Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 17775. Отображено 200.
31-12-2020 дата публикации

БУРОВЫЕ ТЕКУЧИЕ СРЕДЫ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ

Номер: RU2740054C2
Принадлежит: ЭКОЛАБ ЮЭсЭй ИНК. (US)

Группа изобретений относится к способам бурения с применением композиций буровых текучих сред. Технический результат - предотвращение потери текучей среды в пласте посредством водных буровых растворов, в которых регулирующее потери текучей среды вещество практически не набухает в воде, удерживание воды в водных буровых растворах, температура которых достигает или превышает уровень от 80°C до 200°C. Буровой раствор содержит источник воды, закупоривающий агент, нанокомпозит, содержащий структуру из ядра и оболочки. Ядро содержит наночастицу, имеющую средний размер частицы от примерно 5 нм до 500 нм. Наночастица выбрана из диоксида кремния, обработанного или частично обработанного пирогенного диоксида кремния, коллоидного диоксида кремния, композиционных частиц двойного оксида кремния и алюминия, или диоксида титана. Оболочка содержит поперечно-сшитый полимер, содержащий акриламидные повторяющиеся звенья, повторяющиеся звенья акриловой кислоты или ее соли, повторяющиеся звенья 2-акрилоиламино ...

Подробнее
29-01-2021 дата публикации

Облегченный тампонажный состав для цементирования скважин в высокопроницаемых горных породах в условиях сероводородной агрессии

Номер: RU2741890C2

Изобретение относится к бурению нефтяных и газовых скважин, в частности к тампонажным растворам, предназначенным для цементирования скважин в условиях интенсивных (полных) поглощений и сероводородной агрессии. Тампонажный раствор для цементирования скважин в условиях интенсивных поглощений и сероводородной агрессии содержит тампонажный сульфатостойкий цемент - ПЦТ I-G СС-1, расширяющую добавку - ДР-100, микрокалиброванное гранулированное пеностекло - МКГПС и воду, отличающийся тем, что в составе дополнительно содержится газоблокатор для снижения фильтрации, водо- и газопроницаемости, в качестве которого используется Газблок, при следующем соотношении ингредиентов, % от веса цемента: ПЦП-GCC-1 - 100,0; расширяющая добавка (ДР-100) - 1,0; микрокалиброванное гранулированное пеностекло - 6,0; газблок - 0,5; водоцементное отношение - 0,52. 2 табл.

Подробнее
28-07-2017 дата публикации

СТРОИТЕЛЬНАЯ КОМПОЗИЦИЯ И КОМПЛЕКСНАЯ ДОБАВКА ДЛЯ СТРОИТЕЛЬНОЙ КОМПОЗИЦИИ

Номер: RU2626493C2

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных, преимущественно бетонных или растворных, смесей в производстве бетонных и железобетонных изделий и конструкций сборного и монолитного строительства и в других производствах. Комплексная добавка для строительной композиции, включающая, мас.%: цемент 80-85, суперпластификатор С-3 2,0-3,5, микрокремнезем 10-12, цеолит природный или синтетический - остальное, содержит цеолит, модифицированный углеродными нанотрубками, в количестве 5-10% от его массы. Строительная композиция, включающая, мас.%: минеральное вяжущее 15-25, воду 8,5-10, заполнитель - остальное и порошкообразную комплексную добавку по п. 1, содержание комплексной добавки составляет 0,15-0,8% от массы минерального вяжущего. Технический результат - снижение расхода цемента за счет повышения активности добавки при сохранении прочностных характеристик бетона. 2 н.п. ф-лы, 4 ил.

Подробнее
20-11-2010 дата публикации

ПОЛИМЕРИЗАЦИЯ СИЛОКСАНА В СТЕНОВЫХ ПЛИТАХ

Номер: RU2404147C2

Изобретение относится к способу изготовления водостойких гипсовых изделий, содержащих силоксан. Технический результат - повышение водостойкости, ускорение полимеризации силоксана. Суспензия содержит штукатурный гипс, зольную пыль класса С, оксид магния, эмульсию силоксана и воды. Способ изготовления водостойких гипсовых изделий включает приготовление эмульсии из силоксана и воды, смешивание оксида магния и зольной пыли класса С со штукатурным гипсом, объединение эмульсии силоксана со смесью штукатурного гипса и катализатора, придание суспензии формы, выдерживание гипсовой суспензии до схватывания, при котором образуется сердцевина стеновой плиты, полимеризация силоксана. Водостойкая гипсовая панель, сердцевина которой состоит из взаимопроникающих матриц кристаллов двуводного гипса и кремнийорганической смолы, где внутри указанных взаимопроникающих матриц распределен катализатор, включающий оксид магния и компоненты зольной пыли класса С. Изобретение развито в зависимых пунктах. 3 н. и 16 ...

Подробнее
10-08-1999 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НЕАВТОКЛАВНОГО ЗОЛЬНОГО ЯЧЕИСТОГО БЕТОНА

Номер: RU2134250C1

Способ получения неавтоклавного зольного ячеистого бетона относится к промышленности строительных материалов, в частности к производству стеновых и теплоизоляционных материалов. Способ включает приготовление пластично-вязкой сырьевой смеси, насыщение ее газовой средой, в процессе вспучивания или вспенивания, твердение при пропаривании, причем зольный заполнитель, входящий в состав сырьевой смеси, предварительно активируют путем его перемешивания с водой затворения в бетоносмесителе с частотой вращения рабочего органа 500 - 700 об/мин в течение 1 - 5 мин. Оптимальное время активации определяют по максимальной высоте осадка в отстое активированной зольной суспензии или максимальному водородному показателю pH той же суспензии. В сырьевую смесь вводят ускоритель твердения - хлористый кальций в количестве 2 - 3% от массы цемента. Технический результат: повышение прочности ячеистого бетона без помола золы и автоклавирования изделий. 2 з.п.ф-лы. 1 табл.

Подробнее
19-12-2022 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ИМИТИРУЮЩЕЙ НАТУРАЛЬНЫЙ КАМЕНЬ ДЕКОРАТИВНОЙ ПОВЕРХНОСТИ И ДЕКОРАТИВНАЯ ПОВЕРХНОСТЬ, ИЗГОТОВЛЕННАЯ ТАКИМ СПОСОБОМ

Номер: RU2786184C1

Изобретение относится к строительству и может быть использовано для создания декоративной поверхности. Технический результат изобретения заключается в повышении прочности и долговечности готового искусственного камня, обеспечении возможности обустройства искусственного камня на поверхности из различных строительных материалов, в том числе утеплителей. Способ изготовления имитирующей натуральный камень декоративной поверхности предусматривает расположение с зазором арматурной сетки на обустраиваемой поверхности, размещение ограничивающей контуры камней опалубки с формированием отдельных секций и раздельное приготовление строительных растворов разных цветов и/или текстур посредством затворения текстурно-цветных компонентов водой в количестве не менее, чем необходимо для гидратации вяжущих сухой смеси, но не более, чем требуется для сохранения способности раствора к комкованию. Затем формируют комкообразные порции раствора заданного цвета и/или текстуры согласно планируемой текстурно-цветной ...

Подробнее
24-05-2019 дата публикации

Номер: RU2017117607A3
Автор:
Принадлежит:

Подробнее
14-12-2020 дата публикации

Номер: RU2019118516A3
Автор:
Принадлежит:

Подробнее
09-06-2020 дата публикации

Номер: RU2016117871A3
Автор:
Принадлежит:

Подробнее
29-06-2020 дата публикации

Номер: RU2018127731A3
Автор:
Принадлежит:

Подробнее
24-10-2017 дата публикации

ПЛИТА ИЗОЛЯЦИОННАЯ ОБЛИЦОВОЧНАЯ

Номер: RU174634U1

Полезная модель относится к строительным элементам относительно малой толщины для сооружения отдельных частей зданий, например к плитам, панелям, состоящим из изоляционного материала и бетона, в частности к тепло- и звукоизоляционным плитам для облицовки стен.Плита изоляционная облицовочная включает соединенные между собой изоляционный слой, выполненный из теплоизолирующего материала и декоративно-защитный слой, выполненный из фибробетона на основе песка, цементного вяжущего и полимерных добавок. Материал, из которого выполнен декоративно-защитный слой в качестве вяжущего дополнительно содержит в своем составе гашеную известь. В декоративно-защитном слое с наружной стороны выполнены установочные углубления для размещения в них головок крепежных деталей «впотай» при креплении плиты к стене здания.

Подробнее
02-09-2019 дата публикации

СТРОИТЕЛЬНЫЕ СМЕСИ ДЛЯ ВНУТРЕННЕГО ПОКРЫТИЯ ИЛИ ШТУКАТУРКИ

Номер: RU2698930C2
Принадлежит: СЭН-ГОБЭН ВЕБЕР (FR)

Группа изобретений относится к строительству. Технический результат – эффективное удаление альдегидов в течение нескольких лет с сохранением цвета покрытия. Отсутствие запаха. Сухая или пастообразная строительная смесь для штукатурки или покрытия, используемых во внутренней отделке, содержит по меньшей мере одно вяжущее, по меньшей мере грануляты, заполнители, песок и/или наполнители и по меньшей мере одну добавку. Указанная, по меньшей мере одна, добавка является агентом в виде порошка, способным улавливать альдегиды, такие как формальдегид, ацетальдегид, пропиональдегид, кротональдегид, бутиральдегид, бензальдегид, валеральдегид или гексальдегид, и представляет собой первичный аминоспирт формулы RRR-C-NH, где R, Rи Rозначают алкильные группы, содержащие от 1 до 6 атомов углерода (C1-C6), атомы водорода или гидроксильные группы -OH, причем по меньшей мере одна из групп R, Rили Rсодержит гидроксильную группу. 4 н. и 4 з.п. ф-лы, 3 ил., 1 табл., 5 пр.

Подробнее
10-11-1999 дата публикации

ЛЕГКИЙ БЕТОН НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ

Номер: RU2140890C1

Изобретение относится к строительным материалам и может быть использовано для изготовления стеновых неармированных блоков и теплоизоляции. Легкий бетон содержит, %: зола каменноугольная 33,3 - 40, зола высококальциевая 10 - 17, известь 8 - 12, гипс 1 - 3, корольки 6,3 - 11,3, алюминиевая пудра 0,07 - 0,09, вода остальное. Технический результат: упрощение технологии производства легкого бетона. 1 табл.

Подробнее
26-01-2022 дата публикации

СПОСОБ ВТОРИЧНОЙ ПЕРЕРАБОТКИ МИНЕРАЛЬНОЙ ВАТЫ, СПОСОБ ИЗГОТОВЛЕНИЯ АКУСТИЧЕСКИХ ПАНЕЛЬНЫХ ЭЛЕМЕНТОВ И ТАКОЙ АКУСТИЧЕСКИЙ ПАНЕЛЬНЫЙ ЭЛЕМЕНТ

Номер: RU2765184C1

Акустический геополимерный панельный элемент, содержащий слой, содержащий волокнистый компонент и геополимерное связующее, выполненное из смеси, содержащей измельченную минеральную вату, и дополнительный слой, содержащий минеральную вату, причем слой, содержащий волокнистый компонент и геополимерное связующее, имеет плотность в диапазоне от 20 до 400 кг/м3, пористость в диапазоне от 0,75 до 0,99 и толщину в диапазоне от 5 до 75 мм. Измельченная минеральная вата может быть измельченной стекловатой или каменной ватой, а волокнистый компонент может быть компонентом из древесного волокна, компонентом из полимерного волокна и/или компонентом из минеральной ваты. Кроме того, раскрывается способ получения геополимерной смеси в результате вторичной переработки минеральной ваты, которую измельчают в порошок и смешивают с щелочным активаторным компонентом. Изобретение также относится к способу изготовления акустического геополимерного панельного элемента, содержащему шаг измельчения элементов, содержащих ...

Подробнее
10-06-2000 дата публикации

СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛИСТИРОЛБЕТОННОЙ СМЕСИ

Номер: RU2150446C1

Изобретение относится к области строительства, а именно к производству строительных материалов из полистиролбетона. Состав для изготовления полистиролбетонной смеси включает, мас.%: минеральное вяжущее 68-90, полистирольный заполнитель 0,7 - 2,3, волокнистый материал 1,4 - 5,2, воздухововлекающую добавку 0,3-0,7, пластифицирующую добавку 0,25 - 0,55 и воду - остальное, причем в качестве полистирольного заполнителя он содержит смесь частиц из вспененных полистирольных гранул фракции 0,04 -1,25 мм и/или частиц рваного пенополистирола фракции 0,04 -1,63 мм при их массовом соотношении 1 : (8 -12). Технический результат: снижение водопоглощения и сорбционной влажности полистиролбетона (ПСБ) на 35 -70%, а также увеличение в 3 - 5 раз предела прочности при сжатии и при изгибе при плотности полистиролбетона 850 -1120 кг/м3. 4 з.п. ф-лы, 2 табл.

Подробнее
29-08-2023 дата публикации

ГИПСОЦЕМЕНТНЫЙ ТАМПОНАЖНЫЙ РАСТВОР

Номер: RU2802474C1

Изобретение относится к нефтегазовой промышленности, в частности к тампонажным растворам, предназначенным для создания изолирующих экранов при ликвидации поглощений в интервалах слабосцементированных и рыхлых пород с аномально низким пластовым давлением и низким градиентом гидроразрыва (менее 0,0120 МПа/м). Гипсоцементный тампонажный раствор содержит, мас.%: высокопрочный гипс марки ГВВС-19 29,74-35,69; микроцемент 1,78-8,92; стеклянные микросферы марки Granulight GS 2,97-10,11; алюмосиликатные микросферы марки Гранулайт-2500 7,73-17,85; микрокремнезем конденсированный МК-85 2,97-5,95; пластификатор марки Easy Flow PC 0,01-0,09; жидкость затворения - 40,44-40,47. Обеспечивается получение гипсоцементного тампонажного раствора с плотностью 1100±60 кг/м3, характеризующегося высокой седиментационной устойчивостью и коротким периодом гидратации раствора. 1 табл.

Подробнее
10-10-1998 дата публикации

КОМПЛЕКСНАЯ ДОБАВКА ДЛЯ БЕТОННОЙ СМЕСИ

Номер: RU2119900C1

Изобретение относится к области строительных материалов и предназначено для изготовления монолитных и сборных бетонных, а также железобетонных конструкций зданий и сооружений гражданского, общественного и промышленного назначения. Комплексная добавка включает 23,3 - 25,5% нитрата натрия, 26,7 - 28,0% карбоната натрия, 30,0 - 33,0% сульфата натрия, 2,5 - 3,3% хлорида кальция, 8,5 - 13,3% карбида кальция, 2,5 - 3,3% гидроксида кальция. Показатели бетона с заявляемой комплексной добавкой: прочность на сжатие в возрасте 28 сут - 58 МПа, прочность на разрыв - 7,2 МПа, водонепроницаемость 16 технических атм, морозостойкость - 350 циклов, время схватывания - 25 мин, кислотостойкость и сульфатостойкость после 36 сут испытаний - 34 МПа и 41 МПа. 2 табл.

Подробнее
10-02-1998 дата публикации

ТЕПЛОИЗОЛЯЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2104253C1

Использование: теплоизоляционный композиционный материал и процесс изготовления плит, применяемых при строительстве жилых, промышленных и административных зданий. Технический результат заключается в получении дешевого, экологически чистого теплоизоляционного композиционного материала. Сущность изобретения: теплоизоляционный композиционный материал состоит из смеси макулатуры и древесного наполнителя при соотношении (1:0,3) - (1:3,5) мас. ч. с использованием в качестве антисептика и/или антипирена глины в соотношении с сухой массой смеси макулатуры и древесного наполнителя (1:4) - (1:40). Для получения материала макулатуру смешивают с водой в соотношении (1:4) - (1,6), в течение 5-30 мин распушивают ее, затем добавляют древесный наполнитель в соотношении с массой макулатуры (0,3:1) - (3, 5:1), перемешивают и добавляют глину в количестве (1:4) - (1:40) сухой массы макулатуры и древесины, перемешивают, формуют плиты, отжимают под давлением 10-3 - 2•10-2 МПа (1 кгс/см2) и сушат. В качестве ...

Подробнее
20-02-2004 дата публикации

ЖАРОСТОЙКИЙ СВЕРХКАЧЕСТВЕННЫЙ БЕТОН И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2002124130A
Принадлежит:

... 1. Применение органических волокон в сверхкачественном бетоне с целью улучшения жаростойкости бетона, имеющих температуру плавления менее 300°С, среднюю длину более 1 мм и диаметр не более 200 мкм, причем содержание органических волокон таково, что их объем составляет от 0, 1 до 3% объема бетона после схватывания, а бетон обладает характеристической (28 дней) прочностью на сжатие не менее 120 МПа, характеристической прочностью на изгиб не менее 20 МПа и показателем растекания в незатвердевшем состоянии не менее 150 мм, причем эти значения относятся к бетону, находившемуся при 20°С, который состоит из затвердевшего цементирующего матрикса, в котором распределены металлические волокна, который получают путем смешивания с водой композиции, включающей, помимо волокон (a) цемент, (b) заполнитель с размером частиц D90 не более 10 мм, (c) пуццолановую добавку, у которой частицы имеют элементарный размер от 0,1 до 100 мкм, (d) по меньшей мере одно диспергирующее средство; и удовлетворяющей следующим ...

Подробнее
20-05-2009 дата публикации

СПОСОБ ПОЛУЧЕНИЯ БЕТОННЫХ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ, СОСТАВ БЕТОННОЙ СМЕСИ ДЛЯ ПОЛУЧЕНИЯ БЕТОННЫХ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ, ГРАНУЛИРОВАННЫЙ ЗАПОЛНИТЕЛЬ НА ОСНОВЕ СТЕКЛОБОЯ ДЛЯ БЕТОННОЙ СМЕСИ И БЕТОННОЕ СТРОИТЕЛЬНОЕ ИЗДЕЛИЕ

Номер: RU2007142322A
Принадлежит:

... 1. Способ получения бетонных строительных изделий, включающий смешивание вяжущего - 10-25%, мелкого заполнителя - 15-45%, гранулированного заполнителя - 5-40% и воды - остальное по массе, формование строительных изделий, выдержку в формах и последующую тепловлажностную обработку изделий при атмосферном давлении и температуре 85-95°С, отличающийся тем, что гранулы заполнителя состоят из ядра и оболочки, при этом при изготовлении ядер способом гранулирования используют связанную между собой смесь из кремнеземсодержащего компонента в виде молотого до удельной поверхности 150-250 м2/кг стеклобоя и гидроксида щелочного металла в соотношении 0,70-0,95:0,05-0,30 по массе, в качестве связки используют водный раствор силиката натрия плотностью 1,2-1,3 г/см3 в количестве 0,1-7,0% по отношению к массе ядра гранулы, формирование защитной оболочки на поверхности ядра гранулы производят в среде сухой пылевидной смеси известьсодержащего компонента и натрия кремнефтористого в соотношении 0,85-0,95:0,05 ...

Подробнее
15-05-2020 дата публикации

Холодный бетон

Номер: RU2721049C1

Изобретение относится к композиции холодного бетона (варианты), включающей смесь воды, заполнителей из минералов на основе кремния, действующих в качестве материала наполнителя; пентагидрата метасиликата натрия или калия, действующего в качестве активатора; отходов сталеплавильного производства, включающих гранулированный размолотый доменный шлак, действующих в качестве вяжущего ингредиента; отходов с высоким или низким содержанием кальция от сжигания угля (зольной пыли или зольного остатка), действующих в качестве вяжущего ингредиента; тетрабората натрия, дигидрата цитрата натрия, лимонной кислоты или борной кислоты, действующих в качестве замедлителей времени схватывания; упрочняющих агентов, включающих гидроксиды кальция, калия, магния, натрия или алюминия; аттапульгитовой, каолиновой, красной глины или других мелкозернистых глин с высоким содержанием алюмосиликатов для повышения концентрации кремния и алюмосиликатов и связанной с этим прочности; белкового или синтетического белкового ...

Подробнее
04-06-2018 дата публикации

Способ производства стеновых материалов

Номер: RU2656269C1

Изобретение относится к производству строительных материалов, а именно к способам изготовления известняковых строительных материалов и может быть использовано для изготовления стеновых материалов. Способ производства стеновых материалов включает приготовление сырьевой смеси, содержащей 95-97 мас. % известняка и 3-5 мас. % извести-пушонки. Осуществляют формование и карбонизацию изделий. При этом сухую сырьевую смесь перед прессованием гранулируют окатыванием в газовой среде с содержанием углекислого газа 50-70%. В качестве гранулирующей жидкости используют известковое молоко плотностью 1050-1150 МПа. Осуществляют прессование изделий с последующей выдержкой. Техническим результатом является получение высоких физико-механических характеристик изделий. 1 пр., 1 табл.

Подробнее
07-05-2018 дата публикации

Способ изготовления вентиляционных блоков

Номер: RU2653170C1

Изобретение относится к строительству и может относиться к изготовлению облицовочных элементов, вентилируемых фасадов, стеновых конструкций и, в частности, к изготовлению вентиляционных блоков. Способ изготовления вентиляционных блоков включает укладку бетонной смеси и закладных деталей в полость формы, уплотнение и выдерживание изделия до набора первоначальной прочности. При этом сначала в высокооборотистый смеситель подают цемент марки М-600 и кварцевый песок фракции 0,2-1,4 мм в соотношении 1:1. В смесь добавляют акриловую эмульсию в количестве 1,5-2,0% от массы смеси песка и цемента. Добавляют пластификатор в количестве 10-15%. Затем добавляют воду и интенсивно перемешивают на оборотах 1000-1500 в течение 1,5-2,0 минут. Подготавливают форму для изготовления, в которой низ имеет выступ под паз, а верх выступ под шип. Внутреннюю поверхность формы смазывают влагостойкой смазкой и посредством торкретпистолета наносят полученную эмульсию толщиной 0,5-1,0 мм. Затем в торкретпистолет подают ...

Подробнее
25-05-2020 дата публикации

ОГНЕСТОЙКОЕ ПОКРЫТИЕ И ОГНЕЗАЩИТНАЯ НАНОСИМАЯ РАСПЫЛЕНИЕМ ВЯЖУЩАЯ КОМПОЗИЦИЯ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА ХОЛОДНОГО ПЛАВЛЕНИЯ С КОНТРОЛИРУЕМОЙ ПЛОТНОСТЬЮ

Номер: RU2721988C1

Группа изобретений относится к строительству. Технический результат - повышение жаропрочности, прочности на сжатие, прочности сцепления и защиты от коррозии на стальных компонентах. Огнестойкое геополимерное покрытие, не содержащее портландцемента, подходящее для нанесения распылением или намазыванием и имеющее заданную равновесную плотность, выбранную из группы, состоящей из плотностей примерно 240, 400, 641 и 801 килограммов на кубический метр, а также прочность на сжатие в диапазоне примерно 1,4-20,7 МПа, содержит: 15-50 вес.% по меньшей мере одного легкого заполнителя, имеющего насыпную плотность менее 1,0 и диаметр от примерно 0,025 мм до примерно 12,5 мм, причем в случае распыляемого покрытия указанный по меньшей мере один легкий заполнитель содержит по меньшей мере два заполнителя; 5-60 вес.% по меньшей мере одного активируемого щелочью вяжущего материала; 2-15 вес.% по меньшей мере одного активатора для указанного активируемого щелочью вяжущего материала, отличного от жидкого гидроксида ...

Подробнее
27-05-2003 дата публикации

СПОСОБНАЯ К ПРОКАЧИВАНИЮ/ИНЖЕКТИРУЕМАЯ СВЯЗАННАЯ ФОСФАТОМ КЕРАМИКА

Номер: RU2001105548A
Принадлежит:

... 1. Прокачиваемая керамическая композиция, твердеющая при температуре окружающей среды, содержащая неорганический оксид, кислый фосфат калия и материал, который покрывает оксид, в которой материал содержит органические соединения, при этом отношение по массе материала к оксиду и к фосфату находится между 1,83:10,3:35 и 2,1:10,3:34. 2. Композиция по п.1, в которой покрывающий материал содержит полимерный органический материал. 3. Композиция по п.2, в которой полимерным органическим материалом является щелочной лигносульфонат, выбранный из группы, состоящей из лигносульфоната натрия, лигносульфоната кальция, лигносульфоната калия и их сочетания. 4. Композиция по п.1, в которой покрывающий материал присутствует в композиции в количестве приблизительно 1-3 мас.%. 5. Композиция по п.2, в которой полимерный органический материал сочетают с борной кислотой в отношении по массе между приблизительно 0, 6:1,25 и 1:1. 6. Композиция по п.1, дополнительно содержащая материал отходов в количестве 15-20 ...

