or any other suitable
distribution. The loss function minimized during training can include a focal loss function, a
negative loglikelihood loss function, or any other suitable loss function, e.g., a mean square loss
function, a cross-entropy loss function, and so on.

[0059] CFN 320 can be trained, e.g., using the same training images, to output feature
vectors 322. A feature vector FV(c),  for pixel w, h represents a learned digital encoding
characterizing the appearance of the corresponding pixel and the graphical context provided by
other pixels of the image. Feature vectors FV(c) can have any number C of components (bits),
¢ € [1, C], selected in view of the desired target accuracy of object detection and specific
computational resources on which the trained model (e.g., ODCM 132) is to be deployed, e.g.,
C= 32,64, 128, 256, etc., components. Higher values C favor higher accuracy of object
detection and classification while lower values C facilitate faster processing and/or deployment
of the NNs on systems with limited computational resources.

[0060] In some implementations, DEN 310 and CFN 320 can be deep convolutional NN,
e.g., having a U-net architecture with an encoder stage and a decoder stage. Each stage can
include multiple convolutional neuron layers and one or more fully connected layers. The
convolutions performed by each of DEN 310 and CFN 320 can include any number of
convolutional kernels of different dimensions trained to capture both the local as well as global
context of the input images. In some implementations, DEN 310 and CFN 320 can be fully
independent, e.g., with no edges connecting neurons of the two networks. In some
implementations, DEN 310 and CFN 320 can share a common backbone and can have separate
heads that output depth distributions 312 and feature vectors 322. Each head can have any
number of neuron layers and, in some implementations, can have its own encoder-decoder
architecture. In some implementations, at least some of the heads can include one or more fully-
connected layers.

[0061] Depth distributions 312 and feature vectors 322 can be combined into feature
tensors 332 by a lift transform 330. More specifically, lift transform 330 can supplement each

pixel w, h, described by a feature vector FV(c),, , with depth information from depth
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distributions 312. For example, lift transform 330 can compute an outer product of each feature
vector FV(c)y,p (of dimensions € X 1) with the corresponding depth distribution P(d),, , (of
dimensions D X 1) for the same pixel. This generates a feature tensor 332, e.g.,
FV(c)yn®P(d)yn = FT(c,d)p for pixel w, h, as illustrated schematically with the insert in
FIG. 3A.

[0062] Feature tensors FT (c, d),, , computed for individual pixels can then be used to
obtain a combined feature tensor 334 for the whole image, e.g., by concatenating feature tensors
332 for different pixels: {FT(C, d)w,h} — CFT(c,d,w, h). The combined feature tensor
CFT(c,d,w,h) has dimensions C X D X W X H. The combined feature tensor 334 can then
undergo a 2D mapping 340. More specifically, 2D mapping 340 can produce a projected feature
tensor 342 that uses a convenient set of plane coordinates, e.g., Cartesian coordinates x and y or
polar coordinates r and 8 within the plane of the ground.

[0063] 2D mapping 340 can be a two-part transformation. During the first part, perspective
coordinates d,w, h can be transformed into 3D Cartesian coordinates d, w, h — x,y, z (or 3D
cylindrical coordinates ,w,h — r, 0,z ), with z being the vertical coordinate (in the direction
perpendicular to the ground). The transformation d,w, h — x,y,z can be a projective
transformation, parameterized with a focal length of the camera, direction of the optical axis of
the camera, and other similar parameters. In the instances where images 302 are acquired by
multiple cameras (or a camera with a rotating optical axis), the transformation d,w, h — x,y,z
can include multiple projective transformations, e.g., with a separate transformation used for
pixels w, h provided by different cameras.

[0064] During the second part, 2D mapping 340 can project the combined feature tensor
expressed in the new coordinates, CFT(c, x,y, z) , onto a horizontal surface to obtain a projected
(BEV) feature tensor 342. For example, to obtain the C X W X H projected feature tensor
PCT(c,x,y), the combined feature tensor can be summed (or averaged) over elements associated
with each vertical pillar of pixels, e.g., PCT (¢, x,y) = X; CFT(c,x,y,z;). In some
implementations, the summation over coordinates z; can be performed with different weights w;
assigned to different coordinates z;: PCT (¢, x,y) = 2;w; X CFT(c, x,y,2;), e.g., with larger
weights w; assigned to pixels that image objects within a certain elevations from the ground (e.g,
up to several meters) and lower weights assigned to other elevations (e.g., to eliminate spurious
objects, such as tree branches, electric cables, etc., that do not obstruct motion of vehicles).
[0065] The projected feature tensor 342 characterizes objects and their locations in the

BEYV in which perspective distortions have been effectively eliminated. BEV FN 350 can then
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process the projected feature tensor 342 to identify objects depicted in images 302 and classify
the identified objects. In someimplementations, BEV FN 350 can be a network having both an
encoder stage and a decoder stage. In some implementations, BEV FN 350 can be a network that
has a decoder stage whereas the encoder stage is a part of CFN 320. In some implementations,
BEV FN 350 can serve as a backbone for one or more classification heads 360-n. Each
classification head 360-n can output a different kind of information about objects depicted in
images 302. For example, head A 360-1 can output bounding boxes of the objects, head B 360-2
can output types and/or sizes of the objects, head C 360-3 can output the poses (position and
orientation) of the objects, and so on.

