Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 1462. Отображено 100.
02-02-2012 дата публикации

Method for quantifying amplitude of a response of a biological network

Номер: US20120030162A1
Принадлежит: Selventa Inc

One or more measurement signatures are derived from a knowledge base of casual biological facts, where a signature is a collection of measured node entities and their expected directions of change with respect to a reference node. The knowledge base may be a directed network of experimentally-observed casual relationships among biological entities and processes, and a reference node represents a perturbation. A degree of activation of a signature is then assessed by scoring one or more “differential” data sets against the signature to compute an amplitude score. The amplitude score quantifies fold-changes of measurements in the signature. In one particular embodiment, the amplitude score is a weighted average of adjusted log-fold changes of measured node entities in the signature, wherein an adjustment applied to the log-fold changes is based on their expected direction of change. In an alternative embodiment, the amplitude score is based on quantity effects.

Подробнее
09-08-2012 дата публикации

Monolithic or hybrid integrated optical information processor employing a plurality of controllable optical transfer functions at fractional fourier planes

Номер: US20120200924A1
Автор: Lester F. Ludwig
Принадлежит: Individual

A monolithic or hybrid integrated optical information processor employing a plurality of controllable optical transfer functions at fractional Fourier planes between two optical imaging elements is described. The arrangement can be used to realize or closely approximate arbitrary non-positive-definite transfer functions of spatially-varying amplitude and phase. In various implementations, one or both of the optical imaging elements can comprise a lens or graded-index material. In some implementations, at least a portion of the arrangement is implemented in the form of a stack. Graded index material may lie between consecutive light modulating array elements. The controllable plurality of optical transfer functions are employed to create a controllable optical processor which can be used for image filtering and optical computations using complex-valued optical signal arithmetic. An image sensor may be included to transform the processed image into electrical output. Applications include optical computing systems and integrated optics.

Подробнее
30-08-2012 дата публикации

Method for quantifying amplitude of a response of a biological network

Номер: US20120221506A1
Принадлежит: Selventa Inc

One or more measurement signatures are derived from a knowledge base of casual biological facts, where a signature is a collection of measured node entities and their expected directions of change with respect to a reference node. The knowledge base may be a directed network of experimentally-observed casual relationships among biological entities and processes, and a reference node represents a perturbation. A degree of activation of a signature is then assessed by scoring one or more “differential” data sets against the signature to compute an amplitude score. The amplitude score quantifies fold-changes of measurements in the signature. In one particular embodiment, the amplitude score is a weighted average of adjusted log-fold changes of measured node entities in the signature, wherein an adjustment applied to the log-fold changes is based on their expected direction of change. In an alternative embodiment, the amplitude score is based on quantity effects.

Подробнее
28-03-2013 дата публикации

OPTICAL PROCESSOR

Номер: US20130080496A1
Автор: STEVENS Rick C.
Принадлежит: LOCKHEED MARTIN CORPORATION

An optical processor that incorporates optical computing in a monolithic, i.e. single unit, structure that can take the place of, or operate as a coprocessor with, traditional processor devices such as vector processors, digital signal processors, RISCs, CISCs, ASICs, FPGAs among others. The optical processor incorporates photonic devices that perform algorithmic functions on optical signals. The optical processor takes one or more incoming digital signals, converts the digital signal into an optical signal, performs the algorithmic function(s) in the optical domain, and then converts the result back into a digital signal, all in a monolithic or single unit structure. 1. A processing system , comprising:a main processor; anda plurality of coprocessors connected to the main processor, at least one of the coprocessors comprising an optical processor that is a monolithic structure that includes:optical algorithmic function circuitry having at least two inputs that receive input signals into the algorithmic function circuitry and at least two outputs, the algorithmic function circuitry is configured to perform an algorithmic function using optical signals derived from input signals that are input via the at least two inputs and output results in the form of analog signals.2. The processing system of claim 1 , wherein the at least two inputs are optical inputs and the at least two outputs are optical outputs.3. The processing system of claim 1 , wherein the optical processor further comprises:a plurality of input registers, each input register is configured to receive a digital input signal;a plurality of digital to analog converters, each one of the converters is connected to a respective one of the input registers and each one of the converters is configured to convert a digital input signal received by the respective input register into an analog electrical signal;at least two optical transmitters, each one of the optical transmitters is connected to a respective one ...

Подробнее
22-08-2013 дата публикации

Optical Target Detection

Номер: US20130215218A1
Принадлежит: Ricoh Co Ltd

An optically-based target detection system includes a holographic detection filter designed to produce a concentrated spot when a target is present.

Подробнее
31-10-2013 дата публикации

Imaging Systems for Optical Computing Devices

Номер: US20130286398A1
Принадлежит:

Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element. 1. A method of operating an optical computing device , comprising:optically interacting electromagnetic radiation with a sample and at least one integrated computational element arranged in an optical train of the optical computing device, the sample being configured to generate optically interacted radiation;transmitting the electromagnetic radiation through a sampling window arranged adjacent the sample, the sampling window having one or more surfaces that generate one or more stray signals;receiving and focusing the optically interacted radiation with a first focal lens and thereby generating a primary focal point;aligning the primary focal point with a spatial aperture defined in a structural element arranged within the optical train such that the optically interacted radiation is able to pass therethrough unobstructed; andsubstantially blocking a transmission of the one or more stray signals with the structural element.2. The method of claim 1 , further comprising:receiving with a detector ...

Подробнее
31-10-2013 дата публикации

Imaging Systems for Optical Computing Devices

Номер: US20130286399A1
Принадлежит:

Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element. 1. An optical computing device , comprising:an electromagnetic radiation source configured to emit electromagnetic radiation into an optical train, where the electromagnetic radiation optically interacts with a sample and at least one integrated computational element arranged within the optical train, the sample being configured to generate optically interacted radiation;a sampling window arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough in order to generate the optically interacted radiation into the optical train, the sampling window having one or more surfaces that generate one or more stray signals;a first focal lens arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation; anda structural element defining a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass ...

Подробнее
27-03-2014 дата публикации

METASURFACE NANOANTENNAS FOR LIGHT PROCESSING

Номер: US20140085693A1
Принадлежит: NORTHEASTERN UNIVERSITY

A birefringent reflectarray having a planar metasurface containing metallic patches of subwavelength dimension is provided. The reflectarray is capable of simultaneously reflecting, concentrating, and splitting incident infrared light into two orthogonal linearly polarized reflections, and transforms the phase front of an incoming polarized light to a desired phase for the two reflections. Also provided is an optical modulator having a metasurface containing layers of nanoantennas of subwavelength dimension, and capable of modulating the phase and amplitude of light scattered from the modulator. The optical modulator has ability to perform computation through processing of light. 1. A birefringent infrared reflectarray comprising a planar metasurface disposed on a surface of a substrate , the metasurface comprising a metal layer , a dielectric layer deposited on the metal layer , and a nanoantenna layer deposited on the dielectric layer; wherein the nanoantenna layer comprises a plurality of rectangular metal patches arranged in a two-dimensional rectilinear array , each row of the array comprising a series of said metal patches whose length and/or width increases from one to the next across the row; wherein the patches reflect incident infrared light of wavelength λ and split the incident light into two orthogonal linearly polarized reflections , concentrate the reflected light , and transform the phase front of the incoming polarized light to a desired phase for the two reflections; and wherein the dimensions of the metallic patches are less than λ.2. The reflectarray according to claim 1 , wherein the dielectric layer comprises a material selected from the group consisting of: metal oxides claim 1 , plastics claim 1 , mica claim 1 , ceramic materials claim 1 , SiO claim 1 , and glass.3. The reflectarray according to claim 2 , wherein the metal layer and the metal patches each comprise gold.4. The reflectarray according to claim 1 , wherein the wavelength of the ...

Подробнее
13-01-2022 дата публикации

Photonic in-memory co-processor for convolutional operations

Номер: US20220012013A1

A co-processor for performing a matrix multiplication of an input matrix with a data matrix in one step may be provided. The co-processor receives input signals for the input matrix as optical signals. A plurality of photonic memory elements is arranged at crossing points of an optical waveguide crossbar array. The plurality of memory elements is configured to store values of the data matrix. Input signals are connected to input lines of the optical waveguide crossbar array. Output lines of the optical waveguide crossbar array represent a dot-product between a respective column of the optical waveguide crossbar array and the received input signals, and values of elements of the input matrix to be multiplied with the data matrix correspond to light intensities received at input lines of the respective photonic memory elements. Additionally, different wavelengths are used for each column of the input matrix optical signals.

Подробнее
18-01-2018 дата публикации

Optical Computing Devices For Measurement In Custody Transfer Of Pipelines

Номер: US20180017500A1
Принадлежит: Halliburton Energy Services, Inc.

A device including an integrated computational element (ICE) positioned to optically interact with electromagnetic radiation from a fluid and to thereby generate optically interacted radiation corresponding to a characteristic of the fluid, and a method for using the system are provided. The device includes a detector positioned to receive the optically interacted radiation and to generate an output signal proportional to an intensity of the optically interacted radiation. And the device further includes a processor positioned to receive the output signal and to determine the characteristic of the fluid. The device is coupled to a controller configured to provide instructions to a transfer system for storage and readout. 1. A device comprising:an integrated computational element (ICE) positioned to optically interact with electromagnetic radiation from a fluid and to thereby generate optically interacted radiation corresponding to a characteristic of the fluid;a detector positioned to receive the optically interacted radiation and to generate an output signal proportional to an intensity of the optically interacted radiation; anda processor positioned to receive the output signal and to determine the characteristic of the fluid, whereinthe device is coupled to a controller configured to provide instructions to a transfer system for storage and readout.2. The device of claim 1 , wherein the transfer system is a lease automatic custody transfer (LACT) system positioned upstream from a contractor pipeline in an oil and gas production configuration claim 1 , and the LACT system is configured to modify a flow and composition of the fluid when the characteristic of the fluid is below a quality parameter.3. The device of claim 1 , wherein the fluid includes liquid crude oil and the ICE is configured to detect a contaminant in the liquid crude oil claim 1 , the contaminant including a residual additive for oil production claim 1 , water claim 1 , or natural gas.4. The ...

Подробнее
17-04-2014 дата публикации

Optical system and method for reading encoded microbeads

Номер: US20140103114A1
Принадлежит: Illumina Inc

A method and apparatus for reading a microbead having a code thereon is provided wherein the code is projected on and read from a Fourier plane. The microbead may be 1-1000 microns (um) or smaller in feature size. The code is projected on the Fourier plane by scattering input light off the microbead. The scattered light from the microbead is directed through an optical arrangement having a transform lens for projecting the code on the Fourier plane, and read on the Fourier plane using a charge coupled device (CCD) or other similar device. The code may include periodic layers of material having different refractivities or phase, including index of refraction differences; periodic spatial modulations having a different phase or amplitude; a periodic binary phase change used to code information in the Fourier plane; a photonic crystal used to encode the information on the microbead, wherein a pattern of holes causes interference between incident and scattered light to form spatial and spectral patterns in the far field that are unique to the pattern of holes; or may be formed in the microbead using a single photoactive inner region, a series of longitudinal holes, different fluorescence regions, or concentric rings of material in a preform.

Подробнее
28-01-2021 дата публикации

Optical Signal Processing Device

Номер: US20210026220A1
Принадлежит:

There is provided an optical signal processing device capable of RC in a complex space using optical intensity and phase information. An optical modulator controlled by an electric signal processing circuit modulates laser light, which is emitted from a laser light source, at a modulation period either or both of the intensity and phase values of the optical electric field. On the other hand, an input signal is also modulated by the optical modulator at a modulation period in the time domain so as to be an input signal. The converted input signal passes through an optical transmission path and enters an optical circulation circuit via an optical coupler. Part of the circulating light is branched into two by an optical coupler, and the branched light is converted into a complex intermediate signal at a coherent optical receiver. This complex intermediate signal demodulated at the coherent optical receiver is computed at an electric signal processing circuit, and thereby the operation as RC can be performed. 1. An optical signal processing device comprising:a light source generating an optical signal;first optical modulation means for modulating at least one of intensity and phase of the optical signal at a first modulation period to generate a complex input signal;second optical modulation means for modulating the complex input signal in a time domain at a second modulation period that is shorter than the first modulation period;an optical circulation unit in which the modulated complex input signal circulates at a predetermined delay length;optical multiplex means for joining the modulated complex input signal in the optical circulation unit;a nonlinear response element giving nonlinearity to the optical signal circulating in the optical circulation unit;variable optical modulation means for modulating the optical signal circulating in the optical circulation unit;optical branch means for branching part of the optical signal circulating in the optical circulation ...

Подробнее
05-02-2015 дата публикации

APERTURE SCANNING FOURIER PTYCHOGRAPHIC IMAGING

Номер: US20150036038A1
Принадлежит:

Certain aspects pertain to aperture-scanning Fourier ptychographic imaging devices comprising an aperture scanner that can generate an aperture at different locations at an intermediate plane of an optical arrangement, and a detector that can acquire lower resolution intensity images for different aperture locations, and wherein a higher resolution complex image may be constructed by iteratively updating regions in Fourier space with the acquired lower resolution images. 1. An aperture-scanning Fourier ptychographic imaging device , comprising:a first optical element configured to receive light from a sample;a second optical element;an aperture scanner configured to generate an aperture at a plurality of aperture locations in an intermediate plane, the aperture configured to pass incident light at the aperture from the first optical element to the second optical element;a light detector configured to receive light from the second optical element and to acquire a plurality of intensity images associated with different aperture locations; anda processor configured to construct a complex image of the sample by iteratively updating regions in Fourier space with the acquired intensity images.2. The aperture-scanning Fourier ptychographic imaging device of claim 1 , wherein the intermediate plane is a Fourier plane associated with a sample plane.3. The aperture-scanning Fourier ptychographic imaging device of claim 1 , wherein each of the plurality of intensity images acquired by the light detector uniquely corresponds to a different aperture location of the plurality of aperture locations.4. The aperture-scanning Fourier ptychographic imaging device of claim 1 , wherein the aperture scanner is further configured to generate additional apertures at the intermediate plane to form a plurality of apertures during each acquisition time.5. The aperture-scanning Fourier ptychographic imaging device of claim 1 , further comprising an aperture overlap between adjacent aperture ...

