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Abstract 
This paper describes an approach for optimizing over inter-
dependent planning goals. Most planning systems allow 
only simple, static dependencies to be defined among goals 
where these dependencies remain constant between different 
problems. However, in many domains, goals are related 
through detailed utility models that may significantly change 
from problem to problem. For instance in one problem, a 
particular goal’s utility may increase if other related goals 
can be achieved.  In another problem, this utility increase 
may differ or actually decrease if the same combination of 
goals is achieved.  To address these types of problem 
situations, we have implemented a methodology  for 
representing and utilizing information about interdependent 
goals and their related utilities using the ASPEN planning 
and scheduling system. We show through experimental 
results that this approach significantly increases overall plan 
quality versus a standard approach that treats goal utilities 
independently. 

Introduction   
As the sophistication of planning techniques grows, these 
systems are being applied to an increasing number of real-
world problems.  For instance, planning and scheduling 
techniques are currently being applied with great success 
to handle problems in manufacturing, logistics, and space 
exploration. In a typical application, a planner is given a set 
of goals, and it then constructs a detailed plan to achieve 
the goals where the plan must respect any applicable 
domain rules and constraints. A limitation of most planning 
systems , however, is that they define relationships between 
input goals in a simple, static manner, which cannot be 
easily adjusted for different problem situations. In many 
domains, goals can be related in complex and varying ways 
that are best represented through utility metrics. These 
metrics are hard to include as part of a standard domain 
definition, since they are often dependent on current data 
and can vary widely from problem to problem.  
 When planning for NASA spacecraft or rover missions, 
planning goals are often dictated by science data that has 
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just been collected.  For instance, an initial visual sweep of 
an area by onboard rover cameras may indicate more 
specific terrain targets that should be investigated. 
Relations or dependencies between science goals often 
only become apparent when goals are being instantiated 
based on current data. One example of a dependency 
between goals is when the achievement of one goal affects 
the utility of another goal. For instance, when collecting 
geology samples of a new planetary terrain, it is often 
helpful to take not only measurements of a target rock, but 
also science readings of its surrounding terrain and other 
similar rocks that may be encountered. The original sample 
would still be useful without these additional 
measurements, but it is much more valuable when related 
measurements are also taken. Conversely, in others 
situation these interdependency relations may change.  For 
instance, it may be deemed more important to collect 
samples of several distinct rock types located in different 
areas as opposed to collecting several samples from only 
one particular rock.  
 These types of goal interdependencies can be seen in 
other domains as well.  For instance, consider a travel-
planning domain where we have a set of goals for planning 
a business trip for several different people to the same 
location.  Thus, all travelers need to arrive at the same 
destination and in the same general timeframe. In most 
cases, they would all like to arrive on the same day and 
time, however, plans that have some travelers arriving one 
day earlier are still valid and would still be considered. 
Furthermore, preferences for when people arrive could 
change from trip to trip.  On one trip it may be important 
that a certain set of people arrive on the same day to attend 
a particular meeting. On other trips this criteria may be less 
important or apply to a different set of people.  Rep-
resenting such information in current planning systems 
would be difficult since most goal dependencies are 
typically pre-defined using domain models and cannot 
easily change between problem instances based on new 
preference information. 
 Approaches to goal handling and representation vary 
widely among planning and scheduling systems.  In some 
approaches, all goals must be achieved (i.e., included in the 
final plan) for the planner to even reach a solution.  In other 
approaches, goals can be given different priorities or 



