Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 29103. Отображено 100.
20-05-2008 дата публикации

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА МЕТОДОМ ПИРОГИДРОЛИЗА ИЗ ГЕКСАФТОРИДА УРАНА И ИСПОЛЬЗУЕМАЯ В НЕЙ РЕАКЦИОННАЯ КАМЕРА

Номер: RU0000073325U1

1. Установка для получения порошка диоксида урана из гексафторида урана, содержащая, по меньшей мере, одну обогреваемую реакционную камеру, имеющую фильтровальную зону, первую реакционную зону для превращения гексафторида в уранилфторил и вторую реакционную зону с газораспределительной решеткой для создания псевдоожиженного слоя для восстановления уранилфторида до диоксида урана, средства выгрузки и транспортировки полученного порошка диоксида урана и печь для довосстановления непрореагировавшего уранилфторида, отличающаяся тем, что установка на выходе снабжена, по меньшей мере, одним бункером-влагомером с источником и детектором нейтронов, соединенным со средством подачи порошка в контейнер для кондиционного порошка и в контейнер для некондиционного порошка. 2. Установка по п.1, отличающаяся тем, что она снабжена узлом подачи легирующих элементов в реакционную камеру. 3. Установка по п.1, отличающаяся тем, что она снабжена, по меньшей мере, одним стабилизатором-охладителем, включающим вертикальную колонну, снабженную средствами подачи в нее воздуха и азота для стабилизации состава порошка, и наклонный шнековый транспортер с водоохлаждаемой рубашкой для подачи порошка в вертикальную колонну. 4. Установка по п.3, отличающаяся тем, что она содержит два стабилизатора-охладителя с возможностью попеременной работы их вертикальных колонн, каждая из которых соединена с соответствующим наклонным шнековым транспортером, с другим входным концом которого соединен выход печи для довосстановления порошка через реверсивный шнековый транспортер для разделения порошка на два потока. 5. Установка по п.3 или 4, отличающаяся тем, что вертикальная колонна каждого стабилизатора-охладителя снабжена в верхней части фильтрующими элементами, в средней части - датчиками верхнего и нижнего уровня загрузки порошка, а средство подачи воздуха и азота расположено в ее нижней части. 6. Установка по п.3 или 4, отличающаяся тем, что вертикальная колонна каждого стабилизатора-охладителя соединена ...

Подробнее
10-11-2008 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ ОКСИДОВ УРАНА

Номер: RU0000077857U1

1. Устройство для получения легированных оксидов урана, содержащее плоский корпус с крышкой, внутри корпуса размещена формирующую реакционную зону камера сгорания, на крышке корпуса установлены горелочное устройство, сообщенное с камерой сгорания, и форсунка для подачи распыленного раствора оксидов химических соединений или уранилнитрата, горелочное устройство выполнено в виде коаксиально установленных центрального сопла для подачи гексафторида урана, промежуточного сопла для подачи азота и внешнего сопла для подачи водяного пара и водорода, корпус установлен в электропечи, внизу камеры установлена пористая перегородка, для подачи в реакционную зону ожижающих газов, под которой размещена газораспределительная камера, отличающееся тем, что камера сгорания выполнена сужающейся книзу с углом раствора конуса 10-20° и сообщена через патрубки с фильтрующими элементами, размещенными вне корпуса. 2. Устройство по п.1, отличающееся тем, что фильтрующие элементы выполнены в виде последовательно расположенных основного фильтра, снабженного шнеком для транспортировки порошка, и контрольного фильтра, снабженного приемной емкостью. 3. Устройство по п.1, отличающееся тем, что основной и контрольный фильтры установлены в электропечах. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 77 857 (13) U1 (51) МПК C01G 43/025 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2008121645/22 , 30.05.2008 (24) Дата начала отсчета срока действия патента: 30.05.2008 (45) Опубликовано: 10.11.2008 (73) Патентообладатель(и): Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (RU) Ñòðàíèöà: 1 U 1 7 7 8 5 7 R U U 1 Формула полезной модели 1. Устройство для получения легированных оксидов урана, содержащее плоский корпус с крышкой, внутри корпуса размещена формирующую реакционную зону камера сгорания, на крышке ...

Подробнее
20-01-2010 дата публикации

УСТРОЙСТВО ДЛЯ СОГЛАСОВАНИЯ ЗАГРУЗКИ ТВЕРДОГО СЫРЬЯ КОМПЛЕКСА АППАРАТОВ ФТОРИРОВАНИЯ И УЛАВЛИВАНИЯ ПРОИЗВОДСТВА ГЕКСАФТОРИДА УРАНА

Номер: RU0000090924U1

Устройство для согласования загрузки твердого сырья комплекса аппаратов фторирования и улавливания производства гексафторида урана, отличающееся тем, что содержит многоканальный аналого-цифровой преобразователь, связанный с многофункциональным контроллером, осуществляющим преобразование электрических сигналов, поступающих с датчиков аппаратов фторирования и улавливания производства гексафторида урана, при этом многоканальный аналого-цифровой преобразователь последовательно связан с вычислителем значения переменных состояния, вычислителем расхода твердого сырья по математической модели производства, сумматором-ограничителем и усилителем, также вычислитель расхода твердого сырья по математической модели производства соединен посредством обратной связи с вычислителем значения переменных состояния, причем многоканальный аналого-цифровой преобразователь последовательно связан с вычислителем уровня сырья в бункере аппарата фторирования, вычитающим устройством, пропорционально-интегральным регулятором и сумматором-ограничителем, а выход многоканального аналого-цифрового преобразователя соединен с фильтрующим устройством, связанным с вычитающим устройством, фильтрующее устройство подключено к ЭВМ, а усилитель соединен с системой дозирования твердого сырья в аппарат улавливания. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 90 924 (13) U1 (51) МПК G21G 5/00 (2006.01) B01J 8/12 (2006.01) B01J 8/18 (2006.01) C01G 43/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2009134433/22, 14.09.2009 (24) Дата начала отсчета срока действия патента: 14.09.2009 (45) Опубликовано: 20.01.2010 9 0 9 2 4 R U Формула полезной модели Устройство для согласования загрузки твердого сырья комплекса аппаратов фторирования и улавливания производства гексафторида урана, отличающееся тем, что содержит многоканальный аналого-цифровой преобразователь, связанный с многофункциональным контроллером, осуществляющим ...

Подробнее
20-10-2010 дата публикации

УСТРОЙСТВО АВТОМАТИЧЕСКОЙ СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ РЕАКЦИОННОЙ ЗОНЫ АППАРАТА УЛАВЛИВАНИЯ ПРОИЗВОДСТВА ГЕКСАФТОРИДА УРАНА

Номер: RU0000098603U1

Устройство автоматической стабилизации температуры реакционной зоны аппарата улавливания производства гексафторида урана, отличающееся тем, что к многоканальному аналого-цифровому преобразователю последовательно подключены первый блок сравнения, регулятор аппарата улавливания, второй блок сравнения, регулятор аппарата фторирования и нормирующий цифроаналоговый преобразователь, при этом многоканальный аналого-цифровой преобразователь соединен с многофункциональным контроллером, который связан с датчиками аппаратов фторирования и улавливания, фильтрующее устройство подключено к многоканальному аналого-цифровому преобразователю и к второму блоку сравнения, первый блок сравнения и фильтрующее устройство связаны с ЭВМ, а нормирующий цифроаналоговый преобразователь соединен с системой дозирования твердого сырья в аппарат фторирования. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 98 603 (13) U1 (51) МПК G05D 23/30 C01G 43/06 (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2010121661/05, 27.05.2010 (24) Дата начала отсчета срока действия патента: 27.05.2010 (45) Опубликовано: 20.10.2010 (73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU) U 1 9 8 6 0 3 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели Устройство автоматической стабилизации температуры реакционной зоны аппарата улавливания производства гексафторида урана, отличающееся тем, что к многоканальному аналого-цифровому преобразователю последовательно подключены первый блок сравнения, регулятор аппарата улавливания, второй блок сравнения, регулятор аппарата фторирования и нормирующий цифроаналоговый преобразователь, при этом многоканальный аналого-цифровой преобразователь соединен с многофункциональным контроллером, который связан с датчиками аппаратов фторирования и улавливания, ...

Подробнее
20-04-2011 дата публикации

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА МЕТОДОМ ПИРОГИДРОЛИЗА ИЗ ГЕКСАФТОРИДА УРАНА

Номер: RU0000103530U1

1. Установка для получения порошка диоксида урана из гексафторида урана, содержащая, по меньшей мере, одну обогреваемую реакционную камеру с соплом для подачи в нее компонентов реакции пирогидролиза гексафторида урана, средства фильтрации и конденсации отходящих из каждой реакционной камеры газов, средства выгрузки и транспортировки полученного порошка диоксида урана, печь для довосстановления непрореагировавшего уранилфторида и средства фильтрации и конденсации выходящих из печи газов, отличающаяся тем, что средства конденсации выходящих из каждого реактора и из печи газов соединены с по меньшей мере одним сборником плавиковой кислоты и со скруббером, при этом скруббер выполнен в виде емкости, выполненной в ядерно безопасном исполнении. 2. Установка по п.1, отличающаяся тем, что ядерно безопасное исполнение емкости обеспечено тем, что она имеет две противоположные плоские стенки, которые расположены на расстоянии друг от друга не более 130 мм. 3. Установка по п.1, отличающаяся тем, что каждый сборник плавиковой кислоты выполнен в виде полиэтиленового цилиндра РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 103 530 (13) U1 (51) МПК C01G 43/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2010150009/05, 07.12.2010 (24) Дата начала отсчета срока действия патента: 07.12.2010 (45) Опубликовано: 20.04.2011 (73) Патентообладатель(и): Открытое акционерное общество "Машиностроительный завод" (RU), Открытое акционерное общество "ТВЭЛ" (RU) 1 0 3 5 3 0 R U Формула полезной модели 1. Установка для получения порошка диоксида урана из гексафторида урана, содержащая, по меньшей мере, одну обогреваемую реакционную камеру с соплом для подачи в нее компонентов реакции пирогидролиза гексафторида урана, средства фильтрации и конденсации отходящих из каждой реакционной камеры газов, средства выгрузки и транспортировки полученного порошка диоксида урана, печь для довосстановления непрореагировавшего ...

Подробнее
20-11-2011 дата публикации

УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ ГЕКСАФТОРИДА УРАНА

Номер: RU0000110375U1

1. Устройство для переработки гексафторида урана, состоящее из средства для ввода потока гексафторида урана, соединенного с генератором уран-фторной плазмы, выполненного в виде индукционного частотного плазмотрона, соединенного с камерой разделения уран-фторной плазмы, выполненной в виде магнитного сепаратора, соединенной со средствами откачки фтора, а в нижней части - со средством для сбора и выводы расплава урана, при этом к верхней части генератора плазмы подсоединен дополнительный контур, состоящий из оптически связанных лазера, системы поворотных зеркал, оптической линзы, фокус которой расположен в плоскости высоковольтного витка индуктора плазмотрона. 2. Устройство по п.1, отличающееся тем, что генератор плазмы подсоединен к дополнительному контуру посредством фланца, центральная часть которого выполнена оптически прозрачной для лазерного излучения. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 110 375 U1 (51) МПК C22B 60/02 (2006.01) C01G 43/06 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2011121059/05, 26.05.2011 (24) Дата начала отсчета срока действия патента: 26.05.2011 (45) Опубликовано: 20.11.2011 Бюл. № 32 1 1 0 3 7 5 R U Формула полезной модели 1. Устройство для переработки гексафторида урана, состоящее из средства для ввода потока гексафторида урана, соединенного с генератором уран-фторной плазмы, выполненного в виде индукционного частотного плазмотрона, соединенного с камерой разделения уран-фторной плазмы, выполненной в виде магнитного сепаратора, соединенной со средствами откачки фтора, а в нижней части - со средством для сбора и выводы расплава урана, при этом к верхней части генератора плазмы подсоединен дополнительный контур, состоящий из оптически связанных лазера, системы поворотных зеркал, оптической линзы, фокус которой расположен в плоскости высоковольтного витка индуктора плазмотрона. 2. Устройство по п.1, отличающееся тем, что генератор плазмы ...

Подробнее
10-07-2013 дата публикации

РЕАКЦИОННАЯ КАМЕРА ДЛЯ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО ПОРОШКА ИЗ МАССИВНОГО УРАНА

Номер: RU0000129919U1

Реакционная камера для получения тонкодисперсного порошка из массивного урана, содержащая корпус с нагревателями зоны гидрирования и зоны дегидрирования, емкость для сбора порошка, а также магистрали подачи в камеру водорода и аргона, отличающаяся тем, что корпус камеры выполнен в виде вертикальной трубы, нагреватели, охватывающие трубу, установлены в верхней и нижней частях камеры для создания соответственно в верхней части корпуса зоны гидрирования, а в нижней - зоны дегидрирования, при этом емкость для сбора порошка установлена в зоне дегидрирования, а камера дополнительно снабжена магистралью подачи в корпус трихлорэтилена. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 129 919 U1 (51) МПК C01G 43/00 (2006.01) C22B 60/02 (2006.01) B22F 9/16 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2013100536/05, 09.01.2013 (24) Дата начала отсчета срока действия патента: 09.01.2013 (45) Опубликовано: 10.07.2013 Бюл. № 19 1 2 9 9 1 9 R U Формула полезной модели Реакционная камера для получения тонкодисперсного порошка из массивного урана, содержащая корпус с нагревателями зоны гидрирования и зоны дегидрирования, емкость для сбора порошка, а также магистрали подачи в камеру водорода и аргона, отличающаяся тем, что корпус камеры выполнен в виде вертикальной трубы, нагреватели, охватывающие трубу, установлены в верхней и нижней частях камеры для создания соответственно в верхней части корпуса зоны гидрирования, а в нижней - зоны дегидрирования, при этом емкость для сбора порошка установлена в зоне дегидрирования, а камера дополнительно снабжена магистралью подачи в корпус трихлорэтилена. Стр.: 1 U 1 U 1 (54) РЕАКЦИОННАЯ КАМЕРА ДЛЯ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО ПОРОШКА ИЗ МАССИВНОГО УРАНА 1 2 9 9 1 9 Адрес для переписки: 142100, Московская обл., г. Подольск, ул. Железнодорожная, 24, генеральному директору ФГУП "НИИ НПО "ЛУЧ" С.В. Алексееву (73) Патентообладатель(и): Российская Федерация, от имени которой выступает ...