Подробнее
16-02-2017 дата публикации

RECONFIGURABLE OPTICAL PROCESSING SYSTEM

Номер: US20170045909A1
Автор: NEW Nicholas James
Принадлежит:

An optical processing system comprises an optical input; one or more spatial light modulator arrays; and a detector array; wherein at least of said spatial light modulator arrays incorporates a plurality of data elements focusing elements; said data elements and/or said focussing elements having multiple degrees of freedom. 1. An optical processing system comprising an optical input;at least one spatial light modulator layer; anda detector array;wherein said at least one spatial light modulator layer comprises a single high-resolution liquid crystal panel, the single high-resolution liquid crystal panel comprising an array with multiple pixelated input data patterns displayed by said single liquid crystal panel and multiple pixelated focussing patterns displayed by the same single liquid crystal panel.2. A system according to claim 1 , wherein the liquid crystal panel is a transmissive or a reflective liquid crystal panel.3. A system according to claim 1 , further comprising a reflector which faces said array claim 1 , for folding an optical path.4. A system according to claim 1 , wherein said system further comprises an optical output which is produced by a combination of shifting the positions of the pixelated input data patterns and a modification of said pixelated focussing patterns.5. A system according to claim 1 , wherein the data patterns and/or focussing patterns have multiple degrees of freedom.6. A system according to claim 1 , wherein said spatial light modulator layer comprises a MEMs pixel array and said focussing patterns comprise amplitude patterns displayed by said MEMs pixel array.7. A system according to claim 1 , further comprising a beam steering arrangement for shifting focussing patterns or altering beam steering patterns across the spatial light modulator; whereby a detected optical output matches the expected distribution and position of an intensity pattern captured by a detector array positioned at the output of the optical system.8. A ...

Подробнее
03-03-2022 дата публикации

Statistical image processing-based anomaly detection system for cable cut prevention

Номер: US20220065690A1

Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously enable anomaly detection resulting from construction—or other activity based on image processing that may advantageously detect/notify/prevent damage to a fiber optic network infrastructure before such damage occurs.

Подробнее
13-02-2020 дата публикации

UNIVERSAL QUANTUM COMPUTER, COMMUNICATION, QKD SECURITY AND QUANTUM NETWORKS USING OAM QU-DITS WITH DLP

Номер: US20200050959A1
Автор: ASHRAFI SOLYMAN
Принадлежит:

A quantum computing system includes an input port for receiving a data stream comprising a plurality of bits. Orbital angular momentum processing circuitry receives the data stream and applies at least one of a plurality of orbital angular momentum function modes to each of the plurality of bits of the data stream. Each of the plurality of orbital angular momentum function modes comprises separate orbital angular momentum states that are orthogonal to each other. DLP processing circuitry associated with the orbital angular momentum processing circuitry generates a hologram for applying the at least one of the plurality of orbital angular momentum function modes to each of the plurality of bits of the data stream. At least one quantum gate receives each of the of the plurality of bits of the data stream having at least one of the plurality of orbital angular momentum functions applied thereto via at least one gate input and generates a quantum circuit output via at least one gate output responsive thereto. An output port outputs the generated quantum circuit output. 1. A quantum computing system , comprising:an input port for receiving a data stream comprising a plurality of bits;orbital angular momentum processing circuitry for receiving the data stream and applying at least one of a plurality of orbital angular momentum function modes to each of the plurality of bits of the data stream, wherein each of the plurality of orbital angular momentum function modes comprise separate orbital angular momentum states that are orthogonal to each other;DLP processing circuitry associated with the orbital angular momentum processing circuitry for generating a hologram for applying the at least one of the plurality of orbital angular momentum function modes to each of the plurality of bits of the data stream;at least one quantum gate for receiving each of the of the plurality of bits of the data stream having at least one of the plurality of orbital angular momentum functions ...

Подробнее
04-03-2021 дата публикации

2x2 OPTICAL UNITARY MATRIX MULTIPLIER

Номер: US20210063645A1
Автор: Lin Wenhua
Принадлежит:

Embodiments of the present disclosure are directed toward techniques and configurations for optical couplers comprising a first optical waveguide and a second optical waveguide coupled to form a 2×2 optical unitary matrix to receive a respective first input optical signal and a second input optical signal. In embodiments the first optical waveguide and second optical waveguide form arms that converge alongside each other to direct the first input optical signal and the second input optical signal along a path that integrates a plurality of tunable phase shifters to transform the first input optical signal or the second input optical signal into a first output optical signal and second output optical signal to be output from the 2×2 optical unitary matrix. Additional embodiments may be described and claimed. 1. An optical coupler comprising:a first optical waveguide; anda second optical waveguide, wherein the first optical waveguide and the second optical waveguide are coupled to form a 2×2 optical unitary matrix to receive a respective first input optical signal and a second input optical signal, and converge to run alongside each other to direct the first input optical signal and the second input optical signal along a path that integrates a plurality of tunable phase shifters to transform the first input optical signal or the second input optical signal into a first output optical signal and second output optical signal to be output from the 2×2 optical unitary matrix.2. The optical coupler of claim 1 , wherein the optical coupler is a 2×2 unitary directional optical coupler or a 2×2 unitary multi-mode interference (MMI) optical coupler.3. The optical coupler of claim 1 , wherein the plurality of tunable phase shifters include at least one of an electro-optical induced index modulator claim 1 , thermal-optics induced index modulator claim 1 , an image-spot modulator claim 1 , or opto-electro-mechanical modulator.4. The optical coupler of claim 1 , wherein the ...

Подробнее
04-03-2021 дата публикации

HETEROGENEOUSLY INTEGRATED OPTICAL NEURAL NETWORK ACCELERATOR

Номер: US20210064958A1
Принадлежит:

Embodiments of the present disclosure are directed toward techniques and configurations for an optical accelerator including a photonics integrated circuit (PIC) for an optical neural network (ONN). In embodiments, an optical accelerator package includes the PIC and an electronics integrated circuit (EIC) that is heterogeneously integrated into the optical accelerator package to proximally provide pre- and post-processing of optical signal inputs and optical signal outputs provided to and received from an optical matrix multiplier of the PIC. In some embodiments, the EIC is a single EIC or discrete EICs to provide pre- and post-processing of the optical signal inputs and optical signal outputs including optical to electrical and electrical to optical transduction. Other embodiments may be described and/or claimed. 1. An optical accelerator package , comprising:a photonics integrated circuit (PIC), wherein the PIC includes an optical matrix multiplier to transform an array of optical signal inputs into an array of optical signal outputs; andan electronics integrated circuit (EIC) coupled to the PIC, wherein the EIC is heterogeneously integrated into the optical accelerator package in a manner to proximally provide pre- and post-processing of the optical signal inputs and the optical signal outputs provided to and received from the optical matrix multiplier of the PIC.2. The optical accelerator package of claim 1 , wherein the EIC is stacked vertically above or below the PIC and the PIC includes the optical matrix multiplier and an array of light sources and an array of optical modulators integrated in the single semiconductor substrate.3. The optical accelerator package of claim 2 , wherein the optical matrix multiplier comprises a plurality of 2×2 unitary optical matrices optically interconnected claim 2 , wherein each 2×2 unitary optical matrix comprises a plurality of phase shifters to phase shift claim 2 , split claim 2 , or combine one or more of the optical ...

Подробнее
11-03-2021 дата публикации

OPTICAL NONLINEARITY AND AMPLIFICATION DEVICES FOR OPTICAL NEURAL NETWORKS

Номер: US20210072784A1
Принадлежит:

Embodiments of the present disclosure describe techniques and configurations for a nonlinear optical device used to construct an optical neural network (ONN) with an arbitrary number of layers of matrix multipliers. The nonlinear optical device includes a waveguide to receive optical input and a gain medium coupled with the waveguide, to amplify or attenuate the received optical input, to provide an output that is amplified in a nonlinear manner in response to the optical input reaching saturation, where the nonlinearly amplified output is to provide a nonlinear activation function for an ONN. Additional embodiments may be described and claimed. 1. An apparatus , comprising:a waveguide to receive optical input; anda gain medium coupled with the waveguide, to amplify or attenuate the received optical input, to provide an output that is generated in a nonlinear manner in response to the optical input reaching saturation, wherein the nonlinearly generated output is to provide a nonlinear activation function for an optical neural network (ONN).2. The apparatus of claim 1 , further comprising an optical matrix multiplier of the ONN coupled with the waveguide claim 1 , wherein an output of the optical matrix multiplier comprises the optical input to the waveguide.3. The apparatus of claim 1 , wherein the apparatus to provide the nonlinear activation function includes to provide at least one of: amplification claim 1 , saturation claim 1 , rectification claim 1 , or attenuation of the optical input.4. The apparatus of claim 1 , wherein the gain medium includes a III/V material.5. The apparatus of claim 4 , wherein the gain medium is characterized by one or more parameters claim 4 , wherein the parameters include a gain factor G claim 4 , wherein the gain factor G is a non-linear parameter.6. The apparatus of claim 1 , wherein the gain medium includes a multiple quantum well (MQW).7. The apparatus of claim 6 , wherein the gain medium comprises a quantum dot gain medium.8. ...

Подробнее
22-03-2018 дата публикации

Concurrently performing attribute-dependent operations on signals

Номер: US20180081388A1

Examples described herein relate to concurrently performing operations on optical signals. In an example, a method includes providing, to an optical circuit, a first plurality of signals having a first optical property and encoding a first vector. A second plurality of signals is provided to the circuit that encodes a second vector and has a second optical property that is different from the first optical property. A first attribute-dependent operation is performed on the first plurality of signals via the circuit to perform a first matrix multiplication operation on the first vector, and concurrently, a second attribute-dependent operation is performed on the second plurality of signals to perform a second matrix multiplication operation on the second vector. The first matrix multiplication operation and the second matrix multiplication operation are different based on the first optical property being different from the second optical property.

Подробнее
18-03-2021 дата публикации

Optical authentication of images

Номер: US20210083879A1

Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.

Подробнее
25-03-2021 дата публикации

Ising model calculation device

Номер: US20210088873A1
Принадлежит: Nippon Telegraph and Telephone Corp

The Ising model calculation device selects a solution having a consistent quality from among solutions obtained through the calculations with the evaluation index of a calculation accuracy. A coupling coefficient obtained by combining the Ising model coupling coefficient corresponding to a problem for which a solution should be calculated with the Ising model coupling coefficient corresponding to the check problem is set as a coupling coefficient used to calculate the interaction. With regard to a calculation value corresponding to the check spin among the calculation values using a plurality of light pulses, the compatibility as the solution of the check problem is judged. When the judgement result shows the compatibility as the solution of the check problem, a calculation value other than the calculation values corresponding to the check spin among the resultant calculation values is outputted as a solution to the problem for which a solution should be calculated.

Подробнее
01-04-2021 дата публикации

MANAGEMENT OF POWER CONSUMPTION IN OPTICAL CIRCUITS FOR QUANTUM COMPUTING

Номер: US20210097421A1
Принадлежит:

A method includes calculating a plurality of permutation matrices of an input matrix that characterizes a linear transformation of a plurality of input states. The method also includes determining a plurality of settings of an optical circuit based on the plurality of permutation matrices. Each setting in the plurality of settings is associated with an electric power, from a plurality of electric powers, consumed by the optical circuit. The method also includes determining a selected setting of the optical circuit based on the electric power from the plurality of electric powers and consumed by the optical circuit at each setting from the plurality of settings associated with the electric power. The method further includes implementing the selected setting on the optical circuit to perform the linear transformation of the plurality of input states. 1. A method , comprising:calculating a plurality of permuted matrices of an initial matrix that characterizes a linear transformation of a plurality of input states;determining a plurality of settings of an optical circuit based on the plurality of permuted matrices, each setting in the plurality of settings associated with an electric power, from a plurality of electric powers, consumed by the optical circuit;determining a selected setting of the optical circuit based on the electric power from the plurality of electric powers and consumed by the optical circuit at each setting from the plurality of settings associated with the electric power; andsending a signal indicating an implementation of the selected setting on the optical circuit.2. The method of claim 1 , wherein the initial matrix includes a unitary matrix.3. The method of claim 1 , wherein the selected setting of the optical circuit is associated with an electric power that is lowest among the plurality of electric powers consumed by the optical circuit at the plurality of settings.4. The method of claim 1 , wherein the selected setting of the optical circuit ...

Подробнее
12-05-2022 дата публикации

Optical Computing Chip and System, and Data Processing Technology

Номер: US20220147095A1
Принадлежит:

An optical computing chip includes a light source array, a first concave mirror, and a modulator array. The light source array is located on an objective focal plane of the first concave mirror. The modulator array is located on an image focal plane of the first concave mirror. The light source array generates a first optical signal based on first data. The first concave mirror outputs a first reflected optical signal based on the first optical signal. The modulator array receives the first reflected optical signal, obtains first spectrum plane distribution data based on the first reflected optical signal, and modulates the first spectrum plane distribution data onto the modulator array. 1. An optical computing chip , comprising:a first concave mirror configured to output a first reflected optical signal based on a first optical signal;a light source array located on a first objective focal plane of the first concave mirror and configured to generate the first optical signal based on first data; and receive the first reflected optical signal;', 'obtain first spectrum plane distribution data based on the first reflected optical signal; and', 'modulate the first spectrum plane distribution data., 'a modulator array located on a first image focal plane of the first concave mirror and configured to2. The optical computing chip of claim 1 , wherein the light source array is further configured to generate a second optical signal based on second data claim 1 , wherein the first concave mirror is further configured to output a second reflected optical signal based on the second optical signal claim 1 , and wherein the modulator array is further configured to obtain a third optical signal based on the second reflected optical signal and the first spectrum plane distribution data.3. The optical computing chip of claim 2 , further comprising: receive the third optical signal; and', 'output a third reflected optical signal based on the third optical signal; and, 'a second ...

