Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 4395. Отображено 100.
10-11-2005 дата публикации

ГАЗОДИНАМИЧЕСКИЙ КРИСТАЛЛИЗАТОР

Номер: RU0000048999U1

Газодинамический кристаллизатор, содержащий тигель с расплавом AlO и направляющий капилляр, опущенный в тигель с расплавом AlО, отличающийся тем, что в него дополнительно введены направляющие трубки для создания формирующего и охлаждающего потоков газокапельных смесей, установленные выше направляющего капилляра. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 48 999 (13) U1 (51) МПК C30B C30B C30B C30B 28/02 28/10 29/50 35/00 (2000.01) (2000.01) (2000.01) (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2005120341/22 , 30.06.2005 (24) Дата начала отсчета срока действия патента: 30.06.2005 (45) Опубликовано: 10.11.2005 (73) Патентообладатель(и): Верба Владимир Степанович (RU), Гандурин Виктор Александрович (RU), Алексеев Александр Анатольевич (RU) Формула полезной модели Газодинамический кристаллизатор, содержащий тигель с расплавом Al2O3 и R U 4 8 9 9 9 что в него дополнительно введены направляющие трубки для создания формирующего и охлаждающего потоков газокапельных смесей, установленные выше направляющего капилляра. Ñòðàíèöà: 1 U 1 U 1 направляющий капилляр, опущенный в тигель с расплавом Al 2О3, отличающийся тем, 4 8 9 9 9 (54) ГАЗОДИНАМИЧЕСКИЙ КРИСТАЛЛИЗАТОР R U Адрес для переписки: 121170, Москва, Кутузовский пр-кт, 34, Концерн радиостроения "Вега", В.С. Верба (72) Автор(ы): Верба В.С. (RU) , Гандурин В.А. (RU), Алексеев А.А. (RU) U 1 U 1 4 8 9 9 9 4 8 9 9 9 R U R U Ñòðàíèöà: 2 RU 5 10 15 20 25 30 48 999 U1 Полезная модель относится к быстрой кристаллизации монокристальных изделий из модифицированного сапфира. Известны методы Вернейля, Степанова, Чохральского /1/, позволяющие осуществить однофазную кристаллизацию при выращивании тугоплавких монокристаллов из расплава. Наиболее близкой к описываемой полезной модели относится установка А.В.Степанова, использующая капиллярные силы, с помощью которых формируется столбик расплава на поверхности формообразователя. Данный метод ...

Подробнее
20-01-2006 дата публикации

КРИСТАЛЛИЗАЦИОННАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ АРМИРОВАННОГО САПФИРА

Номер: RU0000050543U1

1. Кристаллизационная установка для получения армированного сапфира, содержащая тигель с расплавом AlO, направляющие капилляры, опущенные в тигель с расплавом AlО, формообразователь, расположенный между направляющими капиллярами, и индуктор, отличающаяся тем, что в нее дополнительно введена направляющая трубка для создания охлаждающего потока газокапельной смеси, установленная выше направляющих капилляров. 2. Кристаллизационная установка для получения армированного сапфира по п.1, отличающаяся тем, что в качестве материала для формообразователя используется молибден. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 50 543 (13) U1 (51) МПК C30B 28/02 C30B 28/10 C30B 35/00 (2006.01) (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2005120342/22 , 30.06.2005 (24) Дата начала отсчета срока действия патента: 30.06.2005 (45) Опубликовано: 20.01.2006 (73) Патентообладатель(и): Верба Владимир Степанович (RU), Гандурин Виктор Александрович (RU), Алексеев Александр Анатольевич (RU) 5 0 5 4 3 R U направляющими капиллярами, и индуктор, отличающаяся тем, что в нее дополнительно введена направляющая трубка для создания охлаждающего потока газокапельной смеси, установленная выше направляющих капилляров. 2. Кристаллизационная установка для получения армированного сапфира по п.1, отличающаяся тем, что в качестве материала для формообразователя используется молибден. Ñòðàíèöà: 1 U 1 U 1 Формула полезной модели 1. Кристаллизационная установка для получения армированного сапфира, содержащая тигель с расплавом Al2O3, направляющие капилляры, опущенные в тигель с расплавом Al2О3, формообразователь, расположенный между 5 0 5 4 3 (54) КРИСТАЛЛИЗАЦИОННАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ АРМИРОВАННОГО САПФИРА R U Адрес для переписки: 121170, Москва, Кутузовский пр-кт, 34, Концерн радиостроения "Вега" (72) Автор(ы): Верба Владимир Степанович (RU), Гандурин Виктор Александрович (RU), Алексеев Александр ...

Подробнее
10-09-2006 дата публикации

КРИСТАЛЛИЗАТОР

Номер: RU0000056403U1

Кристаллизатор, содержащий снабженную ходовой частью металлическую емкость с вертикальными металлическими пластинами, размещенными внутри емкости с зазором друг относительно друга и собранными в кассету, отличающийся тем, что он снабжен крышкой, выполненной с отверстием заливки расплава, и смонтированной в направляющих емкости. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 56 403 (13) U1 (51) МПК C30B 35/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006100887/22 , 10.01.2006 (24) Дата начала отсчета срока действия патента: 10.01.2006 (45) Опубликовано: 10.09.2006 5 6 4 0 3 R U Формула полезной модели Кристаллизатор, содержащий снабженную ходовой частью металлическую емкость с вертикальными металлическими пластинами, размещенными внутри емкости с зазором друг относительно друга и собранными в кассету, отличающийся тем, что он снабжен крышкой, выполненной с отверстием заливки расплава, и смонтированной в направляющих емкости. Ñòðàíèöà: 1 U 1 U 1 (54) КРИСТАЛЛИЗАТОР 5 6 4 0 3 (73) Патентообладатель(и): Общество с ограниченной ответственностью "Торговый Дом "Абразивные заводы Урала" (RU) R U Адрес для переписки: 454080, г.Челябинск, пр. Ленина, 81, ТД "АЗУ" (72) Автор(ы): Лонзингер Татьяна Мопровна (RU), Афанасьев Александр Алексеевич (RU), Дятлов Владимир Николаевич (RU), Чаплыгин Александр Борисович (RU), Скотников Вадим Анатольевич (RU), Писаров Владимир Александрович (RU), Жеханова Наталья Борисовна (RU), Нецветаева Надежда Петровна (RU) U 1 U 1 5 6 4 0 3 5 6 4 0 3 R U R U Ñòðàíèöà: 2 RU 5 10 15 20 25 30 35 40 45 50 56 403 U1 Полезная модель относится к абразивной промышленности, а именно, к конструкциям кристаллизатора для изготовления пластин преимущественно из циркониевого электрокорунда для дальнейшего получения из них зерна и шлифовальных кругов. Известен кристаллизатор для получения циркониевого корунда, содержащий металлическую сварную емкость и размещенные внутри ...

Подробнее
10-09-2006 дата публикации

КРИСТАЛЛИЗАЦИОННАЯ УСТАНОВКА ДЛЯ ВЫРАЩИВАНИЯ ТУГОПЛАВКИХ ЭВТЕКТИЧЕСКИХ ПСЕВДОМОНОКРИСТАЛЛОВ

Номер: RU0000056404U1

Кристаллизационная установка для выращивания тугоплавких (эвтектических) псевдомонокристаллов, содержащая тигель с охлаждающей средой, основной нагреватель, дополнительный нагреватель, монокристалл, устройство перемещения, отличающаяся тем, что содержит второй тигель с охлаждающей средой, изолятор, поликристалл, представляющий собой смесь Nb+NbSi, с одной стороны соединенный с устройством перемещения, а с другой стороны - с монокристаллом, в качестве которого содержит монокристаллическую затравку Nb, размещенную в тигле с охлаждающей средой, а дополнительный нагреватель выполнен изолирующим от тигля с охлаждающей средой. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 56 404 (13) U1 (51) МПК C30B 35/00 C30B 28/10 (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2005135963/22 , 21.11.2005 (24) Дата начала отсчета срока действия патента: 21.11.2005 (45) Опубликовано: 10.09.2006 U 1 5 6 4 0 4 R U Формула полезной модели Кристаллизационная установка для выращивания тугоплавких (эвтектических) псевдомонокристаллов, содержащая тигель с охлаждающей средой, основной нагреватель, дополнительный нагреватель, монокристалл, устройство перемещения, отличающаяся тем, что содержит второй тигель с охлаждающей средой, изолятор, поликристалл, представляющий собой смесь Nb+Nb3Si, с одной стороны соединенный с устройством перемещения, а с другой стороны - с монокристаллом, в качестве которого содержит монокристаллическую затравку Nb, размещенную в тигле с охлаждающей средой, а дополнительный нагреватель выполнен изолирующим от тигля с охлаждающей средой. Ñòðàíèöà: 1 U 1 (54) КРИСТАЛЛИЗАЦИОННАЯ УСТАНОВКА ДЛЯ ВЫРАЩИВАНИЯ ТУГОПЛАВКИХ ЭВТЕКТИЧЕСКИХ ПСЕВДОМОНОКРИСТАЛЛОВ 5 6 4 0 4 (73) Патентообладатель(и): Верба Владимир Степанович (RU), Гандурин Виктор Александрович (RU), Алексеев Александр Анатольевич (RU), Карпов Михаил Иванович (RU), Ломейко Виктор Васильевич (RU), Штинов Евгений Дмитриевич ...

Подробнее
10-03-2007 дата публикации

СТАНОК ДЛЯ ПРОДОЛЬНОГО РАЗРЕЗАНИЯ СЛИТКОВ КРЕМНИЯ

Номер: RU0000061718U1

1. Станок для продольного резания слитков кремния, содержащий станину с направляющими, колонку, каретку со шлифовальной головкой, систему охлаждения рабочей зоны, отличающийся тем, что станина снабжена дополнительно ходовым винтом, соединенным с мотор-редуктором, в цепи питания которого установлен тиристорный преобразователь частоты, а шлифовальная головка содержит несколько отрезных алмазных кругов, кроме того, на столе смонтирована плита со шпонкой, на которой установлены подвижные промежуточные опоры с пазами. 2. Станок по п.1, отличающийся тем, что насадок системы охлаждения снабжен соплами, направленными в зону резания каждого отрезного алмазного круга. 3. Станок по п.1, отличающийся тем, что станина сообщается с каскадным отстойником. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 61 718 (13) U1 (51) МПК C30B 33/00 C30B 35/00 (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006131273/22 , 30.08.2006 (24) Дата начала отсчета срока действия патента: 30.08.2006 (45) Опубликовано: 10.03.2007 (73) Патентообладатель(и): Федеральное государственное унитарное предприятие "ГОРНО-ХИМИЧЕСКИЙ КОМБИНАТ" (RU) U 1 6 1 7 1 8 R U Ñòðàíèöà: 1 U 1 Формула полезной модели 1. Станок для продольного резания слитков кремния, содержащий станину с направляющими, колонку, каретку со шлифовальной головкой, систему охлаждения рабочей зоны, отличающийся тем, что станина снабжена дополнительно ходовым винтом, соединенным с мотор-редуктором, в цепи питания которого установлен тиристорный преобразователь частоты, а шлифовальная головка содержит несколько отрезных алмазных кругов, кроме того, на столе смонтирована плита со шпонкой, на которой установлены подвижные промежуточные опоры с пазами. 2. Станок по п.1, отличающийся тем, что насадок системы охлаждения снабжен соплами, направленными в зону резания каждого отрезного алмазного круга. 3. Станок по п.1, отличающийся тем, что станина ...

Подробнее
10-09-2007 дата публикации

КОНТЕЙНЕР ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ИЗОТОПНООБОГАЩЕННОГО КРЕМНИЯ И ТВЕРДЫХ РАСТВОРОВ НА ЕГО ОСНОВЕ

Номер: RU0000066342U1

Контейнер для выращивания кристаллов изотопнообогащенного кремния и твердых растворов на его основе, включающий корпус из кварцевого стекла, отличающийся тем, что корпус выполнен с внутренним покрытием из диоксида кремния, обогащенного кремнием-28, или кремнием-29, или кремнием-30, при этом содержание основного изотопа, входящего в состав покрытия задают таким образом, чтобы оно было не менее содержания упомянутого изотопа в выращиваемом кристалле, а толщину покрытия h определяют по формуле: где V(t) - скорость растворения кварцевого стекла в расплаве кремния; t - время выращивания кристалла. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 66 342 (13) U1 (51) МПК C30B 35/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2007117356/22 , 10.05.2007 (24) Дата начала отсчета срока действия патента: 10.05.2007 (45) Опубликовано: 10.09.2007 (73) Патентообладатель(и): Институт химии высокочистых веществ Российской академии наук (ИХВВ РАН) (RU) U 1 6 6 3 4 2 R U где V(t) - скорость растворения кварцевого стекла в расплаве кремния; t - время выращивания кристалла. Ñòðàíèöà: 1 U 1 Формула полезной модели Контейнер для выращивания кристаллов изотопнообогащенного кремния и твердых растворов на его основе, включающий корпус из кварцевого стекла, отличающийся тем, что корпус выполнен с внутренним покрытием из диоксида кремния, обогащенного кремнием-28, или кремнием-29, или кремнием-30, при этом содержание основного изотопа, входящего в состав покрытия задают таким образом, чтобы оно было не менее содержания упомянутого изотопа в выращиваемом кристалле, а толщину покрытия h определяют по формуле: 6 6 3 4 2 (54) КОНТЕЙНЕР ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ИЗОТОПНООБОГАЩЕННОГО КРЕМНИЯ И ТВЕРДЫХ РАСТВОРОВ НА ЕГО ОСНОВЕ R U Адрес для переписки: 603950, г.Нижний Новгород, ГСП-75, ул. Тропинина, 49, Директору ИХВВ РАН М.Ф. Чурбанову (72) Автор(ы): Гусев Анатолий Владимирович (RU), Гавва Владимир ...

Подробнее
10-06-2008 дата публикации

КОНТЕЙНЕР ДЛЯ ОТЖИГА ОКСИДНЫХ МОНОКРИСТАЛЛОВ

Номер: RU0000073877U1

1. Контейнер для отжига оксидных монокристаллов, содержащий корпус с крышкой, отличающийся тем, что корпус выполнен в виде трубчатого элемента, установленного на пластине, внутри корпуса размещен первый стакан, предназначенный для размещения обрабатываемого монокристалла, первый стакан заключен внутрь второго стакана так, что днище второго стакана находится над отверстием первого, в пространстве между корпусом и вторым стаканом установлен фильтр-адсорбер, корпус сверху накрыт крышкой в форме пластины, причем все элементы конструкции выполнены из жаропрочного материала. 2. Контейнер для отжига оксидных монокристаллов по п.1, отличающийся тем, что в качестве жаропрочного материала конструкционных элементов использован сапфир. 3. Контейнер для отжига оксидных монокристаллов по п.1, отличающийся тем, что край второго стакана снабжен радиальной выемкой. 4. Контейнер для отжига оксидных монокристаллов по п.1, отличающийся тем, что в качестве фильтра-адсорбера применена порошкообразная окись алюминия. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 73 877 (13) U1 (51) МПК C30B 35/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2007146175/22 , 13.12.2007 (24) Дата начала отсчета срока действия патента: 13.12.2007 (45) Опубликовано: 10.06.2008 (73) Патентообладатель(и): Институт кристаллографии им. А.В. Шубникова Российской академии наук (RU) U 1 7 3 8 7 7 R U Ñòðàíèöà: 1 U 1 Формула полезной модели 1. Контейнер для отжига оксидных монокристаллов, содержащий корпус с крышкой, отличающийся тем, что корпус выполнен в виде трубчатого элемента, установленного на пластине, внутри корпуса размещен первый стакан, предназначенный для размещения обрабатываемого монокристалла, первый стакан заключен внутрь второго стакана так, что днище второго стакана находится над отверстием первого, в пространстве между корпусом и вторым стаканом установлен фильтр-адсорбер, корпус сверху накрыт крышкой в ...

Подробнее
10-12-2011 дата публикации

УСТАНОВКА, ПЕЧЬ И НАГРЕВАТЕЛЬ ПЕЧИ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО ОПТИЧЕСКОГО МАТЕРИАЛА СЕЛЕНИД ЦИНКА/СУЛЬФИД ЦИНКА

Номер: RU0000111140U1

1. Установка для изготовления композиционного оптического материала селенид цинка/сульфид цинка, включающая печь, соединенную с пультом управления, вакуумной системой, системой водяного охлаждения и силовым трансформатором, где пульт управления в свою очередь соединен через силовой трансформатор с системой водяного охлаждения, которая также подключена к вакуумной системе. 2. Печь для изготовления композиционного оптического материала селенид цинка/сульфид цинка включает корпус, в котором размещен нагреватель, внутри которого расположен реакционный контейнер, корпус печи закрыт сверху и снизу крышками, а внутри корпуса размещены теплоизоляционные экраны, представленные как теплоизоляционный экран корпуса печи, расположенный между внутренней поверхностью корпуса и нагревателем, теплоизоляционный верхний экран, расположенный под верхней крышкой корпуса печи, и теплоизоляционный нижний экран, расположенный над нижней крышкой печи, в боковых стенках корпуса расположены средства для подсоединения вентиляции печи и вакуумной системы, датчики температуры и вакуума и вентиль напуска воздуха, через нижнюю крышку печи подключен соответствующий датчик для измерения температуры под контейнером, к наружной части дна нагревателя подключены токовводы, а корпус и крышки корпуса выполнены водоохлаждаемыми. 3. Печь по п.2, в которой нагреватель имеет переменную толщину по высоте боковых стенок и выполнен из графита. 4. Нагреватель печи для изготовления композиционного оптического материала селенид цинка/сульфид цинка выполнен из графита в виде цилиндра с прорезями по его высоте, в котором боковые стенки имеют переменную толщину, наименьшую снизу и наибольшую в верхней части. 5. Нагреватель по п.4, в котором переменность толщины вертикальных стенок имеет ступенчатый характер. 6. Нагреватель по п.5, в котором толщина вертикальных стенок имеет трехступенчатый вид. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 111 140 U1 (51) МПК C30B 28/12 (2006.01) C30B 23/06 (2006.01) C30B 29/48 (2006.01) ...

