Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 61373. Отображено 100.
05-01-2012 дата публикации

Semiconductor light emitting device and wafer

Номер: US20120001151A1
Принадлежит: Toshiba Corp

A semiconductor light emitting device includes a first layer made of at least one of n-type GaN and n-type AlGaN; a second layer made of Mg-containing p-type AlGaN; and a light emitting section provided between the first layer and the second layer. The light emitting section included a plurality of barrier layers made of Si-containing Al x Ga 1-x-y In y N (0≦x, 0≦y, x+y≦1), and a well layer provided between each pair of the plurality of barrier layers and made of GaInN or AlGaInN. The plurality of barrier layers have a nearest barrier layer and a far barrier layer. The nearest barrier layer is nearest to the second layer among the plurality of barrier layers. The nearest barrier layer includes a first portion and a second portion. The first portion is made of Si-containing Al x Ga 1-x-y In y N (0≦x, 0≦y, x+y≦1). The second portion is provided between the first portion and the second layer and is made of Al x Ga 1-x-y In y N (0≦x, 0≦y, x+y≦1). The Si concentration in the second portion is lower than a Si concentration in the first portion and lower than a Si concentration in the far barrier layer.

Подробнее
05-01-2012 дата публикации

Light emitting device and method of fabricating the same

Номер: US20120001218A1
Принадлежит: LG Innotek Co Ltd

Provided are a light emitting device and a method of fabricating the same. The light emitting device includes a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, the active layer being formed of a semiconductor material. Also, the light emitting device further includes a current spreading layer comprising a plurality of carbon nanotube bundles physically connected to each other on one of the first and second conductive type semiconductor layers.

Подробнее
12-01-2012 дата публикации

Semiconductor light emitting diode and method of producing the same

Номер: US20120007116A1
Принадлежит: Dowa Electronics Materials Co Ltd

A semiconductor light emitting diode including: a support substrate; an intermediate layer including an intermediate electrode portion, a second conductive semiconductor layer, an active layer, a first conductive semiconductor layer and an upper electrode portion sequentially disposed on the upper surface side of the support substrate in this order; and a lower electrode layer provided on the lower surface side of the support substrate, where: the intermediate layer has at least one intermediate electrode portion extending linearly or in an island-like shape; and the upper electrode portion and the intermediate electrode portion are disposed in such a positional relationship that these electrode portions are in parallel with and offset from each other and a distance between the upper electrode portion and the intermediate electrode portion is within the range of 10 μm to 50 μm.

Подробнее
12-01-2012 дата публикации

Light emitting device and method of manufacturing the same

Номер: US20120007120A1

Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a substrate; a light emitting structure disposed on the substrate and having a stack structure in which a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer are stacked; a lens disposed on the light emitting structure; and a first terminal portion and a second terminal portion electrically connected to the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively. At least one of the first and second terminal portions extends from a top surface of the light emitting structure along respective side surfaces of the light emitting structure and the substrate.

Подробнее
12-01-2012 дата публикации

Chemical vapor deposition apparatus and method of forming semiconductor epitaxial thin film using the same

Номер: US20120009697A1

A chemical vapor deposition apparatus includes: a reaction chamber including an inner tube having a predetermined volume of an inner space, and an outer tube tightly sealing the inner tube; a wafer holder disposed within the inner tube and on which a plurality of wafers are stacked at predetermined intervals; and a gas supply unit including at least one gas line supplying an external reaction gas to the reaction chamber, and a plurality of spray nozzles communicating with the gas line to spray the reaction gas to the wafers, whereby semiconductor epitaxial thin films are grown on the surfaces of the wafers, wherein the semiconductor epitaxial thin film grown on the surface of the wafer includes a light emitting structure in which a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer are sequentially formed.

Подробнее
12-01-2012 дата публикации

Techniques of Forming Ohmic Contacts on GaN Light Emitting Diodes

Номер: US20120009705A1
Принадлежит: Soraa Inc

A method of forming ohmic contacts on a light emitting diode that features a surface treatment of a substrate includes exposing a surface of a p-type gallium nitride layer to an acid-containing solution and a buffered oxide etch process. A quantum well is formed in a gallium nitride substrate and a layer of p-type gallium nitride is deposited over the quantum well. The surface of the p-type gallium nitride is exposed to an acid-containing solution and then a buffered oxide etch process is performed to provide an etched surface. A metal stack including a layer of silver disposed between layers of platinum is then deposited.

Подробнее
19-01-2012 дата публикации

Solid state lighting devices with reduced crystal lattice dislocations and associated methods of manufacturing

Номер: US20120012812A1
Автор: Cem Basceri, Thomas Gehrke
Принадлежит: Micron Technology Inc

Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and a plurality of hemispherical grained silicon (“HSG”) structures on the substrate surface of the substrate material. The solid state lighting device also includes a semiconductor material on the substrate material, at least a portion of which is between the plurality of HSG structures.

Подробнее
19-01-2012 дата публикации

Semiconductor light emitting device and method for manufacturing same

Номер: US20120012814A1
Принадлежит: Toshiba Corp

According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part provided therebetween. The light emitting part includes a plurality of light emitting layers. Each of the light emitting layers includes a well layer region and a non-well layer region which is juxtaposed with the well layer region in a plane perpendicular to a first direction from the n-type semiconductor layer towards the p-type semiconductor layer. Each of the well layer regions has a common An In composition ratio. Each of the well layer regions includes a portion having a width in a direction perpendicular to the first direction of 50 nanometers or more.

Подробнее
26-01-2012 дата публикации

Phosphor member, method of manufacturing phosphor member, and illuminating device

Номер: US20120018761A1
Автор: Mika Honda
Принадлежит: Konica Minolta Opto Inc

In the present invention, provided is a phosphor member capable of improving a yield and an extraction rate, in addition to high environmental tolerance, high heat resistance, high durability and a high color rendering property, by which variations of color and an amount of light are reduced, and also provided are a method of manufacturing the phosphor member and an illuminating device. Disclosed is a phosphor member prepared separately from an LED light source constituting a white illuminating device, wherein the phosphor member possesses phosphor particles and an inorganic layer having been subjected to coating and a heat treatment.

Подробнее
26-01-2012 дата публикации

Method of manufacturing vertical light emitting diode

Номер: US20120021545A1
Принадлежит: Advanced Optoelectronic Technology Inc

A method of manufacturing a vertical light emitting diode includes: providing a first substrate; forming a lapping stop layer on the first substrate, the lapping stop layer being harder than the first substrate; depositing an epitaxial layer on the lapping stop layer; bonding a second substrate on the epitaxial layer; and removing the first substrate from the lapping stop layer.

Подробнее
02-02-2012 дата публикации

Method and electrostatic transfer stamp for transferring semiconductor dice using electrostatic transfer printing techniques

Номер: US20120027557A1
Автор: Ian Ashdown, Ingo Speier
Принадлежит: Cooledge Lighting Inc

A transfer stamp that can be charged with a spatial pattern of electrostatic charge for picking up selected semiconductor dice from a host substrate and transferring them to a target substrate. The stamp may be bulk charged and then selectively discharged using irradiation through a patterned mask. The technique may also be used to electrostatically transfer selected semiconductor dice from a host substrate to a target substrate.

Подробнее
02-02-2012 дата публикации

Method for fabricating group iii-nitride semiconductor

Номер: US20120028446A1
Принадлежит: Individual

A method of fabricating a group III-nitride semiconductor includes the following steps of forming a first patterned mask layer with a plurality of first openings deposited on an epitaxial substrate; epitaxially growing a group III-nitride semiconductor layer over the epitaxial substrate and covering at least part of the first patterned mask layer; etching the group III-nitride semiconductor layer to form a plurality of second openings, which are substantially at least partially aligned with the first openings; and epitaxially growing the group III-nitride semiconductor layer again.

Подробнее
09-02-2012 дата публикации

Diamond semiconductor element and process for producing the same

Номер: US20120034737A1
Принадлежит: Nippon Telegraph and Telephone Corp

A process of producing a diamond thin-film includes implanting dopant into a diamond by an ion implantation technique, forming a protective layer on at least part of the surface of the ion-implanted diamond, and firing the protected ion-implanted diamond at a firing pressure of no less than 3.5 GPa and a firing temperature of no less than 600° C. A process of producing a diamond semiconductor includes implanting dopant into each of two diamonds by an ion implantation technique and superimposing the two ion-implanted diamonds on each other such that at least part of the surfaces of each of the ion-implanted diamonds makes contact with each other, and firing the ion implanted diamonds at a firing pressure of no less than 3.5 GPa and a firing temperature of no less than 600° C.