[0066] DEN 310, CFN 320, and BEV FN 350 are depicted as separate blocks in FIG. 3A.
and can each have an encoder stage and a decoder stage. Other implementations are also within
the scope of this disclosure. More specifically, FIG. 3B is a schematic illustration of one
implementation of a model 301 thatuses bird’s-eye view and is trained using depth ground truth
data for efficient detection and classification of objects. As illustrated in FIG. 3B, DEN 310 and
CFN 320 can be supported by a common backbone network, such as an encoder network 305.
Each of DEN 310 and CFN 320 can be a separate decoder that is trained to process a common
output of encoder network 305. In some implementations, CFN 320 can be a decoder network
whereas DEN 310 can be a head of one or more fully-connected layers. In some
implementations, none of DEN 310 or CFN 320 include a decoder. In some implementations,
DEN 310 can be a decoder network whereas CFN 320 can be a head having one or more fully-
connected layers. In some implementations, one of DEN 310 or CFN 320 can be absent. For
example, if CFN 320 is absent, feature vectors 322 can be output by encoder network 305
directly whereas DEN 310 can include a decoder that further processes a copy of the output
(feature vectors 322) to generate depth distributions 312.

[0067] In some implementations, any or all of the encoder network 305, DEN 310, CFN
320, and BEV FN 350 can be trained together. In some implementations, some of the encoder
network 305, DEN 310, CFN 320, or BEV FN 350 can be trained in stages. More specifically,
FIG. 3C illustrates a model 303 in which a depth-estimation network 310 is pre-trained (together
with encoder network 305, if deployed) using depth ground truth data, in accordance with some
implementations of the present disclosure. Pre-training of DEN 310 may be performed using a
suitable loss function that evaluates a difference between a center of the distribution P(d), , and
the ground truth distance d 7, (W, h) provided by depth data 304. The difference can then be
backpropagated through various layers of neurons of DEN 310 (encoder network 305, if
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deployed) until DEN 310 (and encoder network 305) learns to predict the probable depths of
pixels with a desired accuracy. After pre-training 306 of DEN 310 (and encoder network 305, if
deployed) is completed, the output of DEN 310 can be used as ground truth during training of
CFN 320 and/or BEV FN 350, which can be trained together or sequentially.

[0068] FIG. 4A is a schematic diagram illustrating a distillation framework 400 for training
of a bird’s-eye view model using depth ground truth data, in accordance with some
implementations of the present disclosure. Distillation framework 400 can involve training a
student model 401-S using outputs of a previously trained teacher model 401-T. Student model
401-S can include a student DEN 410-S, a student CFN 420-S, and a student BEV FN 450-S can
operate substantially as described in relation to the respective networks of FIG. 3A-C. In
particular, student DEN 410-S and student CFN 420-S can process one or more image(s) 402 and
output depth distributions 412 and feature vectors 422 for various pixels of image(s) 402, which
can undergo a lift transform/2D mapping 430, e.g., similar to lift transform 330 and 2D mapping
340 to obtain projected feature tensor 442. Student BEV FN 450-S can the processes projected
feature tensor 442 to identify detected (and classified) objects 452.

[0069] Various outputs (including intermediate outputs) of student ODCM 401-S can be
compared with ground truth obtained from teacher ODCM 401-T. In some implementations, as
illustrated in FIG. 4A, teacher ODCM 401-T can have an architecture that is similar to the
architecture of student ODCM 401-S. In particular, teacher DEN 410-T and teacher CFN 420-T
can process one or more image(s) 402, which can be the same images as being input into student
DEN 410-S and student CFN 420-S. Additionally, teacher DEN 410-T can process depth data
404 (e.g, lidar range data) associating depth of (distance to) objects depicted in image(s) 402. To
accommodate additional depth data inputs 404, teacher DEN 410-T can have more input neurons
compared with student DEN-S 410-S. Teacher DEN 410-T and teacher CFN 420-T can output
depth distributions 411 and feature vectors 421 for pixels of image(s) 402, which can undergo lift
transform/2D mapping 430 to generate projected feature tensor 441 that is then processed by
teacher BEV FN 450-T to identify detected (and classified) objects 541.

[0070] To allow direct comparisons of various outputs (including intermediate outputs) of
student ODCM 401-S with outputs of teacher ODCM 401-T, at least some of teacher DEN 410-
T, teacher CFN 420-T, and teacher BEV FN 450-T can have the outputs of dimensions (the
number of neurons in the output layers) that are the same as the output dimensions of student
ODCM 401-S, student DEN 410-S, student CFN 420-S, and student BEV FN 450-S networks,
respectively. On the other hand, teacher networks can have a higher complexity, including the

number of neuron layers, the number of connections between the layers, precision of
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representation (number of bits) of intermediate outputs, and the like. In some implementations,
teacher DEN 410-T and teacher CFN 420-T can have more input neurons than the respective
student networks and can, therefore, be configured to process images 402 with higher resolution
than the student networks. Teacher ODCM 401-T can be used in an off-board setting whereas
student ODCM 401-S can be used on-board a vehicle, a traffic monitoring station, or on any edge
device having limited computational resources. As a result, teacher ODCM 401-T need not be
limited in complexity and/or computational time.

