Quantum Algorithms for Earth Observation
Image Processing

Abstract

Satellite-based Earth observations have a broad range of applications, such as natural
disaster warnings, analysis of global temperature impacts, weather conditions analysis,
and land-use classification. However, current machine learning techniques for land-use
classification are costly in terms of time and energy. There two possible approaches to
solving this problem. The first one are Variational Quantum Algorithms. They are a
class of quantum algorithms that is aimed at the application in the Near Intermediate-
Scale Quantum computing era. These algorithms employ jointly parametrized quantum
circuits and classical optimization techniques for finding quantum circuits or states that
have desirable properties from the point of a given application. VQAs find applications
typically in finding low energy states of quantum Hamiltonians, solving approximately
Quadratic Unconstrained Binary Optimization problems and training Quantum Neural
Networks. In the area of Earth observations, the most promising area of applications lies
with QNNs since the application of VQAs allows for the creation of new classification
methods that employ quantum information processing tools. The second approach is to
use quantum computers for a hybrid machine-learning approach utilizing an autoencoder
for dimensionality reduction and a quantum algorithm powered by quantum annealer to
reduce training costs. The autoencoder, using conventional deep learning techniques, is
executed on GPUs, while the Deep Belief Network is run on a D-Wave quantum annealer.
This hybrid approach allows for independent training of both modules, partially reducing
the time and energy required to retrain the model.

21 EO use-case problem description

Distinct sensors on the satellite platforms and aircraft monitor Earth’s surface day and night. They produce
and transfer several terabytes of raw EO data to data storage on the ground. The stored data are only
relevant when processed. Currently, deep learning becomes an indispensable tool for extracting informative
information from raw EO datasets. Unfortunately, training large deep-learning neural networks is costly
and consumes a significant amount of energy. Therefore, it is desirable to assess the possibility of the
application of quantum computers for tasks related to processing EO data. Typical tasks related to EO data
processing are mostly related to image classification or segmentation. It was shown that quantum algorithms
can perform these tasks on EO data Gawron and Lewinski [2020]; Gupta et al. [2022, 2023]. In particular,
Variational Quantum Algorithms are suitable and applicable in the area of EO data classification. It was
shown rigorously Gyurik and Dunjko [2022] that quantum machine learning methods can have advantages
over their classical counterparts. Therefore, there may exist substantial advantages for their application for
EO data processing.

Satellite-based Earth observations have a broad spectrum of use cases Kansakar and Hossain [2016], Zhao
et al. [2022]. This naturally leads to a wide range of potential real-life applications. Those include tasks
related to various important “how to” questions such as how to

1. warn people against natural disasters (e.g. floods, fires),

2. analyse the impact of rising global temperatures on ocean levels and rate of glacier melting.
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3. analyse weather conditions (e.g., for optimizing the localization of green energy installations)
4. analyze the structure of crops,

5. perform assessment of forest area in different countries and identification of areas of heavy defrosta-
tion.

Potential answers/solutions, especially those leading to sustainable development, require a constant flow
of information regarding environmental changes. Currently, machine learning techniques for land-use
classification of the Earth’s surface often employ (deep) neural networks. While those networks are very
efficient in a variety of human-like tasks, they are very costly to train (in terms of time and energy). This
naturally calls for an investigation to what extent it is possible to offload the training process to a quantum
computer to reduce the training costs.

22 Vartiational quantum algorithms

22.1 Introduction

Variational quantum algorithms (VQA) are a class of quantum-classical heuristics that employ both classical
computers and quantum computers to perform optimization of a function computed using a quantum computer.
The main idea behind VQA is as follows. The algorithm designer chooses a class of parametrized quantum
circuits that can be executed on a quantum computer and an observable that can be measured on this computer.
The goal of computation is to find such parameters of the quantum circuits that generate the state for
which the expectation value of this observable is optimized. The optimization procedure is performed by
iterative varying of the parameters, executing the quantum circuit, and measuring the expectation value of the
observable. This procedure is controlled by the classical computer and repeated until a given stop criterion is
reached.

Variational quantum algorithms can be applied to:
* solving (approximately) Quadratic Unconstrained Binary Optimization (QUBO) Farhi and Harrow

[2016] problems using Quantum Adiabatic Optimization Algorithm (QAOA) Farhi and Harrow
[2016],

* minimizing the energy of quantum Hamiltonian — Variational Quantum Eigensolver (VQE) Peruzzo
et al. [2014], and

* training Quantum Neural Networks (QNNs).