Подробнее
16-02-2012 дата публикации

Light emitting diode and fabricating method thereof

Номер: US20120037952A1
Принадлежит: Lextar Electronics Corp

A light emitting diode and a fabricating method thereof are provided. A first-type semiconductor layer, a light emitting layer and a second-type semiconductor layer with a first surface are sequentially formed a substrate. Next, the first surface is treated during a surface treatment process to form a current-blocking region which extends from the first surface to the light emitting layer to a depth of 1000 angstroms. Afterward, a first electrode is formed above the current-blocking region of the second-type semiconductor layer, and a second electrode is formed to electrically contact to the first-type semiconductor layer. Since the current-blocking region is formed with a determined depth within the second-type semiconductor layer, the light extraction efficiency of the light emitting diode may be increased.

Подробнее
23-02-2012 дата публикации

High-reflectivity and low-defect density LED structure

Номер: US20120043522A1
Принадлежит: HIGH POWER OPTO Inc

The present invention discloses a high-reflectivity and low-defect density LED structure. A patterned dielectric layer is embedded in a sapphire substrate via semiconductor processes, such as etching and deposition. The dielectric layer is formed of two materials which are alternately stacked and have different refractive indexes. An N-type semiconductor layer, an activation layer and a light emitting layer which is a P-type semiconductor layer are sequentially formed on the sapphire substrate. An N-type electrode and a P-type electrode are respectively coated on the N-type semiconductor layer and the P-type semiconductor layer. The dielectric layer can lower the defect density of the light emitting layer during the epitaxial growth process. Further, the dielectric layer can function as a high-reflectivity area to reflect light generated by the light emitting layer and the light is projected downward to be emitted from the top or the lateral. Thereby is greatly increased the light-extraction efficiency.

Подробнее
23-02-2012 дата публикации

Method of processing of nitride semiconductor wafer, nitride semiconductor wafer, method of producing nitride semiconductor device and nitride semiconductor device

Номер: US20120043645A1
Принадлежит: Sumitomo Electric Industries Ltd

A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 μm-10 μm thick edge process-induced degradation layer.

Подробнее
01-03-2012 дата публикации

High-brightness light emitting diode

Номер: US20120049234A1
Автор: Chih-ching Cheng
Принадлежит: Huga Optotech Inc

A light-emitting diode includes a substrate, a first semiconductor layer above the substrate, an active layer above the first semiconductor layer, a second semiconductor layer above the active layer, a trench penetrating the second semiconductor layer and the active layer thereby exposing a portion of the first semiconductor layer, an first electrode disposed at the bottom of the trench, an insulating layer covering the trench and the first electrode, and a second electrode disposed overlying the insulating layer in parallel with the first electrode, wherein the second electrode overlaps with the first electrode.

Подробнее
01-03-2012 дата публикации

Solid state lighting devices with improved contacts and associated methods of manufacturing

Номер: US20120049756A1
Автор: Martin F. Schubert
Принадлежит: Micron Technology Inc

Solid state lighting (“SSL”) devices with improved contacts and associated methods of manufacturing are disclosed herein. In one embodiment, an SSL device includes an SSL structure having a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The SSL device also includes a first contact on the first semiconductor material and a second contact on the second semiconductor material, where the first and second contacts define the current flow path through the SSL structure. The first or second contact is configured to provide a current density profile in the SSL structure based on a target current density profile.

Подробнее
08-03-2012 дата публикации

Method of fabricating epitaxial structures

Номер: US20120058591A1
Автор: Brad M. Siskavich
Принадлежит: Spire Corp

A method of fabricating epitaxial structures including applying an etch stop to one side of a substrate and then growing at least one epitaxial layer on a first side of said substrate, flipping the substrate, growing a second etch stop and at least one epitaxial layer on a second side of the substrate, applying a carrier medium to the ultimate epitaxial layer on each side, dividing the substrate into two parts generally along an epitaxial plane to create separate epitaxial structures, removing any residual substrate and removing the etch stop.

Подробнее
15-03-2012 дата публикации

Light emitting device and manufacturing method of light emitting device

Номер: US20120061703A1
Автор: Mitsuhiro Kobayashi
Принадлежит: Toshiba Corp

A light emitting device may include a base provided with a recess portion in a side surface thereof, a light emitting element mounted on a main surface of the base, a first resin body filled in an inside of the recess portion, and covering at least the main surface and the light emitting element, a second resin body covering an outside of the first resin body from the main surface side to at least a position of the lowermost end of the recess portion in a direction orthogonal to the main surface, and phosphor, provided in the second resin body, for absorbing light emitted from the light emitting element and then emitting light having a different wavelength.

Подробнее
15-03-2012 дата публикации

Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device

Номер: US20120061715A1
Принадлежит: Stanley Electric Co Ltd

There is provided a semiconductor light-emitting device manufacturing method which includes the steps of forming a semiconductor growth film on a growth substrate; forming a metal film on the semiconductor growth film; forming a multilayer insulating film on the metal film, the multilayer insulating film having at least a first insulating layer and a second insulating layer adjacent to each other; and forming a support member on the multilayer insulating film. Pinholes present in the first insulating layer are discontinuous with pinholes present in the second insulating layer at an interface between the first and the second insulating layers.

Подробнее
15-03-2012 дата публикации

Red light-emitting flourescent substance and light-emitting device employing the same

Номер: US20120062106A1
Принадлежит: Toshiba Corp

The embodiment provides a red light-emitting fluorescent substance represented by the following formula (1): (M 1-x EC x ) a M 1 b AlO c N d   (1). In the formula (1), M is an element selected from the group consisting of IA group elements, IIA group elements, IIIA group elements, IIIB group elements, rare earth elements and IVA group elements; EC is an element selected from the group consisting of Eu, Ce, Mn, Tb, Yb, Dy, Sm, Tm, Pr, Nd, Pm, Ho, Er, Cr, Sn, Cu, Zn, As, Ag, Cd, Sb, Au, Hg, Tl, Pb, Bi and Fe; M 1 is different from M and is selected from the group consisting of tetravalent elements; and x, a, b, c and d are numbers satisfying the conditions of 0<x<0.2, 0.55<a<0.80, 2.10<b<3.90, 0<c≦0.25 and 4<d<5, respectively. This substance emits luminescence having a peak in the wavelength range of 620 to 670 nm when excited by light of 250 to 500 nm.

Подробнее
22-03-2012 дата публикации

Dc-driven electroluminescence device and light emission method

Номер: US20120068620A1
Автор: Takuyoshi Ishimura
Принадлежит: Kobundo Printing Co Ltd

An inorganic electroluminescence device has a structure including a phosphor layer sandwiched between a first electrode and a second electrode; and a semiconductor structure in which N-type semiconductors and a P-type semiconductor, made of inorganic semiconductor materials, are joined to form an NPN type structure. The phosphor is made of an inorganic substance. The first electrode is to be a cathode and is formed on an insulating glass substrate. The second electrode is to be an anode and is disposed opposite the first electrode. The semiconductor structure is disposed between the cathode that is the first electrode and the phosphor layer.

Подробнее
22-03-2012 дата публикации

Light-emitting device with a luminescent medium, corresponding lighting system comprising the light-emitting device and corresponding luminescent medium

Номер: US20120069544A1
Принадлежит: KONINKLIJKE PHILIPS ELECTRONICS NV

The invention relates to a light emitting device ( 1 ) with high colour rendering comprising a wavelength converting member ( 2 ) with a luminescent medium for wavelength conversion of blue light and/or ultraviolet light ( 10 ) into red light and/or yellow and/or green light and a light source ( 3 ) emitting blue light ( 10 ) and/or ultraviolet light arranged to pump the luminescent medium, said luminescent medium essentially having a main phase of a solid state host material which is doped with Ce 3+ -ions. According to the invention the host material comprises ions of a further rare-earth material Ln, wherein the host material is selected such that the emission energy of the 5d-4f emission on Ce 3+ -ions is energetically higher than the absorption energy into an upper 4f n state of the further rare-earth material Ln, and wherein the light emission of wavelength converted light is caused by an intra-atomic 4f n -4f n transition within the ions of the further rare-earth material. The invention further relates to a corresponding lighting system comprising the light-emitting device and a corresponding luminescent medium.

Подробнее
22-03-2012 дата публикации

Semiconductor device, method of manufacturing thereof, and method of manufacturing base material

Номер: US20120070919A1
Принадлежит: Semiconductor Energy Laboratory Co Ltd

It is an object of the invention to provide a lightweight semiconductor device having a highly reliable sealing structure which can prevent ingress of impurities such as moisture that deteriorate element characteristics, and a method of manufacturing thereof. A protective film having superior gas barrier properties (which is a protective film that is likely to damage an element if the protective film is formed on the element directly) is previously formed on a heat-resistant substrate other than a substrate with the element formed thereon. The protective film is peeled off from the heat-resistant substrate, and transferred over the substrate with the element formed thereon so as to seal the element.

