
Open Standards and Software for Open Standards and Software for 
Dynamic System Simulation - ModelicaDynamic System Simulation - Modelica

Francesco CasellaFrancesco Casella
francesco.casella@polimi.itfrancesco.casella@polimi.it

DEIB - PDEIB - Politecnico di Milano – Italyolitecnico di Milano – Italy

Modelica AssociationModelica Association

Open Source Modelica ConsortiumOpen Source Modelica Consortium



2

Outline

Part #1: Object-Oriented Modelling & Modelica

• Principles of Equation-Based Object-Oriented Modelling (EOOM)

• The Modelica Language

• Automatic generation of executable code

• Related standards: FMI, SSP, DCP

• Case study: satellite attitude modelling and control



3

Outline

Part #1: Object-Oriented Modelling & Modelica

• Principles of Equation-Based Object-Oriented Modelling (EOOM)

• The Modelica Language

• Automatic generation of executable code

• Related standards: FMI, SSP, DCP

• Case study: satellite attitude modelling and control

Part #2: The Community

• The Modelica Association and its projects

• The Open Source Modelica Consortium and OMC



4

 

Principles of Equation-Based
Object-Oriented Modelling



5

Principle #1: Declarative Modelling

Declarative Modelling

Models should describe how a system behaves

not how the behaviour can be computed

There are no input and output variables in real life

The best formalization of a simulation model

is more easily understood by a human

not by a computer



6

Principle #1: Declarative Modelling

Equation-Based modular (→ Object-Oriented) description

– The model of each component is described by equations

– The model is independent of the components it is connected to

– Physical connections ↔ connection equations



7

Principle #1: Declarative Modelling

Equation-Based modular (→ Object-Oriented) description

– The model of each component is described by equations

– The model is independent of the components it is connected to

– Physical connections ↔ connection equations

Example: RC component

V

I
x

R

C

x+RI=V
C ẋ=I (DAE – declarative model)



8

Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)



9

Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

V 0= f (t)
V=V 0

I=
V−x
R

I 0=−I

ẋ=
I
C



10

Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

V 0= f (t)
V=V 0

I=
V−x
R

I 0=−I

ẋ=
I
C

x := x_initial
t := t_initial
loop
  V_0 = f(t)
  V := V_0
  I := (V - x)/R
  I_0 := -I
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop



11

Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

V 0= f (t)

V 0=V
I 0+ I=0

(RC network)

(voltage generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

V 0= f (t)
V=V 0

I=
V−x
R

I 0=−I

ẋ=
I
C

x := x_initial
t := t_initial
loop
  V_0 = f(t)
  V := V_0
  I := (V - x)/R
  I_0 := -I
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop

performed

automatically

by a tool!



12

Principle #1: Declarative Modelling

The same component can be reused in different contexts 

V
0

V

x
C

R

II
0x+RI=V

C ẋ= I

I 0= f (t )

V 0=V
I 0+ I=0

(RC network)

(current generator)

(Kirchoff's law - mesh)

(Kirchoff's law - node)

I 0= f (t )
I=−I 0
V=x+RI
V 0=V

ẋ=
I
C

x := x_initial
t := t_initial
loop
  I_0 := f(t)
  I := -I_0
  V := x + R*I
  V_0 := V
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop

x := x_initial
t := t_initial
loop
  V_0 = f(t)
  V := V_0
  I := (V - x)/R
  I_0 := -I
  dx_dt := I/C
  x := x + h*dx_dt
  t := t + h
end loop



13

Principle #2: Modularity

Modularity

Models interact through physical ports

their behaviour depends explicitly on the port variables

not on the actual connected components

A model can be internally described

as the connection of other models 



14

Principle #2: Modularity

• Physical ports: coupled effort and flow variables

– Electrical systems: Voltage and Current

– 1D Mechanical systems (Trans): Displacement and Force

– 1D Mechanical systems (Rot): Angle and Torque

– Hydraulic systems: Pressure and Flow

– Thermal Systems: Temperature and Thermal Power Flow

– …



15

Principle #2: Modularity

• Physical ports: coupled effort and flow variables

– Electrical systems: Voltage and Current

– 1D Mechanical systems (Trans): Displacement and Force

– 1D Mechanical systems (Rot): Angle and Torque

– Hydraulic systems: Pressure and Flow

– Thermal Systems: Temperature and Thermal Power Flow

– …

• Connection of N ports ↔ Connection equations 

e1=e2=...=eN
∑ f j=0

(Same voltage / displacement / angle / pressure)

