wo 2024/155603 A1 |0 000000 KOO0 000 0 00 0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 July 2024 (25.07.2024)

(10) International Publication Number

WO 2024/155603 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 8/65 (2018.01) GO6F 9/455 (2018.01)

(21) International Application Number:
PCT/US2024/011637

(22) International Filing Date:
16 January 2024 (16.01.2024)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, IM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC. SD, SE, SG, SK, SL, ST, SV, SY, TH,

(25) Filing Language: English TJ, TM, TN, TR, TT. TZ, UA, UG, US, UZ, VC, VN, WS,

(26) Publication Language: English ZA,7ZM, ZW.

(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
18/097,951 17 January 2023 (17.01.2023) US kind of regional protection available): ARTPO (BW, CV,

) GH, GM, KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST,

(71) Applicant: BENTLEY SySTEMS, INCORPOBATED SZ. TZ. UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
[US/US]; 685 Stockton Drive, Exton, Pennsylvania 19341 RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
s). DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,

(72) Inventor: BENTLEY, Keith A.; c/o Bentley Systems, In- LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
corporated, 685 Stockton Drive, Exton, Pennsylvania 19341 SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
Us). GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(74) Agent: BLANCHETTE, James A., Cesari and McKen- Published:

na, LLP, One Liberty Square, Boston, Massachusetts 02152
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SERVERLESS PROPERTY STORE

CLOUD-BASED
SOFTWARE
m

CLOUD DATACENTER 158G

BLOB STORAGE SERVICE 182

WARTUAL IMACHINE 180

CLOUD CONTAIER 164

WRITELOCK

| HAME

| EXPIRATICN
i THE

[

| PROPERTY

| STORE
DATABASE

1
|
|
|
!
-
|

172

1351

174

PROPERTY STORE SERVICE 124

BACKEND 142 !

i

CLIENT COMPUTING DEVICE 120

PROPERTY STORE SERVICE 124

CLIENT COMPUTING DEVICE 122

ALCESS
135411 TOREN T | FRONTEND 144
/7 TROPERTY |
CLENT.SIDE 4
CLIENT-SI0E CAGHE | APPLICGATION 145
SOFTWARE [N
1

FiG. 1

(57) Abstract: In example embodiments, techniques are described for imple-
menting serverless property stores to hold properties that persist application cus-
tomization data, such as settings. A serverless property store employs an "edge
base" paradigm, wherein an edge computing device executes a property store
service that maintains a local, periodically-synchronized copy of a portion of a
database that stores properties (i.e., a local property cache"). A cloud container
of a blob storage service of a cloud datacenter maintains a master copy of the
database (i.c., a "property store database"). Read operations on a client comput-
ing device may be performed against the local property cache. Write operations
may likewise be performed against the local property cache, however, they may
be serialized via a write lock maintained in the cloud container. Multiple server-
less property stores may be employed to store different properties each having
different scopes.

WO 2024/155603 PCT/US2024/011637

SERVERLESS PROPERTY STORE

BACKGROUND

Technical Field

The present disclosure relates generally to customizing sessions of software
applications, for example, sessions of applications used in a digital twin software

architecture.
5 Background Information

Throughout the design, construction, and operation of infrastructure (e.g.,
buildings, factories, roads, railways, utility networks, etc.) it is often desirable to
create digital twins. Digital twins may federate together data, breaking down
product/disciple/phase data silos, to produce unified digital representations usable

0 across the lifecycle of infrastructure. Portions of digital twins are often persisted in
infrastructure models, which describe entities in the physical world using

corresponding elements in the digital world.

A variety of software applications have been developed to allow users to
create, modify, view, or otherwise interact with digital twins. Users typically operate
15 such applications during user sessions (or simply “sessions’) that begin, for example,
when a user executes the application or loads a project therein, and end when the user
quits the application or exits the project. A user’s experience in the session may be
customized based on application customization data, such as settings. Examples of
settings include user preferences, recently used tools or tool configurations, recently
20 used infrastructure models or views thereof, and user interface states, among a variety
of other items. Settings may have various scopes. For example, while some settings
may apply to the application in general, other settings may be digital twin or
infrastructure model specific. Likewise, settings may be applicable to all users or

specific to a particular user or group of users.

25 Settings typically exist only in memory when a session is active and must be
persisted between sessions (i.e. stored and loaded) using some other technique. In

theory, settings that are digital twin or infrastructure model-specific could be persisted

WO 2024/155603 PCT/US2024/011637

in an infrastructure model itself. However, in practice, this is problematic since the
transaction model for infrastructure design data typically is quite different than that of
settings, and it maybe undesirable to commit new versions of an infrastructure model

each time a setting is to be stored.