Подробнее
22-03-2012 дата публикации

Method for fabricating wafer product and method for fabricating gallium nitride based semiconductor optical device

Номер: US20120070929A1

Provided is a method for fabricating a wafer product including an active layer grown on a gallium oxide substrate and allowing an improvement in emission intensity. In step S 105 , a buffer layer 13 comprised of a Group III nitride such as GaN, AlGaN, or AlN is grown at 600 Celsius degrees on a primary surface 11 a of a gallium oxide substrate 11 . After the growth of the buffer layer 13 , while supplying a gas G 2 , which contains hydrogen and nitrogen, into a growth reactor 10 , the gallium oxide substrate 11 and the buffer layer 13 are exposed to an atmosphere in the growth reactor 11 at 1050 Celsius degrees. A Group III nitride semiconductor layer 15 is grown on the modified buffer layer. The modified buffer layer includes, for example, voids. The Group III nitride semiconductor layer 15 can be comprised of GaN and AlGaN. When the Group III nitride semiconductor layer 15 is formed of these materials, excellent crystal quality is obtained on the modified buffer layer 14.

Подробнее
29-03-2012 дата публикации

Re-emitting semiconductor construction with enhanced extraction efficiency

Номер: US20120074381A1
Принадлежит: 3M Innovative Properties Co

A stack of semiconductor layers ( 310 ) forms a re-emitting semiconductor construction (RSC). The stack ( 310 ) includes an active region ( 316 ) that converts light at a first wavelength to light at a second wavelength, the active region ( 316 ) including at least one potential well. The stack ( 310 ) also includes an inactive region ( 318 ) extending from an outer surface of the stack to the active region. Depressions ( 326 ) are formed in the stack ( 310 ) that extend from the outer surface into the inactive region ( 318 ). An average depression depth is at least 50% of a thickness of the inactive region. Alternatively, the average depression depth is at least 50% of a nearest potential well distance. Still other alternative characterizations of the depressions ( 326 ) are also disclosed. The depressions ( 326 ) may have at least a 40% packing density in plan view. The depressions ( 326 ) may also have a substantial portion of their projected surface area associated with obliquely inclined surfaces.

Подробнее
29-03-2012 дата публикации

Protection for the epitaxial structure of metal devices

Номер: US20120074384A1
Принадлежит: Individual

Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non-(or low) thermally conductive and/or non-(or low) electrically conductive carrier substrate that has been removed.

Подробнее
05-04-2012 дата публикации

Sapphire wafer dividing method

Номер: US20120083059A1
Принадлежит: Disco Corp

A sapphire wafer dividing method including a cut groove forming step of forming a plurality of cut grooves on the back side of a sapphire wafer along a plurality of crossing division lines formed on the front side where a light emitting layer is formed, a modified layer forming step of forming a plurality of modified layers inside the sapphire wafer along the division lines, and a dividing step of dividing the sapphire wafer into individual light emitting devices along the modified layers as a division start point, thereby chamfering the corners of the back side of each light emitting device owing to the formation of the cut grooves in the cut groove forming step.

Подробнее
12-04-2012 дата публикации

Group iii nitride semiconductor and group iii nitride semiconductor structure

Номер: US20120086016A1
Принадлежит: Samsung LED Co Ltd

There is provided a surface treatment method of a group III nitride semiconductor including: providing a group III nitride semiconductor including a first surface having a group III polarity and a second surface opposing the first surface and having a nitrogen polarity; and irradiating a laser beam onto the second surface to change the nitrogen polarity of the second surface to the group III polarity.

Подробнее
12-04-2012 дата публикации

Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof

Номер: US20120086017A1
Принадлежит: KOREA ELECTRONICS TECHNOLOGY INSTITUTE

Provided are a heterogeneous substrate, a nitride-based semiconductor device using the same, and a manufacturing method thereof to form a high-quality non-polar or semi-polar nitride layer on a non-polar or semi-polar plane of the heterogeneous substrate by adjusting a crystal growth mode. A base substrate having one of a non-polar plane and a semi-polar plane is prepared, and a nitride-based nucleation layer is formed on the plane of the base substrate. A first buffer layer is grown faster in the vertical direction than in the lateral direction on the nucleation layer. A lateral growth layer is grown faster in the lateral direction than in the vertical direction on the first buffer layer. A second buffer layer is formed on the lateral growth layer. A silicon nitride layer having a plurality of holes may be formed between the lateral growth layer on the first buffer layer and the second buffer layer.

Подробнее
12-04-2012 дата публикации

Method for Fabricating a Vertical Light-Emitting Diode with High Brightness

Номер: US20120088318A1
Принадлежит: Tekcore Co Ltd

A method for fabricating a vertical light-emitting diode comprises forming a stack including a plurality of epitaxial layers on a patterned first substrate, placing a second substrate on the stack, removing the first substrate to expose the first surface, planarizing a first surface of the stack that was in contact with the patterned first substrate and has a pattern corresponding to a pattern provided on the first substrate to form a planarized second surface, and forming a first electrode in contact with a side of the second substrate that is opposite to the stack, and a second electrode in contact with the second surface of the stack. A roughening step can be performed to form uneven surface portions on a region of the second surface for improving light emission through the second surface of the stack.

Подробнее
19-04-2012 дата публикации

IN-SITU DEFECT REDUCTION TECHNIQUES FOR NONPOLAR AND SEMIPOLAR (Al, Ga, In)N

Номер: US20120091467A1
Принадлежит: UNIVERSITY OF CALIFORNIA

A method for growing reduced defect density planar gallium nitride (GaN) films is disclosed. The method includes the steps of (a) growing at least one silicon nitride (SiN x ) nanomask layer over a GaN template, and (b) growing a thickness of a GaN film on top of the SiN x nanomask layer.

Подробнее
19-04-2012 дата публикации

Light Emitting Device

Номер: US20120091497A1
Автор: Sung Min Hwang
Принадлежит: LG Innotek Co Ltd

Embodiments relate to a light emitting device, a light emitting device package, and a lighting system. The light emitting device comprises: a substrate; a light emitting structure over the substrate, the light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, wherein the first conductive type semiconductor layer is partially exposed; a first region having a first concentration and provided at a region of the second conductive type semiconductor layer; a second region having a second concentration and provided at another region of the second conductive type semiconductor layer; and a second electrode over the second conductive type semiconductor layer.

Подробнее
19-04-2012 дата публикации

Liquid crystal panel substrate, liquid crystal panel, and electronic device and projection display device using the same

Номер: US20120092570A1
Автор: Masahiro Yasukawa
Принадлежит: Seiko Epson Corp

In a liquid crystal substrate in which a matrix of reflecting electrodes is formed on a substrate, a transistor is formed corresponding to each reflective electrode and a voltage is applied to the reflective electrode through the transistor. A silicon oxide film having a thickness of 500 to 2,000 angstroms is used as the passivation film and the thickness is set to a value in response to the wavelength of the incident light to maintain a substantially constant reflectance.

Подробнее
19-04-2012 дата публикации

Novel semiconductor and optoelectronic devices

Номер: US20120094414A1
Принадлежит: NuPGA Corp

A method for fabricating a light-emitting integrated device, comprises overlying three layers, wherein each of the three layers emits light at a different wavelength, and wherein the overlying comprises one of: performing an atomic species implantation, performing a laser lift-off, performing an etch-back, or chemical-mechanical polishing (CMP).

Подробнее
26-04-2012 дата публикации

Limiting strain relaxation in iii-nitride hetero-structures by substrate and epitaxial layer patterning

Номер: US20120097919A1
Принадлежит: UNIVERSITY OF CALIFORNIA

A method of fabricating a substrate for a semipolar III-nitride device, comprising patterning and forming one or more mesas on a surface of a semipolar III-nitride substrate or epilayer, thereby forming a patterned surface of the semipolar III-nitride substrate or epilayer including each of the mesas with a dimension/along a direction of a threading dislocation glide, wherein the threading dislocation glide results from a III-nitride layer deposited heteroepitaxially and coherently on a non-patterned surface of the substrate or epilayer.

Подробнее
26-04-2012 дата публикации

Method for manufacturing light emitting chip

Номер: US20120100648A1
Принадлежит: Advanced Optoelectronic Technology Inc

A method for manufacturing light emitting chips includes steps of: providing a substrate having a plurality of separate epitaxy islands thereon, wherein the epitaxy islands are spaced from each other by channels; filling the channels with an insulation material; sequentially forming a reflective layer, a transition layer and a base on the insulation material and the epitaxy islands; removing the substrate and the insulation material to expose the channels; and cutting the reflective layer, the transition layer and the base to form a plurality of individual chips along the channels.