22.2 Technical description

The mathematical formulation of a VQA is the following. Given an initial state |¢)) € C", parametrized
quantum circuit U (#) € C™*"™, an observable O € C™*™ the goal is to find such a set of parameters ¢ that
minimizes the expectation value of observable O in the state U (0) [¢)) i.e. (O) ;) )y = (| Ut(0)ou () [v).

The optimization is performed using a classical computer by varying the parameters § and minimizing the
function f(6) := (O)r(g) -

There exist variations of the abovementioned algorithm that can be adapted to a variety of tasks.

22.2.1 Parametrized quantum circuits

A common technique to implement Variational Quantum Algorithms is to employ Parametrized Quantum
Circuits (PQC). PQC U(0) = (U (97,))?;1 is a sequence of N quantum gates that depend on one or more
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real-valued parameters ;. Once the parameters are defined the PQC becomes an ordinary quantum circuit
that can be—in principle—executed on a quantum machine.

22.2.2 Variational Quantum Eigensolver

The Variational Quantum Eigensolver is the most important example of VQAs because it provides an
approximate solution to the problem of finding the ground state of a quantum Hamiltonian that can be
expressed in the following way. Given Hamiltonian H find its minimal eigenvalue E;, (minimal energy) and
minimizing eigenvector |¢y;,) (minimal energy state). It is known that for any quantum state 1)) > Epy.
Therefore, one can find an approximate value of Ep;, by minimizing (H),; ©)[0) by varying parameters 6 of a

PQC U(6). To perform this operation on a quantum the Hamiltonian H has to be decomposed into a linear
combination H = )" hqP, of Pauli strings P, = 0{' ® 052 ® ... ® o with af € {1;,07,0!,07},
so that (H)rpyj0y = 2o M (Pa)y(g)0y- The quantum circuit U(¢) should ideally dependent on a few
parameters 6, be able to explore the Hilbert space of the quantum system, and be efficiently implementable
on the quantum computer.

22.2.3 Quantum Neural Networks

Quantum Neural Networks (QNN5) are a class of machine-learning models that can be evaluated on a quantum
computer. QNNs, similarly to classical neural networks are parametrized functions that can be trained using
data to perform common machine learning tasks such as classification, regression, sampling from a complex
probability distribution or generating new data. QNNs can be composed—in the mathematical sense—with
classical neural networks forming hybrid quantum-classical NNs and jointly trained using backpropagation.

The visual representation of a quantum variational algorithm that employs both data = and parameters 6 is
presented in Fig. 15. In the figure, the quantum computer is driven by the classical computer that is responsible
for transferring the data = and parameters 6 to the controller of the quantum computer that uses these pieces
of information to generate quantum circuits Ulgzzl(x) and U\ga]i) (0) that encode data and model respectively.
After those circuits are executed measurements of quantum observables O; is performed and the outcomes
of the measurements f;(z, §) are returned to the classical computer and combined jointly using—possibly

parametrized—funCtion fclassical(fl (l’, 04 )7 ey fI (xa 9[)7 aclassical)-

A typical implementation of the forward part of the training of a quantum neural network is presented in
Algorithm 1.

Algorithm 1 Forward algorithm for a quantum neural network.
procedure FORWARD(z, 6)

for k = [K] do > Repeat for each QNN layer
APPEND(Qtape- Uv(ar)(G)) > Append the variational circuit to the tape
APPEND(Qtape, Ulg)azl(l')) > Append the data loading circuit to the tape
APPEND(Qyape, O) > Append observable O to the tape
f(z,0) + QCRUN(Qape) > Execute quantum tape and measure results

return f(z,6)

Data encoding Classical data can be encoded on the computational basis of quantum states—as binary
strings, amplitudes of the quantum states or observables.

Quantum neural network architectures Quantum neural networks can be implemented in a variety of
architectures. The simplest case is when the quantum evolution is completely unitary e.g. Figure 16b presents
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computer. layer.

an example of a simple layer of a quantum neural network with general parametrized qubit rotations being
controlled by the model parameters.

Other architectures can introduce mid-evolution measurements and classically controlled gates or extending
the number of used qubits in subsequent layers of QNN.
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22.2.4 Quantum Adiabatic Optimization Algorithm

Quantum Adiabatic Optimization Algorithm QAOA uses the VQA principle to solve, possibly approximately
Quadratic Unconstrained Optimization (QUBO) problems. The algorithm does it by simulating the adiabatic
quantum computing process.

