
Computers & Fluids 33 (2004) 1131–1155
www.elsevier.com/locate/compfluid
An implicit, exact dual adjoint solution method for
turbulent flows on unstructured grids

Eric J. Nielsen a,*, James Lu b, Michael A. Park a, David L. Darmofal b

a Computational Modeling and Simulation Branch, MS 128, NASA Langley Research Center,

Hampton, VA 23681, USA
b Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

Received 7 April 2003; accepted 30 September 2003

Available online 28 February 2004

Abstract

An implicit algorithm for solving the discrete adjoint system based on an unstructured-grid discretization

of the Navier–Stokes equations is presented. The method is constructed such that an adjoint solution

exactly dual to a direct differentiation approach is recovered at each time step, yielding a convergence rate

which is asymptotically equivalent to that of the primal system. The new approach is implemented within a
three-dimensional unstructured-grid framework and results are presented for inviscid, laminar, and tur-

bulent flows. Improvements to the baseline solution algorithm, such as line-implicit relaxation and a tight

coupling of the turbulence model, are also presented. By storing nearest-neighbor terms in the residual

computation, the dual scheme is computationally efficient, while requiring twice the memory of the flow

solution. The current implementation allows for multiple right-hand side vectors, enabling simultaneous

adjoint solutions for several cost functions or constraints with minimal additional storage requirements,

while reducing the solution time compared to serial applications of the adjoint solver. The scheme is ex-

pected to have a broad impact on computational problems related to design optimization as well as error
estimation and grid adaptation efforts.

� 2004 Elsevier Ltd. All rights reserved.

PACS: 65Y; 76M
* Corresponding author. Tel.: +1-757-864-2239; fax: +1-757-864-8816.

E-mail address: eric.j.nielsen@nasa.gov (E.J. Nielsen).

0045-7930/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compfluid.2003.09.005

mail to: eric.j.nielsen@nasa.gov

1132 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
1. Introduction

The field of computational fluid dynamics (CFD) is increasingly important in the design and
validation of new aerodynamic concepts. The use of computational tools can greatly reduce the
need for more costly alternatives, such as wind tunnel experiments or flight testing. CFD tech-
niques based on the Navier–Stokes equations have matured into reliable tools for the analysis of
complex geometries. However, design optimization using these high-fidelity methods has been
greatly inhibited by their relatively high expense and lack of robustness.

In an effort to alleviate the high cost of gradient-based design methodologies, recent work has
focused on the use of adjoint methods [1–23]. Adjoint techniques generally fall into one of two
categories based on the order in which the discretization and differentiation processes are per-
formed. The two approaches are termed continuous or discrete adjoint methods. For a single-
output or constraint function, these schemes allow the computation of design sensitivities at the
cost of solving a single additional linear problem and a subsequent computation of a matrix–
vector product dimensioned by the number of design variables.

In addition to its role in design optimization problems, the solution of the adjoint equation can
be used to provide error estimates for an output of engineering interest, as well as grid adaptation
information that can be used to improve solution accuracy [24–32]. Traditional methods for grid
adaptation have typically relied on ad hoc feature-based quantities [33–36]. In these approaches,
features such as shocks, boundary layers, and other regions of interest are characterized by large
gradients or curvatures in the solution. The adaptation algorithm then attempts to improve the
solution by adding additional grid points in these regions. Unfortunately this approach can yield
grids of unwieldy dimensions and even incorrect results [36]. The local flow feature of interest is
often over-resolved, while smooth regions of the flowfield are essentially neglected.

The adjoint approach to grid adaptation seeks to minimize the uncertainty or error in some
specified output function. In this approach, a local adaptation parameter is obtained by combining
flow and adjoint solutions, where the nonlinearities in these solutions are weighted with the local
residual error. This adaptation technique implicitly targets the flow features having the highest
impact on the output of interest. The test cases examined in [27,28], and [30–32] clearly demonstrate
the potential of using such an approach to grid adaptation. Comparisons with feature-based tech-
niques are shown and results equivalent to those of uniform grid-refinement studies are obtained at a
fraction of the cost. The process terminates when a user-specified error tolerance is achieved.

Unfortunately the solution of the adjoint system of equations for realistic problems has proven
to be a formidable task. In [4], a Krylov method was used to solve the adjoint system for turbulent
flows using relatively coarse grids over simple geometries. This work successfully demonstrated
the accuracy of the method. However, the computational time required to solve the equations was
as much as ten times the cost of the analysis problem, and the scheme failed to converge for many
problems. By employing a more extensive preconditioner for the Krylov algorithm, [5] demon-
strated improved performance. However, this preconditioning strategy was shown to require
approximately five times the memory of the baseline analysis scheme. This approach proved
infeasible on available computers for large-scale problems that require grids containing several
million mesh points.

The focus of the current work is to develop a new solution algorithm for the discrete adjoint
system described in [4,5]. The work is largely based on the recent contributions of Giles, [20–23] in

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1133
which adjoint solutions for the Euler and Navier–Stokes equations are computed by using an
explicit Runge–Kutta scheme combined with multigrid using an exact dual method. Elliott [37]
recently used a similar approach for two-dimensional turbulent flows on overset structured grids
using multigrid and approximate factorization.

Improvements to the implicit solution technique of [38,39] are described, and an exact dual
scheme is developed for the resulting algorithm. Care has been taken to ensure that the imple-
mentation yields identical values for linear functionals at each time step, thereby guaranteeing
identical asymptotic convergence rates for the primal and dual systems. Results are shown for
several small test problems and two large-scale configurations. Convergence of a typical cost
function and its derivatives are examined, and computational speed and memory requirements are
discussed. The efficiency gained through the simultaneous computation of adjoint solutions for
several output functions is also presented.
2. Flow solution method

The governing equations are the three-dimensional Reynolds-averaged Navier–Stokes equa-
tions. For turbulent flows, the one-equation model of Spalart and Allmaras [41] is used. The flow
solver used in the current work is described at length in [1,38,39]. The code uses an implicit,
upwind, finite-volume discretization in which the dependent variables are stored at the mesh
vertices. Inviscid fluxes at cell interfaces are computed by using the upwind schemes of Roe [42] or
Van Leer [43]. Viscous fluxes are formed by using an approach equivalent to a central-difference
Galerkin procedure. For steady-state flows, temporal discretization is performed by using a
backward-Euler time-stepping scheme. A highly scalable parallelization scheme is achieved
through domain decomposition and MPI communication.