5 Settings could be persisted separate from infrastructure models in a dedicated
enterprise database on a server deployed on-premises or in the cloud via platform as a
service (PaaS). However, deployments using an on-premises server or PaaS server
generally suffer many drawbacks. For example, such deployments lack scalability,
and may be unreliable. No matter how large the server, a single instance may never be

o able to scale to handle all requests from all clients of all digital twins in all the world.
Likewise, a single server presents a single-point-of-failure. Further, such deployments
may be expensive to implement. Enterprise databases are resource-hungry, requiring
fast processors, many levels of caching and large memory profiles, which are
typically available only at high cost. Additionally, where the enterprise database is

15 implemented as a “muti-tenant” database to address spin up/spin down overhead,
there may be challenges related to security (ensuring clients may only access their
own settings data) and data residency (guaranteeing settings data resides within a
particular geographical boundary). Still further, it may be burdensome to ensure
transactional consistency with traditional solutions. Since an enterprise database is a

20 shared resource, the server typically batches additions, deletions and modification,
and pages reads, to provide equitable balancing, leading to transactions of clients
becoming intermingled. Maintaining transactional consistency with many
intermingled transactions may be complicated and adversely affect performance. It
should be understood that there may be a wide variety of additional drawbacks of

25 persisting settings in an enterprise database on a server deployed on-premises or in the

cloud via PaaS.

Accordingly, there is a need for improved techniques for persisting application

customization data, such as settings.

WO 2024/155603 PCT/US2024/011637

SUMMARY

In various example embodiments, techniques are described for implementing

one or more serverless property stores to hold key/value pairs (referred to herein as

s “properties”) that persist application customization data, such as settings. Rather than
use a dedicated enterprise database on a server, a serverless property store employs an
“edge base” paradigm, wherein an edge computing device (e.g., a client computing
device or virtual machine (VM)) executes a property store service that maintains a
local, periodically-synchronized copy of a portion of a database that stores properties

0 (referred to herein as a “local property cache™). A cloud container of a blob storage
service of a cloud datacenter may maintain a master copy of the database (referred to
herein as a “property store database”). Read operations on a client computing device
may be performed against the as-of-last-synchronization local property cache. Write
operations may likewise be performed against the local property cache, however, they

15 may be serialized via a write lock maintained in the cloud container that permits only
a single client computing device to perform writes at a time. Multiple serverless
property stores may be employed to store different properties each having different
scopes, including subject matter-based scopes (e.g., digital twin or infrastructure
model specific scopes) and/or user-based scopes (e.g., single user or group of user

20 specific scopes).

In contrast to server-based enterprise database deployments, serverless
property stores may provide improved scalability (e.g., since reads never affect reads
or writes of applications on other client computing devices, and writes are dependent
only on the number of simultaneous writers and not significantly affected by

25 transaction size). Reliability may be improved as there is no single server to fail, reads
can sometimes proceed without cloud connectivity (e.g., reads can continue to occur
from a local property cache even if the property store database is not accessible), and
blob storage may support automatic version tracking that can reverse unwanted
changes. Further, since blob storage is typically the cheapest offering of a cloud

30 datacenter, cost may be decreased. Spin up/spin down overhead may be limited to the

creation and deletion of the cloud container, and data residency may be readily

WO 2024/155603 PCT/US2024/011637

30

enforced by siting the cloud container in blob storage of a particular geographical
region. Still further, transactional consistency may be ensured in a simplified manner
without significant performance impacts. It should be understood that there may be a
large number of additional advantages of serverless property stores and that this

listing merely highlights some of their desirable properties.

In one example embodiment, a serverless property store is provided to persist
application customization data. When a local property cache is not already in use on
an edge computing device (e.g., a client computing device or VM), a property store
service obtains a token for accessing a cloud container maintained by a cloud
datacenter and downloads a manifest for a property store database maintained in the
cloud container to create a local manifest on the edge computing device.
Subsequently, upon receiving one or more requests from a module of an application
executing on the client computing device for a property that maintains the application
customization data (the requests including a property name), the property store service
reads a value of the property corresponding to the property name from the local
property cache, and supplies the value of the property to the module of the

application.

In another example embodiment, a serverless property store is provided to
persist application customization data. To enable writing, a property store service on
an edge computing device (e.g., a client computing device or VM) obtains a write
lock from a cloud container maintained by a cloud datacenter and downloads a
manifest from the cloud container to update a local manifest on the edge computing
device. The property store service then receives one or more requests from a module
of an application to add, delete or modify properties that maintain application
customization data. The property store service downloads any blocks affected by the
request that are not already local from the property store database to the local property
cache. The property store service then writes to the local property cache to add,
delete, or modify one or more blocks of the local property cache, and records such
additions, deletions, or modifications to create an updated local manifest. Added or
modified blocks are uploaded to the property store database, and the updated local
manifest is uploaded to replace the manifest in the cloud container. Thereafter, the

property store service releases the write lock back to the cloud container.