Подробнее
26-03-2020 дата публикации

EFFICIENT COMPONENT COMMUNICATION THROUGH PROTOCOL SWITCHING IN DISAGGREGATED DATACENTERS

Номер: US20200097427A1

Embodiments are provided herein for efficient component communication and resource optimization in a disaggregated computing system. A general purpose link is provided to connect a computing element to a plurality of other computing elements of the disaggregated computing system. The general purpose link is dynamically switched between a plurality of different hardware protocols to communicate with the other computing elements, where respective ones of the other computing elements comprise different types of hardware elements. 1. A method for efficient component communication and resource utilization in a disaggregated computing system , by a processor , comprising:providing a general purpose link to connect a computing element to a plurality of other computing elements of the disaggregated computing system; wherein the general purpose link is directly connected to the plurality of other computing elements through an optical switching device residing in a package switch pool; anddynamically switching the general purpose link between a plurality of different hardware protocols to communicate with the other computing elements; wherein respective ones of the other computing elements comprise different types of hardware elements.2. The method of claim 1 , wherein the general purpose link uses hardware components to dynamically switch between the plurality of hardware protocols.3. The method of claim 1 , wherein the general purpose link uses software components to dynamically switch between the plurality of hardware protocols.4. The method of claim 1 , wherein each of the hardware protocols are optimized for communication with a specific type of the different types of hardware elements.5. (canceled)6. The method of claim 1 , wherein the general purpose link is connected to the plurality of other computing elements through a backplane.7. The method of claim 1 , wherein the general purpose link is switched from a first one of the plurality of hardware protocols to ...

Подробнее
13-05-2021 дата публикации

UNIVERSAL QUANTUM COMPUTER, COMMUNICATION, QKD SECURITY AND QUANTUM NETWORKS USING OAM QU-DITS WITH DIGITAL LIGHT PROCESSING

Номер: US20210142205A1
Автор: ASHRAFI SOLYMAN
Принадлежит:

A quantum computing system comprises an input port for receiving a modulated data stream comprising a plurality of bits. Orbital angular momentum processing circuitry receives the modulated data stream and applying at least one of at least three orbital angular momentum function modes to each of the plurality of bits of the modulated data stream to generate a qudit. The qudit comprises a quantum unit of information having any of d states where d has a value of at least 3. Each of the at least three orbital angular momentum function modes comprise separate orbital angular momentum states that are orthogonal to each other. A MicroElectroMechanical system (MEMS) circuitry associated with the orbital angular momentum processing circuitry generates a hologram for applying the at least one of the at least three orbital angular momentum function modes to each of the plurality of bits of the modulated data stream to generate the qudit. At least one quantum gate receives each of the qudits via at least one gate input and generates a quantum circuit output via at least one gate output responsive thereto. An output port for outputs the generated quantum circuit output. 1. A quantum computing system , comprising:an input port for receiving a modulated data stream comprising a plurality of bits;orbital angular momentum processing circuitry for receiving the modulated data stream and applying at least one of at least three orbital angular momentum function modes to each of the plurality of bits of the modulated data stream to generate a qudit, wherein the qudit comprises a quantum unit of information having any of d states where d has a value of at least 3, further wherein each of the at least three orbital angular momentum function modes comprise separate orbital angular momentum states that are orthogonal to each other;a MicroElectroMechanical system (MEMs) circuitry associated with the orbital angular momentum processing circuitry for generating a hologram for applying the at ...

Подробнее
16-04-2020 дата публикации

PLANE WAVE DUAL BASIS FOR QUANTUM SIMULATION

Номер: US20200117698A1
Автор: Babbush Ryan
Принадлежит:

Methods, systems and apparatus for simulating quantum systems. In one aspect, a method includes the actions of obtaining a first Hamiltonian describing the quantum system, wherein the Hamiltonian is written in a plane wave basis comprising N plane wave basis vectors; applying a discrete Fourier transform to the first Hamiltonian to generate a second Hamiltonian written in a plane wave dual basis, wherein the second Hamiltonian comprises a number of terms that scales at most quadratically with N; and simulating the quantum system using the second Hamiltonian. 1. A method for simulating a quantum system , comprising:obtaining, by one or more classical processors, a first Hamiltonian describing the quantum system, wherein the Hamiltonian is written in a plane wave basis comprising N plane wave basis vectors;applying, by the one or more classical processors, a discrete Fourier transform to the first Hamiltonian to generate a second Hamiltonian written in a plane wave dual basis, wherein the second Hamiltonian comprises a number of terms that scales at most quadratically with N; andsimulating, by the one or more processors or by quantum hardware, the quantum system using the second Hamiltonian.2. The method of claim 1 , wherein the first Hamiltonian comprises a kinetic energy operator T that is diagonal in the plane wave basis.3. The method of claim 1 , wherein the second Hamiltonian comprises a potential energy operator and interaction term that are diagonal in the plane wave dual basis.4. The method of claim 1 , wherein simulating the quantum system comprises using the first and second Hamiltonian.5. The method of claim 4 , wherein simulating the quantum system comprises:simulating the kinetic energy operator in the plane wave basis; andsimulating the potential energy operator and the interaction term in the plane wave dual basis.6. The method of any one of claim 1 , wherein simulating the quantum system comprises:applying a Trotter decomposition to a unitary time ...

Подробнее
27-05-2021 дата публикации

Linear photonic processors and related methods

Номер: US20210157547A1
Принадлежит: Lightmatter Inc

Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.

Подробнее
15-09-2022 дата публикации

Optical quantum logic gates

Номер: US20220291569A1
Автор: Eyal Cohen, Zeev Zalevsky
Принадлежит: Cognifiber Ltd

There are provided optical quantum logic gate (OQLG) characterized by 2n*2n unitary matrix and method of operating thereof. OQLG comprises first optical structure comprising 2n optically-coupled cores with one-to-one correspondence to input binary values specified by the matrix and second optical structure optically connected to the first optical structure and comprising 2n amplifying channels corresponding to the 2n cores. The first optical structure is configured to receive photons in binary fundamental quantum states (FQSs) representing input binary values specified by the matrix and to inject the received photons in the 2n cores, use optical coupling between the cores to mix the injected photons, and output photons into the second optical structure, wherein outputted mixed photons correspond to output binary values specified by the matrix. The second optical structure is configured to amplify, in a controllable manner, photons in the amplifying channels with preserving the FQSs and relative quantities of photons with different FQSs.

Подробнее
07-05-2020 дата публикации

MATRIX MULTIPLICATION USING OPTICAL PROCESSING

Номер: US20200142441A1
Принадлежит: Lightmatter, Inc.

Systems and methods for performing matrix operations using a photonic processor are provided. The photonic processor includes encoders configured to encode a numerical value into an optical signal and optical multiplication devices configured to output an electrical signal proportional to a product of one or more encoded values. The optical multiplication devices include a first input waveguide, a second input waveguide, a coupler circuit coupled to the first input waveguide and the second input waveguide, a first detector and a second detector coupled to the coupler circuit, and a circuit coupled to the first detector and second detector and configured to output a current that is proportional to a product of a first input value and a second input value. 1. A photonic processor comprising:a plurality of row encoders, each of the plurality of row encoders configured to encode a row value into an optical signal of a plurality of optical signals;a plurality of column encoders, each of the plurality of column encoders configured to encode a column value into a different optical signal of the plurality of optical signals; anda plurality of optical multiplication devices, each of the plurality of optical multiplication devices being coupled to a respective one of the plurality of row encoders and a respective one of the plurality of column encoders, and wherein each of the plurality of optical multiplication devices is configured to output an electrical signal proportional to a product of an encoded row value and an encoded column value.2. The photonic processor of claim 1 , wherein:each of the plurality of row encoders is configured to encode the row value into both an amplitude and a phase of the optical signal of a plurality of optical signals; andeach of the plurality of column encoders is configured to encode the column value into both an amplitude and a phase of the different optical signal of the plurality of optical signals.3. The photonic processor of claim 1 , ...

Подробнее
31-05-2018 дата публикации

Holographic Computer System

Номер: US20180150763A1
Принадлежит: Individual

A method and apparatus used for general purpose problem solving using entanglement properties of holography. Intelligent point-based entities having spatial and other electromagnetic properties called DROPLETS [Data-Representative-Object-Particle(s)-Liking-EnTanglement] are generated as avatars, or delegate objects, connected to concrete or abstract data sources representing a situation, event or other problem. Each DROPLET's properties are controlled by changes in the input sources, feedback, changes in itself, and/or changes of other DROPLETS. Coherent rays are introduced and interact with said DROPLETS, generating an INTELLIGENCE WAVEFRONT. Interference patterns are recorded and converted to binary machine codes used as instruction keys to store and lock human readable and/or machine readable content components into a plurality of associative memories. Said content includes waveforms, harmonics, codes, data, and other holograms. Upon recognition of future like-patterns of situations, events and other problems, the appropriate content components, which are dispersed and stored wholistically throughout the system using spread spectrum techniques, are rapidly unlocked, retrieved and presented as solutions or partial solutions. Hardware, software, and hybrid hardware and software embodiments are envisioned. In conclusion, to the inventors' knowledge, there is no precedent in the prior art that is capable of analyzing or solving problems of wide latitude of complexity using the least understood, least recognized, enfoldment properties of the science of holography. In the case of the Holographic Computer System, this enfoldment, or quantum-like entanglement, is made to serve as a practical and effective general purpose problem solving tool. Although the foregoing description contains many specifics, these are not to be construed as limiting the scope of the present invention, but merely as providing certain exemplary embodiments. Similarly, other embodiments of ...

Подробнее
17-06-2021 дата публикации

Optical Signal Processing Device

Номер: US20210181782A1
Принадлежит: Nippon Telegraph and Telephone Corp

Provided is an optical signal processing device capable of improving computing accuracy without increasing the number of nodes of a reservoir layer. An optical signal processing device for converting an input one-dimensional signal to an optical signal and performing signal processing includes an input unit configured to perform linear processing on the input one-dimensional signal to convert the one-dimensional signal to an optical signal, a reservoir unit connected to an output of the input unit and configured to perform linear processing and nonlinear processing on the optical signal, an output unit connected to an output of the reservoir unit and configured to convert the optical signal to an electrical signal, perform linear processing to output a one-dimensional output, and a determination unit configured to determine whether the one-dimensional output from the output unit is to be output or to be input as the one-dimensional signal to the input unit.

Подробнее
09-06-2016 дата публикации

Computation using a network of optical parametric oscillators

Номер: US20160162798A1

In one aspect, a computational machine includes an optical device configured to receive energy from an optical energy source and generate a number N1 of optical signals, and a number N2 of coupling devices, each of which controllably couples a plurality of the number N1 optical signals. The coupling devices are individually controlled to simulate a computational problem. In another aspect, a computational machine includes a number N1 of parametric oscillators and a number N2 of coupling devices, each of which controllably couples a plurality of the number N1 of parametric oscillators together. The coupling devices are individually controlled to simulate a computational problem.

Подробнее
14-05-2020 дата публикации

Method for phase-based photonic computing

Номер: US20200150345A1
Автор: Mitchell A. Nahmias
Принадлежит: Luminous Computing, Inc.

A system for photonic computing, preferably including an input module, computation module, and/or control module, wherein the computation module preferably includes one or more filter banks and/or detectors. A photonic filter bank system, preferably including two waveguides and a plurality of optical filters optically coupled to one or more of the waveguides. A method for photonic computing, preferably including controlling a computation module, controlling an input module, and/or receiving outputs from the computation module.

Подробнее
30-05-2019 дата публикации

CLASSIFYING MICROBEADS IN NEAR-FIELD IMAGING

Номер: US20190162648A1
Автор: Fine Alan Marc
Принадлежит:

Among other things, an imaging sensor includes a two-dimensional array of photosensitive elements and a surface to receive a sample within a near-field distance of the photosensitive elements. Electronics classify microbeads in the sample as belonging to different classes based on the effects of different absorption spectra of the different classes of microbeads on light received at the surface. In some examples, the number of different distinguishable classes of microbeads can be very large based on combinations of the effects on light received at the surface of the different absorption spectra together, spatial arrangements of colorants in the microbeads that impart the different absorption spectra, different sizes of microbeads, and different shapes of microbeads, among other things. 1. An apparatus comprisingan imaging sensor comprising a two-dimensional array of photosensitive elements and a surface to receive a sample within a near-field distance of the photosensitive elements, andelectronics to classify microbeads in the sample as belonging to different classes based on the effects of one or more characteristics of the different classes of microbeads on light received at the surface.2. The apparatus of in which the one or more characteristics comprise absorption spectra.3. The apparatus of in which the one or more characteristics comprise ratios of intensities of different colors of microbeads of different classes.4. The apparatus of in which the one or more characteristics comprise different sizes of microbeads of different classes.5. The apparatus of in which the one or more characteristics comprise different shapes of microbeads of different classes.6. The apparatus of in which number of different classes of microbeads has a combinatorial relationship to the number of different characteristics.7. The apparatus of in which the microbeads of the different classes have different absorption spectra imparted by different colorings.8. The apparatus of in which ...

Подробнее
06-06-2019 дата публикации

Method and System for Implementing Data Transmission Utilizing Techniques Used for Transient State Computing with Optics

Номер: US20190174601A1
Принадлежит:

Novel tools and techniques are provided for implementing data transmission, and, more particularly, to methods, systems, and apparatuses for implementing data transmission utilizing techniques used for transient state computing with optics. In various embodiments, a photo-transmitter system of a chromatic transient state data transmission system might send, over optical transmission media, a data signal comprising a series of chromabit values, by emitting, using a set of colored light emitters, a combination of colors representing each chromabit value. A photo-receiver system of the chromatic transient state data transmission system that is communicatively coupled to the photo-transmitter system via the optical transmission media might receive the data signal, each distinguishable color as detected by each photoreceptor corresponding to a combination of emitted colors. A computing system might autonomously convert the data signal comprising the series of chromabit values into a converted data signal that is compatible with a receiving device. 1. A method , comprising:sending, with a photo-transmitter system of a chromatic transient state data transmission system and over a segment of an optical transmission medium, a data signal comprising a series of chromabit values, by emitting, using a set of colored light emitters of the photo-transmitter system of the chromatic transient state data transmission system, a combination of colors representing each chromabit value;receiving, with a photo-receiver system of the chromatic transient state data transmission system that is communicatively coupled to the photo-transmitter system via the segment of the optical transmission medium, the data signal comprising the series of chromabit values, wherein each distinguishable color as detected by each photoreceptor of one or more photoreceptors of the photo-receiver system corresponds to a combination of colors emitted by the set of colored light emitters of the photo-transmitter ...

Подробнее
02-08-2018 дата публикации

Optical system for performing complex fourier transforms

Номер: US20180217629A1
Принадлежит: CAMBRIDGE ENTERPRISE LTD

A method of performing a complex Fourier transform of an input function including amplitude and phase information, including decomposing the input function into a plurality of sub-functions, wherein the Fourier transform of each sub-function includes an amplitude function and a phase function in which the phase is constrained to a plurality of possible phase values. The phase function of the Fourier transform of each sub-function is determined with an optical system that measures the amplitude function of an optical Fourier transform of the sub-function and changes in the amplitude function of the optical Fourier transform caused by applying a perturbation function to the sub-function. The determined phase functions and the measured amplitude functions are combined for each of the sub-functions to form the complex Fourier transform of the input function.