Подробнее
10-09-2012 дата публикации

УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ

Номер: RU0000120104U1

1. Устройство для выращивания кристаллов, содержащее корпус, крышку корпуса, платформу для размещения затравки для кристалла и механизм установки затравочного кристалла на платформе, отличающееся тем, что платформа, имеющая сквозное центральное отверстие и снабженная отражательным кольцом, размещена внутри корпуса устройства над его днищем с возможностью вращения, отражательное кольцо расположено внутри центрального цилиндрического отверстия, выполненного в крышке корпуса, под отражательным кольцом установлена кольцевая ловушка, причем ловушка, крепящаяся к нижней поверхности крышки корпуса, снабжена штифтами, которые установлены под пазами на отражательном кольце, имеющем конфигурацию и объем, соответствующие штифтам, а механизм установки затравочного кристалла на платформе выполнен в виде оси, фиксирующейся относительно платформы посредством резьбового соединения и расположенным над отражательным кольцом винта, снабженной на конце затравочным модулем и проходящей насквозь через платформу и втулку с фланцем, сверху закрывающим центральное отверстие в крышке корпуса, на верхнем конце названной оси установлено опорное кольцо, которое соприкасается с торцем втулки, предохраняя ось и платформу от перемещения в вертикальном направлении. 2. Устройство по п.1, отличающееся тем, что кольцевая ловушка выполнена в виде двух секций, имеющих форму полукольца. 3. Устройство по п.1, отличающееся тем, что в нижней части сквозного осевого отверстия в платформе выполнена проточка в форме усеченного конуса с меньшим диаметром на наружной поверхности нижней плоскости платформы. Ц 120104 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ ”’ 120 1047 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 20.12.2018 Дата внесения записи в Государственный реестр: 07.10.2019 Дата публикации и номер бюллетеня: 07.10. ...

Подробнее
20-11-2014 дата публикации

УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ИЗ РАСТВОРА

Номер: RU0000147799U1

1. Устройство для выращивания кристаллов из раствора, содержащее кристаллизационный стакан, снабженный цилиндрической крышкой, на которой герметично установлен конденсатор растворителя, в крышке со стороны конденсатора выполнена кольцевая канавка, образующая полость для сбора растворителя, подключенная через канал в крышке к накопителю растворителя, размещенному вне кристаллизатора, отличающееся тем, что крышка снабжена формирователем капель растворителя, который гидравлически через горизонтальный канал соединен с полостью для сбора растворителя, причем названный формирователь снабжен вертикальным каналом, через который капли растворителя поступают в кристаллизационный стакан, и имеет счетчик капель растворителя, сливающихся из полости для сбора растворителя через формирователь капель в кристаллизационный стакан. 2. Устройство по п.1, отличающееся тем, что счетчик капель растворителя имеет два электрода, один из которых размещен внутри канала в формирователе капель, заполненном растворителем, а другой установлен вне формирователя капель под выходным отверстием канала. 3. Устройство по п.1, отличающееся тем, что входное отверстие канала, ведущего к накопителю растворителя, расположено на 2-4 мм ниже горизонтального входного отверстия формирователя капель. 4. Устройство по п.1, отличающееся тем, что формирователь капель выполнен съемным. Ц 147799 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ 7 ВУ’? 147 799 1 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 05.04.2020 Дата внесения записи в Государственный реестр: 15.01.2021 Дата публикации и номер бюллетеня: 15.01.2021 Бюл. №2 Стр.: 1 па 667 ЕП

Подробнее
27-08-2016 дата публикации

НОСИТЕЛЬ ДЛЯ ПЛАЗМОХИМИЧЕСКОГО ТРАВЛЕНИЯ ПОДЛОЖЕК ИЗ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

Номер: RU0000164392U1

Носитель для плазмохимического травления подложек из диэлектрических материалов, содержащий плоское металлическое основание, над основанием плоский металлический экран с отверстием, соответствующим по конфигурации и размеру обрабатываемой подложке, устанавливаемой на основании, с обеспечением электрической изолированности основания и экрана друг от друга за счет диэлектрических прокладочных элементов между ними, отличающийся тем, что экран выполнен металлизированным в виде тонкого металлического покрытия, нанесенного на тонкую диэлектрическую пластину, выполняющую функцию прокладочного элемента; экран лежит на основании под действием собственного веса и находится с ним в оптическом контакте, закрывая полностью площадь контакта основания с плазмой; экран нарезан с обеспечением безотходного раскроя на элементы мозаично-замковой структуры типа «пазл» с возможностью посредством выборочного удаления отдельных элементов мозаично-замковой структуры формирования в экране вышеуказанного отверстия; форма элементов мозаично-замковой структуры с взаимно-обратными выступами и впадинами замков такова, что элементы, будучи собраны все вместе, покрывают всю плоскость металлического основания, обеспечивая невозможность разделения металлизированного экрана на части при горизонтальном механическом воздействии на элементы; между обрабатываемой подложкой и металлическим основанием помещена дополнительная металлическая прокладка, заходящая частично под экран и обрамляющая обрабатываемую площадь подложки в вышеуказанном отверстии экрана. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 164 392 U1 (51) МПК C30B 33/12 (2006.01) H01L 21/3065 (2006.01) C30B 35/00 (2006.01) B01J 3/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2016112585/05, 04.04.2016 (24) Дата начала отсчета срока действия патента: 04.04.2016 (45) Опубликовано: 27.08.2016 Стр.: 1 U 1 1 6 4 3 9 2 R U U 1 (54) НОСИТЕЛЬ ДЛЯ ПЛАЗМОХИМИЧЕСКОГО ТРАВЛЕНИЯ ПОДЛОЖЕК ИЗ ...

Подробнее
10-09-2016 дата публикации

УСТРОЙСТВО ДЛЯ ЗАТРАВКИ КРИСТАЛЛИЗАТОРА

Номер: RU0000164524U1

1. Устройство для затравки кристаллизатора, имеющего корпус с крышкой и платформу-кристаллоносец с полостью для размещения затравочного модуля, содержащее предназначенную для введения внутрь кристаллизатора трубку, в верхней части которой размещен затравочный модуль, и нагреватель, отличающееся тем, что верхняя часть трубки заключена внутри корпуса, снабженного стопором, предназначенным для фиксации затравочного модуля внутри трубки до момента его установки в полости платформы-кристаллоносца кристаллизатора, нагреватель установлен внутри названного корпуса, причем заключенная внутри корпуса часть трубки и нагреватель целиком охватываются тепловым экраном. 2. Устройство по п. 1, отличающееся тем, что торцевые отверстия в верхней и нижней частях трубки закрыты пробками, а через верхнюю пробку внутрь трубки подведен термодатчик. 3. Устройство по п. 1, отличающееся тем, что в качестве нагревателя применен электрический элемент сопротивления. 4. Устройство по п. 1, отличающееся тем, что корпус выполнен из прозрачного материала, например органического стекла. 5. Устройство по п. 1, отличающееся тем, что трубка выполнена стеклянной с отверстием, ось которого перпендикулярна оси трубки, и крепится к корпусу посредством разъемного соединения, например винтами через упругие, например, резиновые прокладки. 6. Устройство по п. 1, отличающееся тем, что затравочный модуль имеет корпус со сквозным винтовым отверстием, в который входит пробка, имеющая высоту, меньшую высоты корпуса, пространство между торцом корпуса и торцом пробки предназначено для размещения затравки, неподвижно фиксирующейся с помощью клея. 7. Устройство по п. 6, отличающееся тем, что корпус затравочного модуля имеет коническую форму. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 164 524 U1 (51) МПК C30B 7/00 (2006.01) C30B 35/00 (2006.01) C30B 29/14 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2016111158/05, 25.03.2016 (24) Дата начала отсчета ...

Подробнее
13-01-2017 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ДИСКРЕТНЫХ ЗОН РАСТВОРИТЕЛЯ В КРЕМНИЕВЫХ ПОДЛОЖКАХ

Номер: RU0000167969U1

Полезная модель относится к полупроводниковой технологии и предназначена для получения методом термомиграции монокристаллических кремниевых объемных элементов в приборных структурах различного назначения. Устройство для получения дискретных зон растворителя в кремниевых подложках состоит из: крышки с полостями для растворителя и направленной кристаллизации при погружении растворителя в подложку; основания; штифтов; штока; бункеров загрузки и приемки подложек, расположенных под вращающемся диском; каркаса; нагревателя; выталкивающей цилиндрической пружины; принимающей цилиндрической пружины. И 1 167969 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ 7 ВУ‘’” 167 969” 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 17.05.2019 Дата внесения записи в Государственный реестр: 11.03.2020 Дата публикации и номер бюллетеня: 11.03.2020 Бюл. №8 Стр.: 1 па 696491 ЕП

Подробнее
07-02-2017 дата публикации

Установка для выращивания монокристаллов

Номер: RU0000168533U1

Заявляемая полезная модель относится к установкам для выращивания монокристаллов из расплава, а более конкретно к установкам, функционирующим по методу Бриджмена. Установка может применяться для выращивания крупноразмерных монокристаллов бромида. Задачей настоящей полезной модели является создание установки с управляемым по радиусу тепловым потоком. Контроль и управление радиальными тепловыми потоками позволяют сформировать выгнутую в сторону расплава изотерму кристаллизации, при которой разрастание происходит из центра к периферии и можно производить селекцию зародышей в варианте спонтанного зародышеобразования или разращивать затравочный кристалл, установленный на оси рабочего объема. Варьируя осевой (ориентированный в вертикальном направлении) и радиальный (от оси к периферии) градиенты температуры можно определить область оптимальных режимов работы нагревателей, при которых кристалл растет без дефектов и с постоянной линейной скоростью. Решение поставленной задачи и необходимый технический результат достигаются тем, что в установке для выращивания крупноразмерных монокристаллов из расплава используется специализированное термическое оборудование, в составе которого используются термические блоки, изготовленные с конфигурацией и размерами согласно предварительно выполненным расчетам по трехмерной математической задаче теплопроводности, а также система терморегулирования высокой точности, включающая прецизионные аналого-цифровые преобразователи сигналов термопар, блок компьютерной обработки цифровой информации и блок программного обеспечения, формирующего пакет команд управления многоканальным электроприводом термических блоков. Указанные технические и программные нововведения позволяют обеспечить стабильность динамики фронта кристаллизации и его формы в течение всего процесса кристаллизации материала. Кроме стабилизации нормальной скорости роста кристалла для повышения его однородности, термическое оборудование обладает дополнительной возможностью контролируемого ...

Подробнее
25-08-2017 дата публикации

УСТАНОВКА ОЧИСТКИ ПОЛУПРОВОДНИКОВЫХ ПЛАСТИН

Номер: RU0000173401U1

Полезная модель относится к области электронной техники, а конкретнее к технологии индивидуальной очистки изделий электронной техники, и может быть использована на операциях очистки полупроводниковых пластин с помощью акустического (ультра- и мегазвукового) воздействия в производстве полупроводниковых приборов на основе пластин большого диаметра. Установка очистки полупроводниковых пластин, содержащая корпус отмывочной камеры, пластину, держатель пластины, выполненный в виде фиксирующих прижимных роликов, оснащенную пьезоизлучателем мегазвуковых колебаний фронтальную форсунку с соплом для подачи моющей жидкости на рабочую поверхность пластины, тыльную форсунку с соплом для подачи моющей жидкости на нерабочую поверхность пластины, характеризующаяся тем, что фронтальная форсунка закреплена неподвижно, сопло форсунки выполнено в виде щели длиной не менее радиуса пластины, расположенной вдоль радиуса пластины, а прижимные ролики установлены на прикрепленных к основанию корпуса втулках, причем количество роликов составляет не менее шести роликов, и не менее четырех роликов имеют возможность синхронного вращения. Новым в установке является то, что функцию вращающегося держателя пластины выполняют прижимные ролики, а вместо перемещающейся вдоль поверхности пластины используют неподвижную щелевую форсунку. Предложенная новая совокупность признаков увеличивает надежность устройства и повышает качество очистки. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК H01L 21/02 (2006.01) H01L 21/67 (2006.01) H01L 21/304 (2006.01) B08B 3/02 (2006.01) B08B 3/04 (2006.01) B08B 3/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА B08B 3/12 (2006.01) ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ B08B 1/04 (2006.01) B08B 11/02 (2006.01) C30B 35/00 (2006.01) (12) 2017104191, 09.02.2017 (24) Дата начала отсчета срока действия патента: 09.02.2017 25.08.2017 (72) Автор(ы): Белоусов Виктор Сергеевич (RU), Звероловлев Владимир Михайлович (RU), Звероловлев Илья Владимирович (RU), Кочеткова Татьяна Федоровна (RU), Грибов Андрей ...

Подробнее
23-01-2018 дата публикации

Устройство для предподготовки раствора к кристаллизации

Номер: RU0000176550U1

Настоящее техническое решение относится к оборудованию для кристаллизации различных веществ в биотехнологической и химической промышленностях и может быть применено для выделения кристаллизацией продуктов микробиологического синтеза, продуктов сахарной промышленности, солей и других веществ, кристаллизуемых из растворов. Заявленное устройство для предподготовки раствора к кристаллизации содержит ультразвуковой аэродинамический распылитель - генератор аэрозоля, представляющий собой газоструйный излучатель, в активную зону которого подается жидкость - концентрируемый раствор; рабочую емкость с кулисами внутри нее, направляющими потоки аэрозоля и паровоздушной смеси; выводной патрубок для сконцентрированной и охлажденной жидкости, представляющей собой сконденсированный аэрозоль; выводной патрубок для паровоздушной смеси. Характерная особенность устройства - распыление подготавливаемой к кристаллизации жидкости ультразвуковым аэродинамическим генератором аэрозолей с последующей конденсацией аэрозоля в подготовленный к процессу кристаллизации раствор. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 176 550 U1 (51) МПК C30B 35/00 (2006.01) C30B 7/00 (2006.01) B01D 9/02 (2006.01) B01J 19/10 (2006.01) C13B 30/02 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C30B 35/007 (2017.08); C30B 7/00 (2017.08); B01D 9/02 (2017.08); B01D 2259/10 (2017.08); B01D 2259/816 (2017.08); B01J 19/10 (2017.08); B01J 2219/00011 (2017.08); C13B 30/02 (2017.08) (21)(22) Заявка: 2017128915, 15.08.2017 15.08.2017 Дата регистрации: 23.01.2018 (45) Опубликовано: 23.01.2018 Бюл. № 3 1 7 6 5 5 0 R U (56) Список документов, цитированных в отчете о поиске: US 7531131 В2, 12.05.2009. SU 1084038 А1, 07.04.1984. EP 2055197 В1, 20.05.2015. CHINMAY N. GAJENDRAGADKAR et al, Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review, "Ultrasonics Sonochemistry", 2016, Vol. 32, p.p. 102-118. (54) Устройство для ...

Подробнее
27-11-2018 дата публикации

Устройство для выращивания кристаллов из раствора

Номер: RU0000185230U1

Полезная модель относится к области выращивания искусственных кристаллов, а более конкретно к устройствам для выращивания кристаллов из пересыщенного раствора, например кристаллов KDP (дигидрофосфата калия), DKDP (дигидрофосфата калия), TGS (триглицинсульфата) и подобных. В устройстве для выращивания кристаллов из раствора, содержащем кристаллизационный стакан, снабженный цилиндрической крышкой, на которой герметично установлен конденсатор растворителя, в крышке со стороны конденсатора выполнена кольцевая канавка, образующая полость для сбора растворителя, которая подключена к ячейке формирователя капель растворителя, ячейка формирователя капель растворителя размещена вне полости крышки снаружи кристаллизационного стакана. Ячейка выполнена пустотелой, снабженной формирователем капель и двумя электродами, полость ячейки формирователя капель через каналы гидравлически подключена к полости для сбора растворителя в крышке стакана и к полости кристаллизатора, причем выходное отверстие гидравлического канала, через которое растворитель возвращается в кристаллизационный канал, располагается ниже отверстия гидравлического канала, через которое растворитель поступает из кольцевой канавки в ячейку формирователя капель. Ячейка формирователя капель выполнена съемной. 1 з.п. ф-лы, 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 185 230 U1 (51) МПК C30B 7/00 (2006.01) C30B 35/00 (2006.01) C30B 29/14 (2006.01) C30B 29/54 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C30B 7/00 (2018.08); C30B 35/005 (2018.08); C30B 29/14 (2018.08); C30B 29/54 (2018.08); Y10T 117/1024 (2018.08) (21)(22) Заявка: 2018134325, 01.10.2018 01.10.2018 Дата регистрации: 27.11.2018 Приоритет(ы): (22) Дата подачи заявки: 01.10.2018 (56) Список документов, цитированных в отчете о поиске: RU 147799 U1, 20.11.2014. RU (45) Опубликовано: 27.11.2018 Бюл. № 33 1 8 5 2 3 0 R U 2531186 С1, 20.10.2014. SU 96229 А1, 01.01.1953. (54) Устройство для ...

