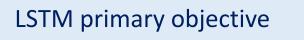


The Indian-French TRISHNA mission Local and global monitoring of our ecosystem health



Philippe Gamet, CNES/CESBIO TRISHNA Project Scientist

Indian P.I.: Dr. Bimal K. Bhattacharya, SAC/ISRO French P.I.: Dr. Jean-Louis Roujean, CESBIO

LSTM / TRISHNA

- Evapotranspiration
 - Goal Threshold

LSTM complementary objectives

- > Mineralogy
- > UHI
- High temperature events
- Permafrost and frost damage
- Coastal management

LSTM MRD 2.0

Date 08/03/2019, Ref ESA-EOPSM-HSTR-MRD-3276

TRISHNA design driver scientific objectives

- Ecosystem stress and water use (monitoring of energy and water budgets of the continental biosphere, evapotranspiration)
- Coastal and inland waters (meso-scale, sub mesoscale dynamics, processes)

TRISHNA other scientific objectives

- Urban (climatology and monitoring of fluxes of urban surfaces)
- Solid Earth (volcanology, earthquakes, etc...)
- Cryosphere (snow-melt run-off, Glacier debris, highaltitude lake dynamics)
- Atmosphere (aerosol, water vapour, cloud type)

TRISHNA SMRD 3.0 Date 23/09/2019, Ref TRIS-TS-MI-0028-CNES

Mission datasheet

□ ISRO/CNES cooperation, launch end of 2024, 5-year mission

- □ Scientific & operational applications
- Focus on ecosystem stress and water use
- Global coverage
- Revisit : 3 acquisitions at equator per 8 days period

761km-8day orbit reducing hot spot constraints in intertropical zone

- □ 4 TIR bands + 5 VNIR bands + 2 SWIR bands
- \Box ± 34° scan angle, 1030km swath
- □ Nadir spatial resolution (VIS-NIR-SWIR-TIR):

57 m for continental and coastal areas, binned at 1 km over open ocean

Overpass time : 1 PM

NeDT 0.2K

Indo-French^(*) Joint Science Team, synergies with ECOSTRESS, SBG, LSTM science & application teams (*) with other contributors

□ Free and open data policy for worldwide scientific community

Learn more about TRISHNA ! <u>https://labo.obs-mip.fr/multitemp/trishna</u> <u>https://trishna.cnes.fr/en</u>

Mission specifications: revisit = 3 days, nadir resolution = 57m

Revisit guided by :

- Cloud frequency / data availability
- Technical constraints : swath, arrays detector size, view zenith angle
- Expected products (AET) accuracy

1 day is the goal **3 days** is the best possible with single satellite

Puducherry region, India

Spatial resolution guided by :

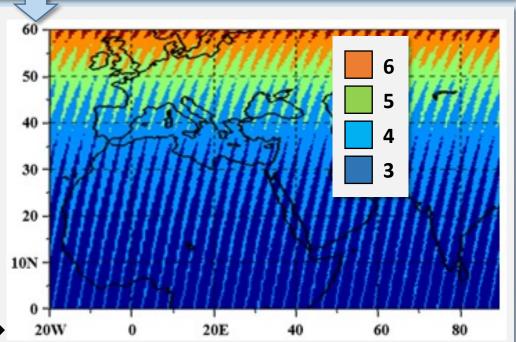
- □ Field size
- Technical constraints : arrays detector size, swath
- LST accuracy (*vs* atmospheric turbulence induced fluctuations)

50 - 60 m (nadir) **< 100m** (edge)

Brittany region, France (© Google Earth)

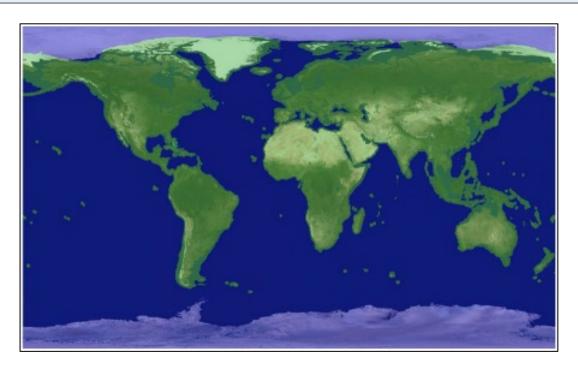
Directional anisotropy in TIR: still a research field