Подробнее
20-04-1997 дата публикации

ОГРАЖДАЮЩАЯ КОНСТРУКЦИЯ ИЗ ЛЕГКОГО БЕТОНА И БЕТОННАЯ СМЕСЬ

Номер: RU94034775A
Принадлежит:

Сущность изобретения: ограждающая конструкция из легкого бетона выполнена из бетонной смеси с заполнителями, обладающими абсорбционно-адсорбционными свойствами, содержащей цемент, крупный пористый заполнитель фракций 5 - 10 и 10 - 20 мм, мелкий заполнитель фракции 0,15 - 5 мм, в качестве которого использован отход минераловатного производства - "королек" или его смесь с кварцевым песком, а также активную минеральную добавку, в качестве которой использован тонкомолотый "королек" с удельной поверхностью 1500 - 2000 см/г и воду. Бетонная смесь может дополнительно содержать воздухововлекающую добавку с целью умеренной поризации смеси и одновременной ее пластификации. Физико-механические показатели бетона: отпускная прочность после тепловой обработки 4,21 - 7,56 МПа, прочность после 28 сут нормально-влажностного твердения (марочная) 5,81 - 10,61 МПа, марка по морозостойкости F 50 - F 100, коэффициент теплопроводности в сухом состоянии 0,26 - 0,36 Вт/мС.

Подробнее
20-05-2015 дата публикации

СОПОЛИМЕРЫ С ГЕН-БИСФОСФОНОВЫМИ ГРУППАМИ

Номер: RU2013150845A
Принадлежит:

... 1. Сополимер, содержащий основную углеводородную цепь и боковые группы, в котором боковые группы содержат карбоксильные группы, полиоксиалкильные группы и гем-бисфосфоновые группы.2. Сополимер по п.1, в котором полиоксиалкильные боковые группы связаны с основной цепью сложноэфирной, простоэфирной или амидной связью.3. Сополимер по любому из пп.1 или 2, в котором гем-бисфосфоновые боковые группы получены в результате прививки соединением, выбранным из числа 1-гидроксиэтилен-1,1-бисфосфоновой кислоты (HEDP), 1-гидрокси-3-аминопропилен-1,1-бисфосфоновой кислоты (АНР) и 1-гидрокси-4-аминобутилен-1,1-бисфосфоновой кислоты (ВНР).4. Сополимер по п.1, в котором гем-бисфосфоновые боковые группы соответствуют формуле (IA) ниже:в которой:L представляет собой группу, связывающую данный фрагмент с основной цепью, более конкретно связь, атом кислорода, группу -NR- (причем Rможет быть водородом или алкильной группой C-C), или алкиленовую группу, предпочтительно L является атомом кислорода или группой ...

Подробнее
10-08-2016 дата публикации

СОВМЕСТИМАЯ С ГЛИНОЙ ДОБАВКА ДЛЯ ХИМИЧЕСКИХ ВЕЩЕСТВ, ПРИМЕНЯЕМЫХ В СТРОИТЕЛЬНОЙ ПРОМЫШЛЕННОСТИ

Номер: RU2015102024A
Принадлежит:

... 1. Продукт конденсации на основе мономеров, причем мономеры включаютI) по меньшей мере один мономер, имеющий альдегидный фрагмент, иII) по меньшей мере один мономер, имеющий кетонный фрагмент, который несет по меньшей мере один неароматический фрагмент,и при этом продукт конденсации содержит по меньшей мере один фрагмент из ряда групп фосфоно, сульфино, сульфо, сульфамидо, сульфокси, сульфоалкилокси, сульфиноалкилокси и фосфоноокси и/или их солей,который отличается тем, что мономеры дополнительно содержатIII) галлиевую кислоту.2. Продукт конденсации в соответствии с п. 1, который отличается тем, что продукт конденсации дополнительно содержит по меньшей мере один ароматический мономер из ряда аминобензолсульфоновой кислоты, анилина, аммонийнобензойной кислоты, диалкоксибензолсульфоновой кислоты, диалкоксибензойной кислоты, пиридина, пиридинмоносульфоновой кислоты, пиридиндисульфоновой кислоты, пиридинкарбоновой кислоты и пиридиндикарбоновой кислоты.3. Продукт конденсации в соответствии с ...

Подробнее
10-10-2008 дата публикации

УСОВЕРШЕНСТВОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ НА ОСНОВЕ РАЗЛИЧНЫХ МАТЕРИАЛОВ ДЛЯ ИЗГОТОВЛЕНИЯ ПЕРЕГОРОДОК, КОМПОЗИЦИЯ И ПЕРЕГОРОДКА, ПОЛУЧЕННЫЕ ТАКИМ ОБРАЗОМ

Номер: RU2007106781A
Принадлежит:

... 1. Способ получения композиции на основе повторно используемых бумаги и картона, используемой для изготовления брикетов, отличающийся тем, что включает следующие стадии: а) сбор сырьевого материала, состоящего из всех сортов бумаги, обнаруживаемой на мусорных свалках, выбираемой из копировальной бумаги, газет, картона, бристольского картона и всех сортов бумаги для печатания документов, при процентном содержании от 10 до 95%, предпочтительно 93%; б) после сбора сырьевого материала его нарезают на кусочки одинакового размера от 1,27 до 7,62 см (от 0,5 до 3 дюймов) предпочтительно 2,54 см (1 дюйм) для простоты обращения с ним; в) нарезанный сырьевой материал помещают в емкость с водой и оставляют приблизительно на 2-3 ч для выделения целлюлозы из сырьевого материала до формирования густой вязкой консистенции; г) пропускают густой и вязкий сырьевой материал через валки для удаления максимального количества воды и влаги; д) помещают сырьевой материал в медленно вращающийся смеситель приблизительно ...

Подробнее
24-02-2025 дата публикации

Штамм бактерий Bacillus licheniformis BHa 36-R, обладающий уреазной и кальцинирующей активностью и предназначенный для улучшения функциональных свойств строительных материалов на основе цемента или бетона и продукции экзополисахаридов

Номер: RU2835165C1

Изобретение относится к области биотехнологии. Изобретение представляет собой Штамм бактерий Bacillus licheniformis BHa 36-R, обладающий уреазной и кальцинирующей активностью. Изобретение позволяет улучшить функциональные свойства строительных материалов на основе цемента или бетона и продукции экзополисахаридов. 2 табл., 3 пр.

Подробнее
15-07-1992 дата публикации

Способ получения вяжущего

Номер: SU1747414A1
Принадлежит:

Используется в промышленности строительных материалов. Сущность изобретения: способ получения вяжущего, включающий перемешивание золы-уноса, карбоната щелочного металла, извести и добавок, предусматривает приготовление раствора щелочного карбоната и добавок, в качестве которых используют хлорид и сульфат натрия , в полученный раствор вводят известь- кипелку и перемешивают до получения однородной суспензии, после чего в нее вводят и осуществляют окончательное перемешивание при следующем со; отношении компонентов, .мае. %: карбонат щелочного металла 5-10, иэвесть-кипелка 2,5-10, хлорид натрия 2,5-10, сульфат натрия 2,5-10, зола-унос остальное.Прочность вяжущего при сжатии 61,4 МПа.1 табл, ...

Подробнее
23-04-1986 дата публикации

Сырьевая смесь для изготовления жаростойкого бетона

Номер: SU1128525A1
Принадлежит:

СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКОГО БЕТОНА, включающая перлит, щелочной компонент, глиноэем и огнеупорный заполнитель, отличающаяся тем, что, с целью поК|Ш1ения термостойкости, стабильности прочности при 8001000 с и снижения деформаций, она содержит в качестве щелочного компонента натрия, в качестве огнеупорного заполнителя карборунд фракции 0,16-0,63 мм и дополнительно тальк с удельной поверхностью 2500 и карборунд с удельной поверхностью 4500 при следующем соотношении компонентов, мас.%: Перлит2-8 Алюминат натрия 0,7-1,5 Глинозем 3,5-6,0 Тальк с Удельной поверхностью 2500 7-12 Карборунд с удельной поверхностью 4500 см2/г 2,4-8,0 (/) Карборунд фракции 0,16-0,63 мм 64,5-84,4 ...

Подробнее
23-08-1990 дата публикации

Вяжущее

Номер: SU1587025A1
Принадлежит:

Изобретение относится к химии вяжущих веществ и может найти применение в промышленности строительных материалов. Цель изобретения - повышение прочности. Вяжущее содержит, мас.%: диоксид олова 81,1-87,2, лимонная кислота 0,7-1,2, карбамидная смола 8,7-16,2, вода - остальное. Прочность вяжущего в 28-суточном возрасте - до 83 МПа. 1 табл.

Подробнее
28-12-1972 дата публикации

Масса для изготовления строительных изделий

Номер: SU365064A3
Принадлежит:

Подробнее
21-07-1977 дата публикации

FEUERFESTE ISOLIERUNGSZUSAMMENSETZUNG UND VERFAHREN ZU IHRER HERSTELLUNG

Номер: DE0002700374A1
Автор: PARK JOSEPH, PARK,JOSEPH
Принадлежит:

Подробнее
14-03-1934 дата публикации

Verfahren zur Herstellung waermeisolierender und schalldichter Baustoffe

Номер: DE0000594257C
Автор:
Принадлежит: NATHANIEL MANDEL ELIAS

Подробнее
20-01-1972 дата публикации

Verseifungsfeste,waessrige Kunstharzdispersionen

Номер: DE0001770395A1
Принадлежит:

Подробнее
10-02-1972 дата публикации

Fire resistant cellular filler material - by mixing polyethylene or polypropylene with inorg material

Номер: DE0002038062A1
Принадлежит:

Inorganic materials such as sand, gravel stone chippings, silicate, asbestos, mica, feldspar etc. may be mixed with e.g. cement, gypsum, chalk and/or alkali silicate and water and polyethylene or polypropylene or polypropylene spheres, and allowed to set, to produce a cellular product useful for building etc. with good heat resistant, acoustic and thermal insulation and water resistant properties. A binder may be included, the mix may be moulded before setting and heat may be used to speed up the process.

Подробнее
06-08-1975 дата публикации

REFRACTORY HEAT INSULATING MATERIALS

Номер: GB0001402318A
Автор:
Принадлежит:

... 1402318 Thermal insulation FOSECO INTERNATIONAL Ltd 5 March 1973 [10 March 1972 7 June 1972] 11362/72 and 26655/72 Addition to 1264022 Heading F2X [Also in Division B5] A method of making a shaped refractory heat insulating article, e.g. a gas turbine casing liner having exterior surfaces which are harder and of greater density than the interior comprises forming a green compact from an aqueous slurry of refractory fibres and inorganic binder, drying the compact in a first drying step, impregnating the dried compact with further binder (which may be different from the first binder) and drying the compact in a second drying step; one of the drying steps is "homogeneous" and does not cause migration of the binder, e.g. microwave or dielectric heating, and the other drying step is "non-homogeneous", e.g. hot air drying. The homogeneous drying step is preferably performed first. The strength of the product is further improved by a final heating step at 300-900‹ C. for “-24 hours. Refractory ...

Подробнее
31-03-1976 дата публикации

MORTAR COMPOSITION

Номер: GB0001429966A
Автор:
Принадлежит:

... 1429966 Mortar composition FELIX PREIL KG 22 Nov 1973 [25 Nov 1972] 54225/73 Heading C1H A mortar composition comprises in parts by weight: 1 of hydraulic binding agent, e.g. cement, 7-12 of aggregate, 0-2 of fines, 0À005 to 0À25 of a mixture of equal weight proportions of a setting retarder and an aerating agent and 0À2 to 0À7 of water. The fines comprise rock flour or quartz powder. 0À5 to 1À5 parts by weight of flue dust and/or trass may also be included. The setting retarder is preferably molasses or saturated hydrocarbon. The aggregate is sand.

Подробнее
18-10-2000 дата публикации

Lightweight composites containing cenospheres and a cementing agent or thermoplastic polymer

Номер: GB0002348875A
Принадлежит:

Lightweight composites which may possess thermally insulating, fireproofing and/or sound proofing properties, comprise cenospheres and a cementing agent, for instance a sodium silicate solution, magnesium oxychloride, calcium sulphate, or Portland cement. Examples of their uses include as protective coatings or artificial pumice, for sanding and polishing metallic substrates and for incorporation with chemical fertilizers. Other composites comprise cenospheres and a thermoplastic polymer, for instance polystyrene, polymethyl methacrylate, polyvinyl alcohol, polyvinyl acetate or polyethylene, and may possess insulating and/ or decorative properties. In addition, table tennis bats may be made from the composite. The composites may also include exfoliated vermiculite or fly ash.

Подробнее
27-06-2001 дата публикации

FRICTION MATERIAL

Номер: GB0002357517A
Принадлежит:

A friction material comprises a continuous phase which is a reaction product obtained by reacting an alkali metal hydroxide, the metal being from Group 1 of the periodic table, and/or an alkali silicate, and reactive finely-divided material comprising silica, silicates, and/or aluminates.

Подробнее
21-10-1981 дата публикации

Compositions for making moulds

Номер: GB2073728A
Принадлежит:

A material for use in the manufacutre of moulds comprises plaster of paris or other cementitious material and a material having good heat absorbing qualities and the ability to substantially reduce the density and increase the gas porosity of mould e.g. diatomaceous earth.

Подробнее
09-03-2011 дата публикации

A hand and object moulding material and casting method

Номер: GB0002473190A
Принадлежит:

A hand and object moulding material is disclosed which is formed from sodium alginate, hydrated magnesium silicate (talc) and water. A casting method using the moulding material is described as shown in figure 1.

Подробнее
18-07-1984 дата публикации

PRODUCTION OF LIGHT-WEIGHT BUILDING MATERIALS FROM ALUMINIUM HYDROXIDE SLUDGE

Номер: GB0002090301B
Автор:
Принадлежит: OKAMURA TATSURO

Подробнее
29-06-1983 дата публикации

COMPOSITIONS FOR MAKING MOULDS

Номер: GB0002073728B
Автор:
Принадлежит: WHITFIELD & SON LTD

Подробнее
02-05-2018 дата публикации

Cement alkali resistance enhancing additive

Номер: GB0002555443A
Принадлежит:

The invention provides an alkali resistance enhancing additive for cement, comprising by weight percentage: 15-25% deionized water, 10-14% chelating agent, 20-35% potassium carbonate, 20-26% water reducing agent, 5-9% pure glycerol, and 10-16% silicone resin. Three examples are given with exact percentages of each component part. The additive is prepared by weighing the raw materials and then mixing them in a liquid mixer. The alkali resistance additive is added to cement in 0.5-0.8 parts of the alkali resistance additive to 100 parts by weight of a cement-based material and uniformly stirred through. The alkali-resistant additive improves the strength and weather resistance of the cement product and reduces saltpetering.

Подробнее
21-01-1987 дата публикации

LIGHTWEIGHT REFRACTORY BRICKS

Номер: GB0002143517B
Принадлежит: DIDIER WERKE AG, * DIDIER-WERKE AG

Подробнее
14-10-1992 дата публикации

HIGH-STRENGTH HEAT INSULATING MATERIAL AND METHOD OF PRODUCING SUCH MATERIAL

Номер: GB0009218526D0
Автор:
Принадлежит:

Подробнее
01-03-1995 дата публикации

Thixotropic materials

Номер: GB0009500089D0
Автор:
Принадлежит:

Подробнее
17-05-1978 дата публикации

PROCESS FOR PREPARING A FOAMED BODY

Номер: GB0001511398A
Автор:
Принадлежит:

... 1511398 Foamed bodies SHIKOKU KAKEN KOGYO K K 17 Aug 1976 [26 Dec 1975 27 Dec 1975 (3)] 34121/76 Heading C1H [also in Division C3] A process for preparing a foamed body comprises mixing together four components: (a) an aqueous solution having a pH of up to 2À0 and containing at least one of acids, amine halides and water-soluble acidic phosphates; (b) at least one of cement materials and anhydrous alkali metal silicates; (c) a metal (or Si or B) blowing agent; and (d) a foaming stabiliser selected from activated carbon, zeolite, silica gel, carbon black, talc and mica; to obtain a pasty mixture, the acids having an electric dissociation constant (pKa) of up to 4À0 at 25‹C. An additive (e) selected from gypsum, watersoluble resins, aggregates and inorganic fibrous materials may also be mixed with the other components.

Подробнее
18-04-1956 дата публикации

Improvements in or relating to the utilization of waste mica for the manufacture of insulating bricks, slabs, tiles or the like

Номер: GB0000747924A
Автор: RAM ATMA, ROY SATYA BHUSAN
Принадлежит:

A process for manufacturing insulating bricks, slabs, or tiles consists in mixing pulverized preheated mica or micaceous minerals predominant in mica, with a binder such as clay, glass or gum, with the addition of a combustible organic matter, moulding the product, drying it and heating it to a temperature of 800 to 1200 DEG C., preferably from 900 DEG -1150 DEG C. The mica material may be heated to 600 DEG -850 DEG C. for up to 6 hours before mixing with the binder. Sawdust, rice husk, wood powder, coal, coke, charcoal, shredded paper, peat, rags, grass and jute may also be added to the mix. The binder which may be bentonite, glass, red clay, plastic clay, china clay, fire-clay, pipe clay, silt, sodium silicate, lime, calcined gypsum, dextrin, gum, starch molasses or shellac may be added in a proportion of 20 to 80 per cent based on the weight of the mica powder. In forming the bricks the constitutents are preferably mixed with water or an alcohol in a proportion of 30 to 75 per cent according ...

Подробнее
28-09-1960 дата публикации

A method of manufacturing building elements

Номер: GB0000849992A
Автор:
Принадлежит:

Building elements are obtained by mixing a finely-divided inorganic material with an alkaline earth metal oxide or hydroxide, a water soluble cellulose ether and sufficient water to render mouldable and heating, in a mould, with carbon dioxide. Optional ingredients are an amine, sulphite lye or molasses; plaster or cement, and the moulded product may be further hardened with steam.

Подробнее
07-06-2001 дата публикации

Inorganic cementitous material.

Номер: AP2001002159A0
Принадлежит:

A method of producing a new type of cement, hereafter called Conch-krete. Conch-krete is created by adding sodium carbonate (also known as soda ash, natron, etc.)And one or more minerals from the calcium carbonate group (including aragonite, limestone, calcite, marble, dolomite, etc.) and the addition of water to the mix that will harden into a cement-like material. The combination of sodium carbonate and calcium carbonate can be either layered or in a mixed state. An exothermic reaction starts after the addition of water. The composition of Conch-krete can vary between 20% sodium carbonate and 80% calcium carbonate to 80% sodium carbonate and 20% calcium carbonate. Conch-krete can be used in a variety of applications not inclusive of forming bricks, interior architecture, table or counter tops, ornaments, repairing damaged cement products, casting and other applications not mentioned above.

Подробнее
15-12-1970 дата публикации

Process of treatment of the ball of rice and material obtained by this process.

Номер: OA0000002771A
Автор:
Принадлежит:

Подробнее
27-09-1993 дата публикации

ANORGANISCHE MASSE, DARAUS HERGESTELLTE BESCHICHTUNGEN, FORMKÖRPER UND VERFAHREN ZU IHRER HERSTELLUNG

Номер: AT0000396463B
Автор:
Принадлежит:

Подробнее
10-02-1981 дата публикации

MASONRY MORTAR MIXTURE

Номер: AT0000360902B
Автор:
Принадлежит:

Подробнее
25-05-1992 дата публикации

VERFAHREN ZUR VERMINDERUNG DER ABGASUNG VON MUELLDEPONIEN

Номер: AT0000394661B
Автор:
Принадлежит:

Подробнее
15-04-2002 дата публикации

ZEMENTGEMISCHE MIT HÖHERER FLIESSFÄHIGKEIT

Номер: ATA3272000A
Автор:
Принадлежит:

Подробнее
15-07-2009 дата публикации

FIRE-RETARDANT FIRE PROTECTION ELEMENT

Номер: AT0000434654T
Принадлежит:

Подробнее
15-08-1996 дата публикации

HOCHFESTES, FASERHALTIGES VERBUNDMATERIAL UND VERFAHREN ZUR HERSTELLUNG DESSELBEN

Номер: ATA187695A
Автор:
Принадлежит:

Подробнее
15-01-1975 дата публикации

VERFAHREN ZUR HERSTELLUNG VON WAERME-UND SCHALLDAEMMENDEM BETON ODER MOERTEL

Номер: ATA231172A
Автор:
Принадлежит:

Подробнее
27-12-2002 дата публикации

ZEMENTGEMISCHE MIT HÖHERER FLIESSFÄHIGKEIT

Номер: AT0000409862B
Автор:
Принадлежит:

Подробнее
15-01-1975 дата публикации

PROCEDURE FOR THE PRODUCTION OF WAERME-UND SOUND-ABSORBING CONCRETE OR MOERTEL

Номер: AT0000231172A
Принадлежит:

Подробнее
25-07-1933 дата публикации

Procedure for the production of porous masses and articles.

Номер: AT0000134294B
Принадлежит:

Подробнее
15-01-1993 дата публикации

ANORGANISCHE MASSE, DARAUS HERGESTELLTE BESCHICHTUNGEN, FORMKOERPER UND VERFAHREN ZU IHRER HERSTELLUNG

Номер: ATA44992A
Автор:
Принадлежит:

Подробнее
15-10-2004 дата публикации

GROUND STABILIZATION BY BONDING AGENT ADDITIVE

Номер: AT0000277144T
Принадлежит:

Подробнее
15-09-2002 дата публикации

INORGANICALLY FILLING, FORMED ARTICLES AND PROCEDURES FOR THEIR PRODUCTION

Номер: AT0000223297T
Принадлежит:

Подробнее
15-11-2002 дата публикации

STRENGTH-BOUND ZELLULARE MATRIX

Номер: AT0000226612T
Принадлежит:

Подробнее
27-12-1971 дата публикации

Pasty universal cleaning mass

Номер: AT0000295386B
Автор:
Принадлежит:

Подробнее
27-12-1971 дата публикации

Mortar

Номер: AT0000295387B
Автор:
Принадлежит:

Подробнее
11-03-1968 дата публикации

Procedure for the production of shelf stable, not-foaming synthetic resin dispersions

Номер: AT0000260532B
Автор:
Принадлежит:

Подробнее
21-02-2019 дата публикации

Cold fusion concrete

Номер: AU2017306058A1

A cold fusion concrete formulation including a mixture of water, silicon based mineral aggregates acting as a filler material; sodium or potassium metasilicate/pentahydrate acting as an activator; waste from steel production including Granulated Ground Blast Slag acting as a cementitious ingredient; high calcium or low calcium waste from coal combustion (fly ash or bottom ash) acting as a cementitious ingredient; sodium tetraborate, sodium citrate dihydrate, citric acid, or boric acid acting as set-time retarders; strengthening agents including including calcium, potassium, magnesium, sodium, or aluminum hydroxides; attapulgite, kaolin, red, or other fine grained, high alumino silicate containing clay, for increasing the silicon and alumino-silicate concentration and associated strength; a protein or synthetic protein material to form a weak covalent bond with the hydroxides and silicates, for the purpose of maintaining a consistent volume during the curing process; and a pollinated fern ...

Подробнее
02-05-2019 дата публикации

A method of forming concrete

Номер: AU2015233142B2
Принадлежит: FB Rice Pty Ltd

There is provided a method (10) of forming concrete (36). The method (10) comprises the steps of providing cement (12) and providing water (16). The method (10) further comprises the step of mixing the cement (12) and the water (16) to form a cement-based mixture (20). The method (10) further comprises the step of, after forming the cement-based mixture (20), applying the cement-based mixture (20) to an aggregate (32) laid on a surface (34) to form the concrete (36).

Подробнее
14-08-2014 дата публикации

Self priming spackling compound

Номер: AU2013209921A1
Принадлежит:

A self-priming spackling compound includes between about 35% by weight and about 65% by weight acrylic latex resin, between about 20% by weight and about 50% by weight filler material, and between about 1 % by weight and about 20% by weight water. In certain aspects, the latex resin may have an average latex particle size of less than about 0.18 microns, a minimum film formation temperature of less than about 15 degrees Celsius, and/or a glass transition temperature (Tg) of less than about 25 degrees Celsius. To further enhance the self-priming performance of the spackling compound, the formulation may further comprise a colorant such as titanium dioxide.

