Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 637. Отображено 100.
19-04-2012 дата публикации

Distributed small engine fadec

Номер: US20120095661A1
Принадлежит: Hamilton Sundstrand Corp

A full authority digital engine controller (FADEC) controls an engine attached to an airframe. The FADEC includes an electronic engine controller (EEC) attached to the engine, an airframe data concentrator (ADC) attached to the airframe, and a digital data bus electrically connecting the ADC to the EEC. The ADC is electrically connected to a plurality of airframe sensors to convert the airframe sensor signals to airframe sensor digital data. The digital bus conducts the airframe sensor digital data to the EEC.

Подробнее
03-05-2012 дата публикации

Systems, methods, and apparatus for compensating fuel composition variations in a gas turbine

Номер: US20120102914A1
Принадлежит: General Electric Co

Certain embodiments of the invention may include systems and methods for compensating fuel composition variations in a gas turbine. According to an example embodiment of the invention, a method is provided for compensating for fuel composition variations in a turbine. The method can include: monitoring at least one fuel parameter associated with a turbine combustor; monitoring one or more combustion dynamics characteristics associated with the turbine combustor; monitoring one or more performance and emissions characteristics associated with the turbine; estimating fuel composition based at least in part on the at least one fuel parameter, the one or more combustion dynamics characteristics, and the one or more performance and emissions characteristics, and adjusting at least one fuel parameter based at least in part on the estimated fuel composition.

Подробнее
17-05-2012 дата публикации

Power plant and method of operation

Номер: US20120119512A1
Автор: Samuel David Draper
Принадлежит: General Electric Co

A main air compressor delivers a compressed ambient gas flow with a compressed ambient gas flow rate to a turbine combustor. A fuel stream with a flow rate is delivered to the turbine combustor and mixed with the compressed ambient gas flow and an exhaust gas flow and burned with substantially stoichiometric combustion to form the exhaust gas flow and drive a turbine, thus operating the power plant at a first load. A portion of the exhaust gas flow is recirculated from the turbine to the turbine compressor and a portion is delivered to an exhaust path. The fuel stream flow rate and the compressed ambient gas flow rate are reduced, and substantially stoichiometric combustion is maintained and the power plant is operated at a second load. The fuel stream flow rate is further reduced and lean combustion is achieved and the power plant is operated at a third load.

Подробнее
25-04-2013 дата публикации

System for turbine combustor fuel assembly

Номер: US20130098040A1
Принадлежит: General Electric Co

A system includes a gas turbine engine having a combustor, a liquid fuel supply coupled to the combustor, and a water supply coupled to the liquid fuel supply. The water supply is configured to flow water through the liquid fuel supply while the liquid fuel supply is not in use to flow a liquid fuel.

Подробнее
23-05-2013 дата публикации

Method and apparatus for optimizing the operation of a turbine system under flexible loads

Номер: US20130125557A1
Принадлежит: Individual

A gas turbine system includes a compressor protection subsystem; a hibernation mode subsystem; and a control subsystem that controls the compressor subsystem and the hibernation subsystem. At partial loads on the turbine system, the compressor protection subsystem maintains an air flow through a compressor at an airflow coefficient for the partial load above a minimum flow rate coefficient where aeromechanical stresses occur in the compressor. The air fuel ratio in a combustor is maintained where exhaust gas emission components from the turbine are maintained below a predetermined component emission level while operating at partial loads.

Подробнее
08-08-2013 дата публикации

Gas turbine engine thermal management system

Номер: US20130202406A1
Принадлежит: United Technologies Corp

A thermal management system for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a heat exchanger and a valve that controls an amount of a first fluid that is communicated through the heat exchanger A first sensor senses a first characteristic of a second fluid that is communicated through the heat exchanger to exchange heat with the first fluid and a second sensor senses a second characteristic of the second fluid. A positioning of the valve is based on at least one of the first characteristic and the second characteristic.

Подробнее
09-01-2020 дата публикации

AIRCRAFT ELECTRICALLY-ASSISTED PROPULSION CONTROL SYSTEM

Номер: US20200010205A1
Принадлежит: ROLLS-ROYCE PLC

This invention concerns an aircraft propulsion system in which an engine has an engine core comprising a compressor, a combustor and a turbine driven by a flow of combustion products of the combustor. At least one propulsive fan generates a mass flow of air to propel the aircraft. An electrical energy store is provided on board the aircraft. At least one electric motor is arranged to drive the propulsive fan and the engine core compressor. A controller controls the at least one electric motor to mitigate the creation of a contrail caused by the engine combustion products by altering the ratio of the mass flow of air by the propulsive fan to the flow of combustion products of the combustor. The at least one electric motor is controlled so as to selectively drive both the propulsive fan and engine core compressor. 1. An aircraft propulsion system comprising:an engine having a propulsive fan and an engine core, the engine core comprising a compressor, a combustor and a turbine driven by a flow of combustion products of the combustor, the propulsive fan configured to generate a mass flow of air that bypasses the engine core and propels an aircraft on which the engine is located;an electrical energy store on board the aircraft;at least one electric motor arranged to drive the propulsive fan and the engine core compressor; anda controller arranged for control of the at least one electric motor by altering a ratio of the mass flow of air by the propulsive fan to the flow of combustion products of the combustor,wherein control of the at least one electric motor comprises selectively and concurrently driving both the propulsive fan and engine core compressor.2. The aircraft propulsion system according to claim 1 , wherein the at least one electric motor is configured to selectively assist the engine core compressor by supplementing torque applied to the compressor via the turbine due to the engine core combustion process.3. The aircraft propulsion system according to claim 1 ...

Подробнее
10-01-2019 дата публикации

SYSTEM AND METHOD FOR A STOICHIOMETRIC EXHAUST GAS RECIRCULATION GAS TURBINE SYSTEM

Номер: US20190013756A1
Принадлежит:

A system includes a control system configured to control one or more parameters of an exhaust gas recirculation (EGR) gas turbine system to control a portion of electrical power for export from a generator driven by the turbine to an electrical grid. The control system includes a closed-loop controller configured to control parameters of the EGR gas turbine system and an open-loop controller configured to temporarily control the parameters of the EGR gas turbine system to increase the portion of the electrical power exported to the electrical grid to provide a Primary Frequency Response (PFR) in response to a transient event associated with the electrical power. The open-loop controller is configured to provide control signals to increase a concentration of an oxidant in a combustor to provide the PFR in response to the transient event when the EGR gas turbine system is operating in an emissions compliant mode. 1. A system , comprising: a combustor configured to receive and combust a fuel with an oxidant; and', 'a turbine driven by combustion products from the combustor;, 'an exhaust gas recirculation (EGR) gas turbine system, comprisinga generator driven by the turbine, wherein the generator is configured to generate electrical power and to export a portion of the electrical power to an electrical grid; and a closed-loop controller configured to control one or more parameters of the EGR gas turbine system; and', provide control signals to increase a flow rate of fuel to the combustor to provide the PFR in response to the transient event when the EGR gas turbine system is operating in a non-emissions compliant mode; and', 'provide control signals to increase a concentration of the oxidant in the combustor, or decrease a local consumption of the electrical power, or both, to provide the PFR in response to the transient event when the EGR gas turbine system is operating in an emissions compliant mode., 'an open-loop controller configured to temporarily control the one ...

Подробнее
21-01-2021 дата публикации

REDUCING IDLE THRUST IN A PROPULSIVE GAS TURBINE

Номер: US20210017914A1
Автор: TURNER Caroline L.
Принадлежит:

A gas turbine engine for an aircraft comprises a high-pressure (HP) spool comprising an HP compressor and a first electric machine driven by an HP turbine; a low-pressure (LP) spool comprising an LP compressor and a second electric machine driven by an LP turbine; and an engine controller configured to identify a condition to the effect that the engine is in an approach idle condition, and operate the first electric machine in a motor mode and operate the second electric machine in a generator mode to transfer power electrically from the LP spool to the HP spool to thereby reduce the LP spool rotational speed and increase the HP spool rotational speed. 1. A gas turbine engine for an aircraft , comprising:a high-pressure (HP) spool comprising an HP compressor and a first electric machine driven by an HP turbine;a low-pressure (LP) spool comprising an LP compressor and a second electric machine driven by an LP turbine; andan engine controller configured to identify a condition to the effect that the engine is in an approach idle condition, and operate the first electric machine in a motor mode and operate the second electric machine in a generator mode to transfer power electrically from the LP spool to the HP spool to thereby reduce the LP spool rotational speed and increase the HP spool rotational speed.2. The gas turbine engine of claim 1 , further comprising a fan forming part of the LP spool claim 1 , whereby reduction of the LP spool rotational speed substantially reduces the thrust produced by the engine.3. The gas turbine engine of claim 2 , in which the engine is a geared turbofan engine claim 2 , in which a fan thereof is drivingly connected with the LP spool via a reduction gearbox.4. The gas turbine engine of claim 1 , in which the engine controller is further configured to:identify a condition to the effect that, to maintain a target HP spool rotational speed, an operating point of the LP compressor will erode one of a surge margin or a choke margin; ...

Подробнее
12-02-2015 дата публикации

SHAFT DISPLACEMENT CONTROL

Номер: US20150046061A1
Принадлежит:

An aircraft powerplant having a shaft is disclosed in one embodiment in which a squeeze-film damper is used. The squeeze-film damper includes a plurality of sectors having a working fluid. A pressure can be controlled in the working fluid to the sectors to discourage changes in the sectors as a result of vehicle maneuvering. A controller is used to operate upon sensed aircraft motion and regulate pressure in the sectors. 1. An apparatus comprising:a vehicle powerplant structured to provide power and having a shaft structured to rotate with a bladed air moving device disposed within an enclosure that forms a flow path;a bearing assembly supportingly coupled with the shaft;a squeeze-film damper positioned between the bearing assembly and a housing structured to contain the bearing assembly, the squeeze-film damper having a plurality of sectors that are each in fluid communication with a fluid pressure source; anda controller structured to operate upon a sensed vehicle motion and provide a fluid pressure for the plurality of sectors to influence a clearance between the bladed air moving device and the enclosure.2. The apparatus of claim 1 , wherein the plurality of sectors are circumferentially distributed around the squeeze-film damper claim 1 , and which further includes a pressure regulating device capable of changing the fluid pressure in at least one of the plurality of sectors.3. The apparatus of claim 2 , wherein the plurality of sectors are each in communication with a single fluid pressure source.4. The apparatus of claim 1 , wherein at least one of the plurality of sectors is bounded by an o-ring.5. The apparatus of claim 1 , wherein a maneuvering of a vehicle is sensed by one of an accelerometer and a rate gyro claim 1 , and wherein the controller is structured to produce a signal to change a pressure in a sector and counteract a change in angular momentum of the vehicle powerplant.6. The apparatus of claim 5 , which further includes a communications bus ...

Подробнее
16-02-2017 дата публикации

METHOD FOR OPERATING A BURNER ASSEMBLY

Номер: US20170044996A1
Принадлежит: SIEMENS AKTIENGESELLSCHAFT

A method for operating a burner assembly, in particular a burner assembly of a gas turbine, wherein an evaluation variable representing the combustion stability is determined and at least one control variable is altered, at least based on the determined evaluation variable, when the determined evaluation variable does not fall within a previously defined desired range, the desired range of the evaluation variable being constant over the entire output range of the machine, and wherein the evaluation variable is determined based on measured maximum actual amplitudes in previously defined frequency bands and measured actual outputs of the burner assembly. 1. A method for operating a burner assembly , the method comprising:determining an evaluation variable representing the combustion stability, andaltering at least one control variable at least on the basis of the determined evaluation variable when the determined evaluation variable does not lie within a previously defined desired range,wherein the desired range of the evaluation variable is constant over the entire output range of the machine, andwherein the evaluation variable is determined on the basis of measured maximum actual amplitudes in previously defined frequency bands and measured actual outputs of the burner assembly.2. The method as claimed in claim 1 ,wherein the actual amplitudes are alternating pressure actual amplitudes or component acceleration actual amplitudes.3. The method as claimed in claim 1 ,wherein the evaluation variable is determined using output-dependent weighting factors and/or frequency-dependent weighting factors.4. The method as claimed in claim 1 , wherein the evaluation variable is defined as the sum{'br': None, 'sub': f1', '1', '1', 'f2', '2', '2', 'fn', 'n', 'n, 'i': ·k', '·A', '+g', '·k', '·A', '+ . . . +g', '·k', '·A, 'sup': 2', '2', '2, 'g'}{'sub': 1', 'n', '1', 'n', 'f1', 'fn', '1', 'n', '1', 'n, 'wherein Ato Arepresent the maximum amplitudes in the frequency bands fto f, gto ...

Подробнее
08-05-2014 дата публикации

Gas turbine combustor control system

Номер: US20140123624A1
Автор: Karl Dean Minto

In one embodiment, a gas turbine system includes a controller configured to receive fuel composition information related to a fuel used for combustion in a turbine combustor; receive oxidant composition information related to an oxidant used for combustion in the turbine combustor; receive oxidant flow information related to a flow of the oxidant to the turbine combustor; determine a stoichiometric fuel-to-oxidant ratio based at least on the fuel composition information and the oxidant composition information; and generate a control signal for input to a fuel flow control system configured to control a flow of the fuel to the turbine combustor based on the oxidant flow information, a target equivalence ratio, and the stoichiometric fuel-to-oxidant ratio to enable combustion at the target equivalence ratio in the presence of an exhaust diluent within the turbine combustor.

Подробнее
23-02-2017 дата публикации

Devices and methods for early prediction of impending instabilities of a system

Номер: US20170051683A1
Принадлежит: INDIAN INSTITUTE OF TECHNOLOGY MADRAS

The invention includes a method for predicting the operational state of equipment with turbulent flow characterized by time series data relating to its operation. The invention further includes a system and method for predicting the onset of an impending oscillatory instability. Further, the invention includes a system and method for identifying an impending absorbing transition such as flame blowout in combustion systems. A variable representing the dynamics of operation is measured with the help of a sensor, to obtain time series data. A complex network is then derived from the measured time series data. Network properties are then calculated using the complex network to identify the state of stability relating to operation of the equipment. The stability information may include one of thermoacoustic instability, aero-elastic instability such as flutter, flow-induced vibration, magneto-hydrodynamic, aerodynamic, aeromechanical, aero-acoustic instability or onset of flame blowout of a combustor.

Подробнее
04-03-2021 дата публикации

Power Management Systems for Multi Engine Rotorcraft

Номер: US20210061451A1
Автор: William Mathisen Gons
Принадлежит: Bell Textron Inc

A power management system for a multi engine rotorcraft having a main rotor system with a main rotor speed. The power management system includes a first engine that provides a first power input to the main rotor system. A second engine selectively provides a second power input to the main rotor system. The second engine has at least a zero power input state and a positive power input state. A power anticipation system is configured to provide the first engine with a power adjustment signal in anticipation of a power input state change of the second engine during flight. The power adjustment signal causes the first engine to adjust the first power input to maintain the main rotor speed within a predetermined rotor speed threshold range during the power input state change of the second engine.

Подробнее
01-03-2018 дата публикации

ENERGY WEAPON HAVING A FAST START TURBINE FOR A HIGH POWER GENERATOR

Номер: US20180058336A1
Автор: Munevar Erik A.
Принадлежит:

A system platform includes a gas turbine engine coupled to a high power generator. The high power generator, driven by the gas turbine engine, supplies power to high power subsystems of the platform. 1. A weapon system platform comprisinga high-energy beam unit configured to discharge high-energy beams,a gas turbine engine configured to provide power for the high-energy beam unit, the gas turbine engine including a first shaft coupled to a compressor and a high pressure turbine rotor, a second shaft concentric with and independently rotatable relative to the first shaft and coupled to a low pressure turbine rotor, a starter adapted to rotate the first shaft, and a combustor adapted to combine air received from the compressor with fuel and to burn the fuel to supply high pressure gasses toward the high pressure turbine rotor and low pressure turbine rotor to rotate the first and second shafts,a generator coupled to the second shaft of the gas turbine engine and adapted to generate electricity when driven by the gas turbine engine,an energy storage unit coupled to the generator and configured to store the electricity generated by the generator, anda generator control system configured to selectively operate the starter and to selectively deliver fuel to the combustor such that the first shaft is continuously rotated by at least one of the starter and high pressure gasses from the combustor and the second shaft is selectively rotated by high pressure gasses from the combustor.2. The system platform of claim 1 , wherein fuel is selectively delivered to the combustor when an amount of electricity stored in the energy storage unit is below a threshold level.3. The system platform of claim 1 , wherein fuel is selectively delivered to the combustor when a power demand signal is received by the generator control system.4. The system platform of claim 1 , further comprising a load shaft gearbox coupled to the second shaft and the generator claim 1 , wherein the load shaft ...