Подробнее
11-07-2019 дата публикации

ADAPTIVE AND OPTIMAL IMAGING OF QUANTUM OPTICAL SYSTEMS FOR QUANTUM COMPUTING

Номер: US20190212766A1
Принадлежит:

The disclosure describes an adaptive and optimal imaging of individual quantum emitters within a lattice or optical field of view for quantum computing. Advanced image processing techniques are described to identify individual optically active quantum bits (qubits) with an imager. Images of individual and optically-resolved quantum emitters fluorescing as a lattice are decomposed and recognized based on fluorescence. Expected spatial distributions of the quantum emitters guides the processing, which uses adaptive fitting of peak distribution functions to determine the number of quantum emitters in real time. These techniques can be used for the loading process, where atoms or ions enter the trap one-by-one, for the identification of solid-state emitters, and for internal state-detection of the quantum emitters, where each emitter can be fluorescent or dark depending on its internal state. This latter application is relevant to efficient and fast detection of optically active qubits in quantum simulations and quantum computing. 1. A method for identification of optically active quantum systems that include one or more individual quantum emitters , comprising:providing an optical source that produces fluorescence from the quantum emitters as they are loaded into a trap, each of the quantum emitters behaving as an optical object having a certain intensity distribution in response to the fluorescence;identifying a position of each of the quantum emitters by fitting the overall intensity distribution to a sum of a variable number of Gaussian functions; andcontrolling, in real-time, a number of quantum emitters that are loaded into the trap based at least on the identified positions of each of the quantum emitters and whether one or more of the quantum emitters are not fluorescing.2. The method of claim 1 , wherein each quantum emitter is an atom or a solid-state quantum emitter.3. The method of claim 1 , wherein the identifying of the position of each of the quantum ...

Подробнее
25-07-2019 дата публикации

OPTIMIZING CORE UTILIZATION IN NEUROSYNAPTIC SYSTEMS

Номер: US20190227589A1
Принадлежит:

In one embodiment, a computer program product for optimizing core utilization in a neurosynaptic network includes a computer readable storage medium having program instructions embodied therewith, where the computer readable storage medium is not a transitory signal per se, and where the program instructions are executable by a processor to cause the processor to perform a method including identifying, by the processor, one or more unused portions of a neurosynaptic network, and for each of the one or more unused portions of the neurosynaptic network, disconnecting, by the processor, the unused portion from the neurosynaptic network. 1. A computer program product for optimizing core utilization in a neurosynaptic network , the computer program product comprising a computer readable storage medium having program instructions embodied therewith , wherein the computer readable storage medium is not a transitory signal per se , the program instructions executable by a processor to cause the processor to perform a method comprising:identifying, by the processor, one or more unused portions of a neurosynaptic network; andfor each of the one or more unused portions of the neurosynaptic network, disconnecting, by the processor, the unused portion from the neurosynaptic network.2. The computer program product of claim 1 , wherein each of the one or more unused portions comprises one of an unused neuron and an unused axon.3. The computer program product of claim 2 , wherein an unused neuron comprises a neuron that cannot affect an output of the neurosynaptic network claim 2 , and an unused axon comprises an axon that cannot affect the output of the neurosynaptic network.4. The computer program product of claim 2 , wherein identifying the one or more unused portions of the neurosynaptic network includes:scanning the neurosynaptic network to identify the unused neurons and the unused axons; andadding the identified unused neurons and the identified unused axons to a queue.5. ...

Подробнее
10-09-2015 дата публикации

Integrated circuit with photonic elements

Номер: US20150253502A1

An integrated circuit with electronic and photonic elements includes: at least one electronic processing layer; at least one interconnect layer adjacent to said electronic processing layer, and at least one photonic element located within a respective interconnect layer. The photonic elements implement respective operations upon optical signals. At least a portion of each interconnect layer which includes photonic elements is optically-conductive, and therefore suitable for the inclusion of the photonic elements. In some embodiments said photonic elements comprising optical waveguides are configures as optical logic gates to perform logic operations.

Подробнее
20-11-2014 дата публикации

Active Control of Thermal Effects on Optical Computing Devices

Номер: US20140339406A1
Принадлежит:

Disclosed are systems and methods for actively controlling the temperature of an integrated computational element used in an optical computing device in order to affect its performance. One method includes providing an integrated computational element configured detect a characteristic of a substance and provide a transmission profile via a detector corresponding to the characteristic, and controlling a temperature of the integrated computational element in order to maintain the transmission profile within an optimal operating range. 1. A method , comprising:providing an integrated computational element with a transmission profile configured to detect a characteristic of a substance via a detector signal corresponding to the characteristic; andcontrolling a temperature of the integrated computational element in order to maintain the transmission profile within an optimal operating range.2. The method of claim 1 , further comprising:arranging the integrated computational element in an optical computing device configured to optically interact with the substance;placing the optical computing device in an environment having an elevated temperature; andwherein, controlling the temperature of the integrated computational element comprises cooling the integrated computational element such that the temperature is maintained within the optimal temperature range.3. The method of claim 1 , further comprising:arranging the integrated computational element in an optical computing device configured to optically interact with the substance;placing the optical computing device in an environment having a reduced temperature; andwherein, controlling the temperature of the integrated computational element comprises heating the integrated computational element such that the temperature is maintained within the optimal temperature range.4. The method of claim 1 , wherein controlling the temperature of the integrated computational element further comprises thermally controlling the ...

Подробнее
28-10-2021 дата публикации

OPTICAL CONTROL OF QUBITS WITH SPATIAL LIGHT MODULATORS FOR QUANTUM COMPUTING AND QUANTUM SIMULATION

Номер: US20210337171A1
Принадлежит:

Systems and methods for the optical control of qubits and other quantum particles with spatial light modulators (SLM) for quantum computing and quantum simulation are disclosed herein. The system may include a particle system configured to provide an ordered array comprising a multiplicity of quantum particles or a multiplicity of qubits, an optical source, a SLM configured to project a structured illumination pattern capable of individually addressing one or more quantum particles or qubits of the ordered array, and a SLM controller. 1. A system for the optical control of a quantum particle or qubit , the system comprising:(a) a particle system configured to provide an ordered array comprising a multiplicity of quantum particles or a multiplicity of qubits;(b) an optical source, the optical source configured to generate a beam of light;(c) a spatial light modulator positioned along an optical train between the optical source and the ordered array, the spatial light modulator configured to project a structured illumination pattern capable of individually addressing one or more quantum particles or qubits of the ordered array; and(d) a spatial light modulator controller, the spatial light modulator controller configured to modulate the structured illumination pattern.2. The system of claim 1 , wherein the spatial light modulator comprises a hologram projector and an intensity transmission mask.3. The system of claim 2 , wherein the spatial light modulator comprises a segmented spatial light modulator having a first segment comprising the hologram projector and a second segment comprising the intensity transmission mask.4. The system of claim 2 , wherein the hologram projector is configured to project a holographically-structured illumination pattern and the intensity transmission mask is configured to filter the first structured illumination pattern.5. The system of claim 1 , wherein the spatial light modulator controller is configured to modulate the structured ...

Подробнее
06-10-2016 дата публикации

INTEGRATED COMPUTATIONAL ELEMENT FABRICATION METHODS AND SYSTEMS

Номер: US20160291633A1
Автор: PRICE James M.
Принадлежит: Halliburton Energy Services, Inc.

Methods and systems for manufacturing optical computing elements, including a method for correcting element layer thickness measurements during manufacturing that includes depositing an element layer on a glass substrate or a previously deposited layer, illuminating the deposited layer and sampling reflected or transmitted light produced by said illuminating, detecting and measuring an actual magnitude of the sampled light as a function of wavelength, and modeling the sampled light to produce a predicted magnitude of the sampled light. The method further includes determining a discrepancy between the actual and predicted magnitudes, adjusting the actual magnitude based on said discrepancy, calculating the thickness of the deposited layer based upon the adjusted actual magnitude of the sampled light, and adjusting the deposited layer's thickness if the calculated thickness is not within a tolerance range of a target thickness. 1. A method for correcting a layer thickness of an optical computing element during manufacturing , the method comprising:depositing a layer of an optical computing element on a substrate or on a previously deposited layer;illuminating the deposited layer, sampling reflected or transmitted light produced by said illuminating, and measuring an actual magnitude of the sampled light as a function of wavelength;modeling the sampled light to produce a predicted magnitude of the sampled light;determining a discrepancy between the actual magnitude and the predicted magnitude, and adjusting the actual magnitude based on said discrepancy;calculating the thickness of the deposited layer based upon the adjusted actual magnitude of the sampled light; andadjusting a thickness of the deposited layer if the calculated thickness is not within a tolerance range of a target thickness.2. An optical computing element manufactured by a method comprising:depositing a layer of an optical computing element on a substrate or on a previously deposited layer;illuminating ...

Подробнее
22-10-2015 дата публикации

RECONFIGURABLE OPTICAL PROCESSING SYSTEM

Номер: US20150301554A1
Автор: NEW Nicholas James
Принадлежит:

An optical processing system comprises an optical input; one or more spatial light modulator arrays; and a detector array; wherein at least of said spatial light modulator arrays incorporates a plurality of data elements focusing elements; said data elements and/or said focussing elements having multiple degrees of freedom. 1. An optical processing system comprising:an optical input;at least one spatial light modulator layer; anda detector array;wherein said at least one spatial light modulator layer incorporates a liquid crystal array with a pixelated input data pattern and a pixelated focussing pattern displayed by said liquid crystal array;wherein said system further comprises an optical output which is produced by a combination of shifting the positions of the pixelated input data pattern and a modification of said pixelated focussing pattern;whereby spatial or translational alignment is achieved.2. A system according to claim 1 , wherein said focussing pattern is a zone plate pattern.3. A system according to claim 1 , further comprising beam steering patterns to steer the beam according to the required optical path.4. A system according to claim 3 , wherein said beam steering patterns incorporate phase ramps.5. A system according to claim 1 , further comprising a beam steering arrangement for shifting focussing patterns or altering beam steering patterns across the spatial light modulator claim 1 ,whereby a detected optical output matches the expected distribution and position of an intensity pattern captured by a detector array positioned at the output of the optical system.6. A system according to claim 5 , wherein said beam steering and detection arrangement employs diffraction patterns.7. A system according to claim 6 , wherein said beam steering and detection arrangement employs blaze gratings.8. A system according to claim 5 , further comprising a software algorithm for shifting or altering a focussing pattern or a beam steering pattern until the required ...

Подробнее
13-10-2016 дата публикации

Integrated Computational Element Designed for Multi-Characteristic Detection

Номер: US20160299059A1
Принадлежит: Halliburton Energy Services Inc

A single Integrated Computational Element (“ICE”) predictive of multiple sample characteristics.

Подробнее
03-09-2020 дата публикации

Potts Model Calculation Device

Номер: US20200279062A1
Принадлежит:

A Potts model computing device capable of computing a Potts problem that is a multivalued spin problem are described herein. The Potts model computing device includes: an Ising model computing device; a computation result storage and determination unit configured to store a value of a spin of the Ising model obtained in a case where a coupling coefficient is set in the Ising model computing device and to determine whether a computation is finished; and a coupling coefficient overwriting unit configured to update a coupling coefficient generated based on the stored value of the spin to the Ising model computing device. According to a value of a set of spins obtained as a computation result corresponding to a coupling coefficient set for an m-th time in the Ising model computing device, the coupling coefficient overwriting unit generates again a coupling coefficient to be set for an (m+1)-th iterative computation. 1. A Potts model computing device comprising:an Ising model computing device;a computation result storage and determination unit configured to store a value of a set of spins of the Ising model obtained in a case where a coupling coefficient is set in the Ising model computing device and to determine whether a computation is finished; anda coupling coefficient overwriting unit configured to update a coupling coefficient generated based on the stored value of the set of spins to the Ising model computing device,wherein, according to values of the spins of the Ising model obtained as a computation result for an m-th time iterative computation using the Ising model computing device, the coupling coefficient overwriting unit generates a coupling coefficient to be set for an (m+1)-th time computation and updates the generated coupling coefficient to the Ising model computing device,{'sub': i', 'i m, 'claim-text': {'br': None, 'i': 'S', 'sub': i', 'm=1', 'im, 'sup': Ms', 'm−2, '=Σ(1+σ)2'}, 'the computation result storage and determination unit determines that a ...

Подробнее
10-09-2020 дата публикации

SYSTEM FOR PHOTONIC COMPUTING

Номер: US20200284984A1
Автор: Nahmias Mitchell A.
Принадлежит:

A system for photonic computing, preferably including an input module, computation module, and/or control module, wherein the computation module preferably includes one or more filter banks and/or detectors. A photonic filter bank system, preferably including two waveguides and a plurality of optical filters optically coupled to one or more of the waveguides. A method for photonic computing, preferably including controlling a computation module, controlling an input module, and/or receiving outputs from the computation module. 1. A system comprising a spectral filter bank , the spectral filter bank comprising:a first waveguide comprising a first input end and a first output end;a second waveguide comprising a second input end and a second output end;a first optical filter associated with a first optical characteristic, the first optical filter optically coupled to the first waveguide between the first input end and the first output end;a second optical filter associated with a second optical characteristic different from the first optical characteristic, the second optical filter optically coupled to the first waveguide between the first input end and the first output end; and receive a first optical signal at the first output end;', 'receive a second optical signal at the second output end;', 'generate an optical interference signal by optically coupling the first and second optical signals; and', 'provide the optical interference signal at a coupler output., 'an optical coupler, optically coupled to the first output end and the second output end, the optical coupler configured to2. The system of claim 1 , further comprising an optical splitter comprising a splitter input claim 1 , a first splitter output claim 1 , and a second splitter output claim 1 , wherein: split an optical input signal, received at the splitter input, into a first optical output signal and a second optical output signal;', 'provide the first optical output signal at the first splitter output; ...

Подробнее
26-09-2019 дата публикации

Apparatus and methods for optical neural network

Номер: US20190294199A1
Принадлежит: Massachusetts Institute of Technology

An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.