Подробнее
11-03-2019 дата публикации

УЗЕЛ ПОДАЧИ ГАЗА УСТАНОВКИ ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ФТОРИДОВ МЕТОДОМ ГОРИЗОНТАЛЬНО НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ

Номер: RU0000187518U1

Полезная модель относится к дополнительному оборудованию установки для выращивания кристаллов фторидов методом горизонтально направленной кристаллизации, а именно к приемному отделению углеграфитового термоизоляционного модуля. Техническим результатом предлагаемой полезной модели является возможность варьирования величиной температурного градиента в зоне фронта роста кристалла. Для его достижения предложен узел подачи газа установки для выращивания кристаллов фторидов методом горизонтально направленной кристаллизации, состоящий из вакуумного игольчатого натекателя, установленного на стальном водоохлаждаемом корпусе, соединенного муфтой и графитовыми соединительными патрубками с каналом подачи газа, представляющего собой центральную штольню с отводами, в отверстия которых вставлены форсунки, выполненного в графитовой плите приемного теплоизоляционного модуля. Непосредственно в зону роста кристалла по каналу подачи газа непрерывно подают инертный газ аргон. 1 з.п. ф-лы, 4 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 187 518 U1 (51) МПК C30B 11/00 (2006.01) C30B 35/00 (2006.01) C30B 29/12 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C30B 11/006 (2018.08); C30B 35/005 (2018.08); C30B 29/12 (2018.08); Y10T 117/1092 (2018.08) (21)(22) Заявка: 2018144276, 14.12.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 14.12.2018 (45) Опубликовано: 11.03.2019 Бюл. № 8 2608891 С1, 26.01.2017. (54) УЗЕЛ ПОДАЧИ ГАЗА УСТАНОВКИ ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ФТОРИДОВ МЕТОДОМ ГОРИЗОНТАЛЬНО НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ (57) Реферат: Полезная модель относится к направленной кристаллизации, состоящий из дополнительному оборудованию установки для вакуумного игольчатого натекателя, выращивания кристаллов фторидов методом установленного на стальном водоохлаждаемом горизонтально направленной кристаллизации, а корпусе, соединенного муфтой и графитовыми именно к приемному ...

Подробнее
23-11-2020 дата публикации

Тепловой узел для выращивания монокристаллов

Номер: RU0000200993U1

Полезная модель относится к устройствам для выращивания монокристаллов, в том числе многокомпонентных халькогенидных соединений, методом Бриджмена-Стокбаргера или методом вертикальной направленной кристаллизации. Тепловой узел для выращивания монокристаллов включает в себя корпус 1, крышку, механизм перемещения и коаксиально расположенные внутри корпуса одна над другой две независимые зоны нагрева 2, 3, которые разделены между собой диафрагмой 6 и отделены от корпуса теплоизоляцией 7. Внутри зон нагрева 2, 3 коаксиально расположена шахта. Причем над диафрагмой 6 коаксиально зоне нагрева расположена вставка 8, выполненная из теплопроводного материала. Технический результат заключается в обеспечении высокого осевого температурного градиента в зоне кристаллизации при исключении риска перегрева расплава в процессе кристаллизации исходного вещества. Тепловой узел является надежным, простым и удобным в использовании, обладает вариативностью подбора возможных условий выращивания монокристаллов, в том числе и монокристаллов веществ, расплавы которых подвержены термическому разложению, и может быть реализована с использованием промышленного производства. РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) (19) RU (11) (13) 200 993 U1 (51) МПК C30B 11/00 (2006.01) C30B 11/02 (2006.01) C30B 11/14 (2006.01) C30B 29/46 (2006.01) C30B 35/00 (2006.01) F27B 1/02 (2006.01) F27B 1/09 (2006.01) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C30B 11/003 (2020.08); C30B 11/006 (2020.08); C30B 11/02 (2020.08); C30B 11/14 (2020.08); C30B 29/46 (2020.08); C30B 35/00 (2020.08); F27B 1/02 (2020.08); F27B 1/08 (2020.08); Y10T 117/1068 (2020.08); Y10T 117/1092 (2020.08); Y10S 117/91 (2020.08) (21)(22) Заявка: 2020120048, 10.06.2020 10.06.2020 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 10.06.2020 (45) Опубликовано: 23.11.2020 Бюл. № 33 Адрес для переписки: 630090, г. Новосибирск, пр-кт Академика Коптюга, 3, ИГМ СО РАН, Королевой Л.И. 2 0 0 9 9 3 U 1 (56) ...

Подробнее
13-09-2021 дата публикации

УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В ВИДЕ МЕТАЛЛИЧЕСКИХ ЛЕНТ С ТЕКСТУРИРОВАННЫМИ ПЛЕНКАМИ RBaCuO

Номер: RU0000206446U1

Полезная модель относится к области высокотемпературной сверхпроводимости, изготовлению высокотемпературных сверхпроводников, более конкретно - к устройству для изготовления высокотемпературного сверхпроводника в виде металлических лент с текстурированными пленками RBaCuO (R-123) путем направленной кристаллизации тонких аморфных пленок R-Ba-Cu-O, где R - редкоземельный элемент. Устройство содержит цилиндрическую печь кристаллизации 5, внутри которой расположены термопара 8, датчик давления газа и соосный цилиндрический нагреватель 1 с возможностью подведения к нему через штуцер электропитания. Печь кристаллизации 1 также снабжена штуцером вакуумной откачки 4, двумя штуцерами подачи и слива охлаждающей воды, и штуцером подачи технологических газов. Штуцер вакуумной откачки 4 выполнен с возможностью соединения с форвакуумным и турбомолекулярным насосами. Штуцеры подачи и слива охлаждающей воды выполнены с возможностью охлаждения стенок печи кристаллизации 5. Штуцер подачи технологических газов выполнен с возможностью соединения с клапаном-дозатором 2 для открытия и закрытия баллонов с технологическими газами с учетом показаний датчика давления газа. В качестве технологических газов можно использовать азотно-кислородные или кислородные смеси с различным содержанием кислорода в каждом из трех баллонов. Техническим результатом полезной модели является повышение производительности процесса изготовления сверхпроводников. 2 пр., 8 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (51) МПК C30B 35/00 C30B 11/00 C30B 29/22 H01B 12/06 (11) (13) 206 446 U1 (2006.01) (2006.01) (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C30B 35/00 (2021.02); C30B 11/00 (2021.02); C30B 29/22 (2021.02); H01B 12/06 (2021.02); Y10S 505/70 (2021.02); Y10S 505/78 (2021.02) (21)(22) Заявка: 2020140944, 11.12.2020 11.12.2020 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 11.12.2020 (45) Опубликовано: 13.09.2021 Бюл. № 26 2 0 6 4 4 6 ...

Подробнее
16-02-2012 дата публикации

Crucible for silicon suitable for producing semiconductors

Номер: US20120037065A1
Принадлежит: HC Starck GmbH

A crucible for producing a silicon suitable for producing a semiconductor includes a plurality of components and at least one unclosed joint gap.

Подробнее
28-06-2012 дата публикации

Composite crucible, method of manufacturing the same, and method of manufacturing silicon crystal

Номер: US20120160155A1
Принадлежит: Japan Super Quartz Corp

The purpose of the present invention is to provide a crucible which has high viscosity at high temperature, and can be used for a long time, and can be manufactured at low cost, and a method of manufacturing the same. The composite crucible 10 is characterized in the use of mullite (3Al 2 O 3 .2SiO 2 ) as the basic material of the crucible. The composite crucible 10 has the crucible body 11 made of mullite material whose main component is alumina and silica, and a transparent vitreous silica layer 12 formed on the inner surface of the crucible body 11 . The thickness of the transparent vitreous silica layer 12 is smaller than that of the crucible body 11 . The crucible body 11 can be formed by the slip casting method, and the transparent vitreous silica layer 12 can be formed by the thermal spraying method.

Подробнее
28-06-2012 дата публикации

Vitreous silica crucible for pulling silicon single crystal and method of manufacturing the same

Номер: US20120160159A1
Принадлежит: Japan Super Quartz Corp

The present invention provides a vitreous silica crucible which can suppress the sidewall lowering of the crucible under high temperature during pulling a silicon single crystal, and a method of manufacturing such a vitreous silica crucible. The vitreous silica crucible 10 includes an opaque vitreous silica layer 11 provided on the outer surface side of the crucible and containing numerous bubbles, and a transparent vitreous silica layer 12 provided on the inner surface side. The opaque vitreous silica layer 11 includes a first opaque vitreous silica portion 11 a provided on the crucible upper portion, and a second opaque vitreous silica portion 11 b provided on the crucible lower portion. The specific gravity of the second opaque vitreous silica portion 11 b is 1.7 to 2.1, and the specific gravity of the first opaque vitreous silica portion 11 a is 1.4 to 1.8, and smaller than that of the second opaque vitreous silica portion. The particle size distribution of the material silica powder for the first opaque vitreous silica portion 11 a is wider than that of the second opaque vitreous silica portion 11 b, and the material silica powder for the first opaque vitreous silica portion 11 a includes more fine powder than that for the second opaque vitreous silica portion 11 b.

Подробнее
13-09-2012 дата публикации

Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon

Номер: US20120227472A1
Принадлежит: Individual

A method of determining an amount of impurities that a contaminating material contributes to high purity silicon comprises the step of partially encasing a sample of high purity silicon in the contaminating material. The sample encased in the contaminating material is heated within a furnace. A change in impurity content of the high purity silicon is determined after the step of heating, compared to an impurity content of the high purity silicon prior to the step of heating.

Подробнее
20-09-2012 дата публикации

Method of Forming Epitaxial Film

Номер: US20120238080A1
Автор: Eric Ting-Shan Pan
Принадлежит: Individual

A method of growing an epitaxial film and transferring it to an assembly substrate is disclosed. The film growth and transfer are made using an epitaxy lateral overgrowth technique. The formed epitaxial film on an assembly substrate can be further processed to form devices such as solar cell, light emitting diode, and other devices and assembled into higher integration of desired applications.

Подробнее
27-09-2012 дата публикации

Device for holding silicon melt

Номер: US20120242016A1

Device for holding a silicon melt comprising a crucible, which partly surrounds an inner chamber for holding the melt, with a base and at least one side wall made of a base material, whereby the crucible comprises at least one equalizing means for equalizing mechanical thermal stresses.

Подробнее
04-10-2012 дата публикации

Coating compositions

Номер: US20120252950A1
Принадлежит: SunEdison Products Singapore Pte Ltd

Silicon nitride coated crucibles for holding melted semiconductor material and for use in preparing multicrystalline silicon ingots by a directional solidification process; methods for coating crucibles; methods for preparing silicon ingots and wafers; compositions for coating crucibles and silicon ingots and wafers with a low oxygen content.

Подробнее
11-10-2012 дата публикации

Vitreous silica crucible and method of manufacturing the same

Номер: US20120255487A1
Принадлежит: Japan Super Quartz Corp

Provided is a method of manufacturing a vitreous silica crucible for pulling a silicon single crystal which can suppress melt surface vibration of silicon melt filled therein and has a long lifetime. The crucible includes a peripheral wall portion, a curved portion and a bottom portion, and has a plurality of micro recesses on the specific region of the inner surface of the peripheral wall portion.

Подробнее
18-10-2012 дата публикации

Polysilicon system

Номер: US20120260845A1
Принадлежит: REC SILICON INC

A polysilicon system comprises polysilicon in at least three form-factors, or shapes, providing for an enhanced loading efficiency of a mold or crucible. The system is used in processes to manufacture multi-crystalline or single crystal silicon.

Подробнее
25-10-2012 дата публикации

Reaction system for growing a thin film

Номер: US20120266821A1
Принадлежит: ASM America Inc

An atomic deposition (ALD) thin film deposition apparatus includes a deposition chamber configured to deposit a thin film on a wafer mounted within a space defined therein. The deposition chamber comprises a gas inlet that is in communication with the space. A gas system is configured to deliver gas to the gas inlet of the deposition chamber. At least a portion of the gas system is positioned above the deposition chamber. The gas system includes a mixer configured to mix a plurality of gas streams. A transfer member is in fluid communication with the mixer and the gas inlet. The transfer member comprising a pair of horizontally divergent walls configured to spread the gas in a horizontal direction before entering the gas inlet.

Подробнее
22-11-2012 дата публикации

Crucibles made with the cold form process

Номер: US20120291699A1
Автор: Matthew Fonte
Принадлежит: Individual

A crucible for growing crystals, the crucible being formed from Molybdenum and Rhenium. A crucible for growing crystals, the crucible being formed from a metal selected from Group V of the Periodic Table of the Elements. A crucible for growing crystals, the crucible comprising a body and a layer formed on at least a portion of the body, the layer being formed out of Molybdenum.

Подробнее
22-11-2012 дата публикации

Silicon carbide powder and method for producing silicon carbide powder

Номер: US20120295112A1
Принадлежит: Sumitomo Electric Industries Ltd

There are provided a silicon carbide powder for silicon carbide crystal growth and a method for producing the silicon carbide powder. The silicon carbide powder is formed by heating a mixture of a silicon small piece and a carbon powder and thereafter pulverizing the mixture, and is substantially composed of silicon carbide.

Подробнее
06-12-2012 дата публикации

Device for obtaining a multicrystalline semiconductor material, in particular silicon, and method for controlling the temperature therein

Номер: US20120304697A1
Принадлежит: SAET SpA

A device for obtaining multicrystalline silicon, including: at least one crucible made of quartz for the silicon, removably housed in a cup-shaped graphite container; a fluid-tight openable casing; a top induction coil, set facing, with interposition of a graphite plate, the crucible, a lateral induction coil, set around a side wall of the graphite container, and a bottom induction coil, set facing a bottom wall of the graphite container and vertically mobile for varying the distance from the bottom wall; and first means for a.c. electrical supply of the induction coils separately from one another, and second means for supply of a coolant within respective hollow turns of the induction coils; the bottom induction coil includes four spiral windings, arranged alongside one another; electrical switching means enable in use selective connection of the four windings to one another according to different configurations.

Подробнее
17-01-2013 дата публикации

Layered crucible for casting silicon ingot and method of producing same

Номер: US20130015318A1

Provided are a layered crucible for casting a silicon ingot that can suppress dissolution of oxygen into the silicon ingot and a method of producing the same crucible. The layered crucible for casting a silicon ingot is used in the production of a silicon ingot by melting and casting a silicon raw material. The layered crucible comprising: a silica layer provided on the inner side of a mold; and a barium coating layer provided on the surface of the silica layer.

Подробнее
28-02-2013 дата публикации

Ribbon crystal string for increasing wafer yield

Номер: US20130047914A1
Автор: Scott Reitsma
Принадлежит: Max Era Inc

A ribbon crystal has a body with a width dimension, and string embedded within the body. The string has a generally elongated cross-sectional shape. This cross-section (of the string) has a generally longitudinal axis that diverges with the width dimension of the ribbon crystal body.

Подробнее
14-03-2013 дата публикации

High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot

Номер: US20130061800A1
Принадлежит: Toyota Central R&D Labs Inc

A high heat-resistant member includes a graphite substrate including isotropic graphite and a carbide coating film including a carbide, such as tantalum carbide, and covering a surface of the graphite substrate, the carbide coating film having a randomly oriented isotropic grain structure in which crystallites having a size indexed by a full width at half maximum of a diffraction peak of an X-ray diffraction spectrum of not more than 0.2° from (111) planes are accumulated at substantially random. The orientation of the carbide coating film is determined by whether degree of orientation (F) in any Miller plane calculated based on an XRD spectrum using the Lotgering method is within a range from −0.2 to 0.2.

Подробнее
21-03-2013 дата публикации

Microwave plasma reactors

Номер: US20130069531A1

New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.

Подробнее
25-04-2013 дата публикации

Torque For Incrementally Advancing a Catheter During Right Heart Catheterization

Номер: US20130102888A1
Автор: Ahmad Mohamad Slim
Принадлежит: Individual

A torque for controlling the advancement and rotation of a right heart catheter during a right heart catheterization procedure. The torque has a casing with a cavity for receiving a core, and a lumen for receiving the right heart catheter. A gripper is disposed within the core to tightly grip the right heart catheter. The core has a plurality of threads that engage teeth of a handle. The handle is attached to the casing at an axis and rotates about the axis during use. The core has an elongated spiraled recess which is engaged by a guide pin attached to the casing and extending within the cavity. When the handle is rotated, the teeth of the handle engage the threads to rotate the core, and the guide pin engages the elongated spiraled recess to move the core laterally, thereby advancing and rotating the right heart catheter.

Подробнее
26-09-2013 дата публикации

Silica container and method for producing the same

Номер: US20130248408A1
Принадлежит: Shin Etsu Quartz Products Co Ltd

A silica container contains a substrate having a rotational symmetry, containing mainly a silica, and gaseous bubbles in a peripheral part of the substrate; a transparent silica glass in an inner peripheral part of the substrate; and an inner layer, formed on an inner surface of the substrate and containing a transparent silica glass; wherein the substrate contains Li, Na, and K in a total concentration of 50 or less ppm by weight; the substrate has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm; the inner layer contains Li, Na, and K in a total concentration of 100 or less ppb by weight and at least one of Ca, Sr, and Ba in a total concentration of 50 to 2000 ppm by weight; and the inner layer has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm.

Подробнее
10-10-2013 дата публикации

Apparatus for manufacturing silicon substrate

Номер: US20130263777A1
Принадлежит: Korea Institute of Energy Research KIER

There is disclosed an apparatus for manufacturing a silicon substrate including a crucible part, a molding part extended from an outlet of the crucible part, the molding part comprising a molding space where a silicon substrate is formed, and a dummy bar inserted in the molding space from a predetermined portion of the molding part, wherein the dummy bar is formed of a single-crystalline material.