Подробнее
03-05-2012 дата публикации

Iii nitride semiconductor substrate, epitaxial substrate, and semiconductor device

Номер: US20120104558A1
Автор: Keiji Ishibashi
Принадлежит: Sumitomo Electric Industries Ltd

In a semiconductor device 100 , it is possible to prevent C from piling up at a boundary face between an epitaxial layer 22 and a group III nitride semiconductor substrate 10 by the presence of 30×10 10 pieces/cm 2 to 2000×10 10 pieces/cm 2 of sulfide in terms of S and 2 at % to 20 at % of oxide in terms of O in a surface layer 12 . By thus preventing C from piling up, a high-resistivity layer is prevented from being formed on the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10 . Accordingly, it is possible to reduce electrical resistance at the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10 , and improve the crystal quality of the epitaxial layer 22 . Consequently, it is possible to improve the emission intensity and yield of the semiconductor device 100.

Подробнее
03-05-2012 дата публикации

Method for Producing Lamps

Номер: US20120107973A1
Принадлежит: OSRAM Opto Semiconductors GmbH

A method for producing luminous means proposes providing a carrier serving as a heat sink, said carrier comprising a planar chip mounting region. The planar chip mounting region is structured for the purpose of producing a first partial region and at least one second partial region. In this case, the first partial region has a solder-repellent property after structuring. Afterward, a solder is applied to the planar chip mounting region, such that said solder wets the at least one second partial region. At least one optoelectronic body is fixed into the at least one second partial region with the solder at the carrier. Finally, contact-connections are formed for the purpose of feeding electrical energy to the optoelectronic luminous body.

Подробнее
10-05-2012 дата публикации

Optical Device

Номер: US20120112165A1
Принадлежит: University of Southampton

An improved optoelectronic device is described, which employs optically responsive nanoparticles and utilises a non-radiative energy transfer mechanism. The nanoparticles are disposed on the sidewalls of one or more cavities, which extend from the surface of the device through the electronic structure and penetrate the energy transfer region. The nanoparticles are located in close spatial proximity to an energy transfer region, whereby energy is transferred non-radiatively to or from the electronic structure through non-contact dipole-dipole interaction. According to the mode of operation, the device can absorb light energy received from the device surface via the cavity and then transfer this non-radiatively or can transfer energy non-radiatively and then emit light energy towards the surface of the device via the cavity. As such, the deice finds application in light emitting devices, photovoltaic (solar) cells, displays, photodetectors, lasers and single photon devices.

Подробнее
10-05-2012 дата публикации

Group-iii nitride semiconductor device, method for fabricating group-iii nitride semiconductor device, and epitaxial substrate

Номер: US20120112203A1
Принадлежит: Sumitomo Electric Industries Ltd

Provided is a Group III nitride semiconductor device, which comprises an electrically conductive substrate including a primary surface comprised of a first gallium nitride based semiconductor, and a Group III nitride semiconductor region including a first p-type gallium nitride based semiconductor layer and provided on the primary surface. The primary surface of the substrate is inclined at an angle in the range of not less than 50 degrees, and less than 130 degrees from a plane perpendicular to a reference axis extending along the c-axis of the first gallium nitride based semiconductor, an oxygen concentration Noxg of the first p-type gallium nitride based semiconductor layer is not more than 5×10 17 cm −3 , and a ratio (Noxg/Npd) of the oxygen concentration Noxg to a p-type dopant concentration Npd of the first p-type gallium nitride based semiconductor layer is not more than 1/10.

Подробнее
10-05-2012 дата публикации

Semiconductor light emitting device

Номер: US20120112227A1
Автор: Tomoichiro Toyama
Принадлежит: ROHM CO LTD

A semiconductor light emitting device includes an LED chip, which includes an n-type semiconductor layer, active layer, and p-type semiconductor layer stacked on a substrate. The LED chip further includes an anode electrode connected to the p-type semiconductor, and a cathode connected to the n-type semiconductor. The anode and cathode electrodes face a case with the LED chip mounted thereon. The case includes a base member including front and rear surfaces, and wirings including a front surface layer having anode and cathode pads formed at the front surface, a rear surface layer having anode and cathode mounting electrodes formed at the rear surface, an anode through wiring connecting the anode pad and the anode mounting electrode and passing through a portion of the base member, and a cathode through wirings connecting the cathode pad and the cathode mounting electrode and passing through a portion of the base member.

Подробнее
17-05-2012 дата публикации

Semiconductor light emitting device

Номер: US20120119182A1
Автор: Hyo Kun Son, Tae Yun Kim
Принадлежит: Hyo Kun Son, Tae Yun Kim

Provided is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. The active layer comprises a first active layer, a second active layer, an electron barrier layer on the first conductive type semiconductor layer. The first active layer and the second active layer comprise a quantum well layer and a quantum barrier layer. The electron barrier layer is formed between the first active layer and the second active layer. The second conductive type semiconductor layer is formed on the active layer.

Подробнее
17-05-2012 дата публикации

Light-emitting chip, light-emitting device, print head and image forming apparatus

Номер: US20120120176A1
Принадлежит: Fuji Xerox Co Ltd

A light-emitting chip includes: a substrate; plural light-emitting elements arrayed in line on the substrate, each of the light-emitting elements including a light-emitting region having a length in an array direction of the array different from a length in a direction orthogonal to the array direction; and a light-up current supplying interconnection including plural connecting portions, each of the connecting portions being provided on the light-emitting region of a corresponding one of the light-emitting elements in a shorter direction of the light-emitting region either the array direction or the direction orthogonal to the array direction, each of the connecting portions being connected to an electrode provided on the light-emitting region, the light-up current supplying interconnection supplying a current for lighting up to the plural light-emitting elements through the plural connecting portions.

Подробнее
17-05-2012 дата публикации

Method for manufacturing semiconductor light emitting device

Номер: US20120122258A1
Принадлежит: Toshiba Corp

One embodiment provides a method for manufacturing a semiconductor light emitting device, including: forming a semiconductor light emitting device wafer, by: forming a plurality of semiconductor layers on a principal surface of a substrate; and forming a P-type semiconductor layer on the semiconductor layers as an uppermost layer; and forming a plurality of surface irregularities on the P-type semiconductor layer, by putting the semiconductor light emitting device wafer into a heat treating furnace; and performing a heat treatment on the semiconductor light emitting device wafer with (i) a mixed gas of hydrogen and ammonia or (ii) a mixed gas of nitrogen and ammonia.

Подробнее
24-05-2012 дата публикации

High power, high efficiency and low efficiency droop iii-nitride light-emitting diodes on semipolar substrates

Номер: US20120126283A1
Принадлежит: UNIVERSITY OF CALIFORNIA

A III-nitride light emitting diode grown on a semipolar {20-2-1} plane of a substrate and characterized by high power, high efficiency and low efficiency droop.

Подробнее
24-05-2012 дата публикации

Light emitting devices and methods

Номер: US20120127720A1
Принадлежит: Individual

Light emitting devices and methods such as light emitting diodes (LEDs) are disclosed for use in higher voltage applications. Variable arrangements of LEDs are disclosed herein. Arrangements can include one or more LED chips connected in series, parallel, and/or a combination thereof. LED chips can be disposed in a package body having at least one thermal element and one or more electrical components.

Подробнее
31-05-2012 дата публикации

Light emitting diode and method for fabricating the same

Номер: US20120132951A1
Автор: Su-Hyoung Son
Принадлежит: LG Display Co Ltd

The disclosed light emitting diode includes a substrate provided, at a surface thereof, with protrusions, a buffer layer formed over the entirety of the surface of the substrate, a first semiconductor layer formed over the buffer layer, an active layer formed on a portion of the first semiconductor layer, a second semiconductor layer formed over the active layer, a first electrode pad formed on another portion of the first semiconductor layer, except for the portion where the active layer is formed, and a second electrode pad formed on the second semiconductor layer. Each protrusion has a side surface inclined from the surface of the substrate at a first angle, and another side surface inclined from the surface of the substrate at a second angle different from the first angle.

Подробнее
07-06-2012 дата публикации

Epitaxial Structure With An Epitaxial Defect Barrier Layer And Methods Making The Same

Номер: US20120138947A1
Принадлежит: Aqualite Co Ltd

An epitaxial structure for an LED is provided. The epitaxial structure includes a patterned epitaxial defect barrier layer disposed over a first portion of a substantially flat substrate to expose a second portion of the substrate. The epitaxial structure also includes a patterned buffer layer over the second portion of the substrate. The epitaxial structure further includes a first semiconductor layer over the patterned buffer layer and the patterned epitaxial defect barrier layer, an active layer over the first semiconductor layer, and a second semiconductor layer over the active layer.