utilities, and the planner will try to create a plan that 
achieves the highest utility score. Some goals may be 
deleted, or not added to the plan, so that the final activity 
sequence will correctly obey any relevant state and 
resource constraints and so that other more important goals 
can be achieved. Other approaches enable a planner to 
accept both goals and other quality objectives, such as 
minimizing makespan, avoiding missed deadline costs, or 
minimizing the usage of a particular resource (Williamson 
and Hanks, 1994; Joslin and Clements, 1999; Rabideau, et al, 
2000).  However, even in approaches that allow the usage 
of more flexible optimization metrics, goal relationships are 
pre-defined in a domain model and typically remain 
relatively constant between problem instances. 
Furthermore, it is difficult to define utility metrics that 
involve specific goal instances as opposed to a general 
quality concept that applies to a certain class of goals (e.g., 
increasing the number of orders filled). 
 Most planning systems do allow you to define some 
types of static dependencies between goals.  For instance, 
two goal or action types  could be defined as related in a 
domain model, perhaps through a decomposition of a 
parent activity.  In a travel domain, you might often want to 
tie a “board-plane” action with a “deboard-plane” action, 
since both will commonly occur in the same plan.  Some 
static dependencies may also be defined automatically 
through other parts of the model definition.  For instance, 
pre- and post-conditions links can relate certain goals.  A 
domain model does typically allow goals to be linked in 
different ways (e.g., a goal that could decompose to several 
different sets of actions or goals), however, these options 
are usually limited to several commonly-seen combinations. 
Encoding a large number of dependency options in a 
domain model would be intractable both for modeling ease 
and search complexity. No current planning systems enable 
dynamic dependencies between goals to be easily defined 
and utilized where these dependencies can significantly 
vary from problem to problem and can be defined as part of 
the problem specification instead of the domain model. 
 This paper presents a method for handling 
interdependent planning goals while performing plan 
construction and optimization. In this approach, 
interdependencies between goals can be formulated 
dynamically and provided to the planning system as part of 
the goal input.  The planning system can then reason about 
these dependencies and incorporate them into the overall 
objective function it uses to rate plan quality and direct its 
search process. This optimization approach has been 
implemented on top of the ASPEN planning and scheduling 
system (Chien, et al., 2000).  ASPEN already has a base 
optimization framework that we have extended to handle 
this class of problems (Rabideau, et al., 2000).  This new 
approach has been tested on a series of problems based on 
a team of rovers performing geological experiments in a new 
terrain.  Experimental results show that by using 
information about related goals, our approach is able to 
significantly improve plan quality. 

 This paper is organized as follows. First, we introduce 
the rover-application domain and autonomous science 
system that originally inspired this optimization work. We 
also describe the base planning system and optimization 
framework that we have used as a base platform. Next we 
describe our approach for plan optimization using 
interdependent goals. This section discusses how inter-
dependent goals and their utilities are represented, how our 
objective function works, and how the overall optimization 
framework is designed.  We then present experimental 
results using the previously introduced rover domain that 
demonstrate the effectiveness of our optimization 
approach. Finally, we overview related work, discuss future 
research ideas, and present our conclusions. 

Multi-Rover Science Application 
In recent years, NASA has begun to focus on missions that 
utilize rovers to perform exploration and understanding of 
planetary terrains. Future missions will likely send teams of 
rovers to explore planetary surfaces.  These rovers will 
need to behave in a coordinated fashion where each rover 
operates autonomously, requiring little communication with 
Earth, but is still able to appropriately coordinate its 
activities with other rovers. 

MISUS System 
 
The Multi-rover Integrated Science Understanding System 
(MISUS) (Estlin, et al., 1999) was designed to control and 
coordinate multi-rover science operations. Using MISUS, a 
team of rovers can autonomously generate and achieve 
planetary science goals. MISUS integrates techniques from 
planning and scheduling with machine learning to enable 
multi-rover behavior for 1) analyzing science data, 2) 
evaluating potential new science observations to perform, 
and 3) deciding what exact steps should be taken to 
perform them.  One of the primary motivations for the work 
presented in this paper was to support science-goal 
specification and achievement, where goal utilities can 
dramatically shift over time as more and more data is 
collected and analyzed.  We also believe that the work 
presented in this paper is applicable to a large number of 
domains where goal dependencies and utilities can vary 
from problem to problem. We next give a short background 
on the MISUS system and then further explain the 
planning-optimization approach utilized by this system.  
 MISUS is comp rised of the following major components: 
 
• Planning:  A distributed planning system that produces 

rover-operation plans to achieve input science goals  
(Estlin, et al., 2000).  This system distributes science 
goals among rovers and plans for operations on each 
individual rover. A domain model is used to ensure plans 
to do not violate any resource or other rover-operation 
constraints . 