Подробнее
26-10-2017 дата публикации

Seismic lineation mapping method and system

Номер: US20170307774A1
Автор: John SOLUM
Принадлежит: Shell Oil Co

A method for seismic geological lineation mapping, wherein a seismic dataset is collected, with information about minor lineations generated by Seismic dataset subtle structural geological features in an underground earth formation. Seismic attribute volumes are identified in the seismic dataset, relating to trace continuity, amplitude, frequency and phase. The attribute volumes may have an insufficient resolution to display the minor lineations. A seismic multivolume lithological lineation map is generated, in which single attribute 92d lineation maps generated for each of the identified seismic attribute volumes are combined to accurately display the minor lineations generated by the subtle geological features.

Подробнее
24-09-2020 дата публикации

ADDRESSING SYSTEM, ADDRESSING APPARATUS AND COMPUTING APPARATUS

Номер: US20200301241A1
Автор: DUAN Luming, ZHOU Zichao
Принадлежит:

An addressing system, an addressing apparatus and a computing apparatus are provided. The addressing system includes a first acousto-optic processing component and a second acousto-optic processing component. The first acousto-optic processing component is used for generating a diffraction beam for an addressing operation in a preset number of dimensions. The second acousto-optic processing component is used for determining emitting directions of the generated diffraction beam in various dimensions, and outputting a diffraction beam according to the determined emitting directions to perform an addressing operation for a qubit array in the preset number of dimensions. A first radio frequency of the diffraction beam generated by the first acousto-optic processing component is used for compensating for a second radio frequency of diffraction beams outputted by the second acousto-optic processing component from different emitting directions. 1. An addressing system , comprising: a first acousto-optic processing component and a second acousto-optic processing component; wherein ,the first acousto-optic processing component is used for generating a diffraction beam for an addressing operation in a preset number of dimensions;the second acousto-optic processing component is used for determining emitting directions of the generated diffraction beam in the preset number of dimensions, and outputting the diffraction beam according to the determined emitting directions to perform an addressing operation for a qubit array in the preset number of dimensions;wherein a first radio frequency of the diffraction beam generated by the first acousto-optic processing component is used for compensating for a second radio frequency of diffraction beams outputted by the second acousto-optic processing component in different emitting directions.2. The addressing system according to claim 1 , wherein the first acousto-optic processing component comprises an acousto-optic modulator (AOM) ...

Подробнее
09-11-2017 дата публикации

METHOD AND SYSTEM FOR IMPROVING A POLICY FOR A STOCHASTIC CONTROL PROBLEM

Номер: US20170323195A1
Принадлежит:

A method and system are disclosed for improving a policy for a stochastic control problem, the stochastic control problem being characterized by a set of actions, a set of states, a reward structure as a function of states and actions, and a plurality of decision epochs, the method comprising using a sampling device obtaining data representative of sample configurations of a Boltzmann machine, obtaining initialization data and an initial policy for the stochastic control problem; assigning data representative of an initial weight and a bias of respectively each coupler and each node and the transverse field strength of the Boltzmann machine to the sampling device; until a stopping criterion is met generating a present-epoch state-action pair, amending data representative of none or at least one coupler and at least one bias, performing a sampling corresponding to the present-epoch state-action pair to obtain first sampling empirical means, obtaining an approximation of a value of a Q-function at the present-epoch state-action, obtaining a future-epoch state-action pair, wherein the state is obtained through a stochastic state process, and further wherein the obtaining of the action comprises performing a stochastic optimization test on the plurality of all state-action pairs comprising the future-epoch state and any possible action to thereby provide the action at the future-epoch and update the policy for the future-epoch state; amending data representative of none or at least one coupler and at least one bias, performing a sampling corresponding to the future-epoch state-action pair, obtaining an approximation of a value of the Q-function at the future-epoch state-action, updating each weight and each bias and providing the policy when the stopping criterion is met. 1. A method for improving a policy for a stochastic control problem , the stochastic control problem being characterized by a set of actions , a set of states , a reward structure as a function of ...

Подробнее
07-12-2017 дата публикации

Apparatus and Methods for Optical Neural Network

Номер: US20170351293A1
Принадлежит:

An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network. 1. An apparatus for implementing an artificial neural network , the apparatus comprising:an array of input waveguides to receive a first array of optical signals;an optical interference unit, in optical communication with the array of input waveguides, to perform a linear transformation of the first array of optical signals into a second array of optical signals; andan array of output waveguides, in optical communication with the optical interference unit, to guide the second array of optical signals, wherein at least on input waveguide in the array of input waveguides is in optical communication with each output waveguide in the array of output waveguides via the optical interference unit.2. The apparatus of claim 1 , wherein the optical interference unit comprises: a first phase shifter configured to change a splitting ratio of the MZI; and', 'a second phase shifter configured to shift a phase of one output of the MZI., 'a plurality of interconnected Mach-Zehnder interferometers (MZIs), each MZI in the plurality of interconnected MZIs comprising3. The apparatus of claim 2 , wherein the plurality of interconnected MZIs is configured to perform the linear transformation of the first array of optical signals via singular value decomposition (SVD).4. The apparatus of claim 2 , wherein the plurality of interconnected MZIs comprises:a first set of MZIs to ...

Подробнее
26-11-2020 дата публикации

NOISE REDUCED CIRCUITS FOR TRAPPED-ION QUANTUM COMPUTERS

Номер: US20200372390A1
Принадлежит:

Embodiments described herein are generally related to a method and a system for performing a computation using a hybrid quantum-classical computing system, and, more specifically, to providing an approximate solution to an optimization problem using a hybrid quantum-classical computing system that includes a group of trapped ions. A hybrid quantum-classical computing system that is able to provide a solution to a combinatorial optimization problem may include a classical computer, a system controller, and a quantum processor. The methods and systems described herein include an efficient and noise resilient method for constructing trial states in the quantum processor in solving a problem in a hybrid quantum-classical computing system, which provides improvement over the conventional method for computation in a hybrid quantum-classical computing system. 1. A method of performing computation in a hybrid quantum-classical computing system comprising a classical computer and a quantum processor , comprising:computing, by a classical computer, a model Hamiltonian onto which a selected problem is mapped, wherein the model Hamiltonian comprises a plurality of sub-Hamiltonians;setting a quantum processor in an initial state, wherein the quantum processor comprises a plurality of trapped ions, each of which has two frequency-separated states defining a qubit;transforming the quantum processor from the initial state to a trial state based on each of the plurality of sub-Hamiltonians and an initial set of variational parameters by applying a reduced trial state preparation circuit to the quantum processor;measuring an expectation value of each of the plurality of sub-Hamiltonians on the quantum processor; and [ sets the quantum processor in the initial state,', 'transforms the quantum processor from the initial state to a new trial state based on each of the plurality of sub-Hamiltonians and the another set of variational parameters by applying a new reduced trial state ...

Подробнее
03-12-2020 дата публикации

APPARATUS AND METHODS FOR OPTICAL NEURAL NETWORK

Номер: US20200379504A1
Принадлежит:

An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network. 1. An apparatus for implementing an artificial neural network , the apparatus comprising:one or more input waveguides to receive a first array of optical signals;an optical interference unit, in optical communication with the one or more input waveguides, to perform a linear transformation of the first array of optical signals into a second array of optical signals;a nonlinearity unit, in communication with the optical interference unit, to perform a nonlinear transformation on the second array of optical signals so as to generate a third array of signals;a detector array to detect at least a first portion of the third array of signals and generate an array of electrical signals in response to detecting the first portion of the third array of signals; anda switch to controllably couple a second portion of the third array of signals back into the optical interference unit via at least one of the one or more input waveguides.2. The apparatus of claim 1 , further comprising a light source in optical communication with the one or more input waveguides.3. The apparatus of claim 2 , further comprising feedback circuitry to transmit the array of electrical signals to the light source claim 2 , and wherein the light source is configured to emit a fourth array of optical signals based on the array of electrical signals.4. The apparatus of claim 3 , wherein at least ...

Подробнее
24-12-2020 дата публикации

CLASSIFYING MICROBEADS IN NEAR-FIELD IMAGING

Номер: US20200400549A1
Автор: Fine Alan Marc
Принадлежит:

Among other things, an imaging sensor includes a two-dimensional array of photosensitive elements and a surface to receive a sample within a near-field distance of the photosensitive elements. Electronics classify microbeads in the sample as belonging to different classes based on the effects of different absorption spectra of the different classes of microbeads on light received at the surface. In some examples, the number of different distinguishable classes of microbeads can be very large based on combinations of the effects on light received at the surface of the different absorption spectra together, spatial arrangements of colorants in the microbeads that impart the different absorption spectra, different sizes of microbeads, and different shapes of microbeads, among other things. 1. A method comprisingplacing a sample at a surface of an imaging sensor, the imaging sensor comprising a two-dimensional array of photosensitive elements,the sample including (a) microbeads, at least some of which are attached to units in the sample, (b) and target elements, at least some of which are attached to the units attached to the microbeads,holding the sample statically within a near-field distance of the photosensitive elements,using the imaging sensor to capture a two-dimensional image of the statically-held sample including the microbeads,counting the microbeads belonging to each of two different classes in the two-dimensional image, or identifying locations of the microbeads of each of the two different classes in the two-dimensional image, or both counting the microbeads belonging to each of the two different classes and identifying the locations of the microbeads of each of the two different classes, andbased on at least one of the count of the microbeads belonging to each of the two different classes and the locations of the microbeads of each of the two different classes, performing at least one of an assay, a count, a classification, and an analysis of the target ...

Подробнее
13-12-2007 дата публикации

Optical system with coherent feedback

Номер: WO2007141598A2
Принадлежит: Lenslet Ltd.

An optical measurement system sensitive to light field amplitude is disclosed. The system uses an interferometer while a feedback loop maintains, at a low level, the light intensity exiting from at least on optical output of the interferometer. Shot noise of a detector placed at the output of the interferometer is thus reduced, enabling high speed and high accuracy measurement without requiring is stronger light source. The measurement system may be used in optical computing.

Подробнее
29-12-2022 дата публикации

Optical computing apparatus and system, and computing method

Номер: US20220414442A1
Принадлежит: Huawei Technologies Co Ltd

An optical computing apparatus and system and a computing method are provided. The optical computing apparatus includes a linear operation module, a first delay module, and a coupler. The linear operation module can modulate, based on received electrical signals, optical signals input to the linear operation module; the first delay module may adjust a delay of optical signals output by the linear operation module; and after the first delay module adjusts the delay of the optical signals output by the linear operation module, the coupler may combine a plurality of groups of optical signals successively output by the linear operation module, to output one group of optical signals used to indicate a computing result that is obtained after a multiply-add operation is performed on one group of data and weights.

Подробнее
21-07-2021 дата публикации

Optoelectronic minimum binary number selector

Номер: RU2751984C1

FIELD: computing. SUBSTANCE: invention relates to computing and can be used in optical devices for information processing in the analysis of binary numbers. The device contains N optoelectronic cells, consisting of a controlled optical transparency, a photodetector, an optical trigger, an optical Y-combiner and an optical Y-splitter, N optical Y-splitters, N optical Y-combiners, N optical bistable elements (“OBE”), output OBE, output optical Y-splitter, N-input optical combiner, N-output optical splitter and common device reset input. EFFECT: invention ensures determination of the minimum binary number from the set of N binary numbers with high performance. 1 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 751 984 C1 (51) МПК G06E 1/04 (2006.01) G06E 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06E 1/04 (2021.05); G06E 3/00 (2021.05); G02F 3/00 (2021.05) (21)(22) Заявка: 2021101909, 28.01.2021 (24) Дата начала отсчета срока действия патента: 21.07.2021 Приоритет(ы): (22) Дата подачи заявки: 28.01.2021 (45) Опубликовано: 21.07.2021 Бюл. № 21 (54) Оптоэлектронный селектор минимальных двоичных чисел (57) Реферат: Изобретение относится к вычислительной фотоприемника, оптического триггера, технике и может быть использовано в оптических оптического Y-объединителя и оптического Yустройствах обработки информации при анализе разветвителя, N оптических Y-разветвителей, N двоичных чисел. Техническим результатом оптических Y-объединителей, N оптических является обеспечение определения минимального бистабильных элементов (ОБЭ), выходной ОБЭ, двоичного числа из совокупности N двоичных выходной оптический Y-разветвитель, N-входной чисел с высоким быстродействием. Устройство оптический объединитель, N-выходной содержит N оптоэлектронных ячеек, состоящих оптический разветвитель и общий вход сброса из управляемого оптического транспаранта, устройства. 1 ил. R U 2 7 5 1 9 8 4 (56) Список документов, цитированных в ...

Подробнее
19-03-2019 дата публикации

Optoelectronic compromise summator

Номер: RU2682410C2

FIELD: computer equipment.SUBSTANCE: invention relates to computer technology and can be used in optical information processing devices, operating on the basis of continuous (fuzzy) logic. Device contains a source of coherent radiation, a three-output optical splitter, four optical amplitude modulators, an optical phase modulator, three optical Y-splitters, three optical Y combiners, a photodetector.EFFECT: technical result is the creation of a device that calculates the operation of compromise of continuous (fuzzy) logic in real time.1 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 682 410 C2 (51) МПК G06E 3/00 (2006.01) G02F 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06E 3/00 (2018.08); G02F 3/00 (2018.08) (21)(22) Заявка: 2017131483, 07.09.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: 19.03.2019 (43) Дата публикации заявки: 12.03.2019 Бюл. № 8 (45) Опубликовано: 19.03.2019 Бюл. № 8 2432600 C1, 27.10.2011. RU 2419127 C2, 20.05.2011. RU 2451976 C2, 27.05.2012. WO 2015077929 A1, 04.06.2015. US 6853991 B1, 08.02.2005. (54) ОПТОЭЛЕКТРОННЫЙ КОМПРОМИССНЫЙ СУММАТОР (57) Реферат: Изобретение относится к вычислительной в реальном масштабе времени. Устройство технике и может быть использовано в оптических содержит источник когерентного излучения, устройствах обработки информации, построенных трехвыходной оптический разветвитель, четыре на основе непрерывной (нечеткой) логики. оптических амплитудных модулятора, оптический Техническим результатом является создание фазовый модулятор, три оптических Yустройства, вычисляющего операцию разветвителя, три оптических Y-объединителя, компромиссности непрерывной (нечеткой) логики фотоприемник. 1 ил. R U 2 6 8 2 4 1 0 (56) Список документов, цитированных в отчете о поиске: RU 2422876 C1, 27.06.2011. RU Стр.: 1 C 2 C 2 Адрес для переписки: 344002, г. Ростов-на-Дону, ул. Б. Садовая, 69, РГЭУ (РИНХ) (73) Патентообладатель(и): Федеральное ...