Подробнее
27-03-2016 дата публикации

УСТАНОВКА ДЛЯ КОМПЛЕКСНОГО ПОЛУЧЕНИЯ ХЛОРСОДЕРЖАЩИХ РЕАГЕНТОВ И ФЕРРАТА НАТРИЯ

Номер: RU0000160773U1

1. Установка для комплексного получения хлорсодержащих реагентов и феррата натрия, включающая подключенные к источнику тока электролизные блоки, предназначенные для получения хлорсодержащих реагентов и феррата натрия, соответственно, при этом электролизный блок для получения хлорсодержащих реагентов снабжен ионообменной мембраной, разделяющей пространство на катодную и анодную камеры, последняя из которых сообщена с емкостью приготовления солевого раствора, а катодная - с емкостью, содержащей воду, и связана с ферратным электролизным блоком, отличающаяся тем, что в ферратном электролизном блоке между катодом и железосодержащим анодом введена ионообменная мембрана, и катодная и анодная камеры ферратного электролизного блока связаны с сепараторами водорода и кислорода, соответственно. 2. Установка по п. 1, отличающаяся тем, что катодная и анодная камеры ферратного электролизного блока связаны через промежуточную емкость для накопления щелочи с катодной камерой электролизера для получения хлорсодержащих реагентов, а анодная камера ферратного электролизного блока связана через промежуточную емкость для накопления феррата натрия с трубопроводом обрабатываемых вод. РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: (19) RU (11) (51) МПК C25B 1/46 C25B 1/10 C01D 13/00 C01G 49/00 C25B 9/08 C02F 1/72 C02F 1/76 (13) 160 773 U1 (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015138325/05, 08.09.2015 (73) Патентообладатель(и): Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") (RU) 08.09.2015 Приоритет(ы): (22) Дата подачи заявки: 08.09.2015 1 6 0 7 7 3 R U Формула полезной модели 1. Установка для комплексного получения хлорсодержащих реагентов и феррата натрия, включающая подключенные к источнику тока электролизные блоки, предназначенные для получения ...

Подробнее
10-04-2016 дата публикации

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ОКСИДА ЖЕЛЕЗА

Номер: RU0000161084U1

Установка для получения оксида железа FeO, характеризующаяся тем, что она включает корпус, заполненный водным раствором и железосодержащим сырьем, выполненный с возможностью вращения, а также периодического или непрерывного отведения из него частиц FeO, находящихся в водном растворе, причем корпус содержит преграды для извлечения из водного раствора железосодержащего сырья и для проведения механической активации агломератов железосодержащего сырья при их падении и разрушении. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК C01G 49/06 (13) 161 084 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015147248/05, 03.11.2015 (24) Дата начала отсчета срока действия патента: 03.11.2015 (45) Опубликовано: 10.04.2016 Бюл. № 10 R U 1 6 1 0 8 4 Формула полезной модели Установка для получения оксида железа Fe2O3, характеризующаяся тем, что она включает корпус, заполненный водным раствором и железосодержащим сырьем, выполненный с возможностью вращения, а также периодического или непрерывного отведения из него частиц Fe2O3, находящихся в водном растворе, причем корпус содержит преграды для извлечения из водного раствора железосодержащего сырья и для проведения механической активации агломератов железосодержащего сырья при их падении и разрушении. Стр.: 1 U 1 U 1 (54) УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ОКСИДА ЖЕЛЕЗА 1 6 1 0 8 4 Адрес для переписки: 603950, обл. Нижегородская, г. Нижний Новгород, ул. Минина, д. 24, НГТУ, ОТТиИС (73) Патентообладатель(и): федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) (RU) R U Приоритет(ы): (22) Дата подачи заявки: 03.11.2015 (72) Автор(ы): Грошев Анатолий Михайлович (RU), Чернышов Евгений Александрович (RU), Романов Алексей Дмитриевич (RU), Романов Иван Дмитриевич (RU), Романова Елена Анатольевна (RU) U 1 U 1 1 6 1 0 8 4 1 6 1 0 8 4 R U R U Стр.: 2 RU 5 10 ...

Подробнее
20-06-2016 дата публикации

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСТВОРИМОСТИ СОЛЕЙ В СОЛЕВОМ РАСПЛАВЕ

Номер: RU0000162560U1

1. Устройство для растворения солей в солевом расплаве, включающее ампулу в виде ячейки, помещенную в нагреватель, тигель для расплава соли, контрольную термопару, крышку, герметично закрывающую ячейку, питатель для подачи растворяемых таблеток соли в расплав, шлюз для ввода питателя, патрубки для ввода и вывода из ячейки инертного газа, отличающееся тем, что устройство дополнительно снабжено активаторами, задающими механические колебания низких и ультразвуковых частот питателю, где активатор ультразвуковых колебаний фиксирован в гнезде, жестко присоединенном к питателю, а активатор низкочастотных колебаний прикреплен к конструкционному элементу устройства, при этом питатель снабжен сильфоном. 2. Устройство по п. 1, отличающееся тем, что активаторы выполнены съемными. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК C01G 43/00 (13) 162 560 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015134195/05, 13.08.2015 (24) Дата начала отсчета срока действия патента: 13.08.2015 (45) Опубликовано: 20.06.2016 Бюл. № 17 1 6 2 5 6 0 R U Формула полезной модели 1. Устройство для растворения солей в солевом расплаве, включающее ампулу в виде ячейки, помещенную в нагреватель, тигель для расплава соли, контрольную термопару, крышку, герметично закрывающую ячейку, питатель для подачи растворяемых таблеток соли в расплав, шлюз для ввода питателя, патрубки для ввода и вывода из ячейки инертного газа, отличающееся тем, что устройство дополнительно снабжено активаторами, задающими механические колебания низких и ультразвуковых частот питателю, где активатор ультразвуковых колебаний фиксирован в гнезде, жестко присоединенном к питателю, а активатор низкочастотных колебаний прикреплен к конструкционному элементу устройства, при этом питатель снабжен сильфоном. 2. Устройство по п. 1, отличающееся тем, что активаторы выполнены съемными. Стр.: 1 U 1 U 1 (54) УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСТВОРИМОСТИ СОЛЕЙ В СОЛЕВОМ РАСПЛАВЕ 1 ...

Подробнее
10-10-2016 дата публикации

УСТАНОВКА ДЛЯ КОМПЛЕКСНОГО ПОЛУЧЕНИЯ ХЛОРСОДЕРЖАЩИХ РЕАГЕНТОВ И ФЕРРАТА НАТРИЯ

Номер: RU0000165201U1

1. Установка для комплексного получения хлорсодержащих реагентов и феррата натрия, включающая подключенные к источнику тока хлорный и ферратный электролизные блоки, предназначенные для получения хлорсодержащих реагентов и феррата натрия соответственно, при этом хлорный электролизный блок снабжен ионообменной мембраной, разделяющей пространство на катодную и анодную камеры, последняя из которых сообщена с емкостью приготовления солевого раствора, а катодная камера связана с емкостью, содержащей воду, и с ферратным электролизным блоком, отличающаяся тем, что анодная и катодная камеры хлорного электролизного блока снабжены сепараторами хлора и водорода соответственно. 2. Установка по п. 1, отличающаяся тем, что анодная камера хлорного электролизного блока связана через сепаратор хлора с трубопроводом обрабатываемых вод, а катодная камера через промежуточный бак для накопления щелочи связана с ферратным электролизным блоком. РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: (19) RU (51) МПК C25B 1/46 C01G 49/00 C01D 13/00 C25B 9/08 C25B 1/02 C02F 1/72 C02F 1/76 2015153675/05, 14.12.2015 08.09.2015 08.09.2015 (45) Опубликовано: 10.10.2016 (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (72) Автор(ы): Волков Андрей Николаевич (RU), Брунман Владимир Евгеньевич (RU), Коняшин Александр Викторович (RU), Брунман Михаил Владимирович (RU), Петкова Ани Петрова (RU), Дьяченко Владимир Алексеевич (RU), Аракчеев Евгений Николаевич (RU) (73) Патентообладатель(и): Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") (RU) Стр.: 1 U 1 (54) УСТАНОВКА ДЛЯ КОМПЛЕКСНОГО ПОЛУЧЕНИЯ ХЛОРСОДЕРЖАЩИХ РЕАГЕНТОВ И ФЕРРАТА НАТРИЯ (57) Реферат: Полезная модель относится к области промежуточный бак для накопления щелочи химического производства, в частности к связан с ферратным электролизным блоком. При ...

Подробнее
17-03-2017 дата публикации

Установка для комплексного получения хлорсодержащих реагентов и феррата натрия

Номер: RU0000169435U1

Полезная модель относится к области химического производства, в частности к оборудованию, предназначенному для комплексного получения хлорсодержащих реагентов и феррата натрия, применяемых для обеззараживания питьевой воды и очистки путем коагуляции промышленных, сельскохозяйственных и других стоков. Сущность полезной модели заключается в том, что в установке для комплексного получения хлорсодержащих реагентов и феррата натрия, включающей подключенные к источнику тока электролизные блоки, первый из которых предназначен для получения хлорсодержащих реагентов, а второй - для получения феррата натрия, при этом оба блока снабжены ионообменными мембранами, разделяющими пространство каждого блока на катодную и анодную камеры, и последние второго блока снабжены сепараторами водорода и кислорода соответственно и связаны с катодной камерой первого блока через промежуточную емкость накопления щелочи, анодная и катодная камеры первого блока снабжены сепараторами хлора и водорода соответственно, при этом каждая из них связана со своим сепаратором дополнительным трубопроводом, обеспечивающим процесс рециркуляции между сепаратором и камерой. Технический результат полезной модели состоит в том, что первый электролизный блок использован как источник анолита за счет введения в его конструкцию сепаратора хлора и водорода, последний из которых ведет к повышению безопасности работы блока, при этом наличие систем рециркуляции анолита и католита позволяет регулировать их концентрацию, повышающую производительность установки не только по анолиту, но и по феррату при экономии соли и электроэнергии. 1илл. РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) (19) RU (11) (13) 169 435 U1 (51) МПК C25B 1/46 (2006.01) C25B 1/10 (2006.01) C02F 1/72 (2006.01) C02F 1/76 (2006.01) C25B 9/08 (2006.01) C01D 13/00 (2006.01) C01G 49/00 (2006.01) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2016126920, 04.07.2016 (24) Дата начала отсчета срока действия патента: 04.07. ...

Подробнее
01-08-2019 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА

Номер: RU0000191334U1

Полезная модель относится к порошковой металлургии, в частности к получению соединений вольфрама с углеродом, а именно порошка карбида вольфрама. Устройство для получения порошка на основе карбида вольфрама содержит коаксиальные цилиндрические графитовые электроды, закреплённые на диэлектрических держателях. Для линейного перемещения анода в катоде используется привод автоматизированного перемещения анода, включающий в себя металлический кронштейн, с вертикально установленной в нем шпилькой, выполненной с возможностью вращения вокруг своей продольной оси и механически сопряженной с шаговым электродвигателем, и втулки, выполненной с возможностью винтового перемещения по шпильке. Технический результат - расширение арсенала технических средств для получения порошка на основе карбида вольфрама. 3 ил., 1 прим. И 1 191334 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 194 3347 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ МЕЭК Восстановление действия патента Дата, с которой действие патента восстановлено: 10.06.2021 Дата внесения записи в Государственный реестр: 10.06.2021 Дата публикации и номер бюллетеня: 10.06.2021 Бюл. №16 Стр.: 1 па Уст б6 | ЕП

Подробнее
03-03-2020 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЩЕЛОЧНОГО РАСТВОРА ФЕРРАТА (VI) НАТРИЯ

Номер: RU0000196524U1

Полезная модель относится к устройствам, предназначенным для получения щелочного раствора феррата (VI) натрия электрохимическим способом при комнатной температуре, атмосферном давлении, который может быть использован в качестве дезинфицирующего средства при обработке природных и сточных вод, а также в качестве реагента, интенсифицирующего технологические процессы очистки природных и сточных вод, позволяющего не только корректировать уровень рН обрабатываемой жидкости, но и изменять величину Eh потенциала среды. Устройство содержит ванну с электролитом, снабженную пластинчатыми железными электродами, подключенными к источнику постоянного тока. Устройство дополнительно оснащено неселективными токопроводящими мембранными перегородками, гидравлически разделяющими прикатодные и прианодные зоны электролизера, выполненные в виде листов пластика толщиной 3-5 мм, имеющие сквозные отверстия диаметром 0,2-0,7 мм с суммарной площадью не менее 2% от площади поверхности перегородки, датчиками температуры и охладительными узлами, размещаемыми в объеме анолита. Отношение величины расстояния между электродами к суммарной площади поверхности анодов ∑s (см) не должно превышать Технический результат, получаемый при реализации изобретения, состоит в значительном упрощении процесса получения щелочного раствора феррата (VI) натрия и предотвращении возникновения взрывоопасных ситуаций при его проведении. И 1 196524 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ `7ВУ‘’” 196 524? 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 30.03.2020 Дата внесения записи в Государственный реестр: 07.07.2021 Дата публикации и номер бюллетеня: 07.07.2021 Бюл. №19 Стр.: 1 па 7996 ЕП

Подробнее
23-02-2012 дата публикации

Scorodite-type iron-arsenic compound particles, production method thereof, and arsenic-containing solid

Номер: US20120045382A1
Принадлежит: Dowa Metals and Mining Co Ltd

Scorodite-type iron-arsenic compound particles in which the particle surface layer part comprise an iron-rich layer having an Fe/As molar ratio of at least 1.24. The particles can be obtained in a reaction process of feeding an oxygen-containing gas to an aqueous solution containing an arsenic(V) ion and an iron(II) ion to precipitate a scorodite-type iron-arsenic compound crystal at a pH of at most 2, in which an oxidizing agent is further added to the liquid before the end of the reaction (treatment A). The particles may also be obtained by a method comprising keeping a scorodite-type iron-arsenic compound particle of good crystallinity in contact with an iron ion-containing aqueous solution having a controlled pH of from 2 to 9 at 0 to 90° C. (treatment B). The scorodite-type iron-arsenic particles have good filterability and excellent arsenic release-preventing effect.