• Data Analysis: A distributed machine-learning system 
that performs unsupervised clustering to model the 
distribution of rock types observed by the rovers.  This 
system is designed to direct rover sensing with the goal 
of continually improving the scientific model of planetary 
scene. 

• Rover Environment Simulator: A multi-rover simulator 
that models different geological environments and rover 
science activities within them.   

 
MISUS operates in a closed-loop fashion, as shown in 

Figure 1, where the data-analysis system can be seen as 
taking the role of the scientist driving the exploration 
process.  Science data is  received by the data-analysis  
system, which integrates all gathered data into an updated 
global model. A prioritization algorithm uses the clustering 
output to generate a new set of observation goals  that will 
further improve the accuracy of the global model. The 
specific value of a new science measurement is often 
dependent on what data has already been collected as well 
as what other related measurements can be taken. Both 
individual goals and specified goal combinations are 
assigned utilities reflecting their overall value to the science 
system. These goals are passed to the planning system, 
which assigns individual rovers to goals and produces a 
set of actions for each rover to achieve as many of its 
assigned goals as possible. These action sequences are 
then executed in the environment simulator. Any gathered 
data is sent back to the data-analysis system. This cycle 
continues until enough data is gathered to determine the 
validity of a particular scientific hypothesis or accomplish a 
high-level goal. 

 

ASPEN Planning System 
To produce individual rover plans for a team of rovers, we 
have adapted a version of the Automated Scheduling and 
Planning Environment (ASPEN) (Chien, et al., 2000).  
ASPEN is an object-oriented system that provides a 
reusable set of software components, which implement 

features commonly found in complex planning/scheduling 
systems.  These features include a constraint management 
system for representing and maintaining temporal and 
resource constraints and a language for representing plan 
preferences and optimizing over these preferences.  
 ASPEN automatically generates the necessary activity 
sequence to achieve a set of input goals.  One of the main 
algorithms used to produce this sequence is a local, early-
commitment version of iterative repair (Minton and 
Johnston, 1988; Zweben et al., 1994), which classifies plan 
conflicts and attacks them individually.  Conflicts occur 
when a plan constraint has been violated, where this 
constraint could be temporal or involve a resource, state or 
activity parameter.  Conflicts are resolved by performing 
one or more schedule modifications such as moving, 
adding or deleting activities.   

Planning for MISUS can be performed in either a 
centralized fashion, where one planner controls multiple 
rovers, or in a distributed fashion, where each rover has a 
separate onboard planner controlling its operations (Estlin, 
et al., 2000).  In either case, goals are distributed among 
rovers in a way that should minimize overall distance 
traversed and power utilized. For this paper, we have tested 
our optimization approach utilizing the centralized planning 
option.  In future work, the techniques presented in this 
paper will be migrated to operate in a distributed planning 
system. 