WO 2024/155603 PCT/US2024/011637

In still another example embodiment, an edge computing device (e.g., a client
computing device or YM) is configured to persist application customization data. The
edge computing device has a processor and a memory coupled to the processor. The
memory is configured to maintain a local property cache for storing a portion of a

s property store database of a cloud container, a local manifest for the local property
cache produced from a manifest in the cloud container, and software for a property
store service. The software for the property store service when executed on the
processor is operable to service one or more requests from a module of an application
for a property by downloading from the property store database to the local property

10 cache any blocks indicated in the local manifest required to read the property that are
not already local in the local property cache, reading the local property cache, and
supplying at least a value of the property from the local property cache to the module
of the application. The software for the property store service is further operable to
service one or more requests from the application to add, delete or modify the

15 property by obtaining a write lock, downloading the manifest from the cloud
container to update the local manifest, writing to the local property cache to add,
delete, or modify one or more blocks of the local property cache and recording such
additions, deletions, or modifications to create an updated local manifest, uploading
added or modified blocks to the property store database and uploading the updated

20 local manifest to replace the manifest in the cloud container, and releasing the write

lock back to the cloud container.

It should be understood that a variety of additional features and alternative
embodiments may be implemented other than those discussed in this Summary. This
Summary is intended simply as a brief introduction to the reader, and does not

5 indicate or imply that the examples mentioned herein cover all aspects of the

disclosure, or are necessary or essential aspects of the disclosure.

WO 2024/155603 PCT/US2024/011637

BRIEF DESCRIPTION OF THE DRAWINGS

The description below refers to the accompanying drawings of example

embodiments, of which:

Fig. 1 is a high-level block diagram of an example software architecture in

5 which serverless property stores may be implemented;
Fig. 2 is a diagram of an example property store database;

Fig. 3 is a flow diagram for an example sequence of steps for configuring

access and performing read operations using a serverless property store; and

Fig. 4 is a flow diagram for an example sequence of steps for configuring

0 access and performing write operations using a serverless property store.

DETAILED DESCRIPTION

Fig. 1 is a high-level block diagram of an example software architecture 100 in

which serverless property stores may be implemented. The architecture may be

15 divided into client-side software 110 that executes on client computing devices 120,
122 and cloud-based software 112 that executes on a cloud datacenter 160 accessible
via a network (e.g., the Internet). Client computing devices 120, 122 may execute
applications 140, for example, digital twin software applications that allow users to
create, modify, view, or otherwise interact with digital twins during sessions. The

20 cloud datacenter 160 may provide a blob storage service 162 that maintains at least
one cloud container 164. The cloud datacenter 160 may also provide a role-based
access control (RBAC) service 166 that provides tokens (e.g., shared access signature
(SAS) tokens) that grant read and/or write permission to the cloud container 164. In
some implementations, the cloud datacenter 160 may additionally provide a compute

25 service for executing one or more VMs 130.

The applications 140 may be customized using application customization data,
such as settings (e.g., user preferences, recently used tools or tool configurations,
recently used infrastructure models or views thereof, user interface states, etc.). The
application customization data (e.g., settings) may be persisted between sessions as

30 properties (i.e. key/value pairs) maintained according to an “‘edge base” paradigm.

WO 2024/155603 PCT/US2024/011637

One or more master databases (each referred to herein as a “property store database”)
may be maintained in the cloud container 164 to store properties, each property store
database having a respective scope. Each edge computing device (e.g., client
computing device 120 or VM 180) may execute one or more property store services

s 124 that each maintain a local, periodically-synchronized copy of a portion of a
portion of a respective property store database (referred to herein as a “local property
cache”). Each property store database may be divided into fixed size portions (e.g., 32
kilobyte (Kb) portions) referred to herein as “blocks” that are downloaded to the

corresponding local property cache 132 on demand (or prefetched).

10 One or more property store services 124 may interact with backend modules
142 of applications 140. Where the application 140 is a digital twin application, a
backend module 142 may be primarily concerned with administration, infrastructure
model management, loading and creating elements and models, and related functions.
The backend modules 142 may interact with frontend modules 142. Where the

15 application 140 is a digital twin application, a front module 144 may be primarily
concerned with providing a user interface for interacting with the digital twin.
Depending on the nature of the edge computing device 120, 180, if there is a need to
propagate values of properties to frontend modules 144, different mechanisms may be

utilized.

20 For example, in the case where the edge computing device is a client
computing device 120, a property store service 124 and local property cache 132, and
the application 140 with its backend module 142 and frontend module 144, may all be
executed on the same machine, either in a single process or in multiple processes. In a
case where the edge computing device is a VM 180 of a cloud datacenter 160 (or

25 another machine), a property store service 124, property store cache 132 and backend
module 142 be resident in the cloud, and the frontend module 144 of the application
140 may be executed separately on a client computing device 122. Values of
properties may be propagated as needed from the backend module 142 to the frontend
module 144 directly or via inter-process communication (IPC) in the first case, or via

30 remote procedure call (RPC) or representational state transfer (REST) application

program interface (API) in the second case.