Подробнее
20-02-2020 дата публикации

AIRCRAFT ENGINE IDLE SUPPRESSOR AND METHOD

Номер: US20200056551A1
Автор: Epstein Alan H.
Принадлежит:

An embodiment of an engine assembly includes a combustion turbine engine having at least a first compressor spool, a first turbine spool, a first shaft connecting the first compressor spool and the first turbine spool, and a combustor disposed in a working gas flow path between the first compressor spool and the first turbine spool. A first controller is programmed with a surge map, and configured to operate the combustion turbine engine in a range extending between a first suppressed idle mode, a second base idle mode, and a maximum takeoff power rating mode. An idle speed suppressor includes at least one idle assist motor connected to the first shaft of the combustion turbine engine. A second controller is configured to manage operation of the idle speed suppressor relative to the combustion turbine engine during times of minimum power demand, such that operating the idle speed suppressor increases a compressor speed in the first suppressed idle mode relative to a compressor speed in the second base idle mode. 1. An engine assembly comprising:a combustion turbine engine comprising a first compressor spool, a first turbine spool, a first shaft connecting the first compressor spool and the first turbine spool, and a combustor disposed in a working gas flow path between the first compressor spool and the first turbine spool;a first controller programmed with a surge map, and configured to operate the combustion turbine engine in a range extending between a first suppressed idle mode, a second base idle mode, and a maximum takeoff power rating mode;an idle speed suppressor including at least one idle assist motor connected to the first shaft of the combustion turbine engine; anda second controller configured to manage operation of the idle speed suppressor relative to the combustion turbine engine during times of minimum power demand, such that operating the idle speed suppressor increases a compressor speed in the first suppressed idle mode relative to a compressor ...

Подробнее
27-02-2020 дата публикации

CONTROL OF COMBUSTION SOURCE WITH AT LEAST ONE POLLUTION CONTROL DEVICE

Номер: US20200063634A1
Принадлежит:

Apparatuses, systems, and methods are disclosed for emissions control. An emissions monitor module measures at least one pollutant level for an exhaust gas flow produced by a combustion source and treated by a pollution control device. The at least one pollutant level may be controllable based on at least one combustion source operating parameter and at least one pollution control device operating parameter. A control module controls the at least one combustion source operating parameter and the at least one pollution control device operating parameter based on the at least one measured pollutant level. 1. An apparatus comprising:an emissions monitor module that measures at least one pollutant level for an exhaust gas flow produced by a combustion source and treated by a pollution control device, wherein the at least one pollutant level is controllable based on at least one combustion source operating parameter and at least one pollution control device operating parameter; anda control module that controls the at least one combustion source operating parameter and the at least one pollution control device operating parameter based on the at least one measured pollutant level,wherein at least a portion of the emissions monitor module and the control module comprise one or more of hardware circuits, a programmable hardware device and executable code, the executable code stored on one or more computer readable storage media.2. The apparatus of claim 1 , wherein the control module determines parameter values for the at least one combustion source operating parameter and the at least one pollution control device operating parameter based on a model of one or more of the combustion source and the pollution control device.3. The apparatus of claim 2 , wherein the model associates sets of operating parameters for the combustion source and the pollution control device with corresponding pollutant levels.4. The apparatus of claim 3 , wherein a set of operating parameters ...

Подробнее
11-03-2021 дата публикации

CONTROLLER AND METHOD

Номер: US20210071591A1
Автор: Panov Vili
Принадлежит: SIEMENS AKTIENGESELLSCHAFT

A controller for a gas turbine, wherein the gas turbine includes the compressor arranged to operate at a rotational speed n, the combustor and the fuel supply including the first fuel supply and the second fuel supply, wherein the compressor is arranged to provide air to the combustor at a steady state air mass flow rate mand wherein the fuel supply is arranged to supply fuel at a fuel mass flow rate mto the combustor. The controller is arranged to, responsive to a load change ΔL to the load L, control the compressor to provide air to the combustor at a new air mass flow rate m, wherein the new air mass flow rate mis within a range between a first threshold mand a second threshold m. 1. A method of controlling a gas turbine arranged to supply a load L , the gas turbine comprising a compressor arranged to operate at a rotational speed , a combustor and a fuel supply means comprising a first fuel supply means and a second fuel supply means , wherein the compressor is arranged to provide air to the combustor at a steady state air mass flow rate {dot over ()}and wherein the fuel supply means is arranged to supply fuel at a fuel mass flow rate mto the combustor , the method comprising:{'o': {'@ostyle': 'single', 'm'}, 'sub': 'TR', 'responsive to a load change ÄL to the load L, controlling the compressor to provide air to the combustor at a new air mass flow rate {dot over ()},'}{'o': [{'@ostyle': 'single', 'm'}, {'@ostyle': 'single', 'm'}, {'@ostyle': 'single', 'm'}], 'sub': TR', 'LBO', 'SUR, 'wherein the new air mass flow rate {dot over ()}is within a range between a first threshold {dot over ()}and a second threshold {dot over ()}.'}2. The method according to claim 1 ,{'o': [{'@ostyle': 'single', 'm'}, {'@ostyle': 'single', 'm'}, {'@ostyle': 'single', 'm'}], 'sub': TR', 'TR, 'wherein controlling the compressor to provide air to the combustor at the new air mass flow rate {dot over ()}comprises determining a correction factor CF for the load change ÄL to the load L and ...

Подробнее
15-03-2018 дата публикации

CONTROLLING TURBINE SHROUD CLEARANCE FOR OPERATION PROTECTION

Номер: US20180073440A1
Принадлежит:

This disclosure provides systems, methods, and storage medium for storing code related to controlling turbine shroud clearance for operational protection. The disclosure includes a multi-stage turbine and a protection system. The multi-stage turbine includes a stage of airfoils with a distal shroud, a casing adjacent the distal shroud and defining a clearance distance between the distal shroud and the casing, and a clearance control mechanism that controllably adjusts the clearance distance based upon receiving a clearance control signal. The protection system has an operational limit value related to a failure mode and provides the clearance control signal to the clearance control mechanism. The protection system receives operational data related to the multi-stage turbine and modifies the clearance control signal based on the operational limit value to increase the clearance distance. 1. A system comprising: a stage of airfoils with a distal shroud;', 'a casing adjacent the distal shroud and defining a clearance distance between the distal shroud and the casing;', 'a clearance control mechanism that controllably adjusts the clearance distance based upon a clearance control signal; and', 'a protection system providing the clearance control signal to the clearance control mechanism, wherein the protection system receives operational data related to the multi-stage turbine and modifies the clearance control signal based on an operational limit value related to a failure mode and the clearance control signal selectively increases the clearance distance to protect the system from the failure mode., 'a multi-stage turbine including2. The system of claim 1 , wherein the stage of airfoils with a distal shroud includes a first stage of the multi-stage turbine having a choked flow point constrained by the clearance distance.3. The system of claim 1 , further comprising a compressor operatively connected to the multi-stage turbine claim 1 , and wherein the failure mode is ...

Подробнее
19-03-2020 дата публикации

MODEL-BASED CONTROL SYSTEM AND METHOD FOR A TURBOPROP ENGINE

Номер: US20200088112A1
Автор: TANG Poi Loon
Принадлежит:

Systems and methods for controlling a gas turbine engine and a propeller are described herein. A target output power for the engine and a target speed for the propeller are received. A measurements of at least one engine parameter and a measurement of at least one propeller parameter are received. At least one engine control command is generated based on the target output power, the measurement of the at least one engine parameter and at least one model of the engine. At least one propeller control command is generated based on the target speed, the measurement of the at least one propeller parameter and the at least one model of the propeller. The at least one engine control command is output for controlling an operation of the engine accordingly and the at least one propeller control command is output for controlling an operation of the propeller accordingly. 1. A control system for an engine and a propeller coupled to the engine , the control system comprising:at least one processing unit; receiving a target output power for the engine and a target speed for the propeller;', 'receiving, from at least one sensing device, a measurement of at least one engine parameter and a measurement of at least one propeller parameter;', 'generating at least one engine control command based on the target output power, the measurement of the at least one engine parameter, and at least one model of the engine, the at least one engine control command comprising instructions for adjusting the at least one engine parameter to bring an output power of the engine toward the target output power;', 'generating at least one propeller control command based on the target speed, the measurement of the at least one propeller parameter, and at least one model of the propeller, the at least one propeller control command comprising instructions for adjusting the at least one propeller parameter to bring a rotational speed of the propeller toward the target speed;', 'outputting the at least one ...

Подробнее
09-04-2015 дата публикации

METHOD OF OPERATING A TURBINE ENGINE AFTER FLAME OFF

Номер: US20150098792A1
Принадлежит:

The present invention relates to a method of decelerating a turbine rotor of a turbine engine. At least one electric motor is engaged with the turbine rotor. A braking system, preferably the starting system, is engaged with the at least one electric motor, preferably the generator of the turbine engine, so as to use the at least one electric motor to apply a negative (braking) torque on the turbine rotor. The method includes after flame off, the braking system being used for dissipating kinetic energy available in the turbine engine after flame off by means of the at least one electric motor. 1. A method of decelerating a turbine rotor of a turbine engine , wherein at least one electric motor is engaged with the turbine rotor , wherein a braking system is engaged with the at least one electric motor so as to use the at least one electric motor to apply a negative torque on the turbine rotor; the method comprising after flame off , the braking system being used for dissipating kinetic energy available in the turbine engine after flame off by means of the at least one electric motor.2. The method according to claim 1 , wherein the electric motor is an electric generator claim 1 , the electric generator being preferably provided for supplying a high-voltage network with power during normal operation of the turbine engine claim 1 , wherein the braking system is used for transforming the kinetic energy into electric energy by means of the electric generator.3. The method according to claim 1 , wherein the braking system is provided by a starting system for run-up of the turbine rotor to firing speed.4. The method according to claim 1 , wherein the negative torque applied on the turbine rotor is varied during the deceleration of the turbine rotor in dependence of at least one key parameter selected from the group consisting of: rotation speed of the turbine rotor claim 1 , vibrational loading on elements or groups of elements connected to or comprised by the turbine ...

Подробнее
03-07-2014 дата публикации

STOICHIOMETRIC COMBUSTION CONTROL FOR GAS TURBINE SYSTEM WITH EXHAUST GAS RECIRCULATION

Номер: US20140182298A1
Принадлежит:

In one embodiment, a system includes at least one sensor configured to communicate a signal representative of a gas turbine operations. The system further includes a controller communicatively coupled to the sensor. The system additionally includes a stoichiometric model configured to receive one or more inputs representative of the gas turbine operations and a measured equivalence ratio, wherein the controller is configured to transform the signal into the one or more inputs and to use the stoichiometric model to derive an actuation signal based on a target equivalence ratio. 1. (canceled)2. (canceled)3. (canceled)4. (canceled)5. (canceled)6. (canceled)7. (canceled)8. (canceled)9. (canceled)10. (canceled)11. (canceled)12. (canceled)13. (canceled)14. (canceled)15. (canceled)16. (canceled)17. (canceled)18. (canceled)19. (canceled)20. (canceled)21. (canceled)22. (canceled)23. (canceled)24. (canceled)25. (canceled)26. (canceled)27. (canceled)28. (canceled)29. (canceled)30. (canceled)31. (canceled)32. (canceled)33. (canceled)34. (canceled)35. (canceled)36. (canceled)37. (canceled)38. (canceled)39. (canceled)40. (canceled)41. (canceled)42. (canceled)43. (canceled)44. (canceled)45. (canceled)46. (canceled)47. (canceled)48. (canceled)49. A system comprising:a at least one sensor configured to communicate a signal representative of gas turbine operations;a controller communicatively coupled to the at least one sensor; anda stoichiometric model configured to receive one or more inputs representative of the gas turbine operations and a measured equivalence ratio in a gas turbine system with exhaust gas recirculation, wherein the controller is configured to transform the signal into the one or more inputs and to use the stoichiometric model to derive an actuation signal based on a target equivalence ratio.50. The system of claim 49 , wherein the controller is configured to derive the measured equivalence ratio by using a measured product of combustion.51. The system of claim ...

Подробнее
10-06-2021 дата публикации

ENGINE THERMAL MANAGEMENT METHODS AND CONTROL SYSTEMS

Номер: US20210172375A1
Принадлежит:

A method of controlling the oil flow in an engine is provided. In preferred embodiments, the method comprises: flowing oil to a first oil pump upstream or downstream of a fuel oil heat exchanger and flowing oil to a second oil pump upstream or downstream of an air oil heat exchanger. One of two control functions to control the oil mass flow rate through the first oil pump is selected wherein the first control function maximizes specific fuel consumption (“SFC”) by the engine and the second control function minimizes average oil temperature. Preferably, the oil pumps are electric and the total combined oil mass flow rate of the first and second oil pumps is maintained constant. 1. A method of controlling the oil flow in an engine comprising:flowing oil to a first oil pump upstream or downstream of a fuel oil heat exchanger;flowing oil to a second oil pump upstream or downstream of an air oil heat exchanger; andselecting between two control functions to control an oil mass flow rate through the first oil pump wherein a first control function maximizes specific fuel consumption (“SFC”) by the engine and a second control function minimizes average oil temperature.2. The method of further comprising the step of controlling the mass flow rate through the second oil pump to keep a combined total mass flow rate of both the first oil pump and the second oil pump constant.3. The method of claim 1 , wherein the first oil pump and second oil pump are mechanically decoupled from the rotation of the engine.4. The method of claim 1 , wherein the second control function seeks a minimum average oil temperature without exceeding an acceptable penalty to SFC.5. The method of claim 1 , wherein the first oil pump is an electrical oil pump.6. The method of claim 5 , wherein the second oil pump is an electrical oil pump.7. The method of claim 1 , wherein the second control function maintains the fuel temperature below its maximum allowable limit.8. The method of claim 7 , wherein the ...

Подробнее
14-05-2020 дата публикации

Shaft resonance control

Номер: US20200149480A1
Автор: Marko BACIC
Принадлежит: Rolls Royce PLC

A method of actively controlling torsional resonance of a rotating shaft of an engine is provided. The shaft has a rotational velocity characterised by a low frequency, rotational velocity term and a high frequency, oscillatory term superimposed on the low frequency term, the oscillatory term being caused by torsional resonance. The method including: measuring the rotational velocity of the shaft; extracting the oscillatory term from the measured rotational velocity; and on the basis of the extracted oscillatory term, applying a torque component to the shaft, the torque component being modulated at the same frequency as the torsional resonance to counteract the torsional resonance.

Подробнее
11-09-2014 дата публикации

Online Enhancement for Improved Gas Turbine Performance

Номер: US20140257666A1
Принадлежит: GENERAL ELECTRIC COMPANY

A system is provided that includes a memory storing a turbomachinery degradation model configured to model degradation of a turbomachinery over time. The system also includes a controller communicatively coupled to the memory and configured to control the turbomachinery based on a feedback signal and the turbomachinery degradation model. Moreover, the turbomachinery degradation model is configured to use a target power to derive a control parameter by estimating a modeled power of the turbomachinery, and the controller is configured to use the control parameter to control the turbomachinery.

Подробнее
28-06-2018 дата публикации

Aircraft Electrically-Assisted Propulsion Control System

Номер: US20180178920A1
Принадлежит: ROLLS-ROYCE PLC

This invention concerns an aircraft propulsion system in which an engine has an engine core comprising a compressor, a combustor and a turbine driven by a flow of combustion products of the combustor. At least one propulsive fan generates a mass flow of air to propel the aircraft. An electrical energy store is provided on board the aircraft. At least one electric motor is arranged to drive the propulsive fan and the engine core compressor. A controller controls the at least one electric motor to mitigate the creation of a contrail caused by the engine combustion products by altering the ratio of the mass flow of air by the propulsive fan to the flow of combustion products of the combustor. The at least one electric motor is controlled so as to selectively drive both the propulsive fan and engine core compressor. 1. An aircraft propulsion system comprising:an engine having an engine core comprising a compressor, a combustor and a turbine driven by a flow of combustion products of the combustor;at least one propulsive fan for generating a mass flow of air to propel the aircraft;an electrical energy store on board the aircraft;at least one electric motor arranged to drive the propulsive fan and the engine core compressor; anda controller arranged for control of the at least one electric motor to mitigate the creation of a contrail caused by the combustion products by altering the ratio of the mass flow of air by the propulsive fan to the flow of combustion products of the combustor,wherein control of the at least one electric motor comprises selectively and concurrently driving both the propulsive fan and engine core compressor.2. An aircraft propulsion system according to claim 1 , wherein the at least one electric motor selectively assists the engine core compressor by supplementing the torque applied to the compressor via the turbine due to the engine core combustion process.3. An aircraft propulsion system according to claim 1 , wherein the controller monitors ...

Подробнее
30-06-2016 дата публикации

Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine

Номер: US20160190963A1

A method includes combusting a fuel and an oxidant in a combustor of an exhaust gas recirculation (EGR) gas turbine system that produces electrical power and provides a portion of the electrical power to an electrical grid. The method further includes controlling, via one or more processors, one or more parameters of the EGR gas turbine system to decrease the portion of the electrical power provided to the electrical grid in response to an over-frequency event associated with the electrical grid, wherein controlling the one or more parameters comprises decreasing a flow rate of fuel to the combustor in response to the over-frequency event.

Подробнее
04-06-2020 дата публикации

Rotating machine control device, rotating machine equipment, rotating machine control method, and rotating machine control program

Номер: US20200173373A1
Принадлежит: Mitsubishi Hitachi Power Systems Ltd

A rotating machine control device is provided with: an operating terminal for changing a parameter of the rotating machine; a clearance measuring device which measures the amount of clearance between a rotor and a casing; and a control device body. The control device body, in accordance with the amount of clearance measured by means of the clearance measuring device, determines an operating amount for the operating terminal so as to vary the rate of change in the parameter, and outputs the operating amount to the operating terminal.