Подробнее
21-11-2013 дата публикации

APPARATUS FOR CLEANING EXHAUST PASSAGE FOR SEMICONDUCTOR CRYSTAL MANUFACTURING DEVICE AND METHOD FOR CLEANING SAME

Номер: US20130306109A1
Автор: OKITA Kenji
Принадлежит: SUMCO CORPORATION

Dust that is accumulated in an exhaust passage provided in a chamber, the exhaust passage for discharging gas in the chamber of a semiconductor crystal manufacturing device, is removed by being sucked from the outside of the chamber. Moreover, an opening and closing valve for cleaning that is detachably attached to an opening of the exhaust passage, the opening facing the chamber, is opened and closed intermittently in a suction state. Furthermore, the opening and closing valve for cleaning is driven by a valve driving unit. The dust accumulated in the exhaust passage is removed efficiently, whereby the time required to clean the exhaust passage is shortened and fluctuations of the pressure inside the chamber when a semiconductor crystal is manufactured are suppressed. 1. An apparatus for cleaning an exhaust passage for a semiconductor crystal manufacturing device , the cleaning apparatus that removes dust that is accumulated in an exhaust passage by sucking the dust from the outside of a chamber , the exhaust passage provided in the chamber to discharge gas in the chamber of a semiconductor crystal manufacturing device , the cleaning apparatus comprising:an opening and closing valve for cleaning that is detachably attached to an opening of the exhaust passage, the opening facing the chamber, the opening and closing valve for cleaning that intermittently opens and closes the opening in a suction state; anda valve driving unit driving the opening and closing valve for cleaning.2. The apparatus for cleaning an exhaust passage for a semiconductor crystal manufacturing device according to claim 1 , further comprising:an insertion tube having a flange portion making contact with an end face of the opening, the insertion tube that can be inserted into the opening; anda valve holder that is attached to the flange portion and holds the opening and closing valve for cleaning.3. The apparatus for cleaning an exhaust passage for a semiconductor crystal manufacturing device ...

Подробнее
28-11-2013 дата публикации

Crystal growth system and method for lead-contained compositions using batch auto-feeding

Номер: US20130312657A1
Автор: Jian Tian, Pengdi Han
Принадлежит: H C Materials Corp

This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).

Подробнее
26-12-2013 дата публикации

Silica glass crucible, method for manufacturing same, and method for manufacturing silicon single crystal

Номер: US20130340671A1
Принадлежит: Shin Etsu Handotai Co Ltd

A method for manufacturing a silica glass crucible, includes: preparing a crucible base material that is made of silica glass and has a crucible shape; fabricating a synthetic silica glass material based on a direct method or a soot method; processing the synthetic silica glass material into the crucible shape without being pulverized; and bonding an inner wall of the crucible base material and an outer wall of the synthetic silica glass material processed into the crucible shape through a silica powder by performing a heat treatment. As a result, it is possible to provide the silica glass crucible that can avoid occurrence of dislocations of silicon single crystal at the time of manufacturing the silicon single crystal, has high heat-resisting properties, and can suppress a reduction in productivity and yield ratio, the manufacturing method thereof, and the method for manufacturing silicon single crystal using such a silica glass crucible.

Подробнее
02-01-2014 дата публикации

Silicon carbide crystal and method of manufacturing silicon carbide crystal

Номер: US20140004303A1
Автор: Makoto Sasaki
Принадлежит: Sumitomo Electric Industries Ltd

An SiC crystal has Fe concentration not higher than 0.1 ppm and Al concentration not higher than 100 ppm. A method of manufacturing an SiC crystal includes the following steps. SiC powders for polishing are prepared as a first source material. A first crystal is grown by sublimating the first source material through heating and precipitating an SiC crystal. A second source material is formed by crushing the first SiC crystal. A second SiC crystal is grown by sublimating the second source material through heating and precipitating an SiC crystal. Thus, SiC crystal and a method of manufacturing an SiC crystal capable of achieving suppressed lowering in quality can be obtained.

Подробнее
07-01-2016 дата публикации

High-pressure vessel for growing group iii nitride crystals and method of growing group iii nitride crystals using high-pressure vessel and group iii nitride crystal

Номер: US20160002817A1
Принадлежит: SixPoint Materials Inc

Present invention discloses a high-pressure vessel of large size formed with a limited size of e.g. Ni—Cr based precipitation hardenable superalloy. Vessel may have multiple zones. For instance, the high-pressure vessel may be divided into at least three regions with flow-restricting devices and the crystallization region is set higher temperature than other regions. This structure helps to reliably seal both ends of the high-pressure vessel, at the same time, may help to greatly reduce unfavorable precipitation of group III nitride at the bottom of the vessel. Invention also discloses novel procedures to grow crystals with improved purity, transparency and structural quality. Alkali metal-containing mineralizers are charged with minimum exposure to oxygen and moisture until the high-pressure vessel is filled with ammonia. Several methods to reduce oxygen contamination during the process steps are presented. Back etching of seed crystals and a new temperature ramping scheme to improve structural quality are disclosed.

Подробнее
02-01-2020 дата публикации

Polysilicon manufacturing apparatus

Номер: US20200002808A1
Принадлежит: Hanwha Chemical Corp

A polysilicon manufacturing apparatus according to an exemplary embodiment of the present invention includes: a reactor in which a reactive gas is introduced to perform a polysilicon manufacturing process by a chemical vapor deposition (CVD) method; and a slit-type nozzle installed at the reactor and spraying a gas inside the reactor to prevent absorption of silicon particles during a process.

Подробнее
07-01-2021 дата публикации

MONOCRYSTALLINE METAL FOIL AND MANUFACTURING METHOD THEREFOR

Номер: US20210002736A1
Принадлежит:

The present invention relates to a method for manufacturing a monocrystalline metal foil and a monocrystalline metal foil manufactured thereby, the method comprising the steps of: fixing each of the ends of polycrystalline metal foil to electrodes; and heat-treating the fixed polycrystalline metal foil to manufacture a monocrystalline metal foil. 1. A method for manufacturing a monocrystalline metal foil , the method comprising:a) a step of fixing each of the ends of a polycrystalline metal foil by electrodes, respectively; andb) a step of heat treating the fixed polycrystalline metal foil to manufacture a monocrystalline metal foil.2. The method of claim 1 , wherein the heat treatment is performed by resistive heating.3. The method of claim 1 , wherein the step a) further includes a step of keeping the polycrystalline metal foil straight by moving one or more electrodes which are fixing each of the ends of the polycrystalline metal foil claim 1 , respectively.4. The method of claim 1 , wherein the step b) is performed by including:i) a primary heat treatment step of increasing a temperature of the polycrystalline metal foil by applying a current to the electrode; andii) a secondary heat treatment step of performing annealing at a finally increased temperature for a predetermined time.5. The method of claim 4 , wherein the polycrystalline metal foil whose length is increased by thermal expansion during the heat treatment in the step b)is kept straight.6. The method of claim 4 , wherein claim 4 , in the step i) claim 4 , the polycrystalline metal foil whose length is increased is kept straight by moving one or more electrodes that are attached to the ends of the polycrystalline metal foil claim 4 , respectively.7. The method of claim 4 , wherein the step i) is performed so that the following Relational Expression 1 is satisfied claim 4 ,{'br': None, 'i': L', '−L', 'M', 'L', '−L, 'sub': 1', '0', 'Elo', '1', '0, '()×0.5≤≤()×1.5 \u2003\u2003Relational Expression 1'}{' ...

Подробнее
07-01-2021 дата публикации

System For Efficient Manufacturing Of A Plurality Of High-Quality Semiconductor Single Crystals, And Method Of Manufacturing Same

Номер: US20210002785A1
Принадлежит: SiCrystal GmbH

A system for simultaneously manufacturing more than one single crystal of a semiconductor material by physical vapor transport (PVT) includes a plurality of reactors and a common vacuum channel connecting at least a pair of reactors of the plurality of reactors. Each reactor has an inner chamber adapted to accommodate a PVT growth structure for growth of a single semiconductor crystal. The common vacuum channel is connectable to a vacuum pump system for creating and/or controlling a common gas phase condition in the inner chambers of the pair of reactors.

Подробнее
07-01-2021 дата публикации

APPARATUS AND METHODS FOR ALIGNMENT OF A SUSCEPTOR

Номер: US20210002786A1
Принадлежит:

The embodiments described herein generally relate to a stem assembly for coupling a susceptor to a process chamber. The stem assembly includes a pivot mechanism, a first flexible seal coupled to the pivot mechanism, a second flexible seal coupled to a plate on a first side of the plate, the plate having a second side coupled to the first flexible seal, a housing coupled to the second flexible seal, and a motion assembly adapted to move the housing in an X axis and a Y axis, and position the susceptor angularly relative to an X-Y plane of the process chamber. 1. A thermal processing chamber comprising:a chamber body;a susceptor positioned in the chamber body;a pivot mechanism is coupled to the chamber body;a first flexible seal coupled between the pivot mechanism and the vertical actuator;a stem coupled to the susceptor; anda motion assembly coupled to the stem outside of chamber body, the motion assembly comprising a lateral adjustment device and a tilt adjustment mechanism, both the lateral adjustment device and the tilt mechanism adapted to position a major surface of the susceptor in plane that is parallel to an X-Y plane of the chamber body and position the stem along a longitudinal axis of the chamber, wherein the pivot mechanism is configured to provide angular movement of the motion assembly relative to the chamber body.2. The chamber of claim 1 , wherein the motion assembly comprises the first flexible seal and a second flexible seal.3. The chamber of claim 2 , wherein one of the first or second flexible seals is substantially limited to movement in an X axis or a Y axis.4. The chamber of claim 2 , wherein one of the first or second flexible seals is substantially limited to movement along the longitudinal axis of the chamber.5. The chamber of claim 2 , wherein the lateral adjustment device comprises an X adjustment plate and a Y adjustment plate that are coupled to adjacent sides of a base plate disposed adjacent to one of the first or second flexible seals ...

Подробнее
03-01-2019 дата публикации

SINGLE CRYSTAL INGOT GROWING APPARATUS

Номер: US20190003075A1
Принадлежит:

The present invention relates to a single crystal ingot growing apparatus capable of precisely controlling an Ox volatilization on a silicon melt solution surface by uniformly forming a flow velocity of an inert gas flowing along the silicon melt solution surface. The present invention provides a single crystal ingot growing apparatus, including: a crucible containing a silicon melt solution; a heat shielding member mounted to hang above the crucible and cooling a single crystal ingot grown from the silicon melt solution of the crucible; a first flow path formed between an outer circumferential surface of the single crystal ingot and an inner circumferential surface of the heat shielding member, in which an inert gas is vertically moved downward; and a second flow path formed between a lower end of the heat shielding member and an upper surface of the silicon melt solution, in which the inert gas is horizontally moved outward, wherein an oxygen concentration in the single crystal is controlled depending on a volume ratio of the second flow path to the first flow path. 1. A single crystal ingot growing apparatus , comprising:a crucible containing a silicon melt solution;a heat shielding member mounted to hang above the crucible and cooling a single crystal ingot grown from the silicon melt solution of the crucible;a first flow path formed between an outer circumferential surface of the single crystal ingot and an inner circumferential surface of the heat shielding member, in which an inert gas is vertically moved downward; anda second flow path formed between a lower end of the heat shielding member and an upper surface of the silicon melt solution, in which the inert gas is horizontally moved outward,wherein an oxygen concentration in the single crystal is controlled depending on a volume ratio of the second flow path to the first flow path.2. The single crystal ingot growing apparatus of claim 1 , wherein the volume ratio of the second flow path to the first flow ...

Подробнее
13-01-2022 дата публикации

CRYSTAL GROWTH APPARATUS

Номер: US20220010457A1
Принадлежит:

The present invention relates to an apparatus for growing crystals. The apparatus comprises a chamber and a crucible being arranged in a heatable accommodation space of the chamber, wherein the crucible comprises an inner volume which is configured for growing crystals inside. The crucible comprises a bottom from which respective side walls extend to a top section of the crucible. The crucible comprises at least one a deposition section which is configured for attaching a seed crystal, wherein the deposition section is formed on at least one of the side wall and the top section of the crucible. 2. Apparatus according to claim 1 ,wherein the bottom is free of a deposition section for a seed crystal.3. Apparatus according to claim 1 ,wherein the crucible extends between the bottom and the top section along a vertical direction.4. Apparatus according to claim 1 ,wherein the crucible comprises plurality of deposition sections, each being configured for attaching a seed crystal,wherein the deposition sections are spaced apart from each other and are formed on at least one of the side wall and the top section of the crucible.5. Apparatus according to claim 1 ,wherein the crucible comprises at least one protrusion extending from an inner surface, in particular from the side wall or the top section of the crucible, into the inner volume,wherein the deposition section is formed at the protrusion.6. Apparatus according to claim 5 ,wherein the crucible comprises a plurality of protrusions extending from the inner surface of the crucible into the inner volume,wherein the protrusions are spaced apart from each other.7. Apparatus according to claim 1 ,wherein the crucible comprises at least one nozzle,wherein the nozzle is configured for injecting a reaction fluid into the inner volume of the crucible.8. Apparatus according to claim 7 ,wherein the at least one nozzle is configured for ejecting the reaction fluid in a direction towards one of the deposition sections.9. Apparatus ...

Подробнее
08-01-2015 дата публикации

VAPOR PHASE GROWTH APPARATUS AND VAPOR PHASE GROWTH METHOD

Номер: US20150007766A1
Принадлежит: NuFlare Technology, Inc.

A vapor phase growth apparatus of an embodiment includes: a reaction chamber; a gas supply path connected to an organic metal supply source at a first connection, the gas supply path being connected to a carrier gas supply source, the gas supply path supplies a process gas including organic metal and a carrier gas into the reaction chamber; a gas discharge path connected to the organic metal supply source at a second connection, the gas discharge path discharges the process gas to the outside of the apparatus; a first mass flow controller and a first adjustment device provided at the gas supply path; a second adjustment device provided at the gas discharge path; and a shortcut path connecting the gas supply path to the gas discharge path. One of the first and the second adjustment device is a back pressure regulator, and the other is a mass flow controller. 1. A vapor phase growth apparatus comprising:a reaction chamber;a gas supply path connected to an organic metal supply source supplying organic metal at a first connection, the gas supply path being connected to a carrier gas supply source supplying a carrier gas, the gas supply path configured to supply a process gas including the organic metal and the carrier gas to the reaction chamber;a gas discharge path connected to the organic metal supply source at a second connection, the gas discharge path configured to discharge the process gas including the organic metal and the carrier gas to an outside of the apparatus;a first mass flow controller provided at the gas supply path, the first mass flow controller being provided at the side of the carrier gas supply source in relation to the first connection;a first adjustment device provided at the gas supply path, the first adjustment device being provided at a side of the reaction chamber in relation to the first connection;a second adjustment device provided at the gas discharge path, the second adjustment device being provided at an outside of the apparatus in ...

Подробнее
14-01-2016 дата публикации

APPARATUS AND METHODS FOR ALIGNMENT OF A SUSCEPTOR

Номер: US20160010239A1
Принадлежит:

The embodiments described herein generally relate to a stem assembly for coupling a susceptor to a process chamber. The stem assembly includes a pivot mechanism, a first flexible seal coupled to the pivot mechanism, a second flexible seal coupled to a plate on a first side of the plate, the plate having a second side coupled to the first flexible seal, a housing coupled to the second flexible seal, and a motion assembly adapted to move the housing in an X axis and a Y axis, and position the susceptor angularly relative to an X-Y plane of the process chamber. 1. A thermal processing chamber comprising:a susceptor;a stem coupled to the susceptor; anda motion assembly coupled to the stem, the motion assembly comprising a lateral adjustment device and a tilt adjustment mechanism adapted to position a major surface of the susceptor in plane that is parallel to an X-Y plane of the chamber and position the stem along a longitudinal axis of the chamber.2. The chamber of claim 1 , wherein the motion assembly comprises at least two flexible seals.3. The chamber of claim 2 , wherein one of the at least two flexible seals is substantially limited to movement in an X axis or a Y axis.4. The chamber of claim 2 , wherein one of the at least two flexible seals is substantially limited to movement along the longitudinal axis of the chamber.5. The chamber of claim 2 , wherein the lateral adjustment device comprises an X adjustment plate and a Y adjustment plate that are coupled to adjacent sides of a base plate disposed adjacent to one of the at least two flexible seals.6. The chamber of claim 5 , wherein each of the X adjustment plate and the Y adjustment plate comprise a set screw that is coupled to a housing coupled to the stem.7. The chamber of claim 1 , wherein the motion assembly further comprises a vertical actuator having a base disposed in a plane that is substantially normal to the longitudinal axis claim 1 , and a bracket disposed in a plane that is substantially normal to ...

Подробнее
09-01-2020 дата публикации

SILICON INGOT GROWTH CRUCIBLE WITH PATTERNED PROTRUSION STRUCTURED LAYER

Номер: US20200010978A1
Принадлежит: REC SOLAR PTE. LTD.

A crucible for growing silicon ingots may include a vessel having a bottom wall and side walls surrounding an inner portion of the vessel. A coating layer is applied to inner surfaces of the bottom wall and the side walls, the coating layer including a temperature-resistant material compatible with ingot growth from molten silicon such as silicon nitride. A patterned protrusion layer is applied at the inner surface of the bottom wall, which includes a matrix consisting of a temperature-resistant material compatible with ingot growth from molten silicon such as silicon nitride. Furthermore, the patterned protrusion layer includes particles of a nucleation enhancing material such as silica, the particles locally protruding from the matrix. The protruding particles may generate a pattern of multiple nucleation points during crystal growth of the ingot. Due to such multiple nucleation points, a dislocation density defect propagation towards a top may be reduced during crystal growth such that, e.g., solar cells produced with wafers sliced from the resulting ingot may have an improved conversion efficiency. 1. A crucible for growing silicon ingots , the crucible comprising:a vessel having a bottom wall and side walls surrounding an inner portion of the vessel;a coating layer applied to inner surfaces of the bottom wall and the side walls, the coating layer comprising a temperature-resistant material compatible with ingot growth from molten silicon;a patterned protrusion layer applied at the inner surface of the bottom wall, the patterned protrusion layer comprising a matrix consisting of silicon nitride and further comprising particles of a nucleation enhancing material which is adapted for forming a wetting agent when in contact with a liquid silicon melt, the particles locally protruding from the matrix.2. The crucible of claim 1 , wherein the patterned protrusion layer is applied to the inner surface of the bottom wall exclusively.3. The crucible of claim 1 , wherein ...

