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Part #1: Object-Oriented Modelling & Modelica

• Principles of Equation-Based Object-Oriented Modelling (EOOM)

• The Modelica Language

• Automatic generation of executable code

• Related standards: FMI, SSP, DCP

• Case study: satellite attitude modelling and control

Part #2: The Community

• The Modelica Association and its projects

• The Open Source Modelica Consortium and OMC
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Principles of Equation-Based
Object-Oriented Modelling
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Principle #1: Declarative Modelling

Declarative Modelling

Models should describe how a system behaves

not how the behaviour can be computed

There are no input and output variables in real life

The best formalization of a simulation model

is more easily understood by a human

not by a computer
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Principle #1: Declarative Modelling

Equation-Based modular (→ Object-Oriented) description

– The model of each component is described by equations

– The model is independent of the components it is connected to

– Physical connections ↔ connection equations
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Principle #1: Declarative Modelling

Equation-Based modular (→ Object-Oriented) description

– The model of each component is described by equations

– The model is independent of the components it is connected to

– Physical connections ↔ connection equations

Example: RC component

V

I
x

R

C

x+RI=V
C ẋ=I (DAE – declarative model)
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Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)
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Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

V 0= f (t)
V=V 0

I=
V−x
R

I 0=−I

ẋ=
I
C

x := x_initial
t := t_initial
loop
  V_0 = f(t)
  V := V_0
  I := (V - x)/R
  I_0 := -I
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop
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Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level
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C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

V 0= f (t)
V=V 0

I=
V−x
R

I 0=−I

ẋ=
I
C

x := x_initial
t := t_initial
loop
  V_0 = f(t)
  V := V_0
  I := (V - x)/R
  I_0 := -I
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop

performed

automatically

by a tool!
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Principle #1: Declarative Modelling

The same component can be reused in different contexts 

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

I 0= f (t )

V 0=V
I 0+ I=0

(RC network)

(current generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

I 0= f (t )
I=−I 0
V=x+RI
V 0=V

ẋ=
I
C

x := x_initial
t := t_initial
loop
  I_0 := f(t)
  I := -I_0
  V := x + R*I
  V_0 := V
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop

x := x_initial
t := t_initial
loop
  V_0 = f(t)
  V := V_0
  I := (V - x)/R
  I_0 := -I
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop
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Principle #2: Modularity

Modularity

Models interact through physical ports

their behaviour depends explicitly on the port variables

not on the actual connected components

A model can be internally described

as the connection of other models 
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Principle #2: Modularity

• Physical ports: coupled effort and flow variables

– Electrical systems: Voltage and Current

– 1D Mechanical systems (Trans): Displacement and Force

– 1D Mechanical systems (Rot): Angle and Torque

– Hydraulic systems: Pressure and Flow

– Thermal Systems: Temperature and Thermal Power Flow

– …
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Principle #2: Modularity

• Physical ports: coupled effort and flow variables

– Electrical systems: Voltage and Current

– 1D Mechanical systems (Trans): Displacement and Force

– 1D Mechanical systems (Rot): Angle and Torque

– Hydraulic systems: Pressure and Flow

– Thermal Systems: Temperature and Thermal Power Flow

– …

• Connection of N ports ↔ Connection equations 

e1=e2=...=eN
∑ f j=0

(Same voltage / displacement / angle / pressure)

(Currents / Forces / Torques / Flows sum to zero)



16

Principle #2: Modularity
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Principle #3: Inheritance

Inheritance

Parent-Child (“is-a”) relationships

can be established among models

A child model inherits the parent features

(variables, parameters, equations, sub-models)

and adds its specific ones 
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Principle #3: Inheritance

Is a

Thermal
 Resistor

Resistor

OnePort

Capacitor

Is a

Is a
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Equation-Based Object-Oriented Modelling

Description of basic components by differential-algebraic equations, 
discrete-event equations and a-causal ports
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Equation-Based Object-Oriented Modelling