Подробнее
07-07-2016 дата публикации

Method to operate a combustor of a gas turbine

Номер: US20160195023A1
Принадлежит: SIEMENS AG

A method to operate a combustor of a gas turbine is provided. The method includes monitoring the combustion gas temperature by temperature measurements downstream said combustor to measure a respective combustion gas temperature at different locations at respectively equal flow-distances to the burner of the combustion gas, comparing the temperature measurements, opening a valve or increasing the opening position of the valve to control the portion of oxygen containing gas to be tapped off when the comparison reveals that a difference between the temperature measurements exceeds a temperature difference threshold ΔT 1.

Подробнее
06-07-2017 дата публикации

SYSTEMS AND METHODS FOR MITIGATING THE IMPACT OF VANADIUM IN HEAVY FUEL OIL

Номер: US20170191423A1
Принадлежит:

The present application provides a gas turbine engine for combusting a flow of hydrocarbon based liquid fuel with vanadium contaminants therein. The gas turbine engine may include a combustor for combusting the flow of hydrocarbon based liquid fuel, an upstream magnesium mixing system for mixing a flow of magnesium with the flow of hydrocarbon based liquid fuel, a turbine, an air extraction system in communication with the turbine, and a downstream magnesium mixing system for providing the flow of magnesium to the air extraction system. 1. A gas turbine engine for combusting a flow of hydrocarbon based liquid fuel with vanadium contaminants therein , comprising:a combustor for combusting the flow of hydrocarbon based liquid fuel;an upstream magnesium mixing system for mixing a flow of magnesium with the flow of hydrocarbon based liquid fuel;a turbine;an air extraction system in communication with the turbine; anda downstream magnesium mixing system for providing the flow of magnesium to the air extraction system.2. The gas turbine engine of claim 1 , wherein the upstream magnesium mixing system comprises the flow of magnesium and a flow of carrier fluid.3. The gas turbine engine of claim 2 , wherein the upstream magnesium mixing system comprises an upstream magnesium mixing chamber.4. The gas turbine engine of claim 3 , wherein the upstream magnesium mixing chamber comprises an angled upstream counterflow nozzle to produce an upstream mixed magnesium flow.5. The gas turbine engine of claim 4 , wherein the upstream magnesium mixing system comprises a hydrocarbon based liquid fuel mixing chamber to mix the upstream mixed magnesium flow and the flow of hydrocarbon based liquid fuel.6. The gas turbine engine of claim 5 , wherein the hydrocarbon based liquid fuel mixing chamber comprises an angled main counterflow nozzle to produce a homogeneous flow.7. The gas turbine engine of claim 1 , wherein the downstream magnesium mixing system comprises the flow of magnesium and ...

Подробнее
20-06-2019 дата публикации

LIGHT-OFF DETECTION SYSTEM FOR GAS TURBINE ENGINES

Номер: US20190186290A1
Автор: Pascu Victor
Принадлежит:

A system for light-off detection in a gas turbine engine according to an example of the present disclosure includes, among other things, a computing device that has memory and a processor. The computing device is configured to execute a data module and a comparison module. The data module is programmed to access data that corresponds to a present rotational speed of a gas turbine engine component. The comparison module is programmed to cause an indicator to be generated in response to determining that an acceleration rate relating to the present rotational speed meets at least one predetermined acceleration threshold, the indicator relating to an engine light-off condition. 1. A system for light-off detection in a gas turbine engine comprising:a computing device including memory and a processor, the computing device configured to execute a data module and a comparison module;wherein the data module is programmed to access data corresponding to a present rotational speed of a gas turbine engine component; andwherein the comparison module is programmed to cause an indicator to be generated in response to determining that an acceleration rate relating to the present rotational speed meets at least one predetermined acceleration threshold, the indicator relating to an engine light-off condition.2. The system as recited in claim 1 , wherein the comparison module is programmed to cause a flow rate of fuel between a fuel source and a combustor to change in response to the acceleration rate meeting the at least one predetermined acceleration threshold.3. The system as recited in claim 2 , wherein the comparison module is programmed to compare the acceleration rate and at least one command associated with the combustor.4. The system as recited in claim 3 , wherein the at least one command includes a fuel flow signal to a fuel valve and an ignition signal to an ignitor of the combustor.5. The system as recited in claim 1 , wherein the gas turbine engine component is a rotor ...

Подробнее
30-07-2015 дата публикации

SYSTEM AND METHOD FOR A STOICHIOMETRIC EXHAUST GAS RECIRCULATION GAS TURBINE SYSTEM

Номер: US20150214879A1
Принадлежит:

A non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. The instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an EGR gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. The instructions also include instructions to increase a flow rate of fuel to a combustor of the EGR gas turbine system in response to the transient event when the EGR gas turbine system is operating in a non-stoichiometric combustion mode. The instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the EGR gas turbine system is operating in a stoichiometric combustion mode. 1. A method , comprising:combusting a fuel and an oxidant in a combustor of an exhaust gas recirculation (EGR) gas turbine system that produces electrical power and provides a portion of the electrical power to an electrical grid; and (A) increasing a flow rate of fuel to the combustor in response to the transient event when the EGR gas turbine system is operating in a fuel-lean combustion mode;', '(B) increasing a concentration and/or flow rate of the oxidant in the combustor in response to the transient event, and increasing a flow rate of the fuel to the combustor in response to the increased concentration and/or flow rate of the oxidant to maintain a substantially stoichiometric equivalence ratio in the combustor; or', '(C) decreasing a local consumption of the electrical power in response to the transient event to increase the portion of electrical power provided to the electrical grid., 'controlling one or more parameters of the EGR gas turbine system to increase ...

Подробнее
13-08-2015 дата публикации

GAS TURBINE LOAD CONTROL SYSTEM

Номер: US20150226133A1
Принадлежит:

A gas turbine system includes a combustor configured to combust an oxidant and a fuel in the presence of an exhaust gas diluent to produce combustion products, an oxidant supply path fluidly coupled to the combustor and configured to flow the oxidant to the combustor at an oxidant flow rate, and a turbine configured to extract work from the combustion products to produce an exhaust gas used to generate the exhaust gas diluent. The turbine causes a shaft of the gas turbine system to rotate when the work is extracted from the combustion products. The system also includes an electrical generator that generates electrical power in response to rotation by the shaft, and a controller that performs load control in response to a target load by adjusting the oxidant flow rate along the oxidant flow path as a primary load control parameter. 1. A gas turbine system comprising:a turbine combustor configured to combust a compressed oxidant and a fuel in the presence of an exhaust gas diluent generated from an exhaust gas to produce combustion products;an oxidant supply path fluidly coupled to the turbine combustor and configured to flow the compressed oxidant to the turbine combustor at an oxidant flow rate;a turbine configured to extract work from the combustion products to produce the exhaust gas, wherein the turbine causes a shaft of the gas turbine system to rotate when the work is extracted from the combustion products;an electrical generator configured to generate electrical power in response to rotation by the shaft; and one or more tangible, non-transitory, machine readable media collectively storing one or more sets of instructions; and', receive data indicative of a target load for the electrical generator; and', 'perform load control in response to the target load by adjusting the oxidant flow rate along the oxidant supply path as a primary load control parameter, wherein adjusting the oxidant flow rate adjusts combustion within the turbine combustor to change a ...

Подробнее
03-08-2017 дата публикации

ENGINE ARCHITECTURE USING ELECTRIC MACHINE

Номер: US20170218855A1
Автор: DOOLEY Kevin A.
Принадлежит:

There is described an oil and fuel control system and method for an engine. The system comprises an electric machine having a single rotor coupled to a dual channel stator comprising a first stator and a second stator, for operating as a motor to generate motive power; a dual channel motor drive unit coupled to the electric machine; a dual channel full authority digital engine control (FADEC) coupled to the dual channel motor drive unit; an oil delivery system comprising an oil pump and oil accessories, coupled to the single rotor of the electric machine; and a fuel delivery system comprising a fuel pump and fuel accessories, coupled to the single rotor of the electric machine. 1. An oil and fuel control system for an engine , the system comprising:an electric machine having a single rotor coupled to a dual channel stator comprising a first stator and a second stator, for operating as a motor to generate motive power;a dual channel motor drive unit coupled to the electric machine, the motor drive unit having a first motor drive channel and a second motor drive channel;a dual channel full authority digital engine control (FADEC) coupled to the dual channel motor drive unit;an oil delivery system comprising an oil pump and oil accessories, coupled to the single rotor of the electric machine, and driven by the motive power from the electric machine operating as a motor via the first motor drive channel of the dual channel motor drive unit; anda fuel delivery system comprising a fuel pump and fuel accessories, coupled to the single rotor of the electric machine, and driven by the motive power from the electric machine operating as a motor via the second motor drive channel of the dual channel motor drive unit.2. The oil and fuel control system of claim 1 , wherein the first stator is electrically independent from the second stator.3. The oil and fuel control system of claim 1 , further comprising a dual channel power control unit adapted to modulate an amount of torque ...

Подробнее
12-08-2021 дата публикации

SYSTEMS AND METHODS FOR ENGINE CALIBRATION

Номер: US20210246840A1
Автор: Tremblay Jason
Принадлежит:

Methods and systems for calibrating an engine having a rotating shaft are provided. Readings from a plurality of speed sensors provided in one of a plurality of configurations about the shaft are obtained over a plurality of rotations of the shaft, the readings indicative of the passage of position markers and associated with a first precision level. A parameter indicative of relative spacing between the plurality of speed sensors is determined by applying a statistical algorithm to the readings, the parameter being associated with a second precision level higher than the first precision level. The parameter is compared to reference parameters associated with the plurality of configurations to identify an actual speed sensor configuration from amongst the plurality of configurations. The engine is calibrated based on the actual speed sensor configuration. 1. A method for calibrating an engine having a rotating shaft , the method comprising:obtaining, over a plurality of rotations of the shaft, readings from a plurality of speed sensors provided in one of a plurality of configurations about the shaft, the readings indicative of the passage of position markers and associated with a first precision level;determining a parameter indicative of relative spacing between the plurality of speed sensors by applying a statistical algorithm to the readings, the parameter being associated with a second precision level higher than the first precision level;comparing the parameter to reference parameters associated with the plurality of configurations to identify an actual speed sensor configuration from amongst the plurality of configurations; andcalibrating the engine based on the actual speed sensor configuration.2. The method of claim 1 , wherein the readings comprise a count of the position markers between the plurality of speed sensors claim 1 , relative to a reference position on the feedback device.3. The method of claim 2 , wherein the reference position is identified by ...

Подробнее
17-08-2017 дата публикации

BACKFLOW PREVENTION VALVE

Номер: US20170234451A1
Автор: Simpson Scott W.
Принадлежит:

A valve assembly includes an outer housing having a first opening in fluid communication with a first fluid, a second opening in fluid communication with a second fluid, a third opening in fluid communication with a third fluid and a fourth opening in fluid communication with a fourth fluid. The valve assembly includes a piston configured to slide within the outer housing into a first position at which the third opening is blocked from fluid communication with the fourth opening based on a fluid pressure of the first fluid being greater than a fluid pressure of the fourth fluid. The piston is further configured to slide within the outer housing into a second position at which the third opening is in fluid communication with the fourth opening based on the fluid pressure of the second fluid being greater than the fluid pressure of the fourth fluid. 1. An engine bleed-air system , comprising:a bleed valve configured to receive as an input a first gas flow from an engine and a second gas flow from ambient air, and an electrical control signal configured to control a ratio of the first gas flow and the second gas flow to be output as a third gas flow;a servo chamber including a first piston, the servo chamber configured to receive the third gas flow and to control a position of the first piston to control an output gas flow from the engine; anda reverse-flow prevention valve in fluid communication with the first gas flow, the second gas flow, the third gas flow and the fourth gas flow, the reverse-flow prevention valve configured to expose the third gas flow to ambient air based on the fourth gas flow having a pressure greater than the pressure of the first gas flow, and the reverse-flow prevention valve configured to block the third gas flow from the ambient air based on the first gas flow having a pressure greater than the pressure of the fourth gas flow.2. The engine bleed-air system of claim 1 , wherein the reverse-flow prevention valve comprises:an outer housing ...

Подробнее
26-08-2021 дата публикации

Control system and methods of controlling an engine-mounting link system

Номер: US20210261263A1
Принадлежит: General Electric Co

A control system and methods for controlling the position of one or more engine-mounting links of an engine-mounting linkage system are provided. In one aspect, an engine-mounting linkage system includes one or more engine-mounting links that each have an adjustable inclination angle. An inclination angle of a link may be adjusted by an actuator of the control system. One or more controllers of the control system can control the actuator and thus the inclination angle of the link by determining a control command based at least in part on an output received from one or more sensors of the control system. The controllers can then cause the actuator to change the inclination angle of the link based at least in part on the determined control command.

Подробнее
23-08-2018 дата публикации

Method of defining gas turbine engine control ratings

Номер: US20180238243A1
Автор: Stefan M. Poth, JR.
Принадлежит: UNITED TECHNOLOGIES CORPORATION

A disclosed control system and method of controlling a gas turbine engine utilizes a thrust rating schedule generated from airframe selected requirements. The system utilizes a generic logic structure for ratings combined with simple selection logic to customize rating schedules for multiple airframe customers. The use of a common generic logic structure to generate rating schedules for different airframe manufacturers reduces software design effort, memory consumption, and processor throughput requirements.

Подробнее
24-09-2015 дата публикации

DYNAMIC AND AUTOMATIC TUNING OF A GAS TURBINE ENGINE USING EXHAUST TEMPERATURE AND INLET GUIDE VANE ANGLE

Номер: US20150267620A1
Принадлежит:

Methods and systems are provided for dynamically auto-tuning a gas turbine engine. Initially, parameters of the gas turbine engine are monitored to determine that they are within predefined upper and lower limits such that a margin exists. A first incremental adjustment of an inlet guide vane (IGV) angle is performed. If the monitored parameters are still within the predefined upper and lower limits, a second incremental adjustment of the IGV angle is performed. It is determined that the monitored parameters are still within the predefined upper and lower limits. Additionally, it is determined that a predefined value of the IGV angle has been reached such that the IGV angle is not to be further increased or decreased. 1. One or more computer-readable media that , when invoked by computer-executable instructions , perform a method for dynamically auto-tuning a gas turbine engine , the method comprising:monitoring one or more parameters of the gas turbine engine during operation;determining that the one or more monitored parameters of the gas turbine engine are within predetermined upper and lower limits such that a margin exists for the one or more monitored parameters;performing a first incremental adjustment of an inlet guide vane (IGV) angle of the gas turbine engine;upon performing the first incremental adjustment of the IGV angle, determining that the one or more monitored parameters of the gas turbine engine are still within the predetermined upper and lower limits;performing a second incremental adjustment of the IGV angle of the gas turbine engine;upon performing the second incremental adjustment of the IGV angle, determining that the one or more monitored parameters of the gas turbine engine are still within the predetermined upper and lower limits; anddetermining that a predetermined value of the IGV angle has been reached such that the IGV angle is not to be further increased or decreased.2. The one or more computer-readable media of claim 1 , wherein the ...

Подробнее
06-08-2020 дата публикации

GAS TURBINE ENGINE SHAFT BREAK MITIGATION

Номер: US20200248581A1
Принадлежит: ROLLS-ROYCE PLC

A method is provided of controlling a gas turbine having a shaft connecting a compressor to a turbine, as well as having a reheat system, and a gas turbine. The method includes the steps of: operating the engine using the reheat system to provide a mass flow rate of reheat fuel into a gas flow of the gas turbine engine downstream of an exit of the turbine; detecting a shaft break event in the shaft; and in response to this detection, maintaining the mass flow rate of the reheat fuel being provided into the gas flow downstream of the turbine exit, whereby the maintained mass flow rate of reheat fuel raises a back pressure downstream of the turbine and thereby reduces a rotational speed of the turbine. 1. A method of controlling a gas turbine engine having a shaft connecting a compressor to a turbine and further having a reheat system , the method including the steps of:operating the engine using the reheat system to provide a mass flow rate of reheat fuel into a gas flow of the gas turbine engine downstream of an exit of the turbine;detecting a shaft break event in the shaft; andin response to this detection, maintaining the mass flow rate of the reheat fuel being provided into the gas flow downstream of the turbine exit, whereby the maintained mass flow rate of reheat fuel raises a back pressure downstream of the turbine and thereby reduces a rotational speed of the turbine.2. The method of claim 1 , wherein the step of maintaining the mass flow rate of the reheat fuel being provided into the gas flow downstream of the turbine exit is performed by maintaining a fuel schedule for the reheat system in a pre-shaft break event configuration.3. The method of claim 1 , whereby raising the back pressure downstream of the turbine moves the working line of the compressor towards a surge region.4. A gas turbine engine claim 1 , comprising:a shaft connecting a compressor to a turbine;a reheat system; andan electronic engine controller;wherein the electronic engine controller ...