Подробнее
01-03-2012 дата публикации

Cathode active material for lithium secondary battery

Номер: US20120049109A1
Принадлежит: NGK Insulators Ltd

The present invention provides a cathode active material for a lithium secondary battery containing therein an open pore having a protrusion which is formed so as to extend from the inner surface of the open pore toward the center of the open pore. Specifically, the protrusion is formed so as to extend toward the center of a virtual circle formed by approximating the shape of a cross section of the open pore to a circular shape. The protrusion is formed of the same material as the remaining portion of the cathode active material.

Подробнее
08-03-2012 дата публикации

Rhenium recovery

Номер: US20120058029A1
Принадлежит: Neo Performance Materials Ltd

There is provided a hydrometallurgical process of recovering rhenium values from mixtures thereof with other metal values in which the rhenium values constitute a minority amount, for example super-alloys, which comprises subjecting the mixture to strongly oxidizing acid conditions, preferably an aqueous mixture of hydrochloric acid and nitric acid, so as to form perrhenate species of at least the major proportion of the rhenium values in the mixture, dissolving the perrhenate species and other soluble metal species in aqueous solution, removing insoluble metal species from the aqueous solution, and isolating the rhenium species from the solution.

Подробнее
12-04-2012 дата публикации

Cathode active material plate-like particle for lithium secondary battery

Номер: US20120085967A1
Принадлежит: NGK Insulators Ltd

An object of the present invention is to realize more effective intercalation and deintercalation of lithium ions in a cathode active material. The preset invention provides a cathode active material plate-like particle for a lithium secondary battery, the particle having a layered rock salt structure, wherein lithium-intercalation/deintercalation-plane-oriented grains (primary crystal grains whose (003) plane is oriented so as to intersect a plate surface of the plate-like particle) are present in a dispersed state among numerous (003)-plane-oriented grains (primary crystal grains whose (003) plane is oriented in parallel with the plate surface of the plate-like particle).

Подробнее
26-04-2012 дата публикации

Process for production of magnetic thin film, magnetic thin film, and magnetic material

Номер: US20120100064A1
Принадлежит: University of Tokyo NUC

The present invention provides a process for production of a magnetic thin film which has insulation properties, serves as a permanent magnet, and has improved residual magnetization in comparison with prior arts, the magnetic thin film, and a magnetic material. When a magnetic thin film 3 is formed, an external magnetic field with a predetermined intensity is applied to a coating liquid containing magnetic particles containing epsilon-type iron-oxide-based compounds which have insulation properties and which serve as a permanent magnet, and the coating liquid is let cured in order to form the magnetic thin film 3 . Accordingly, the magnetic particles containing the epsilon-type iron-oxide-based compounds can be fixed while being oriented regularly in a magnetization direction. This realizes the process for production of the magnetic thin film 3 which has insulation properties and which serve as a permanent magnet, the magnetic thin film 3 , and a magnetic material 1.

Подробнее
03-05-2012 дата публикации

Mixed valency metal sulfide sorbents for heavy metals

Номер: US20120103912A1
Принадлежит: JOHNSON MATTHEY PLC

A sorbent, suitable for removing heavy metals, including mercury, from fluids containing hydrogen and/or carbon monoxide at temperatures up to 550° C., in the form of a shaped unit comprising one or more mixed-valency metal sulphides of vanadium, chromium, manganese, iron, cobalt or nickel.

Подробнее
31-05-2012 дата публикации

Non-aqueous electrolyte secondary battery and method of manufacturing the same

Номер: US20120135319A1
Принадлежит: Sanyo Electric Co Ltd

A non-aqueous electrolyte secondary battery having a negative electrode, a non-aqueous electrolyte, and a positive electrode having a positive electrode active material comprising sodium oxide, is characterized in that the sodium oxide contains lithium, and the molar amount of the lithium is less than the molar amount of the sodium.

Подробнее
21-06-2012 дата публикации

Galvanic waste sludge treatment and manufacturing of nano-sized iron oxides

Номер: US20120156497A1
Принадлежит: Green Future Ltd

The invention enables processing waste sludge after galvanic treatment of metals, and particularly recycling spent pickling acids after pickling. Provided is an environmentally friendly process, which yields acids for reuse, and pure nano-sized iron pigments as a side product.

Подробнее
28-06-2012 дата публикации

Positive electrode active material for secondary battery and magnesium secondary battery using the same

Номер: US20120164537A1
Принадлежит: HITACHI LTD

In a positive electrode active material for a magnesium secondary battery and a magnesium secondary battery using it, there is contained a powder particle containing a crystal phase having a structure formed with aggregation of a plurality of crystallites, and amorphous phases formed between the crystallites themselves; the amorphous phases contain at least one kind of a metal oxide selected from a vanadium oxide, an iron oxide, a manganese oxide, a nickel oxide and a cobalt oxide; and the crystal phase and the amorphous phases use the positive electrode active material enabling to store and release magnesium ions.

Подробнее
12-07-2012 дата публикации

Cathode material for fuel cell, cathode for fuel cell including the same, method of manufacturing the cathode, and solid oxide fuel cell including the cathode

Номер: US20120178016A1

A cathode material for a fuel cell, the cathode material for a fuel cell including a lanthanide metal oxide having a perovskite crystal structure; and a bismuth metal oxide represented by Chemical Formula 1 below, Bi 2-x-y A x B y O 3 ,  Chemical Formula 1 wherein A and B are each a metal with a valence of 3, A and B are each independently at least one element selected from a rare earth element and a transition metal element, A and B are different from each other, and 0<x≦0.3 and 0<y≦0.3.

Подробнее
19-07-2012 дата публикации

Particle synthesis by means of the thermohydrolysis of mineral precursors

Номер: US20120183470A1

The present invention relates to a method for continuously preparing mineral particles by means of the thermolysis of mineral precursors in an aqueous medium, comprising contacting: a reactive flow, including mineral precursors at a temperature lower than the conversion temperature thereof; and a coolant flow that is countercurrent to said reactive flow and contains water at a temperature that is sufficient to bring the precursors to a temperature higher than the conversion temperature thereof, the mixture flow that results from said reactive flow and said coolant flow then being conveyed into a tubular reactor, inside of which particles are formed by gradually converting the precursors, and where the reactive flow and the coolant flow are placed in contact with each other inside a mixing chamber, inside of which the reactive flow and the coolant flow are fed by supply pipes having outlet cross-sections that are smaller than the maximum cross-section of said mixing chamber. The invention also relates to a device for implementing said method.

Подробнее
26-07-2012 дата публикации

Modified tungsten oxide and process for its preparation

Номер: US20120186982A1
Принадлежит: Eni Spa

The present invention relates to a modified tungsten oxide having an atomic concentration of 0.5 to 7.0%, preferably from 2.0 to 5.0%, of nitrogen atoms in lattice position, with respect to the total number of atoms of the oxide, having a surface morphology, detectable by means of a scanning electron microscope, characterized by nanostructures in the form of vermiform or branched open swellings, preferably having a length ranging from 200 to 2,000 nm, and a width ranging from 50 to 300 nm, having an appearance similar to Rice Krispies. The present invention also relates to a process for the preparation of the above oxide by the anodization of metallic tungsten, and also a photoanode comprising the above oxide.

Подробнее
09-08-2012 дата публикации

Method

Номер: US20120201864A1
Принадлежит: Cytochroma Development Inc

There is provided a method of producing a mixed metal compound comprising at least Mg 2+ and at least Fe + having an aluminium content of less than 10000 ppm, having an average crystal size of less than 20 nm (200 A) comprising the steps of: (a) combining a Mg 2+ salt and a Fe 3+ salt with Na 2 CO 3 and NaOH to produce a slurry, wherein the pH of the slurry is maintained at from 9 5 to 1 1, and wherein the Na 2 CO 3 is provided at an excess of 0 to 4.0 moles than is required to complete the reaction (b) subjecting the slurry to mixing under conditions providing a power per unit volume of 0 03 to 1.6 kW/m 3 (c) separating the mixed metal compound from the slurry, to obtain a crude product having a dry solid content of at least 10 wt % (d) drying the crude product either by (i) heating the crude product to a temperature of no greater than 150° C. and sufficient to provide a water evaporation rate of 0.05 to 1 5 kg water per hour per kg of dry product, or (H) exposing the crude product to rapid drying at a water evaporation rate of 500 to 50000 kg water per hour per kg of dry product.

Подробнее
09-08-2012 дата публикации

Recognition dictionary creating device, voice recognition device, and voice synthesizer

Номер: US20120203553A1
Автор: Yuzo Maruta
Принадлежит: Mitsubishi Electric Corp

A recognition dictionary creating device includes a user dictionary in which a phoneme label string of an inputted voice is registered and an interlanguage acoustic data mapping table in which a correspondence between phoneme labels in different languages is defined, and refers to the interlanguage acoustic data mapping table to convert the phoneme label string registered in the user dictionary and expressed in a language set at the time of creating the user dictionary into a phoneme label string expressed in another language which the recognition dictionary creating device has switched.

Подробнее
01-11-2012 дата публикации

Synthesis of Nanoparticles by Means of Ionic Liquids

Номер: US20120275991A1

A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.

Подробнее
08-11-2012 дата публикации

Spray Pyrolysis Synthesis of Mesoporous Positive Electrode Materials for High Energy Lithium-Ion Batteries

Номер: US20120282522A1
Принадлежит: Washington University in St Louis WUSTL

A lithium metal oxide positive electrode material useful in making lithium-ion batteries that is produced using spray pyrolysis. The material comprises a plurality of metal oxide secondary particles that comprise metal oxide primary particles, wherein the primary particles have a size that is in the range of about 1 nm to about 10 μm, and the secondary particles have a size that is in the range of about 10 nm to about 100 μm and are uniformly mesoporous.

Подробнее
08-11-2012 дата публикации

Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery

Номер: US20120282526A1
Принадлежит: Toyota Industries Corp

A composite oxide, whose major component is a lithium-manganese-system oxide including Li and tetravalent Mn at least and having a crystal structure that belongs to a layered rock-salt structure, is produced via the following: a raw-material mixture preparation step of preparing a raw-material mixture by mixing a metallic-compound raw material and a molten-salt raw material with each other, the metallic-compound raw material at least including one or more kinds of metallic compounds being selected from the group consisting of oxides, hydroxides and metallic salts that include one or more kinds of metallic elements in which Mn is essential, the molten-salt raw material including lithium hydroxide and lithium nitrate, and exhibiting a proportion of the lithium hydroxide with respect to the lithium nitrate (i.e., (Lithium Hydroxide)/(Lithium Nitrate)) that falls in a range of from 1 or more to 10 or less by molar ratio; a molten reaction step of reacting said raw-material mixture at a melting point of said molten-salt raw material or more by melting it: and a recovery step of recovering said composite oxide being generated from said raw-material mixture that has undergone the reaction.

Подробнее
15-11-2012 дата публикации

Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same

Номер: US20120288767A1

A method for preparing a lithium manganese oxide positive active material for a lithium ion secondary battery, which has spherical spinel-type lithium manganese oxide particles having two or more different types of sizes, the method including uniformly mixing manganese oxide having two or more different types of sizes with a lithium containing compound, and heat treating the resultant mixture to obtain lithium manganese oxide.

Подробнее
15-11-2012 дата публикации

Method for stabilizing size of platinum hydroxide polymer

Номер: US20120289400A1
Принадлежит: Suzuki Motor Corp

[Object] To provide a method for stabilizing a size of a platinum hydroxide polymer capable of maintaining solution stability of a platinum hydroxide polymer in a solution. [Solving Means] A method is provided for stabilizing a size of a platinum hydroxide polymer, including adding Zr ions to a solution containing a platinum hydroxide polymer at a Zr/Pt ratio of 1.0 to 40 in terms of molar concentration ratio.

Подробнее
22-11-2012 дата публикации

Electromagnetic wave absorbent material

Номер: US20120292554A1
Принадлежит: Individual

Provided is an electromagnetic wave absorbent material comprising a magnetic film as the main constituent thereof. The magnetic film comprises a titania nanosheet where a 3d magnetic metal element is substituted at the titanium lattice position. The electromagnetic wave absorbent material stably and continuously exhibits electromagnetic wave absorption performance in a range of from 1 to 15 GHz band and is useful as mobile telephones, wireless LANs and other mobile electronic instruments. The absorbent material can be fused with a transparent medium and is applicable to transparent electronic devices such as large-sized liquid crystal TVs, electronic papers, etc.

Подробнее
22-11-2012 дата публикации

Positive electrode material for a lithium-ion accumulator

Номер: US20120295162A1

A compound of formula Li a+y (M 1 (1−t) Mo t ) 2 M 2 b (O 1−x F 2x ) c wherein: M 1 is selected from the group consisting in Ni, Mn, Co, Fe, V or a mixture thereof; M 2 is selected from the group consisting in B, Al, Si, P, Ti, Mo; with 4≦a≦6; 0<b≦1.8; 3.8≦c≦14; 0≦x<1; −0.5≦y≦0.5; 0≦t≦0.9; b/a<0.45; the coefficient c satisfying one of the following relationships: c=4+y/2+z+2t+1.5b if M 2 is selected from B and Al; c=4+y/2+z+2t+2b if M 2 is selected from Si, Ti and Mo; c=4+y/2+z+2t+2.5b if M 2 is P; with z=0 if M 1 is selected from Ni, Mn, Co, Fe and z=1 if M 1 is V.

Подробнее
22-11-2012 дата публикации

Shaped metal-containing components and reaction based methods for manufacturing the same

Номер: US20120295783A1
Принадлежит: Georgia Tech Research Corp

Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.

Подробнее
29-11-2012 дата публикации

Extraction process

Номер: US20120297929A1
Принадлежит: OUTOTEC OYJ

A method for the selective recovery of uranium from a sulphate-based acidic aqueous solution of uranium containing iron and other metals by means of solvent extraction, in which the extractant used in the organic extraction solution is bis(2-ethylhexyl) phosphate and a liquid branched trialkyl phosphine oxide is the modifying agent. It is typical of the method that the uranium concentration in the feed solution is less than 50 mg/l and a reducing agent is introduced into the aqueous and/or extraction solution to prevent the permanent oxidation of iron to trivalent. In the method the majority of the extraction solution is circulated in a circuit consisting of the extraction stage and the storage tank and only a small part of the uranium-loaded extraction solution is routed to scrubbing and stripping.