Подробнее
16-02-2017 дата публикации

METHODS OF CEMENTING AND SPENT CRACKING CATALYST-CONTAINING CEMENT COMPOSITIONS

Номер: AU2017200421A1
Принадлежит: Phillips Ormonde Fitzpatrick

A cement composition and method for well treatment employing the cement composition that is effective at achieving zonal isolation, controlling gas migration, preventing corrosive conditions and sustaining wellbore integrity during drilling or construction of boreholes in such subterranean formations. The cement composition includes spent cracking catalyst from oil cracking processes.

Подробнее
13-03-1980 дата публикации

ROCK BOLT ANCHORING

Номер: AU0003950778A
Принадлежит:

Подробнее
10-09-1997 дата публикации

Process for producing a non-combustible moulded article, especially a building panel

Номер: AU0001873997A
Принадлежит:

Подробнее
16-06-1999 дата публикации

A hydraulic hardened foamed product and a method of producing the same

Номер: AU0001253099A
Принадлежит:

Подробнее
20-08-2001 дата публикации

Method of preparing a cohesive product from a low density feedstock

Номер: AU0002697701A
Автор:
Принадлежит:

Подробнее
14-06-2001 дата публикации

A hydraulic hardened foamed product and a method of producing the same

Номер: AU0000734472B2
Принадлежит:

Подробнее
12-02-2005 дата публикации

CELLULOSE ETHER COMPOSITION FOR THE EXTRUSION OF MINERAL SHAPED BODIES AND ALSO A PROCESS FOR THE EXTRUSION OF MINERAL SHAPED BODIES USING THIS CELLULOSE ETHER COMPOSITION

Номер: CA0002476849A1
Принадлежит:

A description is given of a cellulose ether composition as additive for the extrusion of mineral masses which comprises 70 to 99.9% by weight of cellulose ether and 0.1 to 30% by weight of superabsorbent polymer, as well as a process for the extrusion of mineral masses using these compositions as additive.

Подробнее
15-03-1983 дата публикации

PREPOLYMERS BASED ON ALKALI METAL SILICATES AND ALKALINE EARTH METAL SILICATES

Номер: CA0001142733A1
Принадлежит:

Подробнее
29-07-2008 дата публикации

BINDER COMPOSITIONS FOR BONDING PARTICULATE MATERIAL

Номер: CA0002390338C
Принадлежит: FOSECO INTERNATIONAL LIMITED

A bonded particulate material and a method for forming an bonded particulate material are defined. The material includes a particulate metal oxide that is capable of forming a matalate in the presence of an alkali. The metal oxide particles are typically dissolved in a solution of the alkali and then dried, such that an undissolved metal oxide core remains, surrounded by a metalate which is in turn bonded to metalate of adjacent particle and/or to a fill material.

Подробнее
17-12-1985 дата публикации

MINERAL ACCRETION OF LARGE SURFACE STRUCTURES, BUILDING COMPONENTS AND ELEMENTS

Номер: CA1198075A
Принадлежит: HILBERTZ WOLF H, HILBERTZ, WOLF H.

MINERAL ACCRETION OF LARGE SURFACE STRUCTURES, BUILDING COMPONENTS AND ELEMENTS / By establishing a direct electrical current between electrodes in an electrolyte like seawater, calcium carbonates, magnesium hydroxides, and hydrogen are produced at the cathode, while at the anode, oxygen and chlorine are produced. The electrodeposition of minerals is utilized to construct large surface area (i.e. greater than 100 square feet) structures, building components and elements of a hard, strong material (i.e. 1000-8000 P.S.I. compression strength). To make a large surface area structure, building component or element of hard, strong material, a preshaped form of electrically conductive material is disposed in a volume of electrolyte, such as seawater, to serve as a cathode, one or more are anodes disposed in proximity to the form, and a direct electrical current is established between the electrodes for a period of time sufficient to accrete a solid covering of material on the form.

Подробнее
27-12-2001 дата публикации

COLLOIDAL SILICATE DISPERSION, METHOD FOR ITS PREPARATION AND ITS USE

Номер: CA0002411480A1
Принадлежит:

The present invention is directed to a colloidal aqueous silicate dispersion containing silica and alumina, the molar ratio between silica and alumina being 2 - 12, as well as to a method for its preparation. Said method is characterized by dissolving a particulate mineral material, such as a mineral wool or fibre product containing silica and alumina in a molar ratio of 2 - 12 in an aqueous solution, nucleating and stabilizing the so obtained solution, and optionally adjusting the dry matter content of the dispersion so obtained. The said dispersion can also be made to gel. The invention is also directed to the use of the dispersion as a binder.

Подробнее
10-05-2016 дата публикации

Панель радиационной защиты

Номер: RU0000161828U1

Панель радиационной защиты, включающая слои стеклоткани, пропитанной полимерным связующим, и металлический наполнитель, отличающаяся тем, что она дополнительно содержит пропитанные полимерным связующим слои параарамидной ткани, а в качестве металлического наполнителя - стальную сетку, размещенную между слоями пропитанных полимерным связующим тканей, при весовом соотношении металлической сетки и слоев пропитанных полимерным связующим тканей (40-50):(60-50). РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК G21F 1/10 (13) 161 828 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ТИТУЛЬНЫЙ (21)(22) Заявка: ЛИСТ ОПИСАНИЯ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015135109/07, 19.08.2015 (24) Дата начала отсчета срока действия патента: 19.08.2015 (45) Опубликовано: 10.05.2016 Бюл. № 13 (73) Патентообладатель(и): Федеральное государственное унитарное предприятие "Центральный научноисследовательский институт конструкционных материалов "Прометей" (ФГУП "ЦНИИ КМ "Прометей") (RU) R U 1 6 1 8 2 8 (57) Формула полезной модели Панель радиационной защиты, включающая слои стеклоткани, пропитанной полимерным связующим, и металлический наполнитель, отличающаяся тем, что она дополнительно содержит пропитанные полимерным связующим слои параарамидной ткани, а в качестве металлического наполнителя - стальную сетку, размещенную между слоями пропитанных полимерным связующим тканей, при весовом соотношении металлической сетки и слоев пропитанных полимерным связующим тканей (40-50):(6050). Стр.: 1 U 1 U 1 (54) ПАНЕЛЬ РАДИАЦИОННОЙ ЗАЩИТЫ 1 6 1 8 2 8 Адрес для переписки: 191015, Санкт-Петербург, ул. Шпалерная, 49, ФГУП "ЦНИИ КМ "ПРОМЕТЕЙ", начальнику НПК-1 Фоминой О.В. R U Приоритет(ы): (22) Дата подачи заявки: 19.08.2015 (72) Автор(ы): Орыщенко Алексей Сергеевич (RU), Анисимов Андрей Валентинович (RU), Бахарева Виктория Ефимовна (RU), Никитина Ирина Валентиновна (RU), Кучин Николай Леонидович (RU), Вавилкин Владимир Николаевич (RU)

Подробнее
02-08-2012 дата публикации

Geopolymer cement and use therof

Номер: US20120192765A1
Автор: Hieu Thao Huynh

The present invention relates to a novel type of noncorrosive geopolymer cement in which said cement comprises a metakaolin or a mixture of metakaolin and non-thermally activated aluminosilicate, in a weight ratio comprised between about 40:60 and about 80:20, and an alkaline silicate solution having a molar ratio M 2 O:SiO 2 comprised between about 0.51 and 0.60, M representing Na or K, and to the use of a superplasticizer comprising a crosslinked acrylic acid polymer in the manufacture of geopolymer cement.

Подробнее
20-09-2012 дата публикации

Hydraulic binder comprising a ground blast furnace slag

Номер: US20120234209A1
Принадлежит: Individual

The present invention concerns a hydraulic binder comprising a ground blast furnace slag in an amount comprised between 30% and 95% by mass on the binder, Portland cement clinker in an amount equal to or greater than 5% by mass on the binder, and at least one sulphate as activator, characterised in that said slag has the following properties and composition by mass: grinding fineness greater than 4000 cm2/g Blaine glass content greater than 80% SiO 2 : 30-40% Al 2 O 3 : 9-13% CaO: 34-42% with a (CaO+MgO)/(Al 2 O 3 +SiO 2 ) ratio greater than 1; and in that said sulphate is contained in a total amount, expressed as SO 3 , comprised between 0.6% and 4.5% by mass on the binder.

Подробнее
20-09-2012 дата публикации

Inorganic board and manufacturing method thereof

Номер: US20120237784A1
Автор: Naoki Sugiyama
Принадлежит: Nichiha Corp

An inorganic board is formed of an aluminosilicate setting material, a wooden reinforcing material and an aggregating agent. The wooden reinforcing material is covered by the aggregating agent, and this agent is covered by the aluminosilicate setting material. A method of manufacturing the inorganic board has the steps of covering a wooden reinforcing material with an aggregating agent; producing a starting material mixture by mixing the thus-obtained wooden reinforcing material with an aluminosilicate powder, an alkali metal hydroxide and water glass; and molding and curing the thus-obtained starting material mixture.

Подробнее
06-12-2012 дата публикации

Reduction of carbon dioxide in the manufacturing of composite construction materials

Номер: US20120304894A1

Disclosed are a system, a method and/or composition of reduction of carbon dioxide in the manufacturing of cement and concrete. In one embodiment, a method of producing a concrete, includes preparing a dried powder mixture of an alkali hydroxide, a sodium silicate, clay and a pozzolanic material. The dried powder with water may be reacted to form a cement paste. In addition, the cement paste may be mixed with at one of sand, an aggregate, a plasticizer and a nano additive to form the concrete.

Подробнее
24-01-2013 дата публикации

Geopolymer additives and methods of use for treatment of fluid fine tailings

Номер: US20130019780A1
Принадлежит: Total E&P Canada Ltd

Select geopolymers are mixed, at high shear, with fluid fine tailings from an oil sand operation to increase the yield strength of deposits of the geopolymer-treated fluid fine tailings stream and to enhance the dewaterability of the deposits for meeting the regulated, minimum undrained shear strength of 5 kilopascals (kPa) in the fluid fine tailings deposited in the previous year.

Подробнее
28-02-2013 дата публикации

Methods for Determining Reactive Index for Cement Kiln Dust, Associated Compositions, and Methods of Use

Номер: US20130048286A1
Принадлежит: Halliburton Energy Services Inc

A variety of methods and compositions are disclosed, including, in one embodiment, a method of treating a well comprising: providing a treatment fluid comprising a base fluid and a blended cementitious component, wherein the blended cementitious component comprises kiln dust from two or more different sources; and introducing the treatment fluid into a well bore.

Подробнее
11-04-2013 дата публикации

Calcium Aluminate Cement-Containing Inorganic Polymer Compositions and Methods of Making Same

Номер: US20130087076A1
Принадлежит: Boral Material Technologies LLC

Inorganic polymer compositions and methods for their preparation are described herein. The compositions include the reaction product of a reactive powder, an activator, and optionally a retardant. The reactive powder includes fly ash and calcium aluminate cement in an amount of 5% by weight or greater of the reactive powder. The reactive powder can include less than 8% by weight of portland cement. Also described herein are building materials including the compositions.

Подробнее
11-04-2013 дата публикации

Low Water Content Inorganic Polymer Compositions and Methods of Making Same

Номер: US20130087077A1
Принадлежит: Boral Material Technologies LLC

Inorganic polymer compositions and methods for their preparation are described herein. The compositions include the reaction product of a reactive powder, an activator, optionally a retardant, and water. The reactive powder includes 85% by weight or greater fly ash. The ratio of water to reactive powder is from 0.06:1 to less than 0.15:1. Also described herein are building materials including the compositions.

Подробнее
06-06-2013 дата публикации

GRANULAR PUMICE AND METHOD FOR PRODUCING GRANULAR PUMICE

Номер: US20130143044A1
Автор: ROOS Markus, Runkel Guido
Принадлежит:

The invention relates to granular pumice, wherein the surface is covered with a hydrophobic coating. 1. A granular pumice comprising:a surface coated with a hydrophobic coating.2. The granular pumice as claimed in ;wherein the coating comprises a silane, a siloxane, or a mixture thereof.4. The granular pumice as claimed in :wherein the coating comprises at least one compound selected from organic fatty acids and salts of organic fatty acids.5. The granular pumice as claimed in :wherein the coating comprises a mineral oil or a mineral oil emulsion.6. The granular pumice as claimed in :wherein the coating comprises at least one alkane.7. The granular pumice as claimed in :wherein the coating comprises bitumen or a bituminous emulsion.8. A process for producing the granular pumice as claimed in claim 1 , comprisingwetting the granular pumice with an emulsion containing at least one hydrophobicizing agent which is distributed in an outer phase of the emulsion, and which forms the inner phase of the emulsion; andsubsequently drying the granular pumice, so that the hydrophobicizing agent forms a hydrophobic coating on a surface of the pumice granules.9. The process as claimed in ; wherein the emulsion is sprayed on.10. The process as claimed in ;wherein the granular pumice is mixed during and after addition of the emulsion.11. The process as claimed in ;wherein the mixing time is 1 min to 25 min.12. The process as claimed in ;wherein the wetted granular pumice is dried at a temperature of 0°-200° C.13. The process as claimed in ;wherein the hydrophobicizing agent comprises at least one silane, at least one siloxane, or a mixture thereof.15. The process as claimed in ;wherein the hydrophobicizing agent comprises at least one compound selected from organic fatty acids and salts of organic fatty acids.16. The process as claimed in ;wherein the hydrophobicizing agent comprises mineral oil.17. The process as claimed in ;wherein the hydrophobicizing agent comprises an alkane.18 ...

Подробнее
20-06-2013 дата публикации

Electrolytic composite materials

Номер: US20130152824A1
Принадлежит: Individual

A composition comprising a metallic composition, an inorganic oxide-based polymer, and a solvent. A cure product of the metallic composition, inorganic oxide-based polymer, and solvent, the cure product having a network structure, are also disclosed.

Подробнее
08-08-2013 дата публикации

Light-Weight Composition and Mix for Masonry, Mortar and Stucco

Номер: US20130199414A1
Автор: Chiappo Jorge G.
Принадлежит:

An application for a pre-mixed mortar, stucco or masonry composition includes a approximately 75% sand and 25% of a light-weight cement mix comprising slag cement, ground granulated blast furnace slag, sodium tall oil, sodium stearate, sodium C14-16 Alpha Olefin, linear alkyl benzene; and silicon dioxide. 1. A pre-mixed mortar , stucco or masonry composition comprising:70 to 80 percent sand; and either slag cement, Gypsum or a combination of slag cement and gypsum;', 'ground granulated blast furnace slag;', 'sodium tall oil;', 'sodium stearate;', {'sub': '14-16', 'sodium CAlpha Olefin;'}, 'linear alkyl benzene;', 'silicon dioxide., '20 to 30 percent light-weight cement mix composition comprising2. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 35 to 90 percent Gypsum by weight.3. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 35 to 90 percent of slag cement by weight.4. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 2 to 10 percent ground granulated blast furnace slag by weight.5. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 1 to 3 percent sodium tall oil by weight.6. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 1 to 2 percent sodium stearate by weight.7. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 1 to 2 percent sodium CAlpha Olefin by weight.8. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 1 to 3 percent linear alkyl benzene by weight.9. ...

Подробнее
15-08-2013 дата публикации

Alkali-Activated Aluminosilicate Binder Containing Glass Beads

Номер: US20130206033A1
Принадлежит: Construction Research & Technology GmbH

The invention relates to a mixture containing an alkali-activated aluminosilicate binder, said mixture, after hardening, containing at least 25% by weight of glass beads, based on the total mass. The hardened product has a surface which has very little tendency to soil and is easy to clean. A process for the preparation of the mixture according to the invention and the use thereof as joint filler are disclosed. 1. Mixture containing an alkali-activated aluminosilicate binder , wherein , after hardening , the mixture contains at least 25% by weight of glass beads , based on the total mass.2. Mixture according to claim 1 , wherein the alkaline activator is at least one compound from the series consisting of sodium waterglass claim 1 , potassium waterglass claim 1 , lithium waterglass claim 1 , ammonium waterglass claim 1 , sodium hydroxide claim 1 , potassium hydroxide claim 1 , sodium carbonate claim 1 , potassium carbonate claim 1 , alkali metal sulphates claim 1 , sodium metasilicate and potassium metasilicate.3. Mixture according to claim 1 , wherein at least one aluminosilicate from the series consisting of the natural aluminosilicates and/or synthetic aluminosilicates is present.4. Mixture according to claim 1 , wherein the glass beads are solid glass beads having a diameter between 0.01 and 5 mm.5. Mixture according to claim 1 , wherein the ratio of silicon atoms to aluminium atoms is between 30:1 and 1:1.6. Mixture according to claim 1 , wherein the mixture additionally contains at least one filler claim 1 , plastic claim 1 , additive and/or pigment component.7. Mixture according to claim 1 , wherein the mixture contains plasticizers and/or superplasticizers in amounts of 0.1 to 3% by weight for reducing the water/binder ratio.8. Mixture according to claim 1 , wherein the mixture comprises one component.9. Process for the preparation of a mixture according to claim 1 , comprising homogeneously mixing at least one aluminosilicate claim 1 , at least one alkaline ...

Подробнее
02-01-2014 дата публикации

Geopolymer and epoxy simultaneous interpenetrating polymer network composition, and methods for the same

Номер: US20140005302A1
Принадлежит: Tnemec Co Inc

A simultaneous interpenetrating polymer network—geopolymer epoxy composition includes a first component comprised of a waterborne epoxy curing agent and an alkaline silicate solution, and a second component comprised of an epoxy resin and an aluminosilicate. The two components are mixed to produce a SIN-GE composition that cures at ambient temperatures. The SIN-GE composition may be a low-viscosity, sprayable composition, or may be a higher-viscosity composition. The compositions may be used as coatings, adhesives, mortars, casting materials, and the like.

Подробнее
30-01-2014 дата публикации

Composition for advanced hybrid geopolymeric functional materials and a process for the preparation thereof

Номер: US20140026787A1

The present invention provides a composition for advanced hybrid geopolymeric functional materials possessing very broad application spectrum ranging from cementitious materials to advanced functional materials having “Inorganic-Organic Hybrid” matrix in contrast to the limited application of conventional geopolymeric materials having “Inorganic matrix” only. The invention further relates to a process for the preparation of these materials. The process obviates the need of external addition of sodium silicate which is one of the costliest and main raw materials in conventional geopolymerisation processes. Interestingly, in the present invention the sodium silicate has been synthesized in situ by designing of conditions for synergistic and simultaneous mechano-chemical reactions among the selected raw materials viz. inorganic and organic wastes under alkaline environment. This results in the formation of “Hybrid inorganic-organic frame work” of sodium silicate, which facilitates uniform dispersion of reacting species, thus resulting in the formation of homogeneous geopolymeric matrix with improved characteristics.

Подробнее
20-02-2014 дата публикации

Methods for Determining Reactive Index for Cement Kiln Dust, Associated Compositions and Methods of Use

Номер: US20140048266A1
Принадлежит: Halliburton Energy Services, Inc.

A variety of methods and compositions are disclosed, including, in one embodiment, a method of treating a well comprising: providing a treatment fluid comprising a base fluid and a blended cementitious component, wherein the blended cementitious component comprises kiln dust from two or more different sources; and introducing the treatment fluid into a well bore. 1. A method of cementing comprising:providing a settable composition comprising water and a blended cementitious component, wherein the blended cementitious component comprises kiln dust and an additional cementitious component, the kiln dust and the additional cementitious component each have a determined reactive index; andallowing the settable composition to set to form a hardened mass.2. The method of further comprising introducing the settable composition into a well bore.3. The method of wherein settable composition is used in primary cementing in the well bore.4. The method of wherein the base fluid comprises water selected from the group consisting of freshwater claim 1 , saltwater claim 1 , brine claim 1 , and any combination thereof claim 1 , and wherein the kiln dust is selected from the group consisting of lime kiln dust claim 1 , cement kiln dust claim 1 , and a combination thereof.5. The method of wherein the kiln dust comprises cement kiln dust claim 1 , the cement kiln dust being present in the treatment fluid in an amount in a range of from about 0.01% to 99% by weight of by weight of the blended cementitious component.6. The method of wherein the amount of the kiln dust and the additional cementitious component is adjusted based on a parameter selected from the group consisting of compressive strength claim 1 , Young's modulus claim 1 , fluid loss claim 1 , thickening time claim 1 , a rheological value claim 1 , free water claim 1 , and any combination thereof.8. The method of wherein the measured parameter is compressive strength claim 7 , Young's modulus claim 7 , fluid loss claim 7 , ...

Подробнее
06-03-2014 дата публикации

Fiber Reinforced Concrete

Номер: US20140060392A1
Автор: Koenigstein Michael
Принадлежит: Pro Perma Engineered Coatings, LLC

A concrete reinforcing fiber assembly includes a plurality of first fibers and at least one co-fiber attached to at least some of the first fibers. The reinforcing fiber assembly has a water absorption capability of greater than 1. 1. A concrete reinforcing fiber assembly comprising:a plurality of first fibers; andat least one co-fiber attached to at least some of the first fibers,wherein the reinforcing fiber assembly has a water absorption capability of greater than 1.2. The concrete reinforcing fiber assembly of wherein the first fibers and at least one co-fiber are fixed to one another.3. The concrete reinforcing fiber assembly of wherein the co-fiber is disposed around the first fibers and includes an over-lock stitch.4. The concrete reinforcing fiber assembly of wherein the co-fiber extends around the first fibers and is configured to inhibit pull-out of the concrete reinforcing fiber assembly from the concrete.5. The concrete reinforcing fiber assembly of wherein the co-fiber forms a non-uniform surface about first fibers to inhibit pull-out of the concrete reinforcing fiber assembly from the concrete.6. The concrete reinforcing fiber assembly of having a helical or screw-shaped configuration.7. The concrete reinforcing fiber assembly of wherein the co-fiber includes a resilient spine for inhibiting balling of the assembly.8. The concrete reinforcing fiber assembly of wherein the spine is selected from the group consisting of neoprene claim 7 , rubber claim 7 , nylon claim 7 , PCV claim 7 , polystyrene claim 7 , polyethylene claim 7 , polypropylene claim 7 , and polyacrylonitrile claim 7 , and co-polymers or combinations thereof.9. The concrete reinforcing fiber assembly of having a length of from 9 cm to about 50 cm and a diameter of between 3.175 mm and 6 mm claim 1 , and wherein each fiber is between 6 and 9 microns in diameter.10. The concrete reinforcing fiber assembly of comprising from about 70% to about 99% by weight of carbon first fiber and from ...

Подробнее
10-04-2014 дата публикации

Light-Weight Composition and Mix for Masonry, Mortar and Stucco

Номер: US20140100307A1
Автор: Chiappo Jorge G.
Принадлежит:

A pre-mixed mortar, stucco or masonry composition includes from 70 to 80 percent sand and from 20 to 30 percent of a light-weight cement mix composition that comprises either slag cement, Gypsum or a combination of slag cement and gypsum; Portland cement; clay; and polystyrene. 1. A pre-mixed mortar , stucco or masonry composition comprising:70 to 80 percent sand; and either slag cement, Gypsum or a combination of slag cement and gypsum;', 'Portland cement;', 'clay; and', 'polystyrene., '20 to 30 percent light-weight cement mix composition comprising2. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 4 to 20 percent polystyrene by weight.3. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition further comprises up to 20 percent of perlite by weight.4. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition further comprises up to 20 percent of mica by weight.5. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 5 to 10 percent clay.6. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the light-weight cement mix composition comprises from 4 to 20 percent polystyrene.7. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the polystyrene is pulverized polystyrene.8. The pre-mixed mortar claim 7 , stucco or masonry composition of claim 7 , wherein the pulverized polystyrene is a powder of approximately 75 to 375 mesh.9. The pre-mixed mortar claim 1 , stucco or masonry composition of claim 1 , wherein the clay is kaolin clay.10. A pre-mixed mortar claim 1 , stucco or masonry composition comprising:approximately 75% sand; and 4 to 20 percent ground polystyrene;', 'up to 20 percent perlite and/or mica;', '5 to ...

Подробнее
03-01-2019 дата публикации

Non-calcined cementitious compositions, non-calcined concrete compositions, non-calcined concrete and preparation methods thereof

Номер: US20190002347A1
Принадлежит: Ruentex Materials Co Ltd

The present invention provides non-calcined cementitious compositions comprising micron inorganic particles, which can be used as a binder material; and provides non-calcined concrete compositions; non-calcined concretes are also provided, which exhibit similar or better physical and mechanical properties than those prepared with traditional cements do. The present invention also provides the preparation methods of the non-calcined cementitious compositions, the non-calcined concrete compositions and the non-calcined concretes.