Подробнее
01-10-2015 дата публикации

SYSTEM AND METHOD FOR IMPROVED CONTROL OF A COMBINED CYCLE POWER PLANT

Номер: US20150275703A1
Принадлежит:

Systems, methods, and tangible non-transitory machine readable medium are provided. A system includes a gas turbine system configured to produce power by combusting a fuel. The system further includes a controller configured to control the gas turbine system via an operating 2-dimensional surface area and a setpoint, wherein the operating 2-dimensional surface area comprises a plurality of limits defining bounds for the operating 2-dimensional surface area, and wherein the setpoint is configured to be disposed inside the operating 2-dimentionsal surface area or on the limits. 1. A system comprising:a gas turbine system configured to produce power by combusting a fuel; anda controller configured to control the gas turbine system via an operating 2-dimensional surface area and a setpoint, wherein the operating 2-dimensional surface area comprises a plurality of limits defining bounds for the operating 2-dimensional surface area, and wherein the setpoint is configured to be disposed inside the operating 2-dimentionsal surface area or on the limits.2. The system of claim 1 , wherein the controller is configured to control the gas turbine system via the operating 2-dimensional surface area and the setpoint by independently controlling a gas turbine air flow and a gas turbine fuel flow to cause the gas turbine system to provide for a first gas turbine condition and a second gas turbine condition claim 1 , wherein the first and the second gas turbine conditions comprise a gas turbine load claim 1 , a gas turbine exhaust temperature claim 1 , a desired gas turbine exhaust flow claim 1 , or a combination thereof.3. The system of claim 1 , wherein the limits comprise an ISOthermal limit claim 1 , a maximum firing temperature limit claim 1 , a maximum inlet guide vane (IGV) limit claim 1 , a minimum exhaust temperature limit claim 1 , a minimum load limit claim 1 , or a combination thereof.4. The system of claim 1 , wherein the operating 2-dimensional surface area is comprises ...

Подробнее
11-12-2014 дата публикации

GAS TURBINE ENGINE THERMAL MANAGEMENT SYSTEM

Номер: US20140360153A1
Принадлежит: UNITED TECHNOLOGIES CORPORATION

A gas turbine engine according to an exemplary embodiment of this disclosure, among other possible things includes a fan. A geared architecture is configured for driving the fan. A turbine section is configured for driving the geared architecture. A thermal management system that includes a first fluid circuit and a second fluid circuit that manage heat generated in at least a portion of the gas turbine engine. A first heat exchanger is incorporated into each of the first fluid circuit and the second fluid circuit. A second heat exchanger is incorporated into the first fluid circuit. A valve controls an amount of a first fluid that is communicated to the first heat exchanger and the second heat exchanger. A controller is configured to control a positioning of the valve. The amount of the first fluid communicated to the first heat exchanger is based on a first characteristic of a second fluid and the amount of the first fluid communicated to the second heat exchanger is based on a second characteristic of the second fluid. A method and a system are also disclosed. 1. A gas turbine engine , comprising:a fan;a geared architecture configured for driving the fan;a turbine section configured for driving the geared architecture;a thermal management system that includes a first fluid circuit and a second fluid circuit that manage heat generated in at least a portion of the gas turbine engine;a first heat exchanger incorporated into each of said first fluid circuit and said second fluid circuit;a second heat exchanger incorporated into said first fluid circuit;a valve that controls an amount of a first fluid that is communicated to said first heat exchanger and said second heat exchanger; anda controller configured to control a positioning of said valve, wherein said amount of said first fluid communicated to said first heat exchanger is based on a first characteristic of a second fluid and said amount of said first fluid communicated to said second heat exchanger is based ...

Подробнее
13-08-2020 дата публикации

Method and apparatus for the start-up and control of pulse combustors using selective injector operation

Номер: US20200256260A1
Принадлежит: North American Wave Engine Corp

A system and method is disclosed for the start-up and control of pulsejet engines and this system includes an Electronic Fuel Injection (“EFI”) system that further includes one or more electrically controlled fuel injectors that can be selectively operated for start-up and control of such pulsejet engines. According to the system and method, the rate and/or pattern of fuel delivery to pulsejet engines can be varied not only by controlling the amount of time the fuel injectors are open versus closed to define a “duty cycle,” but also with the capability to selectively disable one or more fuel injectors in the programmed manner for start-up and control of such pulsejet engines.

Подробнее
27-08-2020 дата публикации

HYBRID GAS TURBINE ENGINE CONTROL SYSTEM

Номер: US20200271061A1
Принадлежит: Rolls-Royce Corporation

A system includes a controller configured to monitor a fuel system supplying fuel to a gas turbine engine. The system also includes an electric propulsion system controlled by the controller. The electric propulsion system is configured as a variable load, which is supplied rotational energy by the engine. The controller is configured to dynamically control a magnitude of the variable load to adjust rotational speed of the gas turbine engine during a fixed level of fuel supply to the gas turbine engine. The electric propulsion system may include an electric generator and a plurality of propulsor motor(s) rotating a propulsor to provide thrust and/or lift to a vehicle such as an aircraft. The electric generator may be rotationally driven with the gas turbine engine to output electric power. The electric power is supplied to the propulsor motor(s) to rotate the propulsor to provide thrust and/or lift of the vehicle. 1. A system comprising:a controller configured to monitor a status of a fuel system supplying fuel to a gas turbine engine; andan electric propulsion system of an aircraft controlled by the controller, the electric propulsion system configured as a variable load supplied rotational energy by the gas turbine engine;the controller configured to dynamically control a magnitude of the variable load to adjust a rotational speed of the gas turbine engine during a fixed level of fuel supply to the gas turbine engine.2. The system of claim 1 , wherein the electric propulsion system includes an electric generator and a propulsor motor rotating a propulsor to provide thrust and/or lift to an aircraft claim 1 , the electric generator rotationally driven with the gas turbine engine to output electric power claim 1 , the electric power supplied to the propulsor motor to rotate the propulsor to provide thrust and/or lift of the aircraft.3. The system of claim 1 , wherein the electric propulsion system includes an energy sink claim 1 , the energy sink dynamically ...

Подробнее
04-10-2018 дата публикации

REAL-TIME GAS TURBINE SIMULATION SYSTEM AND EXECUTION METHOD THEREOF

Номер: US20180284750A1

Disclosed herein are a real-time gas turbine simulation system and an execution method thereof, capable of verifying input and output signals of an actual gas turbine control system (GTCS) by simulating a gas turbine in real time to reduce trial and error in power plant operation in a gas turbine power generation system. The real-time gas turbine simulation system simulates a gas turbine to verify a GTCS for controlling a gas fuel through an actuator/sensor module and a safety integrity level (SIL) protection function through a protection module for the gas turbine, and includes a hardwire-in-the-loop (HIL) simulator connected to the actuator/sensor module and the protection module through one or more hardwires to simulate a time critical portion of the gas turbine in real time, and a network simulator connected to the GTCS through a network to simulate a non-time critical portion of the gas turbine in real time. 1. A real-time gas turbine simulation system that simulates a gas turbine to verify a gas turbine control system (hereinafter , referred to as “GTCS”) for controlling a gas fuel through an actuator/sensor module and controlling a safety integrity level (hereinafter , referred to as “SIL”) protection function through a protection module for the gas turbine , the real-time gas turbine simulation system comprising:a hardwire-in-the-loop (hereinafter, referred to as “HIL”) simulator connected to the actuator/sensor module and the protection module through one or more hardwires to simulate a time critical portion of the gas turbine in real time; anda network simulator connected to the GTCS through a network to simulate a non-time critical portion of the gas turbine in real time.2. The real-time gas turbine simulation system according to claim 1 , wherein the HIL simulator transmits and receives actuation signals or sensor signals relating to the fuel control to and from the actuator/sensor module and transmits and receives data or signals relating to the SIL ...

Подробнее
03-09-2020 дата публикации

ASSEMBLY FOR A TURBOMACHINE

Номер: US20200277899A1
Принадлежит: SAFRAN AIRCRAFT ENGINES

The present invention relates to an assembly for a turbomachine () comprising: 1. An assembly for a turbomachine comprising:a compressor,an isochoric combustion chamber, said isochoric combustion chamber comprising:an intake valve, said intake valve being movable between:an open position, in which the intake valve authorizes the intake of a fluid coming from the compressor towards the isochoric combustion chamber, anda closed position, in which the intake valve prevents the intake of a fluid coming from the compressor towards the isochoric combustion chamber, anda discharge valve, said discharge valve being movable between:an open position, in which the discharge valve authorizes the discharge of a fluid coming from the isochoric combustion chamber, anda closed position, in which the discharge valve prevents the discharge of a fluid coming from the isochoric combustion chamber,an isobaric combustion chamber configured to receive a fluid discharged from the isochoric combustion chamber, anda turbine configured to receive a fluid coming from the isobaric combustion chamber.2. The assembly according to claim 1 , comprising an intake control system configured to control a passage between the open position and the closed position of the intake valve claim 1 , the intake control system comprising a first electromagnet and a first return spring.3. The assembly according to claim 2 , wherein the first return spring is configured to bias the intake valve towards the open position.4. The assembly according to claim 2 , wherein the first electromagnet is configured to bias the intake valve towards the closed position when the first electromagnet is supplied with electrical energy.5. The assembly according to claim 1 , comprising a discharge control system configured to control a passage between the open position and the closed position of the discharge valve claim 1 , the discharge control system comprising a second electromagnet and a second return spring.6. The assembly ...

Подробнее
11-10-2018 дата публикации

MALFUNCTION DETERMINATION FOR GAS TURBINE ENCLOSURE

Номер: US20180291820A1
Автор: Zhang Hua
Принадлежит:

A method, system and program product for determining a malfunction in a gas turbine enclosure are disclosed. The method may include measuring a temperature at a plurality of locations relative to the gas turbine enclosure; determining a flow rate of a cooling gas through the gas turbine enclosure; and determining a malfunction in the gas turbine enclosure exists in response to at least one of the measured temperatures and the determined flow rate contradicting a model of gas turbine system operational parameters versus respective expected temperatures at the plurality of locations and an expected flow rate of the cooling gas through the gas turbine enclosure. 1. A method for determining a malfunction in a gas turbine enclosure , the system comprising:measuring a temperature at a plurality of locations relative to the gas turbine enclosure;determining a flow rate of a cooling gas through the gas turbine enclosure; anddetermining a malfunction in the gas turbine enclosure exists in response to at least one of the measured temperatures and the determined flow rate contradicting a model of gas turbine system operational parameters versus respective expected temperatures at the plurality of locations and an expected flow rate of the cooling gas through the gas turbine enclosure.2. The method of claim 1 , further comprising:monitoring a trend in the temperature at each of the plurality of locations,wherein determining the malfunction further includes determining a leakage malfunction exists at a first location in response to a change in a trend in the temperature at the first location.3. The method of claim 1 , wherein determining the malfunction includes determining a leakage malfunction exists at a first location of the plurality of locations in response to: a) the first location having a difference in temperature compared to a rest of the plurality of locations claim 1 , and b) a change in the flow rate of the cooling gas through the gas turbine enclosure.4. The method ...

Подробнее
03-11-2016 дата публикации

System and method for high efficiency power generation using a nitrogen gas working fluid

Номер: US20160319741A1
Принадлежит: 8 Rivers Capital LLC

A method of power production using a high pressure/low pressure ratio Brayton Power cycle with predominantly N 2 mixed with CO 2 and H 2 O combustion products as the working fluid is provided. The high pressure can be in the range 80 bar to 500 bar. The pressure ratio can be in the range 1.5 to 10. The natural gas fuel can be burned in a first high pressure combustor with a near stoichiometric quantity of pressurised preheated air and the net combustion gas can be mixed with a heated high pressure recycle N 2 +CO 2 +H 2 O stream which moderates the mixed gas temperature to the value required for the maximum inlet temperature to a first power turbine producing shaft power.

Подробнее
15-11-2018 дата публикации

Method of control of three spool gas turbine engine

Номер: US20180328287A1
Принадлежит: General Electric Co

The present disclosure is directed to a method of control of a gas turbine engine comprising a fan section coupled to a low turbine together defining a low spool, an intermediate compressor coupled to an intermediate turbine together defining an intermediate spool, and a high compressor coupled to a high turbine together defining a high spool. The method includes providing an intermediate spool speed to low spool speed characteristic curve to a controller; providing a commanded power output to the controller; providing one or more of an environmental condition to the controller; determining, via the controller, a commanded fuel flow rate; determining, via the controller, a commanded intermediate compressor loading; and generating an actual power output of the engine, wherein the actual power output is one or more of an actual low spool speed, an actual intermediate spool speed, an actual high spool speed, and an actual engine pressure ratio.

Подробнее
30-11-2017 дата публикации

GAS TURBINE ENGINE INLET TEMPERATURE SENSOR CONFIGURATION

Номер: US20170342913A1
Автор: Feulner Matthew R.
Принадлежит:

A gas turbine engine including a compressor, a combustor fluidly connected to the compressor via a primary flowpath, a turbine fluidly connected to the combustor via the primary flowpath, an engine controller communicatively coupled to at least one sensor in the gas turbine engine, the controller including a non-transitory memory and a processor, and the at least one sensor including an inlet temperature and/or pressure sensor, wherein the sensor is disposed aft of a fan. 1. A gas turbine engine comprising:a compressor;a combustor fluidly connected to the compressor via a primary flowpath;a turbine fluidly connected to the combustor via the primary flowpath;an engine controller communicatively coupled to at least one sensor in the gas turbine engine, the controller including a non-transitory memory and a processor; andthe at least one sensor including an inlet temperature and/or pressure sensor, wherein the sensor is disposed aft of a fan.2. The gas turbine engine of claim 1 , wherein the gas turbine engine is a short inlet gas turbine engine.3. The gas turbine engine of claim 1 , wherein said memory stores instructions for causing said processor to synthesize a gas turbine engine inlet temperature based on a temperature at said sensor.4. The gas turbine engine of claim 1 , wherein said sensor is a temperature and a pressure sensor.5. The gas turbine engine of claim 4 , wherein said memory stores instructions for causing said processor to synthesize a gas turbine engine inlet pressure based on a pressure at said sensor.6. The gas turbine engine of claim 1 , wherein the sensor is mounted to a radially inward surface of a bypass duct.7. The gas turbine engine of claim 1 , wherein the sensor is mounted to a radially outward surface of a bypass duct.8. The gas turbine engine of claim 1 , wherein the sensor is mounted aft of a compressor inlet.9. The gas turbine engine of claim 1 , wherein said memory includes instructions for scheduling said gas turbine engine based on ...

Подробнее
28-12-2017 дата публикации

Systems and Methods for Variable Water Injection Flow Control

Номер: US20170370286A1
Принадлежит:

Embodiments of the disclosure can include systems and methods for variable water injection flow control. For example, an operator of a gas turbine system may be enabled to adjust a water injection flow rate (and/or an inlet guide vein (IGV) and/or a firing temperature) of the gas turbine system to optimize performance during current conditions. In one embodiment, a provided method can include: receiving a water injection flow reference comprising one or more conditions of the gas turbine system; receiving water injection flow data from a sensor monitoring the gas turbine system; calculating a water injection flow rate value that characterizes one or more conditions based at least in part on the water injection flow reference and the water injection flow data; and adjusting a water injection flow rate of the gas turbine system to the calculated water injection flow rate value. 1. A method comprising:receiving, by a computing device processor, a water injection flow reference comprising one or more conditions of a gas turbine system;receiving, by a computing device processor, water injection flow data from a sensor monitoring the gas turbine system;calculating, by a computing device processor, a water injection flow rate value that characterizes one or more conditions based at least in part on the water injection flow reference and the water injection flow data; andadjusting, by a computing device processor, a water injection flow rate of the gas turbine system to the calculated water injection flow rate value.2. The method of claim 1 , wherein calculating the water injection flow rate that characterizes one or more conditions comprises:calculating a water injection flow rate that increases power output of the gas turbine system.3. The method of claim 1 , wherein calculating the water injection flow rate that characterizes one or more conditions comprises:calculating a water injection flow rate that increases efficiency of the gas turbine system.4. The method of claim ...

Подробнее
17-12-2020 дата публикации

ACCELERATION OF A GAS TURBINE

Номер: US20200392910A1
Автор: WHATLEY Paul D.
Принадлежит:

A gas turbine engine for an aircraft comprises a high-pressure (HP) spool comprising an HP compressor and a first electric machine driven by an HP turbine; a low-pressure (LP) spool comprising an LP compressor and a second electric machine driven by an LP turbine; a combustion system comprising a fuel metering unit; and an engine controller configured to, in response to a change of a throttle lever angle setting indicative of an acceleration event, increase fuel flow to the combustion system by the fuel metering unit, and to operate the first electric machine in a motor mode to increase the HP spool rotational speed and engine core mass flow. 1. A gas turbine engine for an aircraft , comprising:a high-pressure (HP) spool comprising an HP compressor and a first electric machine driven by an HP turbine;a low-pressure (LP) spool comprising an LP compressor and a second electric machine driven by an LP turbine;a combustion system comprising a fuel metering unit; andan engine controller configured to, in response to a change of a throttle lever angle setting indicative of an acceleration event, increase fuel flow to the combustion system by the fuel metering unit, and to operate the first electric machine in a motor mode to increase the HP spool rotational speed and engine core mass flow.2. The gas turbine engine of claim 1 , in which the engine controller is further configured to operate the second electric machine in a motor mode to further increase engine mass flow.3. The gas turbine engine of claim 1 , in which the engine controller is further configured to supply electrical power to the first electrical machine from an energy storage system.4. The gas turbine engine of claim 3 , in which the energy storage system is a battery.5. The gas turbine engine of claim 3 , in which the energy storage system is a capacitor.6. The gas turbine engine of claim 1 , in which the engine is a turbofan engine comprising a fan forming part of the LP spool.7. The gas turbine engine of ...