Подробнее
26-08-2022 дата публикации

一种基于垂直腔半导体光放大器的低功耗光学突触装置

Номер: CN110794635B
Автор: 张雅慧, 项水英, 龚俊楷
Принадлежит: Xidian University

本发明公开了基于垂直腔半导体光放大器的低功耗光学突触装置。该发明属于光信息处理技术领域,主要应用于光子脉冲神经网络的构建。所述的装置如附图所示,包括两个垂直腔面发射半导体激光器VCSEL1,VCSEL2,可调光延时线VODL,两个光耦合器OC1,OC2,三端口光环型器Circulator,垂直腔半导体光放大器VCSOA,为垂直腔半导体光放大器提供偏置电流和温度控制的Bias and TEC,两个带通滤波器λ 1 ,λ 2 。通过VCSEL输出的光脉冲注入到VCSOA中,证明VCSOA具有实现光学突触的功能。本发明装置在保证了实现光学突触功能的情况下,功耗低,并且对输入信号的输入功率要求低,时间窗口调谐范围大。

Подробнее
16-09-2021 дата публикации

Adaptive filtering method

Номер: RU2755499C1

FIELD: adaptive systems. SUBSTANCE: invention relates to the field of adaptive systems and can be used for adaptive filtering of stochastic signals and state parameters of stochastic systems. According to the invention, Kalman filtering of the observed vector of the system state is carried out, and at the time of receipt of accurate measurements, the difference between the vector of accurate measurements and the product of the transition matrix of the system state by the evaluation vector at the previous time is formed; the product of the inverse matrix is formed from the product of the extrapolated covariance matrix on the transposed measurement matrix at the previous time by the difference between the vector of exact measurements and the product of the transition matrix of the system state on the evaluation vector at the previous time; a diagonal matrix is formed, the elements of which are defined as the inverse of the corresponding values of the elements of the resulting product (vector); the difference between the Kalman residual vector and the product of the measurement matrix by the difference between the vector of exact measurements and the product of the transition matrix of the system state by the estimation vector at the previous time is determined; an estimate of the elements of the measurement interference dispersion matrix is formed from accurate measurements; the elements of the measurement interference dispersion matrix calculated a priori for the current time are replaced by estimates of the corresponding elements of the dispersion matrix obtained from exact measurements; Kalman filtering of the observed state vector of the system is carried out using the current discrete noisy measurements with a newly formed dispersion matrix of measurement interference until the next accurate measurements are received, after which the adaptive filtering procedure is repeated. EFFECT: ensuring the stability and increasing the accuracy of Kalman filtering by ...

Подробнее
12-03-2019 дата публикации

Optoelectronic compromise totalizer

Номер: RU2017131483A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2017 131 483 A (51) МПК G06E 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2017131483, 07.09.2017 Приоритет(ы): (22) Дата подачи заявки: 07.09.2017 (43) Дата публикации заявки: 12.03.2019 Бюл. № Адрес для переписки: 344002, г. Ростов-на-Дону, ул. Б. Садовая, 69, РГЭУ (РИНХ) R U (57) Формула изобретения Оптоэлектронный компромиссный сумматор, содержащий фотоприемник, источник когерентного излучения, оптический Y-разветвитель, оптический амплитудный модулятор, оптический фазовый модулятор, оптический Y-объединитель, отличающийся тем, что в него введены трехвыходной оптический разветвитель, три оптических амплитудных модулятора, два оптических Y-разветвителя, два оптических Yобъединителя, входами устройства являются: для параметра операции компромиссности - управляющие входы первого и второго оптических амплитудных модуляторов, для действительного числа - управляющий вход третьего оптического амплитудного модулятора, к информационным входам первого и третьего оптических амплитудных модуляторов подключены первый и второй выходы трехвыходного оптического разветвителя, соответственно, вход трехвыходного оптического разветвителя оптически связан с выходом источника постоянного когерентного оптического излучения, третий выход трехвыходного оптического разветвителя подключен ко входу оптического фазового модулятора, выход первого оптического амплитудного модулятора подключен ко входу первого оптического Y-разветвителя, первый выход которого является поглощающим, а второй выход подключен к первому входу первого оптического Yобъединителя, второй вход которого оптически связан с первым выходом третьего оптического Y-разветвителя, а выход первого оптического Y-объединителя подключен ко входу фотоприемника, выход которого подключен к управляющему входу четвертого оптического амплитудного модулятора, вход третьего оптического Y-разветвителя оптически связан с выходом ...

Подробнее
05-06-1982 дата публикации

Acoustic and optical analog superposition integrator

Номер: JPS5790613A
Автор: Koichiro Miyagi
Принадлежит: Anritsu Corp

Подробнее
20-04-2018 дата публикации

Optoelectronic compromise totalizer

Номер: RU2016141176A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2016 141 176 A (51) МПК G06E 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2016141176, 19.10.2016 Приоритет(ы): (22) Дата подачи заявки: 19.10.2016 (43) Дата публикации заявки: 20.04.2018 Бюл. № 11 R U (57) Формула изобретения Оптоэлектронный компромиссный сумматор, содержащий фотоприемник, источник излучения, двумерный электрооптический дефлектор, матричный оптический транспарант, оптический Y-разветвитель, оптический Y-объединитель, отличающийся тем, что в него введены электрооптический модулятор, фотоприемник, усилитель, n групп по n оптических волноводов, входы которых равноудалены от выхода двумерного электрооптического дефлектора (далее - n групп по n равноудаленных оптических волноводов), группу n оптических n-входных объединителей, оптический n-входной объединитель, входами устройства являются вход оптического Y-разветвителя и вход первого фотоприемника, первый выход оптического Y-разветвителя подключен к информационному входу электрооптического модулятора, управляющий вход которого связан с выходом первого фотоприемника, а выход которого подключен к первому входу оптического Y-объединителя, второй выход оптического Y-разветвителя подключен ко входу второго фотоприемника, выход которого подключен к первому управляющему входу двумерного электрооптического дефлектора, второй управляющий вход которого связан через усилитель с выходом первого фотоприемника, информационный вход связан с выходом источника излучения, а выход двумерного электрооптического дефлектора оптически подключен ко входам равноудаленных оптических волноводов, выходы которых оптически подключены через матричный оптический транспарант ко входам n оптических n-входных объединителей, выходы которых подключены ко входам n-входного оптического объединителя, выход которого подключен ко второму входу оптического Y-объединителя, выход которого является выходом устройства. Стр.: 1 A 2 0 1 6 1 4 1 1 ...

Подробнее
17-06-2021 дата публикации

Optoelectronic division residue calculator

Номер: RU2749845C1

FIELD: computing technology.SUBSTANCE: invention relates to computing technology and can be used in optical information processing apparatuses in calculation in the residue number system. The optoelectronic calculator comprises a coherent emission source, an optical amplitude modulator, an optical phase modulator, two optical Y-combiners, two optical Y-splitters, an optical amplifier, a photoreciever, a pair of optically coupled waveguides (OCWs) and a piezoelectric element wherein the pair of OCWs is integrated so that optical coupling in the OCWs only appears at the moment of compression of the piezoelectric crystal which takes place in the presence of the amplitude of the input signal of the piezoelectric element above a predetermined threshold level.EFFECT: creation of an apparatus calculating division residue in the residue number system in real time.1 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 749 845 C1 (51) МПК G06E 3/00 (2006.01) G02F 1/01 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06E 3/001 (2021.02); G02F 1/0102 (2021.02) (21)(22) Заявка: 2020113850, 03.04.2020 (24) Дата начала отсчета срока действия патента: Дата регистрации: 17.06.2021 (45) Опубликовано: 17.06.2021 Бюл. № 17 2 7 4 9 8 4 5 R U (54) Оптоэлектронный вычислитель остатка деления (57) Реферат: Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации при выполнении вычислений в системе остаточных классов. Техническим результатом является создание устройства, выполняющего в режиме реального времени вычисление остатка деления в системе остаточных классов. Оптоэлектронный вычислитель содержит источник когерентного излучения, оптический амплитудный модулятор, Стр.: 1 (56) Список документов, цитированных в отчете о поиске: RU 2665262 C2, 28.08.2018. RU 2689811 C1, 29.05.2019. JP 2282811 A, 20.11.1990. US 6690845 B1, 10.02.2004. RU 2433445 C1, 10.11.2011. C 1 C 1 ...

Подробнее
22-07-2019 дата публикации

Optical computing devices for measuring the number and performance of fluids pumped via pipelines at the delivery-acceptance stage

Номер: RU2695303C1

FIELD: instrument engineering. SUBSTANCE: invention relates to a device comprising an integrated computing element (ICE) arranged for optical interaction with electromagnetic radiation from a fluid medium and thereby forming optically reacted radiation corresponding to a fluid characteristic, and a method of using the device. Proposed device comprises detector arranged to receive optically interrelated radiation and to generate output signal proportional to intensity of optically interrelated radiation. Device additionally comprises a processor arranged to receive the output signal and determine the fluid characteristic. Device is connected to a controller configured to provide commands to the fluid transfer system for storage and reading, as well as to change the fluid flow parameter based on the quality parameter of the hydrocarbon product, wherein the change in the fluid flow parameter includes redirection of the fluid. EFFECT: providing fast analysis of at least one characteristic of a liquid or gas with negligible preparation of samples or in the absence thereof. 20 cl, 8 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 695 303 C1 (51) МПК G01N 21/31 (2006.01) G01N 21/59 (2006.01) G01N 21/85 (2006.01) G06E 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G01N 21/31 (2018.08); G01N 21/3504 (2018.08); G01N 21/3577 (2018.08); G01N 21/85 (2018.08); G01N 21/94 (2018.08); G01N 33/28 (2018.08); G01N 33/2835 (2018.08); G06E 3/001 (2018.08); G06E 3/008 (2018.08) (21)(22) Заявка: 2018114506, 29.12.2015 29.12.2015 22.07.2019 Приоритет(ы): (22) Дата подачи заявки: 29.12.2015 (56) Список документов, цитированных в отчете о поиске: US 20130033702 A1, 07.02.2013. US 3309308 A1, 14.03.1967. US 20140324366 A1, 30.10.2014. US 20040112122 A1, 17.06.2004. US 20130032340 A1, 07.02.2013. (45) Опубликовано: 22.07.2019 Бюл. № 21 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 25.04.2018 (86) Заявка PCT: 2 6 9 5 ...

Подробнее
25-07-2018 дата публикации

Optical nanoregister

Номер: RU2662247C1

FIELD: computer engineering. SUBSTANCE: invention relates to computer hardware. Optical nanoregister consists of a source of a constant optical signal, two N-output nanofiber optical couplers, N telescopic nanotubes, N nanofibrous optical Y-couplers, N nanofibrous optical combiners. Information inputs of the device are the first inputs of nanofibrous optical combiners, the device reset input is the input of the second N-output nanofibrous optical splitter. Output of the source of the fixed optical signal is connected to the input of the first N-output nanofibrous optical splitter, the outputs of which are optically coupled to the inputs of the corresponding nanofiber optical Y-couplers. Between the outputs of nanofibrous optical combiners and the corresponding outputs of the second N-output nanofibrous optical splitter, telescopic nanotubes are located. EFFECT: technical result is the realization of the registrar in a nanoscale design. 1 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 662 247 C1 (51) МПК G02F 7/00 (2006.01) B82Y 20/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G02F 7/00 (2006.01); G06E 3/001 (2006.01) (21)(22) Заявка: 2017118871, 30.05.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: 25.07.2018 (45) Опубликовано: 25.07.2018 Бюл. № 21 Адрес для переписки: 344002, г. Ростов-на-Дону, ул. Б. Садовая, 69, РГЭУ (РИНХ) 2370801 C1, 20.10.2009. RU 2398254 C1, 27.08.2010. СОКОЛОВ С. В., КАМЕНСКИЙ В. В. "ОПТИЧЕСКОЕ ВЫЧИТАЮЩЕЕ УСТРОЙСТВО НА ОСНОВЕ ТЕЛЕСКОПИЧЕСКИХ НАНОТРУБОК", НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011 г., Том 21, N 0 2, стр. 60-62. C 1 2 6 6 2 2 4 7 (56) Список документов, цитированных в отчете о поиске: RU 2329527 C1, 20.07.2008. RU (54) ОПТИЧЕСКИЙ НАНОРЕГИСТР (57) Реферат: Изобретение относится к средствам вычислительной техники. Оптический нанорегистр состоит из источника постоянного оптического сигнала, двух N-выходных нановолоконных оптических разветвителей, N ...

Подробнее
29-05-2019 дата публикации

Optoelectronic computer

Номер: RU2689810C1

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации при выполнении вычислений в системе остаточных классов. Техническим результатом является создание устройства, выполняющего в режиме реального времени вычисления в системе остаточных классов. Оптоэлектронный вычислитель содержит линейный источник когерентного излучения, оптический амплитудный модулятор, оптический n-входной объединитель, оптический фазовый модулятор, оптический Y-объединитель, оптический бистабильный элемент. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 689 810 C1 (51) МПК G06E 3/00 (2006.01) G02F 3/00 (2006.01) G06N 7/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06E 3/00 (2019.02); G02F 3/00 (2019.02); G06N 7/02 (2019.02) (21)(22) Заявка: 2018116117, 27.04.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: 29.05.2019 (54) Оптоэлектронный вычислитель (57) Реферат: Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации при выполнении вычислений в системе остаточных классов. Техническим результатом является создание устройства, выполняющего в режиме реального времени вычисления в системе R U 2 6 8 9 8 1 0 C 1 Адрес для переписки: 344002, г. Ростов-на-Дону, ул. Б. Садовая, 69, РГЭУ (РИНХ) Стр.: 1 (56) Список документов, цитированных в отчете о поиске: RU 2419127 C2, 20.05.2011. SU 1361718 A1, 23.12.1987. RU 2178580 C2, 20.01.2002. RU 2022328 C1, 30.10.1994. SU 717766 A1, 25.02.1980. US 4939682 A1, 03.07.1990. C 1 (45) Опубликовано: 29.05.2019 Бюл. № 16 2 6 8 9 8 1 0 Приоритет(ы): (22) Дата подачи заявки: 27.04.2018 R U 27.04.2018 (72) Автор(ы): Альбеков Адам Умарович (RU), Вовченко Наталья Геннадьевна (RU), Полуботко Анна Александровна (RU), Суханов Андрей Валерьевич (RU), Соколов Сергей Викторович (RU), Ковалев Сергей Михайлович (RU), Тищенко Евгений Николаевич (RU) (73) ...