Description of basic components by differential-algebraic equations, 
discrete-event equations and a-causal ports

+
Modular and hierarchical composition

 (object connection diagrams)

+
Object-Oriented features

 (inheritance, encapsulation)

+
Automatic generation of simulation code
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The Modelica Language
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Modelica Fact Sheet

• Language for equation-based, object-oriented
dynamic system modelling

• Version 1.0 introduced in 1998

• Current version: 3.4 released in 2018

• Developed and maintained by non-profit Modelica Association
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• Tool-Independent language definition
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Modelica Fact Sheet

• Language for equation-based, object-oriented
dynamic system modelling

• Version 1.0 introduced in 1998

• Current version: 3.4 released in 2018

• Developed and maintained by non-profit Modelica Association

• Companion Modelica Standard Library of basic models

• Tool-Independent language definition

• Supported by 9 commercial and 2 open-source simulation tools

• Extensive Open-Source & Commercial Model Libraries

• Development of new models eased by EOO approach
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Example Models

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);
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Example Models

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);
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Example Models

Rv

i
p

n

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);
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Example Models

model Capacitor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Capacitance C;
equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  i = C*der(v);
end Capacitor;

v

i
p

n

CRv

i
p

n

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);
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Example Models

model Capacitor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Capacitance C;
equation
  v = p.v-n.v;
  i = p.i;
  0 = p.i + n.i;
  i = C*der(v);
end Capacitor;

Models in DECLARATIVE form!

v

i
p

n

CRv

i
p

n

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
equation
  v = p.v-n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);
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Modular & Hierarchical Composition

R1

C1

p

n

model RCNet
  parameter Resistance Rnet;
  parameter Capacitance Cnet;
  Resistor R1(R=Rnet);
  Capacitor C1(C=Cnet);
  Pin p,n;
equation
  connect(R1.n, C1.p);
  connect(R1.p, p);
  connect(C1.n, n); 
end RCNet;

Equivalent to:
R1.n.v = C1.p.v;
R1.n.i + C1.p.i = 0;

RC1

GND1GND2

model SimpleCircuit
  RCnet RC1(Rnet=100, Cnet=1e-6);
  Vsource V0;
  Ground GND1, GND2;
equation
  connect(RC1.n, GND1.p);
  connect(RC1.p, V0.p);
  connect(V0.n, GND2.p); 
end SimpleCircuit;

Modifiers
(parameter propagation)
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Graphical Annotations and Object Diagrams

• Graphical annotations allow to build and visualize composite models graphically

• The underlying model description is textual

N1

N2

N3N4

14

5

6

2

37

L C

R2 R1

AC

G



34

Inheritance: Factoring Out Common Features

Resistor and Capacitor have common features

Factor them out in a base class OnePort

partial model OnePort
  Pin p,n;
  Voltage v;
  Current i;
equation
    v = p.v – n.v;
    i = p.i;
    0 = p.i + -n.i;
end OnePort;
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Inheritance: Factoring Out Common Features

Resistor and Capacitor have common features

Factor them out in a base class OnePort

partial model OnePort
  Pin p,n;
  Voltage v;
  Current i;
equation
    v = p.v – n.v;
    i = p.i;
    0 = p.i + -n.i;
end OnePort;

model Resistor
  extends OnePort;
  parameter Resistance R;
equation
    v = R*i;
end Resistor;

model Capacitor
  extends OnePort;
  parameter Capacitance C;
equation
    C*der(v) = i;
end Capacitor;
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Computational Model for Continuous-Time Systems

F ( x , ẋ , v , p ,u , t )=0

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

Causalization

(solving for        )

Model (DAEs)

State-Space representation.
(ODEs)

ẋ , v
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Computational Model for Continuous-Time Systems

F ( x , ẋ , v , p ,u , t )=0

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

Causalization

(solving for        )

ODE Time integration

Model (DAEs)

State-Space representation.
(ODEs)

ẋ , v
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Computational Model for Continuous-Time Systems