Подробнее
17-12-2020 дата публикации

SYSTEM AND METHOD FOR GENERATING POWER

Номер: US20200392911A1
Принадлежит:

The method and system are for implementing the method so as to alleviate the disadvantages of a reciprocating combustion engine and gas turbine when generating power. A combustion chamber is arranged outside a turbine and provides compressed air from a turbocharger powered with a heat source in order to carry out a combustion process supplemented with high pressure steam pulses. 1. A power generating system comprising:a turbine in connection with one or more compressors for converting energy fed to the turbine into mechanical energy of a rotatable power shaft and to compress air with one or more compressors, a combustion chamber arranged to receive fuel from a fuel tank and compressed air to initiate a cyclic combustion process comprising a compression phase and an expansion phase and to output combustion products into the turbine for rotating the rotor of the turbine and thereby rotating the power shaft,one or more fuel input valves for providing the fuel to the combustion chamber,one or more air input valves for providing the compressed air to the combustion chamber,a control unit for controlling said one or more fuel input valves and the one or more air input valves in order to control the combustion process, anda turbocharger for compressing air for the combustion process, and means for powering said turbocharger using a heat source and a circulation of fluid heated with said heat source for powering said turbocharger with said circulation of fluid.2. The power generating system as claimed in claim 1 , wherein the combustion chamber comprises a recess defining a pre-combustion chamber for increasing ignition energy to ignite a fuel mixture in the pre-combustion chamber to initiate the combustion process in the combustion chamber.3. The power generating system as claimed in claim 2 , wherein the pre-combustion chamber comprises one or more air input valves for providing air to the pre-combustion chamber and one or more fuel input valves for providing fuel to the ...

Подробнее
05-06-2013 дата публикации

Method of operating a gas turbine with staged and/or sequential combustion

Номер: EP2600063A2
Принадлежит: Alstom Technology AG

The invention concerns a method of operating a gas turbine with staged and/or sequential combustion, in which the burners of a second stage or a second combustor are singularly and sequentially switched on during loading and switched off during de-loading. The total fuel mass flow and the compressor inlet guide vanes are adjusted at the same time to allow controlling gas turbine operation temperatures and engine power with respect to the required CO emission target.

Подробнее
08-07-2008 дата публикации

Gas turbine fuel preparation and introduction method

Номер: US7395670B1
Принадлежит: Praxair Technology Inc

Method of preparing and introducing fuel into the combustors of a gas turbine in which a hydrocarbon containing feed, oxygen and steam are introduced into a catalytic partial oxidation reactor to produce a product stream. The hydrocarbon containing feed contains no less than about 15 percent by volume on a dry basis of hydrocarbons with at least two carbon atoms and/or at least about 3 percent by volume of olefins. The reactant mixture formed of the hydrocarbon containing feed, oxygen and steam has an oxygen to carbon ratio of between about 0.08 and about 0.25 and a water to carbon ratio of between about 0.05 to about 0.5. The hydrocarbon containing feed is introduced into the reactor alone or with a steam at a temperature no greater than 600° C. and the product stream is produced at a temperature of between about 600° C. and 860° C. and contains less than about 0.5 percent of olefins and less than 10 percent of hydrocarbons with two or more carbon atoms on a dry basis. After cooling the product stream the product stream is introduced into the combustors of the gas turbine to form part or all of the fuel required to support combustion.

Подробнее
17-07-2008 дата публикации

Gas turbine fuel preparation and introduction method

Номер: US20080168774A1
Принадлежит: Praxair Technology Inc

Method of preparing and introducing fuel into the combustors of a gas turbine in which a hydrocarbon containing feed, oxygen and steam are introduced into a catalytic partial oxidation reactor to produce a product stream. The hydrocarbon containing feed contains no less than about 15 percent by volume on a dry basis of hydrocarbons with at least two carbon atoms and/or at least about 3 percent by volume of olefins. The reactant mixture formed of the hydrocarbon containing feed, oxygen and steam has an oxygen to carbon ratio of between about 0.08 and about 0.25 and a water to carbon ratio of between about 0.05 to about 0.5. The hydrocarbon containing feed is introduced into the reactor alone or with a steam at a temperature no greater than 600° C. and the product stream is produced at a temperature of between about 600° C. and 860° C. and contains less than about 0.5 percent of olefins and less than 10 percent of hydrocarbons with two or more carbon atoms on a dry basis. After cooling the product stream the product stream is introduced into the combustors of the gas turbine to form part or all of the fuel required to support combustion.

Подробнее
31-03-1999 дата публикации

Gas turbines, combined cycle plants and compressors

Номер: JP2877098B2
Автор: 元昭 宇多村
Принадлежит: HITACHI LTD

Подробнее
28-12-2018 дата публикации

가스 터빈 실시간 시뮬레이션 시스템 및 그 방법

Номер: KR101933784B1
Автор: 김성호, 양기동, 홍성진
Принадлежит: 두산중공업 주식회사

본 발명에서는 가스 연료를 이용해 터빈을 구동하여 전기를 생산하는 가스 터빈 발전 시스템에서, 발전소 운전의 시행착오를 줄이기 위해 가스 터빈을 실시간으로 시뮬레이션하여 실제 가스 터빈 제어 시스템(GTCS)의 입출력 신호를 검증할 수 있도록 하는, 가스 터빈 실시간 시뮬레이션 시스템과 그 방법이 개시된다. 개시된 가스 터빈 실시간 시뮬레이션 시스템은, 가스 터빈에 대해 구동-센서 모듈을 통해 가스 연료를 제어하고, 보호 모듈을 통해 안전 무결성 레벨(SIL) 보호 기능을 제어하는 가스 터빈 제어 시스템(GTCS)을 검증하기 위해 가스 터빈을 시뮬레이션하는 가스 터빈 실시간 시뮬레이션 시스템으로서, 상기 구동-센서 모듈 및 상기 보호 모듈에 하나 이상의 하드와이어(hardwire)를 통해 연결되고, 상기 가스 터빈의 타임 크리티컬(Time Critical)한 부분을 실시간으로 시뮬레이션하는 하드와이어 루프(HIL) 시뮬레이터; 및 상기 GTCS에 네트워크(Network)를 통해 연결되고, 상기 가스 터빈의 타임 크리티컬하지 않는 부분을 실시간으로 시뮬레이션하는 네트워크(Network) 시뮬레이터를 포함한다.

Подробнее
10-07-2015 дата публикации

Protection method of gas-turbine engine against highly dynamic processes, and gas-turbine engine for implementation of this method

Номер: RU2555925C2

FIELD: engines and pumps. SUBSTANCE: invention relates to power engineering. A protection method of a gas-turbine engine containing a compressor, a combustion chamber and a turbine against highly dynamic parameters, namely at flame pulsations in the combustion chamber, at which pulsations of the combustion chamber are measured, a frequency spectrum of the measured signal of pulsations is divided into the specified pieces of a bandpass, a root-mean-square value of a signal is calculated for each band, weighted design root-mean-square values of frequency or a frequency range are determined by using the specified weight coefficients, weighted root-mean-square values of frequency or the frequency range are accumulated to obtain a value of a pulsation limit criterion, and this value is compared to one reference value, and operation of the gas-turbine engine is provided according to the result of the above comparison. Besides, the gas-turbine engine is presented for implementation of the method according to the invention. EFFECT: invention allows providing a communication between pulsations of an engine and service life of the structure. 5 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F02C 9/00 (13) 2 555 925 C2 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2012118578/06, 04.05.2012 (24) Дата начала отсчета срока действия патента: 04.05.2012 Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): ЦИНН Ганспитер (CH), СИНГЛА Гислейн (CH), ШУЕРМАНС Бруно (CH), ЗИВЕРТ Пётр (CH) (43) Дата публикации заявки: 10.11.2013 Бюл. № 31 R U (73) Патентообладатель(и): АЛЬСТОМ ТЕКНОЛОДЖИ ЛТД (CH) 05.05.2011 CH 00772/11 (45) Опубликовано: 10.07.2015 Бюл. № 19 2 5 5 5 9 2 5 R U Адрес для переписки: 129090, Москва, ул. Б.Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и партнеры", пат.пов. С.А.Дорофееву, рег.N 146 (54) СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ВЫСОКОДИНАМИЧЕСКИХ ПРОЦЕССОВ И ...

Подробнее
27-07-2015 дата публикации

Gas-turbine engine operating mode and gas-turbine plant for implementation of named method

Номер: RU2557819C2

FIELD: power industry. SUBSTANCE: invention relates to power engineering. The mode of operation of the gas-turbine plant containing the compressor, the turbine and the combustion chamber with group of starting burners, group of the burners with pre-mixing consuming the enriched fuel-air mix and group of burners with pre-mixing consuming the diluted fuel-air mix in conditions of change of composition of supplied gas fuel, and the named method includes the following stages: continuous measurement in real time of gas fuel composition, regulation of performance parameters of the named gas-turbine engine and burning of fuel in the named burners using the named measurements of gas fuel composition in real time. Also the gas-turbine installation for implementation of the method according to the invention is presented. EFFECT: invention allows to ensure functioning of the plant in optimum range, and also to provide optimum effect of reduction of harmful emissions, optimum pulsation characteristics and reliability of operation of the gas-turbine engine. 9 cl, 3 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F02C 9/26 (13) 2 557 819 C2 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2012134070/06, 08.08.2012 (24) Дата начала отсчета срока действия патента: 08.08.2012 Приоритет(ы): (30) Конвенционный приоритет: (43) Дата публикации заявки: 20.02.2014 Бюл. № 5 (73) Патентообладатель(и): АЛЬСТОМ ТЕКНОЛОДЖИ ЛТД (CH) (45) Опубликовано: 27.07.2015 Бюл. № 21 2 5 5 7 8 1 9 (54) СПОСОБ РАБОТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ УКАЗАННОГО СПОСОБА (57) Реферат: Изобретение относится к энергетике. Способ указанного газотурбинного двигателя и сжигание работы газотурбинной установки, содержащей топлива в указанных горелках с использованием компрессор, турбину и камеру сгорания с группой указанных измерений состава газового топлива пусковых горелок, группой горелок с в реальном времени. ...

Подробнее
20-01-2009 дата публикации

System and method of electric power generation

Номер: RU2344304C2
Принадлежит: Мес Интернешнл, Инк.

FIELD: motors and pumps. SUBSTANCE: system and method for generation of electric power, at that generator is actuated by engine, oxidant of which is air. Under any operational conditions for this output power, engine efficiency is optimised by adjustment of air flow at engine, at that ratio of fuel and air is adjusted to maintain high peak temperature of engine working substance. Invention is applicable to different types of engines, in which oxidant is air, and which operate at low ratio of fuel and air. EFFECT: higher reliability. 20 cl, 3 dwg ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß RU (19) (11) 2 344 304 (13) C2 (51) ÌÏÊ F02C 9/00 (2006.01) ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÎÏÈÑÀÍÈÅ ÈÇÎÁÐÅÒÅÍÈß Ê ÏÀÒÅÍÒÓ (21), (22) Çà âêà: 2006102970/06, 01.07.2004 (30) Êîíâåíöèîííûé ïðèîðèòåò: 02.07.2003 US 10/612,685 (73) Ïàòåíòîîáëàäàòåëü(è): ÌÅÑ ÈÍÒÅÐÍÅØÍË, ÈÍÊ. (US) (43) Äàòà ïóáëèêàöèè çà âêè: 27.06.2006 R U (24) Äàòà íà÷àëà îòñ÷åòà ñðîêà äåéñòâè ïàòåíòà: 01.07.2004 (72) Àâòîð(û): Áåëîêîí Àëåêñàíäð Àëåêñååâè÷ (RU), Ñåíêåâè÷ Ìèõàèë Âñåâîëîäîâè÷ (RU), ÒÀ×ÒÎÍ Äæîðäæ Ë. III (US) (45) Îïóáëèêîâàíî: 20.01.2009 Áþë. ¹ 2 2 3 4 4 3 0 4 (56) Ñïèñîê äîêóìåíòîâ, öèòèðîâàííûõ â îò÷åòå î ïîèñêå: US 5332959 À, 27.07.1994. US 6163078 À, 19.12.2000. US 6169332 À, 02.01.2001. US 4529887 À, 16.07.1985. SU 397668 À, 17.09.1973. SU 1044799 À, 30.09.1983. RU 2166657 Ñ1, 10.05.2001. 2 3 4 4 3 0 4 R U (86) Çà âêà PCT: US 2004/021338 (01.07.2004) C 2 C 2 (85) Äàòà ïåðåâîäà çà âêè PCT íà íàöèîíàëüíóþ ôàçó: 02.02.2006 (87) Ïóáëèêàöè PCT: WO 2005/003521 (13.01.2005) Àäðåñ äë ïåðåïèñêè: 129090, Ìîñêâà, óë. Á.Ñïàññêà , 25, ñòð. 3, ÎÎÎ "Þðèäè÷åñêà ôèðìà Ãîðîäèññêèé è Ïàðòíåðû", ïàò.ïîâ. Þ.Ä.Êóçíåöîâó (54) ÑÈÑÒÅÌÀ È ÑÏÎÑÎÁ ÃÅÍÅÐÈÐÎÂÀÍÈß ÝËÅÊÒÐÎÝÍÅÐÃÈÈ (57) Ðåôåðàò: Ñèñòåìà è ñïîñîá ãåíåðèðîâàíè ýëåêòðîýíåðãèè, ïðè÷åì ãåíåðàòîð ïðèâîäèòñ â äåéñòâèå äâèãàòåëåì, îêèñëèòåëåì äë êîòîðîãî ñëóæèò âîçäóõ.  ëþáûõ ýêñïëóàòàöèîííûõ óñëîâè õ äë äàííîé âûõîäíîé ìîùíîñòè ýôôåêòèâíîñòü ...

Подробнее
15-10-1997 дата публикации

Gas turbine, combined circulation device and air compressor

Номер: CN1162063A
Автор: 宇多村元昭
Принадлежит: HITACHI LTD

提供了一个燃气涡轮、一个联合循环装置和一个压气机,用一简单的适于实用的设备把液滴喷入引入压气机进口的空气中,可使功率输出及热效率加大。燃气轮机包括供入及压缩气体的压气机,燃料与压气机排出的气体一起在其中燃烧的燃烧室,和由燃烧室燃气驱动的涡轮。燃气轮机还包括设在压气机上的喷射装置,把液滴喷入供入压气机的进口的进气中,把进气温度降低使喷射的液滴在流下到压气机中时可以蒸发。

Подробнее
30-11-2017 дата публикации

Gas-driven turbine under fractional loads control mode

Номер: RU2637152C1

FIELD: electricity-producing industry. SUBSTANCE: there is a known gas-driven turbine under fractional loads control mode, which includes the obtaining of the assignment of the gas-driven turbine capacity value, the gas-driven turbine shaft velocity measurement in real-time mode. In this mode for the predetermined capacity value according to the rotation velocity-gas-driven turbine capacity dependence diagram with respect to the minimum fuel one determines the commanded speed level of the gas-driven turbine shaft rotation, compares it with the current rotation velocity value and forms the instruction for the change in fuel and air supply into the gas-driven turbine combustor for the commanded speed level value achievement. EFFECT: decrease in fuel consumption. 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 637 152 C1 (51) МПК F02C 9/28 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2016145455, 21.11.2016 (24) Дата начала отсчета срока действия патента: 21.11.2016 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 21.11.2016 (45) Опубликовано: 30.11.2017 Бюл. № 34 C 1 0126862 A1, 10.07.2003. RU 2588338 C2, 27.06.2016. EP 1411226 B1, 16.03.2005. R U (54) Способ управления газовой турбиной при частичных нагрузках (57) Реферат: Изобретение относится к электроэнергетике, газовой турбины в режиме реального времени, может быть использовано в системах для заданной величины мощности по графику автоматического регулирования зависимости скорости вращения от мощности высокоскоростных генерирующих агрегатов, газовой турбины по критерию минимального присоединенных с помощью преобразователя расхода топлива определяют уставку скорости частоты к энергосистеме и направлено на вращения вала газовой турбины, сравнивают с снижение расхода топлива в газовой турбине при ней текущее значение скорости вращения и производстве электроэнергии. В известном формируют команду на изменение подачи способе регулирования ...

Подробнее
04-09-2018 дата публикации

Gas turbine plant operation method with step and / or sequential combustion

Номер: RU2665773C2

FIELD: fuel combustion methods and devices. SUBSTANCE: invention relates to the gas turbine plant operation method with step and / or sequential combustion, in which the second stage or the second combustion chamber burners are separately and sequentially turning on during the load and turning off during unloading. Fuel total mass flow rate and the compressor adjustable inlet guide vanes are adjusted simultaneously to enable control of the gas turbine plant operating temperatures and engine power relative to the required CO emission rate. EFFECT: higher combustion efficiency. 14 cl, 3 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 665 773 C2 (51) МПК F02C 9/16 (2006.01) F23R 3/36 (2006.01) F02C 9/48 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК F02C 9/16 (2018.05); F23R 3/36 (2018.05); F02C 9/48 (2018.05) (21)(22) Заявка: 2015139836, 19.02.2014 (24) Дата начала отсчета срока действия патента: Дата регистрации: 04.09.2018 19.02.2013 EP 13155823.1 (43) Дата публикации заявки: 24.03.2017 Бюл. № 9 2008/123904 A2, 16.10.2005. US 5737912 A, 14.04.1998. EP 2532968 A2, 12.12.2012. RU 2146769 C1, 20.03.2000. (45) Опубликовано: 04.09.2018 Бюл. № 25 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 21.09.2015 (86) Заявка PCT: C 2 C 2 (56) Список документов, цитированных в отчете о поиске: US 2010/0175387 A1, 15.07.2010. WO EP 2014/053197 (19.02.2014) (87) Публикация заявки PCT: 2 6 6 5 7 7 3 WO 2014/128146 (28.08.2014) R U 2 6 6 5 7 7 3 (73) Патентообладатель(и): АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД (GB) Приоритет(ы): (30) Конвенционный приоритет: R U 19.02.2014 (72) Автор(ы): ТЕРКОРН Дирк (DE), БЕРНЕРО Стефано (CH), ЧЖАН Мэнбинь (CH), ЭРОГЛУ Аднан (CH), ГЭН Вэйцюнь (CH) Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ СО СТУПЕНЧАТЫМ И/ИЛИ ПОСЛЕДОВАТЕЛЬНЫМ СГОРАНИЕМ (57) Реферат: Изобретение ...