Plan Optimization 
ASPEN provides an optimization framework that allows the 
representation of continuous soft constraints (i.e., 
preferences) (Rabideau, et al., 2000). These constraints 
differ from the traditional hard constraints that must be 
satisfied for a plan to be considered correct and feasible.  
Soft constraints allow the quality of a plan to be 
represented and allow evaluation of a plan at a finer 
granularity than simply consistent or violated.  Similar to 
the iterative-repair approach, a preference can be improved 
by making repair-like modifications to the plan. 
 In ASPEN, a preference is defined as a mapping from a 
plan variable to a quality metric (i.e., score).  Plan variables 
include items such as local activity parameters, 
activity/goal count, resource/state variables, etc. 
Specifically, a preference indicates whether the score is 
monotonically increasing or decreasing with respect to the 
plan variable within certain bounds. Example preferences 
include “prefer linearly more observation occurrences”, 
which encourages more observation activities to be 
performed, or “prefer exponentially more battery min value,” 
which favors keeping the minimum battery charge at a high 
level. Each preference also includes a weight for specifying 
the relative importance of the preference to overall plan 
quality.  The score of a plan is computed as the weighted 
average of scores for plan variables with preferences. 
 For each defined preference, an improvement expert 
automatically generates modifications that could potentially 
improve the preference score.  Improvement experts are 
based on the class of preference and variable for which 
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Figure 1: MISUS closed-loop data-flow  
 



they are constructed.  An instance of an expert uses the 
preference specification to calculate plan modifications that 
will improve the score for the given preference and current 
plan.  The set of modifications produced by the expert are 
not guaranteed to improve the overall plan score but 
instead define the search space of possible improvements, 
which the planner can consider. 
 The overall iterative optimization algorithm works by 
first selecting a preference to work on, and then deciding 
what type of plan modification should be performed to try 
and improve the selected preference. These modification 
options are often similar to the options considered by the 
iterative repair algorithm, and include adding, deleting, and 
moving activities as well as changing parameter values. 
Iterative optimization can also utilize iterative repair to find 
a feasible plan in situations where trying to improve upon a 
particular preference has created new plan conflicts. 
 While ASPEN’s optimization framework enables the 
planner to generate high quality plans, in its current form it 
does not consider the value of interdependent goal 
combinations.  In the following sections we will formalize 
what we mean by goal interdependencies and describe how 
we extended ASPEN to improve plan quality when goal 
interdependencies occur in problem specifications. 

Interdependent Goals and Utilities 
Historically in planning and scheduling systems, goal 
selection has been a linear process in which goals are 
independently selected and prioritized based on their 
expected reward.  However, in some applications, this 
model is insufficient to correctly characterize the utility of a 
plan.  For instance, in the case of performing science 
experiments in a new planetary terrain, goal priorities 
should be determined by the expected reduction in 
uncertainty associated with the current scientific model.  
There are many situations in this type of domain where the 
value of a science goal will be increased if other related 
science goals can also be achieved. For instance, collecting 
images of a particular rock from different angles and 
distances often increases the value of all images taken of 
that rock, since a better overall analysis of the rock can be 
done. Conversely, there are situations in which it is very 
important to achieve one of a set of goals, but having 
accomplished one in the set, the others become less 

important. For instance, we may have the case where we 
only want a rover to collect one or two more samples of a 
particular rock type but there are a large number of possible 
targets from where to collect such a sample.  In this 
situation, we would like to direct the planner to collect a 
couple samples and then move on to other science 
experiments. If samples were collected at all target sites, this 
data would be overly redundant and somewhat lower the 
utility of the overall set since time had been wasted 
collecting unneeded data. 
 To represent a goal’s value, we have extended a typical 
goal-utility representation (where goals can have individual 
rewards representing their importance) so that complex 
interdependencies and their relevant utilities can be 
represented and utilized by a planning system.  Furthermore 
these interdependencies and utilities can change between 
problem specifications without requiring any changes to 
the planner domain model. In our representation, a list of 
goals and goal combinations are provided to the planner.  
A utility value is also assigned to each goal and to each 
specified goal combination.  As an example, consider the 
spectral measurement and image goals shown in Table 1, 
which are from the previously introduced rover domain.  
Let’s assume these goals are interdependent in several 
ways.  First, Goals 1-3 are for spectrometer readings for the 
same type of rock and it has been deemed necessary to 
obtain only one such reading and any more would add little 
value to the current set of collected data.  Second, Goals 4-7 
are for the same rock or rock area and it has been 
determined desirable to obtain all of those observations.  
However, if only a few can be obtained that data would still 
be beneficial but not provide as much scientific value as the 
entire set. 
 These types of goal combinations are difficult to 
represent in standard planning-optimization approaches. 
As mentioned previously, a number of systems represent 
goal rewards in the form of utility functions or preferences, 
however, these approaches typically try to maximize a 
certain goal type or minimize usage of a certain resource.  
For instance, a utility function may try to minimize the 
amount of fuel used in transporting objects, or may try to 
maximize the number of factory orders that can be filled.  
This type of representation is limited in that it prefers to 
decrease or increase the number of goals or activities of a 
general type, where each goal or activity is  viewed as 
relatively equal (or interchangeable). The goal inter-