Подробнее
29-11-2012 дата публикации

Process for the production of a uranium trioxide yellowcake from a uranium peroxide precipitate

Номер: US20120301374A1
Автор: Glenn Jobling
Принадлежит: ADELAIDE CONTROL ENGINEERS PTY LTD

The present invention provides a process for the production of a uranium trioxide yellowcake from a uranium peroxide precipitate, the peroxide precipitate being in the form of a low solids content, uranium rich feed slurry, the process including the stages of: a. thickening the feed slurry to produce a thickener underflow with a solids content in the range of 15 to 50% w/w and a thickener overflow; b. dewatering the thickener underflow to produce a solids cake with a solids content of at least 50% w/w and a dewater overflow; and c. calcining the solids cake at a temperature in the range of 450° C. to 480° C. to produce a calcined uranium trioxide yellowcake.

Подробнее
06-12-2012 дата публикации

Process for Recovering Molybdate or Tungstate from Aqueous Solutions

Номер: US20120305208A1
Принадлежит: EVONIK DEGUSSA GmbH

Process for recovering molybdate or tungstate from an aqueous solution, in which molybdate or tungstate is bound to a water-insoluble, cationized inorganic carrier material from the aqueous solution at a pH in the range from 2 to 6, the laden carrier material is separated off and the bound molybdate or tungstate is liberated once again into aqueous solution at a pH in the range from 6 to 14. The process is suitable for recovering molybdate or tungstate in the delignification of pulp with hydrogen peroxide in the presence of molybdate or tungstate as catalyst. The recovered molybdate or tungstate can be recycled to the delignification.

Подробнее
06-12-2012 дата публикации

One-dimensional metal nanostructures

Номер: US20120308818A1

Tin powder is heated in a flowing stream of an inert gas, such as argon, containing a small concentration of carbon-containing gas, at a temperature to produce metal vapor. The tin deposits as liquid on a substrate, and reacts with the carbon-containing gas to form carbon nanotubes in the liquid tin. Upon cooling and solidification, a composite of tin nanowires bearing coatings of carbon nanotubes is formed.

Подробнее
27-12-2012 дата публикации

Method for producing ammonium tungstate aqueous solution

Номер: US20120328506A1

A method for producing an ammonium tungstate aqueous solution includes the steps of: adding sulfuric acid to a solution containing tungstate ions; bringing the solution having the sulfuric acid added therein, into contact with an anion exchange resin; and bringing the anion exchange resin into contact with an aqueous solution containing ammonium ions.

Подробнее
27-12-2012 дата публикации

Nanostructures, their use and process for their production

Номер: US20120329686A1
Принадлежит: Yeda Research and Development Co Ltd

A lubricating and shock absorbing materials are described, which are based on nanoparticles having the formula A 1-x -B x -chalcogenide. Processes for their manufacture are also described.

Подробнее
03-01-2013 дата публикации

Apparatus for the production of yellowcake from a uranium peroxide precipitate

Номер: US20130004379A1
Автор: Glenn Jobling
Принадлежит: ADELAIDE CONTROL ENGINEERS PTY LTD

The present invention provides apparatus for the production of a uranium yellowcake from a uranium peroxide precipitate, the peroxide precipitate being in the form of a low solids content, uranium rich feed slurry, the apparatus including: a. a thickener for thickening the feed slurry to produce a thickener underflow with a solids content in the range of 15 to 50% w/w and a thickener overflow; b. a means for dewatering the thickener underflow to produce a solids cake with a solids content of at least 50% w/w and a dewater overflow; and c. an indirectly heated kiln for heating the solids cake at a temperature suitable to produce either a calcined uranium trioxide yellowcake or a dried uranium peroxide yellowcake.

Подробнее
03-01-2013 дата публикации

Negative active material, negative electrode including the same, lithium battery including negative electrode and method of preparing negative active material

Номер: US20130004850A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

A negative active material including an ordered porous manganese oxide, wherein pores of the ordered porous manganese oxide have bimodal size distribution, and a method of preparing the negative active material. The invention also includes a negative electrode including the negative active material and a lithium battery including the negative electrode.

Подробнее
10-01-2013 дата публикации

Multiple inorganic compound structure and use thereof, and method of producing multiple inorganic compound structure

Номер: US20130011729A1
Автор: Shogo Esaki, Takeshi Yao
Принадлежит: Individual

In a multiple inorganic compound structure according to the present invention, elements included in a main crystalline phase and elements included in a sub inorganic compound are present in at least a first region and a second region, the first region and the second region each have an area of nano square meter order, the first region is adjacent to the second region, and the first region and the second region each include an element of an identical kind, which element of the identical kind present in the first region has a concentration different from that of the element of the identical kind present in the second region.

Подробнее
17-01-2013 дата публикации

Positive electrode active material

Номер: US20130015410A1
Принадлежит: Hitachi Chemical Co Ltd, HITACHI LTD

A lithium ion secondary battery has a high cycle retention rate, and has its battery capacity increased. A positive electrode active material is used which includes a crystal phase having a structure formed by collecting a plurality of crystallites 101 , and powder particles containing amorphous phases 103 a and 103 b formed between the crystallites 101 . The amorphous phases 103 a and 103 b contain one or more kinds of metal oxides selected from the group consisting of vanadium oxide, iron oxide, manganese oxide, nickel oxide and cobalt oxide. The crystal phase and the amorphous phase 103 a and 103 b are capable of intercalation and deintercalation of lithium ions.

Подробнее
31-01-2013 дата публикации

Positive-electrode material for lithium secondary-battery, process for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery

Номер: US20130029216A1
Автор: Jungmin Kim, Kenji Shizuka
Принадлежит: Mitsubishi Chemical Corp

The invention relates to: a lithium-transition metal compound powder for a positive-electrode material of lithium secondary batteries, which is a powder that comprises a lithium-transition metal compound having a function of being capable of an insertion and elimination of lithium ions, wherein the particles in the powder contain, in the inner part thereof, a compound that, when analyzed by an SEM-EDX method, has peaks derived from at least one element selected from the Group-16 elements belonging to the third or later periods of the periodic table and at least one element selected from the Group-5 to Group-7 elements belonging to the fifth and sixth periods of the periodic table; a process for producing the powder; a positive electrode for lithium secondary batteries; and a lithium secondary battery.

Подробнее
14-02-2013 дата публикации

Nonaqueous electrolyte battery, battery pack and vehicle

Номер: US20130040187A1
Принадлежит: Individual

A nonaqueous electrolyte battery includes a negative electrode including a current collector and a negative electrode active material having a Li ion insertion potential not lower than 0.4V (vs. Li/Li + ). The negative electrode has a porous structure. A pore diameter distribution of the negative electrode as determined by a mercury porosimetry, which includes a first peak having a mode diameter of 0.01 to 0.2 μm, and a second peak having a mode diameter of 0.003 to 0.02 μm. A volume of pores having a diameter of 0.01 to 0.2 μm as determined by the mercury porosimetry is 0.05 to 0.5 mL per gram of the negative electrode excluding the weight of the current collector. A volume of pores having a diameter of 0.003 to 0.02 μm as determined by the mercury porosimetry is 0.0001 to 0.02 mL per gram of the negative electrode excluding the weight of the current collector.

Подробнее
28-02-2013 дата публикации

Process for the production of ferrous sulphate monohydrate

Номер: US20130052106A1
Принадлежит: Tioxide Europe Ltd

The invention provides a process for the production of ferrous sulphate monohydrate which comprises: (a) reacting a source of iron with an aqueous solution of sulphuric acid in at least a first reaction vessel, to obtain a process liquor comprising ferrous sulphate and acid solution; and then (b) combining the process liquor with concentrated sulphuric acid in a mixing vessel, causing the solution to self crystallize, thus forming a slurry comprising crystalline ferrous sulfate monohydrate. The slurry can, if desired, then be converted to ferric sulphate.

Подробнее
21-03-2013 дата публикации

Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD OF MANUFACTURING THE SAME, AND OPTICAL DEVICE

Номер: US20130071316A1
Принадлежит:

Provided is a Bi-substituted rare earth iron garnet single crystal which has a composition of RBiFeAO, wherein R denotes one or more rare earth elements among Y, Eu, Gd, Ho, Yb, Lu, Nd, Tm, La, Sm, Dy, Er, Ce, and Pr while definitely including Gd, A denotes one or more elements among Ga, Al, In, Sc, Co, Ni, Cr, V, Ti, Si, Ge, Mg, Zn, Nb, Ta, Sn, Zr, Hf, Pt, Rh, Te, Os, Ce, and Lu, 0.7 Подробнее

04-04-2013 дата публикации

Novel formulation of hexa-aluminates for reforming fuels

Номер: US20130085062A1
Автор: Magali S. Ferrandon
Принадлежит: UChicago Argonne LLC

The invention is directed to a catalyst and a method for making a reforming catalyst for the production of hydrogen from organic compounds that overcomes the problems of catalyst poisoning and deactivation by coking and high temperature sintering, yet provides excellent durability and a long working life in process use. An embodiment is the formation of a unique four-metal ion hexa-aluminate of the formula M1 a M2 b M3 c M4 d Al 11 O 19-α . M1 and M2 are selected from the group consisting of beryllium, magnesium, calcium, strontium, barium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and gadolinium. M3 and M4 are selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, wherein 0.010≦a+b+c+d≦2.0. Also, 1≦α≦1. Further, M1≠M2 and M3≠M4.

Подробнее
11-04-2013 дата публикации

CHIRAL NEMATIC NANOCRYSTALLINE METAL OXIDES

Номер: US20130089492A1
Принадлежит:

A mesoporous metal oxide materials with a chiral organization; and a method for producing it, in the method a polymerizable metal oxide precursor is condensed inside the pores of chiral nematic mesoporous silica by the so-called “hard templating” method. As a specific example, mesoporous titanium dioxide is formed inside of a chiral nematic silica film templated by nanocrystalline cellulose (NCC). After removing the silica template such as by dissolving the silica in concentrated aqueous base, the resulting product is a mesoporous titania with a high surface area. These mesoporous metal oxide materials with high surface area and chiral nematic structures that lead to photonic properties may be useful for photonic applications as well as enantioselective catalysis, photocatalysis, photovoltaics, UV filters, batteries, and sensors. 1. A mesoporous metal oxide having chirality and crystallinity.2. The mesoporous metal oxide of claim 1 , wherein said oxide is titanium oxide.3. The mesoporous metal oxide of claim 2 , wherein said titanium oxide is anatase titanium oxide.4. The mesoporous metal oxide of claim 1 , wherein said chirality is in a length scale ranging from nanometers to centimetres.5. The mesoporous metal oxide of claim 2 , wherein said chirality is in a length scale ranging from nanometers to centimetres.6. A process for producing a mesoporous metal oxide having chirality claim 2 , comprising: introducing a metal oxide precursor into a mesoporous silica template defining chirality claim 2 , converting said precursor to metal oxide claim 2 , and removing said silica template.7. A process according to claim 6 , wherein said precursor is a precursor of a metal oxide selected from the group consisting of titanium oxide claim 6 , tin dioxide claim 6 , iron oxide claim 6 , tantalum oxide and vanadium oxide.8. A process according to claim 6 , wherein said precursor is a precursor of titanium oxide.9. A process according to claim 6 , wherein said precursor is a ...

Подробнее
11-04-2013 дата публикации

SYNTHESIS AND USE OF IRON OLEATE

Номер: US20130089740A1
Принадлежит: KONINKLIJKE PHILIPS ELECTRONICS N.V.

The present invention relates to a method of forming an iron oleate complex comprising the steps of: (a) dissolving an oleate in a low-order alcohol solvent at a temperature of about 35° C. to 65° C.; (b) adding a non-polar solvent to the solution of step (a); (c) adding an iron salt dissolved in a low-order alcohol to the solution of step (b); (d) agitating the solution of step (c) at a temperature of about 50° C. for at least 5 min; (e) cooling the reaction mixture of step (d) to a temperature of about 15° C. to 30° C.; (f) optionally filtering the reaction mixture of step (e); (g) separating the non-polar solvent phase from the low-order alcohol phase; (h) washing and drying the non-polar solvent phase; (i) removing volatiles from the non-polar solvent phase of step (h) by evaporation; and (j) mixing the product of step (i) with a polar solvent to yield a solid iron oleate complex. The present invention further relates to an iron oleate complex obtainable by the method of the invention, an iron oleate complex of formula I, the use of the iron oleate complex of the invention as precursor for the preparation of nanoparticles, and a method of forming iron oxide nanoparticles comprising the suspension of iron oxide/hydroxide and the iron oleate complex of the invention. 1. A method of forming an iron oleate complex comprising the steps of:(a) dissolving an oleate in a low-order alcohol solvent selected from the group of methanol butanol, glycol, acetone, ethyleneglycol, 2-aminoethanol, 2-methoxyethanol, dimethylformamide and dimethylsulfoxide at a temperature of about 35° C. to 65° C.;(b) adding a non-polar alkane solvent to the solution of step (a);(c) adding an iron salt dissolved in said low-order alcohol solvent to the solution of step (b);(d) agitating the solution of step (c) at a temperature of about 50° C. for at least 5 min;(e) cooling the reaction mixture of step (d) to a temperature of about 15° C. to 30° C.;(f) optionally filtering the reaction mixture of ...

Подробнее
18-04-2013 дата публикации

Synthesis of high-performance iron oxide particle tracers for magnetic particle imaging (mpi)

Номер: US20130095043A1
Принадлежит: KONINKLIJKE PHILIPS ELECTRONICS NV

The present invention relates to a method of forming iron oxide nanoparticles comprising the steps of (a) suspending iron oxide/hydroxide and oleic acid or a derivative thereof in a primary organic solvent; (b) increasing the temperature of the suspension by a defined rate up to a maximum of 340° C. to 500° C.; (c) aging the suspension at the maximum temperature of step (b) for about 0.5 to 6 h; (d) cooling the suspension; (e) adding a secondary organic solvent; (f) precipitating nanoparticles by adding a non-solvent and removing excess solvent; (g) dispersing said nanoparticles in said secondary organic solvent; (h) mixing the dispersion of step (g) with a solution of a polymer; and (i) optionally removing said secondary organic solvent. The present invention further relates to an iron oxide nanoparticle obtainable by the method, the additional modification, encapsulation and decoration of such nanoparticles, as well as the use of the nanoparticles as tracers for Magnetic Particle Imaging (MPI), Magnetic Particle Spectroscopy (MPS).