F ( x , ẋ , v , p ,u , t )=0

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

Causalization

(solving for        )

ODE Time integration

Model (DAEs)

State-Space representation.
(ODEs)

ẋ , v

Export as state-space block
for other simulation environmens

or co-simulation



39

Related Standards: FMI

• Open Standard for causal 
dynamic model exchange

• Internal representation of an FMU:
state-space system with inputs and outputs

– DLL or C-code for computation

– XML description of variables and parameters

• Automatically generated from OO models
with only input and output connectors at the top level

– Actuator inputs

– Sensor outputs
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Related Standards: FMI

• Open Standard for causal 
dynamic model exchange

• Internal representation of an FMU:
state-space system with inputs and outputs

– DLL or C-code for computation

– XML description of variables and parameters

• Automatically generated from OO models
with only input and output connectors at the top level

– Actuator inputs

– Sensor outputs

• Supported by all Modelica tools and by over 130 simulation tools
https://fmi-standard.org/tools/   

• FMI-ME (model exchange):

• FMI-CS (co-simulation) 

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

x k+1= f h ( xk , p ,uk , t k)
v k=g (x k , p ,uk , t k)

https://fmi-standard.org/tools/
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Related Standards: SSP & DCP

• Open Standard for parametrization
and connection of FMUs to form
complete system models

• Allows to describe system models built by assembling FMUs

• System integration level
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Related Standards: SSP & DCP

• Open Standard for parametrization
and connection of FMUs to form
complete system models

• Allows to describe system models built by assembling FMUs

• System integration level

• Open Standard Protocol for
co-simulation of FMI-CS blocks

• Supports multiple distributed simulation architectures
– Over TCP/IP

– Over Bluetooth

– Over USB

– Over CAN Bus
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Case Study

Satellite Attitude 
Modelling and Control

 
Joint work with 

prof. Marco Lovera

Dept. Aerospace Engineering
Politecnico di Milano
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Requirements

• Support the design of satellite attitude control systems

– Actuator sizing

– Feasibility study with idealized actuators, sensors, and control laws

– Detailed engineering design of equipment and control laws
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Requirements

• Support the design of satellite attitude control systems

– Actuator sizing

– Feasibility study with idealized actuators, sensors, and control laws

– Detailed engineering design of equipment and control laws

• Unified modelling framework,
reuse models as much as possible

• Environment model

– Accurate gravity field model based on harmonic expansions

– Accurate magnetic field model based on harmonic expansions

– Atmospheric mode

• Systematic use of inheritance and replaceable classes to achieve 
maximum flexibility of detail
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Spacecraft Model Architecture (Top View)
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Choice of Environmental Model Parameters
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Spacecraft Dynamics
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Spacecraft Dynamics
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Sensor Block
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Sensor Block
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Actuator and Control Blocks
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Actuator and Control Blocks
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Use of Replaceable Objects

• All the components of the SensorBlock, ActuatorBlock, and 
ControlBlock models are replaceable

– The base model defines empty interfaces with connectors

– When instantiating a specific spacecraft model, the empty interfaces 
can be replaced with any of their child models

• Idealized models (e.g. ideal torque or force generation)

• More realistic models (with some non-ideal effects)

• Actual engineering models of commercial units

– The replaceable structure is recursive down to the level of the 
invdividual sub-assembly model

– All the concrete replacements are stored in a reusable library
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• Extensive families of models can be developed
– Throughout the project lifetime

– With guaranteed consistency of data and models
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Use of Replaceable Objects

• All the components of the SensorBlock, ActuatorBlock, and 
ControlBlock models are replaceable

– The base model defines empty interfaces with connectors

– When instantiating a specific spacecraft model, the empty interfaces 
can be replaced with any of their child models

• Idealized models (e.g. ideal torque or force generation)

• More realistic models (with some non-ideal effects)

• Actual engineering models of commercial units

– The replaceable structure is recursive down to the level of the 
invdividual sub-assembly model