Подробнее
07-01-2021 дата публикации

METHOD OF FORMING A SAND CONTROL DEVICE FROM A CURABLE INORGANIC MIXTURE INFUSED WITH DEGRADABLE MATERIAL AND METHOD OF PRODUCING FORMATION FLUIDS THROUGH A SAND CONTROL DEVICE FORMED FROM A CURABLE INORGANIC MIXTURE INFUSED WITH DEGRADABLE MATERIAL

Номер: US20210002972A1
Принадлежит: Baker Hughes Oilfield Operations LLC

A method of forming a sand control device comprising: infusing a curable inorganic mixture with a degradable material configured to disintegrate upon exposure to an external stimuli; forming the curable inorganic mixture infused with the degradable material about a tubular; and curing the curable inorganic mixture infused with the degradable material. 1. A method of forming a sand control device comprising:infusing a curable inorganic mixture with a degradable material configured to disintegrate upon exposure to an external stimuli;forming the curable inorganic mixture infused with the degradable material about a tubular; andcuring the curable inorganic mixture infused with the degradable material.2. The method of claim 1 , wherein forming the curable inorganic mixture infused with degradable material about the tubular includes forming a paste formed from one of High Performance Concrete (HPC) claim 1 , Ultra-High Performance Concrete (UHPC) claim 1 , fiber-reinforced concrete (FRC) claim 1 , and High-Performance Fiber-reinforced concrete (HPFRC) about the tubular.3. The method of claim 1 , wherein forming the curable inorganic mixture infused with degradable material about the tubular includes forming a paste formed from a geopolymer about the tubular.4. The method of claim 3 , wherein forming the paste from geopolymer includes forming a paste from an inorganic amorphous network of covalently bonded elements including at least one of silico-oxide (—Si—O—Si—O—) claim 3 , silico-aluminate (—Si—O—Al—O—) claim 3 , ferro-silico-aluminate (—Fe—O—Si—O—Al—O—) and alumino-phosphate (—Al—O—P—O—).5. The method of claim 1 , wherein the degradable material includes at least one of a controlled electrolytic metallic (CEM) material claim 1 , pH-sensitive polymers claim 1 , ion-sensitive polymers claim 1 , inorganic salts claim 1 , and organic salts.6. The method of claim 1 , wherein curing includes heating the curable inorganic mixture infused with the degradable material.7. The ...

Подробнее
03-01-2019 дата публикации

Building Foundation and Soil Stabilization method and System

Номер: US20190003145A1
Принадлежит: Aquadation LLC

System and means soil stabilization and moisture control for building foundations including methods and systems for stabilization moisture in a site for building foundation by applying soil moisture stabilization material in various forms, a preferred stabilization material being a mixture of aluminosilicate Pozzolan mineral and granular material such as sand. 120.-. (canceled)21. A moisture reservoir system , the system comprising:one or more volumetric spaces located under a foundation site location for a foundation, wherein the one or more volumetric spaces comprise a granular material located in the one or more volumetric spaces under the site location for the foundation, the one or more volumetric spaces configured to provide a reservoir for moisture for soil proximate to the volumetric space; and 'one or more conduits located between one or more supply ends and one or more of the volumetric spaces, the one or more conduits configured to direct a fluid from the supply ends to the one or more volumetric spaces.', 'a fluid delivery system configured to deliver a fluid to the one or more volumetric spaces, wherein the fluid delivery system comprises22. The system of claim 21 , further comprising:a plurality of zones, wherein each zone comprises a network of conduit to direct fluid from a source to the zone, each zone comprising one or more slugs located beneath the site location for the foundation for the site, the slugs comprising the granular material; a capped and perforated end,', 'an uncapped and perforated end, or', 'an uncapped and non-perforated end., 'wherein each network of conduit comprises pvc pipe terminating above or within a slug, the pvc pipe terminating with at least one of23. The system of claim 21 ,wherein the volumetric spaces comprise vertical holes; andwherein the fluid delivery system further comprises one or more vertical tubes coupled to the conduits and configured to deliver the fluid to respective ones of the vertical holes.24. The ...

Подробнее
07-01-2021 дата публикации

Method of manufacturing a fire-resistant and/or fire-retardant cable

Номер: US20210005358A1
Принадлежит:

A method of manufacturing a cable includes at least one elongated electrically conducting element and at least one composite layer surrounding the elongated electrically conducting element. The composite layer is obtained from at least one step of impregnation of a non-woven fibrous material with a geopolymer composition. 1. Method of manufacturing a cable having at least one elongated electrically conducting element and at least one composite layer surrounding said elongated electrically conducting element , said method comprising the steps of:i) impregnating a non-woven fibrous material with a geopolymer composition, in order to form a tape impregnated with said geopolymer composition,ii) drying the impregnated tape obtained in step i), in order to form a dried impregnated tape, andiii) applying the dried impregnated tape obtained in step ii) around a cable comprising at least one elongated electrically conducting element, in order to form said composite layer surrounding said elongated electrically conducting element.2. Method according to claim 1 , wherein the non-woven fibrous material is selected from cellulosic materials claim 1 , materials based on synthetic organic polymers claim 1 , glass fibres claim 1 , and a mixture thereof.3. Method according to claim 1 , wherein the geopolymer composition is an aluminosilicate geopolymer composition.4. Method according to claim 1 , wherein step i) is carried out by coating-impregnation.5. Method according to claim 1 , wherein step i) is carried out by passing the non-woven fibrous material through a coating device supplied with the geopolymer composition.6. Method according to claim 1 , wherein step ii) is carried out at a temperature of at most 120° C.7. Method according to claim 1 , wherein step ii) is carried out at a temperature of at least 50° C.8. Method according to claim 1 , wherein step iii) of application of the dried impregnated tape around a cable comprising at least one elongated electrically conducting ...

Подробнее
09-01-2020 дата публикации

NOVEL MATERIAL AND PRODUCTION THEREOF FOR USE AS A STORAGE MEDIUM IN A SENSITIVE ENERGY STORAGE SYSTEM IN THE LOW-, MEDIUM- OR HIGH-TEMPERATURE RANGE

Номер: US20200010364A1
Принадлежит:

The present invention relates to a modified red mud/a modified bauxite residue and also to processes for the production thereof and to a storage medium comprising a modified red mud, to a heat storage means comprising a storage medium and to numerous uses of a modified red mud as storage medium, in particular in a heat storage means. The modified red mud contains the following components: haematite (FeO), —corundum (AlO), —rutile (TiO) and/or anatase (TiO), —quartz (SiO), —optionally perowskite (CaTiO) and —optionally pseudobrookite ((Fe,Fe)(Ti,Fe)O), nepheline ((Na,K)[AlSiO]) and/or hauynite ((Na,Ca)[AlSiO(SO)]), wherein the modified red mud is substantially free from NaO and/or glass. A novel material is thus provided, and the production thereof for use as a storage medium in a sensitive energy storage system in the low-, medium- or high-temperature range is described. 138-. (canceled)39. A modified red mud comprising:{'sub': 2', '3, 'haematite (FeO);'}{'sub': 2', '3, 'corundum (AlO);'}{'sub': 2', '2, 'rutile (TiO) and/or anatase (TiO);'}{'sub': '2', 'quartz (SiO); and'}{'sub': '2', 'less than 0.5% by weight of NaO and/or glass.'}40. The modified red mud of further comprising at least one of:{'sub': '3', 'perovskite (CaTiO);'}{'sup': 3+', '2+', '3+, 'sub': 2', '5, 'pseudobrookite ((Fe,Fe)(Ti,Fe)O);'}{'sub': '4', 'nepheline ((Na,K)[AlSiO]); and'}{'sub': 4-8', '6', '6', '24', '4, 'hauynite ((Na,Ca)[AlSiO(SO)]).'}41. The modified red mud of further comprising:{'sub': 2', '3, '48 to 55% by weight of haematite (FeO);'}{'sub': 2', '3, '13 to 18% by weight of corundum (AlO);'}{'sub': 2', '2, '8 to 12% by weight of rutile (TiO) and/or anatase (TiO);'}{'sub': '2', '2 to 5% by weight of quartz (SiO); and'}{'sub': '2', 'less than 0.03% by weight of NaO and/or less than 0.1% by weight of glass.'}42. The modified red mud of claim 39 , wherein the modified red mud contains less than 0.5% by weight of aluminium titanate (AlTiO) claim 39 , iron (Fe) claim 39 , mayenite (CaAlO) ...

Подробнее
03-02-2022 дата публикации

Sintered geopolymer compositions and articles

Номер: US20220033307A1
Принадлежит: Individual

The present invention relates to geopolymer compositions, sintered geopolymer articles from the geopolymer compositions and processes for manufacturing sintered geopolymer articles from the geopolymer compositions. The invention provides a process of producing a sintered geopolymer article containing a sintered geopolymer composition, wherein the sintered geopolymer composition comprises a sintered geopolymeric matrix, said process comprising the steps of: (1) forming a geopolymer composition comprising at least one aluminosilicate precursor, an alkali activating agent and water, wherein in the geopolymer article, the aluminosilicate precursor particles are at least partially coated by the alkali activating agent; and (2) firing the geopolymer article to sinter the geopolymer composition, wherein the alkali activating agent is capable of at least partially activating and dissolving the aluminosilicate precursor particles during at least a portion of the firing step, and wherein the firing of the geopolymer article includes a geopolymer composition sintering stage.

Подробнее
15-01-2015 дата публикации

Self priming spackling compound

Номер: US20150018454A1
Принадлежит: 3M Innovative Properties Co

A self-priming spackling compound includes between about 35% by weight and about 65% by weight acrylic latex resin, between about 20% by weight and about 50% by weight filler material, and between about 1% by weight and about 20% by weight water. In certain aspects, the latex resin may have an average latex particle size of less than about 0.18 microns, a minimum film formation temperature of less than about 15 degrees Celsius, and/or a glass transition temperature (Tg) of less than about 25 degrees Celsius. To further enhance the self-priming performance of the spackling compound, the formulation may further comprise a colorant such as titanium dioxide.

Подробнее
16-01-2020 дата публикации

Inorganic Foam Based On Geopolymers

Номер: US20200017410A1
Принадлежит:

The present invention relates to a process for preparing a particle-stabilized inorganic foam based on geopolymers, to a particle-stabilized inorganic foam based on geopolymers, to a cellular material obtainable by hardening and optionally drying the particle-stabilized inorganic foam based on geopolymers, and to a composition for preparing an inorganic foam formulation for providing a particle-stabilized inorganic foam based on geopolymers. 1. A process for preparing an inorganic foam comprising the steps of (i) at least one group of inorganic particles;', '(ii) at least one amphiphilic compound;', (iiia) at least one inorganic binder selected from the group consisting of blast furnace slag, microsilica, metakaolin, aluminosilicates, and mixtures thereof,', '(iiib) at least one alkaline activator selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal aluminates, alkali metal silicates, and mixtures thereof;, '(iii) at least one inorganic binder mixture comprising'}, '(iv) water; and optionally', '(v) at least one additive; and, '(1) mixing'} 'wherein the at least one amphiphilic compound comprises amphiphilic compounds with at least one polar head group and at least one apolar tail group, wherein the at least one head group is selected from the group consisting of phosphates, phosphonates, sulfates, sulfonates, alcohols, amines, amides, pyrrolidines, gallates, and carboxylic acids; and', '(2) foaming the resulting foam formulation by chemical, physical or mechanical foaming,'}{'sub': 1', '8', '2, 'wherein the at least one tail group is selected from an aliphatic or an aromatic or a cyclic group with 2 to 8 carbon atoms, wherein the carbon atoms are optionally substituted with one or more, same or different substituents selected from C-C-alkyl, secondary —OH, and secondary —NH.'}2. The process according to claim 1 , wherein the at least one group of inorganic particles is selected from the group consisting of oxides ...

Подробнее
21-01-2021 дата публикации

Building Foundation and Soil Stabilization method and System

Номер: US20210017732A1
Принадлежит: Aquadation LLC

System and means soil stabilization and moisture control for building foundations including methods and systems for stabilization moisture in a site for building foundation by applying soil moisture stabilization material in various forms, a preferred stabilization material being a mixture of aluninosilicate Pozzolan mineral and granular material such as sand. 120-. (canceled)21. A system , comprising: 'one or more conduits located between one or more supply ends and the one or more volumetric areas located at the one or more bases of the one or more beams of the building slab, the one or more conduits configured to direct a fluid from one or more supply ends to the one or more volumetric areas located at the one or more bases of the one or more beams of the building slab.', 'a liquid distribution system configured to deliver a fluid to one or more volumetric areas located at a one or more bases of one or more beams of a building slab, wherein the liquid distribution system comprises22. The system of claim 21 , wherein:at least some portion of the volumetric areas comprises trenches formed prior to pouring or placing the building slab;the system further comprises fill material, located in the trenches under at least some of the beams of the building slab; andat least some of the conduits are arranged to deliver liquid to the fill material located in the trenches.23. The system of claim 22 , wherein the fill material comprises a soil moisture stabilization material that exhibits a moisture retention property that reduces expansion and contraction of the volumetric areas under the beams when incorporated into a soil in the volumetric areas under the beams.24. The system of claim 22 , wherein the fill material comprises a granular material to aid in dispersal of the liquid.25. The system of claim 22 , further comprising:a moisture barrier placed around at least some of the fill material in at least some of the trenches.26. The system of claim 22 , further comprising:a ...

Подробнее
25-01-2018 дата публикации

PARTICULATE COMPOSITIONS FOR THE FORMATION OF GEOPOLYMERS, THEIR USE AND METHODS FOR FORMING GEOPOLYMERS THEREWITH, AND GEOPOLYMERS OBTAINED THEREFROM

Номер: US20180022646A1
Автор: AUTEF Alexandre
Принадлежит:

The present invention relates to dry particulate composition for forming a geopolymer, comprising an alkali metal hydroxide, an alkali metal silicate, and an aluminosilicate. The invention further relates to methods for forming geopolymers and geopolymers formed according to said methods or using the said dry particulate compositions. 2. A dry particulate composition according to claim 1 , wherein at least 50 wt.-% of the aluminosilicate is in an amorphous state.3. A dry particulate composition according to claim 1 , comprising from 1 wt.-% to 25 wt.-% alkali metal hydroxide claim 1 , from 15 wt.-% to 50 wt.-% alkali metal silicate claim 1 , and from 30 wt.-% to 80 wt-% aluminosilicate claim 1 , expressed as a proportion of the total weight of the dry particulate composition.4. A dry particulate composition according to claim 1 , wherein the said alkali metal hydroxide is selected from the group consisting of NaOH claim 1 , KOH claim 1 , LiOH claim 1 , RbOH claim 1 , CsQH claim 1 , and mixtures thereof.5. A dry particulate composition according to claim 1 , wherein the alkali metal of the said alkali metal silicate is selected from the group consisting of Na claim 1 , K claim 1 , Li claim 1 , Rb claim 1 , Cs claim 1 , and mixtures thereof.6. A dry particulate composition according to claim 1 , wherein said aluminosilicate is selected from the group consisting of metakaolin claim 1 , fly ash claim 1 , halloysite claim 1 , metahalloysite claim 1 , slag claim 1 , rock dust claim 1 , fine sand claim 1 , activated clay claim 1 , kaolin claim 1 , mica claim 1 , fine feldspar and mixtures thereof.7. A dry particulate composition according to claim 1 , wherein at least 50 wt.-% of said aluminosilicate is in an amorphous state claim 1 , based on the total weight of aluminosilicate in the composition and said aluminosilicate has a product of the specific surface area in m/g and the amorphous phase content in the range from 5 to 15.8. A dry particulate composition according to ...

Подробнее
10-02-2022 дата публикации

METHOD FOR SELECTING THE COMPOSITION OF A CONSTRUCTION MATERIAL COMPRISING AN EXCAVATED CLAY SOIL, METHOD AND SYSTEM FOR PREPARING SUCH A CONSTRUCTION MATERIAL

Номер: US20220041516A1
Принадлежит:

The invention relates to a method () for selecting the composition of a construction material including an excavated clay soil, said construction material composition to include deflocculating agent and activating agent quantities adapted to the excavated clay soil, said method including a step of receiving () a measured value of at least one physicochemical property of an excavated clay soil, and a step of selecting () a deflocculating agent quantity and an activating agent quantity adapted to the excavated clay soil. In addition, the invention also relates to a method () for calibrating a calculation algorithm for determining the composition of a site construction material, to a construction material formed from an excavated clay soil, and to a system () for preparing a construction material including an excavated clay soil. 1. A method for selecting the composition of a construction material including an excavated clay soil , said construction material composition to include deflocculating agent and activating agent quantities adapted to the excavated clay soil , said method being implemented by a computer device including a calculation module , said method including:A step of receiving, from the calculation module, a measured value of at least one physicochemical property of an excavated clay soil; andA step of selecting, by the calculation module, a deflocculating agent quantity and an activating agent quantity adapted to the excavated clay soil based on a comparison of the measured value with reference values, said reference values including correlations between prior-measured values of the at least one physicochemical property of a clay soil and deflocculating agent and activating agent quantities adapted to said clay soil to form a construction material.2. The method according to claim 1 , wherein the at least one physicochemical property is selected from: content of clays in the excavated clay soil claim 1 , nature of the clays claim 1 , particle size claim ...

Подробнее
10-02-2022 дата публикации

Production of foundry premix composition

Номер: US20220041517A1
Автор: Brian Burns, Vic Lafay
Принадлежит: Imerys USA Inc

A method of preparing a unique foundry premix composition that has a low bulk density of 30-45 lbs/ft 3 and contains fine particles with an average particle size of 85-100 μm is described. The unique foundry premix composition is produced by using specially designed assemblies of mechanical equipment with improved efficiency so that the premix can be prepared at a site closer to a foundry. As a result, increase in premix density caused by handling and shipping across a long distance from a traditional premix manufacturing facility to a foundry can be suppressed; transportation cost can be saved; and safety would be of less concern. The use of the foundry premix composition to prepare a sand molding medium for casting molded articles is also described.

Подробнее
02-02-2017 дата публикации

CONCRETE REINFORCEMENT SYSTEM

Номер: US20170029329A1
Принадлежит:

An improved method of reinforcing concrete is provided. A plurality of carbon fiber tubules may be added to the cementitious slurry so as to increase the cured concrete's tensile strength and resistance to corrosion. 1. A process of producing reinforced concrete , comprising the steps of:forming a slurry by mixing a cementitious material and water at a water-to-cementitious material ratio of approximately 0.30 to 0.45 by mass; andmixing a plurality of carbon fiber tubules to the slurry, forming a cementitious admixture, wherein each carbon fiber tubule of the plurality of carbon fiber tubules provides a plurality of holes between its opposing ends and is either helical or circular shape.2. The process of claim 1 , further comprising the steps of adding a plasticizer or superplasticizer to the cementitious admixture.3. (canceled)4. (canceled)5. A reinforced concrete admixture claim 1 , comprising:a slurry comprising a cementitious material and water at a water-to-cementitious material ratio of approximately 0.30 to 0.45 by mass; anda plurality of carbon fiber tubules mixed into the slurry, wherein each carbon fiber tubule of the plurality of carbon fiber tubules provides a plurality of holes between its opposing ends and is either helical or circular shape.67-. (canceled) The present invention relates to concrete reinforcement and, more particularly, to an improved process of reinforcing concrete by using carbon fiber tubules so as to increase the cured concrete's tensile strength and resistance to corrosion.It has long been known to insert metal into fabrications of cementitious materials. Basic steel reinforced concrete has been used for over a century. It is outdated and is the major cause of present day infrastructure failure. Basic steel reinforced concrete can manage pressure from around 10 MPa, 1450 psi, to 40 MPa, 5800 psi. Steel fiber reinforced concrete is a new micro reinforcement addition to the process of reinforcing concrete, and has a pressure range ...

Подробнее
01-02-2018 дата публикации

GEOPOLYMER COMPOSITE AND EXPANDABLE VINYL AROMATIC POLYMER GRANULATE AND EXPANDED VINYL AROMATIC POLYMER FOAM COMPRISING THE SAME

Номер: US20180029937A1
Принадлежит:

The present invention relates to a process for the production of a geopolymer composite. It further relates to a geopolymer composite, and the use of a geopolymer, a geopolymer in combination with an athermanous additive, or the geopolymer composite in expanded vinyl polymer, preferably vinyl aromatic polymer. Furthermore, the invention relates to a process for the production of expandable vinyl aromatic polymer granulate, and expandable vinyl aromatic polymer granulate. Finally, the present invention relates to expanded vinyl foam, preferably vinyl aromatic polymer, and to a masterbatch comprising vinyl polymer and a), b), or c). 1. Process for the production of a geopolymer composite , comprisinga) mixing of an aluminosilicate component with an alkaline silicate solution, to form a gel,b) adding of an athermanous additive component to the gel, to form a filled gel,c) mixing of the filled gel, to form filled geopolymer,d) curing, drying and milling, to give filled geopolymer particles,e) removal of cations from the filled geopolymer particles, andf) obtaining the geopolymer composite,wherein the athermanous additive comprises one or more ofa. carbon black, petroleum coke, graphitized carbon black, graphite oxides, graphite and graphene, andb. rutiles, chamotte, fly ash, fumed silica, hydromagnesite/huntite mineral, and mineral having perovskite structure.2. The process of claim 1 , wherein the aluminosilicate component comprises one or more materials selected from the group consisting of metakaolin claim 1 , metakaolonite claim 1 , metafly ash claim 1 , furnace slag claim 1 , silica fume claim 1 , mine tailings claim 1 , pozzolan claim 1 , kaolin claim 1 , and building residues claim 1 ,preferably wherein the aluminosilicate component comprises one or more materials selected from the group consisting of metakaolin or metakaolinite, metafly ash, silica fume, in particular wherein the aluminosilicate component is metakaolin or metakaolinite, or a mixture thereof.3. ...

Подробнее
17-02-2022 дата публикации

GEOPOLYMER FOAM COMPOSITION

Номер: US20220048822A1
Принадлежит:

A geopolymer foam composition, an article comprising a geopolymer foam composition, methods for making a geopolymer foam composition, and uses of a geopolymer foam composition. 1. A geopolymer foam composition comprising a mechanically-foamed aluminosilicate geopolymer and a chemically-foamed aluminosilicate geopolymer.2. The geopolymer foam composition of claim 1 , wherein the geopolymer foam composition comprises a blend of a mechanically-foamed aluminosilicate geopolymer and a chemically-foamed aluminosilicate geopolymer.3. The geopolymer foam composition of claim 1 , wherein the geopolymer foam composition comprises at least one layer of a mechanically-foamed aluminosilicate geopolymer and/or at least one layer of a chemically-foamed aluminosilicate geopolymer.4. The geopolymer foam composition of claim 1 , wherein the geopolymer foam composition has a compression resistance equal to or greater than about 0.01 MPa.5. The geopolymer foam composition of claim 1 , wherein the geopolymer foam composition has a thermal conductivity equal to or less than about 300 mw·m·K.6. The geopolymer foam composition of claim 1 , wherein the geopolymer foam composition is a class A fire-resistant material.7. The geopolymer foam composition of claim 1 , wherein the mechanically-foamed geopolymer and/or the chemically-foamed geopolymer further comprises one or more fillers.8. The geopolymer foam composition of claim 1 , wherein the mechanically-foamed geopolymer has an average pore size ranging from about 1 μm to about 500 μm or wherein the chemically-foamed geopolymer has an average pore size ranging from greater than about 500 μm to about 5000 μm.9. A method for making a geopolymer foam composition claim 1 , the method comprising combining a mechanically-foamed aluminosilicate geopolymer and a chemically-foamed aluminosilicate geopolymer.10. The method of claim 9 , wherein the method comprises blending the mechanically-foamed aluminosilicate geopolymer and the chemically-foamed ...

Подробнее
01-02-2018 дата публикации

Compositions, systems, and neural networks for bidirectional energy transfer, and thermally enhanced solar absorbers

Номер: US20180031337A1
Автор: Brett P. GUARRERO
Принадлежит: Generative Technology Operatives LLC

The present invention provides a bidirectional energy-transfer system comprising: a thermally and/or electrically conductive concrete, disposed in a structural object; a location of energy supply or demand that is physically isolated from, but in thermodynamic and/or electromagnetic communication with, the thermally and/or electrically conductive concrete; and a means of transferring energy between the structural object and the location of energy supply or demand. The system can be a single node in a neural network. The thermally and/or electrically conductive concrete includes a conductive, shock-absorbing material, such as graphite. Preferred compositions are disclosed for the thermally and/or electrically conductive concrete. The bidirectional energy-transfer system may be present in a solar-energy collection system, a grade beam, an indoor radiant flooring system, a structural wall or ceiling, a bridge, a roadway, a driveway, a parking lot, a commercial aviation runway, a military runway, a grain silo, or pavers, for example.