Подробнее
25-04-2013 дата публикации

URCHIN-LIKE IRON OXIDE AND A METHOD FOR PRODUCING THE URCHIN-LIKE IRON OXIDE

Номер: US20130101501A1
Принадлежит: NATIONAL CHUNG CHENG UNIVERSITY

The present invention relates to an urchin-like iron oxide and a method for producing the urchin-like iron oxide. The urchin-like iron oxide comprises a core and multiple needle-like elongations protruded from the core. The needle-like elongations could be wire, rod, tube, cone, and flake. The length/width ratio of the needle-like elongation is high enough to apply in an optoelectronic field. The method in accordance with the present invention is to stably heat an iron-contained powder under room temperature by a thermal oxidation. The surface of the iron-contained powder is slow oxidized to form an urchin-like iron oxide with multiple uniform distributed needle-like elongations protruded from the surface. The size of each needle-like elongation is easily adjusted and changed by controlling the heating temperature. The method has advantages of simplified operation and lowered expense. 1. A method for producing an urchin-like iron oxide comprising steps as following:providing a raw material: providing a grinded iron-contained powder; andheating and oxidation: putting the iron-contained powder on a plate and heating the iron-contained powder by a stable temperature for a period.2. The method for producing an urchin-like iron oxide as claimed in claim 1 , wherein the temperature being at least 220° C.3. The method for producing an urchin-like iron oxide as claimed in claim 2 , wherein the heating step form room temperature to the stable temperature being increased by 1 to 20° C. per minute.4. The method for producing an urchin-like iron oxide as claimed in claim 3 , wherein the iron-contained powder being heated for at least half hour.5. The method for producing an urchin-like iron oxide as claimed in claim 4 , wherein the heating and oxidation step having a oxidation rate by an oxide is increased 0.2 to 1.5 wt %.6. The method for producing an urchin-like iron oxide as claimed in claim 5 , wherein the heating and oxidation step being operated under an atmosphere ...

Подробнее
25-04-2013 дата публикации

METHOD FOR PRODUCING THERMOELECTRIC CONVERSION MATERIAL, THERMOELECTRIC CONVERSION MATERIAL, AND PRODUCTION APPARATUS USED IN THE METHOD

Номер: US20130101733A1
Принадлежит: KYUSHU INSTITUTE OF TECHNOLOGY

A method for producing a thermoelectric conversion material composed of a metal A having an alkali metal or alkaline earth metal, a transition metal M, and oxygen O, and represented by AxMyOz, where x, y, and z are valences of the respective elements, includes the steps of: using a massive metal oxide as the thermoelectric conversion material and a salt in a solid, liquid or gaseous state; causing a diffusion reaction between the oxide and the salt; and forming the thermoelectric conversion material having aligned crystal orientation. A production apparatus includes a reactor into which the oxide and the salt are introduced, and a heating means for heating the oxide and the salt within the reactor to promote the diffusion reaction. Thereby, the thermoelectric conversion material having efficiency is produced more simply and at lower cost than a production of the single crystal. 1. A method for producing a thermoelectric conversion material composed of a metal A including an alkali metal or an alkaline-earth metal , a transition metal M , and oxygen O , the thermoelectric conversion material represented by a general formula: AxMyOz , where x , y , and z are integers determined by valences of respective elements , comprising:using a massive metal oxide as a solid raw material for the thermoelectric conversion material and a salt in any one of solid, liquid, and gaseous states; andcausing a diffusion reaction between the massive metal oxide and the salt.2. The method as defined in claim 1 , wherein the AxMyOz is formed on a substrate.3. The method as defined in claim 2 , wherein the substrate is a metal plate claim 2 , and the AxMyOz is formed via an insulating film of an oxide of a metal constituting the metal plate.4. The method as defined in claim 2 , wherein the substrate is a ceramic plate claim 2 , and after formation of a metal film on the ceramic plate by one of deposition and plating claim 2 , the metal film is oxidized to produce the massive metal oxide.5. ...

Подробнее
25-04-2013 дата публикации

METHOD OF MANUFACTURING METAL OXIDE FILM, METAL OXIDE FILM, ELEMENT USING THE METAL OXIDE FILM, SUBSTRATE WITH METAL OXIDE FILM, AND DEVICE USING THE SUBSTRATE WITH METAL OXIDE FILM

Номер: US20130101867A1
Принадлежит: SUMITOMO METAL MINING CO., LTD.

Provided is a method of manufacturing a metal oxide film to be formed through the following processes: a coating process of forming a coating film on a substrate by using a coating liquid for forming metal oxide film containing any of various organometallic compounds; a drying process of making the coating film into a dried coating film; and a heating process of forming an inorganic film from the dried coating film under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than −10° C. 1. A method of manufacturing a metal oxide film to be formed through the following processes: a coating process of coating a substrate with a coating liquid for forming metal oxide film containing an organometallic compound as a main component to form a coating film; a drying process of drying the coating film to form a dried coating film; and a heating process of mineralizing the dried coating film to form an inorganic film having an inorganic component , which is a metal oxide , as a main component , whereinthe heating process is a process of performing a heating treatment to elevate a temperature of the dried coating film, which has the organometallic compound as a main component and has been formed in the drying process, up to a temperature or higher at which at least mineralization of the organometallic compound components occurs, under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than −10° C., and then removing an organic component contained in the dried coating film by thermal decomposition, burning, or thermal decomposition and burning, thereby forming a metal oxide fine-particle layer densely packed with metal oxide fine particles having a metal oxide as a main component, andthe organometallic compound is formed of any one or more types of an organic aluminum compound, an organic silicon compound, an organic scandium compound, an organic titanium compound, an organic vanadium compound, an organic chromium ...

Подробнее
02-05-2013 дата публикации

Method for MN3O4 nanoparticles by solid-state decomposition of exfoliated MNO2 nanosheet

Номер: US20130108542A1
Автор: Hyun Jung, Na-ra Lee

A method of preparing one-dimensional trimanganese tetroxide (Mn 3 O 4 ) nanoparticles from an exfoliated two-dimensional manganese dioxide (MnO 2 ) nanosheet using a solid-state decomposition method, and Mn 3 O 4 nanoparticles prepared according to the method are provided. The Mn 3 O 4 nanoparticles can be prepared at a very low temperature without using an organic solvent or a chemical additive, compared to conventional synthesis methods.

Подробнее
16-05-2013 дата публикации

MAGHEMITE NANOPARTICLES AND METHOD FOR PREPARING THEREOF

Номер: US20130122303A1
Принадлежит:

The present application relates to a method for preparing stoichiometrically pure maghemite iron superparamagnetic nanoparticles. The method for preparing maghemite (γ-FeO) superparamagnetic nanoparticles disclosed in the present application is characterized by a step of reduction and appropriate steps of oxidation of the Fe-based composition obtained by the same. The maghemite nanoparticles obtained show a suitable size as well as binding properties without any surface modification. These nanoparticles can be therefore easily used as reagents for detection of inorganic and/or organic molecules as well as nanocarriers of organic and/or biomolecules. 1. A method for preparing maghemite (γ-FeO) superparamagnetic nanoparticles comprising the steps of:{'sup': (3+)', '(0)', '(3+), 'sub': '4', 'a) reducing Feions to a Fe-based composition of matter comprising amorphous Fe-containing nanoparticles by treating at room temperature aqueous solutions of Fesalts with an ammonia aqueous solution of sodium borohydride (NaBH) and then heating the reaction mixture up to 100° C. and keeping the same at this temperature for a time comprised from 0.5 to 5.0 hours;'}{'sup': (0)', '(3+), 'b) oxidizing the Fe-based composition comprising amorphous Fe-containing nanoparticles obtained in a) to a Fe-based composition of matter comprising the black maghemite Fe-containing nanoparticles by aging under stirring, at room temperature, a water suspension of said composition for a time comprised from 24 to 96 hours;'}{'sup': '(3+)', 'sub': 2', '3, 'c) ageing the Fe-based composition of matter comprising the black maghemite Fe-containing nanoparticles obtained in b) to a stoichiometrically pure maghemite (γ-FeO) nanoparticles under stirring at room temperature a water suspension of the same for a time comprised from 24 to 96 hours; or'}{'sup': '(3+)', 'annealing by heating the Fe-based composition of matter comprising the black maghemite Fe-containing nanoparticles obtained in b) at temperatures ...

Подробнее
30-05-2013 дата публикации

Articles Containing Woven or Non-Woven Ultra-High Surface Area Macro Polymeric Fibers

Номер: US20130133980A1
Принадлежит: Allasso Industries, Inc.

This disclosure relates to articles that comprise polymeric winged fibers. The winged fibers have a high surface area because of their structure, which includes a core surrounded by a plurality of lobes. Channels of one micron or less in width are formed between adjacent lobes to form paths for the capture and/or transport of gases, liquids or particles. The winged fibers are assembled in woven or non-woven fabrics for use in wipes, absorbent pads, composite structures, apparel, outdoor wear, bedding, filtration systems, purification/separation systems, thermal and acoustic insulation, cell scaffolding, and battery membranes. 1. A wipe cloth weighing from 30 g/mto 500 g/m , wherein the wipe comprises a web formed at least partially of polymeric filaments or fibers of winged-type with nano-channels between the wings measuring one micron or less , with a filament titer of 1.0 to 10 dtex.2. The wipe cloth according to claim 1 , wherein the fiber of winged type comprises a middle region claim 1 , the middle region having between 16 projections and 32 projections extending from the middle region and around the periphery of the middle region.3. The wipe cloth according to claim 1 , wherein the cloth is a non-woven.4. The wipe cloth according to claim 1 , wherein the cloth is a knit.5. The wipe cloth according to claim 1 , wherein the cloth is woven.6. The wipe cloth according to claim 1 , wherein the web includes both winged and non-winged fibers.7. Artificial leather claim 1 , comprising:a substrate comprising a web formed at least partially of polymeric winged fibers, the winged fibers having a diameter of at least about 10 microns, a core and a plurality of lobes extending from the periphery of the core and spaced from one another to form nano-channels therebetween; anda polymer laminate coated on or encasing the substrate, wherein the channels of the winged fibers form adhesion sites for the laminate.8. A garment claim 1 , the garment comprising:a fabric comprised of ...

Подробнее
06-06-2013 дата публикации

Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials

Номер: US20130142944A1
Принадлежит: Envia Systems Inc

Positive electrode active materials are described that have a very high specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. Some materials of interest have the formula Li 1+x Ni 60 Mn β Co γ O 2 , where x ranges from about 0.05 to about 0.25, α ranges from about 0.1 to about 0.4, β range's from about 0.4 to about 0.65, and γ ranges from about 0.05 to about 0.3. The materials can be coated with a metal fluoride to improve the performance of the materials especially upon cycling. Also, the coated materials can exhibit a very significant decrease in the irreversible capacity lose upon the first charge and discharge of the cell. Methods for producing these materials include, for example, a co-precipitation approach involving metal hydroxides and sol-gel approaches.

Подробнее
13-06-2013 дата публикации

Composite material with conductive and ferromagnetic properties and hybrid slurry

Номер: US20130146801A1

In one embodiment of the disclosure, a composite material with conductive and ferromagnetic properties is provided. The composite material includes: 5 to 90 parts by weight of a conductive polymer matrix; and 0.1 to 40 parts by weight of iron oxide nanorods, wherein the iron oxide nanorods are ferromagnetic and have a length-to-diameter ratio of larger than 3. In another embodiment, a hybrid slurry is provided. The hybrid slurry includes a conductive polymer, and iron oxide nanorods, wherein the iron oxide nanorods are ferromagnetic and have a length-to-diameter ratio of larger than 3; and a solvent.

Подробнее
13-06-2013 дата публикации

Perovskite manganese oxide thin film

Номер: US20130149556A1
Автор: Yasushi Ogimoto
Принадлежит: Fuji Electric Co Ltd

An article including a perovskite manganese oxide thin film is composed of a substrate; and a perovskite manganese oxide thin film formed on the substrate and having an orientation that is an (m 10 ) orientation where 19≧m≧2. When m is 2 the perovskite manganese oxide thin film has a ( 210 ) orientation. The invention provides a perovskite manganese oxide thin film having a transition temperature at room temperature or above, which is higher than that of the bulk oxide, by exploiting the substrate strain and the symmetry of the crystal lattice.

Подробнее
27-06-2013 дата публикации

Recirculated-suspension pre-calciner system

Номер: US20130164202A1

A recirculated-suspension pre-calciner system is disclosed, comprising: a vortex cyclone dust collecting equipment including a plurality of devices, wherein a top device of the vortex cyclone dust collecting equipment is used as a feed system; a vertical combustion kiln; a blower; and a powder purge system, wherein powders in the feed system fall into the vortex cyclone dust collecting equipment and pass through a plurality of the devices to mix and exchange heat with flue gas comprising CO 2 , generating calcination reaction and releasing CO2 into the flue gas. and the steam is separated and transported to the feed system by the blower and acts as a carrier gas of powders.

Подробнее
04-07-2013 дата публикации

Precursor, process for production of precursor, process for production of active material, and lithium ion secondary battery

Номер: US20130168599A1
Принадлежит: TDK Corp

Active material is obtained by sintering a precursor, has a layered structure and is represented by the following formula (1). The temperature at which the precursor becomes a layered structure compound in its sintering in atmospheric air is 450° C. or less. Alternatively, the endothermic peak temperature of the precursor when its temperature is increased from 300° C. to 800° C. in its differential thermal analysis in the atmospheric air is 550° C. or less. Li y Ni a Co b Mn c M d O x F z   (1) In formula (1), the element M is at least one of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba, and V and 1.9≦(a+b+c+d+y)≦2.1, 1.0≦y≦1.3, 0<a≦0.3, 0≦b≦0.25, 0.3≦c≦0.7, 0≦d≦0.1, 1.9≦(x+z)≦2.0, and 0≦z≦0.15 are satisfied.