[0071] Student ODCM 401-S can be a lightweight model having substantially fewer
neurons and neuron layers than teacher ODCM 401-T and capable of faster processing (given the
same processing and memory resources). The distillation process of obtaining student ODCM
401-S can include identifying and removing (culling, pruning) nodes and/or edges that have little
or reduced effect on the output of the model, combining multiple neuron nodes and/or edges, and
the like. Additionally, outputs of teacher ODCM 401-T can be used as ground truth during
training of student ODCM 401-S, as depicted schematically with dashed arrows in FIG. 4A.
More specifically, depth distributions 411 output by teacher DEN 410-T and feature vectors 421
output by teacher CFN 420-T can be used as ground truth during training of student DEN 410-S
and student CFN 420-S. For example, depth distributions 412 (feature vectors 422) can be
compared with depth distributions411 (feature vectors 421) and the parameters of student DEN
410-S (student CFN 420-S) until the difference is minimized. Similarly, projected feature tensor
441 and detected objects 451 can be used as ground truth that is compared with projected feature
tensor 442 and detected objects 452. In some implementations, a difference between detected
objects 452 and ground truth detected objects 451 can be backpropagated through student BEV
FN 450-S but not through student DEN 410-S and/or student CFN 420-S. In such
implementations, student DEN 410-S is trained based on differences between depth distributions
412 and ground truth depth distributions 444 (and, similarly, student CFN 420-S is trained based
on differences between feature vectors 422 and ground truth feature vectors 421). In other
implementations, a difference between detected objects 452 and ground truth detected objects
451 can be additionally backpropagated through student DEN 410-S and/or student CFN 420-S.
[0072] FIG. 4B is a schematic diagram illustrating another implementation of a distillation
framework 401 for training of a bird’s-eye view model using depth ground truth data, in
accordance with some implementations of the present disclosure. Distillation framework 401 can
differ from distillation framework 400 of FIG. 4A in that teacher DEN 410-T is absent in and
depth sensing data (e.g., lidar data or radar data) can be used as ground truth during training of

student DEN 410-S in lieu of depth distributions 411.
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[0073] FIG. 5 is a schematic diagram illustrating operations 500 of a bird’s-eye view
model that provides instance segmentation and semantic segmentation, in accordance with some
implementations of the present disclosure. Operations 500 can include processing image(s) 502
usinga DEN 510 to output depth distributions 512, and a CFN 520 to output feature vectors 522,
and a lift transform/2D mapping 530 to obtain projected feature tensor 542. DEN 510 can be
trained using depth data, e.g., as described in conjunction with FIG. 3A—C and/or FIG. 4A-B, or
in any other similar way. A BEV FN 550 can be a backbone network that processes the projected
feature tensor 542 and generates an intermediate output that is then provided to multiple
classification heads 560-n. In some implementations, the classification heads can include a
semantics head 560-1 that outputs an instance segmentation map 562-1 containing classification
of various locations of BEV among a number of types, e.g., vehicles, vulnerable road users,
roadway, buildings, trees, roadside structures, and so on. The classification heads 560-n can
include one or more instance segmentation heads. For example, an instance centers head 560-2
can output coordinates of centers 562-2 (e.g., center-of-mass pixels) of various objects in the
environment. An instance offsets head 560-3 can output a map of offsets 560-3 that characterize
distances of various pixels of the objects to the centers of the objects. Various maps 562-n can be
further processed by one or more layers of neurons (not shown in FIG. 5) to obtain a detection
and classification map (DCM) 564. DCM 564 can combine semantic segmentation and geometric
(instance) segmentation generated by classification heads 560-n to determine the locations of the
objects and further identify classes of the object. For example, type “vehicle” objects identified

by semantics head 560-1 can be further subdivided, in view of geometric information, into

2% 2%

classes of “cars,” “pick-up trucks,” “buses,” “semi-trucks,” and the like. Similarly, type
“vulnerable road users” can be further subdivided into classes of “pedestrians,” “bicyclists,”
“motorcyclists,” “skateboarders,” and the like.