– All the concrete replacements are stored in a reusable library

• Á la carte customization of the level of detail of each block

• Extensive families of models can be developed
– Throughout the project lifetime

– With guaranteed consistency of data and models

• Compare with classical copy-paste-modify approach...
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Example: Textual Code View

model Example
  import SpacecraftDynamics.Spacecraft.* ;
  inner Environment.World world;
  Implementations.SpacecraftBase spacecraft(
    redeclare model SensorBlock = 
      Sensors.Implementations.GPS_StarTracker_MagField(
        redeclare model StarTrackerConf =
          Sensors.Components.StarTrackers.Assemblies.SingleST_conf(   
            redeclare model StarTracker =
              Sensors.Components.StarTrackers.StarTrackerBase(
                data=Sensors.Components.StarTrackers.Datasheets.ESA2006_prj)))
    redeclare model ActuatorBlock = 
    ...
    redeclare model ControlBlock = 
    ...
  );
end Example;
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Example: Setup via GUI
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Example: Setup via GUI
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Use for Actuator Sizing

• Ideal SensorBlock

• ActuatorBlock with unknown input torques and forces

• Equations in ControlBlock
prescribe the exact pointing of the target

• Exactly the same physical model of spacecraft and environment 
as for the forward closed-loop simulation
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Use for Actuator Sizing

• Ideal SensorBlock

• ActuatorBlock with unknown input torques and forces

• Equations in ControlBlock
prescribe the exact pointing of the target

• Exactly the same physical model of spacecraft and environment 
as for the forward closed-loop simulation

Much better than rule-of-thumb sizing!

Unified & Consistent modelling framework

System equations automatically solved backwards 
to compute the required forces and torques
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Use for Idealized Control Law Validation

• Ideal SensorBlock and ActuatorBlock

• Equations in ControlBlock implement textbook-version
of control law
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Use for Idealized Control Law Validation

• Ideal SensorBlock and ActuatorBlock

• Equations in ControlBlock implement textbook-version
of control law

Very fast simulation (low detail)

First assessment of control performance
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Use for Accurate Control Performance Validation

• Detailed SensorBlock and ActuatorBlock

• Equations in ControlBlock implement detailed version
of control law, possibly in discrete time
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Use for Accurate Control Performance Validation

• Detailed SensorBlock and ActuatorBlock

• Equations in ControlBlock implement detailed version
of control law, possibly in discrete time

Assessment of control performance
in realistic conditions 
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Use for SW/HW-in-the-Loop Controller Validation

• Empty ControlBlock with top level inputs/outputs for 
sensor/actuator signals

• ControlBlock inputs/outputs propagated to top model 
inputs/outputs

• Overal model exported as FMU
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Use for SW/HW-in-the-Loop Controller Validation

• Empty ControlBlock with top level inputs/outputs for 
sensor/actuator signals

• ControlBlock inputs/outputs propagated to top model 
inputs/outputs

• Overal model exported as FMU

Closed-loop simulation on actual control sw

Closed-loop simulation on real-time control hw
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The Communities
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The Modelica Association

• Non-profit association developing
Open Standards for Dynamic System Simulation

• Established in 1997

• Brings together
– Modelica/FMI tool developers

– Scientists and researchers from academia

– R&D engineers from companies

– Multidisciplinary interest in Tools, Methods, and Applications
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The Modelica Association

• Non-profit association developing
Open Standards for Dynamic System Simulation

• Established in 1997

• Brings together
– Modelica/FMI tool developers

– Scientists and researchers from academia

– R&D engineers from companies

– Multidisciplinary interest in Tools, Methods, and Applications

• Organizes the International and Regional (American & Asian) 
Modelica Conferences 

• 100% Open access products
– Open access standards

– Free model libraries 

– Open access Modelica Conference proceedings

• Activity organized in coordinated
Modelica Association Projects (MAPs)
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The Modelica Association Projects