An approximate solution of the linear system of equations formed at each time step is obtained
through several iterations of a point-iterative scheme in which the nodes are updated in an even–
odd fashion, resulting in a Gauss–Seidel-type method. This scheme is augmented with a line-
relaxation algorithm in the current work.

In [1–5,38,39], the turbulence model is integrated all the way to the wall without the use of wall
functions, and is solved separately from the flow equations at each time step with an identical
time-stepping scheme. The resulting linear system is solved with the same iterative scheme em-
ployed for the flow equations. The impact of coupling the flow equations and turbulence model
will be addressed further in a subsequent section.

In [1,4,5], a discrete adjoint capability has been developed for the solver. In these references, the
discretization of the flow equations and turbulence model described above has been fully differ-
entiated by hand, and the adjoint system of equations has been solved by using a preconditioned
GMRES [40] algorithm. The focus of the current work is an alternate solution method based on
an exact dual formulation.

2.1. Tightly coupled turbulence model

The loosely coupled implementation of the turbulence model in the baseline solver was origi-
nally chosen for its convenience in accommodating additional models as they became available.

1134 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
Furthermore, the loose formulation allows for straightforward implicit enforcement of positiv-
ity on the eddy viscosity by using M-type matrices and positive operators as described in
[41,44].

Although the loose formulation has proven satisfactory for engineering-level analysis, it often
results in stalled convergence or limit-cycle oscillations that can be detrimental to subsequent
adjoint computations. In the current work, a tightly coupled algorithm is used to obtain more
robust convergence behavior. The scheme includes the linearizations of the governing flow
equations with respect to the turbulence model dependent variable ~t, as well as the linearizations
of the turbulence model with respect to the conserved variables Q, in the computation of the
solution updates DQ and D~t. The approach taken in [41,44] to guarantee positivity on ~t becomes
prohibitively difficult to impose for the tightly coupled system, so that an update clip at ~t ¼ 0 is
necessary to preclude nonphysical behavior as the solution rapidly develops from its initial
freestream conditions. This procedure occasionally admits transients in the early stages of a
computation which may result in divergence of the solution; these transients are overcome by
using small time steps as the initial solution sets up. Although not discussed in the present paper,
limited success has been achieved through modifications as suggested in [45], in which an analysis
of the linearized form of the turbulence source terms suggests a similar addition to the diagonal
elements of the system.

To demonstrate the effect of coupling on solution convergence, transonic flow over an ONERA
M6 wing [46] is computed by using both the loosely and tightly coupled formulations. The grid is
shown in Fig. 1 and contains 359,536 nodes and 2,074,955 tetrahedra. The freestream Mach
number is 0.84, the angle of attack is 3.06�, and the Reynolds number is 5 million based on the
mean aerodynamic chord. For both cases, the CFL number for the flow and turbulence equations
has been linearly ramped from 10 to 200 over the first 50 iterations. The convergence histories for
density and turbulence for the two solution methods are shown in Fig. 2. The loosely coupled
scheme results in stalled convergence, whereas the tightly coupled scheme steadily reduces the
Fig. 1. Surface grid for viscous ONERA M6 wing.

Iteration

R
es

id
u

al

250 500 750 1000

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

Density (Loose)
Turbulence (Loose)
Density (Tight)
Turbulence (Tight)

Fig. 2. Effect of turbulence model coupling on ONERA M6 flow solution.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1135
residuals by six orders of magnitude over the course of the computation. Similar results have been
observed in other cases, and the tightly coupled algorithm is employed for the remainder of the
current work.
2.2. Line-implicit relaxation scheme

When used in conjunction with the baseline point-implicit scheme used for the flow solution, a
line-implicit scheme can result in improved convergence rates for viscous flows. The benefits of
line-relaxation techniques on highly stretched grids are well-known [47–49]. The central idea is
that the coupling of the discrete equations is considerably higher in the direction normal to the
grid stretching, so that a relaxation scheme can be constructed to more efficiently solve the
equations associated with lines in these directions.
2.2.1. Line construction method
On structured grids the line-relaxation direction is typically well-defined because a grid coor-

dinate direction can be readily employed. For unstructured grids, this inherent direction is not
available and must be constructed prior to performing any computations. In [49], implicit lines
have been constructed based on neighboring prismatic and hexahedral elements within the
boundary layer. In the current work, only tetrahedral elements are employed; thus, an alternative
line construction strategy must be used.

To construct a line for implicit relaxation through the boundary layer, an initial point is
chosen on a viscous boundary surface. A surface normal is constructed at this point, and the
direction of edges connected to this node are compared with the normal using an inner product.
The edge with the maximum positive inner product is selected to form the first line segment.
The surface normal is then replaced with the direction of the chosen edge, and the process is

1136 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
repeated at the endpoint of successively selected edges, forming the line along which to relax.
The process is terminated when the ratio of the length of the longest edge connected to the
current node to that of the selected edge falls below a predefined value; a value of 5 is used in
the current work. This criterion serves to identify the ‘‘inviscid’’ region of the grid, where
elements revert to an isotropic distribution. Construction of a line is also terminated if an edge
direction differing by less than 20� from the previous segment cannot be found. This second
stopping criterion ensures that line segments remain normal to the original boundary surface.
The result of applying this line construction algorithm to a simple wingtip geometry [50] is
shown in Fig. 3. A direction suitable for line-implicit relaxation through the boundary layer has
been formed at each boundary node, such that approximately 30 grid points are contained in
each line.

Another important consideration is the mesh partitioning strategy for parallel processing. To
efficiently perform relaxation along any given line, the line should wholly lie within a grid par-
tition. To avoid partition boundaries cutting across relaxation lines, edge weighting is employed in
the partitioning phase [51]. This procedure minimizes the number of implicit lines that are split
across partition boundaries. In the event that an implicit line is cut by the mesh partitioning, the
line is terminated at the partition boundary; no attempt is made to perform line-relaxation across
processors. Finally, if the edge weighting scheme is the sole constraint provided to the partitioning
algorithm, a partitioning will be generated with an equidistributed set of nodes that largely sat-
isfies this constraint; however, there will be no guarantee that the line- and point-implicit regions
themselves will be load-balanced. For this reason, additional node-based weights are provided to
a multiconstraint version of the partitioning algorithm [52] to ensure that load balancing is also
achieved within each relaxation region.
2.2.2. Line-relaxation algorithm
Once the linear system of equations at the current time step has been assembled, the un-

knowns associated with each implicit line are computed exactly by using Gaussian elimination of
Fig. 3. Result of implicit line construction algorithm applied to wingtip geometry of [50].