(Currents / Forces / Torques / Flows sum to zero)



16

Principle #2: Modularity

A

T
M

T
M

A.X

T
M

T
M

T
M

T
M

T
M

T
MA.YT
M

T
M

A

A.Z



17

Principle #3: Inheritance

Inheritance

Parent-Child (“is-a”) relationships

can be established among models

A child model inherits the parent features

(variables, parameters, equations, sub-models)

and adds its specific ones 



18

Principle #3: Inheritance

Is a

Thermal
 Resistor

Resistor

OnePort

Capacitor

Is a

Is a



19

Equation-Based Object-Oriented Modelling

Description of basic components by differential-algebraic equations, 
discrete-event equations and a-causal ports



20

Equation-Based Object-Oriented Modelling

Description of basic components by differential-algebraic equations, 
discrete-event equations and a-causal ports

+
Modular and hierarchical composition

 (object connection diagrams)



21

Equation-Based Object-Oriented Modelling

Description of basic components by differential-algebraic equations, 
discrete-event equations and a-causal ports

+
Modular and hierarchical composition

 (object connection diagrams)

+
Object-Oriented features

 (inheritance, encapsulation)



22

Equation-Based Object-Oriented Modelling

Description of basic components by differential-algebraic equations, 
discrete-event equations and a-causal ports

+
Modular and hierarchical composition

 (object connection diagrams)

+
Object-Oriented features

 (inheritance, encapsulation)

+
Automatic generation of simulation code



23

 

The Modelica Language



24

Modelica Fact Sheet

• Language for equation-based, object-oriented
dynamic system modelling

• Version 1.0 introduced in 1998

• Current version: 3.4 released in 2018

• Developed and maintained by non-profit Modelica Association



25

Modelica Fact Sheet

• Language for equation-based, object-oriented
dynamic system modelling

• Version 1.0 introduced in 1998

• Current version: 3.4 released in 2018

• Developed and maintained by non-profit Modelica Association

• Companion Modelica Standard Library of basic models

• Tool-Independent language definition



26

Modelica Fact Sheet

• Language for equation-based, object-oriented
dynamic system modelling

• Version 1.0 introduced in 1998

• Current version: 3.4 released in 2018

• Developed and maintained by non-profit Modelica Association

• Companion Modelica Standard Library of basic models

• Tool-Independent language definition

• Supported by 9 commercial and 2 open-source simulation tools

• Extensive Open-Source & Commercial Model Libraries

• Development of new models eased by EOO approach



27

Example Models

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);



28

Example Models

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);



29

Example Models

Rv

i
p

n

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);



30

Example Models

model Capacitor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Capacitance C;
equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  i = C*der(v);
end Capacitor;

v

i
p

n

CRv

i
p

n

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);



31

Example Models

model Capacitor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Capacitance C;
equation
  v = p.v-n.v;
  i = p.i;
  0 = p.i + n.i;
  i = C*der(v);
end Capacitor;

Models in DECLARATIVE form!

v

i
p

n

CRv

i
p

n

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
equation
  v = p.v-n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

connector Pin
  Voltage v;
  flow Current i;
end Pin;

type Voltage = Real(unit=”V”, nominal = 1e4);
type Current = Real(unit=”A”, nominal = 1e4);
type Power = Real (unit=”W”, nominal = 1e8);
type Resistance = Real (unit=”V/A”);



32

Modular & Hierarchical Composition

R1

C1

p

n

model RCNet
  parameter Resistance Rnet;
  parameter Capacitance Cnet;
  Resistor R1(R=Rnet);
  Capacitor C1(C=Cnet);
  Pin p,n;
equation
  connect(R1.n, C1.p);
  connect(R1.p, p);
  connect(C1.n, n); 
end RCNet;

Equivalent to:
R1.n.v = C1.p.v;
R1.n.i + C1.p.i = 0;