Подробнее
14-06-2012 дата публикации

High-quality non-polar/semi-polar semiconductor element on tilt substrate and fabrication method thereof

Номер: US20120145991A1
Автор: Jong Jin Jang, Ok Hyun Nam
Принадлежит: Seoul Optodevice Co Ltd

Provided are a high-quality non-polar/semi-polar semiconductor device and a manufacturing method thereof. A template layer is formed on a corresponding off-axis of the sapphire crystal plane tilted in a predetermined direction to reduce the defect density of the semiconductor device and improve the internal quantum efficiency and light extraction efficiency thereof. In the method for manufacturing the semiconductor device, a template layer and a semiconductor device structure are formed on a sapphire substrate having a crystal plane for growing a non-polar or semi-polar nitride semiconductor layer. The crystal plane of the sapphire substrate is tilted in a predetermined direction, and the template layer includes a nitride semiconductor layer and a GaN layer on the tilted sapphire substrate.

Подробнее
21-06-2012 дата публикации

Arrays of filled nanostructures with protruding segments and methods thereof

Номер: US20120152295A1
Принадлежит: Alphabet Energy Inc

A structure and method for at least one array of nanowires partially embedded in a matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first segment associated with a first end, a second segment associated with a second end, and a third segment between the first segment and the second segment. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. The third segment is substantially surrounded by the one or more fill materials. The first segment protrudes from the one or more fill materials.

Подробнее
21-06-2012 дата публикации

High-quality non-polar/semi-polar semiconductor element on an unevenly patterned substrate and a production method therefor

Номер: US20120153257A1
Автор: Geun Ho Yoo, Ok Hyun Nam
Принадлежит: Seoul Optodevice Co Ltd

Provided are a high-quality non-polar/semi-polar semiconductor device with reduced defect density and improved internal quantum efficiency and light extraction efficiency, and a manufacturing method thereof. The manufacturing method is a method for manufacturing a semiconductor device, in which a template layer and a semiconductor device structure are formed on a sapphire substrate having a crystal plane for growing a non-polar or semi-polar nitride semiconductor layer. The sapphire substrate is etched to form uneven patterns, and the template layer including a nitride semiconductor layer and a GaN layer is formed on the sapphire substrate in which the uneven patterns are formed.

Подробнее
21-06-2012 дата публикации

LED Connector Assembly and Connector

Номер: US20120156920A1
Принадлежит: Tyco Electronics Japan GK

An LED connector assembly having a LED module, a base, and a connector. The LED module includes a substrate provided with a conductor pattern and an LED device disposed on a surface of the substrate and connecting to the conductor pattern. The base includes an attachment side larger than the LED module and attaching with the LED module such that a bottom surface of the LED module faces the attachment side. The connector that includes a housing fixed to the base, wherein the housing includes a a cylindrical section with a conductor receiving passageway at a tip thereof to which the cylindrical section penetrates the base from the attachment side there through, and a contact having one end that connects to the conductor pattern and extend inside the cylindrical section for connection with an electrical wire insertable into the cylindrical section.

Подробнее
28-06-2012 дата публикации

Lens, optoelectronic component comprising a lens and method for producing a lens

Номер: US20120162783A1
Принадлежит: OSRAM Opto Semiconductors GmbH

A lens includes a main body and a potting material. The main body includes a first major face, a second major face and at least one cavity arranged on the first major face. The potting material is arranged in the cavity and includes at least one diffuser which scatters radiation of at least one wavelength range.

Подробнее
28-06-2012 дата публикации

Method and apparatus for depositing phosphor on semiconductor-light emitting device

Номер: US20120164759A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

A method and apparatus for depositing a phosphor using transfer molding. The method includes: forming a plurality of light-emitting devices on a wafer and rearranging the light-emitting devices on a carrier substrate according to luminance characteristics of the plurality of light-emitting devices by examining the luminance characteristics of the plurality of light-emitting devices; depositing the phosphor on the rearranged light-emitting devices using transfer molding; and separating the light-emitting devices on the carrier substrate.

Подробнее
28-06-2012 дата публикации

Method of Manufacturing a Printable Composition of a Liquid or Gel Suspension of Diodes

Номер: US20120164796A1
Принадлежит: NthDegree Technologies Worldwide Inc

An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.

Подробнее
05-07-2012 дата публикации

Peeling apparatus and manufacturing apparatus of semiconductor device

Номер: US20120168066A1
Принадлежит: Semiconductor Energy Laboratory Co Ltd

To eliminate electric discharge when an element formation layer including a semiconductor element is peeled from a substrate used for manufacturing the semiconductor element, a substrate over which an element formation layer and a peeling layer are formed and a film are made to go through a gap between pressurization rollers. The film is attached to the element formation layer between the pressurization rollers, bent along a curved surface of the pressurization roller on a side of the pressurization rollers, and collected. Peeling is generated between the element formation layer and the peeling layer and the element formation layer is transferred to the film. Liquid is sequentially supplied by a nozzle to a gap between the element formation layer and the peeling layer, which is generated by peeling, so that electric charge generated on surfaces of the element formation layer and the peeling layer is diffused by the liquid.

Подробнее
05-07-2012 дата публикации

Light emitting diode, light emitting diode lamp, and illuminating apparatus

Номер: US20120168717A1
Принадлежит: Showa Denko KK

Disclosed is a light-emitting diode, which has a red and infrared emitting wavelength, excellent monochromatism characteristics, and high output and high efficiency and excellent humidity resistance. The light-emitting diode is provided with: a light-emitting section, which includes an active layer having a quantum well structure and formed by laminating alternately a well layer which comprises a composition expressed by the composition formula of (Al X1 Ga 1-X1 )As (0≦X 1 ≦1) and a barrier layer which comprises a composition expressed by the composition formula of (Al X2 Ga 1-X2 )As (0<X 2 ≦1), and a first clad layer and a second clad layer, between both of which the active layer is sandwiched, wherein the first clad layer and the second clad layer comprise a composition expressed by the composition formula of (Al X3 Ga 1-X3 ) Y1 In 1-Y1 P (0≦X 3 ≦1, 0<Y 1 ≦1); a current diffusion layer formed on the light-emitting section; and a functional substrate bonded to the current diffusion layer.

Подробнее
05-07-2012 дата публикации

Light emitting diode chip and method for manufacturing the same

Номер: US20120168797A1
Принадлежит: Advanced Optoelectronic Technology Inc

A method for manufacturing a light emitting diode chip, comprising steps: providing a substrate with a first patterned blocking layer formed thereon; growing a first n-type semiconductor layer on the substrate between the constituting parts of first patterned blocking layer, and stopping the growth of the first n-type semiconductor layer before the first n-type semiconductor layer completely covers the first patterned blocking layer; removing the first patterned blocking layer, whereby a plurality of first holes are formed at position where the first patterned blocking layer is originally existed; continuing the growth of the first n-type semiconductor layer until the first holes are completely covered by the first n-type semiconductor layer; and forming an active layer and a p-type current blocking layer on the first n-type semiconductor layer successively.

Подробнее
05-07-2012 дата публикации

Nitride-type semiconductor element and process for production thereof

Номер: US20120168811A1
Принадлежит: Panasonic Corp

A nitride-based semiconductor device includes a p-type Al d Ga e N layer 25 whose growing plane is an m-plane and an electrode 30 provided on the p-type Al d Ga e N layer 25 . The Al d Ga e N layer 25 includes a p-Al d Ga e N contact layer 26 that is made of an Al x Ga y In z N (x+y+z=1, x≧0, y>0, z≧0) semiconductor, which has a thickness of not less than 26 nm and not more than 60 nm. The p-Al d Ga e N contact layer 26 includes a body region 26 A which contains Mg of not less than 4×10 19 cm −3 and not more than 2×10 20 cm −3 and a high concentration region 26 B which is in contact with the electrode 30 and which has a Mg concentration of not less than 1×10 21 cm −3 .

Подробнее
12-07-2012 дата публикации

Light-emitting device and method for producing light emitting device

Номер: US20120175590A1
Автор: Ryo Saeki
Принадлежит: Toshiba Corp

A method for producing a light-emitting device, includes: performing, on a first substrate made of III-V group compound semiconductor, crystal growth of a laminated body including an etching easy layer contiguous to the first substrate and a light-emitting layer made of nitride semiconductor; bonding a second substrate and the laminated body; and detaching the second substrate provided with the light-emitting layer from the first substrate by, one of removing the etching easy layer by using a solution etching method, and removing the first substrate and the etching easy layer by using mechanical polishing method.