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1137
a local block-tridiagonal system of equations. This procedure is repeated for a series of sweeps
over the implicit lines; the initial decomposition of the coefficient matrix is stored so that sub-
sequent sweeps merely consist of a forward/backward substitution procedure. Once a suitable
level of convergence is obtained for the unknowns, the remainder of the domain is relaxed by
using several sweeps of the baseline point-implicit scheme; adjacent unknowns determined by the
line-implicit scheme are taken as known quantities and moved to the right-hand side of the
equations.

To demonstrate the benefits of the line-implicit scheme, fully turbulent flow over the wing-
body configuration [50] shown in Fig. 4 is computed on twenty-two 2.2 GHz Pentium IV pro-
cessors using the baseline point-implicit scheme as well as the line-implicit algorithm. The
freestream Mach number is 0.75, the angle of attack is 0�, and the Reynolds number is 3 million
based on the mean aerodynamic chord. The grid contains 1,641,452 nodes and 9,650,684 tet-
rahedra, and the line construction algorithm places 1,069,238 nodes in the line-implicit region.
For this test, 15 sweeps through the line- and point-implicit regions are used for both compu-
tations.

Convergence of the density and turbulence residuals for both solution schemes is shown in Fig.
5. For this case, a small region of separation near the trailing-edge wing-body juncture prevents
monotonic convergence behavior for both schemes, which can be observed in the latter stages of
the line-implicit results. However, the line-implicit strategy ultimately results in a computational
savings of approximately 20% over the baseline algorithm. As shown in Fig. 6, lift and drag more
rapidly approach their steady-state values with the line-implicit scheme. This behavior is attrib-
uted to the rapid development of the boundary layer region, and has been observed in a number
of cases. For comparison, the results are plotted in Fig. 7 against experimental values from [50].
Similar to many of the computations reported in [53], the lift is slightly overpredicted; however,
the correlation with the experimental drag polar is good.
Fig. 4. Surface grid for configuration of [50].

Wallclock Time, hours
5 10

Iteration

R
es

id
ua

l

250 500 750 1000

10-5

10-4

10-3

10-2

10-1

100

101

102

Density (Line-Implicit)
Turbulence (Line-Implicit)
Density(Point-Implicit)
Turbulence (Point-Implicit)

Fig. 5. Residual convergence histories for point- and line-implicit solutions.

Iteration

C
L

C
D

250 500 750 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

CL (Line-Implicit)
CD (Line-Implicit)
CL (Point-Implicit)
CD (Point-Implicit)

Fig. 6. Force convergence for point- and line-implicit solutions.

1138 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
To examine the effect of grid refinement, fully turbulent computations are performed on a
family of three grids for the geometry shown in Fig. 1 using twenty-four 2.6 GHz Pentium IV
processors. The coarse, medium, and fine grids contain 38,823, 297,208, and 2,324,725 nodes and
224,169, 1,752,560, and 13,852,408 tetrahedra, respectively, and have been generated using a
global refinement procedure based on the coarse grid. The line construction algorithm results in

CD

C
L

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Experiment
Computation

α

C
L

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Experiment
Computation

Fig. 7. Comparison of computed force coefficients with experimental data of [50].

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1139
23,863, 175,229, and 1,336,656 nodes being placed in the line-implicit region for each successive
grid level. For these cases, the freestream conditions are identical to those used for the results
shown in Fig. 2, and each computation employs ten sweeps through the linear systems at each
time step. The density residuals for each solution are shown in Fig. 8. The turbulence residual has
been found to converge in a comparable manner for each case and is omitted here for clarity. The
two relaxation schemes yield similar convergence behavior on the coarse and medium grids;
however, the performance of the point-implicit algorithm deteriorates considerably on the fine
grid.

Fig. 8. Effect of grid refinement on point- and line-implicit ONERA M6 flow solutions.

1140 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
3. Derivation of the dual algorithm

The exact dual algorithm is based on the algorithm used to solve the nonlinear primal equations
for the flow unknowns. Consider the following form of the steady-state nonlinear governing
equations, where D and Q represent the vector of design variables and the corresponding
dependent variables, respectively, and R2 represents a second-order accurate discretization of the
spatial residual.
R2ðQ;DÞ ¼ 0: ð1Þ
Note that in practice, there is also an implicit dependency on the computational grid; the current
approach includes these terms, however they are omitted here to simplify the underlying analysis.

An iterative algorithm based on a backward-Euler integration scheme for the solution of the
nonlinear system of equations given by Eq. (1) can be written as
V
Dt

IðQnþ1 �QnÞ þ R2ðQnþ1;DÞ ¼ 0; ð2Þ
where V and Dt represent the local cell volume and time step, respectively, and Qn is the vector of
dependent variables at time step n. The nonlinear iterative scheme is attained by linearizing the
residual about time step:
V
Dt

I

�
þ oR2

oQ

�
DQn þ R2ðQn;DÞ ¼ 0; ð3Þ
where DQn ¼ Qnþ1 �Qn. Note the iteration superscript n is omitted from the Jacobian matrix
oR2=oQ for clarity; unless otherwise noted, these derivatives will all be evaluated at time step n.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1141
Since the Jacobian used in Eq. (3) is an exact linearization of R2, then for an infinite time step
Dt, the iterative scheme corresponds to Newton�s method, and Qnþ1 will converge quadratically to
the steady-state value Q� corresponding to D. However, the use of an exact Jacobian oR2=oQ is
often prohibitively expensive for realistic problems, so that an approximate form of Eq. (3) is
typically used:
V
Dt

I

�
þ oR1

oQ

�
DQn þ R2ðQn;DÞ ¼ 0; ð4Þ
where the exact Jacobian has been replaced with a linearization of some first-order approximation
to the spatial residual. The drawback to such an approach is that the asymptotic convergence of
the algorithm becomes linear in nature.