There exist several issues related to each of the steps of the above algorithm. The architecture of a quantum
computer and the structure of a particular problem have to be taken into account while designing and executing
a VQA. Additionally, it is important to take into the account the interplay between the classical computing
systems: storage, information transfer and compute units with the quantum computer.

22.3 Sizing quantum machines for VQAs

Authors of an in-depth overview Bharti et al. [2022] provide an overview of the current state of quantum
computers concerning implementations of VQAs as well as an outlook for the future. They divide the
future into two main eras: one of near intermediate-scale quantum computer NISQ and one of the fully
error-corrected quantum (FEC) computers. Unfortunately, they do not attempt to provide any concrete
timeline for the possible future development of VQAs. Since the efficiency of variational quantum algorithms
depends on multiple factors, such as:

* number of qubits,

* qubits connectivity,

* single-qubit, two-qubit or multi-qubit gate fidelities,

* measurement errors,

* quantum system coherence time,

* execution time of operations reset, gate, and measurement,

* scalability of the quantum computing hardware platform,

* precision of control pulses,

* possibility to perform mid-quantum computing measurement and classical computing,

* classical optimization method,

* ansatze,

the following sizing assessment is an educated guess about the timeline for future VQAs applicability to
real-life problems related to EOs.

We can use the method for defining practical quantum advantage and application readiness levels (ARLSs) as
presented recently by Herrmann et al. [2023]. The authors define quantum advantage using the notions of
quantum utility or quantum dominance, where the former notion requires that a quantum (possibly hybrid)
system “(i) requires less computing time, or (ii) requires less power, or (iii) yields more accurate results [... ]
to the best classical device of similar size, weight, and cost.”, and the latter notion requires that points (i)—(iii)
are “‘compared to any other classical device”.

The authors of Herrmann et al. [2023] define five levels of application readiness levels:

* ARL 1: concept with unknown potential,

* ARL 2: beneficial in small idealized systems,

* ARL 3: utility indicated by theory or resource estimations,
* ARL 4: simulated utility demonstration,

* ARL 5: utility demonstration on quantum hardware.
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(a) Superconducting quantum processor:
An array of artificial atoms made of Josephson
Jjunctions and capacitors, fabricated with
lithography, controlled with microwave
electronics

Number of qubits with individual control:
~100

Gate fidelities:

Systems with 53 qubits: F, > 99%; F, > 99%
Pros:

Fast gate speed, tailored qubits, high
controllability and scalability

Cons:

Crosstalk between qubits, low temperature,
supporting technology for scaling up

(e) Neutral atom array quantum
computing:

Neutral atom arrays trapped in optical
tweezers with controlled interactions based on
the Rydberg interactions

Number of qubits in digital quantum
processors: 24

Number of qubits in analog quantum
simulators: 289

Pros:

Both digital and analog quantum simulations
Scaling up beyond 100 qubits in
programmable geometries

Cons:

Improving fidelities of two-qubit gates

(b) Trapped ion quantum computing:
Laser-cooled atomic ions held by radio-
frequency electric fields in ultra-high vacuum
environment

Number of qubits with individual control:
20-30

Gate fidelities:

Systems with dozens of ions

F,>99.9%; F,>99%

Pros:

Extremely long coherence time and excellent
gate operations on few ions;

Reconfigurable connectivity between ion
qubits

Cons:

Technically challenging in integration

(f) NMR quantum computing:
Nuclear spins in molecule
Number of qubits with individual control:
12

Gate fidelities:

F,~99.98%; F> ~99.3%

Pros:

Work at room temperature
Long coherence time

Digital quantum simulator
Cons:

Hard to scale up

Photon

(¢) Semicond
computing:
Electron or hole spins in semiconductor
(silicon) quantum dot

Number of qubits with individual control: 6
Gate fidelities:

Donor spin qubit: F;, ~ 99.99%; I, ~ 99.5%
Gate-defined qubit: I, ~ 99.9%; I, ~ 99.51%
Pros:

Semiconductor fabrication

Long coherence and fast high-fidelity gate
‘Work at temperature > 1 K

Small footprint

Cons:

Challenge of nanoscale fabrication

spin-based

(g) Photonic quantum computing:
Coherently manipulating a large number of
single photons or canonically conjugate pair of
variables for electromagnetic modes to process
quantum information

Number of qubits with individual control:
18

Number of photons with coherent control:
255 (Jiuzhang 3.0 (to be published))