Подробнее
04-07-2013 дата публикации

Purification of Metals

Номер: US20130171046A1
Принадлежит: Mallinckrodt LLC

A solid composition comprises: MnO 2 ; and a compound represented by the general formula (I) wherein: R is a polymer; each Y is independently a hydrogen or a negative charge; Z is either hydrogen or is not present; each n is independently 1, 2, 3, 4, 5 or 6; wherein the MnO 2 is bound to the compound of formula (I) so as to coat the surface thereof. Such a composition may be used for the separation of polyvalent metal species, such as Mo, from one or more accompanying impurities.

Подробнее
11-07-2013 дата публикации

Methods of synthesizing an oxidant and applications thereof

Номер: US20130175224A1
Принадлежит: Ferrate Treatment Technologies LLC

Novel devices for synthesizing ferrate and uses thereof are described. One aspect of the invention relates to devices and systems for synthesizing ferrate at a site proximal to the site of use.

Подробнее
11-07-2013 дата публикации

NANOSTRUCTURES

Номер: US20130177749A1
Автор: Dai Xiaoshu, Xu Qiaobing
Принадлежит: TUFTS UNIVERSITY

A method for producing a matrix containing nanostructures. The method includes obtaining a layer having a thickness of 10 nm-100 μm, wherein the layer contains organic macromolecules arranged in a nanopattern, staining the layer with a solution containing a salt so that a portion of the salt is retained in the layer, and removing the organic mcaromolecules from the layer to form a matrix containing nanostructures. Also within the scope of this invention are nanostructures prepared by this method. 1. A method for producing a matrix having nanostructures , comprising obtaining a layer of organic macromolecules arranged in a nanopattern , wherein the layer has a thickness of 10 nm-100 μm ,placing the layer on a substrate,staining the layer with a solution containing a salt so that a portion of the salt is retained in the layer, andremoving the organic macromolecules from the layer to form a matrix having nanostructures.2. The method of claim 1 , wherein the layer is obtained by sectioning tendon claim 1 , muscle claim 1 , bone claim 1 , cartilage claim 1 , or diatoms.3. The method of claim 2 , wherein the layer is obtained by sectioning tendon or muscle.4. The method of claim 3 , wherein the layer is obtained by sectioning tendon with microtome or ultramicrotome.5. The method of claim 1 , wherein the salt is a metal salt.6. The method of claim 5 , further comprising claim 5 , after the staining step and before the removing step claim 5 , treating the layer with a reducing agent to reduce the metal salt retained in the layer to a metal.7. The method of claim 6 , wherein the organic layer has a thickness of 10-1000 nm.8. The method of claim 7 , wherein the metal salt is a salt of [UO] claim 7 , Rb claim 7 , Zn claim 7 , Pt claim 7 , Fe claim 7 , Au claim 7 , or a mixture thereof.9. The method of claim 8 , wherein the organic macromolecules are removed by plasma etching in the removing step.10. The method of claim 9 , wherein the metal salt is a salt of [UO].11. The ...

Подробнее
18-07-2013 дата публикации

Magnetite-containing resin and electronic component

Номер: US20130182460A1
Принадлежит: Murata Manufacturing Co Ltd

This disclosure provides a magnetic material-containing resin to be used for coating and forming cores. A magnetite-containing resin of the present invention includes a magnetite having a residual magnetic flux density of less than 15 Am 2 /kg and a coercive force of less than 12 kA/m. A coil is provided that has a structure in which by coating a winding with the magnetite-containing resin, a magnetite-containing resin layer is formed.

Подробнее
25-07-2013 дата публикации

MANGANESE OXIDE AND METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING LITHIUM MANGANESE COMPOSITE OXIDE USING SAME

Номер: US20130187083A1
Принадлежит: TOSOH CORPORATION

There is provided manganese oxide having a pore volume fraction of no greater than 20% for pores with diameters of 10 μm or greater, as measured by mercury porosimetry, and a tap density of 1.6 g/cmor greater, and a method for producing it. There is also provided a method for producing a lithium manganese composite oxide using the manganese oxide. 1. An manganese oxide having a pore volume fraction of no greater than 20% for pores with diameters of 10 μm or greater , as measured by mercury porosimetry , and a tap density of 1.6 g/cmor greater.2. The manganese oxide according to claim 1 , wherein the pore area ratio is no greater than 15% for pores with diameters of up to 0.1 μm as measured by the mercury porosimetry.3. The manganese oxide according to claim 1 , wherein the mode diameter is 10 μm or greater.4. The manganese oxide according to claim 1 , wherein the Na content is no greater than 300 ppm by weight.5. The manganese oxide according to claim 1 , wherein the BET specific surface area is no greater than 5 m/g.6. The manganese oxide according to claim 1 , wherein the manganese oxide includes either or both trimanganese tetraoxide and dimanganese trioxide.7. A method for producing a manganese oxide in which the manganese oxide according to is obtained from a water-soluble manganese salt solution claim 1 , the method comprising claim 1 ,a crystallization step in which the manganese oxide is obtained by crystallizing a trimanganese tetraoxide from the water-soluble manganese salt solution, without conversion via a manganese hydroxide or without crystallization of a hexagonal plate-like manganese hydroxide.8. The method for producing the manganese oxide according to claim 7 , wherein in the crystallization step claim 7 , the trimanganese tetraoxide is crystallized from the water-soluble manganese salt solution under conditions that satisfy either or both a pH of 6 to 9 and an oxidation-reduction potential of 0 to 300 mV.9. The method for producing manganese oxide ...

Подробнее
25-07-2013 дата публикации

Cathode active material comprising lithium manganese-based oxide and non-aqueous electrolyte secondary battery based upon the same

Номер: US20130189578A1
Принадлежит: LG Chem Ltd

Disclosed is a cathode active material including a lithium manganese-based oxide. The lithium manganese-based oxide has a spinel structure represented by Formula 1 below and high lithium ion diffusivity since (440) planes are predominantly formed in a crystal structure thereof. Li 1+x M y Mn 2-x-y O 4-z Q z   (1) In Formula 1, 0≦x≦0.3, 0≦y≦1, and 0≦z≦1, M includes at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi, and Q includes at least one element selected from the group consisting of N, F, S, and Cl.

Подробнее
08-08-2013 дата публикации

MANGANESE OXIDE PARTICLES AND PROCESS FOR PRODUCING SAME

Номер: US20130202521A1
Принадлежит: Mitsui Mining & Smelting Co., Ltd.

A manganese oxide particle having a hexagonal crystal structure or an analogous hexagonal crystal structure with an a-axis length of 8.73±1 Å and a c-axis length of 14.86±1 Å. The manganese oxide particle is preferably produced by a process including mixing an aqueous solution containing manganese (II) and an organic compound having a hydroxyl group while in a heated state with an alkali. 1. A manganese oxide particle having a hexagonal crystal structure or an analogous hexagonal crystal structure with an a-axis length of 8.73±1 Å and a c-axis length of 14.86±1 Å.2. The manganese oxide particle according to claim 1 , having a powder XRD (Cu/Kα) pattern showing diffraction peaks at a 2θ angle of at least 11.9±1° claim 1 , 24.0±1° claim 1 , and 36.3±1°.3. The manganese oxide particle according to claim 1 , being substantially free from a dopant element.4. A process for producing the manganese oxide particle of claim 1 , comprising mixing an aqueous solution containing manganese (II) and an organic compound having a hydroxyl group claim 1 , while in a heated state claim 1 , with an alkali.5. The process according to claim 4 , wherein the organic compound having a hydroxyl group is polyvinyl alcohol claim 4 , a polyol claim 4 , or a monohydric lower alcohol.6. A process for producing the manganese oxide particle according to claim 1 , comprising mixing an aqueous solution containing manganese (II) claim 1 , while in a heated state claim 1 , with an amount of an alkali claim 1 , the amount being such that generates OH in an amount 0.1 to 3.0 times the number of moles of the manganese (II).7. The manganese oxide particle according to claim 2 , being substantially free from a dopant element. This invention relates to novel manganese oxide particles having a layer structure and a process for producing the same.Conventional techniques relating to manganese oxide having a layer structure include the technique described in patent literature 1 below. The manganese oxide ...

Подробнее
22-08-2013 дата публикации

TREATMENT OF TANTALUM- AND/OR NIOBIUM-CONTAINING COMPOUNDS

Номер: US20130216455A1
Принадлежит:

A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds is provided. The process includes contacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds. The resultant fluorinated tantalum and/or niobium compounds are recovered. 1. A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds , which process includescontacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds; andrecovering the resultant fluorinated tantalum and/or niobium compounds.2. A process according to claim 1 , wherein the feedstock comprises at least one mineral containing the tantalum- and/or niobium compounds claim 1 , and wherein the tantalum- and/or niobium-containing compounds comprise oxides of the formula MOwhere M is Ta or Nb.3. A process according to claim 2 , which is characterized thereby that it is carried out in the substantial absence of moisture claim 2 , so that it is a dry process claim 2 , with few harmful and/or hazardous liquid waste products being produced.4. A process according to or claim 2 , wherein the gaseous fluorinating agent comprises gaseous fluorine and/or gaseous anhydrous hydrogen fluoride as a reactive gas which claim 2 , in a fluorinating reaction claim 2 , fluorinates the tantalum- and niobium-containing compounds.7. A process according to claim 4 , wherein the degree of fluorination is controlled such that oxyfluoride compounds of tantalum and niobium claim 4 , in accordance with formula MOFin which M is Ta or Nb claim 4 , x and z are each >0 claim 4 , and y≧0 claim 4 , are produced.8. A process according to claim 7 , wherein the fluorinating agent includes claim 7 , in addition to the reactive gas comprising gaseous fluorine (F) and/or gaseous anhydrous hydrogen fluoride and which is hence a first reactive gas claim 7 , also a second ...

Подробнее
22-08-2013 дата публикации

Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling

Номер: US20130216900A1
Принадлежит: Envia Systems Inc

Lithium rich and manganese rich lithium metal oxides are described that provide for excellent performance in lithium-based batteries. The specific compositions can be engineered within a specified range of compositions to provide desired performance characteristics. Selected compositions can provide high values of specific capacity with a reasonably high average voltage. Compositions of particular interest can be represented by the formula, x Li 2 MnO 3 .(1−x) Li Ni u+Δ Mn u−Δ Co w A y O 2 . The compositions undergo significant first cycle irreversible changes, but the compositions cycle stably after the first cycle.

Подробнее
29-08-2013 дата публикации

Re-Dispersible Metal Oxide Nanoparticles and Method of Making Same

Номер: US20130220178A1
Принадлежит: Justus Liebig Universitaet Giessen

The current invention relates to a method of making metal oxide nanoparticles comprising the reaction of—at least one metal oxide precursor (P) containing at least one metal (M) with—at least one monofunctional alcohol (A) wherein the hydroxy group is bound to a secondary, tertiary or alpha-unsaturated carbon atom—in the presence of at least one aliphatic compound (F) according to the formula Y 1 —R 1 —X—R 2 —Y 2 , wherein—R 1 and R 2 each are the same or different and independently selected from aliphatic groups with from 1 to 20 carbon atoms, —Y 1 and Y 2 each are the same or different and independently selected from OH, NH 2 and SH, and —X is selected from the group consisting of chemical bond, —O—, —S—, —NR 3 —, and CR 4 R 5 , wherein R 3 , R 4 and R 5 each are the same or different and represent a hydrogen atom or an aliphatic group with from 1 to 20 carbon atoms which optionally carries functional groups selected from OH, NH 2 and SH. This invention also relates to metal oxide nanoparticles, to a method of making dispersions of said nanoparticles and to dispersions containing them.

Подробнее
29-08-2013 дата публикации

Nanofluid coolant

Номер: US20130221267A1
Принадлежит: INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Technologies are generally described for forming a nanofluid coolant and structures including a nanofluid coolant. In an example, a method of forming a nanofluid coolant may comprise combining a compound with an acid and with purified water to form a solution. The compound may include manganese. The method may further include heating the solution and, after heating the solution, cooling the solution effective to form at least one precipitate that includes manganese and oxygen. The method may further include filtering the at least one precipitate to form a powder that includes manganese oxide nanotubes. The method may further include functionalizing the nanotubes by irradiating them with UV radiation. The method may further include combining the functionalized manganese oxide nanotubes with a polar solvent to form the nanofluid coolant.

Подробнее
29-08-2013 дата публикации

Lithium secondary battery positive electrode material for improving output characteristics and lithium secondary battery including the same

Номер: US20130221283A1
Принадлежит: LG Chem Ltd

Provided are a positive electrode active material for improving an output and a lithium secondary battery including the same. Particularly, graphite and conductive carbon which have shapes and sizes different from each other, may be simultaneously coated on a mixed positive electrode material of a 3-component system lithium-containing metal oxide having a layered structure and expressed as following Chemical Formula 1 and LiFePO 4 having an olivine structure as an conductive material to improve high resistance occurrence and conductivity reduction phenomenon of a 3-component system lithium metal oxide due to a difference between particle sizes and surface areas of the 3-component system lithium-containing metal oxide and LiFePO 4 olivine. Li 1+a Ni x Co y Mn 1-x-y O 2 , 0≦a<0.5, 0<x<1, 0<y<0.5   [Chemical formula 1]

Подробнее
29-08-2013 дата публикации

METHOD FOR THE PREPARATION OF NANOPARTICLES IN IONIC LIQUIDS

Номер: US20130221289A1
Принадлежит: UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

The invention relates to a method for the preparation of nanoparticles in ionic liquids. Specifically, the invention relates to a simple, quick and effective method for the preparation of dispersions of nanoparticles (nanofluids) in an ionic liquid. 1. Method for the preparation of a dispersion of nanoparticles in ionic liquids comprisinga) contacting a solid precursor with an ionic liquid,b) stirring the mixture between 50 and 150° C.,c) centrifugation and decantation.2. Method according claim 1 , which further comprises an additional step d) claim 1 , following step c) claim 1 , comprising the precipitation of the nanoparticles.3. Method according claim 2 , wherein the precipitation step d) claim 2 , comprises:i) adding a capping agent,ii) adding a solvent,iii) centrifugation and decantation.4. Method according to claim 1 , wherein the solid precursor in step a) is selected from the group consisting of metals claim 1 , metal oxides claim 1 , metal halides claim 1 , metal sulfides and metal selenides.5. Method according to claim 1 , wherein metal components in step a) are selected from transition metals.6. Method according to claim 1 , wherein the ionic liquid in the step a) has a melting point at or below 150° C.7. Method according to claim 1 , wherein in the step b) the mixture is stirred between 700 and 1300 rpm.8. Method according to claim 1 , wherein in the step c) the mixture is centrifuged between 3500 and 4500 rpm.9. Method according to claim 3 , wherein in the step i) the capping agent is a compound which is bearing a thiol group.10. Method according to claim 3 , wherein the solvent added in step ii) is selected from an alkyl alcohol and a dialkyl ketone.11. Method according to claim 3 , wherein in the step iii) the mixture is centrifuged between 4000 and 5000 rpm.12. Dispersion of nanoparticles in an ionic liquid obtainable by the method described in .13. Dispersion of nanoparticles in an ionic liquid according to claim 12 , wherein the nanoparticles have ...