Eq. (4) is a linear system of equations for DQn, which in principle can be solved exactly. In
practice, however, the system is usually solved approximately by using an iterative method.
Therefore, Eq. (4) can be restated as
DQn þ PR2ðQn;DÞ ¼ 0; ð5Þ

where P is an approximation to the inverse of V =DtI þ oR1=oQ, typically achieved through some
iterative scheme such as Gauss–Seidel. In this manner, the rate of convergence is governed by the
largest eigenvalue of the matrix I � oðPR2Þ=oQ. As R2 approaches zero, the asymptotic rate of
convergence is then determined by the largest eigenvalue of the matrix I � PoR2=oQ.

3.1. Direct differentiation algorithm

With minor modifications, the iterative algorithm outlined above can be used to determine the
sensitivity derivatives of an output function f ¼ f ðQ�;DÞ with respect to a design variable.
Application of the chain rule yields the following:
df
dD

¼ of oQ�

oQ�oD
þ of
oD

: ð6Þ
Linearizing Eq. (1) with respect to D gives the linear residual equations for the sensitivity
derivatives oQ�=oD:
oR2 oQ
�

oQ� oD
þ oR2

oD
¼ 0: ð7Þ
Applying the algorithm of Eq. (3) to this expression gives an iterative scheme for oQ�=oD:
V
Dt

I

�
þ oR2

oQ

�
D

oQ�

oD

� �n

þ oR2

oQ�
oQ�

oD

� �n

þ oR2

oD
¼ 0: ð8Þ
Finally, replacing the exact Jacobian with the approximate Jacobian as before and performing an
approximate inverse gives the final form of the direct differentiation iterative algorithm for the
sensitivity derivatives oQ�=oD:
D
oQ�

oD

� �n

þ P
oR2

oQ�
oQ�

oD

� �n�
þ oR2

oD

�
¼ 0: ð9Þ

1142 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
Note the asymptotic rate of convergence is again dictated by the largest eigenvalue of
I � PoR2=oQ, and therefore will be equivalent to that of the scheme used to attain Q�. After N
iterations of Eq. (9), the derivative of the output f with respect to the design variables D may be
approximated as
df
dD

¼ of
oQ�

oQ�

oD

� �N

þ of
oD

: ð10Þ
3.2. Exact dual algorithm

In this section, an iterative solution of the dual problem is constructed in a manner which
guarantees that the functional estimate is identical at every iteration to that obtained from the
direct differentiation algorithm. Using an adjoint approach, [3,19] the sensitivity derivative of the
output can be written as
df
dD

¼ �KT oR2

oD
þ of
oD

; ð11Þ
where K is an adjoint variable that satisfies
oR2

oQ�

� �T
K� of

oQ�

� �T
¼ 0: ð12Þ
Since Eq. (12) is independent of the vector D, the adjoint approach is particularly attractive for
aerodynamic design problems with a large number of design variables and relatively few con-
straints. By multiplying Eq. (7) by KT and substituting Eq. (12), it can be show that
of oQ�

oQ�oD
¼ �KT oR2

oD
: ð13Þ
Therefore, the values of df =dD calculated from Eqs. (6) and (11) are identical. However, since an
iterative algorithm is used to estimate oQ�=oD, this relationship will not hold in general. Fol-
lowing Giles� exact dual approach, an iterative adjoint solution algorithm is sought which satisfies
of
oQ�

oQ�

oD

� �N

¼ �ðKNÞT oR2

oD
; ð14Þ
where N is some iteration at which the equality is to be enforced. However, the resulting exact
dual algorithm will not depend on N , and the expression given by Eq. (14) will be valid at every
iteration. In this sense, the adjoint iterative algorithm will be exactly dual to the direct differen-
tiation algorithm.

Introducing Lagrange multipliers, the left-hand side of Eq. (14) after N iterations can be written
as
of
oQ�

oQ�

oD

� �N

¼ of
oQ�

oQ�

oD

� �N

�
XN�1

n¼0

ðknþ1ÞT D
oQ�

oD

� �n�
þ P

oR2

oQ�
oQ�

oD

� �n�
þ oR2

oD

��
:

ð15Þ

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1143
Then, by defining
Kn ¼
XN�1

m¼N�n

PTkmþ1; ð16Þ
and performing the manipulations shown in Appendix A, the exact duality condition requires that
Knþ1 � Kn þ PT oR2

oQ�

� �T

Kn

"
� of

oQ�

� �T
#
¼ 0 ð17Þ
with an initial condition K0 ¼ 0. As mentioned previously, Eq. (17) is independent of N and thus
the exact duality condition holds for all values of N . This condition guarantees an asymptotic rate
of convergence for the dual problem which is governed by the largest eigenvalue of
I � PT½oR2=oQ

��T and is therefore ultimately equivalent to that of the solution for Q�.
3.2.1. Relationship between P and PT

In the current work, the approximate inverse P is the result of applying multiple iterations of a
fixed-point method to a system of the form Ax ¼ b. Here, the fixed-point method is given by the
line- and point-implicit schemes described above, which can be written in the following form:
Mxjþ1 ¼ bþNxj ð18Þ
or
xjþ1 � xj ¼ M�1ðb� AxjÞ; ð19Þ
where A ¼ M �N . Here, M is some matrix that is easily invertible and approximates A.
Given some initial estimate x0, after J iterations the scheme results in the following:
xJ � x0 ¼ ½I � ðM�1NÞJA�1�ðb� Ax0Þ: ð20Þ
Therefore, with respect to Eq. (9), the approximate inverse P using J iterations of the fixed-point
method is
P ¼ I � ðM�1NÞJA�1: ð21Þ
Forming the transpose of P yields
PT ¼ I � A�T½ðM�1NÞT�J : ð22Þ
Because M�1N ¼ I �M�1A, then
PT ¼ I � A�T½ðI �M�1AÞT�J
or
PT ¼ I � ½M�TNT�JA�T: ð23Þ
If the dual problem takes the form ATy ¼ g as in Eq. (17), then analogous to Eq. (20), Eq. (23)
implies that the fixed-point iterative scheme for the dual problem is

1144 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
yjþ1 � yj ¼ M�Tðg � ATyjÞ: ð24Þ
For a point-Jacobi scheme, the transpose operator applied to the iteration matrix M is of no
consequence, other than to imply that the diagonal blocks are to be transposed. However, for a
Gauss–Seidel iterative method such as the one used in the current work, the transpose operation
transforms an upper-triangular iteration matrix into a lower-triangular form, and vice versa.
Therefore, the transpose implies that even–odd sweeps through the system of equations must be
performed in a reverse manner. The same argument holds for the line-implicit operator used to
relax the boundary layer region, although the solution within each line can be obtained in the
same manner as the baseline scheme because the inversion is exact for the set of local equations
within the line.
4. Implementation of the dual algorithm

The majority of the effort associated with developing an adjoint solver is in forming the exact
linearizations of the second-order residual. For the codes used in the current study, this differ-
entiation has been previously performed and the accuracy has been established in [1,3,5]. The
implementation of the exact dual algorithm is primarily a high-level task that involves the
manipulation of existing routines; this process is made easier through the programming practices
established in [54].