WO 2024/155603 PCT/US2024/011637

In either case, each property store service 124 may obtain a token (e.g., a SAS
token) 136 from the RBAC service 166 that permits reading and/or writing to the
cloud container 164. The cloud container 164 may maintain a manifest 174 indicating
block identifier (IDs) of blocks of the property store database 172 (and synchronized

s local property caches). In one implementation, the block IDs may be a hash of their
contents (e.g., a hash of the contents of the 32 Kb portions). Each property store
service 124 may maintain a local manifest 134 derived from the manifest 174 as it
stood at a time of last synchronization. That is, the local manifest 134 may include
local changes to the local property cache 132 that have not yet been synchronized

10 with the manifest 174, or may lack changes made by other property store services to
the manifest 174 since a last synchronization. Synchronization may occur independent
of block downloads from the property store database 172 or periodic block purging in

the cloud container 164.

Read operations are performed by each property store service 124 against its

15 local property cache 132. Among other functions, read operations may be utilized to
load a property that persists application customization data, such as settings, such that
a value thereof may be used to customize a user’s experience in a session. Write
operations are performed against each local property cache 132, serialized via a
respective write lock 176 (e.g., a specially named blob) maintained in the cloud

20 container 164 that permits only a single client computing device 120, 122 to modify
the local property cache 132 at a time. A property store service 124 may obtain the
write lock 176, download the manifest 172 from the cloud container 164 to refresh the
local manifest 134, perform write operations on the local property cache 132 and
update the local manifest, upload added or modified blocks to the property store

25 database 172 and upload the updated local manifest 134 to replace the manifest 174 in
the cloud container 164, and then release the write lock 176. Among other functions,
write operations may be utilized to store a property that persists application
customization data, such as settings, so that values of the settings may be persisted

between sessions.

30

WO 2024/155603 PCT/US2024/011637

Fig. 2 is a diagram of an example property store database 172. The property
store database 172 may be scoped based on subject matter and/or user, for example, to
store properties for an entire digital twin, a single infrastructure model of a digital
twin, a team of users of a digital twin, a team of users of a single infrastructure model

s of adigital twin, a single user of a digital twin, a single user of a single infrastructure
model of a digital twin (so that properties may be shared among the users’ multiple
computers), or another scope. Use of multiple property store databases 132 of
different scopes may enable fine-grain access control, and reduce the chance of write
lock contention (e.g., since a user is granted a write lock 176 for the entire property

10 store database 172).

The property store database 172 stores one or more properties that each
include a property name 212 that serves as a key. The property name 212 is paired
with a value 214 that indicates the desired customization. A property name 212 may
be a unique sting that may have a length within a predetermined range (e.g., between

15 3 and 2048 characters) and may be subject to certain format restrictions (e.g., may not
begin or end with a space). Applications 140 may organize property names according
to parsing conventions. For example, property names 212 may be organized based on
hierarchical conventions that define namespaces of increasing granularity, beginning
from identifying the application and progressing to increasing granular functions or

20 aspects thereof (e.g., “FliteGen/paths/runl” or “AlrViewer/symbology/lights/emf{”).
Additionally, URI-like conventions may be employed where parts of a property name
212 may identify individual members of a collection or options (e.g.,
“RtsSimualtion/scenario36/results/?excList{33,4}” or “SeismicRecord/?user="Frieda
Green”&prot=1"). Such conventions may be implemented at the discretion of

25 applications 140. Other than enforcing uniqueness, the property store service 124

typically does not interpret property names 212.

Each property name 212 is paired with a value 214 that indicates the desired
customization. A value 214 may be of various types. For example, values may be
strings, numbers (e.g., integer or real), booleans, blobs (e.g., binary data), objects

30 (e.g., with named members having a type of string, number, boolean, nested object, or

array thereof).

WO 2024/155603 10 PCT/US2024/011637

Fig. 3 is a flow diagram for an example sequence of steps 300 for configuring
access and performing read operations using a serverless property store. The sequence
of steps 300 may assume a local property cache 132 of the property store service 124
is not already in use on the edge computing device (e.g., client computing device 120
5 or VM 180). If a property store service 124 is already in use, then steps 310-320 may
be skipped.

At step 310, the property store service 124 may obtain a token (e.g., a SAS
token) 136 from the RBAC service 166 that permits reading and/or writing to the
cloud container 164. The token may have an expiration time, and the property store

10 service 124 (during normal operation) may periodically refresh the token before it

expires.

At step 320, the property store 124 may download the manifest 174 from the

cloud container 164 to create a local manifest 134 on the edge computing device (e.g.,
client computing device 120 or VM 180) that includes a list of block IDs. This local

15 manifest 134 will later be periodically (e.g., in response to a timer) or responsively
(e.g., in response to a manual request from a user or a trigger, for instance when
writes are to occur) refreshed (synchronized) to update it to reflect changes made by
other client computing devices. Refreshes may involve redownloading the manifest
174 from the cloud container 164. It should be understood that

20 downloading/redownloading the manifest 174 in and of itself does not cause any
blocks of the property store database 172 to be downloaded. Blocks may be separately

downloaded (e.g., on demand or via prefetching).