Подробнее
28-08-2018 дата публикации

Optoelectronic compromise summator

Номер: RU2665262C2

FIELD: computer equipment.SUBSTANCE: invention relates to computer technology and can be used in optical information processing devices, operating on the basis of continuous (fuzzy) logic. Device comprises an optical Y-splitter, an electro-optical modulator, two photodetectors, amplifier, radiation source, two-dimensional electro-optical deflector, n groups of n equidistant optical waveguides, matrix optical transparency of dimension n×n, group of n optical n-input combiners, optical n-input combiner, optical Y-combiner.EFFECT: technical result is the creation of a device that calculates the operation of compromise of continuous logic in real time.1 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 665 262 C2 (51) МПК G06N 7/02 (2006.01) G06E 3/00 (2006.01) G02F 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06N 7/02 (2006.01); G06E 3/00 (2006.01); G02F 3/00 (2006.01) (21)(22) Заявка: 2016141176, 19.10.2016 (24) Дата начала отсчета срока действия патента: Дата регистрации: 28.08.2018 (43) Дата публикации заявки: 20.04.2018 Бюл. № 11 (45) Опубликовано: 28.08.2018 Бюл. № 25 2419127 C2, 20.05.2011. RU 2422876 C1, 04.12.2012. US 6853991 B1, 08.02.2005. (54) ОПТОЭЛЕКТРОННЫЙ КОМПРОМИССНЫЙ СУММАТОР (57) Реферат: Изобретение относится к вычислительной электрооптический модулятор, два технике и может быть использовано в оптических фотоприемника, усилитель, источник излучения, устройствах обработки информации, построенных двумерный электрооптический дефлектор, n групп на основе непрерывной (нечеткой) логики. по n равноудаленных оптических волноводов, Техническим результатом является создание матричный оптический транспарант размерности устройства, вычисляющего операцию n×n, группу n оптических n-входных компромиссности непрерывной логики в объединителей, оптический n-входной реальном масштабе времени. Устройство объединитель, оптический Y-объединитель. 1 ил. содержит оптический Y-разветвитель, R U 2 6 6 5 2 6 ...

Подробнее
12-08-2020 дата публикации

Methods for computation-free wideband spectral correlation and analysis

Номер: GB2574933B
Автор: ATAIE Vahid
Принадлежит: RAM Photonics LLC

Подробнее
05-10-2021 дата публикации

Methods for computation-free wideband spectral correlation and analysis

Номер: US11137627B2
Автор: Vahid Ataie
Принадлежит: RAM Photonics LLC

An apparatus for generating a set of spectral correlation coefficients of an input signal includes: a master laser configured to generate an optical frequency comb signal; a first optical modulator configured to modulate the optical frequency comb signal with an input signal to generate a plurality of spectral copies of the input signal; a dispersive element configured to delay the plurality of spectral copies of the input signal by a wavelength-dependent time delay; a second optical modulator configured to modulate the delayed plurality of spectral copies with a conjugate of the input signal; and an optical comb filter configured to integrate the conjugate modulated plurality of spectral copies of the input signal to generate a set of cyclic autocorrelation coefficients.

Подробнее
10-09-1998 дата публикации

Optical correlator and method for correlating optical signals

Номер: DE19527540C2
Автор: Gerald Dr Soelkner
Принадлежит: SIEMENS AG

Подробнее
13-12-2019 дата публикации

Optical processing system

Номер: CN110573984A
Автор: N·J·纽, R·J·托德
Принадлежит: Optalysys Ltd

一种将多个独立光学相关器并入一个系统中的方法。就“独立光学相关器”而言,我们意指包括输入SLM、滤波器SLM和相机的光学相关器,其与适当的相干照明和傅里叶变换透镜组合。就“一个系统”而言,我们意指多次利用每个独立相关器的元件的单个光学系统。

Подробнее
14-02-2020 дата публикации

Low-power-consumption optical synapse device based on vertical cavity semiconductor optical amplifier

Номер: CN110794635A
Автор: 张雅慧, 项水英, 龚俊楷
Принадлежит: Xidian University

本发明公开了基于垂直腔半导体光放大器的低功耗光学突触装置。该发明属于光信息处理技术领域,主要应用于光子脉冲神经网络的构建。所述的装置如附图所示,包括两个垂直腔面发射半导体激光器VCSEL1,VCSEL2,可调光延时线VODL,两个光耦合器OC1,OC2,三端口光环型器Circulator,垂直腔半导体光放大器VCSOA,为垂直腔半导体光放大器提供偏置电流和温度控制的Bias and TEC,两个带通滤波器λ 1 ,λ 2 。通过VCSEL输出的光脉冲注入到VCSOA中,证明VCSOA具有实现光学突触的功能。本发明装置在保证了实现光学突触功能的情况下,功耗低,并且对输入信号的输入功率要求低,时间窗口调谐范围大。

Подробнее
03-06-2019 дата публикации

Optical nano-computer in residual class system

Номер: RU2690368C1

FIELD: computer equipment.SUBSTANCE: invention relates to means of computer engineering and optical information processing devices. Optical nano-computer in the residual class system consists of two optical nano amplifiers, a nanofibre optical coupler, an optical subtracting nanodevice and an optical threshold nanodevice. First input of the optical subtracting nanodevice is the first input of the device (input of the dividend). Input of the first optical nano amplifier is the second input of the device (input of the divider). First output of the first optical nano amplifier is connected to the first input of the nanofibre optical coupler. Second output of the first optical nano amplifier is connected to the second input of the optical threshold nanodevice. Output of the nanofibre optical combiner is connected to the input of the second optical nano amplifier. First output of the second optical nano amplifier is connected to the second input of the optical subtracting nanodevice. Second output of the second optical nano-amplifier is connected to the second input of the nanofibre optical coupler. Output of the optical subtracting nanodevice is connected to the first input of the optical threshold nanodevice. Output of the optical threshold nano-device is the output of the device.EFFECT: implementation of designation, high speed and possibility of nanosize design of optical nano-computer.1 cl, 2 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 690 368 C1 (51) МПК G02F 7/00 (2006.01) G06E 3/00 (2006.01) B82Y 20/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G02F 7/00 (2019.02); G06E 3/00 (2019.02); B82Y 20/00 (2019.02) (21)(22) Заявка: 2018108979, 12.03.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: 03.06.2019 (45) Опубликовано: 03.06.2019 Бюл. № 16 Адрес для переписки: 344002, г. Ростов-на-Дону, ул. Б. Садовая, 69, РГЭУ (РИНХ) (73) Патентообладатель(и): Федеральное государственное ...

Подробнее
12-05-2011 дата публикации

And methods and apparatus for reading coded microbeads

Номер: AU2005307746B2
Автор: John A. Moon
Принадлежит: Illumina Inc

The present invention relates to a unique method and apparatus for reading a microbead having a code thereon, wherein the code is projected on and read from a Fourier plane. When illuminated by an incident light, comprising a reading device positioned to detect optical signals from the Fourier plane and a processor configured to perform Fourier plane analysis of the optical signals projected onto the Fourier plane to determine corresponding codes of the encoded microbeads.

Подробнее
20-08-2009 дата публикации

Optical system with coherent feedback

Номер: WO2007141598A3

An optical measurement system sensitive to light field amplitude is disclosed. The system uses an interferometer while a feedback loop maintains, at a low level, the light intensity exiting from at least on optical output of the interferometer. Shot noise of a detector placed at the output of the interferometer is thus reduced, enabling high speed and high accuracy measurement without requiring is stronger light source. The measurement system may be used in optical computing.

Подробнее
05-11-2008 дата публикации

Optical system with coherent feedback

Номер: EP1987410A2
Принадлежит: Lenslet Ltd

An optical measurement system sensitive to light field amplitude is disclosed. The system uses an interferometer while a feedback loop maintains, at a low level, the light intensity exiting from at least on optical output of the interferometer. Shot noise of a detector placed at the output of the interferometer is thus reduced, enabling high speed and high accuracy measurement without requiring is stronger light source. The measurement system may be used in optical computing.

Подробнее
20-01-2010 дата публикации

The optical system of band coherent feedback

Номер: CN101632048A
Принадлежит: Lenslet Ltd

本发明公开一种对光场振幅灵敏的光测量系统。该系统使用干涉仪,同时反馈回路将从干涉仪的至少一个光输出出射的光强度保持在低水平。因此降低了干涉仪的输出处的检测器的散粒噪声,从而能够无需更强的光源而实现高速和高精确度测量。该测量系统可以在光计算中使用。

Подробнее
27-01-2005 дата публикации

Optical processor architecture

Номер: US20050018295A1
Принадлежит: Lenslet Ltd

Apparatus for optically applying a transform to data, comprising: a spatially modulated light source, that generates a spatially modulated light beam; a diffractive element that replicates said light beam; and a lens that applies a Fourier transform to said replicated light beam.

Подробнее
07-07-2005 дата публикации

Optical processing

Номер: US20050149598A1
Принадлежит: Lenslet Ltd

A method of performing a DFT (discrete Fourier transform) or a DFT derived transform on data, comprising: providing spatially modulated light having spatial coherence, said spatially modulated light representing the data to be transformed; Fourier transforming said spatially modulated light, using an at least one optical element; and compensating for at least one of a scaling effect and a dispersion effect of said at least one optical element, using an at least one dispersive optical element.

Подробнее
28-07-2020 дата публикации

System and methods of controlling directional drilling

Номер: RU2728026C2

FIELD: soil or rock drilling; mining. SUBSTANCE: invention relates to underground drilling, and more specifically to control of directional well drilling and computing devices used in such drilling. Method comprises arranging a drill string in a wellbore; wherein the drill string comprises a drill string bottom assembly (DSBA) comprising a steering device, one or more sensors sensitive to one or more formation properties, and one or more sensors sensitive to DSBA current orientation in borehole. Said method also includes obtaining information relating to formation properties from DSBA and information relating to current orientation of DSBA in well bore; processing said information using a programmable optical computing device, which is either a programmable optical computing device or a quantum computing device. Computing device calculates position of formation elements relative to current position of borehole in real time and compares current position with preset path. EFFECT: technical result is creation in real time of more realistic two- and three-dimensional models of formation with possibility of improving geosteering during drilling of essentially horizontal wells in order to maintain greater well centring within productive zone. 16 cl, 4 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 728 026 C2 (51) МПК E21B 44/02 (2006.01) E21B 47/024 (2006.01) E21B 7/06 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК E21B 44/02 (2020.02); E21B 47/024 (2020.02); E21B 7/06 (2020.02) (21)(22) Заявка: 2018138852, 21.04.2017 (24) Дата начала отсчета срока действия патента: Дата регистрации: (73) Патентообладатель(и): БЕЙКЕР ХЬЮЗ, Э ДЖИИ КОМПАНИ, ЛЛК (US) 28.07.2020 22.04.2016 US 15/136,362 (43) Дата публикации заявки: 12.05.2020 Бюл. № 14 (56) Список документов, цитированных в отчете о поиске: US 20160024847 A1, 28.01.2016. RU 2014122122 A, 27.12.2015. US 20160102510 A1, 14.04.2016. WO 2015084401 A1, 11.06.2015. (45) ...

Подробнее
17-09-2021 дата публикации

Optical digital-to-analog converter

Номер: RU2755596C1

FIELD: computer technology.SUBSTANCE: invention relates to computer technology and can be used to create high-speed information processing devices and computer technology. The effect is achieved by the fact that an optical combiner and an optical transparency are introduced into the device, consisting of (m+1) sections with constant transmission functions equal to Ni-m, where i is the section number (i=0, ..., m), while the i-th input of the optical banner is the input of its i-th section, the i-th output is the output of the i-th section, and the i-th input of the N-ary (m+1)-bit optical DAC is the i-th input of the optical banner, the outputs of which are connected to the corresponding inputs of the optical combiner, the output of which is the output of the device.EFFECT: simplification of the device and implementation of digital-to-analog conversion of N-ary codes.1 cl, 1 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 755 596 C1 (51) МПК G02F 7/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G02F 7/00 (2021.05); G06E 3/005 (2021.05) (21)(22) Заявка: 2020140699, 10.12.2020 (24) Дата начала отсчета срока действия патента: Дата регистрации: 17.09.2021 Приоритет(ы): (22) Дата подачи заявки: 10.12.2020 (45) Опубликовано: 17.09.2021 Бюл. № 26 2 7 5 5 5 9 6 R U (54) Оптический цифроаналоговый преобразователь (57) Реферат: Изобретение относится к вычислительной технике и может быть использовано при создании быстродействующих устройств обработки информации и вычислительной техники. Заявленное изобретение направлено на упрощение устройства и реализации цифроаналогового преобразования N-ичных кодов. Технический результат достигается тем, что в устройство введены оптический сумматор и оптический транспарант, состоящий из (m+1) Стр.: 1 (56) Список документов, цитированных в отчете о поиске: RU 2020550 C1, 30.09.1994. JP 2019152736 A, 12.09.2019. EP 2396698 A1, 21.12.2011. JPS 63133130 A, 04.06.1988. участков с ...

Подробнее
23-10-1984 дата публикации

Production of diffraction limited holographic images

Номер: US4478481A
Принадлежит: University of Dayton

An apparatus for the production of a holographic image of a subject disposed at a subject plane includes a source of coherent light divided by a beamsplitter into a reference beam and a subject beam. The subject beam is directed towards the subject through a beamsplitter and a quarter-wave plate. The front surface of an opaque subject or a mirror behind a transparent subject reflects the subject beam back through the quarter-wave plate to the beamsplitter where it is deflected towards a photo-sensitive recording medium through an imaging lens. The reference beam is simultaneously directed toward the recording medium at a predetermined angle of incidence. After exposure and development of the medium, it is illuminated from the conjugate direction by the redirected reference beam. Image rays exactly retrace their original paths back through the optical system and provide a three-dimensional real-image reconstruction at the subject plane. The images produced may be microscopically examined or studied through optical processing and interferrometric techniques. A method utilizing the above-described apparatus is also disclosed.