Gate fidelities:

F, ~99.84%; F, ~ 99.69%

Pros: robust against decoherence, working at
room temperature, compatible with CMOS
fabrications, natural interface for distributed
quantum computing

Cons: Big challenge to realize deterministic
photon-photon gate

(@

()

(d) NV center quantum computing:

Point defects in diamond; electron and nuclear
spins with long coherence time; atom-like
properties and solid-state host environment
Number of qubits with individual control:
10 (one electron + nine 13C nuclear spins)
Gate fidelities:

1, ~99.995%; I, ~99.2%

Pros:

‘Work at room temperature

Excellent quantum sensor

Handy in quantum network

Cons:

Hard to scale up

(h) Topological quantum computing:
Fault-tolerant quantum computation based on
non-abelian braiding of anyons

Number of qubits with individual control:
N/A

Gate fidelities:

N/A

Pros:

Intrinsic topological protection

Few physical qubits to construct a logic qubit
Promising to achieve large-scale, error-
corrected computation

Cons:

The ideal materials or systems not found yet.
Zero topological qubit so far

Figure 17: Reproduction of Fig. 2 from Cheng et al. [2023b] presenting a selection of quantum computing

hardware. (CC-BY 4.0)

22.3.1 Currently

Currently-existing quantum computers belong to the NISQ era and can not claim any applicable advantage
over classical computers. Those are experimental devices testing the limits of the existing technology.
Decoherence, limited qubit connectivity, gate errors and measurement errors. The training of a QNN on a
quantum computer is currently very difficult and not efficient.

We have currently reached ARL level of one for most VQAs applications. There exists several proposals of
applying VQAs for remote sensing data processing such as e.g. Gawron and Lewiniski [2020]; Gupta et al.
[2022, 2023]; Nalepa et al. [2022]; Miroszewski et al. [2023]; Otgonbaatar and Datcu [2021b,c], and also for
EO mission planning Rainjonneau et al. [2023].
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22.3.2 3-5years

It is unlikely that any neither useful implementation of a Variational Quantum Eigensolver or Quantum
Machine Learning algorithm will be demonstrated. The quality of the quantum computers will be too low.
But we can observe steady progress in the quality of quantum hardware, the development of new practical
algorithmic ideas, and the development of quantum software stack.

After the mark of five years, we should be able to achieve ARL of two or three for at least a couple of VQAs
use cases if major efforts are put into R&D activities.

22.3.3 15 years

While it is very difficult to predict the future of disruptive technology, such as quantum computing, 15 years
ahead one can hope for the existence of fully error-corrected quantum (FEC) computers with hundreds of
logical qubits. Such computers would be able to tackle machine learning problems that are impossible to be
solved today. Especially if supplied with coherent quantum information e.g. acquired from quantum sensors.

After the mark of 15 years, we can be hopeful to show ARL four or five for at least one or two use cases.

22.4 SWOT analysis

22.4.1 Strengths

* Quantum Neural Networks have larger effective dimensions than Deep learning models Abbas et al.
[2021].

* Quantum kernel methods can provide better classification results by transforming quantum encoded
features using projected quantum kernels than classical kernel methods Huang et al. [2021].

* Quantum Born machines could be applied to generate data samples from classically difficult distri-
butions Coyle et al. [2020].

* Proved exponential speed-up in at least one scenario Liu et al. [2021].

22.4.2 Weaknesses

» Data loading is a major obstacle for achieving exponential speed-up of some QML algorithms Tang
[2021b].

* Limited number of samples obtained from quantum devices leads to measure concentration Thanasilp
et al. [2022] and difficulty to train quantum kernel methods.

* Measurement error mitigation is limited very strongly by the number of qubits and the circuit depth.
Quek et al. [2022].

* VQAs can be difficult to train due to barren plateaus McClean et al. [2018].

* Noisy quantum devices have major limitations Stilck Franca and Garcia-Patrén [2021].

22.4.3 Opportunities

* Major shift in the quality of quantum computers. Fully-error corrected quantum computer available
with ~ 100 fully error qubits.

» New applications of classical machine learning for quantum computing: compiling, mapping, control,
error correction.
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22.4.4 Threats

» Fundamental lack of ability to control, mitigate and correct sources of noise in the QCs.
* Unlikely collapse of the complexity hierarchy will likely lead to a lack of quantum advantage.
* Potential new “no-go theorems”.