At step 330, which may occur at a subsequent time to step 320, a backend
module 142 of an application 140 may open the local property cache 132 for read

25 daccess.

At step 340, the property store service 124 may receive one or more requests
from the backend module 142 of the application 140 for a property. A request may

include a property name 212 that serves as a key in the property store database 172.

WO 2024/155603

30

11

At step 350, the property store service 124 may download from the property
store database 172 to the local property cache 132 any blocks indicated by block IDs
in the local manifest 134 that are required to read the property but are not already
local in the local property cache 132. If the needed block(s) are already resident in the

local property cache 132, then nothing further may need to be downloaded.

At step 360, the property store service 124 may read the local property cache
132, for example, to obtain the value 214 of the property, for example, by looking up

the property name 212 therein.

At step 370, the property store service 124 may return the value 214 of the
property to the backend module 132 of the application 140. If the value of the
property is needed by the frontend module 142, it may be passed directly (e.g., if they
run in the same process on the same client computing device 120), by IPC (e.g., if
they run in more than one process on the same client computing device 120), or via
RPC or REST API (e.g., if they run on different computing devices, such as on a VM

180 and client computing device 122, respectively).

Fig. 4 is a flow diagram for an example sequence of steps 400 for configuring
access and performing write operations using a serverless property store. The
sequence of steps 400 may assume a local property cache 132 is already in use on an
edge computing device (e.g., client computing device 120 or VM 180), for example
,as a result of performing reads. If a local property cache 132 is not already in use,
then operations similar to steps 310-320 in Fig. 3 may be performed prior to the steps
400.

At step 410, the backend module 142 of the application 140 may open the

local property cache 132 for write access.

At step 420, the property store service 124 may obtain the write lock 176 from
the cloud container 164. The write lock 176 may be a specially named blob that holds
the name of the client computing device 120, 122 that currently has write permission,
and an expiration time for when it was obtained. To obtain the write lock 176, the
property store service 124 may issue a request (e.g., a Hypertext Transfer Protocol
(HTTP) GET request) to read the write lock 176. If the write lock 176 includes a non-

null value for name, the expiration time value may be compared with the current time

PCT/US2024/011637

WO 2024/155603 2 PCT/US2024/011637

on the client computing device 120, 122 to determine if the write lock 176 is expired
(i.e., the current time is past the expiration time value). If the write lock 176 includes
a null value for name, or the write lock 176 includes a non-null value for name but 1s
expired, the property store service 124 may add the name of the client computing

5 device 120, 122 and set the expiration time to the current time on the client computing
device 120, 122 via a request (e.g., an HTTP PUT request with HTTP If-Match). In
this manner, if more than one client computing device 120, 122 simultaneously
attempts to obtain the write lock 176 only one will succeed. If the write lock 176
includes a non-null value for name and has not expired, the property store service 124

10 may wait a predetermined time-out period and then repeat, issuing another request to
read the write lock 176. If the write lock 176 has not been obtained after a

predetermined number of attempts, the process may fail.

At step 430, the property store service 124 may download the manifest 174

from the cloud container 164 to update a local manifest 134 of the local property

15 cache 132 on the edge computing device. This refreshes the local manifest 134 to
reflect all changes made by other client computing devices since the local manifest

134 was last updated. Thereafter, writes may safely proceed.

At step 440, the property store service 124 may receive one or more requests
from the backend 142 of an application 140 to add, delete, or modify properties. For
20 example, a request may store application customization data (e.g., settings) currently
in memory to persist them between sessions. The requests may take the form of
database commands (e.g., SQL commands) such as INSERT, UPDATE, DELETE,

ete. commands.

At step 450, the property store service 124 may automatically download from
25 the property store database 172 to the local property cache 132 any blocks affected by

the requests that are not already local.

At step 460, the property store service 124 may write to the local property
cache 132 to add, delete, or modify one or more blocks of the local property cache
132 and record such additions, deletions, or modifications to the local manifest 134,

30 creating an updated version thereof. All new blocks may be assigned a new ID (e.g., a

WO 2024/155603 13 PCT/US2024/011637

hash of their content). Likewise, all modified blocks may be assigned a new ID (e.g.,

a hash of their updated content).