Подробнее
31-01-2019 дата публикации

SELF-SENSING HIGH PERFORMANCE FIBER REINFORCED GEOPOLYMER COMPOSITES

Номер: US20190031563A1
Принадлежит:

The current invention is a novel addition to the field and comprises a self-sensing high performance fiber reinforced Geopolymer composite (HPFR-GPC) with self-sensing ability. In one or more embodiment, the self-sensing abilities are created by the addition of high performance fibers into a Geopolymer composites. The HPFR-GPC exhibits smart, high performance, energy efficient, and sustainability characteristics including: enhanced tensile ductility, toughness, and strain hardening (including crack width control); improved piezoresistive effects; utilization of industrial by-product; high resistance to acid attacks; and lightweight, low density. When compared to current available embedded or attachable sensors, the current invention offers lower cost, higher durability, and a larger sensing volume. 1. A high performance geopolymer composite comprising:a. a geopolymer binder;b. a conductive filler; andc. additives.2. The high performance geopolymer composite of wherein said geopolymer binder comprises aluminosilicate rich industrial by-products.3. The high performance geopolymer composite of wherein said conductive filler comprises microfibers.4. The high performance geopolymer composite of wherein said conductive filler comprises polyvinyl alcohol fibers.5. The high performance geopolymer composite of wherein said conductive filler comprises carbon nanofibers.6. The high performance geopolymer composite of wherein said conductive filler comprises microfibers and nanofibers.7. The high performance geopolymer composite of wherein said additives are selected from the group consisting of rice husk claim 1 , fly ash claim 1 , and sand.8. The high performance geopolymer composite of wherein said additives comprise Class F Fly Ash from silica sand.9. The high performance geopolymer composite of further comprising a chemical activator solution.10. The high performance geopolymer composite of wherein said chemical activator solution comprises Sodium Silicate and Sodium ...

Подробнее
30-01-2020 дата публикации

Compressed salt objects

Номер: US20200031714A1

Provided are objects constructed of compressed salt combinations including salt and at least one additive, wherein the at least one additive is selected to impart the object with resistance to water and humidity.

Подробнее
09-02-2017 дата публикации

POLYURETHANE HYBRID SYSTEM COMBINING HIGH COMPRESSIVE STRENGTH AND EARLY WATER RESISTANCE

Номер: US20170036960A1
Принадлежит: SIKA TECHNOLOGY AG

A multi-component composition including A) a polyol component (A) including at least one polyol and water, B) a hardener component (B) including at least one polyisocyanate, and C) a solid component (C) including a hydraulic binder and one or more aggregates, as an early water resistant construction or repair material for constructing, repairing or refurbishing component parts, wherein the mixed and applied multi-component composition is immersed in water not later than 8 hours, preferably not later than 2 hours, after application. The use as an early water resistant construction or repair material is especially suitable for component parts, which are in contact with water during operation such as offshore wind energy plants or water retaining systems, e.g. pipelines. 1. A multi-component composition comprisingA) a polyol component (A) comprising at least one polyol and water,B) a hardener component (B) comprising at least one polyisocyanate, andC) a solid component (C) comprising a hydraulic binder and one or more aggregatesas an early water resistant construction or repair material for constructing, repairing or refurbishing component parts, wherein the mixed and applied multi-component composition is immersed in water not later than 8 hours after application.2. A multi-component composition according to claim 1 , wherein the polyol component (A) comprises a castor oil as polyol and/or the hardener component (B) comprises a methylene diphenyl diisocyanate as polyisocyanate.3. A multi-component composition according to claim 1 , wherein the component part is a component part which is in contact with water during operation.4. A multi-component composition according to claim 1 , wherein the hydraulic binder comprises cement claim 1 , calcined paper sludge or other hydraulic binder system.5. A multi-component composition according to claim 1 , wherein the construction or repair material is a flooring material claim 1 , a coating composition claim 1 , a grout or a ...

Подробнее
08-02-2018 дата публикации

FIRE RESISTANT COATING

Номер: US20180037504A1
Автор: Zubrod Rodney
Принадлежит:

A density controlled cold fusion concrete cementitious spray applied fireproofing material including a mixture of water, one or more of silicon dioxide, expanded glass, vermiculite, bottom ash, perlite, expanded shale, expanded polystyrene, and sulfonated formaldehyde, or other lightweight aggregates of various diameter sizes ranging from about 0.025 mm to about 12.5 mm in diameter; anhydrous or hydrous sodium or potassium metasilicate; waste from steel production consisting of Granulated Ground Blast Furnace Slag (GGBFS); high calcium or low calcium waste from coal combustion (fly ash or bottom ash); sodium tetraborate, sodium citrate dihydrate, citric acid, or boric acid; and an alkali-resistant micro-fiber. 1. A fire-resistant , geopolymer coating composition that is free of Portland cement and which exhibits a predetermined equilibrium density within the range from about 15-60 pounds per cubic foot and a compressive strength within the range of 200-3000 psi , said composition comprising: 5-60 wt % of at least one alkali-activated, cementitious material;', '2-15 wt % of at least one activator for said alkali-activated, cementitious material;', '0-15 wt % of at least one set-time retardant;', '0.01-5 wt % of at least one alkali-resistant fiber;', '0-2 wt % of magnesium oxide in an amount sufficient to control shrinkage in said mixture when cured;', '0-4 wt % of a water reducer;', '0-4 wt % of a protein or synthetic protein material;', '0-4 wt % of a rheology enhancer; and', 'water., '15-50 wt % of at least one lightweight aggregate having a bulk specific gravity of less than 1.0 and a diameter ranging from about 0.025 mm to about 12.5 mm;'}2. A fire-resistant claim 1 , geopolymer coating composition according to wherein said coating exhibits an equilibrium density of about 15 pounds per cubic foot.9. A fire-resistant claim 1 , geopolymer coating composition according to wherein said coating composition exhibits an equilibrium density of about 40 pounds per cubic ...

Подробнее
08-02-2018 дата публикации

Gravel Packing Fluids with Enhanced Thermal Stability

Номер: US20180037807A1
Принадлежит: Halliburton Energy Services, Inc.

Systems and methods for using gellable gravel packing fluids that may comprise polysaccharide gelling agents and gel stabilizers to extend the working temperature range for the polysaccharide gelling agents. A method for placing a gravel pack in a subterranean formation comprising: providing a gravel packing fluid in the form of a linear gel and comprising an aqueous base fluid, a polysaccharide gelling agent, a thermal stabilizer, and a gravel; placing the gravel packing fluid into the subterranean formation; and allowing the gravel packing fluid to form a gravel pack in the subterranean formation. 1. A method for placing a gravel pack in a subterranean formation comprising:providing a gravel packing fluid in the form of a linear gel and comprising an aqueous base fluid, a polysaccharide gelling agent, a thermal stabilizer, and a gravel;placing the gravel packing fluid into the subterranean formation; andallowing the gravel packing fluid to form a gravel pack in the subterranean formation.2. A method as claimed in wherein the aqueous base fluid comprises a monovalent or divalent brine.3. A method as claimed in wherein the polysaccharide gelling agent comprises a polysaccharide gelling agent selected from the group consisting of xanthan claim 1 , scleroglucan claim 1 , diutan claim 1 , succinoglycan claim 1 , guar claim 1 , hydroxyethyl cellulose claim 1 , and combinations thereof.4. A method as claimed in wherein the thermal stabilizer is selected from the group consisting of ascorbic acid claim 1 , salts of ascorbic acid claim 1 , erythorbic acid claim 1 , salts of erythorbic acid claim 1 , tocopherol claim 1 , and combinations thereof.5. A method as claimed in wherein the thermal stabilizer is present in the gravel packing fluid in an amount of about 5 lb/Mgal to about 300 lb/Mgal.6. A method as claimed in wherein the gravel comprises sand.7. A method as claimed in wherein the gravel packing fluid further comprises an antioxidant stabilizer claim 1 , and wherein ...

Подробнее
07-02-2019 дата публикации

CONSTRUCTION MATERIAL WITH AN ADMIXTURE OF FLOTATION TAILINGS AND METHOD FOR ITS PREPARATION

Номер: US20190039951A1
Принадлежит: IPANTERM SP Z O.O.

The object of the invention is a construction material containing water glass, fumed silica, ground sand and post-industrial waste material, characterised in that the post-industrial waste material constitutes dried flotation tailings with a content of 19.67-57.24% of SiO; 11.87-24.85% of CaO; 4.23-6.19% of MgO and 2.35-4.17% of AlO, and also the object of the invention is a method for preparing the construction material. 18-. (canceled)9. A construction material containing water glass , fumed silica , ground sand and post-industrial waste material , wherein the post-industrial waste material constitutes dried flotation tailings with a content of 19.67-57.24% of SiO; 11.87-24.85% of CaO; 4.23-6.19% of MgO and 2.35-4.17% of AlO.10. The construction material according to claim 9 , wherein the post-industrial waste material is constituted by waste L with a content of SiOof 57.24% claim 9 , CaO of 11.87% claim 9 , MgO of 4.23% claim 9 , AlOof 4.17%; or P with a content of SiOof 19.67% claim 9 , CaO of 24.85% claim 9 , MgO of 6.19% claim 9 , AlOof 3.25% claim 9 , or R with a content of SiOof 53.27% claim 9 , CaO of 13.88% claim 9 , MgO of 5.35% claim 9 , AlOof 3.84% or a mixture thereof at a mass ratio of 8:1:1 through 1:8:1 to 1:1:8 claim 9 , preferably 6:2:7.11. The construction material according to claim 9 , wherein it containsa) 420-378 parts of water glass,b) 110-120 parts of water,c) 25-1 parts of fumed silica,d) 43-22 parts of ground sand, ande) 50-25 parts of post-industrial waste material L, P, R or mixtures thereof in a mass ratio of 8:1:1 through 1:8:1 to 1:1:8, preferably 6:2:7.12. The construction material according to claim 9 , wherein it contains an addition of boric acid HBOin an amount of 1-5 g of the acid per 100 g of post-industrial waste material L claim 9 , P claim 9 , R or a mixture thereof.13. The construction material according to claim 11 , wherein it consists of 2.8 l of water glass; 1.2 l of water; 225 g of ground sand; 50 g of fumed silica ...

Подробнее
07-02-2019 дата публикации

POLYURETHANE HYBRID SYSTEM COMBINING HIGH COMPRESSIVE STRENGTH AND EARLY WATER RESISTANCE

Номер: US20190039953A1
Принадлежит: SIKA TECHNOLOGY AG

The invention relates to the use of a multi-component composition comprising A) a polyol component (A) comprising at least one polyol and water, B) a hardener component (B) comprising at least one polyisocyanate, and C) a solid component (C) comprising a hydraulic binder and one or more aggregates, as an early water resistant construction or repair material for constructing, repairing or refurbishing component parts, wherein the mixed and applied multi-component composition is immersed in water not later than 8 hours, preferably not later than 2 h, after application. 1. A method for constructing , repairing , or refurbishing at least one component part , the method comprising: A) a polyol component (A) comprising at least one polyol and water,', 'B) a hardener component (B) comprising at least one polyisocyanate, and', 'C) a solid component (C) comprising a hydraulic binder and one or more aggregates,, 'i) providing a multi-component composition comprisingii) mixing components (A), (B), and (C) of the multi-component composition to form a mixture,iii) applying the mixture either on the component part to repair or refurbish the component part or in a space that is not in contact with water to form the component part, andiv) immersing the applied mixture not later than 8 hours after the mixture is applied.2. The method according to claim 1 , further comprising curing the applied mixture after the mixture is applied.3. The method according to claim 2 , wherein at least part of the curing of the applied mixture is carried out underwater.4. The method according to claim 1 , wherein the applied mixture is immersed in water not later than 4 hours after the mixture is applied.5. The method according to claim 1 , wherein the applied mixture is immersed in water not later than 2 hours after the mixture is applied.6. The method according to claim 1 , wherein the applied mixture is immersed in water not earlier than 10 minutes after the mixture is applied.7. The method ...

Подробнее
07-02-2019 дата публикации

METHODS AND SYSTEM FOR FORMING RECLAMATION STRUCTURES

Номер: US20190040600A1
Принадлежит: IHC Holland IE B.V.

A method of forming a structure includes a) excavating a material; b) homogenizing the material; c) ensuring aluminosilicate levels in the material; d) increasing alkaline levels of the material; e) foaming the material; and f) injecting the material onto a surface, wherein the material forms into a foam-like structure when injected. 1. A method of forming a structure , the method comprising:a) excavating a material;b) homogenizing the material;c) ensuring aluminosilicate levels in the material;d) increasing alkaline levels of the material;e) foaming the material; andf) injecting the material onto a surface, wherein the material forms into a foam-like structure when injected.3. The method of claim 1 , wherein step d) comprises adding an alkaline material.4. The method of any of claim 1 , wherein step c) comprises adding a binder material to the mixture.5. The method of claim 4 , wherein the binder material comprises fly ashes claim 4 , blast furnace slag claim 4 , calcined clays claim 4 , waste glass claim 4 , waste stone and/or rock wool.6. (canceled)7. The method of claim 1 , wherein one or more steps of the method are performed using a dosing system.8. The method of claim 1 , wherein step f) comprises injecting the material using an injection mouth.9. The method of any of claim 1 , wherein the material is injected onto a subsea surface.10. The method of claim 1 , wherein the foam-like structure solidifies once injected.11. (canceled)12. The method of claim 1 , wherein step e) comprises:mechanically mixing air into the material or pressurizing the material and adding compressed air to the material.13. (canceled)14. The method of claim 1 , wherein step e) comprises:adding a foaming agent into the material.15. The method of claim 1 , wherein step e) comprises:adding a metal powder to the material.16. The method of claim 1 , and further comprising:adding a catalytic ignition agent to the material.17. (canceled)18. A reclamation system comprising:means for excavating ...

Подробнее
06-02-2020 дата публикации

COMPOSITIONS FOR USE IN GEOSYNTHETIC LINERS

Номер: US20200039881A1
Принадлежит:

Described herein is a composition for use in a geosynthetic clay liner, the composition comprising particles, at least some of which are discrete particles and each comprise: a compacted swelling clay, the clay having been compacted such that it at least partially surrounds a fluid-loss preventing polymer. Also described herein is a clay liner formed from the composition, a method for producing particles for use in a geosynthetic clay liner, and a method of forming a clay liner. 1. A method for producing particles for use in a geosynthetic clay liner , the method comprising:dry mixing first particles comprising a swelling clay and second particles comprising a fluid-loss preventing polymer,compacting the dry mixed first and second particles to form one or more compacted bodies,crushing the one or more compacted bodies to form discrete particles for use in a geosynthetic liner, at least some of the discrete particles comprising the swelling clay and the fluid-loss preventing polymer, wherein at least some of the fluid-loss preventing polymer is at least partially surrounded by the swelling clay.2. A method as claimed in claim 1 , wherein the swelling clay comprises a material selected from a smectite clay and a vermiculite clay.3. A method as claimed in claim 2 , wherein the smectite clay comprises a material selected from montmorillonite claim 2 , beidellite claim 2 , nontronite claim 2 , hectorite claim 2 , saponite claim 2 , sauconite and laponite.4. A method as claimed in claim 2 , wherein the smectite clay comprises a bentonite.5. A method as claimed in any one of the preceding claims claim 2 , wherein the fluid-loss preventing polymer is selected from an anionic polymer claim 2 , a non-ionic polymer and a cationic polymer.6. A method as claimed in any one of the preceding claims claim 2 , wherein the fluid-loss preventing polymer comprises an anionic polymer.7. A method as claimed in any one of the preceding claims claim 2 , wherein the fluid-loss preventing ...

Подробнее
06-02-2020 дата публикации

Lightweight Thermal Insulating Cement Based Materials

Номер: US20200039882A1
Принадлежит:

A lightweight thermal insulating cement-based material is formed from a mixture that includes cement, water and a foaming agent. The foaming agent can be an aluminum powder or a surfactant. The insulating material has a maximum use temperature of about 900 degrees Celsius or more. 1. A cement-based material formed from a mixture comprising:a cement in an amount of about 25 to 90% of weight wetwater in an amount of about 10 to 70% of weight wet;a secondary material in an amount of about 1 to 50% of weight wet;a reinforcement fiber in an amount of about 1 to 20% of weight wet;a rheology-modifying agent in an amount of about 0.1 to 4.0% of weight wet; anda foaming agent comprising an aluminum powder in an amount of about 0.5 to 3.0% by weight of the cement or a surfactant in an amount of about 0.05 to 4.0% by weight of the water.2. The cement-based material as recited in claim 1 , wherein the cement comprises an Ordinary Portland cement (OPC) claim 1 , a calcium aluminate cement (CAC) claim 1 , a Sorel cement claim 1 , a CSA cement claim 1 , a phosphate cement claim 1 , or a geo-polymer cement.3. The cement-based material as recited in claim 2 , wherein:the cement-based material has a maximum use temperature of about 900 degrees Celsius whenever the cement is the Ordinary Portland cement (OPC) and about 1800 degrees Celsius whenever the cement is the calcium aluminate cement (CAC), the Sorel cement, the CSA cement, the phosphate cement, or the geo-polymer cement; and{'sup': '3', 'the cement-based material has a density in the range of about 0.05 to 1.0 g/cm, a thermal conductivity in the range of about 0.02 to 1.0 W/(m·K), a compressive strength in the range of about 10 to 3000 PSI, and a flexural strength in the range of about 10 to 3000 PSI'}4. The cement-based material as recited in claim 1 , wherein the secondary material comprises sand claim 1 , rock claim 1 , fly ash claim 1 , slag claim 1 , silica fume claim 1 , calcium carbonate claim 1 , gypsum claim 1 , fumed ...

Подробнее
06-02-2020 дата публикации

Geopolymer compositions and methods for making same

Номер: US20200039884A1
Автор: Ashish Dubey
Принадлежит: United States Gypsum Co

Geopolymer compositions utilizing fly ash and an inorganic mineral including alkaline earth metal oxide as cementitious reactive components. The inorganic mineral includes alkaline earth metal oxide preferably calcium oxide (also known as lime or quicklime) or magnesium oxide, or combinations thereof. The cementitious reactive powder may also optionally include one or more aluminous cements and one or more source of calcium sulfates. The cementitious reactive powders are activated with an alkali metal chemical activator selected from at least one member of the group consisting of an alkali metal salt and an alkali metal base. The inorganic minerals including alkaline earth metal oxide preferred in this invention have an alkaline earth metal oxide content preferably greater than 50 wt %, more preferably greater than 60 wt %, even more preferably greater than 70 wt %, and most preferably greater than 80 wt %, for example greater than 90 wt %. Methods for making the compositions are also disclosed.

Подробнее
16-02-2017 дата публикации

FLUORESCENT BUILDING PRODUCT AND RELATED DETECTION METHOD

Номер: US20170044062A1
Принадлежит:

A method of making an identifiable gypsum-based building product, includes incorporating a suitable amount of an optically identifiable marker into the product to be sensed by a conventional detecting device; applying the product with the marker in a conventional manner in the course of building construction, creating a finished building product; and analyzing the finished building product and optically detecting the presence of the marker in real time onsite. 1. A method of making an identifiable gypsum-based building product , comprising:incorporating a suitable amount of an optically identifiable tagging material into the product to be sensed by a conventional detecting device;applying the product with the tagging material in a conventional manner in the course of building construction, creating a finished building product; andanalyzing the finished building product and optically detecting the presence of the tagging material in real time onsite.2. The method of wherein said building product is wallboard joint compound.3. The method of wherein said tagging material is optical brightener and is uniformly distributed in the building product.4. The method of wherein said tagging material is provided in concentration in the general range of 0.003% to 0.006% by weight of the composition of the building product claim 1 , excluding water.5. The method of claim 1 , wherein upon employment of the detector device claim 1 , the tagging material is visible across the entire building product.6. The method of claim 1 , wherein the detector device is a hand-held UV blacklight.7. The method of claim 1 , wherein upon exposure to a UV blacklight claim 1 , said product with said tagging material has a pixel intensity that is at least 500 claim 1 ,000 greater than a control product without the tagging material.8. The method of claim 1 , wherein claim 1 , upon exposure to a UV blacklight claim 1 , said product with said tagging material is at least ten times brighter than a control ...

Подробнее
03-03-2022 дата публикации

Flexible Concrete

Номер: US20220064067A1
Автор: Pipilikaki Panagiota
Принадлежит:

The invention relates to a cement powder blend comprising, based on total weight 1. A cement powder blend comprising , based on total weight45-90 wt. % non-Portland cement;5-30 wt. % polyvinylalcohol; the blend having a content of0-25 wt. % siliceous fly ash; and0-25 wt. % limestone.2. The cement powder blend according to claim 1 , wherein the non-Portland cement is a geopolymer cement.3. The cement powder blend according to claim 2 , wherein the geopolymer cement comprises metakaolin.4. The cement powder blend according to claim 3 , wherein the metakaolin is represented by the chemical formula (Na claim 3 ,K)—(Si—O—Al—O—Si—O—).5. The cement powder blend according to claim 2 , wherein the geopolymer comprises a silica-based geopolymer represented by the formula (Na claim 2 ,K)-n(Si—O—)—(Si—O—Al) claim 2 , wherein the atomic ratio Si:Al is preferably in the range of 40.6. The cement powder blend according to claim 2 , wherein the geopolymer comprises a sol-gel-based geopolymer represented by the formula (Na claim 2 ,K)—(Si—O—Al—O—Si—O—) claim 2 , wherein preferably the atomic ratio Si:Al is about 2.7. The cement powder blend according to claim 2 , wherein said geopolymer cement is a slag-based geopolymer.8. The cement powder blend according to claim 1 , wherein the non-Portland cement comprises a cement selected from the group of pozzolan-lime cement claim 1 , slag-lime cement claim 1 , calcium aluminate and calcium sulfoaluminate.9. The cement powder blend according to claim 1 , wherein the polyvinylalcohol has a size distribution with D=170-270 μm claim 1 , D=370-450 μm claim 1 , D=690-850 μm and D=1000-1300 μm.10. The cement powder blend according to claim 1 , wherein the polyvinyl alcohol has an ester value in the range of 1-250 mg KOH/g claim 1 , as determinable by EN-ISO 3681:1998.and/or wherein the polyvinyl alcohol is a polyvinyl alcohol of which a 4% aqueous solution has a viscosity, at 20° C., as determinable by EN-ISO 12058-1:2002, in the range of 1-40 mPa ...

Подробнее
14-02-2019 дата публикации

SEAMLESS AND IMPERMEABLE JOINTS RESULTING IN A FUNCTIONALLY GRADED MATERIAL: TRANSITIONING FROM GLASS TO GEOPOLYMER MORTAR

Номер: US20190047910A1
Принадлежит:

Materials that seamlessly transition from opaque to transparent or translucent, such as advanced geopolymer-based ceramics to glass structures, which can be directly and seamlessly bonded without the use of an intermediate adhesive or use of a frame are disclosed. That is, a GP-based ceramic to glass structure can be bonded directly and seamlessly and without any mechanical joints, connective tissue or adhesives such as caulking or epoxy. Such ceramic to glass materials can be prepared by sintering an engineered geopolymer with glass to form the geopolymer-based advanced ceramic-glass structure in which the interface is visually abruptly or in which the material is a graded composition with a controlled transition from one material to the other. 1. A composite material that seamlessly transitions from an opaque material to a transparent material comprising an advanced ceramic derived from a geopolymer or an alkali-activated binder (AAB) material seamlessly bound to a glass.2. The composite material of claim 1 , wherein the geopolymer is produced from metakaolin claim 1 , a derivative thereof claim 1 , or fly ash claim 1 , or a composite of geopolymer and glass powder.3. The composite material of claim 1 , wherein the geopolymer or alkali-activated binder (AAB) material has a coefficient of thermal expansion that matches a coefficient of thermal expansion of the glass.4. The composite material of claim 1 , wherein the glass is transparent.5. The composite material of claim 1 , wherein the glass is translucent.6. The composite material of claim 1 , wherein the transition from the opaque material to the transparent material is abrupt.7. The composite material of claim 1 , wherein the transition from the opaque material to the transparent material is graded.8. The composite material of claim 1 , wherein the geopolymer is produced from metakaolin claim 1 , a derivative thereof claim 1 , or fly ash.9. The composite material of claim 8 , wherein the advanced ceramic is a ...