- A uniform viewing configuration on a given site allows minimizing its impact
- With a constant viewing configuration, the angular effect appears as a bias, and not as an error (crucial for temporal analysis)

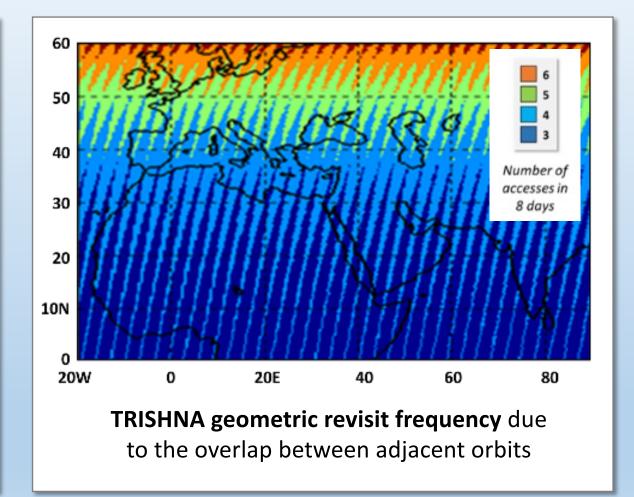

Selected orbit: 761 km altitude / 8 days revisit

- Repeatable geometric conditions every 8 days
- ❑ Compatible with global coverage every 3 days with extended swath (+/- 33 deg swath angle)
- Provides 2 hot-spot free acquisitions every 8 days on inter-tropical regions at any period of the year
- Drawback: swath is extended

Number of accesses in 8 days (with scan ±34 deg) \rightarrow


Hot-spot

- On a 3-day orbit, intertropical zones measurements can be inside hot-spot conditions, affecting seasonallong time series
- Different viewing configurations garantee hot-spot free acquisitions, and provides valuable data for studying directional anisotropy



Coverage and revisit

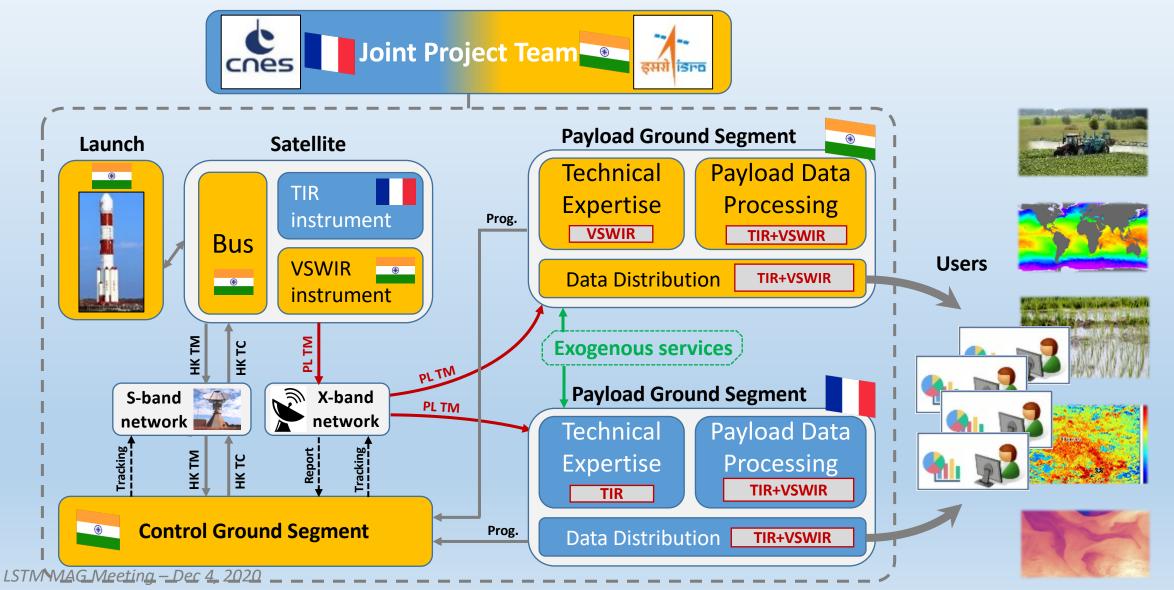
TRISHNA full resolution data coverage (in green) All continental land surfaces (including inland waters) All coastal waters up to 100km from the shore