Подробнее
10-05-2016 дата публикации

Control of a fuel metering device for turbomachine

Номер: RU2583473C2
Принадлежит: Снекма

FIELD: energy. SUBSTANCE: method for controlling position of spool of fuel metering device for turbine engine as a function of setpoint mass flow contains answer to criterion validity to select mass flow. Also provided an information storage medium comprising computer executable instructions that when executed cause computer to perform a method according to present invention, electronic unit and aircraft engine. EFFECT: invention allows to improve accuracy of controlling flow of fuel of turbine engine. 10 cl, 3 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F02C 9/26 (13) 2 583 473 C2 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2013123716/06, 14.10.2011 (24) Дата начала отсчета срока действия патента: 14.10.2011 (72) Автор(ы): ГОЛЛИ, Брюно, Робер (FR), МАРО, Сесиль (FR) (73) Патентообладатель(и): СНЕКМА (FR) Приоритет(ы): (30) Конвенционный приоритет: (43) Дата публикации заявки: 10.12.2014 Бюл. № 34 R U 25.10.2010 FR 1058716 (45) Опубликовано: 10.05.2016 Бюл. № 13 (86) Заявка PCT: C 2 C 2 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 27.05.2013 FR 2011/052395 (14.10.2011) (87) Публикация заявки PCT: 2 5 8 3 4 7 3 WO 2012/056142 (03.05.2012) R U 2 5 8 3 4 7 3 (56) Список документов, цитированных в отчете о поиске: US 5305597 A, 26.04.1994. US 4809499 A, 07.03.1989. EP 0273848 A2, 06.07.1988. EP 0122100 A1, 17.10.1984. RU 2289031 C2, 10.12.2006. US 4593523 A1, 10.06.1986. RU 2322601 C1, 20.04.2008. RU 2168044 C2, 27.05.2001. RU 2323365 C1, 27.04.2008. Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) УПРАВЛЕНИЕ ТОПЛИВОДОЗИРУЮЩИМ УСТРОЙСТВОМ ДЛЯ ТУРБОМАШИНЫ (57) Реферат: Изобретение относится к энергетике. Способ содержащий исполняемые компьютером управления положением золотника инструкции, которые при выполнении топливодозирующего устройства для турбинного предписывают компьютеру осуществлять способ двигателя ...

Подробнее
22-08-2017 дата публикации

GAS-TURBINE ENGINE CONTROL SYSTEM

Номер: RU2016105475A

А 2016105475 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) п 2 < < < ВО "20461 (50) МПК Н02С 7/228 (2006.01) АХ 59 АД хх М%® & < ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2016105475, 27.06.2014 (71) Заявитель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЫПАФТ (ОЕ) Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): 19.07.2013 СВ 1312974.7 ДОЛМЭНСЛИ Тимоти (СВ), ХЕДЛЭНД Пол (СВ), 4 : 22.08.2017 Бюл. № 24 (43) Дата публикации заявки юл. № СКИППЕР Дориан (СВ), (85) Дата начала рассмотрения заявки РСТ на СМИТ Майкл (СВ) национальной фазе: 19.02.2016 (86) Заявка РСТ: ЕР 2014/063670 (27.06.2014) (87) Публикация заявки РСТ: УГО 2015/007501 (22.01.2015) Адрес для переписки: 129090, Москва, ул. Б.Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) СИСТЕМА УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ (57) Формула изобретения 1. Способ эксплуатации газотурбинного двигателя (10), при этом газотурбинный двигатель (10) содержит воздухозаборник (12), турбину (28, 30), систему (51) управления, систему (53) подачи жидкого топлива и модульную систему (45) жидкотопливных горелок, имеющую, по меньшей мере, две сменные жидкостные горелки (48, 49) и жидкотопливный коллектор (54), при этом система (51) управления регулирует подачу топлива по жидкотопливному коллектору (54) к горелкам (48, 49) в зависимости от потребной выходной мощности, данные, по меньшей мере, две сменные жидкотопливные горелки (48, 49) имеют разные рабочие диапазоны выходной мощности и представляют собой, по меньшей мере, жидкотопливную горелку с высокой выходной мощностью и жидкотопливную горелку с низкой выходной мощностью, способ эксплуатации газотурбинного двигателя (10) включает этапы регулирования подачи жидкого топлива к горелке (48, 49) с высокой выходной мощностью для обеспечения высокой выходной мощности при наличии предельной температуры на входе в турбину, регулирования подачи жидкого топлива к горелке (48, 49) с низкой выходной мощностью для обеспечения низкой ...

Подробнее
14-11-2017 дата публикации

Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine

Номер: US9819292B2

A method includes combusting a fuel and an oxidant in a combustor of an exhaust gas recirculation (EGR) gas turbine system that produces electrical power and provides a portion of the electrical power to an electrical grid. The method further includes controlling, via one or more processors, one or more parameters of the EGR gas turbine system to decrease the portion of the electrical power provided to the electrical grid in response to an over-frequency event associated with the electrical grid, wherein controlling the one or more parameters comprises decreasing a flow rate of fuel to the combustor in response to the over-frequency event.

Подробнее
18-09-2018 дата публикации

System and method for a stoichiometric exhaust gas recirculation gas turbine system

Номер: US10079564B2

A non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. The instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an EGR gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. The instructions also include instructions to increase a flow rate of fuel to a combustor of the EGR gas turbine system in response to the transient event when the EGR gas turbine system is operating in a non-stoichiometric combustion mode. The instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the EGR gas turbine system is operating in a stoichiometric combustion mode.

Подробнее
23-10-2018 дата публикации

Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent

Номер: US10107495B2
Автор: Karl Dean Minto

In one embodiment, a gas turbine system includes a controller configured to receive fuel composition information related to a fuel used for combustion in a turbine combustor; receive oxidant composition information related to an oxidant used for combustion in the turbine combustor; receive oxidant flow information related to a flow of the oxidant to the turbine combustor; determine a stoichiometric fuel-to-oxidant ratio based at least on the fuel composition information and the oxidant composition information; and generate a control signal for input to a fuel flow control system configured to control a flow of the fuel to the turbine combustor based on the oxidant flow information, a target equivalence ratio, and the stoichiometric fuel-to-oxidant ratio to enable combustion at the target equivalence ratio in the presence of an exhaust diluent within the turbine combustor.

Подробнее
19-02-2019 дата публикации

Gas turbine load control system

Номер: US10208677B2

A gas turbine system includes a combustor configured to combust an oxidant and a fuel in the presence of an exhaust gas diluent to produce combustion products, an oxidant supply path fluidly coupled to the combustor and configured to flow the oxidant to the combustor at an oxidant flow rate, and a turbine configured to extract work from the combustion products to produce an exhaust gas used to generate the exhaust gas diluent. The turbine causes a shaft of the gas turbine system to rotate when the work is extracted from the combustion products. The system also includes an electrical generator that generates electrical power in response to rotation by the shaft, and a controller that performs load control in response to a target load by adjusting the oxidant flow rate along the oxidant flow path as a primary load control parameter.

Подробнее
28-07-2020 дата публикации

System and method for a stoichiometric exhaust gas recirculation gas turbine system

Номер: US10727768B2
Принадлежит: ExxonMobil Upstream Research Co

A system includes a control system configured to control one or more parameters of an exhaust gas recirculation (EGR) gas turbine system to control a portion of electrical power for export from a generator driven by the turbine to an electrical grid. The control system includes a closed-loop controller configured to control parameters of the EGR gas turbine system and an open-loop controller configured to temporarily control the parameters of the EGR gas turbine system to increase the portion of the electrical power exported to the electrical grid to provide a Primary Frequency Response (PFR) in response to a transient event associated with the electrical power. The open-loop controller is configured to provide control signals to increase a concentration of an oxidant in a combustor to provide the PFR in response to the transient event when the EGR gas turbine system is operating in an emissions compliant mode.

Подробнее
19-01-2017 дата публикации

Gas-turbine system, method of power of gas-turbine system output changing, method of gas-turbine system control range expanding, gas turbine efficiency increasing method and system

Номер: RU2608533C2

FIELD: turbines. SUBSTANCE: gas turbine system comprises compressor protection subsystem, sleep mode subsystem and control subsystem, which controls compressor subsystem and sleep mode subsystem. At partial loads on turbine system compressor protection subsystem maintains air flow through compressor with air flow rate factor for partial load above minimum flow rate factor, when aeromechanic stresses occur in compressor. Maintaining fuel-air mix components ratio, at which turbine exhaust gas emissions components are kept below predetermined component emissions level during operation at partial loads. EFFECT: technical result is increasing efficiency in control over gas turbine at low load levels. 37 cl, 12 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 608 533 C2 (51) МПК F02C 9/22 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 2012149579, 22.11.2012 (24) Дата начала отсчета срока действия патента: 22.11.2012 Дата регистрации: Приоритет(ы): (30) Конвенционный приоритет: 23.11.2011 US 13/303,852 (45) Опубликовано: 19.01.2017 Бюл. № 2 2 6 0 8 5 3 3 R U (56) Список документов, цитированных в отчете о поиске: US 3842597 A, 22.10.1974. US 4313300 A, 02.02.1982. US 4099375 A, 11.07.1978. US 4991391 A, 12.02.1991. RU 2312229 C2, 10.12.2007. RU 2007134749 A, 27.03.2009. (54) ГАЗОТУРБИННАЯ СИСТЕМА, СПОСОБ ИЗМЕНЕНИЯ ВЫХОДНОЙ МОЩНОСТИ ГАЗОТУРБИННОЙ СИСТЕМЫ, СПОСОБ РАСШИРЕНИЯ ДИАПАЗОНА РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОЙ СИСТЕМЫ, СПОСОБ И СИСТЕМА ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ГАЗОВОЙ ТУРБИНЫ (57) Формула изобретения 1. Способ изменения выходной мощности газотурбинной системы, имеющей компрессор, камеру сгорания и турбину, включающий: определение существующей выходной мощности; определение требуемой выходной мощности; измерение существующих параметров компрессора и параметров камеры сгорания; вычисление коэффициента расхода компрессора для требуемой выходной мощности; вычисление интенсивности выбросов ...

Подробнее
22-07-2008 дата публикации

Gas reforming system

Номер: KR100847972B1

저칼로리 가스를 안정된 가스 터빈용 연료로서 개질할 수 있다. 천연 가스(NG) 공급 라인(7) 및 공기 공급 라인(8)을 구비하고, NG 가스와 공기를 혼합시켜, 이 혼합 기체를 화학 반응시켜서 개질하는 것에 의해 수소 가스를 함유하는 개질 가스를 제조하기 위한 반응용기를 구비하는 개질 가스 제조 장치(3)와, 저칼로리 가스와 상기 개질 가스 제조 장치(3)로부터 공급되는 개질 가스를 혼합하여 가스 터빈 설비(1)에 연료 가스로서 공급하기 위한 혼합 조정 장치(5)와, 상기 개질 가스 제조 장치(3)로부터 상기 혼합 조정 장치(5)로 개질 가스를 공급하기 위한 개질 가스 공급 통로(4)와, 상기 혼합 조정 장치(5)로부터 가스 터빈 설비(1)에 연료 가스를 공급하기 위한 연료 가스 공급 통로(2)와, 상기 개질 가스 제조 장치(3) 및 혼합 조정 장치(5)의 동작을 제어하기 위한 제어 장치(10)를 구비하고 있다. Low calorie gas can be reformed as a fuel for stable gas turbines. To prepare a reformed gas containing hydrogen gas by providing a natural gas (NG) supply line (7) and an air supply line (8), by mixing NG gas and air, and chemically reacting the mixed gas to reform. Reforming gas production apparatus 3 having a reaction vessel for mixing, low-calorie gas and the reforming gas supplied from the reforming gas production apparatus 3, the mixing regulator for supplying as a fuel gas to the gas turbine equipment (1) (5), a reformed gas supply passage 4 for supplying a reformed gas from the reformed gas production device 3 to the blending control device 5, and a gas turbine installation 1 from the blending control device 5 And a fuel gas supply passage 2 for supplying fuel gas to the fuel cell), and a control device 10 for controlling the operations of the reformed gas production apparatus 3 and the mixing regulator 5.

Подробнее
10-10-2007 дата публикации

Power supply system

Номер: RU2307946C2

FIELD: power engineering. SUBSTANCE: proposed power supply system generating electric power using self-forming gas contains gas motor, gas turbine, gas collector for self-forming gas, device to separate gas and device to control calorific value for selective mixing of gases differing in content of fuel component. Gas separating device continuously separates gas delivering from gas collector whose fuel component content changes in time according to content of fuel component of gas. Calorific value control device for selective mixing of gases differing in content of fuel component which are separated by gas separating device, controls content of fuel component of gas which is to be supplied to gas motor and gas turbine. System control device is provided to control operation of gas motor, gas turbine and calorific value control device. EFFECT: provision of power supply system maintaining stable generation of power, irrespective of changes of amount of self-forming gas and its calorific value. 13 cl, 8 dwg ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß RU (19) (11) 2 307 946 (13) C2 (51) ÌÏÊ F02C 3/22 F02C 6/00 (2006.01) (2006.01) ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÎÏÈÑÀÍÈÅ ÈÇÎÁÐÅÒÅÍÈß Ê ÏÀÒÅÍÒÓ (21), (22) Çà âêà: 2006101153/06, 06.10.2003 (72) Àâòîð(û): ÑÀÊÎ Ìàñààêè (JP), ÎÒÀ Õèäåàêè (JP) (24) Äàòà íà÷àëà îòñ÷åòà ñðîêà äåéñòâè ïàòåíòà: 06.10.2003 (73) Ïàòåíòîîáëàäàòåëü(è): ÊÀÂÀÑÀÊÈ ÄÇÞÊÎÃÈÎ ÊÀÁÓÑÈÊÈ ÊÀÉÑß (JP) R U (30) Êîíâåíöèîííûé ïðèîðèòåò: 13.06.2003 JP 2003-169219 (43) Äàòà ïóáëèêàöèè çà âêè: 27.05.2006 (45) Îïóáëèêîâàíî: 10.10.2007 Áþë. ¹ 28 2 3 0 7 9 4 6 (56) Ñïèñîê äîêóìåíòîâ, öèòèðîâàííûõ â îò÷åòå î ïîèñêå: JP 10-310783 À, 24.11.1998. JP 2003120419 À, 23.04.2003. JP 2003-106172 À, 09.04.2003. JP 2003-065084 À, 05.03.2003. JP 2002-326071 À, 12.11.2002. RU 2205337 Ñ2, 27.05.2003. RU 2047061 C2, 27.10.1995. 2 3 0 7 9 4 6 R U (86) Çà âêà PCT: JP 03/12754 (06.10.2003) C 2 C 2 (85) Äàòà ïåðåâîäà çà âêè PCT íà íàöèîíàëüíóþ ôàçó: 13.01.2006 ( ...

Подробнее
20-11-2016 дата публикации

System and method for predicting turbine rub

Номер: RU2602318C2

FIELD: turbines. SUBSTANCE: system (100) for predicting turbine rub includes monitoring system (110) configured to form operational values (112) for a turbine based on information received from turbine, a correlation engine (114) configured to form at least one correlated value (115) from said values (112), that correlates a first operating value to a second operating value. EFFECT: system also includes variable deriver (116) configured to form at least one derived variable (118) from a one of operating values and rub predictor (120), that forms rub prediction (122) based on at least one correlated value and at least one derived value. 10 cl, 2 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК G06F 17/00 (13) 2 602 318 C2 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ 2012136869/06, 29.08.2012 (24) Дата начала отсчета срока действия патента: 29.08.2012 Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): МАЛКОЛЬМСОН Молли Энн (US), БАЛЬ Дебасис (IN), ЧАНДРАСЕХАРАН Раджагопалан (IN), РУПЕШ Раджан (IN) (43) Дата публикации заявки: 10.03.2014 Бюл. № 7 R U (73) Патентообладатель(и): Дженерал Электрик Компани (US) 30.08.2011 US 13/221,036 (45) Опубликовано: 20.11.2016 Бюл. № 32 2 6 0 2 3 1 8 R U (54) СИСТЕМА И СПОСОБ ПРЕДСКАЗАНИЯ ЗАДЕВАНИЯ В ТУРБИНЕ (57) Реферат: Система (100) для предсказания задевания в также включает вычислитель (116) переменных турбине включает систему (110) контроля для для формирования по меньшей мере одной формирования рабочих значений (112) для вычисленной переменной (118) на основе одного турбины на основе информации, принятой от из упомянутых рабочих значений и предсказатель турбины, и корреляционное устройство (114) для (120) задевания, который формирует предсказание формирования на основе упомянутых рабочих (122) задевания на основе упомянутого по значений (112) по меньшей мере одного меньшей мере одного корреляционного значения корреляционного значения (115), которое и ...