Подробнее
25-02-2021 дата публикации

Advanced multi-functional asbestos free thermal insulating material and the process for preparation thereof

Номер: US20210053876A1

The present invention relates to advanced multi-functional asbestos-free thermal insulating materials utilizing appropriate matrixes comprising nano thermal insulating precursor powder predominantly comprising calcium silicate and calcium magnesium silicate prepared from marble waste powder, rice husk and calcium hexametaphosphate; crushed silica fiberglass and a supporting matrix.

Подробнее
02-03-2017 дата публикации

FUNCTIONALIZED BRINE SLUDGE MATERIAL AND A PROCESS FOR THE PREPARATION THEREOF

Номер: US20170057868A1
Принадлежит:

Brine sludge is an industrial waste generated in chloral alkali industry. The generated brine sludge waste is dumped into landfills and contains barium sulphate, calcium carbonate, magnesium hydroxide, sodium chloride, clay, and toxic elements like chromium, zinc, copper, and vanadium, therefore posing an environmental threat. Consequently, there is an urgent need to convert toxic brine sludge waste into its non-toxic form. The present invention thus aims to achieve total utilization of this brine sludge for making functionalized brine sludge material useful for a broad application spectrum. 1. A functionalized brine sludge material comprising:lOg to 50g of brine sludge;50g to 100g of fly ash;6g to 13g of sodium hydroxide;250m1 to 500 ml of ethylene glycol;lg to lOg of cetyl trimethyl ammonium bromide; and12m1 to 26 ml of water.2. The material as claimed in claim 1 , wherein the material is useful for the preparation of radiation shielding materials claim 1 , geopolymeric materials claim 1 , and chemically designed composite materials.3. The material as claimed in claim 1 , wherein the material comprises 45g of brine sludge claim 1 , 45g of fly ash claim 1 , 6g of sodium hydroxide claim 1 , 300m1 of ethylene glycol claim 1 , 10 g of cetyl trimethyl ammonium bromide claim 1 , and 12 ml of water.4. A process for the preparation of the functionalized brine sludge material as claimed in claim 1 , the process comprising:[a] refluxing a homogenized mixture of brine sludge, fly ash, sodium hydroxide, ethylene glycol, cetyl trimethyl ammonium bromide, and water in a round bottom flask; and[b] filtering the mixture as obtained in step [a] followed by drying in an air oven at a temperature of 100 to 110 degrees C. for a period of 1 to 2 hours, resulting in an in-situ synthesized functionalized brine sludge material.5. The process as claimed in claim 4 , wherein refluxing in step [a] is done at a temperature of 190 to 250 degrees C. for a duration of 2 to 6 hours using ...

Подробнее
02-03-2017 дата публикации

Alkali-Activated Natural Aluminosilicate Materials for Compressed Masonry Products, and Associated Processes and Systems

Номер: US20170057872A1
Принадлежит:

Disclosed are masonry product feedstock compositions having natural aluminosilicate minerals, e.g., clay minerals and feldspars, to activate a geopolymer reaction. During the formation and curing of a masonry product, an alkali activator creates structural bonds within a mix of aggregates in the feedstock having a low moisture content (e.g., 5-10% by weight). The feedstock and manufacturing can require less energy, and can result in a lower environmental footprint than conventional masonry products. Associated processes and systems provide improved mixing and/or de-agglomeration of the feedstock, high compression during the formation of masonry products, and optimized curing. Exemplary products can include structural masonry units, veneer facing blocks, pavers, and other pre-cast products. Because the natural aluminosilicate minerals can be found in minimally processed abundant raw earth, the composition is not limited to conventional geopolymer materials that are sourced from industrial byproducts that are limited in geographic availability. 1. A method , comprising:premixing a moistened masonry formula, wherein the moistened masonry formula includes an aggregate, a natural aluminosilicate material, an alkali activator, and water; breaking apart agglomerations in the moistened masonry formula,', 'pulverizing the moistened masonry formula,', 'enhancing dispersion of the moistened masonry formula, and', 'enhancing homogeneity of the moistened masonry formula;, 'processing the moistened masonry formula in a secondary mixer to produce masonry product formula, wherein the processing includes at least one offilling a block mold with the processed masonry product formula; andapplying compression of the masonry product formula within in the block mold to form a masonry block.2. The method of claim 1 , wherein the applied compression ranges from 1500 to 2500 pounds of force per square inch of unit face.3. The method of claim 1 , wherein the applied compression is based on a ...

Подробнее
01-03-2018 дата публикации

IMPROVEMENTS RELATING TO CONCRETE

Номер: US20180058217A1
Автор: Jones Graeme
Принадлежит:

Concrete is formed by providing a wet layer of a first concrete applying a second wet layer of concrete on the first layer of wet concrete and setting the layers and to provide a composite concrete structure, wherein at least one of the layers comprises, AACM (Alkali-Activated Cementitious Material). An ionic bond is formed between the two layers. The AACM layer may comprise a reinforcement structure and cathodic protection. 1. A method of construction of a concrete element comprising the steps of providing a first wet concrete layer , providing a second wet concrete layer on the first wet concrete layer , and setting the first and second layers of concrete to bond the first layer of concrete to the second layer of concrete to produce a composite concrete element , wherein at least one of the first and second concrete layers comprises an AACM cement (Alkali-Activated Cementitious Material).2. A method according to claim 1 , wherein the first and second concrete layers comprise different concretes.3. A method according to claim 1 , wherein the AACM cement includes at least one geopolymer cement.4. A method according to claim 1 , wherein the two layers are integrally joined by an ionic bond.5. A method according to claim 1 , wherein the AACM concrete layer provides at least one of a coating and lining to the other concrete layer.6. A method according to claim 1 , wherein the AACM concrete layer provides at least one of a coating and lining to the other concrete layer and the other concrete layer comprises an ordinary Portland cement (OPC).7. A method according to claim 1 , comprising the step of adding at least one of a reinforcement structure and carbon fibres to at least one of the wet concretes claim 1 , the carbon fibres being added to provide cathodic protection.8. A method according to claim 1 , comprising the step of adding at least one of a reinforcement structure and carbon fibres to at least one of the wet concretes claim 1 , the carbon fibres being added to ...

Подробнее
21-02-2019 дата публикации

Method for predictive determination of the behavior of a reactive mixture intended for obtaining a geopolymer, and method for optimization of said geopolymer

Номер: US20190056373A1

A method for determination of the behavior of a reactive mixture intended for obtaining a geopolymer. The reactive mixture comprises at least one aluminosilicate material. The method includes determining a proportion of amorphous phase of the at least one aluminosilicate material and determining a degree of wettability of the at least one aluminosilicate material. If the proportion of amorphous phase is greater than 45% and if the degree of wettability is situated in a range between 300 μg/l and 1400 μg/l, then the reactive mixture, formed by the reaction of the at least one aluminosilicate material with an alkaline solution, forms a geopolymer.

Подробнее
04-03-2021 дата публикации

COMPOSITE STRUCTURAL MATERIAL COMPOSITIONS RESISTANT TO BIODEGRADATION

Номер: US20210061712A1
Принадлежит:

A structural material composition comprises: a geopolymer matrix, the geopolymer matrix formed from an alumina silicate source and an alkaline activator; and an antibacterial agent (e.g. biocide and/or heavy-metal based antibacterial agent) encapsulated in an antibacterial agent carrier to form a first plurality of encapsulated antibacterial agent particles. The first plurality of encapsulated antibacterial agent particles is integrated with the geopolymer matrix during polymerization. 158.-. (canceled)59. A structural material composition comprising:a geopolymer matrix, the geopolymer matrix formed from an alumina silicate source and an alkaline activator; andan antibacterial agent (e.g. biocide and/or heavy-metal based antibacterial agent) encapsulated in an antibacterial agent carrier to form a first plurality of encapsulated antibacterial agent particles;wherein the first plurality of encapsulated antibacterial agent particles is integrated with the geopolymer matrix during polymerization.60. A structural material composition according to wherein the geopolymer matrix defines a plurality of first voids during polymerization and wherein at least a portion of one or more of the plurality of encapsulated antibacterial agent particles are located in the plurality of first voids after polymerization or are co-geopolymerized with the geopolymer matrix.61. A structural material composition according to wherein chemical bonds are formed between the encapsulated antibacterial agent particles and the geopolymer matrix during polymerization.62. A structural material composition according to wherein the antibacterial agent is encapsulated in the antibacterial agent carrier through an ion exchange process to form the first plurality of encapsulated antibacterial agent particles.63. A structural material composition according to wherein encapsulating the antibacterial agent in the antibacterial agent carrier comprises locating the antibacterial agent in one or more pores of ...

Подробнее
02-03-2017 дата публикации

GROUT FLUIDS FOR USE IN A GEOTHERMAL WELL LOOP

Номер: US20170058181A1
Принадлежит: Halliburton Energy Services, Inc.

A method comprising (a) first, preparing a grout additive fluid comprising a fresh water base fluid and a grout additive control package comprising a primary additive selected from the group consisting of an inhibitor, a dispersant, a thermally conductive material, and any combination thereof, wherein at least about 90% of the dispersant and the inhibitor are dissolved in the fresh water base fluid; (b) second, introducing an aqueous swellable clay into the grout additive fluid, thereby forming a final grout fluid; and (c) third, introducing the final grout fluid into an annulus in a subterranean formation, the annulus formed between an exterior of a geothermal well loop tubular and the subterranean formation. 1. A method comprising: 'wherein at least about 90% of the dispersant and the inhibitor are dissolved in the fresh water base fluid;', '(a) first, preparing a grout additive fluid comprising a fresh water base fluid and a grout additive control package comprising a primary additive selected from the group consisting of an inhibitor, a dispersant, a thermally conductive material, and any combination thereof,'}(b) second, introducing an aqueous swellable clay into the grout additive fluid, thereby forming a final grout fluid; and(c) third, introducing the final grout fluid into an annulus in a subterranean formation, the annulus formed between an exterior of a geothermal well loop tubular and the subterranean formation.2. The method of claim 1 , wherein the aqueous swellable clay is natural or synthetic claim 1 , and selected from the group consisting of a member of the smectite family claim 1 , a member of the palygorskite-sepiolite phyllosilicate family claim 1 , a member of the kaolinite-serpentine family claim 1 , nontronite claim 1 , bentonite claim 1 , hectorite claim 1 , attapulgite claim 1 , fluoromica claim 1 , montmorillonite claim 1 , beidellite claim 1 , saponite claim 1 , sepiolite claim 1 , kaolinite claim 1 , illite claim 1 , any cation exchanged ...

Подробнее
02-03-2017 дата публикации

STABILIZING COMPOUND WITH CATIONIC GROUP AND HYDROPHOBIC PORTION FOR WATER-SWELLABLE MINERALS

Номер: US20170058182A1
Принадлежит:

A treatment fluid for treating a portion of a water- sensitive subterranean formation comprising: a base fluid; and a stabilizing compound, wherein the stabilizing compound reduces or eliminates swelling of a water-swellable mineral of the portion of the water-sensitive subterranean formation, and wherein the stabilizing compound comprises: (A) a cationic functional group; and (B) a hydrophobic portion. A method of treating a portion of a water-sensitive subterranean formation comprising: introducing a treatment fluid into a wellbore, wherein the wellbore penetrates the subterranean formation, wherein the portion of the subterranean formation comprises a water-swellable mineral. 1. A method of treating a portion of a water-sensitive subterranean formation comprising: wherein the portion of the subterranean formation comprises a water-swellable mineral, and', 'wherein the treatment fluid comprises:', '(A) a base fluid; and', (i) a cationic functional group; and', '(ii) a hydrophobic portion., '(B) a stabilizing compound, wherein the stabilizing compound comprises], 'introducing a treatment fluid into a wellbore, wherein the wellbore penetrates the subterranean formation,'}2. The method according to claim 1 , wherein the base fluid is water.3. The method according to claim 2 , wherein the water is selected from the group consisting of freshwater claim 2 , brackish water claim 2 , saltwater claim 2 , and any combination thereof.4. The method according to claim 1 , wherein the base fluid is a hydrocarbon liquid.5. The method according to claim 4 , wherein the hydrocarbon liquid is selected from the group consisting of: a fractional distillate of crude oil; a fatty derivative of an acid claim 4 , an ester claim 4 , an ether claim 4 , an alcohol claim 4 , an amine claim 4 , an amide claim 4 , or an imide; a saturated hydrocarbon; an unsaturated hydrocarbon; a branched hydrocarbon; a cyclic hydrocarbon; and any combination thereof.6. The method according to claim 1 , ...

Подробнее
20-02-2020 дата публикации

Concrete Element Reinforced with Improved Oxidation Protection

Номер: US20200055776A1
Принадлежит:

A concrete element with improved fire resistance having a textile reinforcement, such as carbon fibers. The concrete covers the textile reinforcement around 10 to 25 mm, the concrete being made from binding agents based on geopolymers or calcium-aluminate cements or Portland cement or blast furnace cement combined with an increased concentration of more than 2 kg/mpolypropylene fibres and high temperature resistant aggregates. The textile reinforcement with fibers/filaments are impregnated with an impregnation mass/resin, ensuring, even at very high temperatures, a transmission of force between the fibres and the impregnation mass and protecting against the entry of oxygen. It also contains an organic faction of, for example, a maximum of 20 wt. %, wherein the impregnation masses being used, have a filler which is stable at high temperatures in an added amount of, for example, at least 12.5% in the form of particles. 1. A concrete element that has improved fire resistance with a textile reinforcement including carbon fibers , the concrete element comprising at least one or more of:{'sup': '3', 'a) a concrete cover, which covers the textile reinforcement and which has a thickness of 10 to 20 mm, the concrete cover any one or combination of containing high temperature-resistant binders based on geopolymers, containing polypropylene fibers in a concentration of at least 4 kg/m, produced with aggregate gravel only having particle sizes of up to 8 mm,'}b) carbon fibers or filaments of the textile reinforcement that are impregnated with an impregnation mass, the impregnation mass containing, at most an organic component of 20%, the impregnation mass containing silicon-organic compounds and/or high temperature-stable fillers, direct application to the surface of the carbon fibers before the application of a sizing agent to the carbon fibers,', 'application of at least one modified sizing agent prior to application of a sizing agent to the carbon fibers,', 'postprocessing ...

Подробнее
20-02-2020 дата публикации

GEOPOLYMER COMPOSITIONS AS INORGANIC BINDING MATERIAL FOR FORMING PROPPANT AGGREGATES

Номер: US20200056083A1
Принадлежит: Halliburton Energy Services, Inc.

The present disclosure relates to a method of treating a subterranean formation comprising creating at least one fracture in the subterranean formation, providing a fracturing fluid comprising proppant particulates and a geopolymer composition coated on the proppant particulates, wherein the geopolymer composition comprises an aluminosilicate source, a metal silicate source, and an activator, alternately injecting a spacer fluid and the fracturing fluid into the fracture such that a plurality of proppant aggregates are disposed in the fracture surrounded by the spacer fluid, wherein the proppant aggregates each comprise a portion of the proppant particulates coated with a volume of the geopolymer composition; and allowing the geopolymer composition to set in the formation such that the proppant aggregates gain consolidation strength. 1. A method of treating a subterranean formation comprising:creating at least one fracture in the subterranean formation;providing a fracturing fluid comprising proppant particulates and a geopolymer composition coated on the proppant particulates, wherein the geopolymer composition comprises an aluminosilicate source, a metal silicate source, and an activator;alternately injecting a spacer fluid and the fracturing fluid into the fracture such that a plurality of proppant aggregates are disposed in the fracture surrounded by the spacer fluid, wherein the proppant aggregates each comprise a portion of the proppant particulates coated with a volume of the geopolymer composition; andallowing the geopolymer composition to set in the formation such that the proppant aggregates gain consolidation strength.2. The method of wherein creating the fracture comprises injecting a fracturing fluid that is proppant-free into the subterranean formation at a pressure that is above a fracture gradient.3. The method of wherein providing a fracturing fluid comprising proppant particulates and a geopolymer composition comprises coating the geopolymer ...

Подробнее
28-02-2019 дата публикации

Cementitious inorganic material containing cellulosic nanofibers

Номер: US20190062211A1
Принадлежит: University of Alberta

A cementitious inorganic material having improved durability and strength is provided. The cementitious inorganic material includes an inorganic cured matrix, a plurality of cellulosic nanofibers embedded in the inorganic cured matrix, an agent for dispersing the cellulosic nanofibers in the inorganic cured matrix, and an aggregate dispersed throughout the inorganic cured matrix. The inventive cementitious inorganic material provides improved resistance to sulphate attack, chloride attack, vegetation growth, and consequent damage such as expansive cracking, thereby enhancing the durability of cement. A process of making the cementitious inorganic material includes blending the cellulosic nanofibers with water until a homogenous solution is achieved, mixing the dispersing agent with the homogenous mixture, mixing the inorganic matrix material with the homogenous solution, mixing in the aggregate, and allowing the mixture to cure.

Подробнее
17-03-2022 дата публикации

UNCALCINED GEOPOLYMER-BASED REFRACTORY MATERIAL AND METHOD FOR ITS PREPARATION

Номер: US20220081363A1
Принадлежит:

An uncalcined geopolymer-based refractory material is provided, comprising a matrix of a geopolymer obtainable by polymerization of a mixture consisting of mineral powder, fly ash, and metakaolin; and SiC whiskers embedded in the geopolymer matrix. The material has excellent mechanical properties and high resistance to high temperatures and exhibits a ductile fracture mechanism instead of a brittle fracture mechanism. 1. An uncalcined geopolymer-based refractory material , comprising:a matrix of a geopolymer obtainable by polymerization of a mixture consisting of mineral powder, fly ash, and metakaolin; andsilicon carbide whiskers embedded in the geopolymer matrix.2. The material of claim 1 , wherein claim 1 , the silicon carbide whiskers are present in the geopolymer matrix in an amount of 0.8 to 1.2 wt. %.3. The material of claim 1 , wherein claim 1 , the silicon carbide whiskers are composed of pure silicon carbide only or boron nitride coated silicon carbide claim 1 , and have a diameter of 0.1 to 2.5 μm and a length of 2 to 50 μm.4. The material of claim 3 , wherein claim 3 , the boron nitride coated silicon carbide whiskers have a 50 to 250 nm thick boron nitride coating.5. The material of claim 1 , wherein claim 1 , the mineral powder is high-calcium mineral powder and the fly ash is Class F fly ash; and wherein a mass ratio of mineral powder:fly ash:metakaolin is (35-45):(25-35):(25-35).6. A method for preparing the uncalcined geopolymer-based refractory material of claim 1 , the method comprising steps of:(a) mixing the mineral powder, the fly ash, the metakaolin, and the silicon carbide whiskers by ball milling to form a milled material;(b) mixing the milled material with a sodium water glass solution and water to form a slurry; and(c) curing the slurry to obtain the uncalcined geopolymer-based refractory material.7. The method of claim 6 , further comprising: before the step (a) claim 6 , subjecting the silicon carbide whiskers to a dispersion treatment ...

Подробнее
17-03-2022 дата публикации

THERMOSET CERAMIC COMPOSITIONS, INORGANIC POLYMER COATINGS, INORGANIC POLYMER MOLD TOOLING, INORGANIC POLYMER HYDRAULIC FRACKING PROPPANTS, METHODS OF PREPARATION AND APPLICATIONS THEREFORE

Номер: US20220081367A1
Принадлежит:

Thermoset ceramic compositions and a method of preparation of such compositions. The compositions are advanced organic/inorganic hybrid composite polymer ceramic alloys. The material combines strength, hardness and high temperature performance of technical ceramics with the strength, ductility, thermal shock resistance, density, and easy processing of the polymer. Consisting of a branched backbone of silicon, and alumina, with highly coordinated Si—O—Si or Al—O—Al bonds, the material undergoes sintering at 7 to 300 centigrade for 2 to 94 hours from water at a pH between 0 to 14, humidity of 0 to 100%, with or without vaporous solvents. 1. A composition of matter provided by the incipient materialsa) aluminum oxide,b) silicon oxide,c) solvent, and a source ofd) divalent cations.2. A composition of matter as claimed in wherein the composition of matter is a gel.3. The composition as claimed in wherein the divalent cations are selected from the group consisting of calcium claim 1 , and magnesium.4. A composition of matter as claimed in claim 2 , wherein claim 2 , in addition claim 2 , fibers are added.5. A method of preparation of composition of claim 1 , said method comprising:a) providing a mixture of aluminum oxide and silicon oxide; i. water,', 'ii. a source of OH,', 'iii. a solvent, and,', 'iv. a source of divalent cations;, 'b) providing a mixture, having a basic pH, in a slurry form, ofc) mixing A. and B.;d) exposing the product of C. to a temperature in the range of 160° F. to 250° F. for a period of time to provide a thermoset ceramic.6. The method as claimed in wherein the temperature range is from 175° F. to 225° F.7. The method as claimed in wherein the time period for heating is 2 to 6 hours.8. A product when prepared by the method as claimed in .9. A solid substrate when coated with a composition as claimed in .10. A composition of matter consisting of amorphous polymer comprising metal carbon bonds and metal oxide bonds.11. A composition as claimed in ...

Подробнее
10-03-2016 дата публикации

POROUS MASSES OR MOULDED BODIES CONSISTING OF INORGANIC POLYMERS AND PRODUCTION THEREOF

Номер: US20160068440A1
Принадлежит: SEAL-TEC GMBH

Disclosed is a method for producing a porous mass or a porous moulded body consisting of an inorganic polymer, according to which water glass is tempered using specific amounts of a carbonate, thus allowing the addition of various other materials. Disclosed are also porous masses and moulded bodies which can be obtained by means of the method and the use of said masses and moulded bodies. 2. The method according to claim 1 , wherein the composition provided in (b) additionally comprises at least one substance in dissolved form which releases Oby decomposition.3. The method according to claim 2 , wherein the substance releasing Oon decomposition is selected from HO claim 2 , urea-HOadducts claim 2 , ammonium peroxydisulfate (NH)SO claim 2 , percarbonates claim 2 , perborates and mixtures thereof.4. The method according to claim 2 , wherein the composition provided in a) additionally comprises at least one dissolved or suspended activator for releasing O claim 2 , the activity of which can be increased by addition of alkali metal hydroxide.5. The method according to claim 4 , wherein the activator is selected from KI claim 4 , CoCl claim 4 , KMnO claim 4 , MnO claim 4 , CuSO claim 4 , FeSO claim 4 , NiSO claim 4 , AgNOand mixtures of 2 or more of the above.6. The method according to claim 1 , wherein the composition provided in a) moreover comprises one or more solid components selected from kaolin claim 1 , metakaolin claim 1 , SiO claim 1 , perlites claim 1 , disperse silicic acids claim 1 , dolomite claim 1 , CaCO claim 1 , AlOand water glass powder claim 1 , in homogeneously distributed form.7. The method according to claim 6 , wherein composition provided in a) comprises metakaolin and the weight ratio of dissolved water glass to metakaolin is 100:1 to 100:25.8. The method according to claim 1 , wherein the composition provided in a) moreover comprises one or more components selected glass fibers claim 1 , rock wool claim 1 , basalt fibers claim 1 , cellulose ...

Подробнее
27-02-2020 дата публикации

High strength class c fly ash cementitious compositions with controllable setting

Номер: US20200062645A1
Принадлежит: Catholic University of America

An embodiment includes a Class C fly ash (CFA) cementitious composition with a controllable setting time comprising at least one Class C fly ash; at least one alkali hydroxide; at least one source of phosphate; and water. Alternate embodiments include a Class C fly ash (CFA) cementitious composition with a solid activator comprising at least one Class C fly ash; at least one alkali carbonate; at least one source of phosphate; and water.

Подробнее
29-05-2014 дата публикации

Thermally insulating fire-protection moulding and process for producing same

Номер: US20140145104A1
Принадлежит: Tdh - Technischer Daemmstoffhandel GmbH

The thermally insulating fire-protection moulding is characterized in that it contains at least one lightweight filler, one reaction product of the thermal curing of an organic-inorganic hybrid binder, one mineral that eliminates water, and also fibres and/or wollastonite, and is impermeable to smoke.