At step 470, the property store service 124 may upload the added or modified
blocks to the property store database 172, and after all added or modified blocks have
5 been uploaded may upload the updated local manifest 134 to replace the manifest 174
in the cloud container 164. The blocks may be uploaded in parallel, with retries, until
all blocks are added to the property store database 172. Typically, the blocks of the
property store database 172 are immutable. As such, when modified blocks are
uploaded they are stored as new blocks with their own block ID (e.g., determined
10 based on their contents), similar to added blocks. Likewise, blocks of the property
store database 172 are typically not deleted independent of periodic purge operations
(e.g., that may occur relatively infrequently, such as once per day). As such, old
blocks whose block ID is no longer in the manifest 174 in the cloud container 164
may remain available until the next purge operation. An effect of such behavior is that
15 even while block uploads are in progress, property store services on other client
computing devices can safely read from the property store database 172 and will not
see any changes. Even after the blocks are written and the manifest 174 in the cloud
container 164 updated, property store service on other client computing devices can
continue to use their now-stale local manifests, and access old blocks from their local
20 property cache 132 or from the property store database 172 for a period of time. To
see the changes, the property store services on the other client computing devices may
periodically refresh (synchronize) their local manifests or trigger a responsive refresh
(e.g., for instance as part of their own writes). After such a refresh, the property store
services will then cease to utilize old blocks and begin to utilize new blocks created

25 by the changes.

Further, since the cloud container 164 is typically maintained in blob storage
of a blob storage service that supports automatic version tracking, should there be a
need to undo the changes, and reverse added or modified blocks, the cloud container
164 can simply be rolled back to a previous version. Such cloud based versioning may
30 be useful to roll back inadvertent or malicious changes to a property store database

172.

WO 2024/155603 1 PCT/US2024/011637

At alternative step 480, the property store service 124 may abandon the
changes. In such case, the local manifest 134 is refreshed by redownloading the
manifest 174 in the cloud container 164. If abandonment occur, then any changes are

effectively undone by refreshing the local manifest 134.

5 At step 490, the property store service 124 releases the write lock 176 back to
the cloud container 164. The property store service 124 may clear the name and
expiration time via a request (e.g., an HTTP PUT request). If the property store
service 124 should fail in some manner and not release the write lock 176, the write
lock will eventually expire on its own due to the expiration time value, or may be

0 manually released.

In summary, techniques are described herein for implementing serverless
property stores that persist application customization data, such as settings. As
discussed above, they may provide improved scalability, reliability, lower cost,
decreased spin up/spin down overhead, geographical region assurance, and simplified

15 guarantees of transactional consistency over server-based enterprise database
deployments. It should be understood that there may be a large number of additional
advantages. Likewise, it should be understood that a wide variety of adaptations and
modifications may be made to the techniques describe herein to suit various
implementations and environments. While it is discussed above that many aspects of

20 the techniques may be implemented by specific software processes executing on
specific hardware, it should be understood that some or all of the techniques may also
be implemented by different software executing on different hardware and stored in a
variety of non-transitory computer readable media. In addition to general-purpose
computing devices, the hardware may include specially configured logic circuits

25 and/or other types of hardware components. Above all, it should be understood that

the above descriptions are meant to be taken only by way of example.

What is claimed is:

WO 2024/155603 15 PCT/US2024/011637

CLAIMS

1 1. A method for persisting application customization data, comprising:

when a local property cache is not already in use on an edge computing

[\=]

3 device,

4 obtaining, by a property store service executing on the edge

5 computing device, a token for accessing a cloud container maintained by a

6 cloud datacenter, and

7 downloading, by the property store service, a manifest for a property
8 store database maintained in the cloud container to create a local manifest on
9 the edge computing device;,
10 receiving one or more requests from a module of an application executing on

11 aclient computing device for a property that maintains the application customization

12 data, the request including at least a property name;

13 reading, by the property store service, a value of the property corresponding

14 to the property name from the local property cache; and

15 supplying the value of the property to the module of the application.

1 2. The method of claim 1, further comprising:

2 in response to the receiving one or more requests, downloading, by the
3 property store service from the property store database to the local property cache,
4 one or more blocks indicated in the local manifest that are required to read the

s property and not already in the local property cache.

1 3. The method of claim 1, further comprising:

2 prefetching, by the property store service from the property store database to
3 the local property cache, one or more blocks that are required to read the property

4 prior to receiving the one or more requests for the property.

WO 2024/155603 PCT/US2024/011637

16

4. The method of claim 1, further comprising:

refreshing, by the property store service, the local manifest to enable the
property store service to see changes made by other property store services to the
property store database, the refreshing to redownload the manifest from the cloud

container to synchronize the local property cache with the property store database.

5. The method of claim 1, wherein the edge computing device is the client computing
device, the module of the application is a backend module, the property store service,
the backend module, and a frontend module of the application are all executed on the
same client computing device, either in a single process or in multiple processes, and

the method further comprises:

passing the value of the property from the backend module to the frontend

module directly or via inter-process communication (IPC).

6. The method of claim 1, wherein the edge computing device is a virtual machine
(VM) of the cloud datacenter, the module of the application is a backend module
executed on the VM, a frontend module of the application is executed on the client

computing device, and the method further comprises:

passing the value of the property from the backend module to the frontend
module via a remote procedure call (RPC) or representational state transfer (REST)

application program interface (API).