After the flow solution has completed a series of n time steps using the algorithm given by Eq.
(5), the adjoint solve can be performed in an analogous fashion according to Eq. (17). Note that
the dual iterative scheme is essentially identical to the baseline analysis scheme so that little extra
coding is required.

According to Eq. (17), the exact linearization of the second-order spatial residual is required for
the adjoint computation. However, since these terms only appear in a matrix–vector product, they
can be formed on a term-by-term basis and therefore do not require the extensive storage typically
associated with the higher-order stencil. The transpose of the first-order Jacobian matrix
ðV =DtÞI þ oR1=oQ

� is used to solve the system of adjoint equations, so that the storage required
by the exact dual scheme is roughly equivalent to that of the baseline analysis code. This
requirement is in contrast to the solution algorithm outlined in [5], in which the complete line-
arization of the second-order residual ½oR2=oQ

��T was used as a preconditioner. The terms arising
from this larger stencil resulted in a memory requirement approximately five times that of the
scheme outlined in [38,39]. Finally, since the Jacobian matrix oR1=oQ

� is constant for an adjoint
computation, the block and tridiagonal-block decompositions used for the point- and line-implicit
iterations need only be performed once and stored.

The solution strategy outlined in [1] and [4] required a frequent computation of the form
½oR2=oQ

��TDK for the Krylov method being used. The viscous terms arising from the nearest-
neighbor discretization were stored, so that only the inviscid terms involving the larger stencil
were recomputed for each new Krylov vector. In the current work, an analogous approach can be
used in the formation of the adjoint residual component ½oR2=oQ

��TKn if additional memory is
available. Furthermore, if sufficient memory is available for the higher-order terms as used for the
preconditioner in [5], the complete linearization may be stored. In this manner, the residual up-

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1145
date at time step n reduces to an explicit matrix–vector product. Since all terms comprising the
residual are stored in this approach, the solution time for the adjoint problem could be reduced
considerably. Solution times and memory requirements for each of these strategies will be shown
in a subsequent section.

To alleviate the expense associated with computing further adjoint solutions when design
sensitivities or mesh adaptation criteria for additional output functions are desired, the current
implementation allows for multiple right-hand side vectors to be used. Since the vectors K, DK,
and the associated residual are the only terms that depend on each output function f , the
amount of additional storage required for this approach is minimal. A separate computation
of the quantities ½oR2=oQ

��TKn and DKn is necessary for each f ; however, the linearization of R2

at each iteration, the initial block- and block-tridiagonal decompositions of the coefficient
matrix, and the additional overhead of initializing and performing a computation need only
be performed once. The efficiency of this approach will be demonstrated in a subsequent sec-
tion.
5. Validation cases

A series of small test cases involving inviscid, laminar, and turbulent flow over the ONERA
M6 wing geometry is presented to verify that the exact dual algorithm has been implemented
correctly. Each of the viscous tests has been run using the line-implicit relaxation scheme. For
each example, the property of Eq. (14) has been verified to machine accuracy, and the
asymptotic convergence rates for density (and turbulence where appropriate) are shown to be
equal to that of the corresponding adjoint equations. For visual clarity, the convergence his-
tories of the momentum and energy equations and their adjoint counterparts are not shown in
the figures that follow, but have been found to closely fellow that of the density equation. The
cost function for each test case is based on lift, and the CFL number for the flow solution has
been linearly ramped from 10 to 200 over the first 50 iterations. Unless otherwise stated, each
of the computations shown here has been performed on sixteen 2.2 GHz Pentium IV pro-
cessors.

5.1. Inviscid wing

The first test case is inviscid flow, with a freestream Mach number equal to 0.84 and an angle of
attack of 3.06�. The grid for this test contains 357,900 nodes and 2,000,034 tetrahedra. The con-
vergence histories of the density equation for the flow and adjoint solutions are shown in Fig. 9; the
convergence rates are equivalent.

5.2. Laminar wing

The first viscous case is for laminar flow with a freestream Mach number of 0.3, an angle of
attack of 2� and a Reynolds number of 1000 based on the mean aerodynamic chord. The grid
shown in Fig. 1 is used for this example. The density convergence histories for the flow and adjoint
solutions are shown in Fig. 9, and the convergence rates are identical.

Iteration

R
es

id
ua

l

250 500 750 1000
10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

Inviscid

Iteration
250 500 750 1000

Laminar

Density
Density Adjoint

Fig. 9. Density residual histories for inviscid and laminar flow over ONERA M6 wing.

1146 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
5.3. Turbulent wing

The final validation case is for turbulent flow over the ONERA M6 wing on the same grid that
was used in the previous example. For this case, the freestream Mach number is 0.84, the angle of
attack is 3.06�, and the Reynolds number is 5 million based on the mean aerodynamic chord. The
convergence histories for the flow and adjoint equations shown in Fig. 10 exhibit similar
asymptotic rates, where the convergence of the density equation eventually stalls as machine
precision is achieved.

To further demonstrate the asymptotic nature of the flow and adjoint solution algorithms, the
turbulent flow test case is also used to examine the convergence of a cost function and its
derivatives. For this test, the wing has been parameterized by using the method of [55]. Fig. 11
shows the error in the lift coefficient as the flow solution converges; it also shows the error in the
derivatives of lift with respect to freestream Mach number, angle of attack, and several shape
design variables at the midspan location as the adjoint solution converges. For this case, the error
is defined as the difference between the current value and the final converged result. The errors are
reduced at a similar rate for each computation.

The turbulent flow test case is also used to evaluate the linearization storage strategies described
above. Tests are performed on sixteen 250 MHz R10000 processors of a Silicon Graphics Origin
2000 system to simplify memory monitoring and to eliminate the effects of network traffic. The
turbulent flow validation case has been repeated using each of the storage strategies; memory and
wallclock statistics are shown in Table 1.