[0074] FIG. 6 is a schematic diagram illustrating operations 600 of a bird’s-eye view
model that uses temporal aggregation, in accordance with some implementations of the present
disclosure. Operations 600 can include processingimage(s) 602 usinga DEN 610 to output depth
distributions 612, a CFN 620 to output feature vectors 622, and a lift transform/2D mapping 630
to obtain projected feature tensors 642. DEN 610 can be trained using depth data, e.g., as
described in conjunction with FIG. 3A—C and/or FIG. 4A-B, or in any other similar way.
Images 602 can be associated with framesacquired at different times, ¢;, t,,t5 ... . Operations of
blocks 610-630 can be performed separately for different frames, e.g., sequentially (using a
single instance of DEN 610 and CFN 620) or in parallel (e.g., using multiple instances of DEN

610 and CFN 620). The projected feature tensors 642 can then be warped using warping 644 to a
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common reference time, which canbe one of the times t;,t,,t5 ... , e.g., the current time or the
most recent available time (indicated as time t3 in FIG. 6). Warping 644 can be a mathematical
transformation that eliminates the (independently known) motion of the sensing system (e.g., the
ego motion of the autonomous vehicle) and generates a warped feature tensor 645. As a result of
warping 644, objects that are at rest relative to the ground will be described by elements of the
warped feature tensor 645 that are associated with the same coordinates x, y whereas moving
objects will be described by elements that are spread out along directions of the objects’ motion.
Warped feature tensor 645 can then be processed using an aggregation network 646, which can
be a convolutional network with kernels extending over two or more temporal components of the
warped feature tensor 645. The aggregation network 646 outputs an aggregated tensor 648 that
can be processed by a BEV FN 650 (and also further processed by various classification heads
660-n), e.g., similarly to how projected feature tensors are processed by a BEV feature network
in operations of FIG. 3A—C or FIG. 4A-B.

[0075] FIGs. 7-8 illustrate example methods 700-800 of deploying machine-learning
models that use bird’s-eye view and are trained using depth ground truth data for efficient
detection and classification of objects. A processing device, having one or more processing units
(CPUs) and memory devices communicatively coupled to the CPU(s), can perform methods
700-800 and/or each of their individual functions, routines, subroutines, or operations. The
processing device executing methods 700-800 can perform instructions issued by various
components of the sensing system 110 or data processing system 120 of FIG. 1, e.g., ODCM
132. In some implementations, methods 700-800 can be directed to systems and components of
an autonomous driving vehicle, such as the autonomous vehicle 100 of FIG. 1. Methods 700—
800 can be used to improve performance of the processing system 120 and/or the autonomous
vehicle control system 140. In certain implementations, a single processing thread can perform
methods 700—-800. Alternatively, two or more processing threads can perform methods 700-800,
each thread executing one or more individual functions, routines, subroutines, or operations of
the methods. In an illustrative example, the processing threads implementing methods 700-800
can be synchronized (e.g., using semaphores, critical sections, and/or other thread
synchronization mechanisms). Alternatively, the processing threads implementing methods 700—
800 can be executed asynchronously with respect to each other. Various operations of methods
700-800 can be performed in a different order compared with the order shown in FIGs. 7-8.
Some operations of methods 700-800 can be performed concurrently with other operations.

Some operations can be optional.
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[0076] FIG. 7 illustrates an example method 700 of deploying a model that uses a bird’s-
eye view representation and is trained using depth ground truth data for efficient detection and
classification of objects, in accordance with some implementations of the present disclosure.
Method 700 can use real-time images obtained by one or more cameras of a vehicle, or by
cameras mounted on any other suitable application platform. Cameras can be optical range
cameras and/or IR cameras, including panoramic (surround-view) cameras, partially panoramic
cameras, high-definition (high-resolution) cameras, close-view cameras, cameras having a fixed
field of view (relative to the vehicle), cameras having a dynamic (adjustable) field of view,
cameras having a fixed or adjustable focal distance, cameras having a fixed or adjustable
numerical aperture, and any other suitable cameras. Optical range cameras can further include
night-vision cameras. Images acquired by cameras can include various metadata that provides
geometric associations between image pixels and spatial locations of objects, correspondence
between pixels of different images, and the like. In some implementations, method 700 can be
performed by ODCM 132, or any other similar model, which may be a part of a perception
system of an autonomous vehicle, a vehicle that deploys driver assistance technology, or a part of
any other application platform that uses object detection and classification.

[0077] At block 710, method 700 can include obtaining one or more perspective camera
images of an environment (e.g., images 302 of FIGs. 3A—C). At block 720, method 700 can
include generating, using a first NN, for each pixel of a set of pixels of the one or more
perspective camera images, a feature vector (FV), and a depth distribution for a portion of the
environment imaged by a corresponding pixel. In some implementations, the set of pixels can
include all pixels of the one or more perspective camera images. In some implementations, the
set of pixels can include only a portion of all pixels of the one or more perspective camera
images.

[0078] The first NN can include one or more subnetworks, including encoder network 305,
DEN 310, CFN 320, and/or other subnetwork. In some implementations, the feature vector for
each pixel of the set of pixels can be output by a first subnetwork (e.g., CFN 320) of the first NN.
The depth distribution for each pixel of the set of pixels can be output by a second subnetwork
(e.g., DEN 310) of the first NN. For example, the feature vectors can be FVs 322 output by CFN
320, and the depth distributions can be depth distributions 312 output by DEN 310. In some
implementations, the first NN can be trained using a plurality of training images and a depth
ground truth data for the plurality of trainingimages. In some implementations, the depth ground
truth data can include lidar-determined distances to one or more objects in at least a subset of the

plurality of training images. In some implementations, the second subnetwork (e.g., DEN 310)
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can be trained, using the depth ground truth data, prior to training of the first subnetwork (e.g.,
CFN 320).