Goal Num Target Description Location (x,y,z) Reward 
1 Spectrometer read for rock type x (3.4, -34.6, 2.0) 10 
2 Spectrometer read for rock type x (162.3, 43.9, 1.1) 10 
3 Spectrometer read for rock type x (-4.1, 145.8, 0.4) 10 
4 Spectrometer read for rock type y in area A (104.3, -12.1, 1.5) 12 
5 Soil sample from area A (103.5, -13.4, 0.2) 15 
6 Rock image for rock type y in area A (104.3, -12.1, 1.5) 10 
7 Dust collection experiment from area A (105.1, -13.7, 1.5) 12 

Table 1: Example sets of science goals given to planning system 

 



dependencies required for deducing many scientific 
hypotheses are often much more complex since each 
individual goal may play a different role in the overall 
success of an experiment. 
 We can visually represent goal interdependencies 
between a set of two goals by using a graph structure 

where vertices represent 
individual goal rewards 
and edges represent inter-
dependent goal rewards.  
For example, Figure 3 
shows two goals that 
have individual rewards 
(rep-resented by G1 and 
G2) and a combined 
reward represented by 
R12.  There may also be 
dependencies between 
sets of three and four 

goals (i.e., you get reward R12 if goals G1 and G2 are 
achieved, you get reward R23 if goals G2 and G3 are 
achieved, and if all three goals are achieved, you also get 
reward R123). In general, the graph may contain hyperedges 
linking several goals to their combined value. Table 2 
shows interdependent goal rewards for the goals 
introduced in Table 1. Goal combinations for goals 1-3 are 
given slight negative rewards to show that achieving more 
than one goal in this set actually has less value than just 
achieving one. The goal combination for goals 4-7 shows 
that achieving all of the goals in that set has a large bonus 
reward. 

 
Plan Optimization for Interdependent Goals 

 
We extended the ASPEN optimization system to support 
the inclusion of goal interdependencies with a planning 
problem description.  The extension consists of two main 
components: an objective function to compute the value of 
the plan with respect to the goal interdependencies and an 
optimization framework for selecting goals to achieve and 
coordinating optimization with plan repair.  

Objective Function  
As is the case with most planners, the ASPEN problem 
specification includes a description of the goals that must 
be achieved to accomplish a particular problem. In addition, 
ASPEN can accept a set of optional goals that, while not 
required, will increase the quality of the plan as more of 
these goals are accomplished. This is useful when the 

planner is given more goals than are feasible to achieve 
given its resource constraints.  In this case, ASPEN will use 
an objective function to try to find a subset of goals that 
result in a valid, high quality plan.  
 Our extended version of ASPEN also takes as input a set 
of goal interdependencies specified as a graph of goal 
nodes as described in the previous section.  The graph 
consists of a set of vertices V where each vertex 
corresponds to a goal that can be added to the plan, 
including both mandatory and optional goals, and a set of 
edges E.  Each edge consists of a tuple of vertices: <v1, v2, 
... vn>.  For each vertex and each edge, there is an 
associated weight w<v1, v2, ... vn> indicating the value that will 
be added to the plan if the plan includes these goals.  This 
representation allows us to express singleton goal values, 
that is a goal whose contribution to the plan does not 
change as other goals are added, and any n-ary goal 
relationship to indicate the value that combination of goals 
add to the plan.  
 We use a simple objective function to calculate the plan 
quality with respect to these optional goals.  Let G be the 
set of goals that occur in the plan. The value of plan P is 
then given by Equation 1. This function sums up the values 
of all goals that occur in the plan along with the weight for 
each edge for which all of the edge's vertices occur in the 
plan.  