Подробнее
05-09-2013 дата публикации

Solid ammonia storage and delivery material

Номер: US20130230443A1
Принадлежит: Individual

Disclosed is a method for the selective catalytic reduction of NO x in waste/exhaust gas by using ammonia provides by heating one or more salts of formula M a (NH 3 ) n X z , wherein M represents one or more cations selected from alkaline earth metals and transition metals, X represents one or more anions, a represents the number of cations per salt molecule, z represents the number of anions per salt molecule, and n is a number of from 2 to 12, the one or more salts having been compressed to a bulk density above 70% of the skeleton density before use thereof.

Подробнее
05-09-2013 дата публикации

Lithium battery

Номер: US20130230782A1
Автор: Seung-Goo Baek
Принадлежит: Samsung SDI Co Ltd

A lithium battery includes a cathode containing a lithium manganese oxide with a spinel structure; an anode; and an electrolyte. When stored at a temperature of about 50° C. or greater for about 7 days or longer in a charged state, the lithium manganese oxide with the spinel structure has a peak intensity ratio of the 660 cm −1 peak to the 590 cm −1 peak (I(660)/I(590)) in the Raman spectrum of about 0 to about 2. The electrolyte includes a mixed solvent of a high-k solvent and a low-boiling-point solvent in a volumetric ratio of from about 1:9 to about 4:6, and a lithium salt at a concentration of about 0.5M to about 2M.

Подробнее
12-09-2013 дата публикации

PROCESSES FOR MAKING HIGH IRON CONTENT STABLE FERRIC CHLORIDE SOLUTIONS

Номер: US20130236379A1
Принадлежит:

Processes for forming high iron content ferric chloride solutions, reconstituting ferric chloride solutions, and transporting the stable ferric chloride solutions with the high iron content are disclosed. 1. A process for making a high iron content ferric chloride solution , comprising:evaporating water from a ferric chloride solution having an iron content about 15 weight percent or less to increase the iron content to about 23 to 26 weight percent.2. The process of claim 1 , wherein the iron content is increased to 24 to 25 weight percent.3. The process of claim 1 , wherein the iron content is increased to 24.5 weight percent.4. The process of claim 1 , wherein the ferric chloride solution further comprises hydrochloric acid and evaporating the water from the ferric chloride solution concomitantly decreases a concentration of the hydrochloric acid in the ferric chloride solution.5. The process of claim 4 , wherein the concentration of the hydrochloric acid in the ferric chloride solution after evaporating the water is substantially zero.6. The process of claim 1 , further comprising reconstituting the ferric chloride solution with the iron content of about 23 to 26 weight percent by diluting the ferric chloride solution to a desired iron content with water.7. The process of claim 1 , further comprising reconstituting the ferric chloride solution with the iron content of about 23 to 26 weight percent by diluting the ferric chloride solution to a desired iron content with water and hydrochloric acid.8. A method of moving a solution claim 1 , comprising:transporting a ferric chloride solution with the iron content of about 23 to 26 weight percent at a temperature of about 8° C. or more.9. The method of claim 8 , wherein the ferric chloride solution has an iron content of about 24 to 25 weight percent weight percent and is at a temperature about 30° C. or more.10. The method of claim 8 , wherein the ferric chloride solution has an iron content of about 24.5 weight ...

Подробнее
26-09-2013 дата публикации

METHOD FOR PREPARATION OF HEMATITE IRON OXIDE WITH DIFFERENT NANOSTRUCTURES AND HEMATITE IRON OXIDE PREPARED THEREBY

Номер: US20130251624A1
Автор: Yu Jong-Sung

Disclosed is a method for preparing hematite iron oxide having various nanostructures, including: preparing a mixture solution by adding iron chloride and caffeine to a solvent and magnetically stirring; and performing hydrothermal synthesis, wherein the solvent is selected from water, ethanol, propanol and methanol. In accordance with the present disclosure, hematite iron oxide (α-FeO) superstructures of various shapes, including grape, cube, dumbbell and microsphere shapes, can be synthesized in different solvents using caffeine. The shapes can be controlled variously via a simple one-step synthesis route without using a growth-inducing agent and without separation based on size. The prepared hematite iron oxide exhibits high coercivity at room temperature owing to its fine crystal structures and anisotropic shapes. The hematite iron oxide nanoparticles having different nanostructures prepared according to the present disclosure may be widely useful in biological and biochemical applications as a material having peroxidase mimic activity and thus capable of replacing natural enzymes. 1. A method for preparing nanorod-shaped hematite iron oxide having peroxidase activity , comprising:preparing an akaganeite (β-FeOOH, iron oxide-hydroxide) nanorod by adding hydrochloric acid or caffeine to a solution of iron chloride in a mixture solvent of water and ethanol; andperforming hydrothermal synthesis at 200-300° C. for 1-3 hours using the akaganeite nanorod as a precursor.2. The method for preparing nanorod-shaped hematite iron oxide according to claim 1 , wherein the length of the nanorod-shaped hematite iron oxide is controlled by adjusting at least one selected from the concentration of the hydrochloric acid claim 1 , the concentration of the caffeine and the volume ratio of the mixture solvent of water and ethanol.3. The method for preparing nanorod-shaped hematite iron oxide according to claim 2 , wherein the concentration of the hydrochloric acid is adjusted to 0. ...

Подробнее
10-10-2013 дата публикации

Thermoelectric conversion material, thermoelectric conversion device, and thermoelectric conversion module

Номер: US20130263907A1
Принадлежит: HITACHI LTD

Provided is a p-type thermoelectric conversion material achieving a low environment load and low costs and having high efficiency. A thermoelectric conversion device is constituted by raw materials existing in a great amount in nature by using Fe and S as main components. Further, since FeS 2 of a pyrite structure has a d orbit derived from Fe in a valence band and a high state density, high performance as the thermoelectric conversion device is implemented by adding an addition element to this material system to express a p-type semiconductor characteristic.

Подробнее
17-10-2013 дата публикации

Transition metal compound particles and methods of production

Номер: US20130272949A1
Принадлежит: YAVA TECHNOLOGIES Inc

A method of preparing insoluble transition metal compound particles is described, comprising: providing a transition metal salt solution having the formula (TM)(S) wherein TM is one or more of Mn, Ni, Co, Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr Ge or Sn; providing a source of a carbonate-, hydroxide-, phosphate-, oxyhydroxide- or oxide-based anionic compound wherein the anionic component, represented by S′, is reactive with TM to form the particles; adding the transition metal salt solution and anionic compound to a reaction chamber; and subjecting the chamber to sonication at an intensity of about 0.1 to about 50 W/mL. In an exemplary embodiment, MnCO 3 particles are formed from: MnSO 4 ; and Na 2 CO 3 and/or NH 4 HCO 3 , wherein the ratio of MnSO 4 to Na 2 CO 3 and/or NH 4 HCO 3 is from about 1:1.5 to 1.5:1. The particles may have narrow size distribution and a tap density of about 1.7-2.3 g/mL.

Подробнее
24-10-2013 дата публикации

METHOD FOR CONVERTING UO3 OR U3O8 INTO HYDRATED UO4

Номер: US20130280157A1

A method for converting UOand/or UOinto hydrated UOof formula UO.nHO wherein n is 2 or 4, comprising the following successive steps: 2. The method according to claim 1 , wherein the pH of the suspension is adjusted during step a) to a value comprised between 2 and 3 by adding an acid to the suspension.3. The method according to claim 1 , wherein the acid is selected from oxalic acid claim 1 , sulfuric acid and mixtures thereof.4. The method according to claim 1 , wherein the stoichiometric excess of HOis from more than 1 to 10 claim 1 , relatively to the stoichiometry of the reaction (1) and from more than 1.33 to 10 relatively to the stoichiometry of reaction (2).5. The method according to claim 1 , wherein the hydrogen peroxide is added as an aqueous solution at a concentration of 30% to 70% by weight.6. The method according to claim 1 , wherein the aqueous suspension of UOand/or UOhas a uranium concentration from 10 to 500 g/L (gU/L).7. The method according to claim 1 , wherein steps a) and b) are carried out with stirring.8. The method according to claim 1 , wherein during step a) and/or step b) complexing anions are added to the suspension.9. The method according to claim 8 , wherein the complexing anions are selected from sulfate anions claim 8 , oxalate anions and mixtures thereof.10. The method according to claim 1 , wherein the duration of step b) is selected so that the conversion of UOand/or UOinto UOhydrate is total or substantially total.11. The method according to claim 1 , wherein step b) comprises the following successive steps b1) and b2):{'sub': 2', '2', '3', '3', '8, 'b1) adding hydrogen peroxide HOto the aqueous suspension of a UOand/or UOpowder and then stopping the addition; and'}b2) ripening the suspension.12. The method according to claim 11 , wherein the duration of step b1) is from 1 to 8 hours and the duration of step b2) is from 1 to 24 hours.13. The method according to claim 1 , wherein the addition of hydrogen peroxide HOis carried out ...

Подробнее
31-10-2013 дата публикации

Magnetic-cored dendrimer, the method for preparing the same, and the contaminant treatment method using the same

Номер: US20130289292A1

Provided is a magnetic-cored dendrimer represented by the following Chemical Formula wherein R represents a functional group represented by the following Chemical Formula (2) or (3):

Подробнее
28-11-2013 дата публикации

Manganese Oxides and Their Use in the Oxidation of Alkanes

Номер: US20130317272A1
Принадлежит: ExxonMobil Chemical Patents Inc

Catalytic structures are provided comprising octahedral tunnel lattice manganese oxides ion-exchanged with metal cations or mixtures thereof. The structures are useful as catalysts for the oxidation of alkanes and may be prepared by treating layered manganese oxide under highly acidic conditions, optionally drying the treated product, and subjecting it to ion exchange.

Подробнее
05-12-2013 дата публикации

Method for the production of an lmo product

Номер: US20130323597A1

A fused product including lithium-manganese spinel, which is optionally doped, having a spinel structure AB 2 O 4 , where the site A is occupied by lithium and the site B is occupied by manganese, it being possible for the site B to be doped with an element B′ and it being possible for the site A to exert a substoichiometry or a superstoichiometry with respect to the site B, so that the product observes the formula Li (1+x) Mn (2−y) B′ y O 4 , with −0.20≦x≦0.4 and 0≦y≦1, the element B′ being chosen from aluminum, cobalt, nickel, chromium, iron, magnesium, titanium, vanadium, copper, zinc, gallium, calcium, niobium, yttrium, barium, silicon, boron, zirconium and their mixtures.

Подробнее
12-12-2013 дата публикации

ELECTROLYTIC MANGANESE DIOXIDE AND METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING LITHIUM-MANGANESE COMPLEX OXIDE

Номер: US20130330268A1
Принадлежит: TOSOH CORPORATION

The invention provides electrolytic a manganese dioxide with a BET specific surface area of 20 to 60 m/g, and a volume of at least 0.023 cm/g for pores with pore diameters of 2 to 200 nm. Also provided is a method for producing an electrolytic manganese dioxide including a step of suspending a manganese oxide in a sulfuric acid-manganese sulfate mixed solution to obtain the electrolytic manganese dioxide, wherein a manganese oxide particles are continuously mixed with a sulfuric acid-manganese sulfate mixed solution, for a manganese oxide particle concentration of 5 to 200 mg/L in the sulfuric acid-manganese sulfate mixed solution. Still further provided is a method for producing a lithium-manganese complex oxide, including a step of mixing the electrolytic manganese dioxide with a lithium compound and heat treating the mixture to obtain a lithium-manganese complex oxide. 1. An electrolytic manganese dioxide having a BET specific surface area of between 20 m/g and 60 m/g , and having a volume of at least 0.023 cm/g for pores with pore diameters of between 2 nm and 200 nm.2. The electrolytic manganese dioxide according to claim 1 , having a volume of at least 0.025 cm/g for pores with pore diameters of between 2 nm and 200 nm.3. The electrolytic manganese dioxide according to claim 1 , having a volume of at least 0.004 cm/g for pores with pore diameters of between 2 nm and 50 nm.4. The electrolytic manganese dioxide according to claim 1 , having a volume of at least 0.005 cm/g for pores with pore diameters of between 2 nm and 50 nm.5. The electrolytic manganese dioxide according to claim 1 , wherein the apparent particle density is at least 3.4 g/cm.6. The electrolytic manganese dioxide according to claim 1 , wherein the apparent particle density is at least 3.8 g/cm.7. The electrolytic manganese dioxide according to claim 1 , wherein the bulk density is at least 1.5 g/cm.8. The electrolytic manganese dioxide according to claim 1 , wherein the alkaline earth metal ...