Подробнее
15-05-2020 дата публикации

Patent RU2018138852A3

Номер: RU2018138852A3
Автор: [UNK]
Принадлежит: [UNK]

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2018 138 852 A (51) МПК E21B 44/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2018138852, 21.04.2017 (71) Заявитель(и): БЕЙКЕР ХЬЮЗ, Э ДЖИИ КОМПАНИ, ЛЛК (US) Приоритет(ы): (30) Конвенционный приоритет: 22.04.2016 US 15/136,362 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 06.11.2018 R U (43) Дата публикации заявки: 12.05.2020 Бюл. № 14 (72) Автор(ы): ДИФОДЖИО, Рокко (US), МАУРЕР, Ханс-Мартин (US), ТАБАРОВСКИЙ, Леонтий (US) (86) Заявка PCT: (87) Публикация заявки PCT: WO 2017/184939 (26.10.2017) R U (54) СИСТЕМА И СПОСОБЫ УПРАВЛЕНИЯ НАКЛОННО НАПРАВЛЕННЫМ БУРЕНИЕМ (57) Формула изобретения 1. Способ формирования ствола скважины (12) в толще пород, включающий: размещение бурильной колонны (22) в стволе скважины (12); причем бурильная колонна (22) содержит компоновку низа бурильной колонны (КНБК) (80), содержащую рулевое устройство (100), один или большее количество датчиков, чувствительных к одному или большему количеству свойств пласта, и один или большее количество датчиков, чувствительных к текущей ориентации КНБК (80) в стволе скважины (12); получение от КНБК (80) информации, относящейся к свойствам пласта, и информации, относящейся к текущей ориентации КНБК (80) в стволе скважины (12); обработку указанной информации с помощью программируемого оптического вычислительного устройства, причем указанное программируемое оптическое вычислительное устройство рассчитывает положение элементов формации по отношению к текущему положению ствола скважины в режиме реального времени; сравнение текущего положения с заданной траекторией (202); и инициирование изменения направления КНБК (80) рулевым устройством (100) во время буровых работ на основании указанного сравнения. 2. Способ по п. 1, отличающийся тем, что указанное инициирование включает передачу в рулевое устройство (100) сигнала, заставляющего рулевое устройство (100) перемещать рулевой прижимной башмак. ...

Подробнее
01-10-2019 дата публикации

Defuzzification device based on area ratio method

Номер: RU2701841C1

FIELD: computer equipment. SUBSTANCE: invention relates to the field of computing devices and program algorithms and can be used in systems and devices for processing information based on fuzzy logic. In the defuzzification device based on the area ratio method, the following units are introduced: 5-layer analyzer, which comprises: five ROM memory units, five MAX maximum units, five Reg storage units, five Reg2 storage units, five Reg3 recording units, five CMP1 comparators, five CMP2 comparators, five CMP3 comparators, five CMP4 comparators, five logical AND units, five logical NOT blocks, five adders ADD, five adders ADD1, five multiplexers MUX and five multiplier units Mult0; subtractor SUB, subtractor SUB2, adder ADD2, adder ADD3, divider DIV, multiplier Mult1 and multiplier Mult2. EFFECT: conversion of input data into a single clear value at the output of the system and is achieved by introducing 5-layer analyzer which enables parallel calculation of input information on degrees of belonging of input variables used in fuzzy inference conditions. 1 cl, 5 dwg РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 701 841 C1 (51) МПК G06F 3/00 (2006.01) G06N 7/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06E 3/00 (2019.05); G06N 7/02 (2019.05) (21)(22) Заявка: 2018144147, 13.12.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 13.12.2018 (45) Опубликовано: 01.10.2019 Бюл. № 28 (56) Список документов, цитированных в отчете о поиске: RU 2408052 C1, 27.12.2010. RU 2439652 C1, 10.01.2012. RU 2439651 C1, 10.01.2012. RU 2446432 C1, 27.03.2012. RU 2446435 C1, 27.03.2012. US 5524174 A1, 04.06.1996. 2 7 0 1 8 4 1 R U (54) Устройство дефаззификации на основе метода отношения площадей (57) Реферат: Изобретение относится к области отношения площадей введены блоки: 5-слойный вычислительных устройств и программных анализатор, который содержит: пять блоков алгоритмов ...

Подробнее
12-05-2020 дата публикации

SYSTEM AND METHODS FOR MANAGING TILT DIRECTIONAL DRILLING

Номер: RU2018138852A

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2018 138 852 A (51) МПК E21B 44/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2018138852, 21.04.2017 (71) Заявитель(и): БЕЙКЕР ХЬЮЗ, Э ДЖИИ КОМПАНИ, ЛЛК (US) Приоритет(ы): (30) Конвенционный приоритет: 22.04.2016 US 15/136,362 (85) Дата начала рассмотрения заявки PCT на национальной фазе: 06.11.2018 R U (43) Дата публикации заявки: 12.05.2020 Бюл. № 14 (72) Автор(ы): ДИФОДЖИО, Рокко (US), МАУРЕР, Ханс-Мартин (US), ТАБАРОВСКИЙ, Леонтий (US) (86) Заявка PCT: (87) Публикация заявки PCT: WO 2017/184939 (26.10.2017) R U (54) СИСТЕМА И СПОСОБЫ УПРАВЛЕНИЯ НАКЛОННО НАПРАВЛЕННЫМ БУРЕНИЕМ (57) Формула изобретения 1. Способ формирования ствола скважины (12) в толще пород, включающий: размещение бурильной колонны (22) в стволе скважины (12); причем бурильная колонна (22) содержит компоновку низа бурильной колонны (КНБК) (80), содержащую рулевое устройство (100), один или большее количество датчиков, чувствительных к одному или большему количеству свойств пласта, и один или большее количество датчиков, чувствительных к текущей ориентации КНБК (80) в стволе скважины (12); получение от КНБК (80) информации, относящейся к свойствам пласта, и информации, относящейся к текущей ориентации КНБК (80) в стволе скважины (12); обработку указанной информации с помощью программируемого оптического вычислительного устройства, причем указанное программируемое оптическое вычислительное устройство рассчитывает положение элементов формации по отношению к текущему положению ствола скважины в режиме реального времени; сравнение текущего положения с заданной траекторией (202); и инициирование изменения направления КНБК (80) рулевым устройством (100) во время буровых работ на основании указанного сравнения. 2. Способ по п. 1, отличающийся тем, что указанное инициирование включает передачу в рулевое устройство (100) сигнала, заставляющего рулевое устройство (100) перемещать рулевой прижимной башмак. ...

Подробнее
23-02-2021 дата публикации

Optical processing system

Номер: CN112400175A
Автор: A·J·麦克法迪恩
Принадлежит: Optalysys Ltd

一种光学处理系统包括至少一个空间光调制器SLM,其被配置为同时显示第一输入数据模式(a)和至少一个数据聚焦模式,所述至少一个数据聚焦模式是第二输入数据模式(b)的傅立叶域表示(B),所述光学处理系统还包括检测器,用于检测已经被所述输入数据模式和聚焦数据模式连续光学处理的光,从而产生第一和第二输入数据模式的光学卷积,所述光学卷积用于使用在神经网络中。

Подробнее
02-03-2018 дата публикации

Optoelectronic compromise summator

Номер: RU2646366C1

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, выполняющего операцию компромиссности в реальном масштабе времени. Устройство содержит электрооптический модулятор, два оптических Y-разветвителя, два управляемых оптических транспаранта, фотоприемник, источник излучения, оптический транспарант, электрооптический дефлектор, группу n равноудаленных оптических волноводов, линейный оптический транспарант, оптический n-входной объединитель, оптический Y-объединитель. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2 646 366 C1 (51) МПК G06E 3/00 (2006.01) G06N 7/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (52) СПК G06E 3/001 (2006.01); G06N 7/02 (2006.01); G02F 3/00 (2006.01); H03K 19/14 (2006.01) (21)(22) Заявка: 2016148130, 07.12.2016 (24) Дата начала отсчета срока действия патента: Дата регистрации: 02.03.2018 (45) Опубликовано: 02.03.2018 Бюл. № 7 2432600 C1, 27.10.2011. RU 2079872 C1, 20.05.1997. RU 2022327 C1,30.10.1994. WO 2015077929 A1, 04.06.2015. JPH 08211958 A, 20.08.1996. JPH 03108012 A, 08.05.1991. (54) Оптоэлектронный компромиссный сумматор (57) Реферат: Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, выполняющего операцию компромиссности в реальном масштабе времени. Устройство содержит электрооптический R U 2 6 4 6 3 6 6 (56) Список документов, цитированных в отчете о поиске: RU 2437139 C1, 20.12.2011. RU Стр.: 1 C 1 C 1 Адрес для переписки: 344038, г. Ростов-на-Дону, пр-кт М. Нагибина, 33А/47, Южный университет (ИУБиП) (73) Патентообладатель(и): Частное образовательное учреждение высшего образования "ЮЖНЫЙ УНИВЕРСИТЕТ (ИУБиП)" (RU) 2 6 4 6 3 6 6 ...

Подробнее
28-08-1996 дата публикации

Optical associative identification device

Номер: JP2527807B2
Принадлежит: SUMITOMO OSAKA CEMENT CO LTD

Подробнее
05-10-1993 дата публикации

Active multi-stage cavity sensor

Номер: US5251222A
Принадлежит: Teledyne Industries Inc

In accordance with the present invention, an optical sensing device and method are provided for processing with extremely low energy requirements. Spontaneous emissions from an excited optical gain medium generate a propagating waveform. Either a spatial modulator or the pattern under investigation modulates the optical wavefront generated by the fluorescing gain medium to impose a first spatial pattern thereon. When the first spatial pattern imposed on the wavefront has duality with another spatial pattern imposed by the other of the pattern under investigation or the SLM, light is directed back along pathways through a cavity defined by the gain medium, a reflector, the SLM, and the object under investigation to induce stimulated emission and eventually resonance in the cavity.

Подробнее
02-11-2011 дата публикации

Spatial light modulation device, optical processing device, and method of using coupling prism

Номер: JP4804358B2
Автор: 卓 井上, 洪欣 黄
Принадлежит: Hamamatsu Photonics KK

Подробнее
19-04-2006 дата публикации

Optical correlation employing an optical bit delay

Номер: GB2419208A
Принадлежит: Qinetiq Ltd

This invention relates to a pattern recognition correlator and method for correlating input data with one or more reference patterns. The input data 2, which may be for instance digital amplitude modulated optical data, is used to modulate 6 an optical signal 8 to form a phase modulated optical signal. This temporal phase modulated optical signal is then converted into a spatial optical phase pattern, preferably through use of an optical delay, 141 ... 14N and incident on a reference spatial phase pattern displayed on an optical phase modulator 18, such as an SLM. When there is a correlation between the input data spatial phase pattern and the reference spatial phase pattern the emerging wavefront is plane and can be strongly focussed 20 to a point detector 22. In the absence of correlation the emergent wavefront is not plane and so is not focussed as strongly to the detector. The detector output can therefore be used as an indication of correlation.

Подробнее
29-05-2019 дата публикации

Optoelectronic compromise summator

Номер: RU2689811C1

FIELD: calculating; counting.SUBSTANCE: invention relates to computer technology and can be used in optical information processing devices, operating on the basis of continuous (fuzzy) logic. Device comprises a coherent radiation source, an optical three-output splitter, an optical amplitude modulator, two optical phase modulators, an optical Y-coupler, a group of optical Y-splitters, a controlled transparency filter, an optical three-input coupler.EFFECT: technical result is the creation of a device that calculates the operation of compromise of continuous (fuzzy) logic in real time.1 cl, 1 dwg

Подробнее
30-01-2023 дата публикации

Linear photonic processor and related methods

Номер: JP2023503444A
Принадлежит: Lightmatter Inc

フォトニックプロセッサが記載される。本明細書に記載のフォトニックプロセッサは、行列-行列(例えば、行列-ベクトル)乗算を実行するように構成される。いくつかの実施形態は、デュアルレールアーキテクチャに従って配列されたフォトニックプロセッサであって、数値が光信号の対間の差(例えば、光信号の電力間の差)で符号化される、フォトニックプロセッサに関する。他のアーキテクチャと比較して、これらのフォトニックプロセッサは、ノイズに対する向上した耐性を示す。いくつかの実施形態は、変調可能検出器ベースの乗算器を含むフォトニックプロセッサに関する。変調可能検出器は、電気制御信号に従って光電流が変調され得るように設計された検出器である。変調可能検出器ベースの乗算器を使用して設計されたフォトニックプロセッサは、他のタイプのフォトニックプロセッサよりも大幅にコンパクトである。

Подробнее
31-10-2013 дата публикации

Methods for optically determining a characteristic of a substance

Номер: CA2866103A1
Принадлежит: Halliburton Energy Services Inc

Optical computing devices are disclosed. One exemplary optical computing device (300) includes an electromagnetic radiation source (308) configured to optically interact with a sample (306) and at least two integrated computational elements (302, 304). The at least two integrated computational elements are configured to produce optically interacted light (314) and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector (316) arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.

Подробнее
20-05-1980 дата публикации

Optical signal processing apparatus

Номер: US4204262A
Принадлежит: Fitelson Michael M, Morgan Dennis R

Signal processing apparatus having the capability to perform simultaneous space-time processing of sonar, radar and similar time-varying signals, and to effect the Fourier transform of multiple time-varying signals through electro-optical photoelastic means, photoconductive means, or photoemissive means.

Подробнее
08-02-1985 дата публикации

Patent FR2499735B1

Номер: FR2499735B1
Автор: [UNK]
Принадлежит: Thomson CSF SA

Подробнее
01-12-1989 дата публикации

OPTICAL FIBER CORRELATOR.

Номер: FR2618278B1
Принадлежит: Thomson CSF SA

Подробнее
19-04-1985 дата публикации

Acoustooptic signal-processing device

Номер: FR2553528A1
Принадлежит: Thomson CSF SA

The invention relates to an acoustooptic signal-processing device which comprises a piezoelectric and elastooptic interaction medium 1, a piezoelectric transducer 3 disposed on this medium 1 which enables an acoustic wave which propogates in this medium 1 to be generated. A photo refractive crystal 12 is combined with this interaction medium 1. A first source S permits the transfer of the acoustooptic grating generated in this medium 1 into the crystal 12. A second source 13 carries out the reading of the grating created in this crystal 12. The signal thus defracted by this crystal 12 is collected by detection means. The invention is particularly applicable to the field of signal processing.

Подробнее