Подробнее
03-02-2022 дата публикации

METHOD FOR PURIFYING AN INORGANIC MATERIAL USING A TUBE HAVING A BEND BETWEEN A FIRST END AND A SECOND END OF THE TUBE

Номер: US20220033993A1
Принадлежит:

Methods for purifying reaction precursors used in the synthesis of inorganic compounds and methods for synthesizing inorganic compounds from the purified precursors are provided. Also provided are methods for purifying the inorganic compounds and methods for crystallizing the inorganic compounds from a melt. γ and X-ray detectors incorporating the crystals of the inorganic compounds are also provided. 1. A method for forming a purified thallium compound , the method comprising:combining: at least one starting oxidized thallium compound or at least two solid starting inorganic precursor materials, wherein at least one of said at least two solid starting inorganic precursor materials comprises oxidized thallium; and a carbon powder in a reaction vessel;sealing the reaction vessel under vacuum;melting the at least one oxidized thallium compound or the at least two solid starting inorganic precursor materials, wherein the carbon from the carbon powder reduces the thallium oxide to form a reduced, thallium compound or a reduced, thallium-containing inorganic precursor material; andsolidifying the melt.2. The method of claim 1 , wherein the at least one starting oxidized thallium compound is combined with the carbon powder and solidifying the melt provides a solid purified thallium compound having a lower oxygen concentration than the starting oxidized thallium compound.3. The method of claim 1 , wherein the purified thallium compound is TlSI claim 1 , TlSBr claim 1 , TlSeI claim 1 , TlHgI claim 1 , TlGaSe claim 1 , TlBr claim 1 , TlAsSe claim 1 , TlAsSe claim 1 , TlInSe claim 1 , TlSnI5 claim 1 , or TlPbI.4. The method of claim 1 , wherein the at least two solid starting inorganic precursor materials are combined with the carbon powder claim 1 , the two or more inorganic precursor materials claim 1 , react to form the thallium compound in the melt claim 1 , and solidifying the melt provides a solid purified thallium compound.5. The method of claim 4 , wherein the two or ...

Подробнее
03-02-2022 дата публикации

Thermal conductivity estimation method, thermal conductivity estimation apparatus, production method for semiconductor crystal product, thermal conductivity calculator, thermal conductivity calculation program, and, thermal conductivity calculation method

Номер: US20220034829A1
Принадлежит: Sumco Corp

A thermal conductivity estimation method includes: measuring temperature distribution of a measurement sample surface in a steady state by partially heating the measurement sample under predetermined heating conditions; calculating temperature distribution of a sample model surface by performing a heat-transfer simulation on the sample model of the same shape as the measurement sample for a plurality of combinations of provisional thermal conductivities and heating conditions; making a regression model, whose input is temperature distribution of the measurement sample surface and whose output is a thermal conductivity of the measurement sample, by a machine learning technique using training data in a form of a calculation result of the plurality of combinations and the temperature distribution obtained from the plurality of combinations; and estimating the thermal conductivity of the measurement sample by inputting a measurement result of the temperature distribution of the measurement sample surface into the regression model.

Подробнее
19-01-2017 дата публикации

Crucible, fabrication method of the crucible, and fabrication method of a crystalline material by means of such a crucible

Номер: US20170016140A1

A crucible for formation of a crystalline material by solidification by growth on seed, including a bottom, at least one side wall orthogonal to the bottom of the crucible, and at least two marks extending on the inner surface of the at least one side wall in an orthogonal direction to the bottom of the crucible, for materialising the position of at least one seed designed to be positioned at the bottom of the crucible, the seed including at least first and second surfaces orthogonal to the bottom of the crucible. The respective positions of at least two of the marks on at least one of the side walls define, in the crystalline material, a first cutting plane tangent to the first surface of the seed and a second cutting plane tangent to the second surface of the seed.

Подробнее
18-01-2018 дата публикации

Method for cleaning single crystal pulling apparatus, cleaning tool for use therein, and method for manufacturing single crystal

Номер: US20180016701A1
Автор: Kenji Okita
Принадлежит: Sumco Corp

A method for cleaning a single crystal pulling apparatus according to the present invention includes preparing a dummy crucible that simulates a crucible and includes a dummy liquid surface simulating a liquid surface of material melt in the crucible and a first dummy ingot simulating a single crystal ingot in process of being pulled up from the liquid surface of the material melt, and supplying gas in a state in which the dummy crucible is installed in a decompressed chamber of the single crystal pulling apparatus to generate a flow of the gas affected by the dummy crucible and detach foreign substances adhering to a wall surface of the chamber or parts in the chamber.

Подробнее
17-01-2019 дата публикации

POLYCRYSTALLINE SILICON ROD AND METHOD FOR PRODUCING POLYCRYSTALLINE SILICON ROD

Номер: US20190017193A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

To provide polycrystalline silicon suitable as a raw material for production of single-crystalline silicon. A D/L value is set within the range of less than 0.40 when multiple pairs of silicon cores are placed in a reaction furnace in production of a polycrystalline silicon rod having a diameter of 150 mm or more by deposition according to a chemical vapor deposition process and it is assumed that the average value of the final diameter of the polycrystalline silicon rod is defined as D (mm) and the mutual interval between the multiple pairs of silicon cores is defined as L (mm). 1. A polycrystalline silicon rod grown by deposition according to a chemical vapor deposition process , wherein{'sub': v', 'p', 'v', 'p, 'the polycrystalline silicon rod does not comprise any needle crystal having a shape where a grain size din a direction vertical to a long axis direction of the polycrystalline silicon rod is larger than a grain size din a direction in parallel with the long axis direction of the polycrystalline silicon rod (d>d).'}2. A polycrystalline silicon rod grown by deposition according to a chemical vapor deposition process , whereinwhen a surface of a plate-like sample collected so that a direction vertical to a long axis direction of the polycrystalline silicon rod corresponds to a principal plane direction is etched by a mixed liquid of hydrofluoric acid and nitric acid, the etched surface does not comprise any locally heterogeneous crystal having a grain size of 10 μm or more.3. A polycrystalline silicon rod grown by deposition according to a chemical vapor deposition process , whereinthe polycrystalline silicon rod has a diameter (2R) of 150 mm or more, and{'sub': n-1', 'n-1, 'when an X-ray diffraction chart obtained by in-plane rotation with a center of a plate-like sample collected from each of a center region, an R/2 region and an outer region of the polycrystalline silicon rod, as a center of rotation, at an angle φ of 180 degrees is determined, a degree ...

Подробнее
22-01-2015 дата публикации

Crucible for Solidifying a Silicon Ingot

Номер: US20150020545A1
Принадлежит:

The present invention concerns a crucible for solidifying a silicon ingot from molten silicon, characterised in that it is coated at least partially on the inner surface thereof with an outer layer provided in the form of a stack of laminations, each lamination having a thickness varying from 5 to 150 μm, and being formed from a material obtained by thermal decomposition of polysilazane(s) and/or polysiloxane(s) and wherein inorganic particles are embedded having a size varying from 50 μm to 200 μm. The present invention further concerns a method for preparing such crucibles. 1. A crucible useful for solidifying a silicon ingot from molten silicon , wherein it is coated at least partially on its inner surface with an outer layer that is in the form of a stack of strata , each stratum having a thickness varying from 5 to 150 μm , and being formed from a material obtained by thermal decomposition of polysilazane(s) and/or polysiloxane(s) and in which inorganic particles having a size that varies from 50 nm to 200 μm are incorporated.2. The crucible as claimed in claim 1 , wherein the dimensions of said inorganic particles vary from 500 nm to 50 μm.3. The crucible as claimed in claim 1 , wherein said inorganic particles are selected from silicon particles that are optionally surface oxidized claim 1 , boron nitride particles claim 1 , silicon nitride particles claim 1 , silicon carbide particles claim 1 , silicon oxycarbide particles claim 1 , silica particles claim 1 , silicon oxycarbonitride particles claim 1 , silicon and boron carbonitride particles claim 1 , and mixtures thereof.4. The crucible as claimed in claim 1 , wherein said inorganic particles are of the same chemical nature as the material forming the stratum or the strata containing them.5. The crucible as claimed in claim 1 , wherein the outer layer comprises from 2 to 8 strata claim 1 , said strata being superposed and contiguous.6. The crucible as claimed in claim 1 , wherein the thickness of a stratum ...

Подробнее
18-01-2018 дата публикации

Methods for creating a semiconductor wafer having profiled doping and wafers and solar cell components having a profiled field, such as drift and back surface

Номер: US20180019365A1
Принадлежит: 1366 TECHNOLOGIES INC

A semiconductor wafer forms on a mold containing a dopant. The dopant dopes a melt region adjacent the mold. There, dopant concentration is higher than in the melt bulk. A wafer starts solidifying. Dopant diffuses poorly in solid semiconductor. After a wafer starts solidifying, dopant can not enter the melt. Afterwards, the concentration of dopant in the melt adjacent the wafer surface is less than what was present where the wafer began to form. New wafer regions grow from a melt region whose dopant concentration lessens over time. This establishes a dopant gradient in the wafer, with higher concentration adjacent the mold. The gradient can be tailored. A gradient gives rise to a field that can function as a drift or back surface field. Solar collectors can have open grid conductors and better optical reflectors on the back surface, made possible by the intrinsic back surface field.

Подробнее
24-01-2019 дата публикации

CRUCIBLE

Номер: US20190024260A1
Принадлежит:

A crucible includes a wall made of a base material of tungsten or molybdenum or of a material based on tungsten or molybdenum. A barrier layer is disposed at least in sections on an outer side of the wall and/or in the wall. The barrier layer is made of a metallic material having a greater affinity for carbon and/or oxygen than the base material. A method for using a crucible for producing single-crystal sapphire or fused quartz and a method for producing a crucible for high-temperature applications are also provided. 115-. (canceled)16. A crucible , comprising:a wall made of a base material of tungsten or molybdenum or a material based on tungsten or molybdenum, said wall having an outer side; anda barrier layer disposed at least one of on said outer side of said wall or in said base material of said wall, at least in sections, said barrier layer being made of a metallic material having greater affinity for at least one of carbon or oxygen than said base material.17. The crucible according to claim 16 , wherein said barrier layer is formed of tantalum claim 16 , niobium or titanium or of a material based on tantalum claim 16 , niobium or titanium.18. The crucible according to claim 16 , which further comprises an outer layer at least partly covering said barrier layer claim 16 , said outer layer being made of a material different than said barrier layer.19. The crucible according to claim 18 , wherein said outer layer is made of said base material.20. The crucible according to claim 16 , wherein said barrier layer is disposed on an outer third of said wall.21. The crucible according to claim 16 , wherein said barrier layer is a substantially dense layer.22. The crucible according to claim 16 , wherein said barrier layer has a relative density of more than 90%.23. The crucible according to claim 16 , wherein said barrier layer has a relative density of more than 95%.24. The crucible according to claim 16 , wherein said barrier layer has a relative density of more ...

Подробнее
28-01-2021 дата публикации

SYSTEMS AND METHODS FOR CONTINUOUS-FLOW LASER-INDUCED NUCLEATION

Номер: US20210025075A1
Принадлежит: New York University

In general, the systems and methods described in this application relate to laser-induced nucleation in continuous flow. A method of laser-induced nucleation in continuous flow includes injecting a saturated solution, undersaturated solution, or supersaturated solution through an inlet of a device. The method can include converting the saturated solution or undersaturated solution into supersaturated solution by changing a temperature of the saturated solution or undersaturated solution. The method can include passing one or more laser pulses through the supersaturated solution within the device. The method can include flowing the saturated solution, undersaturated solution, or the supersaturated solution through an outlet of the device. 1. A method of laser-induced nucleation in continuous flow , comprising:injecting at least one of a saturated solution, an undersaturated solution, or a supersaturated solution through an inlet of a device;converting the saturated solution or the undersaturated solution into supersaturated solution by changing a temperature of the saturated or the undersaturated solution;passing one or more laser pulses through the supersaturated solution within the device; andflowing at least one of the saturated solution, the undersaturated solution, or the supersaturated solution through an outlet of the device.2. The method of claim 1 , comprising:nucleating crystals, responsive to passing one or more laser pulses through the supersaturated solution within the device, from the supersaturated solution; andcollecting the crystals from the device.3. The method of claim 1 , comprising:contacting the device with a thermoelectric cooler.4. The method of claim 1 , comprising:characterizing, in situ, at least one of crystal size, shape, growth rate, number of crystals, polydispersity, or polymorphism.5. The method of claim 1 , comprising:passing the least one of the saturated solution, undersaturated solution, or supersaturated solution through a filter ...

Подробнее
28-01-2021 дата публикации

POLYCRYSTALLINE SILICON MANUFACTURING APPARATUS

Номер: US20210025077A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

A polycrystalline silicon manufacturing apparatus according to the present invention may comprise an electrode adapter that electrically connects a core wire holder and a metal electrode, wherein the electrode adapter may be non-conductive with respect to a screwing part formed in the metal electrode. A polycrystalline silicon manufacturing apparatus according to the present invention may comprise an electrode adapter that electrically connects a core wire holder and a metal electrode, wherein the electrode adapter may be fixed to the metal electrode by a fixing mechanism part, and the electrode adapter may be non-conductive with respect to the fixing mechanism part. 1. A polycrystalline silicon manufacturing apparatus , which manufactures a polycrystalline silicon by a Siemens method , comprising an electrode adapter that electrically connects a core wire holder and a metal electrode , whereinthe electrode adapter is non-conductive with respect to a screwing part formed in the metal electrode.2. A polycrystalline silicon manufacturing apparatus , which manufactures a polycrystalline silicon by a Siemens method , comprising an electrode adapter that electrically connects a core wire holder and a metal electrode , whereinthe electrode adapter is fixed to the metal electrode by a fixing mechanism part, and the electrode adapter is non-conductive with respect to the fixing mechanism part.3. The polycrystalline silicon manufacturing apparatus according to claim 1 , wherein the electrode adapter and the core wire holder are made of an identical material.4. The polycrystalline silicon manufacturing apparatus according to claim 1 , wherein at least one of the electrode adapter and the core wire holder is made of a carbon material.5. The polycrystalline silicon manufacturing apparatus according to claim 1 , wherein a conductive member is inserted between conductive parts of the electrode adapter and the metal electrode.6. The polycrystalline silicon manufacturing apparatus ...

Подробнее
04-02-2016 дата публикации

SILICON BLOCK, METHOD FOR PRODUCING THE SAME, CRUCIBLE OF TRANSPARENT OR OPAQUE FUSED SILICA SUITED FOR PERFORMING THE METHOD, AND METHOD FOR THE PRODUCTION THEREOF

Номер: US20160032483A1
Принадлежит:

A method for producing a solar crucible includes providing a crucible base body of transparent or opaque fused silica having an inner wall, providing a dispersion containing amorphous SiOparticles, applying a SiO-containing slip layer to at least a part of the inner wall by using the dispersion, drying the slip layer to form a SiO-containing grain layer and thermally densifying the SiO-containing grain layer to form a diffusion barrier layer. The dispersion contains a dispersion liquid and amorphous SiOparticles that form a coarse fraction and a fine fraction with SiOnanoparticles. The weight percentage of the SiOnanoparticles based on the solids content of the dispersion is in the range between 2 and 15% by weight. The SiO-containing grain layer is thermally densified into the diffusion barrier layer through the heating up of the silicon in the crystal growing process. 1. A method for producing a solar crucible with a rectangular shape for use in a crystal growing process for silicon , the method comprising:providing a crucible base body of transparent or opaque fused silica comprising an inner wall;{'sub': '2', 'providing a dispersion containing amorphous SiOparticles;'}{'sub': '2', 'applying a SiO-containing slip layer with a layer thickness of at least 0.1 mm to at least a part of the inner wall by using the dispersion;'}{'sub': '2', 'drying the slip layer so as to form a SiO-containing grain layer; and'}{'sub': '2', 'claim-text': [{'sub': 2', '2, 'wherein the dispersion contains a dispersion liquid and the amorphous SiOparticles that form a coarse fraction with particle sizes in the range between 1 μm and 50 μm and a fine fraction with SiOnanoparticles with particle sizes of less than 100 nm,'}, {'sub': '2', 'wherein a weight percentage of the SiOnanoparticles based on a solids content of the dispersion is in the range between 2 and 15% by wt., and'}, {'sub': '2', 'wherein the SiO-containing grain layer is thermally densified into the diffusion barrier layer ...

Подробнее
01-02-2018 дата публикации

Feed system for crystal growing systems

Номер: US20180030614A1
Принадлежит: SunEdison Semiconductor Ltd

A system for growing a crystal ingot from a melt includes a housing and a feed system. The housing defines a growth chamber and an ingot removal chamber positioned above the growth chamber. The feed system includes an enclosure, a feed material reservoir positioned within the enclosure, and a feed channel including an intake end and an outlet end. The intake end is configured to receive feed material from the feed material reservoir. The housing has an opening in communication with the removal chamber and a connector proximate the opening, and the enclosure has an opening and a connector configured to mate with the housing connector. The feed channel is moveable between a retracted position and an extended position in which the feed channel extends through the opening in the housing and the outlet end is positioned within the removal chamber.

Подробнее
01-05-2014 дата публикации

PRODUCTION APPARATUS AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL

Номер: US20140116324A1
Принадлежит:

An apparatus for producing an SiC single crystal includes a crucible for accommodating an Si—C solution and a seed shaft having a lower end surface where an SiC seed crystal () would be attached. The seed shaft includes an inner pipe that extends in a height direction of the crucible and has a first passage. An outer pipe accommodates the inner pipe and constitutes a second passage between itself and the inner pipe and has a bottom portion whose lower end surface covers a lower end opening of the outer pipe. One passage of the first and second passages serves as an introduction passage where coolant gas flows downward, and the other passage serves as a discharge passage where coolant gas flows upward. A region inside the pipe that constitutes the introduction passage is to be overlapped by a region of not less than 60% of the SiC seed crystal. 1. A production apparatus of an SiC single crystal , comprising:a crucible for accommodating an Si—C solution; anda seed shaft having a lower end surface to which an SiC seed crystal is to be attached, whereinthe seed shaft comprises:an inner pipe constituting a first passage inside;an outer pipe accommodating the inner pipe and constituting a second passage between itself and the inner pipe; anda bottom portion covering a lower end opening of the outer pipe and having the lower end surface, whereinone passage of the first and second passages is an introduction passage through which a coolant gas flows downward, and the other passage is a discharge passage through which the coolant gas flows upward, and whereinviewing from an axial direction of the seed shaft, a region inside the pipe that constitutes the introduction passage is to be overlapped by a region of not less than 60% of the SiC seed crystal.2. The production apparatus according to claim 1 , wherein the inner pipe has a heat insulating property.3. The production apparatus according to claim 1 , wherein a lower end of the inner pipe is disposed apart from the bottom ...