RC1

GND1GND2

model SimpleCircuit
  RCnet RC1(Rnet=100, Cnet=1e-6);
  Vsource V0;
  Ground GND1, GND2;
equation
  connect(RC1.n, GND1.p);
  connect(RC1.p, V0.p);
  connect(V0.n, GND2.p); 
end SimpleCircuit;

Modifiers
(parameter propagation)



33

Graphical Annotations and Object Diagrams

• Graphical annotations allow to build and visualize composite models graphically

• The underlying model description is textual

N1

N2

N3N4

14

5

6

2

37

L C

R2 R1

AC

G



34

Inheritance: Factoring Out Common Features

Resistor and Capacitor have common features

Factor them out in a base class OnePort

partial model OnePort
  Pin p,n;
  Voltage v;
  Current i;
equation
    v = p.v – n.v;
    i = p.i;
    0 = p.i + -n.i;
end OnePort;



35

Inheritance: Factoring Out Common Features

Resistor and Capacitor have common features

Factor them out in a base class OnePort

partial model OnePort
  Pin p,n;
  Voltage v;
  Current i;
equation
    v = p.v – n.v;
    i = p.i;
    0 = p.i + -n.i;
end OnePort;

model Resistor
  extends OnePort;
  parameter Resistance R;
equation
    v = R*i;
end Resistor;

model Capacitor
  extends OnePort;
  parameter Capacitance C;
equation
    C*der(v) = i;
end Capacitor;



36

Computational Model for Continuous-Time Systems

F ( x , ẋ , v , p ,u , t )=0

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

Causalization

(solving for        )

Model (DAEs)

State-Space representation.
(ODEs)

ẋ , v



37

Computational Model for Continuous-Time Systems

F ( x , ẋ , v , p ,u , t )=0

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

Causalization

(solving for        )

ODE Time integration

Model (DAEs)

State-Space representation.
(ODEs)

ẋ , v



38

Computational Model for Continuous-Time Systems

F ( x , ẋ , v , p ,u , t )=0

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

Causalization

(solving for        )

ODE Time integration

Model (DAEs)

State-Space representation.
(ODEs)

ẋ , v

Export as state-space block
for other simulation environmens

or co-simulation



39

Related Standards: FMI

• Open Standard for causal 
dynamic model exchange

• Internal representation of an FMU:
state-space system with inputs and outputs

– DLL or C-code for computation

– XML description of variables and parameters

• Automatically generated from OO models
with only input and output connectors at the top level

– Actuator inputs

– Sensor outputs



40

Related Standards: FMI

• Open Standard for causal 
dynamic model exchange

• Internal representation of an FMU:
state-space system with inputs and outputs

– DLL or C-code for computation

– XML description of variables and parameters

• Automatically generated from OO models
with only input and output connectors at the top level

– Actuator inputs

– Sensor outputs

• Supported by all Modelica tools and by over 130 simulation tools
https://fmi-standard.org/tools/   

• FMI-ME (model exchange):

• FMI-CS (co-simulation) 

ẋ= f (x , p , u , t )
v=g (x , p , u , t )

x k+1= f h ( xk , p ,uk , t k)
v k=g (x k , p ,uk , t k)

https://fmi-standard.org/tools/


41

Related Standards: SSP & DCP

• Open Standard for parametrization
and connection of FMUs to form
complete system models

• Allows to describe system models built by assembling FMUs

• System integration level



42

Related Standards: SSP & DCP

• Open Standard for parametrization
and connection of FMUs to form
complete system models

• Allows to describe system models built by assembling FMUs

• System integration level

• Open Standard Protocol for
co-simulation of FMI-CS blocks

• Supports multiple distributed simulation architectures
– Over TCP/IP

– Over Bluetooth

– Over USB

– Over CAN Bus



43

 