[0079] In some implementations, the first NN can be a part of a student model trained using
distillation techniques, e.g., as described in conjunction with FIGs. 4A—B. More specifically, the
depth ground truth data can include a depth estimate for at least a subset of pixels of the plurality
of training images. For example, depth estimates can be available for each N# pixel of the
training images. The depth estimate (e.g., depth distributions 411) can be output by a first NN
(e.g., Teacher DEN 410-S) of a teacher model (e.g., teacher ODCM 401-T).

[0080] At block 730, method 700 can include obtaining, for each pixel of the set of pixels,
a feature tensor (FT). The feature tensor (e.g., FT 432) can be obtained in view of the feature
vector for a respective pixel and the depth distribution for the respective pixel. For example, the
feature tensor can be obtained using an outer product of the feature vector and the depth
distribution (for each pixel). Additionally, obtaining the feature tensor can include performing a
lift transform, e.g., as described in conjunction with FIGs. 3A.

[0081] At block 740, method 700 can include processing the obtained feature tensors, using
a second NN, to identify one or more objects in the environment. As depicted with the callout
portion of FIG. 7, processing the obtained feature tensors can include a number of operations.
More specifically, at block 742, method 700 can include obtaining a combined feature tensor
(e.g., combined FT 334) using the feature tensors for each of the set of pixels. Method 700 can
continue with mappingthe combined feature tensor to a ground surface (or any other reference
surface) to obtain a projected feature tensor (e.g., projected FT 342). For example, mapping the
combined feature tensor to the ground surface can include, transforming, at block 744, the
combined feature tensor to a set of coordinates associated with the ground surface (e.g., a set of
Cartesian coordinates x, y, z, cylindrical coordinates 7, 8, z, or any other suitable coordinates) and
aggregating, at block 746, elements of the combined feature tensor in a vertical direction to
obtain the projected feature tensor. For example, to obtain the projected feature tensor, the
elements of the combined feature tensor associated with different values of z (and the same
values of x,y or 1, 8) can be added together.

[0082] At block 748, method 700 can continue with using the second NN to process the
projected feature tensor to identify one or more objects in the environment. In some
implementations, the second NN can include a first classification head (e.g., semantics head 560-
1 in FIG. §) configured to output semantic segmentation for the one or more objects in the

environment. The second NN can also include at least one second classification head (e.g.
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instance centers head 560-2 and/or instance offsets head 560-3) configured to output geometric
information associated with locations of the one or more objects in the environment. In some
implementations, e.g., when the NN are trained using the distillation framework, the second NN
(e.g, student BEV FN 450-S) can be trained using outputs of a second NN (e.g , teacher BEV FN
450-T) of the teacher training model (e.g., teacher ODCM 401-T).

[0083] In some implementations, e.g., as described in conjunction with FIG. 6, the model
(e.g., ODCM 132) can perform temporal aggregation of images acquired at different times. More
specifically, the one or more perspective cameraimages obtained in conjunction with block 710,
can be associated with a first time (e.g., time ;). Temporal aggregation can include obtaining
one or more additional perspective camera images associated with at least a second time (e.g.,
times t,, t3, etc.). Temporal aggregation can then include generating, using the one or more
additional perspective camera images, an additional projected feature tensor and performing a
concurrent processing of the projected feature tensor and the additional projected feature tensor
(e.g., asillustrated by processing of projected feature tensors 642). In some implementations, the
concurrent processing can include a warping transformation (e.g., warping 644) and an
application of an aggregation NN (e.g., aggregation network 646). The aggregation NN can
include one or more convolutional kernels configured to aggregate elements of the projected
feature tensor with elements of the additional projected feature tensor (or with multiple additional
feature tensors).

[0084] In those implementations where the perception system performing method 700 is
deployed on a vehicle, method 700 can continue, at block 750, with the perception system
causing a driving path of the vehicle to be determined in view of the one or more identified
objects in the environment of the vehicle.

[0085] FIG. 8 illustrates an example method 800 of using depth ground truth data for
training a model that deploys a bird’s-eye view representation, for efficient detection and
classification of objects, in accordance with some implementations of the present disclosure.
Method 800 can be used to train ODCM 132 or any other similar model. Method 800 can use
previously recorded images and other sensing data obtained by scanning an environment of a
vehicle (or any other relevant environment) using a plurality of sensors of the sensing system of
the vehicle, e.g., lidars, radars, sonars, and the like. At block 810, method 800 can include
obtaining a trainingimage, e.g., as part of a set of multiple trainingimages. At block 815, method
800 can include processing, using a first NN of the student model, the training image to generate
a plurality of feature vectors and a plurality of depth distributions. For example, the first NN of
the student model can include some or both of student DEN 410-S and student CFN 420-S, e.g,,
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as shown in FIGs. 4A—-B. Each feature vector of the plurality of feature vectors (e.g., FVs 422)
and each depth distribution of the plurality of depth distributions (e.g., depth distributions 412)
can be associated with a respective pixel of a plurality of pixels of the training image.