Recomputing all of the necessary linearizations for the adjoint residual yields a memory
requirement roughly equivalent to that of the flow solution, while the wallclock time is approx-
imately 17% less. The primary reason for this discrepancy in solution times can be attributed to
the formation of the flux Jacobians for the left-hand side and their block decompositions. These

Iteration

R
es

id
ua

l

1000 2000 3000 4000
10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

Density
Turbulence
Density Adjoint
Turbulence Adjoint

Fig. 10. Density and turbulence residual histories for turbulent flow over ONERA M6 wing.

Iteration

E
rr

or

2000 2500 3000 3500 4000
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

CL

dCL/d(Mach)
dCL/d(Alpha)
dCL/d(Twist)
dCL/d(Shear)
dCL/d(Thickness)
dCL/d(Camber)

Fig. 11. Convergence of lift and lift derivatives for turbulent flow over ONERA M6 wing.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1147
terms are evaluated at each time step during a flow solution, whereas they are constant for an
adjoint computation and must only be formed once.

Alternatively, by storing the nearest-neighbor adjoint residual contributions that arise from the
linearization of the viscous and turbulent terms, the wallclock time for an adjoint solution can be
reduced to approximately half that of the flow solution while doubling the memory requirement.
Finally, by storing the complete linearization of the second-order residual, the computational time

Table 2

Relative execution times for simultaneous computation of multiple adjoint solutions

Output functions Relative execution time

CL 1.00

CL, CD 1.44

CLp , CDp , CLv , CDv 2.37

CLp , CDp , ðCMy Þp, CLv , CDv , ðCMy Þv 3.31

Table 1

Memory and CPU requirements for flow solver and various linearization storage strategies used for computing adjoint

residual

Solver Memory (GB) Wallclock time (h)

Flow solver 1.5 50.4

Adjoint solver

Explicit computation of all residual terms 1.6 42.0

Explicit computation of inviscid residual terms; viscous,

turbulent residual terms stored

3.1 25.9

All residual terms stored 10.8 17.1

1148 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
is reduced to roughly one-third of the baseline flow solution; however, the memory requirement
for this approach is a factor of 6 higher than the baseline flow solution algorithm. Based on these
results, the viscous and turbulent terms are stored throughout the remainder of the current work,
and the inviscid contributions are recomputed as needed.

The current turbulent flow test case is also used to demonstrate the relative efficiency in
computing simultaneous adjoint solutions for several output functions. To specify an output
function, the present implementation relies on a data structure that is identical to that used to
store the outputs generated by the flow solver. In this manner, it is trivial to specify output
functions for a subsequent adjoint computation on any arbitrary boundary or group of bound-
aries in the domain. For this test, the total lift, drag, and pitching moment coefficients are used as
output functions, as well as the individual contributions from pressure and viscous forces. Re-
lative timings based on the single-output function case are shown in Table 2, where simultaneous
adjoint solutions for up to six output functions are obtained at approximately 45% of the cost of a
separate additional computation.
6. Large-scale test cases

Two large-scale test cases are used to evaluate the solution algorithm on realistic configura-
tions. Each of the grids has been generated by using the method described in [56]. In the interest of
comparing asymptotic convergence behavior, solutions have been converged considerably beyond
the usual requirements for engineering-level answers; the stated run times do not represent time
required to obtain a sufficiently accurate solution.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1149
6.1. High-lift configuration

Turbulent flow over the high-lift configuration [57,58] shown in Fig. 12 is computed using
eighteen 1.7 GHz Pentium IV processors. The grid contains 846,863 nodes and 4,879,086 cells,
and the implicit line construction algorithm places 418,523 nodes in the line-implicit region. Al-
though only a single plane is shown, symmetry plane boundary conditions are used on both sides
of the configuration. The freestream Mach number is 0.2, the angle of attack is 12�, and the
Reynolds number is 9 million based on the stowed chord length. The CFL numbers for the flow
equations and turbulence model are linearly ramped from 10 to 200 and 1 to 20, respectively, over
the first 200 iterations. This combination of parameters is not necessarily optimal, but has been
found to work well for a number of cases. For this computation, the objective function is based on
the lift coefficient. The flow solver requires approximately 3.5 GB of memory and 36.2 h of
wallclock time for the current example; the adjoint solver requires roughly 7.1 GB and 19.2 h. The
Fig. 12. Surface grid for high-lift configuration.

Iteration

R
es

id
ua

l

1000 2000 3000
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2
Density
Turbulence
Density Adjoint
Turbulence Adjoint

Fig. 13. Density and turbulence residual histories for turbulent flow over high-lift configuration.

1150 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
convergence histories for the flow and adjoint solutions are shown in Fig. 13; the asymptotic rates
are similar.
6.2. Modern transport configuration

For this test, transonic flow over the modern transport configuration shown in Fig. 14 is
considered. The grid for this case contains 1,731,262 nodes and 10,197,838 cells. The implicit line
Fig. 14. Surface grid for modern transport configuration.

Iteration

F
lo

w
R

es
id

u
al

A
d

jo
in

tR
es

id
u

al

1000 2000 3000
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

Density
Turbulence
Density Adjoint
Turbulence Adjoint

Fig. 15. Density and turbulence residual histories for turbulent flow over modern transport configuration.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1151
construction algorithm places 1,220,567 nodes in the line-relaxation region. The freestream Mach
number for this case is 0.84, the angle of attack is 2.25�, and the Reynolds number is 3 million
based on the mean aerodynamic chord. The computations shown here are performed on twenty-
three 2.4 GHz Pentium IV processors, and the cost function is based on the drag coefficient.

The convergence histories for the flow and adjoint solutions are shown in Fig. 15. The CFL
numbers for the flow equations and turbulence model are linearly ramped from 10 to 200 and 1 to
20, respectively, over the first 200 iterations. The CFL number used for the turbulence model is
increased to 200 after the first 1000 iterations. As shown in Fig. 15, the asymptotic rates for both
computations are similar. For this example, the flow solution requires 7.4 GB of memory and 41.8
h of wallclock time; the adjoint solution requires 15.0 GB of storage and 32 wallclock hours.
7. Summary and future work

An adjoint solution algorithm that preserves discrete duality for turbulent flows on unstruc-
tured grids has been developed and implemented. The scheme is based on a backward-Euler
discretization of the Reynolds-averaged Navier–Stokes equations with a tightly coupled one-
equation turbulence model, where the linear problem at each time step is solved with a line-
implicit relaxation in the boundary layer and a point-implicit technique through the remainder of
the domain.