Case Study

Satellite Attitude 
Modelling and Control

 
Joint work with 

prof. Marco Lovera

Dept. Aerospace Engineering
Politecnico di Milano



44

Requirements

• Support the design of satellite attitude control systems

– Actuator sizing

– Feasibility study with idealized actuators, sensors, and control laws

– Detailed engineering design of equipment and control laws



45

Requirements

• Support the design of satellite attitude control systems

– Actuator sizing

– Feasibility study with idealized actuators, sensors, and control laws

– Detailed engineering design of equipment and control laws

• Unified modelling framework,
reuse models as much as possible



46

Requirements

• Support the design of satellite attitude control systems

– Actuator sizing

– Feasibility study with idealized actuators, sensors, and control laws

– Detailed engineering design of equipment and control laws

• Unified modelling framework,
reuse models as much as possible

• Environment model

– Accurate gravity field model based on harmonic expansions

– Accurate magnetic field model based on harmonic expansions

– Atmospheric model



47

Requirements

• Support the design of satellite attitude control systems

– Actuator sizing

– Feasibility study with idealized actuators, sensors, and control laws

– Detailed engineering design of equipment and control laws

• Unified modelling framework,
reuse models as much as possible

• Environment model

– Accurate gravity field model based on harmonic expansions

– Accurate magnetic field model based on harmonic expansions

– Atmospheric mode

• Systematic use of inheritance and replaceable classes to achieve 
maximum flexibility of detail



48

Spacecraft Model Architecture (Top View)



49

Choice of Environmental Model Parameters



50

Spacecraft Dynamics



51

Spacecraft Dynamics



52

Sensor Block



53

Sensor Block



54

Actuator and Control Blocks



55

Actuator and Control Blocks



56

Use of Replaceable Objects

• All the components of the SensorBlock, ActuatorBlock, and 
ControlBlock models are replaceable

– The base model defines empty interfaces with connectors

– When instantiating a specific spacecraft model, the empty interfaces 
can be replaced with any of their child models

• Idealized models (e.g. ideal torque or force generation)

• More realistic models (with some non-ideal effects)

• Actual engineering models of commercial units

– The replaceable structure is recursive down to the level of the 
invdividual sub-assembly model

– All the concrete replacements are stored in a reusable library



57

Use of Replaceable Objects

• All the components of the SensorBlock, ActuatorBlock, and 
ControlBlock models are replaceable

– The base model defines empty interfaces with connectors

– When instantiating a specific spacecraft model, the empty interfaces 
can be replaced with any of their child models

• Idealized models (e.g. ideal torque or force generation)

• More realistic models (with some non-ideal effects)

• Actual engineering models of commercial units

– The replaceable structure is recursive down to the level of the 
invdividual sub-assembly model

– All the concrete replacements are stored in a reusable library

• Á la carte customization of the level of detail of each block

• Extensive families of models can be developed
– Throughout the project lifetime

– With guaranteed consistency of data and models



58

Use of Replaceable Objects

• All the components of the SensorBlock, ActuatorBlock, and 
ControlBlock models are replaceable

– The base model defines empty interfaces with connectors

– When instantiating a specific spacecraft model, the empty interfaces 
can be replaced with any of their child models

• Idealized models (e.g. ideal torque or force generation)

• More realistic models (with some non-ideal effects)

• Actual engineering models of commercial units

– The replaceable structure is recursive down to the level of the 
invdividual sub-assembly model

– All the concrete replacements are stored in a reusable library

• Á la carte customization of the level of detail of each block

• Extensive families of models can be developed
– Throughout the project lifetime

– With guaranteed consistency of data and models

• Compare with classical copy-paste-modify approach...



59

Example: Textual Code View

model Example
  import SpacecraftDynamics.Spacecraft.* ;
  inner Environment.World world;
  Implementations.SpacecraftBase spacecraft(
    redeclare model SensorBlock = 
      Sensors.Implementations.GPS_StarTracker_MagField(
        redeclare model StarTrackerConf =
          Sensors.Components.StarTrackers.Assemblies.SingleST_conf(   
            redeclare model StarTracker =
              Sensors.Components.StarTrackers.StarTrackerBase(
                data=Sensors.Components.StarTrackers.Datasheets.ESA2006_prj)))
    redeclare model ActuatorBlock = 
    ...
    redeclare model ControlBlock = 
    ...
  );
end Example;



60

Example: Setup via GUI



61

Example: Setup via GUI



62

Use for Actuator Sizing

• Ideal SensorBlock

• ActuatorBlock with unknown input torques and forces

• Equations in ControlBlock
prescribe the exact pointing of the target

• Exactly the same physical model of spacecraft and environment 
as for the forward closed-loop simulation