Spectral bands

Band name	Wavelength Center (nm)	FWHM (nm)	Purpose	
Blue	485	70	Detection of low clouds	
Green	555	70	Coastal, sediments, snow	
Red	670	60	Vegetation (LAI, fCOVER, NDVI,)	
NIR	860	40	Vegetation (LAI, fCOVER, NDVI,)	
WV	910	20	Water vapour content estimation	
Cirrus	1380	30	Detection of thin cirrus clouds	
SWIR	1610	100	AOD, snow/cloud discrimination, vgt stress, burnt areas	
Band name	Wavelength Center (μm)	FWHM (μm)	Purpose	
TIR 1	8.65	0.35	Temperature/emissivity separation	
TIR 2	9.0	0.35	Temperature/emissivity separation	
TIR 3	10.6	0.7	Split-window	
TIR 4	11.6	1.0	Split-window	

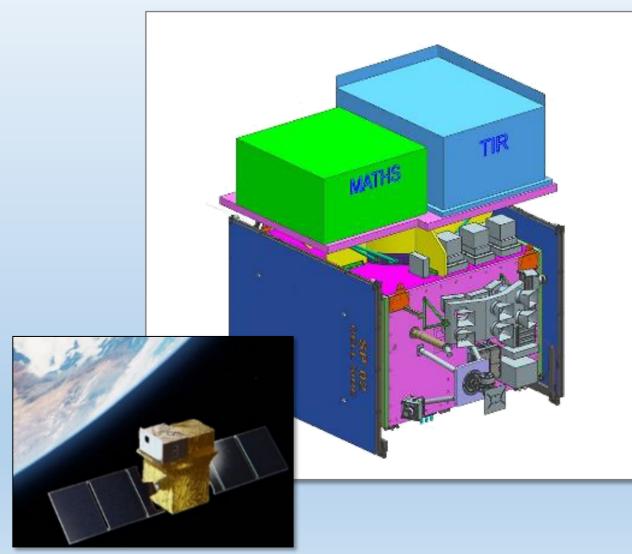
LSTM MAGUNCE. TRISHNA SMRB2V3.0

LSTM



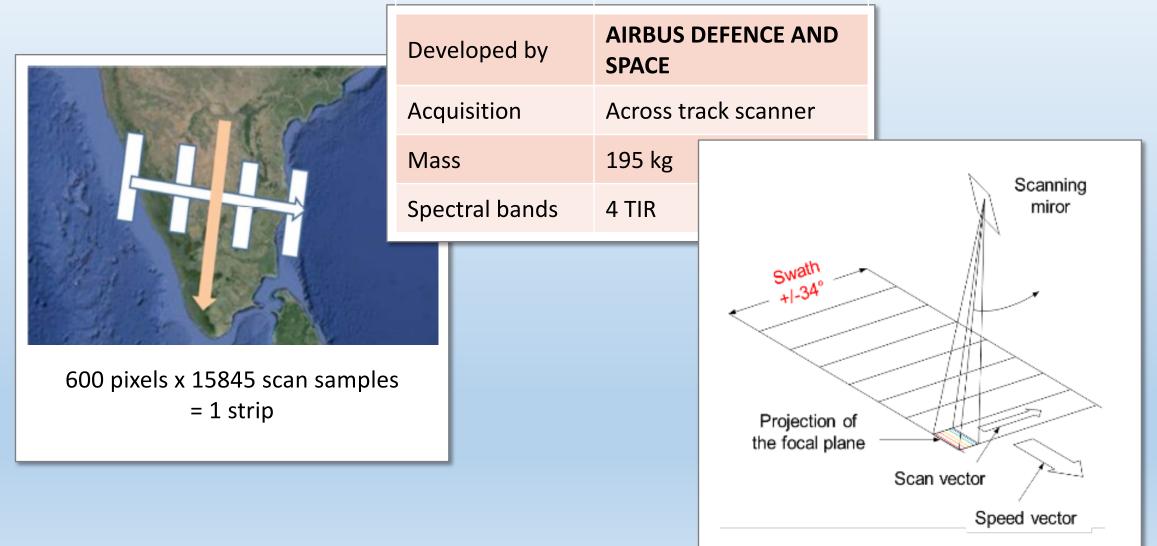
Products definition (work in progress)