Подробнее
26-12-2013 дата публикации

SPHERICAL TRIMANGANESE TETROXIDE WITH LOW BET SPECIFIC SURFACE AREA AND THE METHOD FOR PREPARATION THEREOF

Номер: US20130344332A1
Автор: WU Xiaojing
Принадлежит:

The present invention provides a spherical trimanganese tetroxide with low BET specific surface area and preparation method thereof. The preparation method of the present invention comprises: (1) pre-treatment process, adding MnS and peroxide to MnSOsolution whose concentration is 130˜200 g/L to remove impurities, and then, neutralizing and separating by solid-liquid separation to obtain manganese sulfate filtrate; (2) oxidation reaction process, putting the filtrate in a reactor, maintaining the temperature of the solution at 25˜30° C., spraying the filtrate through the spray nozzle, mixing the sprayed manganese sulfate filtrate with a mixture gas of oxygen and ammonia gas to carry out reaction on the spraying interface at under a pressure of 500˜1000 mm HO, reacting until [Mn]≦1.5 g/L, the gas mol ratio is O/NH=1/12; (3) process for obtaining the final product, separating the solution obtained after reaction by solid-liquid separation to obtain solid and filtrate, washing and drying the solid to obtain MnOproduct. The trimanganese tetroxide of the present invention has properties that particle size distribution is narrow, the crystal phase is pure, impurities content is low, Mn % is 71.44˜71.08 wt %, BET specific surface area is less than 1 m/g, Dis 7.0˜8.5 μm, Dis 2.6˜3.2 μm, Dis 4.0˜5.5 μm, and Dis 15.138 μm. 1. A method for preparing spherical trimanganese tetroxide , comprising:{'sub': '4', '(1) a pre-treatment process comprising: adding MnS and a peroxide sequentially to a MnSOsolution whose concentration is 130˜200 g/L to remove impurities, neutralizing the resulting mixture to pH value of 5.0˜5.5, and separating the mixture by solid-liquid separation to obtain manganese sulfate filtrate;'}{'sub': 2', '2', '3, 'sup': '2+', '(2) an oxidation reaction process comprising: putting the foregoing manganese sulfate filtrate obtained in the pre-treatment process (1) in a reactor, spraying the filtrate through a nozzle of the reactor so that the sprayed manganese ...

Подробнее
26-12-2013 дата публикации

METHODS FOR PREPARING TRIMANGANESE TETROXIDE WITH LOW BET SPECIFIC SURFACE AREA, METHODS FOR CONTROLLING PARTICLE SIZE OF TRIMANGANESE TETROXIDE AND TRIMANGANESE TETROXIDE PRODUCT

Номер: US20130344333A1
Принадлежит:

The present invention provides methods for preparing trimanganese tetroxide with low BET specific surface area and methods for controlling particle size of trimanganese tetroxide and trimanganese tetroxide product. 1. A method for preparing trimanganese tetroxide , comprising:(1) a process for purifying air comprising purifying air by spraying dilute aqueous ammonia;{'sub': 4', '4', '2', '4', '2', '2', '4, '(2) a pretreatment of removing impurities from a MnSOsolution comprising adjusting pH value of the MnSOsolution with a concentration in a range of 150˜200 g/L to 5.5-6.0, introducing HS gas into the MnSOsolution until pH value reaches 2.5-3.0, separating the mixture by solid-liquid separation to obtain a filtrate and a solid, purifying the filtrate by removing impurities with oxidization of HO, adjusting pH value of the filtrate to 5-6 with a base, and separating the obtained mixture by solid-liquid separation to obtain a filtrate and a solid, so as to obtain MnSOsolution as filtrate for use;'}{'sub': 4', '4', '3', '4', '3', '4', '3', '4, '(3) a process for preparing seed crystal comprising cooling the MnSOsolution obtained in the pretreatment (2) from MnSOsolution to a temperature of less than 40° C., and introducing liquid NHinto the cooled MnSOsolution until pH value reaches 10.5-11.0, separating the mixture by solid-liquid separation to obtain a filtrate and a solid; washing the obtained solid, adding deionized water to the washed solid and forming a slurry, introducing the purified air obtained in the process (1) into the slurry, and oxidizing the slurry into MnO; separating the mixture by solid-liquid separation to obtain filtrate and solid, so as to obtain MnOseed crystal as solid for use; and'}{'sub': 4', '4', '3', '4', '3', '4', '4', '4', '4', '3', '4, '(4) a process for obtaining the final product by controlling oxidization comprising adding the MnSOsolution obtained in the pretreatment (2) from MnSOsolution into an oxidization reactor, adding MnOseed ...

Подробнее
16-01-2014 дата публикации

PREPARATION METHOD OF INDUSTRIAL PURPLE NANO-NEEDLE TUNGSTEN OXIDE

Номер: US20140014875A1
Принадлежит:

In an industrial purple nano-needle tungsten oxide preparation method, ammonium paratungstate 5(NH)O.12WO.5HO, tungstic acid mWO.nHO (m≧1, n≧1), or tungsten oxide WO(2≦x≦3) is used as a raw material for preparing the purple nano-needle tungsten oxide in an inclined rotating furnace pipe. At an inlet of the furnace pipe, the raw material is pushed from a feed inlet of a feeding device into the heated furnace pipe. The inclined furnace pipe is rotated to gradually move the raw material from a low temperature area to a high temperature area. The raw material at the high temperature area inside the furnace pipe is reduced by Hto form the nano-needle purple tungsten oxide. The inclined furnace pipe is rotated to move the WOtowards a discharging end, and the purple tungsten oxide WOis discharged from a discharge outlet of a discharging device and cooled to room temperature by the discharging device. 1. A preparation method of nano-needle purple tungsten oxide , characterized in that ammonium paratungstate 5(NH)O.12WO.5HO is used as a raw material , and the method comprises the steps of:{'sub': 4', '2', '3', '2', '4', '2', '3', '2, '(A) pushing the ammonium paratungstate 5(NH)O.12WO.5HO through a feed inlet of a feeding device into a heated furnace pipe, and moving the ammonium paratungstate 5(NH)O.12WO.5HO gradually from a low temperature area to a high temperature area while the inclined furnace pipe is being rotated;'}{'sub': 4', '2', '3', '2', '3', '3', '2, '(B) heating and decomposing the ammonium paratungstate 5(NH)O.12WO.5HO into tungsten trioxide WO, ammonia gas NHand water vapor HO;'}{'sub': 3', '2, '(C) thermally decomposing the ammonia gas NHin the furnace pipe to produce reducing hydrogen gas H; and'}{'sub': 3', '2', '2.72, '(D) moving the raw material to the high temperature area while the inclined furnace pipe is rotating, such that when the temperature of the raw material continues rising, the tungsten trioxide WOis reduced gradually by the hydrogen gas Hto ...

Подробнее
16-01-2014 дата публикации

PROCESS FOR PREPARING MAGNETITE (FE3O4) AND DERIVATIVES THEREOF

Номер: US20140017164A1
Принадлежит: KING SAUD UNIVERSITY

The present invention relates to a process for preparing magnetite (FeO) or derivatives thereof, comprising the steps: a) preparing an aqueous solution A of a Fe(III) salt, b) preparing an aqueous solution B of an iodide salt, c) mixing solutions A and B to obtain a first precipitate, d) separating the first precipitate to obtain a filtrate, e) hydrolyzing the filtrate obtained in step d) by adjusting the pH to about 8.5-9 or above, preferably 9, in order to obtain a second precipitate, and f) separating the second precipitate. 1. Process for preparing magnetite (FeO) or derivatives thereof , comprising the steps:a) preparing an aqueous solution A of a Fe(III) salt,b) preparing an aqueous solution B of an iodide salt,c) mixing solutions A and B to obtain a first precipitate,d) separating the first precipitate to obtain a filtrate,e) hydrolyzing the filtrate obtained in step d) by adjusting the pH to about 8.5 or above in order to obtain a second precipitate, andf) separating the second precipitate.2. Process according to claim 1 , wherein the molar ratio of Fe(III) salt in the aqueous solution A and of iodide salt in the aqueous solution B is from 3:1 to 1:1.4.3. Process according to claim 1 , wherein an aqueous solution C of at least one divalent cation M is added after step d) and before step e).4. Process according to claim 3 , wherein the amounts of Fe(III) salt in the aqueous solution A claim 3 , iodide salt in the aqueous solution B and divalent cation M in the aqueous solution C fulfill the following requirement: FeIMwith 0 Подробнее

06-02-2014 дата публикации

Positive active material for lithium secondary battery, manufacturing method thereof, lithium secondary battery electrode, and lithium secondary battery

Номер: US20140038053A1
Принадлежит: GS YUASA INTERNATIONAL LTD

A positive active material for a lithium secondary battery contains a lithium-transition metal composite oxide represented by a composition formula of Li 1+α Me 1−α O 2 (Me is a transition metal element including Co, Ni, and Mn; 1.2<(1+α)/(1−α)<1.6). A molar ratio (Co/Me) of Co contained in the Me ranges from 0.24 to 0.36, and when a space group R3-m is used for a crystal structure model based on an X-ray diffraction pattern, a half width of a diffraction peak that attributes to a (003) line ranges from 0.204° to 0.303°, or a half width of a diffraction peak that attributes to a (104) line ranges from 0.278° to 0.424°.

Подробнее
20-02-2014 дата публикации

Positive active material for rechargeable lithium battery, method for preparing same and rechargeable lithium battery including same

Номер: US20140050993A1
Автор: Jung-Joon Park
Принадлежит: Samsung SDI Co Ltd

A positive active material including a compound represented by Li 1+x M 1−k Me k O 2 . A surface part of a particle of the positive active material has a mole ratio [Me/M] (A) of element represented by Me to element represented by M in Li 1+x M 1−k Me k O 2 of 0.05≦A≦0.60; the entire particle has a mole ratio [Me/M] (B) of element represented by Me to element represented by M in Li 1+x M 1−k Me k O 2 of 0.003≦B≦0.012; and element represented by Me has a concentration difference of between two positions of less than or equal to about 0.02 wt % in an inner part of the particle. In Li 1+x M 1−k Me k O 2 , −0.2≦x≦0.2, 0<k≦0.05 M is one selected from Ni, Mn, Co, and a combination thereof, Me is one selected from Al, Mg, Ti, Zr, B, Ni, Mn, and a combination thereof, and M is not the same element as Me or does not include the same element as Me.

Подробнее
20-02-2014 дата публикации

Isolation of a protein responsible for uranium (vi) reduction

Номер: US20140051150A1
Принадлежит: University of the Free State

The present invention relates to the isolation and characterization of a protein responsible for the reduction of uranium (VI) to uranium (IV). The present invention extends to the use of the isolated protein in the reduction of uranium (VI) to uranium (IV) and further extends to a process for the bioremediation, or at least partial remediation, of a site contaminated with a source of U (VI). According to a first aspect thereof, the present invention provides an isolated polypeptide derived from Thermus scotoductus strain SA-01 that is responsible for the reduction of uranium (VI), in a source of uranium (VI), to uranium (IV), wherein the polypeptide comprises the amino acid sequence of SEQ ID No: 1.

Подробнее
06-03-2014 дата публикации

SOLUTION-PROCESSED TRANSITION METAL OXIDES

Номер: US20140061550A1
Принадлежит:

Embodiments may pertain to methods for preparing a transition metal oxide. 1. A method comprising:combining a peroxide with a solution of an alcohol-based solvent and a transition metal; and2. The method of claim 1 , wherein said peroxide comprises hydrogen peroxide.3. The method of claim 1 , wherein said alcohol-based solvent is ethanol.4. The method of claim 1 , wherein said solution comprises:an amount of said alcohol-based solvent to affect a rate of reaction of said transition metal with said peroxide in combination.5. The method of claim 1 , wherein said transition metal comprises one of the group consisting essentially of vanadium claim 1 , molybdenum claim 1 , tungsten.6. The method of claim 1 , further comprising:drying said solution of said peroxide and said transition metal to form an at least partially dried transition metal oxide.7. The method of claim 6 , further comprising:combining at least one water-free solvent with said at least partially dried transition metal oxide.8. The method of claim 6 , the said drying comprises:creating said at least partially dried transition metal oxide in a vacuum environment.9. The method of claim 6 , further comprising:dispersing said at least partially dried transition metal oxide into a water-free solvent.10. The method of claim 9 , further comprising:forming a transition metal oxide film.11. The method of claim 10 , said forming comprises:spin-coating said dispersed solution onto a substrate to form said transition metal oxide film.12. The method of claim 11 , further comprising:forming an organic device that includes said transition metal oxide film.13. The method of claim 12 , wherein said organic device comprises at least one of an organic light emitting diode claim 12 , an organic solar cell claim 12 , or an organic photodetector.14. The method of claim 10 , wherein said forming comprisesannealing said transition metal oxide film at a temperature approximately between approximately 60.0° C. and approximately ...

Подробнее
06-03-2014 дата публикации

Internal cyclone for fluidized bed reactor

Номер: US20140065049A1
Принадлежит: Honeywell International Inc

A fluidized bed reactor comprising a reaction column having a fluid portion; a gas inflow means for flowing a gas upwardly from the fluid portion of the reaction column; a particle feed means for feeding particles to the fluid portion of the reaction column; a cyclone capable of separating particles from the gas flowing upwardly from the fluid portion of the reaction column, the cyclone being located within the reaction column and being in communication with the gas flowing upwardly, wherein the cyclone comprises a cyclone body having an inlet, a gas outlet, and a particle drop port; and a particle discharge pipe having an upper part connected to the particle drop port of the cyclone body, and a lower part, wherein the particle discharge pipe is located substantially outside of the reaction column.

Подробнее
03-04-2014 дата публикации

Method of manufacturing hexagonal ferrite magnetic particles

Номер: US20140091501A1
Принадлежит: Fujifilm Corp

The method of manufacturing hexagonal ferrite magnetic particles, which includes providing hexagonal ferrite magnetic particles by conducting calcination of particles comprising an alkaline earth metal salt and an iron salt to cause ferritization; and further includes causing a glass component to adhere to the particles and then conducting the calcination of the particles to form a calcined product in which hexagonal ferrite is detected as a principal component in X-ray diffraction analysis; and removing the glass component from a surface of the calcined product that has been formed.

Подробнее
03-04-2014 дата публикации

Environmentally friendly system and method for manufacturing iron powder

Номер: US20140093445A1
Автор: Carla D. Di Luca
Принадлежит: InNova Powders Inc

High-purity iron powder products produced by a low-temperature process by feeding hematite and a reducing agent into a rotary reactor under pressure to form a mechanical fluid bed. The fluid bed is rotated at a particular speed within a rotary reactor. The fluid bed is simultaneously heated to a reaction temperature, and the pressure is then reduced within the rotary reactor to a pressure in a range of 0.01 bars to 2.0 bars, as a result reducing the reaction temperature to a temperature in a range of 600° C. to 850° C. Maintaining the pressure and the rotation results in the formation of a high-purity iron oxide without the requirement for post-grinding process steps because sintering is prevented by using a combination of pressure reduction and a rotary set at an optimum rotation speed, resulting in useful additives produced by a more environmentally-friendly process.

Подробнее