Results for several cases show that the exact dual scheme achieves asymptotic convergence
behavior equivalent to that of the flow problem. By storing the viscous and turbulent contribu-
tions to the adjoint residual, the memory required for the algorithm is approximately twice that of
the flow solution, but with execution times roughly 25–50% less for an equivalent number of

1152 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
iterations. For multiple output functions, a significant savings is achieved by simultaneously
computing adjoint solutions within the context of a single execution, with a negligible amount of
additional memory required.

Efforts are currently underway to develop a multigrid implementation for improved conver-
gence rates and to extend the discretization to include mixed-element grids. Real gas physical
models from existing hypersonic structured-grid solvers are also being added, with the long-term
goal of achieving a self-adaptive analysis and design capability valid across the speed range [59].
Acknowledgements

The authors wish to thank Drs. James Thomas, Kyle Anderson, Steve Allmaras, and Peter
Gnoffo for many helpful discussions pertaining to the current work. Dr. Jamshid Samareh and
Elizabeth Lee-Rausch are gratefully acknowledged for providing the geometric parameterization
and high-lift grid, respectively. The study would not have been possible without the computa-
tional resources provided by Sally Viken and Bil Kleb, and Drs. Mark Carpenter, Veer Vatsa, and
Dick Wilmoth.
Appendix A. Derivation of exact dual outer iteration

In this appendix, the expression given by Eq. (15) is manipulated to give the exact dual iterative
scheme as shown in Eq. (17). The derivation shown here is identical to that of [20].

Using the discrete form of integration by parts, namely
XN�1

n¼0

anþ1ðbnþ1 � bnÞ ¼ aNbN � a0b0 �
XN�1

n¼0

ðanþ1 � anÞbn: ðA:1Þ
Eq. (15) can be expanded as
of
oQ�

oQ�

oD

� �N

¼ of
oQ�

oQ�

oD

� �N

� ðkNÞT oQ�

oD

� �N

þ ðk0ÞT oQ�

oD

� �0

þ
XN�1

n¼0

ðknþ1

�
� knÞT oQ�

oD

� �n

þ ðknþ1ÞTP oR2

oQ�
oQ�

oD

� �n�
þ oR2

oD

��
: ðA:2Þ
Rearranging terms and applying the initial condition ½oQ�=oD�0 ¼ 0 gives
of
oQ�

oQ�

oD�

� �N

¼ of
oQ�

�
� ðkNÞT

�
oQ�

oD

� �N

þ
XN�1

n¼0

ðknþ1

"(
� knÞT þ oR2

oQ�

� �T

PTknþ1

#
oQ�

oD

� �n

� PTknþ1 oR2

oD

�
: ðA:3Þ
By applying the condition kN ¼ ðof =oQ�ÞT and the variable substitution shown in Eq. (16), the
exact dual iteration takes the form of Eq. (17) through the elimination of the terms involving
oQ�=oD.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1153
References

[1] Nielsen EJ. Aerodynamic design sensitivities on an unstructured mesh using the Navier–Stokes equations and a

discrete adjoint formulation. PhD dissertation, Department of Aerospace and Ocean Engineering, Virginia

Polytechnic Institute and State University, December 1998.

[2] Anderson WK, Bonhaus DL. Airfoil design on unstructured grids for turbulent flows. AIAA J 1999;37(2):185–

91.

[3] Anderson WK, Venkatakrishnan V. Aerodynamic design optimization on unstructured grids with a continuous

adjoint formulation. Comput Fluids 1999;28(4):443–80.

[4] Nielsen EJ, Anderson WK. Aerodynamic design optimization on unstructured meshes using the Navier–Stokes

equations. AIAA J 1999;37(11):1411–9.

[5] Nielsen EJ, Anderson WK. Recent improvements in aerodynamic design optimization on unstructured meshes.

AIAA J 2002;40(6):1155–63.

[6] Jameson A. Aerodynamic design via control theory. J Sci Comput 1988;3:233–60.

[7] Jameson A, Pierce NA, Martinelli L. Optimum aerodynamic design using the Navier–Stokes equations. AIAA

Paper 97-0101, January 1997.

[8] Reuther JJ, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D. Constrained multipoint aerodynamic shape

optimization using an adjoint formulation and parallel computers. J Aircraft 1999;36(1):51–60.

[9] Elliott J, Peraire J. Practical three-dimensional aerodynamic design and optimization using unstructured meshes.

AIAA J 1997;35(9):1479–85.

[10] Soemarwoto B. Multipoint aerodynamic design by optimization. PhD dissertation, Department of Theoretical

Aerodynamics, Delft University of Technology, December 1996.

[11] Mohammadi B. Optimal shape design, reverse mode of automatic differentiation and turbulence. AIAA Paper 97-

0099, January 1997.

[12] Nemec M, Zingg DW. Towards efficient aerodynamic shape optimization based on the Navier–Stokes equations.

AIAA Paper 2001-2532, 2001.

[13] Kim H-J, Sasaki D, Obayashi S, Nakahashi K. Aerodynamic optimization of supersonic transport wing using

unstructured adjoint method. AIAA J 2001;39(6):1011–20.

[14] Soto O, Lohner R. A mixed adjoint formulation for incompressible turbulent problems. AIAA Paper 2002-0451,

2002.

[15] Sung C, Kwon JH. Aerodynamic design optimization using the Navier–Stokes and adjoint equations. AIAA Paper

2001-0266, 2001.

[16] Kim CS, Kim C, Rho OH. Sensitivity analysis for the Navier–Stokes equations with two-equation turbulence

models. AIAA J 2001;39(5):838–45.

[17] Iollo A, Salas MD, Ta�asan S. Shape optimization governed by the Euler equations using an adjoint method.

ICASE Report No. 93-78, November 1993.

[18] Newman III JC, Taylor III AC, Burgreen GW. An unstructured grid approach to sensitivity analysis and shape

optimization using the Euler equations. AIAA Paper 95-1646, 1995.

[19] Giles MB, Pierce NA. An introduction to the adjoint approach to design. Flow, Turbulence Combust 2000;65(3

and 4):393–415.

[20] Giles MB. On the use of Runge–Kutta time-marching and multigrid for the solution of steady adjoint equations.

AD2000 Conference in Nice, June 19–23, 2000.

[21] Giles MB. Adjoint code developments using the exact discrete approach. AIAA Paper 2001-2596, 2001.