Подробнее
19-07-2012 дата публикации

Adhesive film for light emitting device and method of manufacturing led package using the same

Номер: US20120181571A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

Provided is an adhesive film for an LED chip, including: a double-sided adhesive layer having the LED chip adhered to an upper surface thereof and a lead frame adhered to a lower surface thereof; an ultraviolet (UV) cured layer adhered to one surface of the double-sided adhesive layer; and upper and lower cover layers respectively adhered to faces exposed to the exterior of the double-sided adhesive layer and the UV cured layer.

Подробнее
26-07-2012 дата публикации

Optical materials, optical components, and methods

Номер: US20120187367A1
Принадлежит: QD Vision Inc

An optical component including an optical material comprising quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles are in a charge neutral state. Further disclosed is an optical component including an optical material comprising quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles are in a charge neutral state, and wherein the optical material is at least partially encapsulated. Methods, optical materials, and devices are also disclosed.

Подробнее
26-07-2012 дата публикации

Light emitting device

Номер: US20120187369A1
Принадлежит: LG Innotek Co Ltd

Provided are a light emitting device, a method of fabricating the light emitting device, a light emitting device package, and a lighting system. The light emitting device comprises a substrate, a first semiconductor layer containing indium (In) over the substrate, and a light emitting structure over the first semiconductor layer. A dislocation mode is disposed on a top surface of the first semiconductor layer.

Подробнее
26-07-2012 дата публикации

Method for lift-off of light-emitting diode substrate

Номер: US20120190148A1

The present invention discloses a method for lift-off of an LED substrate. By eroding the sidewall of a GaN epitaxial layer, cavity structures are formed, which may act in cooperation with a non-fully filled patterned sapphire substrate from epitaxial growth to cause the GaN epitaxial layer to separate from the sapphire substrate. The method according to an embodiment of the present invention can effectively reduce the dislocation density in the growth of a GaN-based epitaxial layer; improve lattice quality, and realize rapid lift-off of an LED substrate, and has the advantages including low cost, no internal damage to the GaN film, elevated performance of the photoelectric device and improved luminous efficiency.

Подробнее
26-07-2012 дата публикации

Method for making gallium nitride substrate

Номер: US20120190172A1
Автор: Jian-Shihn Tsang
Принадлежит: Hon Hai Precision Industry Co Ltd

A method for making a GaN substrate for growth of nitride semiconductor is provided. The method first provides a GaN single crystal substrate. Then an ion implanting layer is formed inside the GaN single crystal substrate, which divides the GaN single crystal substrate into a first section and a second section. After that, the GaN single crystal substrate is connected with an assistant substrate through a connecting layer. Thereafter, the GaN single crystal substrate is heated whereby the ion implanting layer is decompounded. Finally, the second section is separated from the first section. The first section left on a surface of the assistant substrate is provided for growth of nitride semiconductor thereon.

Подробнее
02-08-2012 дата публикации

Radiation-Emitting Semiconductor Component

Номер: US20120193657A1
Принадлежит: OSRAM Opto Semiconductors GmbH

A radiation-emitting semiconductor component includes a light-emitting diode chip with at least two emission regions that can be operated independently of each other and at least two differently designed conversion elements. During operation of the light-emitting diode chips each of the emission regions is provided for generating electromagnetic primary radiation. Each emission region has an emission surface by which at least part of the primary radiation is decoupled from the light-emitting diode chip. The conversion elements are provided for absorbing at least part of the primary radiation and for re-emitting secondary radiation. The differently designed conversion elements are disposed downstream of different emission surfaces. An electric resistance element is connected in series or parallel to at least one of the emission regions.

Подробнее
02-08-2012 дата публикации

Structures and substrates for mounting optical elements and methods and devices for providing the same background

Номер: US20120193659A1
Принадлежит: Cree Inc

Methods are disclosed including generating a substrate surface topography that includes a mounting portion that is higher than a relief portion that defines a perimeter of the mounting portion.

Подробнее
02-08-2012 дата публикации

Pixel of a multi-stacked cmos image sensor and method of manufacturing the same

Номер: US20120193689A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

Provided is a pixel of a multi-stacked complementary metal-oxide semiconductor (CMOS) image sensor and a method of manufacturing the image sensor including a light-receiving unit that may include first through third photodiode layers that are sequentially stacked, an integrated circuit (IC) that is formed below the light-receiving unit, electrode layers that are formed on and below each of the first through third photodiode layers, and a contact plug that connects the electrode layer formed below each of the first through third photodiode layers with a transistor of the IC.

Подробнее
16-08-2012 дата публикации

Defect-controlling structure for epitaxial growth, light emitting device containing defect-controlling structure, and method of forming the same

Номер: US20120205616A1
Принадлежит: INVENLUX CORP

A method for reducing dislocations or other defects in a light emitting device, such as light emitting diode (LED), by in-situ introducing nanoparticles into at least one of a defect-controlling layer, an n-type layer, a p-type layer, and a quantum well of the light emitting device. A light emitting device is provided, and nanoparticles are dispensed in-situ in at least one of a defect-controlling layer, an n-type layer, a p-type layer, and a quantum well of the light emitting device.

Подробнее
16-08-2012 дата публикации

High-quality non-polar/semi-polar semiconductor device on porous nitride semiconductor and manufacturing method thereof

Номер: US20120205665A1

Provided are a high-quality non-polar/semi-polar semiconductor device having reduced defect density of a nitride semiconductor layer and improved internal quantum efficiency and light extraction efficiency, and a manufacturing method thereof. The method for manufacturing a semiconductor device is to form a template layer and a semiconductor device structure on a sapphire, SiC or Si substrate having a crystal plane for a growth of a non-polar or semi-polar nitride semiconductor layer. The manufacturing method includes: forming a nitride semiconductor layer on the substrate; performing a porous surface modification such that the nitride semiconductor layer has pores; forming the template layer by re-growing a nitride semiconductor layer on the surface-modified nitride semiconductor layer; and forming the semiconductor device structure on the template layer.

Подробнее
16-08-2012 дата публикации

Group iii-nitride based semiconductor led

Номер: US20120205690A1
Принадлежит: Advanced Optoelectronic Technology Inc

A group III-nitride based semiconductor LED includes a sapphire substrate, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer grown sequentially on the sapphire substrate. An n-type strain lattice structure is arranged between the n-type semiconductor layer and the active layer. A lattice constant of the n-type strain lattice structure exceeds that of the active layer, and is less than that of the n-type semiconductor layer.

Подробнее
30-08-2012 дата публикации

Nitride based light emitting device with excellent crystallinity and brightness and method of manufacturing the same

Номер: US20120217470A1
Автор: JOO Jin, Kun Park
Принадлежит: Semimaterials Co Ltd

Disclosed is a nitride-based light emitting device having an inverse p-n structure in which a p-type nitride layer is first formed on a growth substrate. The light emitting device includes a growth substrate, a powder type seed layer for nitride growth formed on the growth substrate, a p-type nitride layer formed on the seed layer for nitride growth, a light emitting active layer formed on the p-type nitride layer, and an n-type ZnO layer formed on the light emitting active layer. The p-type nitride layer is first formed on the growth layer and the n-type ZnO layer having a relatively low growth temperature is then formed thereon instead of an n-type nitride layer, thereby providing excellent crystallinity and high brightness. A method of manufacturing the same is also disclosed.

Подробнее
30-08-2012 дата публикации

Semiconductor light emitting device

Номер: US20120217471A1
Принадлежит: Toshiba Corp

According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part. The n-type semiconductor layer includes a nitride semiconductor. The p-type semiconductor layer includes a nitride semiconductor. The light emitting part is provided between the n-type and the p-type semiconductor layers and includes an n-side barrier layer and a first light emitting layer. The first light emitting layer includes a first barrier layer, a first well layer, and a first AlGaN layer. The first barrier layer is provided between the n-side barrier layer and the p-type semiconductor layer. The first well layer contacts the n-side barrier layer between the n-side and the first barrier layer. The first AlGaN layer is provided between the first well layer and the first barrier layer. A peak wavelength λp of light emitted from the light emitting part is longer than 515 nanometers.

Подробнее
30-08-2012 дата публикации

Nitride based light emitting device using silicon substrate and method of manufacturing the same

Номер: US20120217504A1
Автор: JOO Jin, Kun Park
Принадлежит: Semimaterials Co Ltd

Disclosed is a nitride-based light emitting device using a silicon substrate. The nitride-based light emitting device includes a silicon (Si) substrate, a seed layer for nitride growth formed on the silicon substrate, and a light emitting structure formed on the seed layer and having a plurality of nitride layers stacked therein. The seed layer for nitride growth is comprised of GaN powders, thereby minimizing occurrence of dislocations caused by a difference in lattice constant between a nitride layer and the silicon substrate. A method of manufacturing the same is also disclosed.