Подробнее
11-03-2021 дата публикации

EFFECT OF PARTICLE SIZE ON THE HYDRAULIC CONDUCTIVITY OF GEOTHERMAL GROUT SYSTEMS

Номер: US20210071063A1
Автор: Stone Shantel
Принадлежит:

Grout fluids, methods of preparing the grout fluids, and methods of using the grout fluids are provided. The methods of preparing the grout fluids include providing a thermally conductive material in a plurality of particle sizes, formulating a grout fluid including each particle size of the plurality of particle sizes of the thermally conductive material, determining permeability for each formulated grout fluid, identifying a particle size range of the thermally conductive material that provides a permeability of less than 1×10cm/s as measured by ASTM procedure D5084, and preparing a grout fluid including the thermally conductive material having the identified particle size range. 1. A method of preparing a grout fluid comprising:providing a thermally conductive material in a plurality of particle sizes;formulating the grout fluid to include each particle size of the plurality of particle sizes of the thermally conductive material;determining permeability for each formulated grout fluid;{'sup': '−7', 'identifying a particle size range of the thermally conductive material that has a permeability of less than 1×10cm/s as measured by ASTM procedure D5084; and'}preparing a grout fluid comprising the thermally conductive material having the identified particle size range.2. The method of claim 1 , wherein the thermally conductive material comprises a carbon-based material.3. The method of claim 2 , wherein the carbon-based material comprises graphite.4. The method of claim 1 , further comprising:blending two or more particle sizes of the plurality of particle sizes of the thermally conductive material;formulating a grout fluid including a blend of the two or more particle sizes; anddetermining permeability of the grout fluid including the blend of the two or more particle sizes.5. A grout fluid prepared according to the method of .6. The grout fluid of claim 5 , further comprising bentonite.7. The grout fluid of claim 6 , wherein the bentonite comprises sodium bentonite ...

Подробнее
17-03-2016 дата публикации

Binder Compositions and Method of Synthesis

Номер: US20160075603A1

Some embodiments of the invention include a method of producing iron carbonate binder compositions including providing a plurality of binder precursors including a powdered iron or steel, a first powdered additive comprising silica, a second powdered additive including calcium carbonate, and a powdered clay. The method includes mixing the plurality of binder precursors and a water additive to form an uncured product, and feeding at least a portion of the uncured product into a curing chamber. The curing chamber is fluidly coupled to a CO 2 source so that some CO 2 from the CO 2 source reacts with the uncured product to form a cured iron carbonate containing product and at least one reaction byproduct, where at least some byproduct can be fed from the curing chamber to the CO 2 source for use as a fuel by the CO 2 source.

Подробнее
24-03-2022 дата публикации

GEOPOLYMERIC FORMULATIONS AND ASSOCIATED METHODS FOR THE MANUFACTURING OF THREE-DIMENSIONAL STRUCTURES

Номер: US20220089494A1
Принадлежит:

A geopolymeric ink formulation for direct 3D printing containing a geopolymeric formulation whose components are present in such proportions as to be subjected to a geopolymerization reaction and to provide, at the end of the reaction, a solid geopolymer and wherein the formulation, before and during at least a part of the geopolymerization reaction, wherein three-dimensional chemical bonds have not yet been formed, forms a reversible-gel, non-Newtonian, viscoelastic fluid. The formulation is extruded through a 3D printing tool equipped with nozzle into strands according to a geometry such as to create a three-dimensional structure on one or more layers. The extrusion preferably takes place within a hydrophobic liquid, such as oil. 1. A method for manufacturing a three-dimensional solid structure , the method comprising:preparing an ink formulation for direct 3D printing, the ink formulation comprising a geopolymeric formulation including ingredients comprising metakaolin as a source of polysilicates, a soluble alkaline polysiciate, and an aqueous alkaline solution in proportions such that the formulation in a fluid state has, at a relatively low shear rate equal to or less than 0.11/s, a viscosity of four orders of magnitude greater than a viscosity that the same formation in the fluid state has at a relatively high shear rate equal to or greater than 100 l/s; wherein the ingredients are present in such proportions as to undergo a geopolymerization reaction and produce, at an end of the geopolymerization reaction, a solid geopolymer; and wherein, before and during at least a part of the geopolymerization reaction in which three-dimensional chemical bonds are not yet formed, the formulation reversibly forms a non-Newtonian, viscoelastic gel from a fluid;using the formulation as an ink for a direct 3D printing device which carries out an extrusion of the ink through a nozzle; andforming the three-dimensional solid structure upon a substrate by sequentially extruding ...

Подробнее
24-03-2022 дата публикации

Method of Making Chemical-Resistant Quartz-Based Concrete

Номер: US20220089495A2
Принадлежит:

A method of making a chemical-resistant concrete composition, namely a quartz-based casting composition, is provided. The quartz-based casting composition provides excellent resistance to attack by chemicals, including weak and strong acids. The quartz-based casting composition is useful as concrete in various construction applications where corrosion resistance is needed. The casting composition includes a dry component and a wet component. The dry component includes about 25% to about 100% by weight quartz and the corrosion resistance increases with increasing quartz content. 1. A method of making a chemical-resistant concrete composition , comprising the steps of:providing a dry component including about 25% to about 100% by weight quartz, zero to about 25% by weight gravel and zero to about 50% by weight concrete sand;providing a wet component including about 30% to about 60% by weight colloidal silica particles and about 40% to about 70% by weight water; andmixing the dry component and the wet component together to form the chemical-resistant concrete composition;wherein the chemical-resistant concrete composition includes about 65% to about 97% by weight of the dry component and about 3% to about 35% by weight of the wet component.2. The method of claim 1 , further comprising the steps of casting the chemical-resistant concrete composition into a shape and drying the shape to form a concrete structure.3. The method of claim 2 , wherein the concrete structure is selected from the group consisting of a part or layer for a chemical plant claim 2 , oil claim 2 , refinery claim 2 , pulp and paper plant claim 2 , wastewater treatment plant claim 2 , sulfur pit claim 2 , manhole claim 2 , sump claim 2 , floor claim 2 , roof claim 2 , drain claim 2 , gutter claim 2 , pipe claim 2 , sewer claim 2 , trench claim 2 , industrial floor and garage floors.4. The method of claim 1 , wherein the chemical-resistant concrete composition comprises about 75% to about 95% by weight ...

Подробнее
24-03-2022 дата публикации

HIERARCHICAL ORGANIC-INORGANIC COMPOSITES SYNTHESIZED BY ELECTROSPINNING FIBERS WITHIN A NON-CONDUCTIVE AND A CONDUCTIVE PRE-CERAMIC GEL

Номер: US20220089496A1
Принадлежит:

Methods for the production of ceramic composites in which three-dimensional (3D) printed organic polymer fibers are embedded in an amorphous inorganic ceramic matrix are provided. The composites are made by electrospinning the organic polymer fibers and collecting them in a liquid or gel collector. Ceramic precursors added to the liquid collector after the fibers are collected, or present in the gel collector during the electrospinning, are then cured to form a solid ceramic matrix around the organic polymer fibers to produce an organic polymer fiber-reinforced ceramic. 1. A method of making a fiber-reinforced ceramic , the method comprising:electrospinning a water-insoluble organic polymer fiber;collecting the electrospun water-insoluble organic polymer fiber in a collector, wherein the collector is a liquid or gel, to disperse the electrospun water-insoluble organic polymer fiber in the collector;adding inorganic ceramic precursors to the collector, wherein the inorganic ceramic precursors are added to the collector before, during, or after collecting the electrospun water-insoluble organic polymer fiber in the collector;adding an inorganic curing agent into the collector; andcuring the inorganic ceramic precursors and the curing agent to form an organic polymer fiber-reinforced ceramic.2. The method of claim 1 , wherein the inorganic ceramic precursors comprise potassium silicate claim 1 , sodium silicate claim 1 , or a mixture thereof claim 1 , the inorganic curing agent comprises metakaolin claim 1 , and the organic polymer fiber-reinforced ceramic is a fiber-reinforced geopolymer.3. The method of claim 2 , wherein the organic polymer fiber-reinforced geopolymer has an electrospun organic polymer fiber concentration of least 0.1 weight percent claim 2 , based on the weight of the geopolymer.4. The method of claim 2 , wherein the organic polymer fiber-reinforced geopolymer has an electrospun organic polymer fiber concentration in the range from 0.1 weight ...

Подробнее
16-03-2017 дата публикации

SYSTEM AND METHOD FOR MAKING AND APPLYING A NON-PORTLAND CEMENT-BASED MATERIAL

Номер: US20170073269A1
Принадлежит:

A system and method for applying a construction material is provided. The method may include mixing blast furnace slag material, geopolymer material, alkali-based powder, and sand at a batching and mixing device to generate a non-Portland cement-based material. The method may also include transporting the non-Portland cement-based material from the mixing device, through a conduit to a nozzle and combining the transported non-Portland cement-based material with liquid at the nozzle to generate a partially liquefied non-Portland cement-based material. The method may further include pneumatically applying the partially liquefied non-Portland cement-based material to a surface. 1. A method for applying a construction material comprising:mixing blast furnace slag material, geopolymer material, alkali, and sand at a batching and mixing device to generate a non-Portland cement-based material;transporting the non-Portland cement-based material from the batching and mixing device, through a conduit to a nozzle;combining the transported non-Portland cement-based material with liquid at the nozzle to generate a partially liquefied non-Portland cement-based material; andpneumatically applying the partially liquefied non-Portland cement-based material to a surface.2. The method of claim 1 , wherein the non-Portland cement-based material includes 4% to 45% geopolymer material by weight.3. The method of claim 2 , wherein the non-Portland cement-based material includes greater than 0% to 40% blast furnace slag material by weight.4. The method of claim 3 , wherein the non-Portland cement-based material includes 10% to 45% alkali by weight.5. The method of claim 4 , wherein the non-Portland cement-based material includes 20% to 90% sand by weight.6. The method of claim 5 , wherein the non-Portland cement-based material includes less than 1% sulfate by weight.7. The method of claim 6 , wherein the non-Portland cement-based material includes no more than 5% calcium oxide by weight.8. ...

Подробнее
18-03-2021 дата публикации

THREE COMPONENT COMPOSITION FOR THE MANUFACTURE OF PRIMER LAYER OR SCRATCH COATING FOR FLOORING

Номер: US20210078904A1
Принадлежит: SIKA TECHNOLOGY AG

A three component composition consisting of a polyol component (A) including at least two polyols, one with high, one with low molecular weight and water, a polyisocyanate component (B) including a methylene diphenyl diisocyanate (MDI) product with an average NCO functionality of at least 2.5, or a methylene diphenyl diisocyanate (MDI) product with an average NCO functionality of at least 2 and at least one further polyol with an amount of between 1% and 30% based on the weight of the polyisocyanate component (B), wherein the MDI product and the polyol have reacted at least partially, and a powder component (C) including at least one hydraulic binder, preferably cement and/or calcined paper sludge, preferably a calcium compound selected from calcium hydroxide and/or calcium oxide, and optionally one or more aggregates. 3. The three component composition according to claim 2 , wherein claim 2 , Ris CHor —CH—NH—CHand n is 1-3.4. The three component composition according to claim 2 , wherein the tertiary amine tAM is selected from the group consisting of 2-(dimethylaminomethyl) phenol claim 2 , 2 claim 2 ,6-bis (dimethylaminomethyl) phenol claim 2 , 2 claim 2 ,4-bis (dimethylaminomethyl) phenol claim 2 , 2 claim 2 ,4 claim 2 ,6-tris (dimethylaminomethyl) phenol and 2 claim 2 ,4 claim 2 ,6-tris (((3-(dimethylamino) propyl) amino) methyl) phenol.5. The three component composition according to claim 1 , wherein the weight ratio of components (A+B) to component (C) ((A+B)/(C)) is in the range of 2:2.5 to 2:3.5 claim 1 , wherein components (A+B) represents the combined weight of component (A) and component (B).6. The three component composition according to claim 2 , wherein the weight ratio of components (A+B) to component (C) ((A+B)/(C)) is in the range of 2:1.5 to 2:2.5 claim 2 , wherein components (A+B) represents the combined weight of component (A) and component (B).7. The three component composition according to claim 1 , wherein component (A) comprises said polyol ...

Подробнее
14-03-2019 дата публикации

Thermoset ceramic compositions, inorganic polymer coatings, inorganic polymer mold tooling, inorganic polymer hydraulic fracking proppants, methods of preparation and applications therefore

Номер: US20190077715A1
Принадлежит: Individual

Thermoset ceramic compositions and a method of preparation of such compositions. The compositions are advanced organic/inorganic hybrid composite polymer ceramic alloys. The material combines strength, hardness and high temperature performance of technical ceramics with the strength, ductility, thermal shock resistance, density, and easy processing of the polymer. Consisting of a branched backbone of silicon, alumina, and carbon, the material undergoes sintering at 7 to 300 centigrade for 2 to 94 hours from water at a pH between 0 to 14, humidity of 0 to 100%, with or without vaporous solvents.

Подробнее
14-03-2019 дата публикации

FRICTION MATERIAL, IN PARTICULAR FOR THE MANUFACTURING OF A BRAKE PAD, AND ASSOCIATED PREPARATION METHODS

Номер: US20190078635A1
Принадлежит:

An asbestos free friction material having at least one of the group consisting of inorganic, organic and metallic fibers, at least one binder, at least one friction modifier or lubricant and at least a filler or abrasive, wherein the binder is almost completely and exclusively inorganic and is constituted almost exclusively or exclusively by a hydrated geopolymer or a blend of hydrated geopolymers. 1. An asbestos free friction material comprising:at least one of the group consisting of inorganic, organic and metallic fibers;at least one binder;at least one friction modifier or lubricant; andat least a filler or abrasive, wherein the binder is almost entirely or completely and exclusively inorganic being constituted almost entirely or exclusively by a hydrated geopolymer or a blend of hydrated geopolymers.2. The friction material according to claim 1 , wherein the binder is selected from the group consisting of: Polysialate having a Si/Al ratio equal to 1:1; Polysialate-Polysiloxo having a Si/Al ratio>1; Calcium based polysialate having a Si/Al ratio≥1; and an aluminum-phosphate polymer.3. The friction material according to claim 1 , wherein the binder is at least partially in a crystalline form.4. The friction material according to claim 3 , wherein the binder comprises hydrated sodalite in crystallized form.5. The friction material according to claim 1 , wherein the binder is at least partially in an amorphous form.6. The friction material according to claim 1 , wherein the material is almost entirely or totally free of organic binders claim 1 , is substantially free of copper or alloys thereof and/or copper fibers and alloys thereof.7. The friction material according to claim 1 , wherein the total amount of binder is equal to or greater than 5% by volume with respect to the volume of the entire friction material.8. The friction material according to claim 7 , wherein the total amount of binder is greater than 25% by volume with respect to the volume of the entire ...

Подробнее
31-03-2022 дата публикации

Chemical-Resistant Quartz-Based Casting Composition

Номер: US20220098103A2
Принадлежит: Magneco Metrel Inc

A quartz-based casting composition provides excellent resistance to attack by chemicals, including weak and strong acids. The quartz-based casting composition is useful as concrete in various construction applications where corrosion resistance is needed. The casting composition includes a dry component and a wet component. The dry component includes about 25% to about 100% by weight quartz and the corrosion resistance increases with increasing quartz content.

Подробнее
25-03-2021 дата публикации

GEOPOLYMER COMPOSITIONS, CEMENTITIOUS COMPOSITION COMPRISING THE SAME, AND METHODS FOR MAKING THE SAME

Номер: US20210087109A1
Принадлежит:

A geopolymer material made from principal minerals, which comprises SiO, AlO, FeO, TiO, and optionally trace amounts of calcium. Also disclosed are cementitious material comprised of the geopolymer and concrete made from mixing the geopolymer cementitious material with an alkaline solution. Methods of making the geopolymer composite as well as methods of making the geopolymer concrete are also disclosed. 1. A cementitious material comprising a geopolymer composition comprising principal minerals derived from at least one naturally occurring source or mining byproduct , wherein the geopolymer comprises a long-range , covalently bonded network of at least one oxide of silicon , aluminum , iron , or titanium.2. The cementitious material of claim 1 , wherein the geopolymer composition comprises silicon dioxide claim 1 , aluminum dioxide claim 1 , ferric oxide claim 1 , and titanium oxide.3. The cementitious material of claim 1 , wherein the geopolymer composition further comprises trace amounts of calcium.4. The cementitious material of claim 1 , wherein the at least one naturally occurring source or mining byproduct is chosen from quartz claim 1 , feldspar claim 1 , staurolite claim 1 , clay claim 1 , or combinations thereof.5. The cementitious material of claim 4 , wherein the feldspar comprises potassium.6. The cementitious material of claim 1 , wherein the principal minerals comprise at least one of quartz claim 1 , microcline claim 1 , staurolite claim 1 , muscovite claim 1 , leucite claim 1 , goethite claim 1 , hematite claim 1 , magnetite claim 1 , orthoclase claim 1 , or combinations thereof.7. The cementitious material of claim 6 , wherein the principal minerals comprise quartz claim 6 , microcline claim 6 , leucite claim 6 , goethite claim 6 , and hematite.8. The cementitious material of claim 6 , wherein the principal minerals comprise quartz claim 6 , staurolite claim 6 , magnetite claim 6 , orthoclase claim 6 , muscovite claim 6 , and goethite.9. The ...

Подробнее
29-03-2018 дата публикации

ELEMENT FOR MINERAL SYNTHETIC SURFACE COVERING

Номер: US20180086027A1
Принадлежит:

The present invention concerns a surface covering element comprising: a mineral substrate layer, optionally coated with a suitable primer; a decor printed onto the substrate layer, forming a decor layer; and—a transparent protection layer obtained from a curable polymer formulation. It further concerns a process for its manufacture comprising the following steps: a. providing a mineral substrate layer; b. optionally, applying a primer onto at least one surface of the mineral substrate layer; c. printing a decor onto the substrate layer; and d. coating the printed decor with a transparent protection layer obtained from a curable polymer formulation. 1. A surface covering element comprising:a mineral substrate layer, optionally coated with a suitable primer;a decor printed onto the substrate layer, forming a decor layer; anda transparent protection layer obtained from a curable polymer formulation.2. The surface covering element according to claim 1 , wherein the substrate layer is based on a geopolymer.3. The surface covering element according to claim 1 , wherein the substrate layer is based on fiber cement.4. The surface covering element according to claim 1 , wherein the substrate layer comprises organic or mineral fibers.5. The surface covering element according to claim 1 , wherein the curable polymer formulation comprises polyurethane6. The surface covering element according to claim 1 , wherein the protection layer is obtained from a formulation comprising one or more polyurethanes claim 1 , one or more polyacrylic polymers and one or more polyesters.7. The surface covering element according to claim 1 , wherein the surface covering is a wall covering.8. The surface covering element according to claim 1 , wherein the surface covering is a floor covering.9. The surface covering element according to claim 7 , further comprising a connecting system located on the edges of the surface covering element.10. The surface covering element according to claim 1 , wherein ...

Подробнее
29-03-2018 дата публикации

Method of providing chemically inert concrete

Номер: US20180086670A1
Принадлежит: Magneco Metrel Inc

A method of providing a chemically inert concrete includes the steps of providing and mixing an aqueous colloidal silica dispersion with a quantity of glass particles. The chemically inert concrete includes, based on dry weight, about 50% to about 95% by weight of the glass particles and about 3% to about 40% by weight of the colloidal silica particles. The chemically inert concrete is substantially or totally free of Group I and Group II metal oxides, exclusive of the glass particles, and is substantially or totally free of cement.

Подробнее
21-03-2019 дата публикации

Control of time of setting of geopolymer compositions containing high-ca reactive aluminosilicate materials

Номер: US20190084882A1
Принадлежит: THE CATHOLIC UNIVERSITY OF AMERICA

The present disclosure provides a geopolymer composition having a controllable setting time comprising: at least one reactive aluminosilicate; at least one retarder; and at least one alkali silicate activator solution.

Подробнее
05-05-2022 дата публикации

GEOSYNTHSESIS BINDER COMPRISING A CALCIUM- ALKALINE ACTIVATOR AND A SILICO-ALUMINOUS COMPOUND

Номер: US20220135476A1
Принадлежит:

The geosynthetic binder dry composition includes at least: an alkalino-calcium type activator including at least lime and an alkaline salt, which can suitably react together so as to form in situ a base in the presence of water, and a silico-aluminous compound, including an amount of calcium oxide higher than or equal to 15%, by weight, as compared to the silico-aluminous compound total weight, characterized in that the binder dry composition includes, by weight, as compared to the total weight, from 45 to 95% of the silico-aluminous compound, from 2 to 25% of lime and from 3 to 30% of an alkaline salt. The material including the geosynthetic binder dry composition and water, a method for producing the geosynthetic binder dry composition, and a method for producing the material are also described.

Подробнее
19-03-2020 дата публикации

SYSTEM AND METHOD FOR MAKING AND APPLYING A NON-PORTLAND CEMENT-BASED MATERIAL

Номер: US20200087204A1
Принадлежит:

A system and method for applying a construction material is provided. The method may include mixing blast furnace slag material, geopolymer material, alkali-based powder, and sand at a batching and mixing device to generate a non-Portland cement-based material. The method may also include transporting the non-Portland cement-based material from the mixing device, through a conduit to a nozzle and combining the transported non-Portland cement-based material with liquid at the nozzle to generate a partially liquefied non-Portland cement-based material. The method may further include pneumatically applying the partially liquefied non-Portland cement-based material to a surface. 1. A method for applying a construction material comprising:mixing blast furnace slag material, geopolymer material, alkali, and sand at a batching and mixing device to generate a non-Portland cement-based material;transporting the non-Portland cement-based material from the batching and mixing device, through a conduit to a nozzle;combining the transported non-Portland cement-based material with liquid at the nozzle to generate a partially liquefied non-Portland cement-based material; andpneumatically applying the partially liquefied non-Portland cement-based material to a surface.2. The method of claim 1 , wherein the non-Portland cement-based material includes 4% to 45% geopolymer material by weight.3. The method of claim 2 , wherein the non-Portland cement-based material includes greater than 0% to 40% blast furnace slag material by weight.4. The method of claim 3 , wherein the non-Portland cement-based material includes 10% to 45% alkali by weight.5. The method of claim 4 , wherein the non-Portland cement-based material includes 20% to 90% sand by weight.6. The method of claim 5 , wherein the non-Portland cement-based material includes less than 1% sulfate by weight.7. The method of claim 6 , wherein the non-Portland cement-based material includes no more than 5% calcium oxide by weight.8. ...

Подробнее
19-03-2020 дата публикации

SYSTEM AND METHOD FOR MAKING AND APPLYING A NON-PORTLAND CEMENT-BASED MATERIAL

Номер: US20200087205A1
Принадлежит:

A system and method for applying a construction material is provided. The system may include a batching and mixing device configured to mix blast furnace slag material, geopolymer material, alkali-based powder, and sand to generate a non-Portland cement-based material, the non-Portland cement-based material including 4% to 45% geopolymer material by weight; greater than 0% to 40% blast furnace slag material by weight, 10% to 45% alkali by weight, 20% to 90% sand by weight, less than 1% sulfate by weight, and/or no more than 5% calcium oxide by weight; a conduit configured to transport the non-Portland cement-based material from the batching and mixing device; and a nozzle configured to receive the non-Portland cement-based material and combine the transported non-Portland cement-based material with liquid to generate a partially liquefied non-Portland cement-based material, wherein the nozzle is further configured to pneumatically apply the partially liquefied non-Portland cement-based material to a surface. 1. A system for applying a construction material comprising: 4% to 45% geopolymer material by weight;', 'greater than 0% to 40% blast furnace slag material by weight;', '10% to 45% alkali by weight;', '20% to 90% sand by weight;', 'less than 1% sulfate by weight; and', 'no more than 5% calcium oxide by weight;, 'a batching and mixing device configured to mix blast furnace slag material, geopolymer material, alkali-based powder, and sand to generate a non-Portland cement-based material, the non-Portland cement-based material including one or more ofa conduit configured to transport the non-Portland cement-based material from the batching and mixing device; anda nozzle configured to receive the non-Portland cement-based material and combine the transported non-Portland cement-based material with liquid to generate a partially liquefied non-Portland cement-based material, wherein the nozzle is further configured to pneumatically apply the partially liquefied non- ...

Подробнее
19-03-2020 дата публикации

System and Method for Making and Applying a Non-Portland Cement-Based Material

Номер: US20200087206A1
Принадлежит: En Tech Corp

A system and method for applying a construction material is provided. The method may include mixing one or more of 4%-45% volcanic rock by weight, greater than 0%-40% latent hydraulic material by weight, 10%-45% alkaline component by weight, and 20%-90% aggregate by weight to produce a dry binding agent mixture, using a dry mixer; and combining the dry binding agent mixture with water at a nozzle to produce a sprayable concrete compound.