23 Hybrid approach

23.1 Introduction

We propose an autoencoder for the dimensionality reduction of input EO images, and a quantum algorithm
powered by the quantum annealer (quantum machines) to reduce the training costs. Ideally, in such a hybrid
machine-learning approach, one would want to combine at least two distinct modules. The first one is precisely
an autoencoder, with latent binary representation, that essentially prepares data to be used by the (quantum)
annealer. The second is a Deep Belief Network, a stack of Restricted Boltzmann Machines, which is used for
classification purposes Hua et al. [2015], Dixit et al. [2020], Dixit et al. [2021]. The crucial part related to
the training of every neural network is an update of all connections between neurons. This process involves
calculating many average values of specific functions (which are problem-dependent). The computation can
be accelerated if one can sample from a particular distribution, which again is problem-dependent. Then, and
only then, all complicated expectations values involving that distribution simplify to weighted sums. This is
precisely what a quantum annealer allows one to do. Independent samples can be drawn from the Boltzmann
distribution quickly (even in microseconds), accelerating the training stage. However, to take advantage of
such capabilities, one needs to (re)formulate the original classification problem using the Ising Hamiltonian
(a model of interacting spin-1/2 particles). How to perform such a mapping effectively is an open problem,
being part of this study. Interestingly, both modules of such hybrid architecture can be trained independently.
The autoencoder, which uses conventional deep learning techniques, can be executed on the GPUs, and the
second one — deep belief network — on the D-Wave quantum annealer. This separation allows us to partially
reduce the amount of time and energy needed to retrain the model.

23.2 Technical description

As a proof-of-concept of our approach, we also provide pretrained models for a selected set of data. The
solution consist of a machine learning system. The client will be able to request the training of its model
on the Sentinel-2 multispectral data they select and demand the land-use labels for a particular set of land
patches. The solution uses the D-Wave quantum annealer during the training process. The annealer is used
in the most difficult part of the machine learning pipeline. Namely, in generation of the multispectral data
representation and multilabel classification. We aim to use a two-stage data transformation process. In the
first stage, the data will be transformed from its natural representation into a binary sequence, which is more
natural for quantum machines. This binary string should encode most of the relevant information about a
hyperspectral data cube patch.

The processing pipeline of the presented approach is as follows (see Figure 18).

First, the multispectral data is compressed into a binary representation using an autoencoder schematically
presented in Figure 19. We considered two autoencoders, like latent Bernoulli autoencoder (LBAE) and
Binary variational autoencoder (BVAE). The LBAE model is used as an example in the compiled version of
our solution. As such, it will be discussed in greater detail in the following.

Then the compressed data are used to train a restricted Boltzmann machine (RBM). We consider three possible
training backends for this process:

» Contrastive divergence (run on a classical computer).
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Multispectral image

binary representation

Multiclasses

Figure 18: Processing pipeline of hybrid machine-learning approach based on autoencoder and RBM.
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Figure 19: Processing pipeline of the LBAE training.

* Coherent Ising machine (CIM). This approach takes as an input an Ising optimization problem and
solves it using a system of dynamical equations resulting in a simulation of the behavior of an actual
quantum annealer. A general overview of CIM is presented in the following subsections.

* Quantum annealing backend. Currently, this backend uses the D-Wave annealer. A short note on
utilization of quantum annealers is presented in the following subsections.

In the next step of the weights obtained form the training of the RBM are used as weights for layers of a
neural network.

Lastly, we train the final layer of our network in a supervised manner. All other weights remain fixed. This is
the only supervised part of our training pipelie.

23.2.1 Latent Bernoulli autoencoder

The need for differentiability of each layer represents a challenge if one desires to train stochastic neurons or
other non-differentiable functions such as quantization Fajtl et al. [2020]. Sampling from and interpolating in
the discrete latent space is equally challenging. Unlike multimodal, Gaussian and many other real-valued
distributions, the multivariate Bernoulli distribution concentrates most of the information on the second and
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higher moments, since the marginals are strictly unimodal and entirely described by the mean. Given that
this model learns a distribution with unknown prior, and based on the aforementioned premise, the model
parametrizes the learned distribution by its first two moments. The main advantage of the model is the fact
that there is no sampling of pseudo-random numbers during the training step.