Подробнее
31-01-2019 дата публикации

METHOD FOR PRODUCING NANOCRYSTALS AND NANOCRYSTAL PRODUCTION DEVICE

Номер: US20190032241A1
Принадлежит: SHOEI CHEMICAL INC.

A method for producing a metal oxide nanocrystals according to the embodiment of the present invention comprises continuously flowing a nanocrystal precursor solution comprising a nanocrystal precursor into a continuous flow path and heating the nanocrystal precursor solution in the continuous flow path to create nanocrystals, comprising: providing a nanocrystal precursor solution supply unit that is connected to the continuous flow path and comprises a first vessel and a second vessel; delivering a nanocrystal precursor solution in the second vessel to the continuous low path; and creating a nanocrystal precursor solution in the first vessel as a different batch from the nanocrystal precursor solution in the second vessel. 1. A method for producing nanocrystals by continuously flowing a nanocrystal precursor solution comprising a nanocrystal precursor into a continuous flow path and heating the nanocrystal precursor solution in the continuous flow path to create nanocrystals , comprising:providing a nanocrystal precursor solution supply unit that is connected to the continuous flow path and comprises a first vessel and a second vessel;delivering a nanocrystal precursor solution in the second vessel to the continuous flow path; andcreating a nanocrystal precursor solution in the first vessel as a different batch from the nanocrystal precursor solution in the second vessel.2. The method according to claim 1 , whereintime of the delivering of a nanocrystal precursor solution in the second vessel comprises time of the delivering performed in parallel with creation of the nanocrystal precursor solution in the first vessel.3. The method according to claim 1 , further comprising:monitoring the amount of the nanocrystal precursor solution in the second vessel.4. The method according to claim 3 , whereinthe creating a nanocrystal precursor solution in the first vessel begins when the amount of the nanocrystal precursor solution in the second vessel falls below a ...

Подробнее
04-02-2021 дата публикации

METHOD FOR MANUFACTURING AN ULTRA SMALL GRAIN-SIZE NANOCRYSTALLINE DIAMOND FILM HAVING A SIV PHOTOLUMINESCENCE

Номер: US20210032773A1
Автор: CHEN Chengke, HU Xiaojun
Принадлежит:

A method for manufacturing an ultra small grain-size nanocrystalline diamond film having a SiV photoluminescence, comprises: (1) manufacturing, on a single crystal silicon substrate, a nanocrystalline diamond film having a SiV photoluminescence by using a microwave plasma chemical vapor deposition method; (2) performing oxygen plasma etching treatment on the nanocrystalline diamond film obtained in step (1) for 5-30 min by using an oxygen plasma bombardment method in a mixed gas plasma having an oxygen-nitrogen gas volume ratio of 1:4-6 and at an atmospheric pressure of 0.5-6 torr and a microwave power of 600-1000 W, thereby obtaining the ultra small grain-size nanocrystalline diamond film having the SiV photoluminescence. 1. A method for manufacturing an ultra small grain-size nanocrystalline diamond film having SiV photoluminescence , comprises:(1) manufacturing, on a single crystal silicon substrate, a nanocrystalline diamond film having SiV photoluminescence by using a microwave plasma chemical vapor deposition method.(2) performing oxygen plasma etching treatment on the nanocrystalline diamond film obtained in step (1) for 5-30 min in a mixed gas plasma with an oxygen-nitrogen gas volume ratio of 1:4-6 and at an atmospheric pressure of 0.5-6 torr and a microwave power of 600-1000 W, thereby obtaining the ultra small grain-size nanocrystalline diamond film having the SiV photoluminescence.2. The method according to claim 1 , wherein in the ultra small grain-size nanocrystalline diamond film having SiV photoluminescence claim 1 , the size of the nanocrystalline diamond grains is 2.5 to 5 nm claim 1 , and the size distribution is uniform.3. The method according to claim 1 , wherein the thickness of the nanocrystalline diamond film prepared in step (1) is 1-3 μm claim 1 , and the grain size in the film is 6-10 nm.4. The method according to claim 1 , wherein the operation method of the step (1) is:(a) Pretreatment: first, the single crystal silicon substrate is ...

Подробнее
19-02-2015 дата публикации

Susceptor and wafer holder

Номер: US20150047559A1
Автор: Ick Chan KIM
Принадлежит: LG Innotek Co Ltd

Disclosed is a susceptor. The susceptor comprises a susceptor bottom plate supporting a wafer holder; a susceptor top plate opposite to a susceptor bottom plate; and susceptor lateral-side plates extending from the susceptor bottom plate to the susceptor top plate, and wherein at least one of the susceptor top plate, the susceptor bottom plate, and the susceptor lateral-side plates includes the adiabatic layer.

Подробнее
08-05-2014 дата публикации

METHOD OF SURFACE TREATMENT OF GROUP III NITRIDE CRYSTAL FILM, GROUP III NITRIDE CRYSTAL SUBSTRATE, GROUP III NITRIDE CRYSTAL SUBSTRATE WITH EPITAXIAL LAYER, AND SEMICONDUCTOR DEVICE

Номер: US20140124826A1
Принадлежит: Sumitomo Electric Industries, Ltd.

A Group III nitride crystal substrate is provided for growing an epitaxial layer in which the Group III nitride crystal substrate is used for growing an epitaxial layer on the Group III nitride crystal substrate. The Group III nitride crystal substrate has a surface roughness Ra of 0.5 nm or less and an affected layer in which crystal lattices are out of order and has a thickness of 50 nm or less. The Group III nitride crystal substrate either has a principal plane parallel to any plane of A-plane and M-plane in the wurtzite structure or has an off-angle formed by the principal plane of the Group III nitride crystal substrate and any plane of A-plane and M-plane in the wurtzite structure being 0.05° to 15°. 1. A Group III nitride crystal substrate for growing an epitaxial layer in which the Group III nitride crystal substrate is used for growing an epitaxial layer on the Group III nitride crystal substrate ,wherein the Group III nitride crystal substrate has a surface roughness Ra of 0.5 nm or less,the Group III nitride crystal substrate has an affected layer in which crystal lattices are out of order and has a thickness of 50 nm or less, andthe Group III nitride crystal substrate either has a principal plane parallel to any plane of A-plane and M-plane in the wurtzite structure or has an off-angle formed by the principal plane of the Group III nitride crystal substrate and any plane of A-plane and M-plane in the wurtzite structure being 0.05° to 15°.2. The Group III nitride crystal substrate for growing an epitaxial layer according to claim 1 , wherein a surface oxidized layer has a thickness of 3 nm or less.3. The Group III nitride crystal substrate for growing an epitaxial layer according to claim 1 , wherein the off angle is 0.1° to 10°.4. The Group III nitride crystal substrate for growing an epitaxial layer according to claim 1 , wherein the Group III nitride crystal substrate has a diameter of 50 mm.5. A Group III nitride crystal substrate with an epitaxial ...

Подробнее
15-02-2018 дата публикации

System and method for crystalline sheet growth using a cold block and gas jet

Номер: US20180047864A1

A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from the exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.

Подробнее
25-02-2016 дата публикации

DEPOSITION FILM FORMING APPARATUS INCLUDING ROTARY MEMBER

Номер: US20160053368A1
Автор: LEE Jaehak, LEE Yoojin
Принадлежит:

Disclosed is a deposition film forming apparatus including a plurality of rotary members. The deposition film forming apparatus includes a plurality of rotary members arranged on each substrate support in which the plurality of rotary members are configured to rotate a plurality of substrates, respectively. Each of the rotary members is rotated on the substrate support by a gas-foil method, and a cover is provided on a portion on the substrate support, other than portions where the plurality of rotary members are positioned. A gap is formed between the substrate supports and the cover to allow a predetermined gas used in the gas foil method to be discharged therethrough. 1. A deposition film forming apparatus , the apparatus comprising:a plurality of substrate supports,wherein a plurality of rotary members are arranged on each of the substrate supports, the plurality of rotary members being configured to rotate a plurality of substrates, respectively,each of the rotary members is rotated on the substrate support by means of a gas-foil method,a cover is provided on a portion on the substrate support, except where the plurality of rotary members are positioned, anda gap is formed between the substrate supports and the cover to allow a predetermined gas used in the gas-foil method to be discharged therethrough.2. The apparatus of claim 1 , wherein each of the plurality of substrate supports is configured to be rotatable.3. The apparatus of claim 1 , wherein top surfaces of the plurality of rotary members have the same height as top surface of the cover.4. The apparatus of claim 1 , wherein a plurality of gap formation members are disposed on the substrate supports to form a gap between the substrate supports and the cover.5. The apparatus of claim 1 , wherein a protrusion is formed in each of a plurality of portions on the substrate support where the plurality of rotary members are positioned claim 1 , andeach of the plurality of rotary members are configured to rotate ...

Подробнее
13-02-2020 дата публикации

PRESSURE CONTAINER FOR CRYSTAL PRODUCTION

Номер: US20200048791A1
Принадлежит:

The present invention relates to a pressure container for crystal production having excellent corrosion-resistance. This pressure container produces crystals within the container using a seed crystal, a mineralizer, a raw material, and ammonia in a super critical state and/or a sub-critical state as a solvent. The pressure container has Ag present over the entire surface of at least the exposed inner surface thereof. The Ag can be disposed by one or a combination of two or more among, for instance, Ag lining, Ag welding, and Ag plating. The mineralizer is preferably a fluorine mineralizer containing no halogen atoms other than fluorine. 1. A pressure container for crystal production , the pressure container being configured to produce a crystal using ammonia in a supercritical state and/or a subcritical state as a solvent , a raw material , a mineralizer , and a seed crystal inside the container ,wherein Ag is present at least on the entire surface of an exposed inner surface of the pressure container.2. The pressure container for crystal production according to claim 1 ,wherein the Ag covers the entire inner surface of the pressure container.3. The pressure container for crystal production according to claim 1 ,wherein the crystal is nitride crystal.4. The pressure container for crystal production according to claim 1 ,wherein the mineralizer is a fluorine-based mineralizer and does not contain a halogen atom other than fluorine.5. The pressure container for crystal production according to claim 1 , wherein the pressure container comprises:a pressure container main body having an opening; anda cover configured to close the opening of the pressure container main body.6. The pressure container for crystal production according to claim 5 ,wherein the pressure container main body has a cylindrical shape, and an Ag liner having a bottomed cylindrical shape and having an opening is disposed on an inner surface of the pressure container main body.7. The pressure container ...

Подробнее
13-02-2020 дата публикации

Device and Method for Improving Perovskite Film Formation Uniformity

Номер: US20200048792A1
Принадлежит:

Provided is a device for improving perovskite film formation uniformity, including a grinder and a sheeter, wherein the grinder grinds a perovskite precursor into a powder, the sheeter presses the ground precursor powder into a precursor sheet, the sheeter includes a mold for pressing the precursor powder and a heating device, and the heating device heats a lower mold. A method of using the above device for improving perovskite film formation uniformity, and a method of preparing a perovskite solar cell are also provided. The precursor sheet prepared herein not only solves the problems of uneven particle size and uneven spreading at the bottom of the evaporation source or incomplete coverage, but also prevents splashing during vacuuming and aeration, and meanwhile, since the precursor powder is compacted, it is more conducive to the uniform conduction of heat during the heating and evaporation process, thereby improving the heat energy use efficiency. 1. A device for improving perovskite film formation uniformity , comprising a grinder and a sheeter , wherein the grinder grinds a perovskite precursor into a ground precursor powder , the sheeter presses the ground precursor powder into a precursor sheet , the sheeter comprises a mold for pressing the precursor powder and a heating device , and the heating device heats the mold.2. The device of claim 1 , wherein the sheeter is a manual sheeter claim 1 , the manual sheeter comprises a base claim 1 , a mold base claim 1 , columns claim 1 , an upper plate claim 1 , a hand wheel claim 1 , a screw rod claim 1 , a handle lever and a power source claim 1 , an oil hydraulic system is disposed in the base claim 1 , the heating device is disposed in the mold base claim 1 , the mold base is disposed at a middle portion of the base claim 1 , the mold is disposed on the mold base claim 1 , the upper plate is disposed on the top of the two columns claim 1 , the hand wheel drives the screw rod to rotate claim 1 , the screw rod is ...

Подробнее
13-02-2020 дата публикации

Shielding member and apparatus for single crystal growth

Номер: US20200048793A1
Автор: Yohei FUJIKAWA
Принадлежит: Showa Denko KK

This shielding member that is placed between a SiC source loading portion and a crystal installation portion in an apparatus for single crystal growth, wherein the device includes a crystal growth container including the SiC source loading portion which accommodates a SiC source in an inner bottom portion, and the crystal installation portion facing the SiC source loading portion, and a heating unit that is configured to heat the crystal growth container, and the device grows a single crystal of the SiC source on a crystal installed on the crystal installation portion by sublimating the SiC source from the SiC source loading portion; the shielding member includes a plurality of shielding plates, wherein each area of the plurality of shielding plates is 40% or less of a base area of the crystal growth container, and wherein, in a case where the SiC source loading portion is filled with a SiC source, a shielding ratio provided by a projection surface of the plurality of shielding plates, which is projected on an internal circle of the SiC source loading portion at SiC source surface, is 0.5 or more.

Подробнее
01-03-2018 дата публикации

ADVANCED CRUCIBLE SUPPORT AND THERMAL DISTRIBUTION MANAGEMENT

Номер: US20180057957A1
Принадлежит:

An advanced crucible support system is described that allows for greater heat flow to and from the bottom of a crucible, preferably while also preventing excessive heat from reaching a heat exchanger. In particular, a support base is described that includes a plurality of spaced crown features disposed on the support base plate. The crown features receive and vertically support the crucible and are spaced to support the crucible and to allow heat flow between the plurality of crown features. In doing so, a top surface of spaced crown features are in direct contact with the crucible. 1. An apparatus , comprising:a crucible;a support base plate; anda plurality of spaced crown features disposed on the support base plate, the crown features configured to receive and vertically support the crucible, the plurality of spaced crown features spaced to support the crucible and to allow heat flow between the plurality of spaced crown features, wherein a top surface of the plurality of spaced crown features are in direct contact with the crucible.2. The apparatus as in claim 1 , further comprising:an aperture in the support base plate configured to receive a heat exchanger.3. The apparatus as in claim 2 , whereinthe recessed cavity is contained within an interior space defined by the plurality of spaced crown features and surrounding the aperture; andthe insulation surrounds a portion of the heat exchanger.4. The apparatus as in claim 3 , further comprising:a sheet covering the insulation on a side of the insulation facing the crucible, wherein a gap is formed between the low emissivity sheet and a bottom surface of the crucible, and the sheet is configured to reflect radiation back to the bottom surface of the crucible within the gap.5. The apparatus as in claim 1 , wherein each of the spaced crown features include:a replaceable shim on each of the plurality of crown features.6. The apparatus as in claim 1 , wherein the support base plate defines a plurality of slotted ...

Подробнее
04-03-2021 дата публикации

Nonlinear Optical Crystal Fluorine Boron Beryllium Salt and Its Preparation Process and Use

Номер: US20210062363A1
Принадлежит:

Crystalline NHBeBOFor BeBOF (abbreviated as BBF) has nonlinear optical effect, is not deliquescent in the air, is chemically stable. They can be used in a variety of nonlinear optical fields and will pioneer the nonlinear optical applications in the deep UV band. 1. A fluorine boron beryllium salt , having a chemical formula of BeBOF , and is of a trigonal structure.2. The fluorine boron beryllium salt of is a nonlinear optical crystal.3. The fluorine boron beryllium salt of claim 2 , wherein the nonlinear optical crystal crystallizes in a non-centrosymmetrical structure with a space group of R32 claim 2 , and its cell parameters are a=4.4398 Å claim 2 , b=4.4398 Å claim 2 , c=12.4697 Å claim 2 , α=β=90° claim 2 , γ=120° claim 2 , z=3 claim 2 , and unit cell volume (V)=212.87 Å.4. The fluorine boron beryllium salt of claim 1 , having a structure shown in .5. A process for preparing the fluorine boron beryllium salt according to claim 1 , comprising the following steps:{'sub': 4', '3', '3, 'preparing raw materials NHF, BeO and HBO,'}adding the raw materials into a hydrothermal kettle, followed by addition of water,slowly raising the temperature to 180-240° C., keeping the temperature constant for 5-7 days;cooling followed by separating solid from liquid and washing, to obtain the fluorine boron beryllium salt.6. The process according to claim 5 , wherein the molar ratio of NHF claim 5 , BeO and HBOis (0.1-0.8):1:(0.5-2.5); and/orthe water is added in an amount of ⅓-⅔ (ml:ml) of the volume of the hydrothermal kettle; and/orthe cooling rate is 5-10° C./hour; and/or.the solvent used for washing is water, ethanol or a mixture thereof, and multiple solvents shown above can be used for washing in multiple times.7. A method for growing the fluorine boron beryllium salt nonlinear optical crystal according to claim 3 , comprising:{'sub': 3', '3', '4, 'adding a fluorine boron beryllium compound, a mineralizer comprising HBOand NHF, and water into a hydrothermal kettle to form ...

Подробнее
28-02-2019 дата публикации

Directional solidification method and system

Номер: US20190060990A1
Принадлежит: Silicor Materials Inc

The present invention relates to an apparatus and method for purifying materials using a rapid directional solidification. Devices and methods shown provide control over a temperature gradient and cooling rate during directional solidification, which results in a material of higher purity. The apparatus and methods of the present invention can be used to make silicon material for use in solar applications such as solar cells.