[0086] At block 820, method 800 can continue with obtaining a plurality of ground truth
feature vectors (e.g., feature vectors 421) generated by a first NN of a teacher model. For
example, the first NN of the teacher model can include some or both of teacher DEN 410-T and
teacher CFN 420-T. Each ground truth feature vector of the plurality of ground truth feature
vectors can be associated with a respective pixel of the plurality of pixels of the training image.
At block 825, method 800 can continue with obtaining a plurality of ground truth depth
indicators. Each ground truth depth indicator of the plurality of ground truth depth indicators can
be associated with a respective pixel of at least a subset of the plurality of pixels of the training
image. In some implementations, each of the plurality of ground truth depth indicators can
include a depth distribution (e.g., a depth distribution 411, as illustrated in FIG. 4A) obtained by
the first NN of the teacher model forthe associated pixel. In some implementations, each of the
plurality of ground truth depth indicators can include a specific distance, obtained by a range-
sensing device, to a portion of an environment imaged by the associated pixel (e.g., depth data
404, as illustrated in FIG. 4B).

[0087] At block 830, method 800 can include adjusting parameters of the first NN of the
student model based on a comparison of the plurality of feature vectors (e.g., feature vectors 422)
with the plurality of ground truth feature vectors (e.g., feature vectors 422), and a comparison of
the plurality of depth distributions (e.g., depth distributions 412) with the plurality of ground
truth depth indicators.

[0088] At block 835, method 800 can include obtaining a plurality of feature tensors. Each
feature tensor of the plurality of feature tensors can be obtained using a respective feature vector
of the plurality of feature vectors and a respective depth distribution of the plurality of depth
distributions (e.g., as described in conjunction with FIG. 3A). At block 840, method 800 can
continue with obtaining a combined featuretensor (e.g., combined feature tensor 334) using the
plurality of featuretensors. Atblock 845, method 800 can include mapping the combined feature
tensor to a ground surface to obtain a projected feature tensor (e.g., using the lift transform/2D
mapping 430). At block 850, method 800 can continue with processing the projected feature
tensor, using a second NN of the student model (e.g., student BEV FN 450-S), to identify one or
more objects in the training image (e.g., detected objects 452). At block 855, method 800 can
include obtaining one or more ground truth objects (e.g., detected objects 451) identified by a

second NN of the teacher model (e.g., teacher BEV FN 450-T) in the training image. At block
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860, method 800 can continue with adjusting parameters of the second NN of the student model
(e.g, student BEV FN 450-S) based on a comparison of the one or more objects identified by the
second NN of the student model with the one or more objects identified by the second NN of the
teacher model.

[0089] FIG. 9 depicts a block diagram of an example computer device 900 capable of
operating and/or training a model that uses bird’s-eye view and is trained using depth ground
truth data for efficient detection and classification of objects, in accordance with some
implementations of the present disclosure. Example computer device 900 can be connected to
other computer devices in a LAN, an intranet, an extranet, and/or the Internet. Computer device
900 can operate in the capacity of a server in a client-server network environment. Computer
device 900 can be a personal computer (PC), a set-top box (STB), a server, a network router,
switch or bridge, or any device capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that device. Further, while only a single example
computer device is illustrated, the term “computer” shall also be taken to include any collection
of computers that individually or jointly execute a set (or multiple sets) of instructions to perform
any one or more of the methods discussed herein.

[0090] Example computer device 900 can include a processing device 902 (also referred to
as a processor or CPU), a main memory 904 (e.g., read-only memory (ROM), flash memory,
dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), a static
memory 906 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary
memory (e.g., a data storage device 918), which can communicate with each other via a bus 930.
[0091] Processing device 902 (which can include processing logic 903) represents one or
more general-purpose processing devices such as a microprocessor, central processing unit, or
the like. More particularly, processing device 902 can be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets. Processing device 902 can also be
one or more special-purpose processing devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network
processor, or the like. In accordance with one or more aspects of the present disclosure,
processing device 902 can be configured to execute instructions performing method 700 of using
depth ground truth data for training a model that deploys a bird’s-eye view representation and/or
method 800 of using depth ground truth data for training a model that deploys a bird’s-eye view

representation, for efficient detection and classification of objects.
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[0092] Example computer device 900 can further comprise a network interface device 908,
which can be communicatively coupled to a network 920. Example computer device 900 can
further comprise a video display 910 (e.g,, a liquid crystal display (LCD), a touch screen, or a
cathode ray tube (CRT)), an alphanumeric input device 912 (e.g., a keyboard), a cursor control
device 914 (e.g., a mouse), and an acoustic signal generation device 916 (e.g., a speaker).
[0093] Data storage device 918 can include a computer-readable storage medium (or, more
specifically, a non-transitory computer-readable storage medium) 928 on which is stored one or
more sets of executable instructions 922. In accordance with one or more aspects of the present
disclosure, executable instructions 922 can comprise executable instructions performing method
700 of using depth ground truth data for training a model that deploys a bird’s-eye view
representation and/or method 800 of using depth ground truth data for training a model that
deploys a bird’s-eye view representation, for efficient detection and classification of objects.
[0094] Executable instructions 922 can also reside, completely or at least partially, within
main memory 904 and/or within processing device 902 during execution thereof by example
computer device 900, main memory 904 and processing device 902 also constituting computer-
readable storage media. Executable instructions 922 can further be transmitted or received over a
network via network interface device 908.