• MAP-LANG: 
Develops the Modelica Language Specification

• MAP-LIB:
Develops the Modelica Standard Library

• MAP-FMI:
Develops the FMI standard

• MAP-SSP
Develops the SSP standard

• MAP-DCP:
Develops the DCP standard
 

• Other projects can be added if they are consistent with
the overall goals of the Modelica Association 
(Open Standards for System Simulation)
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The Open Source Modelica Consortium (OSMC)

• Non-profit organization developing
the Open Modelica Compiler (OMC) suite of tools

• Established in 2007

• 22 Companies and Institutes
– ABB

– Bosch-Rexroth

– Siemens Turbo Machinery

– Saab

– EDF

– RTE

– ...

• 28 Universities
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The OpenModelica Toolkit

• OpenModelica Compiler (OMC)
– Full-fledged Modelica 3.4 compiler

– Dual licensing: GPL v3 and OSMC-PL

– Current release: 1.14.0

– Coverage: 95% MSL, 80% known open-source Modelica Libraries

– Target for 2.0.0 release in 2020: 100% MSL, >95% other libraries

– Python, Matlab, Julia interactive interfaces with API
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The OpenModelica Toolkit

• OpenModelica Compiler (OMC)
– Full-fledged Modelica 3.4 compiler

– Dual licensing: GPL v3 and OSMC-PL

– Current release: 1.14.0

– Coverage: 95% MSL, 80% known open-source Modelica Libraries

– Target for 2.0.0 release in 2020: 100% MSL, >95% other libraries

– Python, Matlab, Julia interactive interfaces with API

• OMEdit
– IDE with GUI, similar to Dymola

– Debugging of equation-based models

– Uses OMC as Modelica engine

• OMSimulator
– Simulation environment for FMI/SSP system models

– Integrated with OMEdit

• And many others
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Development of the OpenModelica tools

• Core functionality
– OSMC developers paid by the Consortium

• New features (also experimental): 
– Supported by research funding bodies

– ITEA2 and ITEA3 projects

– National research projects (mostly Sweden and Germany)

• Independent contributors
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Development of the OpenModelica tools

• Core functionality
– OSMC developers paid by the Consortium

• New features (also experimental): 
– Supported by research funding bodies

– ITEA2 and ITEA3 projects

– National research projects (mostly Sweden and Germany)

• Independent contributors

• About 60 contributors so far

• Development hosted on GitHub https://github.com/OpenModelica

• Continuous Integration testing on each commit, 
online coverage reports available

• Nightly builds available

• Bug tracking infrastructure, about 250 tickets fixed per year

https://github.com/OpenModelica
https://libraries.openmodelica.org/branches/newInst/Modelica_3.2.3/Modelica_3.2.3.html
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OpenModelica & Open Source Model Development

• OpenModelica enables building 100% open-source 
modelling&simulation toolchains

• Example: RTE’s Dynawo tool for power system simulation
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OpenModelica & Open Source Model Development

• OpenModelica enables building 100% open-source 
modelling&simulation toolchains

• Example: RTE’s Dynawo tool for power system simulation

• Joining the consortium enables to

– Support the long-term development of the OMC tool suite

– Have a say on the strategic development decisions

– Get priority in the fixing of bugs and implementation of new features

– Contribute features directly (e.g. Bosch-Rexroth’s C++ runtime)
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OpenModelica & Open Source Model Development

• OpenModelica enables building 100% open-source 
modelling&simulation toolchains

• Example: RTE’s Dynawo tool for power system simulation

• Joining the consortium enables to

– Support the long-term development of the OMC tool suite

– Have a say on the strategic development decisions

– Get priority in the fixing of bugs and implementation of new features

– Contribute features directly (e.g. Bosch-Rexroth’s C++ runtime)

• The investment in Modelica model development is guaranteed by 
the whole tool-vendor ecosystem, including at least another open-
source tool (JModelica)

Low-risk + no vendor lock-in
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Thank you 
for you kind attention!

Any questions?
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