Подробнее
12-03-2015 дата публикации

Holder, crystal growing method, and crystal growing apparatus

Номер: US20150068444A1
Принадлежит: Kyocera Corp

A holder according to one embodiment is a holder which is used in a solution growth method of growing a crystal on a lower surface of a seed crystal by contacting the lower surface of the seed crystal with a solution of silicon including carbon in a crucible having an opening on an upper end thereof. The holder includes: a holding member which holds the seed crystal on a lower surface; the seed crystal which is held on the lower surface of the holding member, has an upper surface larger than the lower surface, and is made of silicon carbide; and a suppressing member which is fixed to a side surface of the holding member, continues from the side surface to outside further outward than an outer circumference of the seed crystal in plan view, and suppresses upward movement of vapor from the solution.

Подробнее
17-03-2022 дата публикации

DISPERSION-HARDENED PRECIOUS-METAL ALLOY

Номер: US20220081751A1
Автор: Wegner Matthias
Принадлежит:

The invention relates to a dispersion-hardened platinum composition comprising at least 70 wt. % platinum, the platinum composition containing up to 29.95 wt. % of one of the metals rhodium, gold, iridium and palladium, between 0.05 wt. % and 1 wt. % oxides of the non-precious metals zirconium, yttrium and scandium, and, as the remainder, the platinum including impurities, wherein between 7.0 mol. % and 11.0 mol. % of the oxides of the non-precious metals is yttrium oxide, between 0.1 mol. % and 5.0 mol. % of the oxides is scandium oxide, and the remainder of the oxides is zirconia, including oxide impurities. The invention also relates to a crucible for crystal growing, a semi-finished product, a tool, a tube, a stirrer, a fiberglass nozzle or a component for producing or processing glass made of a platinum composition of this kind and to a method for the production of a platinum composition. 1. A dispersion-hardened platinum composition comprising at least 70 wt. % platinum , the platinum composition containing up to 29.95 wt. % of one or more of rhodium , gold , iridium and palladium , the platinum composition containing between 0.05 wt. % and 1 wt. % oxides of the non-precious metals zirconium , yttrium and scandium , and the platinum composition containing , as the remainder , the platinum including impurities , whereinbetween 8.0 mol. % and 10.0 mol. % of the oxides of the non-precious metals is yttrium oxide, between 0.1 mol. % and 5.0 mol. % of the oxides is scandium oxide, and the remainder of the oxides is zirconia, including oxide impurities.2. The platinum composition of claim 1 , whereinthe oxides of the non-precious metals zirconium, yttrium and scandium are completely oxidized at least by 70%.3. The platinum composition of claim 1 , whereinthe total proportion of impurities in the platinum composition is at most 1 wt. %.4. The platinum composition of claim 1 , whereinat least 50 mol. % of the oxides of the non-precious metals are cubic zirconia ...

Подробнее
28-02-2019 дата публикации

DEVITRIFICATION AGENT FOR QUARTZ GLASS CRUCIBLE CRYSTAL GROWING PROCESS

Номер: US20190062943A1
Автор: Hansen Richard Lee
Принадлежит:

The present technology provides a devitrification agent for crucibles with improved efficiency over previous devitrification agents for use in various technological fields, including semiconductors and photovoltaic applications. The devitrification agent may include (a) barium, and (b) tantalum, tungsten, germanium, tin, or a combination of two or more thereof. The devitrification agent may be integrated into a crucible during construction, applied to the surface of a finished crucible, and/or added into the silicon melt used in crystal pull. The technology described herein, improves sag resistance and provides a devitrified surface for slower, more controlled dissolution of silica by liquid silicon melt during silicon crystal growth. 1. A crucible comprising a body of vitreous silica having a bottom wall and a sidewall extending up from the bottom wall and defining a cavity for holding the molten silicon material , the sidewall formation and the bottom wall each having an inner and an outer surface , the crucible comprising a devitrification agent comprising (a) a first metal chosen from barium and (b) a second metal chosen from tantalum , tungsten , germanium , tin , or a combination of two or more thereof.2. The crucible of claim 1 , wherein the devitrification agent has a ratio of first metal to second metal of from about 1:1 to about 10:1.3. The crucible of claim 1 , wherein devitrification agent has a ratio of first metal to second metal of from about 2:1 to about 8:1.4. The crucible of claim 1 , wherein devitrification agent has a ratio of first metal to second metal of from about 5:2 to about 6:1.5. The crucible of any of claim 1 , wherein the devitrification agent is disposed as a coating on at least a portion of a surface of the crucible.6. The crucible of claim 5 , wherein the coating comprises the first metal in the form of an alkoxide claim 5 , a hydroxide claim 5 , a carbonate claim 5 , a sol-gel solution claim 5 , or a combination of two or more ...

Подробнее
08-03-2018 дата публикации

METHODS OF PREPARATION OF ORGANOMETALLIC HALIDE STRUCTURES

Номер: US20180066383A1
Принадлежит:

Methods of growing organometallic halide structures such as AMX3 single crystal organometallic halide perovskites, using the inverse temperature solubility. 1. A method of making an AMX3 structure , comprising:dissolving MX2 and AX in a solvent to form dissolved AMX3 in a container, wherein A is an organic cation, M is a divalent cation selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, Cs, or Eu, and X is selected from a halide; andheating the mixture in the solvent to a temperature to form the AMX3 structure, wherein the temperature corresponds to the inverse temperature solubility for dissolved AMX3.2. The method of wherein A is selected from alkyl-ammonium claim 1 , formamidinum (FA) claim 1 , 5-ammoniumvaleric acid claim 1 , or Cesium (Cs).3. The method of claim 1 , wherein the AMXstructure is selected from the group consisting of: MAPbI claim 1 , MAPbBr claim 1 , FAPbBr claim 1 , FAPbI claim 1 , MAPbCl claim 1 , FAPbCl claim 1 , CsPbI claim 1 , CsPbCl claim 1 , CsPbBr claim 1 , FASnI claim 1 , FASnBr claim 1 , FASnCl claim 1 , MASnI claim 1 , MASnBr claim 1 , and MASnCl claim 1 , wherein MA is methylammonium and FA is formamidinum4. The method of claim 1 , wherein the solvent is selected from the group consisting of: N claim 1 ,N-dimethylformamide (DMF) claim 1 , dimethylsulfoxide (DMSO) claim 1 , gamma-butyrolactone (GBL) claim 1 , dichlorobenzene (DCB) claim 1 , toluene claim 1 , and a combination thereof.5. The method of claim 1 , wherein the AMX3 structure is a single crystal.6. The method of claim 1 , wherein when the AMX3 structure is a MAPbBr3 perovskite structure and the solvent is N claim 1 ,N-dimethylformamide (DMF).7. The method of claim 1 , wherein when the AMX3 structure is MAPbI3 perovskite structure and the solvent is γ-butyrolactone (GBL).8. The method of claim 1 , further comprising: controlling the size of the AMX3 structure by adjusting one or more of the following: bottom surface dimensions of the container claim ...

Подробнее
09-03-2017 дата публикации

VITREOUS SILICA CRUCIBLE AND METHOD OF MANUFACTURING THE SAME

Номер: US20170066686A1
Принадлежит:

A method of manufacturing a vitreous silica crucible includes: a taking-out process of taking out the vitreous silica crucible from the mold, a honing process of removing the unfused silica powder layer on the outer surface of the vitreous silica crucible, and further comprising, after the taking-out process and before the honing process, a marking process of marking an identifier comprised of one or more groove line on the outer surface of the vitreous silica crucible, wherein the groove line after the honing process has a cross-sectional shape of an inverse trapezoid and a depth of 0.2 to 0.5 mm, and a width of 0.8 mm or more at the opening of the groove line. The groove line is formed by repeating shifting a focal point of a laser. 1. A method of marking a vitreous silica crucible after taking-out the vitreous silica crucible from a mold and before removing unfused silica power layer on an outer surface of the vitreous silica crucible , said method comprising: marking by a laser beam an identifier comprised of multiple groove lines constituting alphabetic characters , numeric characters , or a bar code on the outer surface of the vitreous silica crucible to identify various kinds of crucibles , whereineach groove line after the honing process has a depth of 0.2 to 0.5 mm, and a width of 0.8 mm or more at the opening of the groove line, and each groove line has a cross-sectional shape of an inverse trapezoid; (i) setting, on the outer surface of the vitreous silica crucible under the unfused silica powder layer, a focal point of the laser released from a laser marker;', '(ii) in that state, reciprocally moving the focal point along a longitudinal direction of the groove line at a width-direction position to form a part of the groove line;', '(iii) shifting the focal point in a width direction to a next width-direction position and repeating step (ii); and', '(iv) repeating step (iii) to form each of the multiple groove lines with the inverse trapezoid cross ...

Подробнее
11-03-2021 дата публикации

CRYSTAL GROWTH APPARATUS

Номер: US20210071316A1
Автор: Shen Weimin, Wang Gang
Принадлежит:

The present invention provides a semiconductor crystal growth apparatus, which comprises a furnace body, a crucible, a pulling device, a deflector, and a magnetic field applying device. The crucible is disposed inside the furnace body for containing silicon melt. The pulling device is disposed on the top of the furnace body for pulling a silicon ingot from the silicon melt. The deflector is in a barrel shape and is disposed in the furnace body in a vertical direction, and the pulling device pulls the silicon ingot in a vertical direction and through the deflector. The magnetic field applying device is configured to apply a magnetic field to the silicon melt in the crucible, in which the distance between the bottom of the deflector and the liquid level of the silicon melt in the direction of the magnetic field is less than that between the bottom of the deflector and the silicon melt in the direction perpendicular to the direction of the magnetic field. 1. A crystal growth apparatus , comprising:a crucible, configured to contain a melt for a crystal growth;a heater, disposed around the crucible and configured to heat the crucible;a deflector sleeve, disposed between the heater and the crucible; andan auxiliary structure, connected with the deflector sleeve to surround a top and a lateral surface of the heater.2. The apparatus according to claim 1 , wherein a lower surface of the deflector sleeve is lower than a lower surface of the heater.3. The apparatus according to claim 1 , wherein a gap between adjacent surfaces of the deflector sleeve and the heater is larger than 10 mm claim 1 , and a gap between adjacent surfaces of the deflector sleeve and the crucible is larger than 10 mm.4. The apparatus according to claim 1 , wherein a thickness of the deflector sleeve is between 2 mm-20 mm.5. The apparatus according to claim 1 , further comprising a furnace body and a thermal isolation structure disposed in the furnace body claim 1 , wherein the auxiliary structure ...

Подробнее
10-03-2016 дата публикации

METHOD FOR FABRICATING THIN FILM TRANSISTOR AND APPARATUS THEREOF

Номер: US20160071961A1
Принадлежит:

A method for fabricating a thin film transistor (TFT) is provided, and the method includes following steps. A gate and an insulation layer are sequentially formed on a substrate. A source electrode and a drain electrode are formed on the insulation layer. A solution type metal oxide precursor is coated on the insulation layer above the gate. A gas is provided, and the gas does not react with the solution type metal oxide precursor. An illumination process is performed on the solution type metal oxide precursor, so as to form a metal oxide semiconductor material through a photo cross-linking reaction of the solution type metal oxide precursor. 1. A method for fabricating a thin film transistor , the method comprising:sequentially forming a gate and an insulation layer on a substrate;forming a source electrode and a drain electrode on the insulation layer;coating a solution type metal oxide precursor on the insulation layer above the gate;providing a gas, wherein the gas does not react with the solution type metal oxide precursor; andperforming an illumination process on the solution type metal oxide precursor, so as to form a metal oxide semiconductor material through a photo cross-linking reaction of the solution type metal oxide precursor.2. The method according to claim 1 , wherein the gas comprises an inert gas and/or nitrogen.3. The method according to claim 2 , further comprising performing a gas exhausting process during the illumination process claim 2 , such that the gas is removed from the solution type metal oxide precursor or the metal oxide semiconductor material claim 2 , and an amount the exhaust gas in the gas exhausting process is between 100 m/hr and 500 m/hr.4. The method according to claim 2 , wherein the solution type metal oxide precursor comprises 2-methoxyl ethanol claim 2 , metal halide claim 2 , metal acetate claim 2 , or metal nitrate.5. The method according to claim 2 , wherein after forming the source electrode and the drain electrode on ...

Подробнее
17-03-2016 дата публикации

Protecting a target pump interior with an ALD coating

Номер: US20160076148A1
Принадлежит: Picosun Oy

An apparatus and method for protecting a target pump interior, where a target pump ( 10 ) inlet is provided with an inlet manifold ( 20 ) and a target pump outlet with an exhaust manifold ( 30 ). The target pump interior is exposed to sequential self-saturating surface reactions by sequential inlet of reactive gases according to an ALD method via the inlet manifold into the target pump interior and outlet of reaction residue via the exhaust manifold, while the target pump is kept running or not running. A technical effect of the invention is protecting a pump interior, which can be also an assembled pump interior, by a confomral protective coating.

Подробнее
07-03-2019 дата публикации

MOLYBDENUM CRUCIBLE

Номер: US20190071793A1
Принадлежит:

The ratio of the coarse grain region in the side wall in the thickness direction thereof is 10% or more and less than 90%. The coarse grain region is defined as such a region in which crystal grains having a grain size of 1 mm or more determined by an intercept method in the height direction of the crucible occupy 95% or more of an area of a measurement region, and the fine grain region is defined as such a region in which crystal grains having a grain size of 10 μm or more and 500 μm or less determined by the intercept method in the height direction of the crucible occupy 95% or more of the area of the measurement region. 1. A molybdenum crucible comprising:a cylindrical side wall; anda bottom provided integrally with one end of the side wall,the side wall including:a coarse grain region which is defined as in the following and configured to extend from an outer wall toward an inner wall; anda fine grain region which is defined as in the following and configured to extend from the inner wall toward the outer wall so as to be in contact with the coarse grain region,the ratio of the coarse grain region in the side wall in the thickness direction thereof is 10% or more and less than 90%,the coarse grain region being defined as such a region in which crystal grains having a grain size of 1 mm or more determined by an intercept method in the height direction of the crucible occupy 95% or more of a area of a measurement region, andthe fine grain region being defined as such a region in which crystal grains having a grain size of 10 μm or more and 500 μm or less determined by the intercept method in the height direction of the crucible occupy 95% or more of a area of a measurement region.2. The molybdenum crucible according to claim 1 , whereinthe ratio of the coarse grain region in the side wall in the thickness direction thereof is 40% or more and less than 80%.3. The molybdenum crucible according to or claim 1 , whereinwhen the side wall is equally divided into 8 parts ...

Подробнее
07-03-2019 дата публикации

EFFICIENT SOLAR GRADE SILICON PRODUCTION SYSTEM

Номер: US20190071794A1
Принадлежит:

Example systems are described for producing solar grade silicon from a silicon-generating reaction and recycled silicon particles. In one example, a system for manufacturing high purity solid silicon includes a reactor and a cooling chamber. The reactor includes one or more outlets and a reactor chamber. The one or more outlets are configured to receive a silicon tetrahalide, a reducing agent, and recycled silicon particles. The reactor chamber is configured to react the silicon tetrahalide and the reducing agent to produce fresh silicon, a halide salt, and reaction heat. The reactor chamber heats the recycled silicon particles, the fresh silicon, and the halide salt using at least a portion of the reaction heat to form molten silicon and molten halide salt. The molten silicon includes melted fresh silicon and melted recycled silicon particles. The cooling chamber is configured to cool the molten silicon to form the solid silicon. 1. A system for manufacturing high purity solid silicon , comprising: one or more inlets configured to receive a silicon tetrahalide, a reducing agent, and recycled silicon particles; and', 'a reactor chamber configured to react the silicon tetrahalide and the reducing agent to produce fresh silicon, a halide salt, and reaction heat, wherein the reactor chamber heats the recycled silicon particles, the fresh silicon, and the halide salt using at least a portion of the reaction heat to form molten silicon and molten halide salt, wherein the molten silicon includes melted fresh silicon and melted recycled silicon particles; and, 'a reactor comprisinga cooling chamber configured to cool the molten silicon to form the solid silicon.2. The system of claim 1 , further comprising a silicon particle processing system comprising a pelletizer configured to pelletize silicon fines to form the recycled silicon particles and transport the recycled silicon particles to at least one of the inlets of the reactor.3. The system of claim 2 , further ...

Подробнее
24-03-2022 дата публикации

ACTIVE BALANCING SEED LIFT

Номер: US20220090292A1
Автор: Powers Jesse Cameron
Принадлежит:

A crystal growing system includes a rotating seed lift assembly to rotate and lift a seed crystal supported by a cable. The seed lift assembly includes a spool that rotates to wrap the cable around the spool, thus raising the cable. As the spool rotates, it moves in an axial direction to avoid displacing the cable in the axial direction. A leadscrew in a counterweight assembly is mechanically coupled to the spool via a coupling (e.g., a sprocket-and-chain coupling coupled to the spool spindle). As the spool rotates, the leadscrew thus rotates at a rate proportional to the spool's rate of rotation. A movable counterweight driven by the leadscrew is thus driven to move in a direction opposite the axial direction (e.g., opposite the movement of the spool). The counterweight assembly is thus configured to offset center-of-mass changes that would have otherwise been introduced by movement of the spool. 1. A seed lifting assembly comprising:a platform base having a cable port for outputting a cable supporting a seed crystal;a spool having a helical collection groove extending along a length of the spool, the spool rotatable about an axis of rotation to wind the cable into the collection groove as the spool moves longitudinally along a spool axis; and{'claim-text': ['a counterweight leadscrew rotatably coupled to the spool such that rotation of the spool induces rotation of the counterweight leadscrew; and', 'a movable counterweight coupled to the counterweight leadscrew, wherein rotation of the counterweight leadscrew induces sliding of the movable counterweight along a counterweight axis that is parallel to the spool axis; and'], '#text': 'a counterweight assembly coupled to the platform base, the counterweight assembly including:'}wherein, in response to longitudinal movement of the spool in a first direction, the counterweight assembly is configured to slide the movable counterweight in a direction opposite the first direction by an amount sufficient to offset any ...