Подробнее
08-07-2014 дата публикации

Apparatus and method of tuning gas turbine

Номер: KR20140085691A
Автор: 목임수, 정희돈

가스 터빈의 자동 튜닝 장치 및 방법이 제공된다. 가스 터빈의 자동 튜닝 장치는, 운전중인 가스 터빈의 연소기에서 발생하는 연소 진동값을 측정하는 진동 측정부; 측정된 연소 진동값의 주파수 분석을 통해 주파수 대역별로 연소 진동값을 얻는 주파수 분석부; 및 주파수 대역별 연소 진동값이 각 주파수 대역별로 최소값을 가지도록 공기 및 연료의 유량 중 적어도 하나를 제어하는 제어부를 포함함으로써, 연소진동을 최소값으로 유지할 수 있다.

Подробнее
30-01-2019 дата публикации

System and method for stoichiometric exhaust gas recirculation gas turbine system

Номер: RU2678608C2

FIELD: electricity.SUBSTANCE: invention relates to power engineering. In the method, a non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. Said instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an exhaust gas recirculation gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. In addition, these instructions include instructions to increase a flow rate of fuel to a combustor of the exhaust gas recirculation gas turbine system in response to the transient event, when the exhaust gas recirculation gas turbine system is operating in a non-stoichiometric combustion mode. Further, these instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power so as to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the exhaust gas recirculation gas turbine system is operating in a stoichiometric combustion mode.EFFECT: invention makes it possible to increase the efficiency of electric power generation.21 cl, 8 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 678 608 C2 (51) МПК F02C 9/28 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК F02C 9/28 (2018.08) (21)(22) Заявка: 2016134897, 31.12.2014 (24) Дата начала отсчета срока действия патента: Дата регистрации: 30.01.2019 27.01.2014 US 61/932,178; 30.12.2014 US 14/585,950 (43) Дата публикации заявки: 12.03.2018 Бюл. № 2013/163045 A1, 31.10.2013. US 2007/006592 A1, 11.01.2007. US 2010/0310356 A1, 09.12.2010. SU 1744290 A, 30.06.1992. RU 2034192 С1, 30.04.1995. 8 (45) Опубликовано: 30.01.2019 Бюл. № 4 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 29.08.2016 C 2 ...

Подробнее
14-08-2018 дата публикации

Patent RU2016134897A3

Номер: RU2016134897A3
Автор: [UNK]
Принадлежит: [UNK]

`”ВУ“” 2016134897” АЗ Дата публикации: 14.08.2018 Форма № 18 ИЗПМ-2011 Федеральная служба по интеллектуальной собственности Федеральное государственное бюджетное учреждение 5 «Федеральный институт промышленной собственности» (ФИПС) ОТЧЕТ О ПОИСКЕ 1. . ИДЕНТИФИКАЦИЯ ЗАЯВКИ Регистрационный номер Дата подачи 2016134897/06(054504.) 31.12.2014 РСТД52014/073048 31.12.2014 Приоритет установлен по дате: [ ] подачи заявки [ ] поступления дополнительных материалов от к ранее поданной заявке № [ ] приоритета по первоначальной заявке № из которой данная заявка выделена [ ] подачи первоначальной заявки № из которой данная заявка выделена [ ] подачи ранее поданной заявки № [Х] подачи первой(ых) заявки(ок) в государстве-участнике Парижской конвенции (31) Номер первой(ых) заявки(ок) (32) Дата подачи первой(ых) заявки(ок) (33) Код страны 1. 61/932,178 27.01.2014 05 2. 14/585,950 30.12.2014 05 Название изобретения (полезной модели): [Х] - как заявлено; [ ] - уточненное (см. Примечания) СИСТЕМА И СПОСОБ ДЛЯ ГАЗОТУРБИННОЙИ СИСТЕМЫ С РЕЦИРКУЛЯЦИЕЙ ОТРАБОТАВШЕГО ГАЗА И СТЕХИОМЕТРИЧЕСКИМ СЖИГАНИЕМ Заявитель: ЭКСОНМОБИЛ АПСТРИМ РИСЕРЧ КОМПАНИ, 05 2. ЕДИНСТВО ИЗОБРЕТЕНИЯ [Х] соблюдено [ ] не соблюдено. Пояснения: см. Примечания 3. ФОРМУЛА ИЗОБРЕТЕНИЯ: [Х] приняты во внимание все пункты (см. Примечания) [ ] приняты во внимание следующие пункты: [ ] принята во внимание измененная формула изобретения (см. Примечания) 4. КЛАССИФИКАЦИЯ ОБЪЕКТА ИЗОБРЕТЕНИЯ (ПОЛЕЗНОЙ МОДЕЛИ) (Указываются индексы МПК и индикатор текущей версии) Е02С 9/28 (2006.01) 5. ОБЛАСТЬ ПОИСКА 5.1 Проверенный минимум документации РСТ (указывается индексами МПК) Е02С 9/00-9 /50 Е02С 3/00-3 /34 5.2 Другая проверенная документация в той мере, в какой она включена в поисковые подборки: 5.3 Электронные базы данных, использованные при поиске (название базы, и если, возможно, поисковые термины): СТРО, РЕРАТБпе, О\У/Р1, ЕАРАТТ$, Езрасепеь, ]-Р1а Рае КТРК$, РАТЕМТЗСОРЕ, Ра еагсЬ, ВКОРТО, ТРО, ИЗРТО 6. ДОКУМЕНТЫ, ОТНОСЯЩИЕСЯ К ПРЕДМЕТУ ...

Подробнее
20-06-2004 дата публикации

Method and apparatus for controlling gas-turbine aggregate, for example gas- and steam-turbine power plants

Номер: RU2231102C2

Изобретение относится к регулированию газотурбинного агрегата, в частности, газо- и паротурбинных электростанций. Техническим результатом является повышение надежности регулирования за счет связей в объектах регулирования и ограничения регулирующих воздействий. Способ заключается в том, что, по меньшей мере, к двум исполнительным элементам газотурбинного агрегата подводят регулирующее воздействие, составленное из множества частичных регулирующих воздействий, причем частичные регулирующие воздействия для каждого отдельного регулирующего воздействия образуют из рассогласований посредством индивидуальных передаточных функций. Устройство содержит средства для получения частичных регулирующих воздействий из рассогласований, средства для связи множества частичных регулирующих воздействий для образования, по меньшей мере, одного регулирующего воздействия, средства для образования рассогласований из заданных и действительных значений. 2 с. и 16 з.п. ф-лы, 4 ил. сор сс ПЧ сэ (19) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ ВИ” 2 231 102‘ (51) МПК? 13) С2 С 05 В 11/32, Е 02 С 9/00 12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ (21), (22) Заявка: 2000122849/09, 01.02.1999 (24) Дата начала действия патента: 01.02.1999 (30) Приоритет: 02.02.1998 ОЕ 19804026.1 (43) Дата публикации заявки: 10.09.2002 (46) Дата публикации: 20.06.2004 (56) Ссылки: МО 93/24991 АЛ, 09.12.1993. КУ 2038629 СЛ, 27.06.1995. КУ 2151898 СЛ, 21.06.2000. 5Ц 746411 А, 07.07.1980. ЕР 0149002 АЛ, 24.07.1985. (85) Дата перевода заявки РСТ на национальную фазу: 04.09.2000 (86) Заявка РСТ: ОЕ 99/00265 (01.02.1999) (87) Публикация РСТ: М/О 99/39249 (05.08.1999) (98) Адрес для переписки: 129010, Москва, ул. Б. Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. Ю.Д.Кузнецову, рег.№ 595 (72) Изобретатель: КУТЦНЕР Рюдигер (ОЕ), ЗИМОН Дитер (0Е) (73) Патентообладатель: СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (0Е) (74) Патентный поверенный: Кузнецов Юрий Дмитриевич (54) СПОСОБ И РЕГУЛИРУЮЩЕЕ ...

Подробнее
22-01-2018 дата публикации

Gas turbine engine control system

Номер: RU2641786C2

FIELD: engines and pumps. SUBSTANCE: method includes stages for controlling the supply of liquid fuel to a burner with high output power to provide high output power with extreme temperature at turbine inlet and control the supply of liquid fuel to the burner with low output power to provide low output power with limit pressure in the liquid fuel collector. EFFECT: elimination of soot in the fuel combustion system, elimination of necessity in disassembling, cleaning and repair of burners after short operation period on liquid fuel under low loads, providing improved switching between the supply of gaseous and liquid fuel, reduction of emissions from the engine. 15 cl, 5 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 641 786 C2 (51) МПК F02C 9/28 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК F02C 9/28 (2006.01) (21)(22) Заявка: 2016105475, 27.06.2014 (24) Дата начала отсчета срока действия патента: Дата регистрации: 22.01.2018 R U 27.06.2014 (72) Автор(ы): ДОЛМЭНСЛИ Тимоти (GB), ХЕДЛЭНД Пол (GB), СКИППЕР Дориан (GB), СМИТ Майкл (GB) (73) Патентообладатель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) (56) Список документов, цитированных в отчете о поиске: WO 9207221 A1, 30.04.1992. US 19.07.2013 GB 1312974.7 (43) Дата публикации заявки: 22.08.2017 Бюл. № 24 (45) Опубликовано: 22.01.2018 Бюл. № 3 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 19.02.2016 2007271024 A1, 22.11.2007. EP 2306090 A2, 06.04.2011. RU 110409 U1, 20.11.2011. RU 2312229 C2, 10.12.2007. RU 2007134749 A, 27.03.2009. 2 6 4 1 7 8 6 Приоритет(ы): (30) Конвенционный приоритет: EP 2014/063670 (27.06.2014) C 2 C 2 (86) Заявка PCT: (87) Публикация заявки PCT: R U 2 6 4 1 7 8 6 WO 2015/007501 (22.01.2015) Адрес для переписки: 129090, Москва, ул. Б.Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) СИСТЕМА УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ (57) Реферат: Изобретение относится к способу жидкотопливном коллекторе. ...

Подробнее
12-12-2017 дата публикации

Gas-turbine engine combustion chamber operational control method

Номер: RU2638245C2

FIELD: electricity-producing industry. SUBSTANCE: there is a gas-turbine engine combustion chamber operational control method, where the engine is composed of the compressor, two burners, the combustion chamber, which is located downstream of the noted burners, the turbine, two temperature probes downstream of the noted combustion chamber. Upon that, there is one vent for the part of the oxygen-containing gas withdrawal placed downstream of the noted compressor and upstream of the noted combustion chamber. Along with this, the noted vent is a part of the system of the oxygen-containing gas bypass in contravention of the combustion chamber and has a valve for the amount of the bypassing gas regulation. The method comprises stages, where one controls the combustion products temperature, compares the noted temperature probes value, opens the noted valve or increases the rate of its opening in case if in consequence of the noted comparison one find out that the difference between the noted temperature probes value goes beyond the fixed limit of the temperature differential. EFFECT: invention allows to reduce the probability of occurrence of high carbon monoxide emissions by virtue of the vent valve position automatic control. 10 cl, 6 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 638 245 C2 (51) МПК F23R 3/26 (2006.01) F02C 3/13 (2006.01) F02C 9/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2015129829, 04.06.2013 (24) Дата начала отсчета срока действия патента: 04.06.2013 (72) Автор(ы): БОНАЛЬДО Алессио (SE), АНДЕРСОН Мэтс (SE) (73) Патентообладатель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) Дата регистрации: (56) Список документов, цитированных в отчете о поиске: US 2007079593 A1, 12.04.2007. EP Приоритет(ы): (30) Конвенционный приоритет: 21.12.2012 EP 12199094.9 (45) Опубликовано: 12.12.2017 Бюл. № 35 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 21.07.2015 (86) Заявка PCT: EP 2013/061439 ...

Подробнее
20-03-2009 дата публикации

Device for protection against icing over aircrafts and method for protection against icing

Номер: RU2349780C2
Принадлежит: Эрбюс Франс

FIELD: engines and pumps. SUBSTANCE: device comprises at least one detector sensitive relative to amount of accumulated ice and located inside aircraft engine air intake, system for measurement of this ice amount, system for comparison of ice amount to specified threshold value (S), and actuation system designed for initiation of response reaction whenever specified threshold value has been exceeded, besides, specified response reaction may constitute generation of warning alarm, increase of engine operation mode with certain time delay realised by engine control system or supply of hot air into front portion of engine downstream flow. EFFECT: improved performance characteristics of device. 9 cl, 3 dwg ÐÎÑÑÈÉÑÊÀß ÔÅÄÅÐÀÖÈß (19) RU (11) 2 349 780 (13) C2 (51) ÌÏÊ F02C 9/00 (2006.01) ÔÅÄÅÐÀËÜÍÀß ÑËÓÆÁÀ ÏÎ ÈÍÒÅËËÅÊÒÓÀËÜÍÎÉ ÑÎÁÑÒÂÅÍÍÎÑÒÈ, ÏÀÒÅÍÒÀÌ È ÒÎÂÀÐÍÛÌ ÇÍÀÊÀÌ (12) ÎÏÈÑÀÍÈÅ ÈÇÎÁÐÅÒÅÍÈß Ê ÏÀÒÅÍÒÓ (21), (22) Çà âêà: 2007114907/06, 12.09.2005 (72) Àâòîð(û): ÆÀÊÅ-ÔÐÀÍÑÈÉÎÍ Ïüåð (FR), ØÅÍ Æèëëü (FR) (24) Äàòà íà÷àëà îòñ÷åòà ñðîêà äåéñòâè ïàòåíòà: 12.09.2005 (73) Ïàòåíòîîáëàäàòåëü(è): ÝÐÁÞÑ ÔÐÀÍÑ (FR) R U (30) Êîíâåíöèîííûé ïðèîðèòåò: 21.09.2004 FR 0452110 (43) Äàòà ïóáëèêàöèè çà âêè: 27.10.2008 (45) Îïóáëèêîâàíî: 20.03.2009 Áþë. ¹ 8 2 3 4 9 7 8 0 (56) Ñïèñîê äîêóìåíòîâ, öèòèðîâàííûõ â îò÷åòå î ïîèñêå: US 4782331 À, 01.11.1988. DE 3333437 A1, 11/04/1985. US 6304194 B1, 16.10.2001. US 6560551 Â1, 06.05.2003. SU 1135690 À, 23.01.1985. RU 2200860 Ñ2, 20.03.2003. SU 1036958 À, 23.08.1983. 2 3 4 9 7 8 0 R U (86) Çà âêà PCT: FR 2005/050733 (12.09.2005) C 2 C 2 (85) Äàòà ïåðåâîäà çà âêè PCT íà íàöèîíàëüíóþ ôàçó: 23.04.2007 (87) Ïóáëèêàöè PCT: WO 2006/032808 (30.03.2006) Àäðåñ äë ïåðåïèñêè: 129090, Ìîñêâà, óë. Á.Ñïàññêà , 25, ñòð. 3, ÎÎÎ "Þðèäè÷åñêà ôèðìà Ãîðîäèññêèé è Ïàðòíåðû", ïàò.ïîâ. À.Â.Ìèöó, ðåã.¹ 364 (54) ÓÑÒÐÎÉÑÒÂÎ ÄËß ÇÀÙÈÒÛ ÎÒ ÎÁËÅÄÅÍÅÍÈß ÂÎÇÄÓØÍÛÕ ÑÓÄÎÂ È ÑÏÎÑÎÁ ÇÀÙÈÒÛ ÎÒ ÎÁËÅÄÅÍÅÍÈß (57) Ðåôåðàò: Èçîáðåòåíèå ïðåäíàçíà÷åíî äë çàùèòû äâèãàòåëåé âîçäóøíûõ ñóäîâ îò ...

Подробнее
26-07-1997 дата публикации

Gas turbine merge cycle plant and compressor

Номер: KR970044622A

본 발명은 실용적인 단순한 설비에 의해 압축기의 입구에 도입되는 흡기 중에 액적을 분무하여 출력의 향상과 열 효율의 향상의 쌍방을 실현할 수 있는 가스터빈 및 병합 사이클 플랜트 및 압축기를 제공하는 것이다. 기체를 흡입 압축하는 압축기, 상기 압축기로부터 토출한 기체와 연료가 연소되는 연소기와, 상기 연소기의 연소 가스에 의해 구동되는 터빈을 구비한 가스 터빈에 있어서, 상기 압축기 입구에 공급되는 흡기에 분무하고, 상기 압축기에 들어가는 흡기의 온도를 저하시키는 동시에, 상기 압축기를 내를 흘러 내리는 도중에 기화하는 액적을 분무하는 분무 장치를 압축기의 상류측에 구비하는 것을 특징으로 한다. 압축기의 입구에 도입되는 흡기에 액적을 분무하여 냉각하는 동시에, 그 액적을 압축기 내에서 기화시켜서 출력의 향상과, 열효율의 향상을 도모할 수 있다.