7. The method of claim 1, further comprising:

obtaining, by the property store service from the cloud container, a write

lock;

downloading, by the property store service, the manifest from the cloud

container to update the local manifest;

receiving, by the property store service, one or more requests from the

module of the application to add, delete or modify properties;

WO 2024/155603 17 PCT/US2024/011637

8 downloading any blocks affected by the request that are not already local

9 from the property store database to the local property cache;

10 writing, by the property store service, to the local property cache to add,
11 delete, or modify one or more blocks of the local property cache, and recording such

12 additions, deletions, or modifications in the updated local manifest;

13 uploading, by the property store service, added or modified blocks to the
14 property store database, and uploading the updated local manifest to replace the

15 manifest in the cloud container; and

16 releasing the write lock back to the cloud container.

1 8. The method of claim 7, further comprising:

assigning each added or modified block a new block identifier (ID) in the

[\

3 updated local manifest,

4 wherein the uploading the updated local manifest adds new block IDs to the
s manifest in the cloud container and removes block IDs of deleted blocks from the

6 manifest in the cloud container.

1 9. The method of claim §, further comprising:

[\

maintaining old blocks whose block ID is no longer in the manifest in the

3 cloud container until a purge operation is periodically performed.

1 10. The method of claim 8, wherein the new block ID is a hash of contents of the

added or modified block.

()

1 11. The method of claim 7, further comprising:

undoing changes to the property store database made by the added or

[\

3 modified blocks by rolling back the cloud container to a prior version using version

4 tracking provided by the cloud datacenter.

WO 2024/155603 18 PCT/US2024/011637

1 12. A method for persisting application customization data, comprising:

[\=]

obtaining, by a property store service executing on an edge computing device

3 from a cloud container maintained by a cloud datacenter, a write lock;

4 downloading, by the property store service, a manifest for a property store
5 database to update a local manifest of a local property cache on the edge computing

6 device;

7 receiving, by the property store service, one or more requests from a module
s of an application to add, delete or modify properties that maintain the application

9 customization data;

10 downloading any blocks affected by the request that are not already local

11 from the property store database to the local property cache;

12 writing, by the property store service, to the local property cache to add,
13 delete, or modify one or more blocks of the local property cache, and recording such

14 additions, deletions, or modifications in the updated local manifest;

15 uploading, by the property store service, added or modified blocks to the
16 property store database, and uploading the updated local manifest to replace the

17 manifest in the cloud container; and

18 releasing the write lock back to the cloud container.

1 13. The method of claim 12, further comprising:

assigning each added or modified block a new block identifier (ID) in the

[\

3 updated local manifest,

4 wherein the uploading the updated local manifest adds new block IDs to the
s manifest in the cloud container and removes block IDs of deleted blocks from the

¢ manifest in the cloud container.

1 14. The method of claim 13, further comprising:

maintaining old blocks whose block ID is no longer in the manifest in the

[S8]

3 cloud container until a purge operation is periodically performed.

WO 2024/155603 19 PCT/US2024/011637

1 15. The method of claim 13, wherein the new block ID is a hash of contents of the
added or modified block.

=

1 16. The method of claim 12, further comprising:

undoing changes to the property store database made by the added or

(3=

3 modified blocks by rolling back the cloud container to a prior version using version

4 tracking provided by the cloud datacenter.

1 17. The method of claim 12, further comprising:

receiving one or more requests from the module of the application including

(=]

3 atleast a property name;

4 reading, by the property store service, a value of the property corresponding

s to the property name from the local property cache; and

6 supplying the value of the property from the local property cache to the

7 module of the application.

1 18. The method of claim 17, further comprising:

2 in response to the receiving one or more requests, downloading, by the

3 property store service from the property store database to the local property cache,

4 one or more blocks indicated in the local manifest that are required to read the

5 property corresponding to the property name that are not already in the local property

6 cache.

1 19. The method of claim 17, further comprising:

2 prefetching, by the property store service from the property store database to
3 the local property cache, one or more blocks that are required to read the property
4 corresponding to the property name prior to receiving the one or more requests for

s the property.

WO 2024/155603 20 PCT/US2024/011637

1 20. An edge computing device configured to persist application customization data,

2 the edge computing device comprising:
3 a Processor;

4 a memory coupled to the processor, the memory configured to maintain a

5 local property cache for storing a portion of a property store database of a cloud

6 container, a local manifest for the local property cache produced from a manifest in
7 the cloud container, and software for a property store service that when executed on

s the processor is operable to:

9 service one or more requests from a module of an application for a
10 property by downloading from the property store database to the local

11 property cache any blocks indicated in the local manifest that are required to

12 read the property that are not already local in the local property cache,

13 reading the local property cache, and supplying at least a value of the

14 property from the local property cache to the module of the application; and
15 service one or more requests from the module of the application to

16 add, delete, or modify the property by obtaining a write lock, downloading

17 the manifest in the cloud container to update the local manifest, writing to the
18 local property cache to add, delete, or modify one or more blocks of the local
19 property cache and recording such additions, deletions, or modifications to

20 create an updated local manifest, uploading added or modified blocks to the
21 property store database and uploading the updated local manifest to replace
2 the manifest in the cloud container, and releasing the write lock back to the
23 cloud container.