Подробнее
30-08-2012 дата публикации

Light-emitting diode element and light-emitting diode device

Номер: US20120217527A1
Принадлежит: Nitto Denko Corp

A light-emitting diode element includes an optical semiconductor layer, an electrode unit to be connected to the optical semiconductor layer, and an encapsulating resin layer that encapsulates the optical semiconductor layer and the electrode unit, the encapsulating resin layer containing a light reflection component.

Подробнее
30-08-2012 дата публикации

Nitride based light emitting device with excellent crystallinity and brightness and method of manufacturing the same

Номер: US20120217536A1
Автор: JOO Jin, Kun Park
Принадлежит: Semimaterials Co Ltd

Disclosed is a nitride-based light emitting device capable of improving crystallinity and brightness. The nitride-based light emitting device includes a growth substrate, a lattice buffer layer formed on the growth substrate, a p-type nitride layer formed on the lattice buffer layer, a light emitting active layer formed on the p-type nitride layer, and an n-type ZnO layer formed on the light emitting active layer. The lattice buffer layer is formed of powders of a material having a Wurtzite lattice structure. The lattice buffer layer is formed of ZnO powders, thereby minimizing generation of dislocations during nitride growth. A method of manufacturing the same is also disclosed.

Подробнее
06-09-2012 дата публикации

Silicate phosphor, method of manufacturing silicate phosphor, and light-generating device having silicate phosphor

Номер: US20120223636A1

A silicate phosphor composition is provided having a γ-phase of an orthorhombic crystal structure whose space group is Pbnm 62, and whose composition is represented by the following chemical formula: Ca 2-x-y-z M x SiO 4 :y Ce 3+ ,z N(0≦ x <0.5,0< y ≦0.1,0≦ z <0.15) In the formula, M represents at least one member selected from the group consisting of Mg, Sr, Ba, Zn, Na, Al, Ga, Ge, P, As and Fe, and N represents at least one member selected from the group consisting of Eu 2+ , Mn 2+ , Tb 3+ , Yb 2+ and Tm 3+ . The silicate phosphor has a maximum absorbance for a wavelength of about 450 nm to about 475 nm corresponding to a main part of a blue excitation light, and has a great stability at a high temperature. As such the silicate phosphor may be used in combination with a blue light source to produce a white light.

Подробнее
06-09-2012 дата публикации

Suspensions for protecting semiconductor materials and methods for producing semiconductor bodies

Номер: US20120225507A1
Принадлежит: OSRAM Opto Semiconductors GmbH

A suspension for protecting a semiconductor material includes a polymeric matrix as carrier medium, inorganic particles, and at least one of an absorber dye or a plasticizer.

Подробнее
13-09-2012 дата публикации

Light emitting device and projector

Номер: US20120229774A1
Автор: Masamitsu Mochizuki
Принадлежит: Seiko Epson Corp

A light emitting device includes a first layer that generates light by injection current and forms a waveguide for the light, and an electrode that injects the current into the first layer, wherein the waveguide has a first region, a second region, and a third region, the first region and the second region connect at a first reflection part, the first region and the third region connect at a second reflection part, the second region and the third region extend to an output surface, a longitudinal direction of the first region is parallel to the output surface, and a first light output from the second region at the output surface and a second light output from the third region at the output surface are output in parallel to one another.

Подробнее
20-09-2012 дата публикации

Light emitting diode with enhanced quantum efficiency and method of fabrication

Номер: US20120235116A1
Принадлежит: Individual

One embodiment of a quantum well structure comprises an active region including active layers that comprise quantum wells and barrier layers wherein some or all of the active layers are p type doped. P type doping some or all of the active layers improves the quantum efficiency of III-V compound semiconductor light emitting diodes by locating the position of the P-N junction in the active region of the device thereby enabling the dominant radiative recombination to occur within the active region. In one embodiment, the quantum well structure is fabricated in a cluster tool having a hydride vapor phase epitaxial (HVPE) deposition chamber with a eutectic source alloy. In one embodiment, the indium gallium nitride (InGaN) layer and the magnesium doped gallium nitride (Mg—GaN) or magnesium doped aluminum gallium nitride (Mg—AlGaN) layer are grown in separate chambers by a cluster tool to avoid indium and magnesium cross contamination. Doping of group III-nitrides by hydride vapor phase epitaxy using group III-metal eutectics is also described. In one embodiment, a source is provided for HVPE deposition of a p-type or an n-type group III-nitride epitaxial film, the source including a liquid phase mechanical (eutectic) mixture with a group III species. In one embodiment, a method is provided for performing HVPE deposition of a p-type or an n-type group III-nitride epitaxial film, the method including using a liquid phase mechanical (eutectic) mixture with a group III species.

Подробнее
20-09-2012 дата публикации

Light emitting element and method for manufacturing same

Номер: US20120235117A1
Принадлежит: Hokkaido University NUC

Disclosed is a light emitting element, which emits light with small power consumption and high luminance. The light emitting element has: a IV semiconductor substrate; two or more core multi-shell nanowires disposed on the IV semiconductor substrate; a first electrode connected to the IV semiconductor substrate; and a second electrode, which covers the side surfaces of the core multi-shell nanowires, and which is connected to the side surfaces of the core multi-shell nanowires. Each of the core multi-shell nanowires has: a center nanowire composed of a first conductivity type III-V compound semiconductor; a first barrier layer composed of the first conductivity type III-V compound semiconductor; a quantum well layer composed of a III-V compound semiconductor; a second barrier layer composed of a second conductivity type III-V compound semiconductor; and a capping layer composed of a second conductivity type III-V compound semiconductor.

Подробнее
20-09-2012 дата публикации

Semiconductor light emitting diode chip, method of manufacturing thereof and method for quality control thereof

Номер: US20120235142A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

There are provided a semiconductor light emitting diode chip, a method of manufacturing thereof, and a method for quality control using the same. The semiconductor light emitting diode chip includes a substrate; a light emitting diode in one area of the substrate and at least one fuse signature circuit formed in the other area of substrate so as to be electrically insulated from the light emitting diode. The fuse signature circuit includes a circuit unit having unique electrical characteristic value corresponding to wafer based process information and a plurality of electrode pads connected to the circuit unit. The semiconductor light emitting diode chip may include chip information marking representing information.

Подробнее
20-09-2012 дата публикации

Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same

Номер: US20120235583A1
Принадлежит: Seoul Optodevice Co Ltd

The present invention relates to a light emitting device including a light emitting element having a plurality of light emitting cells arranged on a substrate, a first electrode arranged on each light emitting cell of the plurality of light emitting cells, a second electrode arranged between the substrate and each light emitting cell of the plurality of light emitting cells, the second electrode being disposed to face the first electrode. The light emitting device also includes a conductive material electrically connecting the second electrode arranged under a first light emitting cell of the plurality of light emitting cells to the first electrode arranged on an adjacent second light emitting cell of the plurality of light emitting cells, and a control unit configured to control waveforms of a voltage and a current applied to the light emitting element.

Подробнее
20-09-2012 дата публикации

Led mesa sidewall isolation by ion implantation

Номер: US20120238046A1
Автор: Atul Gupta, San Yu

A method of LED manufacturing is disclosed. A coating is applied to a mesa. This coating may have different thicknesses on the sidewalls of the mesa compared to the top of the mesa. Ion implantation into the mesa will form implanted regions in the sidewalls in one embodiment. These implanted regions may be used for LED isolation or passivation.

Подробнее
20-09-2012 дата публикации

Light emitting device including semiconductor nanocrystals

Номер: US20120238047A1
Принадлежит: Massachusetts Institute of Technology

A light emitting device includes a semiconductor nanocrystal and a charge transporting layer that includes an inorganic material. The charge transporting layer can be a hole or electron transporting layer. The inorganic material can be an inorganic semiconductor.

Подробнее
27-09-2012 дата публикации

Semiconductor device and method for manufacturing same

Номер: US20120241753A1
Принадлежит: Toshiba Corp

According to an embodiment, a semiconductor device includes a substrate, a nitride layer and a nitride semiconductor layer. The substrate includes an indented structure provided at a major surface. The nitride layer provided entirely on the major surface is at least one of polycrystalline and amorphous, and includes at least one of p-type impurity and n-type impurity. The nitride semiconductor layer is provided on the nitride layer.