23.2.2 Coherent Ising machine

The coherent Ising machine is an iterative algorithm for sampling low-energy spin configurations in the
classical Ising model Goto et al. [2021]. It treats each spin value as a continuous variable from the range
[—1, 1]. Each iteration begins with calculating the mean field acting on each spin by all other spins. Then
the gradients for the spin values are calculated. Then the spin values are updated according to the gradients
and some chosen activation function. After multiple updates, the spins will tend to either -1 or +1 and the
final discrete spin configuration is obtained by taking the sign of the continuous variables. CIM has been
tested on a variety of problems. Implemented on a consumer graphic processor, this algorithm runs faster and
generates higher quality samples than many analogue and digital annealing processes. Typical results from
these simulations are presented below (see Figure 20).

Takahiro Inagakt, at. al., “A coherent ising machine for 2000-node
optimization problems”, Science 354, 603-606 (2016).
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Figure 20: Results from simulations of training a restricted Boltzmann machine with training backend based
on coherent Ising machine.

23.2.3 D-Wave annealer

The quantum annealer allows us to sample from the Boltzmann distribution, which is a crucial part of training
an RBM Dixit et al. [2021]. With the rapid advancement of this technology (see Figure 21) this shows a great
promise for acceleration of classical training.

The learning process is a hybrid of classical and quantum computation. The weights of the RBM are stored
on a classical computer and are updated based on samples from the Boltzmann distribution obtained from the
quantum annealer. This can be summarized as
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23.2.4 Hybrid approaches with simulated bifurcation machines

Hybrid quantum-classical optimization is an approach that combines classical optimization algorithms with
quantum computing techniques to solve complex optimization problems more effectively. In the context
of Simulated Bifurcation Machines (SBM), the idea is to use SBM as a quantum-inspired technique to
complement classical optimization algorithms.

An (SBM) is a type of quantum-inspired computing technology designed to solve complex combinatorial
optimization problems. It was developed by researchers at Toshiba, and it is based on the concept of
bifurcation, which is a phenomenon in dynamical systems where a small change in a system’s parameters can
cause a sudden shift in its behaviour.

The SBM leverages a classical computer to simulate the behavior of a quantum system undergoing bifurcation.
It uses this behavior to explore the solution space of the given optimization problem more efficiently than
traditional classical methods. The key idea behind the SBM is to take advantage of the sudden transitions that
occur in bifurcation to jump between possible solutions, allowing the algorithm to converge to an optimal or
near-optimal solution quickly.

While the SBM is not a true quantum computer, it is inspired by and seeks to harness some of the benefits of
quantum computing. This technology has shown promise in solving a variety of optimization problems, such
as the traveling salesman problem, portfolio optimization, and drug discovery, among others. However, it is
important to note that the SBM has its limitations and is not a universal solution for all optimization problems.

The technical aspects of a Simulated Bifurcation Machine (SBM) involve a combination of classical computing
and concepts inspired by quantum mechanics. The underlying mechanism of SBM is based on the phenomenon
of bifurcation, which is characterized by sudden changes in the behavior of dynamical systems. Here are
some key technical aspects of SBM:

1. Hamiltonian dynamics: In SBM, the optimization problem is mapped to a continuous-time Hamilto-
nian system. A Hamiltonian function is used to describe the total energy of a system, which is the
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sum of kinetic and potential energies. The Hamiltonian dynamics is used to navigate the solution
space of the optimization problem Kalinin et al. [2021]; Goto [2021].

2. Simulated bifurcation algorithm: The SBM uses a simulated bifurcation algorithm that mimics
the behavior of quantum systems undergoing bifurcation. The algorithm leverages the classical
computer’s ability to simulate these quantum-like transitions, allowing for an efficient exploration of
the solution space Kalinin et al. [2021].

3. Adiabatic transitions: The SBM algorithm incorporates a concept similar to adiabatic quantum
computing, where the system transitions slowly between different energy levels, staying close to the
ground state. This allows the SBM to explore the solution landscape more efficiently Farhi et al.
[2000].

4. Parameter tuning: In the SBM, the Hamiltonian system’s parameters are carefully tuned to induce
bifurcation points. These bifurcation points cause sudden transitions between different solutions,
allowing the algorithm to jump from one solution to another and explore the solution space more
effectively Kalinin et al. [2021].

5. Near-optimal solutions: The SBM is designed to find near-optimal solutions to combinatorial
optimization problems. While it may not always find the absolute best solution, it can often find
high-quality solutions in a relatively short amount of time compared to classical optimization
algorithms Kalinin et al. [2021].

The Simulated Bifurcation Machine combines these technical aspects to provide an efficient, quantum-inspired
approach to solving combinatorial optimization problems. However, it is important to note that the SBM has
its limitations and is not a universal solution for all optimization problems Kalinin et al. [2021].