1 21. The edge computing device of claim 20, wherein the edge computing device is a
2 client computing device, the module of the application is a backend module, and the
3 memory of the client computing device further maintains software for the backend

4 module, and the software for the property store service is further operable to pass the
5 value of the property from the backend module to a frontend module of the

6 application directly or via inter-process communication (IPC).

WO 2024/155603 21 PCT/US2024/011637

1 22. The edge computing device of claim 20, wherein the edge computing device is a
2 virtual machine (VM) of a cloud datacenter, the module of the application is a

3 backend module executed on the VM, and the software for the property store service
4 is further operable to pass the value of the property from the backend module to a

s frontend module of the application executed on a client computing device as part of a
6 remote procedure call (RPC) or representational state transfer (REST) application

7 program interface (API).

WO 2024/155603

100
-\

1/4

PCT/US2024/011637

CLOUD DATACENTER 160

176“\

CLOUD-BASED
SOFTWARE
112

BLOB STORAGE SERVICE 162

CLOUD CONTAINER 164

{

WRITE LOCK
NAME

PROPERTY |
STORE
DATABASE

EXPIRATION y
TIVE

MANIFEST

174
v

)

172

136 1

£

RBAC
SERVICE
166

(—=

VIRTUAL MACHINE 180

PROPERTY STORE SERVICE 124
ACCESS]
LOCAL

TOKEN
132,//f‘ PROPERTY
CACHE

LOCAL
134 | WANIFEST

136~

CLENT-GIDE
SOFTWARE
110

CLIENT COMPUTING DEVICE 120

PROPERTY STORE SERVICE 12

ACCESS
TOKEN

oA
PROPERTY
CACHE

112" |

LOCAL
MANIFEST

BACKEND 142
E

FRONTEND 144

APPLICATION 140

FIG. 1

J

BACKEND 142

CLIENT COMPUTING DEVICE 122

FRONTEND 144

APPLICATION 140

PCT/US2024/011637

WO 2024/155603

2/4

Z Ol

{(NOSP Lo3rg0
g01d -
NYII00E .
HIGNNN
ONIMLS

?

L

L]

PIZ aNA

Z1¢ NYN ALM3d0Yd

ASVEYLIVI 34O LS ALYEd0Odd

gff:smmw

WO 2024/155603

300 \

OBTAIN SAS TOKEN

DOWNLOAD MANIFEST
FROM CLOUD
CONTAINER TO CREATE
LOCAL MANIFEST

3/4

FIG. 3

PCT/US2024/011637
OPEN PROPERTY 130
STORF DATABASE -
FOR READ ACCESS

RECEIVE REQUEST(S)
FOR PROPERTY

DOWNLOAD FROM PROPERTY
STORE DATABASE TO
L OCAL CACHE ANY
BLOCKS FOR PROPERTY
NOT ALREADY LOCAL

READ LOCAL
CACHE TO OBTAIN
PROPERTY VALUE

RETURN RESULTS

WO 2024/155603 PCT/US2024/011637

4/4

OFEN PROPERTY STORE 410
DATABASE FOR WRITE ACCESS

OBTAIN WRITE LOCK 190
FROM CLOUD CONTAINER —

!

DOWNLOAD MANIFEST FROM 10
CLOUD CONTAINER TO e

UPDATE LOCALMANIFEST

RECEIVE REQUEST(S) TO ADD, 240
DELETE OR MODIFY —
PROPERTY

DOWNLOAD AFEECTED BLOCKS NOT

ALREADY LOCAL FROM PROPERTY 450

STORE DATABASE TO LOCAL
PROPERTY CACHE

WRITE TG PROPERTY STORE DATABASE

AND RECORD ADDITIONS, DELETIONS AND 1" %60
MODIFICATIONS TO LOCAL MANIFEST

[47’0

UPLOAD ADDED OR MODIFIED BLOCKS
TO PROPERTY STORE DATABASE AND

UPLOAD LOCAL MANIFEST TO REPLACE
MANIFEST IN CLOUD CONTAINER

!
j
? ABANDON CHANGES AND REDOWNLOAD ;
|
|

MANIFEST FROM CLOUD CONTAINER |

RELEASE WRITE LOCK Pl
BACK TO CLOUD CONTAINER

FliG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2024/011637

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F8/65 GO6F9/455

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

column 7; figure 1
column 10; figure 3
column 23; figure 20

X US 10 482 063 B2 (ROCKWELL AUTOMATION TECH
INC [US]) 19 November 2019 (2019-11-19)

I:‘ Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 April 2024

Date of mailing of the international search report

24/05/2024

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Krawaritis, Achilles

Form PCT/ASA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2024/011637
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 10482063 B2 19-11-2019 EP 3444689 Al 20-02-2019
Us 2019050414 A1 14-02-2019
Us 2020034337 A1 30-01-2020

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