Подробнее
01-04-2021 дата публикации

Composition and method for making geopolymer tubes

Номер: US20210094877A1
Принадлежит: NOVOREACH TECHNOLOGIES LLC

A method of manufacturing geopolymer tubes comprises forming a geopolymer composition comprised of an aluminosilicate source and an alkali activator, wherein the geopolymer composition has a fluid consistency and a shear thinning index of greater than 1.05, transferring the geopolymer composition into a tubular mold, rotating the mold to shear and distribute the composition onto the inner wall of the mold until the geopolymer composition reaches non-flowable consistency, and curing the geopolymer in the mold to form geopolymer tubes. A method for making geopolymer tubes with the disclosed geopolymer composition comprises shearing the geopolymer composition in a tubular mold at a high rotational speed to significantly reduce apparent viscosity to form the tubular shape, at least in the initial process stage. A ceramic tube made from the geopolymer composition of the present invention is used as a membrane or adsorbent for filtration applications.

Подробнее
16-04-2015 дата публикации

CEMENTING A WELLBORE USING CEMENTING MATERIAL ENCAPLSULATEO IN A SHELL

Номер: US20150101810A1
Принадлежит:

A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe. 1. A composition for use in a cementing process wherein the cement sets at a predetermined time , comprising:a circulating fluid,capsules in said circulating fluid,a setting material encapsulated in said capsules, anda system for releasing said setting material from said capsules so that the cement sets at a predetermined time.2. The composition for use in a cementing process of wherein said circulating fluid is drilling mud.3. The composition for use in a cementing process of wherein said circulating fluid is a transportation fluid.4. The composition for use in a cementing process of wherein said setting material is cement.5. The composition for use in a cementing process of wherein said setting material is crosslinking agent.6. The composition for use in a cementing process of wherein said setting material is a crosslinkable polymer.7. The composition for use in a cementing process of wherein said setting material is acrylamide.8. The composition for use in a cementing process of wherein said system for releasing said setting material from said capsules is a system using an electrical signal for releasing said setting material from said capsules.9. The composition for use in a cementing process of wherein said system for releasing said setting material from said capsules is a system using an shock signal for releasing said setting ...

Подробнее
06-04-2017 дата публикации

THREE COMPONENT COMPOSITION FOR THE MANUFACTURE OF POLYURETHANE CEMENTITIOUS HYBRID FLOORING OR COATING WITH IMPROVED SURFACE GLOSS

Номер: US20170096368A1
Принадлежит:

The present invention relates to a three component composition consisting of a polyol component (A) comprising at least two polyols, one with high and one with low molecular weight, and water, a polyisocyanate component (B) comprising a methylene diphenyl diisocyanate (MDI) product with an average NCO functionality of at least 2.5, or a methylene diphenyl diisocyanate (MDI) product with an average NCO functionality of at least 2 and at least one further polyol with an amount of between 1% and 30% based on the weight of said polyisocyanate component (B), wherein said MDI product and said polyol have reacted at least partially, and a powder component (C) comprising at least one hydraulic binder, preferably cement and/or calcined paper sludge, preferably a calcium compound selected from calcium hydroxide and/or calcium oxide, and optionally one or more aggregates. Polyurethane cementitious hybrid flooring or coating systems having glossy/semiglossy surfaces, good workability and outstanding mechanical properties can be achieved. Blister formation can be avoided. 1. Three component composition consisting of at least one polyol P1a with an average molecular weight of 800 to 30′000 g/mol, preferably 850 to 20′000 g/mol, more preferably 900 to 10′000 g/mol, and', 'at least one polyol P1b with an average molecular weight of 48 to 800 g/mol, preferably 60 to 600 g/mol, more preferably 60 to 400 g/mol, most preferably 60 to 300 g/mol, and', 'water, and, 'a) a polyol component (A) comprising'} a methylene diphenyl diisocyanate (MDI) product with an average NCO functionality of at least 2.5, or', 'a methylene diphenyl diisocyanate (MDI) product with an average NCO functionality of at least 2 and at least one polyol P2 with an amount of between 1 and 30%, preferably between 5 and 25%, more preferably between 10 and 20% by weight, based on the weight of said polyisocyanate component (B), wherein said MDI product and said polyol P2 have reacted at least partially, and, 'b) a ...

Подробнее
03-07-2014 дата публикации

ADDITIVE FOR SKIM COAT MORTAR AND SKIM COAT MORTAR COMPOSITION CONTAINING THE SAME

Номер: US20140182486A1
Принадлежит: SAMSUNG FINE CHEMICALS CO., LTD

Provided are an additive for skim coat mortar and a skim coat mortar composition including the same, and the additive is a blend of cellulose ether having hydroxyalkylalkyl cellulose cross-linked with an aldehyde compound and hydroxyalkyl cellulose cross-linked with an aldehyde compound. By applying the additive to a skim coat mortar composition, it is possible to improve workability, surface luster, and a creamy property while maintaining a water retention property. 1. An additive for skim coat mortar , comprising a blend of cellulose ether having hydroxyalkylalkyl cellulose cross-linked with an aldehyde compound and hydroxyalkyl cellulose cross-linked with an aldehyde compound.2. The additive for skim coat mortar of claim 1 , wherein the hydroxyalkylalkyl cellulose cross-linked with the aldehyde compound has 20 to 26% degree of alkyl group substitution and 5% or more degree of hydroxyalkyl group substitution claim 1 , and the hydroxyalkyl cellulose cross-linked with an aldehyde compound has 30.0 to 65.0% degree of hydroxyalkyl group substitution.3. The additive for skim coat mortar of claim 1 , wherein the hydroxyalkylalkyl cellulose is hydroxypropylmethyl cellulose or hydroxyethylmethyl cellulose claim 1 , and the hydroxyalkyl cellulose is hydroxyethyl cellulose.4. The additive for skim coat mortar of claim 1 , wherein a blending ratio of the hydroxyalkylalkyl cellulose and the hydroxyalkyl cellulose by weight is 90:10 to 99:1.5. The additive for skim coat mortar of claim 1 , wherein the aldehyde compound that cross-links the cellulose ether includes one or more kinds selected from the group consisting of formaldehyde claim 1 , acetaldehyde claim 1 , glyoxal claim 1 , methylglyoxal claim 1 , and phenylglyoxal.6. The additive for skim coat mortar of claim 1 , wherein the aldehyde compound that cross-links the cellulose ether is used in a range of 0.1 to 2.5 wt % with respect to the total weight of the cellulose ether.7. The additive for skim coat mortar of claim 1 ...

Подробнее
08-04-2021 дата публикации

GEOPOLYMER CEMENT

Номер: US20210101832A1
Принадлежит:

A geopolymer cement and a method of producing the same are provided. A geopolymer cement binder may be provided including a geopolymer precursor and magnesium oxide as an alkali activator. The geopolymer cement binder may be mixed with water using high shear mixing. 1. A method of producing geopolymer cement comprising: a geopolymer precursor; and', 'magnesium oxide as an alkali activator; and, 'providing a geopolymer cement binder comprisingmixing the geopolymer cement binder with water using and high shear mixing.2. The method according to claim 1 , wherein the geopolymer precursor includes a material containing amorphous silicates of one or more of calcium claim 1 , aluminum claim 1 , and magnesium.3. The method according to claim 2 , wherein the geopolymer precursor includes one or more of:slag cements;fly ash;metakaolin;fumed silica; andrice husks.4. The method according to claim 1 , wherein the geopolymer cement binder includes between about 10% to about 95% of the geopolymer precursor by weight of the geopolymer cement binder.5. The method according to claim 1 , wherein the magnesium oxide includes magnesium oxide calcined to exhibit a caustic magnesia activity neutralization time of between about 9 seconds to about 30 seconds using a 1.0N acetic acid.6. The method according to claim 1 , wherein the magnesium oxide exhibits a magnesium oxide purity from between about 75% to about 99%.7. The method according to claim 1 , wherein the geopolymer cement binder includes between about 1% to about 50% magnesium oxide by weight of the geopolymer cement binder.8. The method according to claim 1 , wherein the geopolymer cement binder further includes a co-alkali activator.9. The method according to claim 8 , wherein the co-alkali activator includes one or more of:{'sub': 2', '3', '2, 'sodium silicate having a formula NaSiO.nHO, where n=one of 5, 6, 8, 9;'}potassium silicate;sodium metasilicate;sodium hydroxide;sodium aluminate;sodium carbonate;hydrated lime;quick lime; ...

Подробнее
03-07-2014 дата публикации

Smart paint

Номер: US20140184249A1
Принадлежит: UNIVERSITY OF STRATHCLYDE

A condition monitoring paint is formed of a base material, and conductive components for forming a conductive network. The conductive components may include nano-particles or nano-structures. The paint in used in a condition monitoring system for monitoring the integrity or condition of structures, such as bridges.

Подробнее
02-06-2022 дата публикации

CONTROLLED AND EFFICIENT SYNTHESIS OF INORGANIC-ORGANIC COMPOSITE CEMENTATION AGENTS WITH ENHANCED STRAIN CAPACITY

Номер: US20220169569A1

Provided herein are manufacturing processes that include (1) subjecting precursor-containing solids to dissolution under acoustic perturbation to yield an initial slurry including dissolved precursors; (2) subjecting the initial slurry to hydrothermal synthesis to yield a subsequent slurry including siliceous solids formed from the dissolved precursors; and (3) subjecting the subsequent slurry to cementation to yield a cemented siliceous solid. Also provided herein are cemented siliceous solids formed by the manufacturing processes. 1. A manufacturing process comprising:subjecting precursor-containing solids to dissolution under acoustic perturbation to yield an initial slurry including dissolved precursors;subjecting the initial slurry to hydrothermal synthesis to yield a subsequent slurry including siliceous solids formed from the dissolved precursors; andsubjecting the subsequent slurry to cementation to yield a cemented siliceous solid.2. The manufacturing process of claim 1 , further comprising subjecting initial precursor-containing solids to pulverization to form pulverized precursor-containing solids claim 1 , and wherein dissolution is performed on the pulverized precursor-containing solids.3. The manufacturing process of claim 1 , wherein subjecting the precursor-containing solids to dissolution is performed in a sonoreactor.4. The manufacturing process of claim 1 , wherein subjecting the precursor-containing solids to dissolution is performed at a non-zero ratio of the solids to water claim 1 , on mass basis claim 1 , of less than about 1.5. The manufacturing process of claim 1 , wherein subjecting the precursor-containing solids to dissolution includes exposing the solids to acoustic perturbation at a frequency fin a range of about 2 Hz≤f≤about 200 kHz.6. The manufacturing process of claim 1 , wherein subjecting the precursor-containing solids to dissolution is performed at a temperature less than about 100° C.7. The manufacturing process of claim 1 , ...

Подробнее
19-04-2018 дата публикации

Metal Oxide Activated Cement

Номер: US20180105464A1
Автор: Waters Trevor Cyril
Принадлежит:

A process for making a cement, the cement containing a naturally occurring silicate bound in an organic binder, and a metal oxide. An example process includes dissolving the organic binder at least in part, using an effective amount of a chemical activator. An example process also includes providing the silicate to react with other components of the cement. An example process also includes providing the silicate to participate in crystal growth. An example process also includes providing the silicate so that the cement is a structural load bearing cement. 1. A process for making a cement , the cement containing a naturally occurring silicate bound in an organic binder , and a metal oxide , the process comprising:dissolving the organic binder at least in part, using an effective amount of a chemical activator;providing the silicate to react with other components of the cement;providing the silicate to participate in crystal growth;providing the silicate so that the cement is a structural load bearing cement.2. The process recited in claim 1 , wherein the chemical activator is selected from a group comprising at least one of: a ligand claim 1 , a chelate claim 1 , a mineral acid claim 1 , an organic acid claim 1 , an amino acid derivative claim 1 , an alkali claim 1 , an amphoteric compound claim 1 , a biochemical claim 1 , a salt claim 1 , and an etching agent.3. The process recited in claim 1 , wherein the chemical activator is pyridine N oxide.4. The process recited in claim 1 , wherein the chemical activator is a chelate selected from a group comprising at least one of EDTA claim 1 , PBTC claim 1 , HEDTA claim 1 , DTPA claim 1 , oxyquinoline claim 1 , and oxalic acid.5. The process recited in claim 1 , wherein the chemical activator is boric acid.6. The process recited in claim 1 , wherein the chemical activator is an organic acid selected from a group comprising at least one of: DL-malic acid claim 1 , a carboxylic acid claim 1 , citric acid claim 1 , acetic acid ...

Подробнее
19-04-2018 дата публикации

Metal Oxide Activated Cement

Номер: US20180105465A1
Автор: Waters Trevor Cyril
Принадлежит:

An example cement includes a naturally occurring silicate bound in an organic binder, a metal oxide, and a chemical activator. The chemical activator is in an effective amount, for dissolving the binder, at least in part, so that the silicate reacts with other components of the cement, the silicate participates in crystal growth; and the cement is a structural load bearing cement. 1. A cement comprising:a naturally occurring silicate bound in an organic binder;a metal oxide; anda chemical activator, in an effective amount, for dissolving the binder, at least in part, so that;the silicate reacts with other components of the cement;the silicate participates in crystal growth; andthe cement is a structural load bearing cement.2. The cement recited in claim 1 , wherein the chemical activator is selected from a group comprising at least one of: a ligand claim 1 , a chelate claim 1 , a mineral acid claim 1 , an organic acid claim 1 , an amino acid derivative claim 1 , an alkali claim 1 , an amphoteric compound claim 1 , a biochemical claim 1 , a salt claim 1 , and an etching agent.3. The cement recited in claim 1 , wherein the chemical activator is pyridine N oxide.4. The cement recited in claim 1 , wherein the chemical activator is a chelate selected from a group comprising at least one of: EDTA claim 1 , PBTC claim 1 , HEDTA claim 1 , DTPA claim 1 , oxyquinoline claim 1 , and oxalic acid.5. The cement recited in claim 1 , wherein the chemical activator is boric acid.6. The cement recited in claim 1 , wherein the chemical activator is an organic acid selected from a group comprising at least one of: DL-malic acid claim 1 , a carboxylic acid claim 1 , citric acid claim 1 , acetic acid claim 1 , formic acid claim 1 , lactic acid claim 1 , DHBA claim 1 , gallic acid claim 1 , and acetylacetone.7. The cement recited in claim 1 , wherein the chemical activator is an amino acid selected from a group comprising at least one of: L-histidine claim 1 , and L-phenylalanine.8. The ...

Подробнее
28-04-2016 дата публикации

Methods for Maintaining Zonal Isolation in a Subterranean Well

Номер: US20160115365A1
Принадлежит: Schlumberger Technology Corp

A cement for use in wells in which hydrogen sulfide is present, comprises polymer particles. In the event of cement-matrix failure, or bonding failure between the cement/casing interface or the cement/borehole-wall interface, the polymer particles swell when contacted by hydrogen sulfide. The swelling seals voids in the cement matrix, or along the bonding interfaces, thereby restoring zonal isolation.

Подробнее
28-04-2016 дата публикации

Insulating composite materials comprising an inorganic aerogel and a melamine foam

Номер: US20160115685A1
Принадлежит: Aspen Aerogels Inc

The invention relates to insulating composite materials comprising an inorganic aerogel and a melamine foam. The invention also relates to the production method of said materials, and to the use of same.

Подробнее
09-06-2022 дата публикации

Insulating product for the refractory industry, corresponding insulating materials and products, and uses

Номер: US20220177370A1
Принадлежит: Huettenes Albertus Chemische Werke GmbH

An insulating product for the refractory industry or an insulating material as intermediate for production of such a product, and a corresponding insulating material/insulating product are provided. Likewise the use of a matrix encapsulation process in the production of an insulating product for the refractory industry and a corresponding insulating product and/or an insulating material as intermediate for production of such a product are provided.

Подробнее
27-04-2017 дата публикации

Freeze-thaw durable geopolymer compositions and methods for making same

Номер: US20170113969A1
Принадлежит: United States Gypsum Co

A freeze-thaw durable, dimensionally stable, geopolymer composition including: cementitious reactive powder including thermally activated aluminosilicate mineral, aluminate cement preferably selected from at least one of calcium sulfoaluminate cement and calcium aluminate cement, and calcium sulfate selected from at least one of calcium sulfate dihydrate, calcium sulfate hemihydrate, and anhydrous calcium sulfate; alkali metal chemical activator; and a freeze-thaw durability component selected from at least one of air-entraining agent, defoaming agent, and surface active organic polymer; wherein the composition has an air content of about 4% to 20% by volume, more preferably about 4% to 12% by volume, and most preferably about 4% to 8% by volume. The compositions are made from a slurry wherein the water/cementitious reactive powder weight ratio is 0.14 to 0.45:1, preferably 0.16 to 0.35:1, and more preferably 0.18 to 0.25:1. Methods for making the compositions are also disclosed.

Подробнее
18-04-2019 дата публикации

Device Comprising a Cable or Cable Accessory Containing a Fire-Resistant Composite Layer

Номер: US20190112230A1
Принадлежит:

The present invention relates to a device comprising a cable and/or a cable accessory, said cable and/or said cable accessory comprising at least one composite layer obtained from a composite composition based on at least one aluminosilicate geopolymer composition and on at least one low-viscosity organic polymer or oligomer, and also to the process for preparing same. 1. A device comprising:a power and/or telecommunications cable and/or a power and/or telecommunications cable accessory, wherein said cable and/or said cable accessory comprises at least one composite layer obtained from a composite composition comprising at least one organic polymer or oligomer that is liquid at ambient temperature and at least one aluminosilicate geopolymer in the form of a gel, said aluminosilicate geopolymer in the form of a gel being obtained from an aluminosilicate geopolymer composition comprising an alkali metal aluminate or an aluminosilicate, an alkali metal silicate, water and optionally an alkali metal base.2. The device as claimed in claim 1 , wherein the alkali metal silicate is selected from sodium silicates claim 1 , potassium silicates and a mixture thereof.3. The device as claimed in claim 1 , wherein the alkali metal aluminate is a sodium aluminate.4. The device as claimed in claim 1 , wherein the alkali metal base is selected from KOH claim 1 , NaOH and mixtures thereof.5. The device as claimed in claim 1 , wherein the aluminosilicate geopolymer composition comprises from 0.5% to 20% by weight of an alkali metal aluminate claim 1 , from 15% to 50% by weight of an alkali metal silicate claim 1 , from 0 to 3% by weight of an alkali metal base and from 50% to 90% by weight of water.6. The device as claimed in claim 1 , wherein the aluminosilicate geopolymer composition comprises from 15% to 50% by weight of solids claim 1 , relative to the total weight of said composition.7. The device as claimed in claim 1 , wherein the organic oligomer or polymer that is liquid at ...

Подробнее
13-05-2021 дата публикации

Materials with hierarchical nanochemical bonding, manufacturing methods and applications of same

Номер: US20210139376A1
Автор: Zheng R. TIAN
Принадлежит: Qushell LLC

A method of manufacturing a composition with hierarchical nanochemical bonding includes making a powder of one or more oxygen containing materials; mixing the powder either with a water solution of organic and/or inorganic acid to form an acidic slurry, or with water to form a hydrated basic slurry; and curing the slurry to form a solid. The powder comprises nanoscale particles, or microscale particles, or a mixture of nanoscale particles and microscale particles.

Подробнее
03-05-2018 дата публикации

SYSTEM AND METHOD FOR MAKING AND APPLYING A NON-PORTLAND CEMENT-BASED MATERIAL

Номер: US20180118616A1
Принадлежит:

A system and method for applying a construction material is provided. The method may include mixing blast furnace slag material, geopolymer material, alkali-based powder, and sand at a batching and mixing device to generate a non-Portland cement-based material. The method may also include transporting the non-Portland cement-based material from the mixing device, through a conduit to a nozzle and combining the transported non-Portland cement-based material with liquid at the nozzle to generate a partially liquefied non-Portland cement-based material. The method may further include pneumatically applying the partially liquefied non-Portland cement-based material to a surface. 1. A system for applying a construction material comprising:a batching and mixing device configured to mix blast furnace slag material, geopolymer material, alkali-based powder, and sand to generate a non-Portland cement-based material;a conduit configured to transport the non-Portland cement-based material from the batching and mixing device; anda nozzle configured to receive the non-Portland cement-based material and combine the transported non-Portland cement-based material with liquid to generate a partially liquefied non-Portland cement-based material, wherein the nozzle is further configured to pneumatically apply the partially liquefied non-Portland cement-based material to a surface.2. The system of claim 1 , wherein the geopolymer material includes volcano rock flour or pumice.3. The system of claim 1 , wherein the alkali-based powder includes silicate.4. The system of claim 1 , wherein batching and mixing is performed as at least one of a dry-mix and a wet-mix.5. The system of claim 1 , wherein the non-Portland cement-based material is inorganic.6. The system of claim 1 , wherein batching and mixing is performed at a mobile batching and mixing vehicle.7. The system of claim 1 , wherein the non-Portland cement-based material includes at least one of clay claim 1 , gneiss claim 1 , ...

Подробнее
10-05-2018 дата публикации

COMPOSITE FIBER FOR INORGANIC BINDER APPLICATIONS

Номер: US20180127894A1
Принадлежит:

Fibers of diverse materials find widespread use in inorganic binder compositions to improve the properties of the final cured composite materials. When using high amounts of fiber in inorganic binder slurries, problems arise due to the loss of workability because of unevenly distributed fiber content. The novel fibers according to the invention allow the use of large amounts of fiber without loss of workability and are particularly useful to control the rheology of the composite slurry mixtures. 1. A process for making a bicomponent fiber , wherein said fiber comprises a first hydrophobic polymer , optionally selected from polyolefins , and a second hydrophilic polymer , optionally selected from polyvinyl alcohol or polyacrylic acid , comprising the following steps:uniaxially stretching a sheet of said first polymer,oxidizing one side of the sheet of said first polymer,coating the oxidized side of the sheet of said first polymer with said second polymer to form a bicomponent substrate,drying the bicomponent substrate, andcutting the dried bicomponent substrate into fibers of desired dimensions.2. A bicomponent fiber obtained according to the process of claim 1 , wherein the first hydrophobic polymer is polypropylene and the second hydrophilic polymer is polyvinyl alcohol.3. A bicomponent fiber obtained according to the process of claim 1 , wherein the ratio of layer thickness of a first or upper layer of the bicomponent fiber to a second or lower layer of the bicomponent fiber is not greater than three.4. A method of utilizing the bicomponent fiber obtained by the process of comprising mixing the bicomponent fiber as an additive in inorganic binder formulations or compositions.5. The method of wherein the inorganic binder formulations or compositions comprises cement claim 4 , aluminosilicate claim 4 , gypsum or geopolymer-based binders.6. A method of utilizing the bicomponent fiber obtained by the process of comprising controlling the rheology of hydraulic binder ...

Подробнее
11-05-2017 дата публикации

BINDER AND PROCESS FOR THE ADDITIVE PRODUCTION OF MANUFACTURED ITEMS

Номер: US20170129134A1
Принадлежит:

Binder for the additive production of manufactured items, in particular made of conglomerate, adapted to be distributed on a layer of inert granular material in order to form a rigid matrix incorporating the granules of the inert granular material. The binder according to the invention is a substantially inorganic binder with geopolymer base. Another object of the invention is a process for the additive production of manufactured items by means of the use of the aforesaid binder and the use of geopolymers as binders in the additive production of manufactured items. 1. Binder for the additive production of manufactured items , in particular made of conglomerate , adapted to be distributed on a layer of inert granular material in order to form a rigid matrix incorporating the granules of said inert granular material , characterized in that it is a substantially inorganic binder with geopolymer base.2. Binder according to claim 1 , characterized in that it is obtained starting from a first solid component in powder form comprising reactive aluminosilicates and from a second liquid component comprising an alkaline or acidic aqueous solution claim 1 , the molar ratio between the water contained in the liquid component and the oxides contained in the first solid component and in the second liquid component claim 1 , which come to constitute the geopolymer network claim 1 , being controlled in order to optimize both the reactivity of the mixture and its rheology claim 1 , in particular the ratio between the water and the alumina contained in the solid component (HO/AlO) being comprised between 16 and 23 and claim 1 , preferably claim 1 , between 17 and 20.3. Binder according to claim 2 , characterized in that it comprises one or more additives selected from among retardant additives claim 2 , adapted to slow the start of the geopolymerization reaction between the first solid component and the second liquid component claim 2 , accelerant additives claim 2 , adapted to ...

Подробнее