23.3 Sizing quantum machines for the hybrid approach

23.3.1 Currently

Currently-existing quantum annealers belong to the so-called NISQ era and can not claim any applicable
advantage over classical computers. The current state of the art annealers has 5640 qubits and 40484
connections Systems [2023]. The device is susceptible to noise and for large families of instances, the device
finds solutions far from the ground state.

23.3.2 3-5years

D-Wave road map suggests that within 5 yeas the number of qubits will increase to around 8k and number of
connection around 80k D-Wave Systems Inc. [2021]. The devices will still be prone to noise but it is likely that
we will observe steady progress in the quality of the hardware. There will exist a hybrid (classical-quantum)
solvers to solve large problems 1M variables. Those solvers will utilize sophisticated classical methods
(simulated bifurcations) combined with quantum annealing.

23.3.3 15 years

In the forthcoming era, D-Wave quantum annealers will encompass 100,000 highly interconnected qubits,
empowering them to address intricate optimization conundrums D-Wave Systems Inc. [2021]. Utilizing
reversed annealing techniques will facilitate the generation of more sophisticated quantum states, while the
hybrid solver methodology will amalgamate classical and quantum computing paradigms to ascertain optimal
solutions. These cutting-edge developments will usher in unprecedented breakthroughs across domains such
as optimization, machine learning, and logistics.
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Sizing quantum machines

D-Wave road map suggests that within 5
yeas the number of qubits will increase.
The devices will still be prone to noise but
it is likely that we will observe steady
progress in the quality of the hardware.

Technical prediction:

= around 8k qubits,
¢ around 80k connections.

15
years

In the forthcoming era, D-Wave
quantum annealers will encompass
hundreds on thousands highly
interconnected qubits, empowering
them to address intricate optimization
conundrums a product strategy.

Currently-existing quantum
annealers belong to the so-called
NISQ era. Can not claim any
applicable advantage over
classical computers.

Technical information:

The current state of the art Technical prediction:
annealers has: _ = arround 100,000 qubits,
* 5640 qubits, « arround 1000,000 connections.

e 40484 connections.

Figure 22: Figure shows sizing of quantum annealers

23.4 SWOT analysis

23.4.1 Strengths

* Quantum advantage: D-Wave annealers have the potential to process and analyze large amounts of
data (utilizng hybrid approaches) significantly faster than classical computers Systems [2023].

 Hybrid solver approach: By combining classical and quantum computing methods, D-Wave’s hybrid

solvers can efficiently navigate the solution space and arrive at optimal or near-optimal solutions
Systems [2023].

 Scalability: With 100,000 highly connected qubits, D-Wave quantum annealers can address in-
creasingly complex Earth Land Cover Understanding problems as technology advances Systems
[2023].
23.4.2 Weaknesses

* Noise sensitivity: Quantum systems, including D-Wave annealers, are susceptible to noise and errors,
which may impact the accuracy of the results Preskill [2018b].

* Limited availability: D-Wave systems are not yet widely accessible, and their usage requires
specialized knowledge and expertise Systems [2023].
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* Problem-specific applicability: D-Wave annealers are primarily suited for optimization problems,
which might limit their applicability in other aspects of Earth Land Cover Understanding Systems
[2023].

23.4.3 Opportunities

» Enhanced remote sensing: D-Wave annealers can be applied to process and analyze remote sensing
data, enabling more efficient and accurate land cover classification and monitoring Mallet and Bretar
[2009].

* Climate change research: Quantum computing can potentially improve climate models and predic-
tions, contributing to a better understanding of the impacts of land cover changes on the environment
Biamonte et al. [2017].

Interdisciplinary collaboration: The use of D-Wave annealers in Earth Land Cover Understanding can
foster collaboration between researchers in quantum computing, remote sensing, and environmental
sciences, leading to new insights and innovations.

Hybrid approaches: Possibility to utiliza quantum-classical problems are split between a classical
approach and the quantum annealer allows to tackle large problems.

23.4.4 Threats

* Competition: As more companies and researchers develop quantum computing technologies, there
will be increased competition for D-Wave annealers in the Earth Land Cover Understanding domain
Preskill [2018b].

» Technological obsolescence: The rapid pace of quantum computing advancements may render
current D-Wave annealer technology obsolete or less competitive in the future Preskill [2018b].