63

Use for Actuator Sizing

• Ideal SensorBlock

• ActuatorBlock with unknown input torques and forces

• Equations in ControlBlock
prescribe the exact pointing of the target

• Exactly the same physical model of spacecraft and environment 
as for the forward closed-loop simulation

System equations automatically solved backwards 
to compute the required forces and torques



64

Use for Actuator Sizing

• Ideal SensorBlock

• ActuatorBlock with unknown input torques and forces

• Equations in ControlBlock
prescribe the exact pointing of the target

• Exactly the same physical model of spacecraft and environment 
as for the forward closed-loop simulation

Much better than rule-of-thumb sizing!

System equations automatically solved backwards 
to compute the required forces and torques



65

Use for Actuator Sizing

• Ideal SensorBlock

• ActuatorBlock with unknown input torques and forces

• Equations in ControlBlock
prescribe the exact pointing of the target

• Exactly the same physical model of spacecraft and environment 
as for the forward closed-loop simulation

Much better than rule-of-thumb sizing!

Unified & Consistent modelling framework

System equations automatically solved backwards 
to compute the required forces and torques



66

Use for Idealized Control Law Validation

• Ideal SensorBlock and ActuatorBlock

• Equations in ControlBlock implement textbook-version
of control law



67

Use for Idealized Control Law Validation

• Ideal SensorBlock and ActuatorBlock

• Equations in ControlBlock implement textbook-version
of control law

Very fast simulation (low detail)

First assessment of control performance



68

Use for Accurate Control Performance Validation

• Detailed SensorBlock and ActuatorBlock

• Equations in ControlBlock implement detailed version
of control law, possibly in discrete time



69

Use for Accurate Control Performance Validation

• Detailed SensorBlock and ActuatorBlock

• Equations in ControlBlock implement detailed version
of control law, possibly in discrete time

Assessment of control performance
in realistic conditions 



70

Use for SW/HW-in-the-Loop Controller Validation

• Empty ControlBlock with top level inputs/outputs for 
sensor/actuator signals

• ControlBlock inputs/outputs propagated to top model 
inputs/outputs

• Overal model exported as FMU



71

Use for SW/HW-in-the-Loop Controller Validation

• Empty ControlBlock with top level inputs/outputs for 
sensor/actuator signals

• ControlBlock inputs/outputs propagated to top model 
inputs/outputs

• Overal model exported as FMU

Closed-loop simulation on actual control sw

Closed-loop simulation on real-time control hw



72

 

The Communities



73

The Modelica Association

• Non-profit association developing
Open Standards for Dynamic System Simulation

• Established in 1997

• Brings together
– Modelica/FMI tool developers

– Scientists and researchers from academia

– R&D engineers from companies

– Multidisciplinary interest in Tools, Methods, and Applications



74

The Modelica Association

• Non-profit association developing
Open Standards for Dynamic System Simulation

• Established in 1997

• Brings together
– Modelica/FMI tool developers

– Scientists and researchers from academia

– R&D engineers from companies

– Multidisciplinary interest in Tools, Methods, and Applications

• Organizes the International and Regional (American & Asian) 
Modelica Conferences 

• 100% Open access products
– Open access standards

– Free model libraries 

– Open access Modelica Conference proceedings



75

The Modelica Association

• Non-profit association developing
Open Standards for Dynamic System Simulation

• Established in 1997

• Brings together
– Modelica/FMI tool developers

– Scientists and researchers from academia

– R&D engineers from companies

– Multidisciplinary interest in Tools, Methods, and Applications

• Organizes the International and Regional (American & Asian) 
Modelica Conferences 

• 100% Open access products
– Open access standards

– Free model libraries 

– Open access Modelica Conference proceedings

• Activity organized in coordinated
Modelica Association Projects (MAPs)



76

The Modelica Association Projects

• MAP-LANG: 
Develops the Modelica Language Specification

• MAP-LIB:
Develops the Modelica Standard Library

• MAP-FMI:
Develops the FMI standard

• MAP-SSP
Develops the SSP standard

• MAP-DCP:
Develops the DCP standard
 

• Other projects can be added if they are consistent with
the overall goals of the Modelica Association 
(Open Standards for System Simulation)



77

The Open Source Modelica Consortium (OSMC)

• Non-profit organization developing
the Open Modelica Compiler (OMC) suite of tools

• Established in 2007

• 22 Companies and Institutes
– ABB

– Bosch-Rexroth

– Siemens Turbo Machinery

– Saab

– EDF

– RTE

– ...