Product level	Visible & Short-wave infrared	Thermal Infrared		
0	Raw observation data	Raw observation data		
1	Ortho-rectified image Coarse cloud mask Top-of-atm. reflectance	Ortho-rectified image Coarse cloud mask Top-of-atm. Radiance & Brightness temperature		
2a	 Atmospheric variables (v Surface reflectance after Surface radiance in TIR a 	 Radiative variables : Scene classification (Cloud, Shadows, Water, Snow, Land) Atmospheric variables (water vapour, AOT) Surface reflectance after atmospheric correction, albedo Surface radiance in TIR after atmopheric correction Surface temperature, Surface emissivity in TIR 		
2b	 Biophysical variables (ecosystem stress and water use): leaf area index, fractional vegetation cover, fAPAR net radiation, evapo-transpiration, water stress index 			
3a	Periodic Syntheses (decadal, monthly) of radiative variables (see Level 2A)			
3b	 Periodic Syntheses (decadal, monthly) of biophysical variables (see Level 2B) Iand cover mask of irrigated crops 			



TRISHNA Project Organization

TRISHNA Bus



Developed by	ISRO
Platform mass	770 kg
Payload capacity	450 kg
Power generation	2 kW
Pointing Accuracy	+/- 0.05 deg
Drift rate	5.10 ⁻⁴ deg/s
TM/TC	S-band, 4kbps
X-band	640 Mbps
Mass Memory	1.4 Tb

LSTM MAG Meeting – Dec 4, 2020

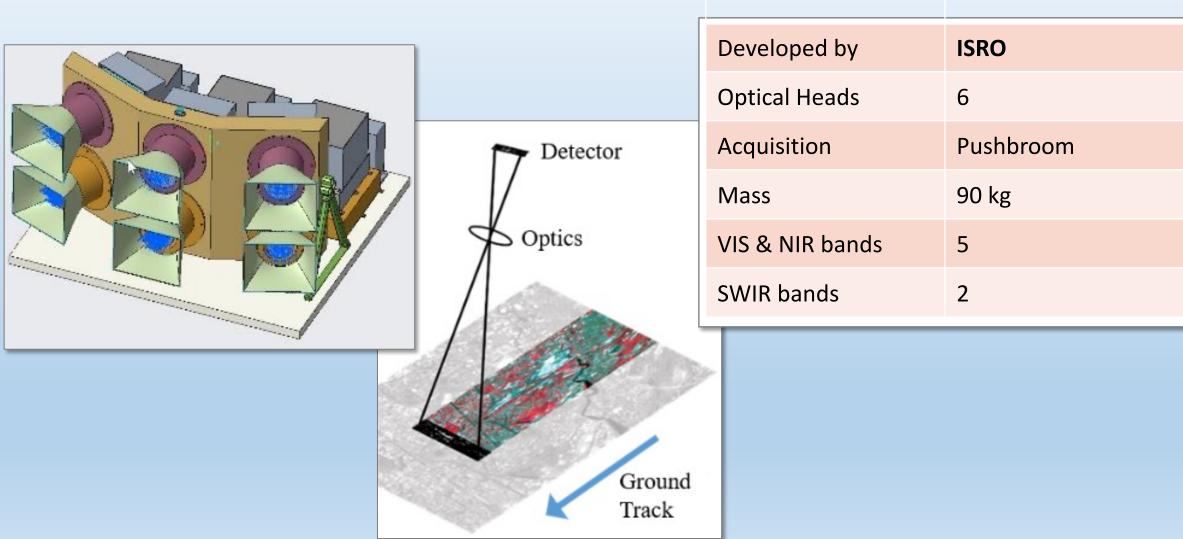
TRISHNA Thermal Infrared Instrument: acquisition mode