[22] Giles MB. On the iterative solution of adjoint equations. In: Corliss G, Faure C, Griewank A, Hascoet L,

Naumann U, editors. Automatic differentiation: from simulation to optimization. Springer-Verlag; 2001.

[23] Giles MB, Duta MC, Muller J-D, Pierce NA. Algorithm developments for discrete adjoint methods. AIAA J

2003;41(2):198–205.

[24] Monk P, Suli E. The adaptive computation of far-field patterns by a posteriori error estimation of linear

functionals. SIAM J Numer Anal 1998;8:251–74.

[25] Paraschivoiu M, Peraire J, Patera A. A posteriori finite element bounds for linear-functional outputs of elliptic

partial differential equations. Comput Methods Appl Mech Eng 1997;150:289–312.

1154 E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155
[26] Pierce NA, Giles MB. Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev

2000;42(2):247–64.

[27] Venditti DA, Darmofal DL. Adjoint error estimation and grid adaptation for functional outputs: application to

quasi-one-dimensional flow. J Comput Phys 2000;164:204–27.

[28] Venditti DA, Darmofal DL. Grid adaptation for functional outputs: application to two-dimensional inviscid flows.

J Comput Phys 2002;176:40–69.

[29] Muller JD, Giles MB. Solution adaptive mesh refinement using adjoint error analysis. AIAA Paper 2001-2550,

2001.

[30] Venditti DA. Grid adaptation for functional outputs of compressible flow simulations. PhD dissertation,

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, June 2002.

[31] Park MA. Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA Paper 2002-3286, 2002.

[32] Venditti DA, Darmofal DL. Anisotropic grid adaptation for functional outputs: application to two-dimensional

viscous flows. J Comput Phys 2003;187:22–46.

[33] Peraire J, Vahdati M, Morgan K, Zienkiewicz OC. Adaptive remeshing for compressible flow computations.

J Comput Phys 1987;72:249–66.

[34] Pirzadeh SZ. A solution-adaptive unstructured grid method by grid subdivision and local remeshing. J Aircraft

2000;37(5):818–24.

[35] Park MT, Kwon OJ. Unsteady flow computations using a 3-D parallel unstructured dynamic mesh adaptation

algorithm. AIAA Paper 2001-0865, 2001.

[36] Warren GP, Anderson WK, Thomas JL, Krist SL. Grid convergence for adaptive methods. AIAA Paper 91-1592,

1991.

[37] Elliott J. Discrete adjoint analysis and optimization with overset grid modelling of the compressible high-Re

Navier–Stokes equations. In: 6th Overset Grid and Solution Technology Symposium, Fort Walton Beach, FL,

October 2002.

[38] Anderson WK, Bonhaus DL. An implicit upwind algorithm for computing turbulent flows on unstructured grids.

Comput Fluids 1994;23(1):1–21.

[39] Anderson WK, Rausch RD, Bonhaus DL. Implicit/multigrid algorithms for incompressible turbulent flows on

unstructured grids. J Comput Phys 1996;128:391–408.

[40] Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.

SIAM J Sci Stat Comput 1986;7(3):856–69.

[41] Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0429, 1992.

[42] Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 1981;

43(2):357–72.

[43] Van Leer B. Flux vector splitting for the Euler equations. Lect Notes Phys 1982;170:501–12.

[44] Baldwin BS, Barth TJ. A one-equation turbulence transport model for high Reynolds number wall bounded flows.

NASA Technical Memorandum 102847, August 1991.

[45] Allmaras SR. Multigrid for the 2-D compressible Navier–Stokes equations. AIAA Paper 99-3336, 1999.

[46] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6 wing at transonic Mach numbers, experimental

database for computer program assessment. AGARD-AR-138, May 1979. p. B1-1–44.

[47] Trottenberg U, Oosterlee C, Schuller A. Multigrid. San Diego: Academic Press; 2001. p. 134.

[48] Venkatakrishnan V. Improved multigrid performance of compressible Navier–Stokes solvers. AIAA Paper 98-

2967, 1998.

[49] Mavriplis D. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. J Comput Phys

1998;145(1):141–65.

[50] Redeker G. DLR-F4 wing body configuration. AGARD-AR-303, vol. 2, August 1994.

[51] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci

Comput 1998;20(1):359–92.

[52] Karypis G, Kumar V. Multilevel algorithms for multi-constraint graph partitioning. University of Minnesota

Technical Report No. 98-019, 1998.

[53] Levy DW, Zickuhr T, Vassberg J, Agrawal S, Wahls RA, Pirzadeh S, et al. Summary of data from the first AIAA

CFD drag prediction workshop. AIAA Paper 2002-0841, 2002.

E.J. Nielsen et al. / Computers & Fluids 33 (2004) 1131–1155 1155
[54] Kleb WL, Nielsen EJ, Gnoffo PA, Park MA, Wood WA. Collaborative software development in support of Fast

Adaptive AeroSpace Tools (FAAST). AIAA Paper 2003-3978, 2003.

[55] Samareh JA. A novel shape parameterization approach. NASA TM-1999-209116, May 1999.

[56] Pirzadeh S. Three-dimensional unstructured viscous grids by the advancing-layers method. AIAA J 1996;34(1):43–

9.

[57] Spaid FW. High Reynolds number multielement airfoil flowfield measurements. J Aircraft 2000;37(3):499–507.

[58] Rumsey CL, Lee-Rausch EM, Watson RD. Three-dimensional effects on multi-element high lift computations.

AIAA Paper 2002-0845, 2002.

[59] Alexandrov N, Alter S, Atkins H, Bey K, Bibb K, Biedron R, et al. Opportunities for breakthroughs in large-scale

computational simulation and design. NASA TM-2002-211747, April 2002.

	An implicit, exact dual adjoint solution method for turbulent flows on unstructured grids
	Introduction
	Flow solution method
	Tightly coupled turbulence model
	Line-implicit relaxation scheme
	Line construction method
	Line-relaxation algorithm

	Derivation of the dual algorithm
	Direct differentiation algorithm
	Exact dual algorithm
	Relationship between P and PT

	Implementation of the dual algorithm
	Validation cases
	Inviscid wing
	Laminar wing
	Turbulent wing

	Large-scale test cases
	High-lift configuration
	Modern transport configuration

	Summary and future work
	Acknowledgements
	Derivation of exact dual outer iteration
	References