Подробнее
27-09-2012 дата публикации

method for reducing internal mechanical stresses in a semiconductor structure and a low mechanical stress semiconductor structure

Номер: US20120241755A1
Принадлежит: Optogan Oy

A semiconductor structure with low mechanical stresses, formed of nitrides of group III metals on a (0001) oriented foreign substrate ( 1 ) and a method for reducing internal mechanical stresses in a semiconductor structure formed of nitrides of group III metals on a (0001) oriented foreign substrate ( 1 ). The method comprises the steps of; growing nitride on the foreign substrate ( 1 ) to form a first nitride layer ( 2 ); patterning the first nitride layer ( 2 ) by selectively removing volumes of it to a predetermined depth from the upper surface of the first nitride layer ( 2 ), for providing relaxation of mechanical stress σ in the remaining portions of the layer between the removed volumes; and growing, on the first nitride layer ( 2 ), additional nitride until a continuous second nitride layer ( 8 ) is formed, the second nitride layer ( 8 ) enclosing voids ( 7 ) from the removed volumes under the second nitride layer ( 8 ) inside the semiconductor structure.

Подробнее
27-09-2012 дата публикации

Light emitting device and method for manufacturing the same

Номер: US20120241770A1
Принадлежит: LG Innotek Co Ltd

Disclosed are a light emitting device, a method for manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes a first conductive semiconductor layer, an active layer comprising a well layer and a barrier layer on the first conductive layer, and a second conductive semiconductor layer on the active layer. The well layer includes a first well layer closest to the first conductive semiconductor layer and having a first energy bandgap, a third well layer closest to the second conductive semiconductor layer and having a third energy bandgap, and a second well layer interposed between the first and third well layers and having a second energy bandgap. The third energy bandgap of the third well layer is greater than the second energy bandgap of the second well layer.

Подробнее
27-09-2012 дата публикации

Heterostructure for electronic power components, optoelectronic or photovoltaic components

Номер: US20120241821A1
Принадлежит: Soitec SA

A heterostructure that includes, successively, a support substrate of a material having an electrical resistivity of less than 10 −3 ohm·cm and a thermal conductivity of greater than 100 W·m −1 ·K −1 , a bonding layer, a first seed layer of a monocrystalline material of composition Al x In y Ga (1-x-y) N, a second seed layer of a monocrystalline material of composition Al x In y Ga (1-x-y) N, and an active layer of a monocrystalline material of composition Al x In y Ga (1-x-y) N, and being present in a thickness of between 3 and 100 micrometers. The materials of the support substrate, the bonding layer and the first seed layer are refractory at a temperature of greater than 750° C., the active layer and second seed layer have a difference in lattice parameter of less than 0.005 Å, the active layer is crack-free, and the heterostructure has a specific contact resistance between the bonding layer and the first seed layer that is less than or equal to 0.1 ohm·cm 2 .

Подробнее
27-09-2012 дата публикации

Process for the realization of islands of at least partially relaxed strained material

Номер: US20120241918A1
Автор: Romain Boulet
Принадлежит: Soitec SA

The present invention relates to the field of semiconductor manufacturing. More specifically, it relates to a method of forming islands of at least partially relaxed strained material on a target substrate including the steps of forming islands of the strained material over a side of a first substrate; bonding the first substrate, on the side including the islands of the strained material, to the target substrate; and after the step of bonding splitting the first substrate from the target substrate and at least partially relaxing the islands of the strained material by a first heat treatment.

Подробнее
04-10-2012 дата публикации

Gallium-nitride light emitting diode and manufacturing method thereof

Номер: US20120248404A1

The present disclosure relates to a gallium-nitride light emitting diode and a manufacturing method thereof and the gallium-nitride light emitting diode includes an n-type nitride semiconductor layer formed on a substrate; an active layer formed on the n-type nitride semiconductor layer; a p-type doped intermediate layer formed on the active layer; and a p-type nitride semiconductor layer formed on the intermediate layer.

Подробнее
04-10-2012 дата публикации

Group iii nitride semiconductor light-emitting device

Номер: US20120248407A1
Принадлежит: Toyoda Gosei Co Ltd

A Group III nitride semiconductor light-emitting device includes a light-emitting layer having a multiple quantum structure including an Al x Ga 1-x N (0<x<1) layer as a barrier layer. When the light-emitting layer is divided into three blocks including first, second and third blocks in the thickness direction from the n-type-layer-side cladding layer to the p-type-layer-side cladding layer, the number of barrier layers are the same in the first and third blocks, and the Al composition ratio of each light-emitting layer is set to satisfy a relation x+z=2y and z<x where an average Al composition ratio of the barrier layers in the first block is represented as x, an average Al composition ratio of the barrier layers in the second block is represented as y, and an average Al composition ratio of the barrier layers in the third block is represented as z.

Подробнее
04-10-2012 дата публикации

Simultaneous Modulation of Quantum Dot Photoluminescence using Orthogonal Fluorescence Resonance Energy Transfer (FRET) and Charge Transfer Quenching (CTQ)

Номер: US20120248409A1
Принадлежит: US Department of Navy

Quantum dots are modified with varying amounts of (a) a redox-active moiety effective to perform charge transfer quenching, and (b) a fluorescent dye effective to perform fluorescence resonance energy transfer (FRET), so that the modified quantum dots have a plurality of photophysical properties. The FRET and charge transfer pathways operate independently, providing for two channels of control for varying luminescence of quantum dots having the same innate properties.

Подробнее
04-10-2012 дата публикации

Group iii nitride semiconductor multilayer structure and production method thereof

Номер: US20120248457A1
Принадлежит: Showa Denko KK

According to the present invention, an AlN crystal film seed layer having high crystallinity is combined with selective/lateral growth, whereby a Group III nitride semiconductor multilayer structure more enhanced in crystallinity can be obtained. The Group III nitride semiconductor multilayer structure of the present invention is a Group III nitride semiconductor multilayer structure where an AlN crystal film having a crystal grain boundary interval of 200 nm or more is formed as a seed layer on a C-plane sapphire substrate surface by a sputtering method and an underlying layer, an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer, each composed of a Group III nitride semiconductor, are further stacked, wherein regions in which the seed layer is present and is absent are formed on the C-plane sapphire substrate surface and/or regions capable of epitaxial growth and incapable of epitaxial growth are formed in the underlying layer.

Подробнее
11-10-2012 дата публикации

Al(x)Ga(1-x)N-CLADDING-FREE NONPOLAR III-NITRIDE BASED LASER DIODES AND LIGHT EMITTING DIODES

Номер: US20120256158A1
Принадлежит: UNIVERSITY OF CALIFORNIA

A method for fabricating Al x Ga 1-x N-cladding-free nonpolar III-nitride based laser diodes or light emitting diodes. Due to the absence of polarization fields in the nonpolar crystal planes, these nonpolar devices have thick quantum wells that function as an optical waveguide to effectively confine the optical mode to the active region and eliminate the need for Al-containing waveguide cladding layers.

Подробнее
11-10-2012 дата публикации

Epitaxial growth method and devices

Номер: US20120256191A1
Принадлежит: Individual

Epitaxial growth methods and devices are described that include a textured surface on a substrate. Geometry of the textured surface provides a reduced lattice mismatch between an epitaxial material and the substrate. Devices formed by the methods described exhibit better interfacial adhesion and lower defect density than devices formed without texture. Silicon substrates are shown with gallium nitride epitaxial growth and devices such as LEDs are formed within the gallium nitride.

Подробнее
18-10-2012 дата публикации

Light emitting device and method of driving the light emitting device

Номер: US20120261665A1
Принадлежит: Semiconductor Energy Laboratory Co Ltd

A light emitting device that achieves long life, and which is capable of performing high duty drive, by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element ( 109 ) is performed one row at a time by forming a reverse bias electric power source line ( 112 ) and a reverse bias TFT ( 108 ). Reverse bias application can therefore be performed in synchronous with operations for write-in of an image signal, light emission, erasure, and the like. Reverse bias application therefore becomes possible while maintaining a duty equivalent to that of a conventional driving method.

Подробнее
18-10-2012 дата публикации

Method for producing semiconductor light-emitting chip and semiconductor light-emitting chip

Номер: US20120261678A1
Принадлежит: Showa Denko KK

In producing a semiconductor light-emitting chip whose substrate is composed of a sapphire single crystal, cracking in semiconductor light-emitting elements in the obtained semiconductor light-emitting chip is suppressed. A semiconductor light-emitting chip is obtained by forming, on an element-group formation substrate on a front surface of which semiconductor light-emitting elements are formed, the front surface being composed of a C-plane of a sapphire single crystal, dividing grooves extending toward a first direction along an M-plane of the sapphire single crystal and the front surface of the substrate from a substrate front surface side (step 103 ), forming first modified regions extending toward the first direction and second modified regions extending along the substrate front surface and toward a second direction different from the first direction in the substrate (step 104 and step 105 ), and dividing the element-group formation substrate using the first modified regions and the second modified regions (step 106 ).

Подробнее