[0095] While the computer-readable storage medium 928 is shown in FIG. 9 as a single
medium, the term “computer-readable storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of operating instructions. The term “computer-
readable storage medium” shall also be taken to include any medium that is capable of storing or
encodinga set of instructions for execution by the machine that cause the machine to perform
any one or more of the methods described herein. The term “computer-readable storage medium”
shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and
magnetic media.

[0096] Some portions of the detailed descriptions above are presented in terms of
algorithms and symbolic representations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the means used by those skilled in the data
processing arts to most effectively convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical manipulations of physical quantities.
Usually, though not necessarily, these quantities take the form of electrical or magnetic signals

capable of being stored, transferred, combined, compared, and otherwise manipulated. It has
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proven convenient at times, principally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers, or the like.

[0097] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as apparent from the following discussion,

it is appreciated that throughout the description, discussions utilizing terms such as “identifying,”
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“determining,” “storing,” “adjusting,” “causing,” “returning,” “comparing,” “creating,”
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throwing,” “replacing,” “performing,” or the like, refer to the

copying,

action and processes of a computer system, or similar electronic computing device, that

“stopping,” “loading,

manipulates and transforms data represented as physical (electronic) quantities within the
computer system's registers and memories into other data similarly represented as physical
quantities within the computer system memories or registers or other such information storage,
transmission or display devices.

[0098] Examples of the present disclosure also relate to an apparatus for performing the
methods described herein. This apparatus can be specially constructed for the required purposes,
orit can be a general purpose computer system selectively programmed by a computer program
stored in the computer system. Such a computer program can be stored in a computer readable
storage medium, such as, but not limited to, any type of disk including optical disks, CD-ROMs,
and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic disk storage media, optical storage media, flash memory
devices, other type of machine-accessible storage media, or any type of media suitable for storing
electronic instructions, each coupled to a computer system bus.

[0099] The methods and displays presented herein are not inherently related to any
particular computer or other apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or it may prove convenient to construct a more
specialized apparatus to perform the required method steps. The required structure for a variety
of these systems will appear as set forth in the description below. In addition, the scope of the
present disclosure is not limited to any particular programming language. It will be appreciated
that a variety of programming languages can be used to implement the teachings of the present
disclosure.

[00100] It is to be understood that the above description is intended to be illustrative, and not
restrictive. Many other implementation examples will be apparent to those of skill in the art upon
reading and understanding the above description. Although the present disclosure describes

specific examples, it will be recognized that the systems and methods of the present disclosure
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are not limited to the examples described herein, but can be practiced with modifications within
the scope of the appended claims. Accordingly, the specification and drawings are to be regarded
in an illustrative sense rather than a restrictive sense. The scope of the present disclosure should,
therefore, be determined with reference to the appended claims, along with the full scope of

equivalents to which such claims are entitled.
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WHAT IS CLAIMED IS:

1. A method comprising;
obtaining one or more perspective camera images of an environment;
generating, using a first neural network (NN), for each pixel of a set of pixels of the one
or more perspective camera images,
a feature vector (FV), and
a depth distribution for a portion of the environment imaged by a corresponding
pixel, wherein the first NN is trained using a plurality of training images and a depth
ground truth data for the plurality of training images;
obtaining, for each pixel of the set of pixels, a feature tensor (FT) in view of (i) the FV
for a respective pixel and (i1) the depth distribution for the respective pixel; and
processing the obtained FTs, using a second NN, to identify one or more objects in the

environment.

2. The method of claim 1, wherein processing the obtained FTs comprises:
obtaining a combined FT using the FTs for the set of pixels;
mapping the combined FT to a ground surface to obtain a projected FT; and
using the second NN to process the projected FT.

3. The method of claim 2, wherein mapping the combined FT to the ground surface
comprises:

transforming the combined FT to a set of coordinates associated with the ground
surface; and

aggregating elements of the combined FT in a vertical direction to obtain the projected

FT.

4. The method of claim 2, wherein the one or more perspective camera images are
associated with a first time, the method further comprising:

obtaining one or more additional perspective camera images associated with at least a
second time;

generating, using the one or more additional perspective camera images, an additional
projected FT; and

performing a concurrent processing of the projected FT and the additional projected FT.
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5. The method of claim 4, wherein the concurrent processing is performed by an
aggregation NN comprising one or more convolutional kernels configured to aggregate

elements of the projected FT with elements of the additional projected FT.

6. The method of claim 1, wherein the second NN comprises:

a first classification head configured to output semantic segmentation for the one or
more objects in the environment; and

at least one second classification head configured to output geometric information

associated with locations of the one or more objects in the environment.