* Funding constraints: The high costs associated with quantum computing research and infrastructure
may limit the availability of funding for D-Wave annealer projects in Earth Land Cover Understand-
ing.

24 Conclusions and recommendations

The only recommendation that can be provided is that further research is needed. It is important to identify
bottlenecks where classical computers struggle to provide efficient solutions for the Earth Observations and
try to pair them with the incoming development in the field of Quantum Machine Learning. Those bottlenecks
are defined by the computation time, energy consumption and quality of obtained results. A wide variety of
stakeholders such as computer scientists, machine learning experts, Earth observation experts, agricultural
experts, climate scientists, the members of various communities should be involved in identifying mentioned
bottlenecks and hard problems related to Earth observations, and later defining the road forward.

It would be advantageous for the research community if several projects were funded. It would allow the
gathering of experts from a variety of domains and focus their work on identifying important specific problems
in EO that might be solvable using quantum computing and VQAs in particular.

There exists a significant gap between the skills and knowledge of computer scientists of physicists working
on quantum computing and practitioners working on e.g. climate change assessment. Therefore, common
platforms for scientific discussions have to be organized in order to facilitate communication.

The proposed hybrid machine-learning approach amalgamates an autoencoder for dimensionality reduction
of input Earth Observation (EO) images and a quantum algorithm powered by a quantum annealer for
mitigating training costs. This innovative methodology capitalizes on the synergies between classical and
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quantum computing, offering a propitious solution for proficient and accelerated training in Earth Land Cover
Understanding. Notably, the independent training capabilities of the two modules facilitate a more adaptive
and energy-efficient system.

Considering the potential of this hybrid architecture, it is recommended to investigate hybrid solvers proffered
by multiple startups advancing cutting-edge hybrid technology. By establishing collaborations with these
startups, researchers and practitioners can gain access to the latest breakthroughs and proficiency in both
classical and quantum computing domains. This cooperative endeavor could culminate in the development
of more efficacious and efficient hybrid machine-learning models for Earth Land Cover Understanding,
ultimately yielding enhanced insights and decision-making capabilities in this field.

As the contemporary landscape of quantum computing continues to evolve rapidly, integrating cutting-edge
hybrid technology into Earth Land Cover Understanding can potentially revolutionize the domain. By
embracing the strengths of both classical and quantum computing, researchers and practitioners can unlock
new possibilities for analyzing and interpreting complex data sets. Ultimately, the pursuit of such hybrid
architectures can lead to unprecedented breakthroughs in understanding our planet’s land cover, informing
crucial decisions related to environmental conservation, climate change, and sustainable development.

We recommend the exploration of hybrid classical-quantum solvers and simulated bifurcation machines for
Earth Land Cover Understanding problems. These bleeding-edge technologies offer a unique combination
of computational capabilities, which can significantly improve the efficiency and effectiveness of solving
complex optimization and classification tasks associated with land cover analysis.

Hybrid classical-quantum solvers, by leveraging the strengths of both classical and quantum computing,
can efficiently navigate the solution space and arrive at optimal or near-optimal solutions for Earth Land
Cover Understanding problems. Quantum annealers, in particular, can accelerate the training stage by quickly
drawing independent samples from the Boltzmann distribution, while classical computing methods can handle
the autoencoder and other preprocessing steps. This synergy can reduce the time and energy needed for
training, ultimately leading to faster and more accurate results.

Simulated bifurcation machines, on the other hand, provide an alternative approach to quantum annealing that
is based on classical computing resources. These machines offer a powerful means to solve combinatorial
optimization problems by simulating the bifurcation dynamics of quantum systems, without the need for
specialized quantum hardware. As such, simulated bifurcation machines can offer a more accessible and cost-
effective solution to Earth Land Cover Understanding problems, while still providing significant performance
gains compared to traditional classical computing methods.

In conclusion, adopting hybrid classical-quantum solvers and simulated bifurcation machines for Earth Land
Cover Understanding problems can lead to enhanced insights and decision-making capabilities in the field.
By exploring these bleeding-edge technologies, researchers and practitioners can unlock new possibilities
for analyzing and interpreting complex data sets, ultimately contributing to a better understanding of our
planet’s land cover and informing critical decisions related to environmental conservation, climate change,
and sustainable development.

Quantum computers will likely be only one component of many non-Von Neuman computational accelerators
such as e.g. analog, photonic or neuromorphic computers Cavallaro et al. [2022] what makes the landscape of
possible non-classical solutions for EO-related problems even more interesting and difficult to navigate in the
near future.
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