Подробнее
05-03-2020 дата публикации

GLASS MELTING COMPONENT

Номер: US20200071220A1
Принадлежит:

A glass melting component for use in a melt includes at least one guide structure for the conveying and/or nucleation of gas bubbles from the melt. The guide structure is present at least on a surface of the glass melting component which faces the melt during use of the glass melting component. 116-. (canceled)17. A glass melting component for use in a melt , the glass melting component comprising:a surface of the glass melting component facing the melt during use of the glass melting component; andat least one guide structure disposed on said surface facing the melt for at least one of conveying or nucleation of gas bubbles from the melt.18. The glass melting component according to claim 17 , wherein said at least one guide structure is a raised region on said surface facing the melt.19. The glass melting component according to claim 17 , wherein said at least one guide structure is a depression on said surface facing the melt.20. The glass melting component according to claim 17 , wherein said at least one guide structure includes guide structures configured as depressions and guide structures configured as raised regions.21. The glass melting component according to claim 17 , wherein said at least one guide structure has a substantially rectangular cross section.22. The glass melting component according to claim 17 , wherein said at least one guide structure has a cross section having substantially a shape of a segment of a circle.23. The glass melting component according to claim 17 , wherein said at least one guide structure has a depth or a height in a range of from 10 μm to 1000 μm.24. The glass melting component according to claim 17 , wherein said at least one guide structure has a width in a range of from 10 μm to 1000 μm.25. The glass melting component according to claim 17 , wherein said at least one guide structure has an inclination of from 5° to 85° relative to the horizontal in a position of the glass melting component intended for use.26. The glass ...

Подробнее
31-03-2022 дата публикации

METHOD AND APPARATUS FOR MANUFACTURING DEFECT-FREE MONOCRYSTALLINE SILICON CRYSTAL

Номер: US20220098757A1
Принадлежит:

A crystal puller apparatus comprises a pulling assembly to pull a crystal from a silicon melt at a pull speed; a crucible that contains the silicon melt; a heat shield above a surface of the silicon melt; a lifter to change a gap between the heat shield and the surface of the silicon melt; and one or more computing devices to determine an adjustment to the gap using a Pv-Pi margin, at a given length of the crystal, in response to a change in the pull speed. The computer-implemented method by a computing device comprises determining a pull-speed command signal to control a diameter of the crystal; determining a lifter command signal to control a gap between a heat shield and a surface of a silicon melt from which the crystal is grown; and determining an adjustment to the gap, in response to a different pull-speed, using a Pv-Pi margin. 1. A crystal puller apparatus , comprising:a pulling assembly to pull a crystal from a silicon melt at a pull speed;a crucible that contains the silicon melt;a heat shield above a surface of the silicon melt;a lifter to change a gap between the heat shield and the surface of the silicon melt; andone or more computing devices to determine an adjustment to the gap using a Pv-Pi margin, at a given length of the crystal, in response to a change in the pull speed.2. The apparatus of wherein the Pv-Pi margin comprises a first boundary for a Pv region and a second boundary for a Pi region.3. The apparatus of wherein the Pv-Pi margin further comprises a center margin at a halfway between the first boundary and the second boundary.4. The apparatus of wherein the one or more computing devices determines the adjustment to the gap using the center margin.5. The apparatus of wherein the pull speed corresponds to a crystal growth rate (v) of a Voronkov ratio (v/G) and the gap constitutes a temperature gradient value (G) of the Voronkov ratio (v/G).6. The apparatus of wherein one or more of computing devices maintain the Voronkov ratio at a desired ...

Подробнее
12-03-2020 дата публикации

SYSTEMS FOR SELECTIVELY FEEDING CHUNK POLYSILICON OR GRANULAR POLYSILICON IN A CRYSTAL GROWTH CHAMBER

Номер: US20200080225A1
Принадлежит:

A feed assembly supplies polysilicon to a growth chamber for growing a crystal ingot from a melt. An example system includes a housing having support rails for receiving one of a granular tray and a chunk tray and a feed material reservoir positioned above the support rails to selectively feed one of either the granular tray or the chunk tray. A valve mechanism and pulse vibrator are also disclosed. 1. A magnetic pulse vibrator for controlling the flow of polysilicon from one of either a granular tray or a chunk tray of a polysilicon feed assembly to a growth chamber for growing a crystal ingot from a melt , the magnetic pulse vibrator comprising:an electromagnetic energy source that vibrates one of either the granular tray or the chunk tray through the emission of electromagnetic energy; anda controller that controls a feed rate of one of either the granular tray or the chunk tray through control of the voltage supplied to the electromagnetic energy source.2. The magnetic pulse vibrator as set forth in wherein the controller vibrates claim 1 , via the electromagnetic energy source claim 1 , the chunk tray at a first frequency and vibrates claim 1 , via the electromagnetic energy source claim 1 , the granular tray at a second frequency higher than the first frequency.3. A polysilicon feed system comprising:a polysilicon feeder for supplying polysilicon to a growth chamber for growing a single crystal ingot from a melt;a tray disposed above the vibrator; and{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the magnetic pulse vibrator as set forth in for vibrating the tray.'}4. The polysilicon feed system as set forth in wherein the tray is an interchangeable granular tray.5. The polysilicon feed system as set forth in wherein the polysilicon feeder comprises support rails for receiving the interchangeable granular tray.6. The polysilicon feed system as set forth in wherein the interchangeable granular tray comprises:an exterior portion that includes an exterior ...

Подробнее
12-03-2020 дата публикации

CRYSTAL GROWTH APPARATUS

Номер: US20200080232A1
Автор: NOGUCHI Shunsuke
Принадлежит: SHOWA DENKO K.K.

A crystal growth apparatus including: a heat source, a crucible including a container body in which a raw material can be received and a lid part on which a seed crystal can be mounted; a first heat insulating part which is disposed externally of the crucible and in which a first through-hole penetrating in a thickness direction is provided; a second heat insulating part which is disposed externally of the first heat insulating part and in which a second through-hole penetrating in a thickness direction is provided; a moving mechanism configured to move the first heat insulating part and the second heat insulating part relative to each other; and a radiation type temperature measuring unit configured to measure a temperature of the crucible via the first through-hole and the second through-hole. 1. A crystal growth apparatus comprising:a heat source;a crucible including a container body in which a raw material is to be received and a lid part on which a seed crystal is to be mounted;a first heat insulating part which is disposed externally of the crucible and in which at least one first through-hole penetrating in a thickness direction is provided;a second heat insulating part which is disposed externally of the first heat insulating part and in which at least one second through-hole penetrating in a thickness direction is provided;a moving mechanism configured to move the first heat insulating part and the second heat insulating part relative to each other; anda radiation type temperature measuring unit configured to measure a temperature of the crucible via the first through-hole and the second through-hole.2. The crystal growth apparatus according to claim 1 , wherein:the first heat insulating part is movably provided along with the crucible;the second heat insulating part is fixed to a furnace body; andthe moving mechanism is configured to move both the crucible and the first heat insulating part relative to the second heat insulating part.3. The crystal growth ...

Подробнее
12-03-2020 дата публикации

SINGLE CRYSTAL GROWTH CRUCIBLE AND SINGLE CRYSTAL GROWTH METHOD

Номер: US20200080233A1
Автор: Fujikawa Yohei
Принадлежит: SHOWA DENKO K.K.

The present invention provides a single crystal growth crucible and a single crystal growth method which can suppress the recrystallization of the raw material gas which has been sublimated on the surface of the raw material and can suppress the generation of different polytypes in single crystal growth. The single crystal growth crucible includes an inner bottom, a crystal mounting part, and a deposition preventing member, wherein a raw material is provided in the inner bottom, the crystal mounting part faces the inner bottom, the deposition preventing member has a first surface comprising metal carbide, a first surface is disposed to face the crystal mounting part, the deposition preventing member is disposed in a central area of the inner bottom in a plan view from the crystal mounting part, and the first surface is disposed in accordance with the position of the surface of the raw material. 1. A single crystal growth crucible , comprising:an inner bottom,a crystal mounting part, anda deposition preventing member,wherein a raw material is provided in the inner bottom,the crystal mounting part faces the inner bottom,the deposition preventing member has a first surface comprising metal carbide,the first surface is disposed to face the crystal mounting part,the deposition preventing member is disposed in a central area of the inner bottom in a plan view from the crystal mounting part, andthe central area has a similar shape as a cross section of the inner bottom at a position of the surface of the raw material in a plan view from the crystal mounting part, and the central area is an area of 20 area % of a cross sectional area of the cross section from a center.2. The single crystal growth crucible according to claim 1 ,wherein the first surface on the crystal mounting part side of the deposition preventing member is in a range within 20 mm from the surface of the raw material provided in the inner bottom.3. The single crystal growth crucible according to claim 1 , ...

Подробнее
19-06-2014 дата публикации

APPARATUS FOR FABRICATING INGOT AND METHOD FOR FABRICATING INGOT

Номер: US20140165905A1
Принадлежит: LG INNOTEK CO., LTD.

Disclosed are an apparatus for fabricating an ingot and a method for fabricating the ingot. The apparatus comprises a crucible to receive a source material, and a guide member over the source material. The guide member comprises a source material feeding part. 1. An apparatus for fabricating an ingot , the apparatus comprising:a crucible to receive a source material;a seed over the source material; anda guide member over the source material,wherein the guide member comprises a source material feeding part.2. The apparatus of claim 1 , wherein the guide member comprises silicon carbide (SiC).3. The apparatus of claim 2 , wherein the guide member comprises a silicon carbide sintered body.4. The apparatus of claim 1 , wherein the source material feeding part is provided at a lower portion of the guide member.5. The apparatus of claim 1 , wherein the guide member is provided along an inner lateral side of the crucible.6. The apparatus of claim 1 , wherein the guide member has a ring shape having an inner diameter and an outer diameter.7. The apparatus of claim 13 , wherein the inner diameter of the guide member is 0.5 mm to 1 mm smaller than the diameter of the seed.8. The apparatus of claim 14 , wherein a distance between the seed and the guide member is in a range of 0.01 mm to 3 mm.9. A method for fabricating an ingot claim 14 , the method comprising:preparing a crucible to receive a source material;providing a guide member over the source material; andgrowing the ingot by sublimating silicon carbide gas from the source material and the guide member.10. The method of claim 9 , wherein the guide member comprises a source material feeding part claim 9 , and the silicon carbide gas is sublimated from the source material feeding part.11. The apparatus of claim 5 , further comprising a seed over the source material.12. The apparatus of claim 5 , wherein the guide member extends in a longitudinal direction of the crucible.13. The apparatus of claim 6 , wherein the inner ...

Подробнее
31-03-2016 дата публикации

FEED SYSTEM INCLUDING A DEADSORPTION UNIT AND A TUBE AND A METHOD OF USING THE SAME

Номер: US20160090667A1
Принадлежит:

A feed system for a crystal growth apparatus can include a deadsorption unit and a tube. In an embodiment, the deadsorption unit can deadsorb an impurity from a material used to form a crystal. The tube can be fluidly coupled to the deadsorption unit and the crystal growth apparatus to transfer the material from a lower point to a higher point. In another embodiment, any finite number of deadsorption units may be coupled to any finite number of crystal growth apparatuses. In a further embodiment, a crystal growth system can include the feed system and a crystal growth apparatus, wherein the feed system can continuously provide crystal-forming material to the crystal growth apparatus as a crystal is being formed. 1. A feed system for a crystal growth apparatus comprising:a deadsorption unit to deadsorb an impurity from a material used to form a crystal; and the deadsorption unit is adapted to be closer to the first point than to the second point; and', 'the crystal growth apparatus is adapted to be closer to the second point than to the first point., 'a tube adapted to be fluidly coupled to the deadsorption unit and the crystal growth apparatus to transfer the material from a first point at a first elevation to a second point at a second elevation higher than the first elevation, wherein along a fluid path2. The feed system of claim 1 , further comprising a venturi valve or a venturi eductor coupled to the tube claim 1 , wherein the venturi valve or the venturi eductor is to regulate the amount of material entering into the tube.3. The feed system of claim 2 , wherein the venturi valve or venturi eductor is located downstream of the gas source or between the deadsorption unit and the crystal growth apparatus.4. The feed system of claim 1 , further comprising a particle separator to separate a carrier gas from the material before entering a crucible of the crystal growth apparatus.5. A crystal growth system comprising:at least one deadsorption unit to deadsorb an ...

Подробнее
02-04-2015 дата публикации

MICROPLATES AND METHODS FOR PROTEIN CRYSTALLIZATION AND BIOTECHNOLOGY

Номер: US20150093306A1
Принадлежит: Mitegen, LLC

Devices and methods for manual and high-throughput protein crystal growth and growth of other biological and organic crystals. A microplate includes a plurality of cells and a frame that defines the cells in the microplate. In each cell there is at least one well open at top. Each well in a cell may be enclosed at bottom, or it may be open at bottom, in which case the well bottom may be sealed by a separate part, which may be, e.g., a separate film or plate (e.g., of plastic, glass or metal) or a molded part. 1. A microplate comprising: a first well;', 'a second well;', 'wherein said first well and said second well are separated by a separation wall extending in a first direction from the bottom surface to the top surface of said frame, and extending in a second direction along a longitudinal axis; and', 'wherein said first well and said second well are connected via at least one vapor communication channel structured to allow vapor communication between said first well and said second well, and to facilitate the inhibition of liquid transfer between said first well and said second well when at least one cell contains a liquid and when said frame is tilted from a horizontal position or when said frame is subjected to impulsive accelerations., 'a frame comprising a substantially planar top surface, a bottom surface, and including a plurality of cells formed therein, each cell comprising2. The microplate of claim 1 , wherein one of said first well and said second well has a volume of between about 10 microliters to about 200 microliters.3. The microplate of claim 1 , wherein said at least one vapor communication channel is carved into the top surface of said frame.4. The microplate of claim 3 , wherein a top surface of said separation wall comprises a center point and a two end points claim 3 , and wherein said at least one vapor communication channel is carved into the top surface of said separation wall at a position between the center point and one of the two end ...

Подробнее
21-03-2019 дата публикации

METHOD FOR DEPOSITING SILICON FEEDSTOCK MATERIAL, SILICON WAFER, SOLAR CELL AND PV MODULE

Номер: US20190085481A1
Автор: ASBECK Frank
Принадлежит:

A method for depositing silicon feedstock material may include introducing a first gas including silicon into a reactor chamber and introducing a second gas including at least one of gallium or indium into the reactor chamber and depositing silicon doped with at least one of gallium or indium onto a surface within the reactor chamber. Doped silicon feedstock material may be obtained by the method may be used for obtaining a silicon wafer, a solar cell, and/or a PV module. 1. A method for depositing doped silicon feedstock material , the method comprising:introducing a first gas comprising silicon into a reactor chamber; andintroducing a second gas comprising at least one of gallium or indium into the reactor chamber; anddepositing silicon feedstock material doped with at least one of gallium or indium onto a surface within the reactor chamber.2. The method of claim 1 ,wherein the second gas comprises gallium;{'sup': 17', '3, 'wherein the second gas is introduced in such an amount that the concentration of gallium in the deposited doped silicon feedstock material is more than 3×10atoms/cm.'}3. The method of claim 1 ,wherein the second gas comprises one or more components selected from a group consisting of: galliumtrichloride; trimethylgallium; triethylgallium; indiumtrimeythl; indiumtriethyl; and combinations thereof.4. The method of claim 1 ,wherein the second gas is heated to a temperature of more than 200° C. before introducing the second gas into the reactor chamber.5. The method of claim 1 ,wherein the first gas and the second gas are introduced into the reactor chamber as a mixture.6. The method of claim 5 ,wherein at least a portion of the first gas is exposed to a material to generate the second gas in a further reactor chamber before entering the reactor chamber.7. The method of claim 1 ,wherein the first gas and the second gas are introduced separately into the first reactor.8. Doped silicon feedstock material obtained by a method comprising:introducing a ...

Подробнее
21-03-2019 дата публикации

Single-Crystal Production Equipment and Single-Crystal Production Method

Номер: US20190085482A1
Автор: Shindo Isamu
Принадлежит:

Produced is a large single crystal with no crystal grain boundary, which is a high-quality single crystal that has a uniform composition in both the vertical and horizontal directions at an optimum dopant concentration and contains only a small number of negative crystals and exsolution lamellae. A single-crystal production equipment includes at least: a quartz crucible in which a seed crystal is placed on its bottom; a powder raw material supply apparatus which supplies a powder raw material into the quartz crucible; and an infrared ray irradiation apparatus which applies an infrared ray to the powder raw material supplied into the quartz crucible from the powder raw material supply apparatus. 1. A single-crystal production equipment comprising , at least:a quartz crucible in which a seed crystal is placed on its bottom;a powder raw material supply apparatus which supplies a powder raw material into said quartz crucible; andan infrared ray irradiation apparatus which irradiates an infrared ray to said powder raw material supplied into said quartz crucible from said powder raw material supply apparatus,said single-crystal production equipment being configured to produce a single crystal in said quartz crucible by applying said infrared ray into said quartz crucible from said infrared ray irradiation apparatus and thereby melting and solidifying said powder raw material,wherein said single-crystal production equipment is configured such that:said supplied powder raw material is irradiated with said infrared ray by said infrared ray irradiation apparatus while being supplied into said quartz crucible from said powder raw material supply apparatus, andsaid powder raw material supply apparatus continuously supplies said powder raw material into said quartz crucible in accordance with an amount of melted powder raw material being solidified.2. The single-crystal production equipment according to claim 1 , wherein an auxiliary heating apparatus is arranged on an outer ...

Подробнее