Подробнее
31-05-2022 дата публикации

Jet-type ammonia engine based on ignition and combustion supporting of multiple plasma devices

Номер: CN113074046B

本发明提出一种基于气路中多个等离子体装置点火与助燃的喷气式氨发动机,用于涡喷或涡扇喷气式氨发动机,包括氨燃料源、空气源、氨分解箱、等离子体点火器、等离子体助燃器、控制系统、尾气余热回收系统,所述等离子体点火器安装在涡喷或涡扇喷气式氨发动机中的燃烧室内;所述等离子体助燃器分别安装在燃烧室和空气进气道中,安装在燃烧室内的等离子体助燃器包括微波等离子体发生器,所述的安装在空气进气道中的等离子体助燃器包括介质阻挡放电装置DBD;所述的介质阻挡放电装置,具体安装在大气端进气道进气口位置,或安装在空气压缩机后端,即压缩空气端,所述介质阻挡放电装置包括高压电极、地电极、介质板,介质板分别固定在高压电极和地电极内侧。

Подробнее
02-09-2021 дата публикации

Method for controlling gas turbine, controller for gas turbine, gas turbine, and machine-readable data storage medium

Номер: RU2754490C1
Автор: Вили ПАНОВ

FIELD: gas industry. SUBSTANCE: created is a controller (600) for a gas turbine (100). The gas turbine (100) is comprised of a compressor (101) configured to operate at a rotational rate , a combustion chamber (102), and a fuel supply tool (127) containing a first fuel supply tool and a second fuel supply tool, wherein the compressor (101) configured to provide air to the combustion chamber (102) with a mass flow rate of air in a steady state, wherein the fuel supply tool (127) is configured to supply fuel with a mass flow rate of the fuel into the combustion chamber (102). The controller (600) is configured, in response to a load change L for the load L, to control the compressor (101) so as to provide air to the combustion chamber (102) with a new mass flow rate of air, wherein the new mass flow rate of air is within the range between the first threshold value and the second threshold value . EFFECT: invention ensures control of a gas turbine. 13 cl, 17 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 754 490 C1 (51) МПК F02C 9/16 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК F02C 9/16 (2021.02) (21)(22) Заявка: 2020127715, 13.02.2019 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) Дата регистрации: 02.09.2021 Приоритет(ы): (30) Конвенционный приоритет: 23.02.2018 EP 18158433.5 (45) Опубликовано: 02.09.2021 Бюл. № 25 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 23.09.2020 (86) Заявка PCT: 2 7 5 4 4 9 0 R U (87) Публикация заявки PCT: WO 2019/162168 (29.08.2019) Адрес для переписки: 129090, Москва, ул. Б.Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ, КОНТРОЛЛЕР ДЛЯ ГАЗОВОЙ ТУРБИНЫ, ГАЗОВАЯ ТУРБИНА И МАШИНОЧИТАЕМЫЙ НОСИТЕЛЬ ДАННЫХ (57) Реферат: Создан контроллер (600) для газовой турбины массовым расходом топлива в камеру (102) (100). Газовая турбина (100) содержит ...

Подробнее
22-08-2007 дата публикации

Device for protection against icing for aircraft engines and related de-icing method

Номер: CN101023254A
Принадлежит: AIRBUS OPERATIONS SAS

本发明涉及防止航空器发动机结冰的保护装置,所述保护装置具有:至少一个布置在航空器发动机(2)进气口内的传感器(1),其对所积聚的冰霜数量敏感;一测定所述冰霜数量的测定系统(3)和使所述冰霜数量与一预定的界限值(S)相比较的比较系统(4);一用于对超过预定界限值的检测结果作出响应的启动系统(5),所述响应可以是警报、由所述发动机控制系统(7)延迟的发动机转速的增大、或在发动机上游输送热空气。

Подробнее
07-11-2012 дата публикации

Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method

Номер: EP2520863A1
Принадлежит: Alstom Technology AG

The invention relates to a method for protecting a gas turbine engine (10), comprising a compressor (11), a combustor (13) and a turbine (12), against high dynamical process values, especially in combustor/flame pulsations. An effective protection against high dynamical process values, especially in combustor/flame pulsations is achieved by providing the steps of o) measuring the pulsations of the combustor (13) with a suitable sensor (18), p) dividing the frequency spectrum of the measured pulsation signal up into pre-defined band pass sections, q) computing the rms (root mean square) of the signal for each band, r) weighting the computed frequency/frequency band rms with predetermined weighting factors, s) cumulating the weighted frequency/frequency band rms values to get a Pulsation Limit Criterion (PLC) value, t) comparing the PLC value with at least one reference value (23), and u) operating the gas turbine engine (10) according to the result of said comparison.

Подробнее
11-11-2015 дата публикации

Method for operating a burner assembly

Номер: EP2942565A1
Принадлежит: SIEMENS AG

Die Erfindung betrifft ein Verfahren zum Betreiben einer Brenneranordnung, insbesondere einer Brenneranordnung einer Gasturbine, bei dem eine die Verbrennungsstabilität repräsentierenden Bewertungsgröße ermittelt und zumindest basierend auf der ermittelten Bewertungsgröße wenigstens eine Stellgröße verändert wird, wenn die ermittelte Bewertungsgröße nicht innerhalb eines vorab definierten Sollbereiches liegt, wobei der Sollbereich der Bewertungsgröße über den gesamten Leistungsbereich der Maschine konstant ist. The invention relates to a method for operating a burner arrangement, in particular a burner arrangement of a gas turbine, in which a combustion stability representing the evaluation determined and at least based on the determined evaluation size at least one manipulated variable is changed if the determined evaluation size is not within a predefined target range, wherein the target range of the evaluation variable is constant over the entire power range of the machine.

Подробнее
30-06-2015 дата публикации

Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting the method

Номер: US9068512B2
Принадлежит: Alstom Technology AG

A method can protect a gas turbine engine ( 10 ), which includes a compressor ( 11 ), a combustor ( 13 ), and a turbine ( 12 ), against high dynamical process values, especially in combustor/flame pulsations. Effective protection against high dynamical process values, especially in combustor/flame pulsations, can be achieved by: a) measuring the pulsations of the combustor ( 13 ) with a suitable sensor ( 18 ), b) dividing the frequency spectrum of the measured pulsation signal up into pre-defined band pass sections, c) computing the rms (root mean square) of the signal for each band, d) weighting the computed frequency/frequency band rms with predetermined weighting factors, e) cumulating the weighted frequency/frequency band rms values to get a Pulsation Limit Criterion (PLC) value, f) comparing the PLC value with at least one reference value ( 23 ), and g) operating the gas turbine engine ( 10 ) according to the result of the comparison.

Подробнее
02-07-2019 дата публикации

Devices and methods for early prediction of impending instabilities of a system

Номер: US10337414B2
Принадлежит: INDIAN INSTITUTE OF TECHNOLOGY MADRAS

The invention includes a method for predicting the operational state of equipment with turbulent flow characterized by time series data relating to its operation. The invention further includes a system and method for predicting the onset of an impending oscillatory instability. Further, the invention includes a system and method for identifying an impending absorbing transition such as flame blowout in combustion systems. A variable representing the dynamics of operation is measured with the help of a sensor, to obtain time series data. A complex network is then derived from the measured time series data. Network properties are then calculated using the complex network to identify the state of stability relating to operation of the equipment. The stability information may include one of thermoacoustic instability, aero-elastic instability such as flutter, flow-induced vibration, magneto-hydrodynamic, aerodynamic, aeromechanical, aero-acoustic instability or onset of flame blowout of a combustor.

Подробнее
09-08-2016 дата публикации

System and method for high efficiency power generation using a nitrogen gas working fluid

Номер: US9410481B2
Принадлежит: 8 Rivers Capital LLC

A method of power production using a high pressure/low pressure ratio Brayton Power cycle with predominantly N 2 mixed with CO 2 and H 2 O combustion products as the working fluid is provided. The high pressure can be in the range 80 bar to 500 bar. The pressure ratio can be in the range 1.5 to 10. The natural gas fuel can be burned in a first high pressure combustor with a near stoichiometric quantity of pressurized preheated air and the net combustion gas can be mixed with a heated high pressure recycle N 2 +CO 2 +H 2 O stream which moderates the mixed gas temperature to the value required for the maximum inlet temperature to a first power turbine producing shaft power.

Подробнее
12-02-2014 дата публикации

Method and system for using low btu fuel gas in a gas turbine

Номер: KR101362603B1
Принадлежит: 제너럴 일렉트릭 캄파니

하나의 실시양태에서, 연소 시스템은, 약 100 Btu/scf(British thermal units per standard cubic foot) 이하의 발열량을 갖는 연료를 포함하는 연료 공급기, 상기 연료 공급기와 유체 연통하는 불활성 가스 격리 유닛(32), 및 상기 불활성 가스 격리 유닛(32) 및 산화제(78) 공급기의 하류에 위치하여 그들과 유체 연통하는 연소 시스템을 포함한다. 불활성 가스 격리 유닛(32)은 CO로부터 N 2 를 분리하며 약 110 Btu/scf 이상의 발열량을 갖는 잔류물(retentate) 스트림을 형성하도록 구성된 멤브레인을 포함한다. 하나의 실시양태에서, 발전기(8)를 작동하는 방법은, 연료 스트림(76)을 불활성 가스 격리 유닛(32)을 통해 통과시켜 상기 연료 스트림(76)으로부터 N 2 를 제거하고 잔류물 스트림을 형성시키는 단계, 및 상기 잔류물 스트림 및 산화제(78) 스트림을 연소시켜 연소 스트림을 형성하는 단계를 포함한다. In one embodiment, a combustion system includes a fuel supply comprising a fuel having a calorific value of about 100 Btu / scf (British thermal units per standard cubic foot) or less, an inert gas isolation unit 32 in fluid communication with the fuel supply. And a combustion system located downstream of the inert gas isolation unit 32 and oxidant 78 feeder and in fluid communication therewith. Inert gas isolation unit 32 includes a membrane that separates N 2 from CO and is configured to form a retentate stream having a calorific value of at least about 110 Btu / scf. In one embodiment, the method of operating the generator 8 passes the fuel stream 76 through an inert gas isolation unit 32 to remove N 2 from the fuel stream 76 and form a residue stream. And combusting the residue stream and oxidant 78 stream to form a combustion stream.

Подробнее
09-09-2015 дата публикации

Method and arrangement for controlling fuel supply for gas turbine

Номер: CN104903563A
Автор: G.H.戴维斯, M.史密斯
Принадлежит: SIEMENS AG

描述了一种控制给燃气轮机的燃烧器(101)供给燃料(105)的方法,燃气轮机包括位于燃烧器上游的压缩器,该方法包括:给燃烧器(101)供给燃料(105);获得用于在燃烧器(101)中燃烧燃料(105)的空气的至少一个物理属性(PT8、PT7、Tinlet、THBOV)的属性值;基于所述属性值评估供给到燃烧器(101)的燃料(105)的热输入(HIengmodel);在燃烧器(101)的上游测量燃料(105)的热值(LCVmea);基于测量的热值(LCVmea)调节评估的热输入(HIengmodel);以及基于被调节的评估的热输入(HIexpected)和期望热输入(FFDEM)控制燃料阀(103),燃料阀调整给燃烧器(101)的燃料(105)供给。

Подробнее
21-07-2017 дата публикации

The combined probability for discharging parameter to power output in gas turbine regulation is controlled

Номер: CN106968803A
Принадлежит: General Electric Co

各种实施例包括一种系统(802),其具有:配置成通过执行包括下者的动作来调节一组燃气轮机(GT)(10)的至少一个计算装置(814):基于该组GT(10)中的各个GT(10)的测得的环境状况命令各个GT(10)至基本负载水平;命令该组GT(10)中的各个GT(10)调整相应功率输出来匹配等于相应功率输出与标称功率输出值之间的差的一部分的经换算的功率输出值,以及在调整相应功率输出期间,测量各个GT的实际排放值;以及基于相应的测得的实际排放值、在环境状况下的标称排放值之间的差和排放换算因子来调整该组GT(10)中的各个GT(10)的运行状况。

Подробнее
17-05-2017 дата публикации

Gas turbine engine, containing the monitoring system containing the module of inclusion of the function of the protection of the gas turbine engine, and the method of monitoring

Номер: RU2619661C2
Принадлежит: Снекма

Изобретения включают газотурбинный двигатель летательного аппарата и способы мониторинга газотурбинного двигателя /варианты/. Газотурбинный двигатель содержит средства, выполненные с возможностью выдачи по меньшей мере одного измерения превышения скорости, когда один из каналов измерения вышел из строя, а также по меньшей мере одно средство сравнения измерения превышения скорости по меньшей мере с одним контрольным режимом, определенным в зависимости от включенной функции защиты. При этом модуль включения конфигурирован с возможностью включения функции защиты от «превышения тяги», «от падения тяги» в зависимости от результатов сравнения. Технический результат – повышение надежности системы мониторинга при любых обстоятельствах, в частности в аварийном режиме. 3 н. и 5 з.п. ф-лы, 9ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 619 661 C2 (51) МПК F02C 9/46 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА (21)(22) Заявка: ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ 2014144281, 26.04.2013 (24) Дата начала отсчета срока действия патента: 26.04.2013 Дата регистрации: (73) Патентообладатель(и): СНЕКМА (FR) Приоритет(ы): (30) Конвенционный приоритет: R U 17.05.2017 (72) Автор(ы): КУАНТ Сесиль Валери Мари (FR), ДЕНСАР Мишаэль (FR), ДЖЕЛАССИ Седрик (FR), ГОЛЛИ Брюно Робер (FR) (56) Список документов, цитированных в отчете о поиске: GB2427711A,03.01.2007. 27.04.2012 FR 12 53894 (45) Опубликовано: 17.05.2017 Бюл. № 14 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 27.11.2014 FR2960906A1,09.12.2011. FR2406078A1,11.05.1979. US3987620A,26.10.1976. EP0471623A1,19.02.1992. RU2398124C2,27.08.2010. RU102687U1,10.03.2011. (86) Заявка PCT: FR 2013/050934 (26.04.2013) (87) Публикация заявки PCT: 2 6 1 9 6 6 1 (43) Дата публикации заявки: 20.06.2016 Бюл. № 17 2 6 1 9 6 6 1 R U Адрес для переписки: 129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры" (54) ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ СИСТЕМУ ...

Подробнее
12-06-2018 дата публикации

A kind of unmanned plane engine start control method

Номер: CN108150295A
Принадлежит: Beijing Power Machinery Institute

本发明涉及一种无人机用发动机起动控制方法,属于发动机技术领域。本发明设计了一种无人机用发动机起动控制方法,包括无人机用发动机点火起动准备阶段、点火阶段的控制方法,实现了发动机稳定、安全、可靠的点火起动,降低了点火起动过程发动机结构件的机械损伤及热冲击损伤,满足了无人机用发动机的使用需求。

Подробнее
23-07-2014 дата публикации

Power plant

Номер: JP5558592B2
Автор: 浩史 田邉
Принадлежит: Mitsubishi Heavy Industries Ltd

Подробнее
25-08-2010 дата публикации

Gas reforming equipment

Номер: CN101014686B
Автор: 佐香正明, 大田秀明
Принадлежит: Kawasaki Jukogyo KK

本发明的气体重整装置能够将低热量气体重整为稳定的燃气轮机用燃料。该装置具备:具有天然气供给线(7)和空气供给线(8),将天然气与空气加以混合,使该混合气体发生化学反应而重整,以制造含氢气的重整气体用的反应容器的重整气体制造装置(3)、将低热量气体与上述重整气体制造装置(3)提供的重整气体加以混合,作为燃料气体提供给燃气轮机设备(1)用的混合调整装置(5)、从所述重整气体制造装置(3)向所述混合调整装置(5)提供重整气体用的重整气体供给配管(4)、从所述混合调整装置(5)向燃气轮机设备(1)提供燃料气体用的燃料气体供给配管(2)、以及控制所述重整气体制造装置(3)和混合调整装置(5)的动作用的控制装置(10)。

Подробнее
27-08-2009 дата публикации

METHOD AND DEVICE FOR EMERGENCY LUBRICATION OF THE ENGINE, ENGINE AND VEHICLE CONTAINING THE SPECIFIED EMERGENCY LUBRICATION DEVICE

Номер: RU2008106634A
Принадлежит: Снекма, Снекма (Fr)

1. Способ аварийной смазки двигателя в случае поломки главной системы смазки двигателя, в котором данная поломка обнаружена, отличающийся тем, что после обнаружения поломки, по меньшей мере, часть жидкого горючего вещества двигателя отбирают для обеспечения смазки, по меньшей мере, одной детали двигателя. ! 2. Способ по п.1, отличающийся тем, что указанную часть жидкого горючего вещества двигателя подают, по меньшей мере, в одну содержащуюся в двигателе камеру, при этом осуществляют дренирование камеры с целью предотвращения ее переполнения. ! 3. Способ по одному из пп.1 или 2, отличающийся тем, что после обнаружения поломки двигатель переводят в аварийный режим работы, согласно которому ограничивается режим его функционирования. ! 4. Устройство смазки двигателя, включающее в себя главную систему смазки и аварийную систему смазки, причем последняя содержит средства обнаружения поломки главной системы смазки, отличающееся тем, что оно дополнительно содержит средства отбора, по меньшей мере, части жидкого горючего вещества двигателя, подаваемого, по меньшей мере, на одну смазываемую деталь двигателя, а также средства управления, выполненные с возможностью сопряжения со средствами отбора и обнаружения. ! 5. Устройство смазки по п.4, в котором средства обнаружения содержат, по меньшей мере, один датчик низкого давления. ! 6. Устройство смазки по п.4, в котором средства отбора выходят, по меньшей мере, в один жиклер. ! 7. Устройство смазки по п.6, в котором указанный жиклер содержит, по меньшей мере, один жиклер главной системы смазки. ! 8. Устройство смазки по п.4, в котором средства отбора содержат трубопровод отбора, по меньшей ме� РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 2008 106 634 (13) A (51) МПК F01M 9/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21), (22) Заявка: 2008106634/06, 20.02.2008 (71) Заявитель(и): СНЕКМА (FR) (30) Конвенционный приоритет: 21.02.2007 FR 0701236 (43) Дата публикации ...

Подробнее