LSTM MAG Meeting – Dec 4, 2020

TRISHNA Thermal Infrared Instrument: main requirements

			TIR bands	TIR 1	TIR 2	TIR 3	TIR 4
Swath	Cross-track view angle ± 34 °		Spectral requirements				
			λ equivalent	8.65 µm	9.0 µm	10.6 µm	11.6 µm
Spatial sampling	patial sampling 1000 m binning over oceans		FWHM	0.35 μm	0.35 μm	0.7 μm	1.0 µm
			In field spectral uniformity 0.2%				
	Absolute pointing accuracy +/-0.1°		Radiometric requirements				
Pointing stability (1 year) +/-10 pixels Pointing stability (short term) +/-0.6 pixel Sampling regularity 5% (over 100 pixels)	Pointing stability (1 year) +/-10 pixels		Total noise @57m @300K	0.25K	0.25K	0.2K	0.2K
			Total noise @1000m @ 300K	0.1K			
			MTF @Nyquist	[0.05 – 0.15]			
Lifetime	5 years		Calibration @300K				
Interfaces	Mass 195 kg Power 265 W		Absolute Inter band Multi temporal	0.5К 0.3К 0.3К			

TRISHNA Thermal Infrared Instrument: key features


- Scan subsystem based on recurring elements from IASI-NG scan mechanism and associated electronics
- Instrument entrance pupil equivalent diameter 150 mm
- Recurring blackbody from IASI-NG
- Full AISi TMA telescope and optical bench
- Telecentric optical design
- Focal plane cooled down to 60K includes a detector from LYNRED and 4 spectral filters
- Cryostat in Additive Layer Manufacturing technology
- LPT6510 cryocoolers in hot redundancy

LSTM MAG Meeting – Dec 4, 2020

CORES • · · · · STRI

TRISHNA VIS – NIR – SWIR instrument

LSTM / TRISHNA

Why?

- Related scientific communities involved, common societal challenges. TRISHNA's role: contribute to the preparation of LSTM: the operational mission
- « Operational » complement:
 - ✓ Temporal revisit is a key factor of EvapoTranspiration retrieval performance (cf study by Albert Olioso, INRAE, presented at ESA Earth Observation for Water Cycle Science 2020 Worskhop)
 - ✓ The goal requirement is daily revisit, which is not fulfilled by any mission alone
 - \checkmark We have to fill the gaps within the time series of LST from remote sensing data

How?

- > Essential consistency in the design of the missions by science teams coordination (mostly at MAG level)
- Share the work in the CAL/VAL process (protocols, sites, data).
- > In-flight cross-calibration:
 - \checkmark vicarious calibration sites and strategy
 - ✓ dealing with directional anisotropy of the TIR signal is crucial (explored by TRISHNA)
- Data policy / processing / distribution

LSTM / TRISHNA

	LSTM	TRISHNA		
Number of satellites	2	1		
Combined revisit	2 days (same obs. angles)	2 to 3 days (different obs. angles)		
Altitude	649 km	761 km		
Orbit cycle	4 days for each sat.	8 days		
GSD (nadir/edge of scan)	37 m / 50 m	57 m / 90 m		
FOV	+/- 28 deg	+/- 34 deg		
Swath	700 km	1000 km		
Coverage	Land & coastal	Land & coastal		
Day/Night	Day + Night	Day + Night		
LTDN	1 PM	1 PM		
LWIR bands (8-12µm)	5	4		
VNIR / SWIR / MWIR	4/2/0	5/2/0		
NeDT	<0.15 K	0.2 K		
Data latency	6-12h	12h (demo)		