• 28 Universities



78

The OpenModelica Toolkit

• OpenModelica Compiler (OMC)
– Full-fledged Modelica 3.4 compiler

– Dual licensing: GPL v3 and OSMC-PL

– Current release: 1.14.0

– Coverage: 95% MSL, 80% known open-source Modelica Libraries

– Target for 2.0.0 release in 2020: 100% MSL, >95% other libraries

– Python, Matlab, Julia interactive interfaces with API



79

The OpenModelica Toolkit

• OpenModelica Compiler (OMC)
– Full-fledged Modelica 3.4 compiler

– Dual licensing: GPL v3 and OSMC-PL

– Current release: 1.14.0

– Coverage: 95% MSL, 80% known open-source Modelica Libraries

– Target for 2.0.0 release in 2020: 100% MSL, >95% other libraries

– Python, Matlab, Julia interactive interfaces with API

• OMEdit
– IDE with GUI, similar to Dymola

– Debugging of equation-based models

– Uses OMC as Modelica engine



80

The OpenModelica Toolkit

• OpenModelica Compiler (OMC)
– Full-fledged Modelica 3.4 compiler

– Dual licensing: GPL v3 and OSMC-PL

– Current release: 1.14.0

– Coverage: 95% MSL, 80% known open-source Modelica Libraries

– Target for 2.0.0 release in 2020: 100% MSL, >95% other libraries

– Python, Matlab, Julia interactive interfaces with API

• OMEdit
– IDE with GUI, similar to Dymola

– Debugging of equation-based models

– Uses OMC as Modelica engine

• OMSimulator
– Simulation environment for FMI/SSP system models

– Integrated with OMEdit

• And many others



81

Development of the OpenModelica tools

• Core functionality
– OSMC developers paid by the Consortium

• New features (also experimental): 
– Supported by research funding bodies

– ITEA2 and ITEA3 projects

– National research projects (mostly Sweden and Germany)

• Independent contributors



82

Development of the OpenModelica tools

• Core functionality
– OSMC developers paid by the Consortium

• New features (also experimental): 
– Supported by research funding bodies

– ITEA2 and ITEA3 projects

– National research projects (mostly Sweden and Germany)

• Independent contributors

• About 60 contributors so far

• Development hosted on GitHub https://github.com/OpenModelica

• Continuous Integration testing on each commit, 
online coverage reports available

• Nightly builds available

• Bug tracking infrastructure, about 250 tickets fixed per year

https://github.com/OpenModelica
https://libraries.openmodelica.org/branches/newInst/Modelica_3.2.3/Modelica_3.2.3.html


83

OpenModelica & Open Source Model Development

• OpenModelica enables building 100% open-source 
modelling&simulation toolchains

• Example: RTE’s Dynawo tool for power system simulation



84

OpenModelica & Open Source Model Development

• OpenModelica enables building 100% open-source 
modelling&simulation toolchains

• Example: RTE’s Dynawo tool for power system simulation

• Joining the consortium enables to

– Support the long-term development of the OMC tool suite

– Have a say on the strategic development decisions

– Get priority in the fixing of bugs and implementation of new features

– Contribute features directly (e.g. Bosch-Rexroth’s C++ runtime)



85

OpenModelica & Open Source Model Development

• OpenModelica enables building 100% open-source 
modelling&simulation toolchains

• Example: RTE’s Dynawo tool for power system simulation

• Joining the consortium enables to

– Support the long-term development of the OMC tool suite

– Have a say on the strategic development decisions

– Get priority in the fixing of bugs and implementation of new features

– Contribute features directly (e.g. Bosch-Rexroth’s C++ runtime)

• The investment in Modelica model development is guaranteed by 
the whole tool-vendor ecosystem, including at least another open-
source tool (JModelica)

Low-risk + no vendor lock-in



86

Thank you 
for you kind attention!

Any questions?


	Title page
	Lib 1
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86