7. The method of claim 1, wherein the depth ground truth data comprises a depth estimate
for atleast a subset of pixels of the plurality of training images, wherein the depth estimate is

output by a first NN of a teacher model.

8. The method of claim 7, wherein the second NN is trained using outputs of a second NN

of the teacher training model.

9. The method of claim 1, whereinthe FT for each pixel of the set of pixels is output by a
first subnetwork of the first NN, wherein the depth distribution for each pixel of the set of
pixels is output by a second subnetwork of the first NN, and wherein the second subnetwork is

trained, using the depth ground truth data, prior to training of the first subnetwork.

10.  The method of claim 1, wherein the depth ground truth data comprises lidar-determined

distances to one or more objects in at least a subset of the plurality of training images.

11. A method of training a student model, the method comprising:
obtaining a training image;
processing, usinga first neural network (NN) of the student model, the training image
to generate
a plurality of feature vectors (FVs), and
a plurality of depth distributions, wherein each FV of the plurality of FVs and
each depth distribution of the plurality of depth distributions are associated with a

respective pixel of a plurality of pixels of the training image;
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obtaining a plurality of ground truth FVs generated by a first NN of a teacher model,
wherein each ground truth FV of the plurality of ground truth FVs is associated with a
respective pixel of the plurality of pixels of the training image;
obtaining a plurality of ground truth depthindicators, wherein each ground truth depth
indicator of the plurality of ground truth depth indicators is associated with a respective pixel of
at least a subset of the plurality of pixels of the training image; and
adjusting parameters of the first NN of the student model based on
a comparison of the plurality of FVs with the plurality of ground truth FVs, and
a comparison of the plurality of depth distributions with the plurality of ground
truth depth indicators.

12.  The method of claim 11, further comprising:

obtaining a plurality of feature tensors (FTs), wherein each FT of the plurality of FTs is
obtained usinga respective FV of the plurality of FVs and a respective depth distribution of the
plurality of depth distributions;

obtaining a combined FT using the plurality of FTs;

mapping the combined FT to a ground surface to obtain a projected FT;

processing the projected FT, using a second NN of the student model, to identify one or
more objects in the training image;

obtaining one or more ground truth objects identified by a second NN of the teacher
model in the training image; and

adjusting parameters of the second NN of the student model based on a comparison of
the one or more objects identified by the second NN of the student model with the one or more

objects identified by the second NN of the teacher model.

13.  The method of claim 11, wherein each of the plurality of ground truth depth indicators
comprises at least one of (i) a depth distribution obtained by the first NN of the teacher model
for the associated pixel, or (i1) a distance, obtained by a range-sensing device, to a portion of an

environment imaged by the associated pixel.

14. A system comprising:
a memory; and
a processing device communicative coupled to the memory, the processing device

configured to:
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obtain one or more perspective camera images of an environment;
generate, using a first neural network (NN), for each pixel of a set of pixels of
the one or more perspective camera images,
a feature vector (FV), and
a depth distribution for a portion of the environment imaged by a
corresponding pixel, wherein the first NN is trained using a plurality of training
images and a depth ground truth data for the plurality of training images;
obtain, for each pixel of the set of pixels, a feature tensor (FT) in view of (i) the
FV for a respective pixel and (ii) the depth distribution for the respective pixel; and
process the obtained FTs, using a second NN, to identify one or more objects in

the environment.

15.  The system of claim 14, wherein to process the obtained FTs, the processing device is
to:

obtain a combined FT using the FTs for the set of pixels;

map the combined FT to a ground surface to obtain a projected FT; and

use the second NN to process the projected FT.

16.  The system of claim 15, wherein to map the combined FT to the ground surface, the

processing device is to:

transform the combined FT to a set of coordinates associated with the ground surface;

and

aggregate elements of the combined FT in a vertical direction to obtain the projected
FT.
17.  The system of claim 15, wherein the one or more perspective camera images are

associated with a first time, and wherein the processing device is further to:

obtain one or more additional perspective camera images associated with at least a
second time;

generate, using the one or more additional perspective camera images, an additional
projected FT; and

perform a concurrent processing of the projected FT and the additional projected FT,

wherein the concurrent processing is performed by an aggregation NN comprising one or more
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convolutional kernels configured to aggregate elements of the projected FT with elements of

the additional projected FT.

18.  The system of claim 14, wherein the second NN comprises:

a first classification head configured to output semantic segmentation for the one or
more objects in the environment; and

at least one second classification head configured to output geometric information

associated with locations of the one or more objects in the environment.

19.  The system of claim 14, wherein the FT for each pixel of the set of pixels is output by a
first subnetwork of the first NN, wherein the depth distribution for each pixel of the set of
pixels is output by a second subnetwork of the first NN, and wherein the second subnetwork is

trained, using the depth ground truth data, prior to training of the first subnetwork.
20.  The system of claim 14, wherein the depth ground truth data comprises lidar-

determined distances to one or more objects in at least a subset of the plurality of training

images.
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