 Please note, however, that although Equation 1 
represents the quality of the plan with respect to 
interdependent goals , this is not the only type of 
preference a user might specify for a given problem. As 
described earlier, there is a large set of preferences that may 
be included, each with their own objective function. The 
overall score for a plan is computed by calculating the 
objective function for each preference and then performing 
a weighted sum of their scores.  

Optimization Framework  
The objective function above enables ASPEN to calculate 
the score of a plan.  The next step is to provide an 
improvement expert that can suggest what changes ASPEN 
should make to the plan to increase this score.  Clearly, the 
improvement expert for interdependent goals should 
suggest adding more optional goals to the plan.  However, 
adding a goal will likely result in conflicts in the plan since 
it is usually necessary to add or modify other activities in 
the plan to achieve a goal.  Therefore it is also necessary to 
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Figure 3: Two related goals  
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Equation 1: Objective function for calculating plan utility 

when using interdependent goals  

Goal Combination Reward 
<Goal 1, Goal 2> -5 
<Goal 1, Goal 3> -5 
<Goal 2, Goal 3> -5 
<Goal 4, Goal 5, Goal 6, Goal 7> 60 

Table 2: Goal interdependencies and corresponding 
rewards 



coordinate the process of improving the plan score with 
ASPEN's repair process to fix conflicts in plans.  
 Our current approach to performing optimization for 
interdependent goals is randomized hill-climbing with 
restart.  We begin by first creating a plan that achieves all 
of the mandatory goals in the plan. We then perform a 
series of optimization steps where each optimization step 
consists of i iterations. At each iteration, if there are no 
conflicts in the plan, we use the improvement expert to 
suggest the next optional goal to add, and then add this 
goal to the plan.  If there are conflicts, we perform an 
iteration of repair.  Whenever we have a conflict free plan, if 
its score is the best we have seen, we record its point in the 
search space.  At the end of the ith iteration, we return to 
point in the search space with the highest valued, conflict-
free plan and begin the next optimization step. This 
approach protects against the possibility of adding a goal 
to the plan that cannot be solved.  By always returning to a 
valid plan, we can restart the hill climbing process.    
 Our improvement expert takes a greedy approach to 
selecting the next goal to add.  For each optional goal that 
is not currently in the plan, it computes the score that the 
plan would have if it were in the plan.  It suggests adding 
the goal that improves the plan the most. However, the 
improvement expert must avoid the trap of continually 
suggesting the addition of a goal that cannot be achieved, 
even if achieving it would provide the best improvement to 
the score. Therefore, an element of randomness is included.  
The highest scoring goal is returned with probability 1 - ε, 
otherwise a goal is selected randomly with a probability of 
picking each goal relative to the amount that that goal 
improves the objective function.  
 Some care is needed in selecting the parameters for this 
algorithm. If it is usually possible to achieve any optional 
goal, then ε should be kept small, otherwise the 
performance of the optimizer will not do much better than 
one would do without the use of the goal 
interdependencies.  
 It is also important to adjust the number of iterations per 
optimization step. Because the planner restarts from a valid 
plan at the end of each optimization step, the number of 
iterations per step, i, should be large enough to provide 
enough iterations to enable the planner to perform the 
necessary repairs if the current set of goals can be 
achieved. However, if a valid plan cannot be produced, or 
the iterative repair algorithm gets the planner into a poor 
area of the search space, then a smaller i will mean that the 
planner will restart more quickly and save time.  Like the 
selection of ε, this parameter has much to do with the 
difficulty of the domain.  If goals can usually be solved with 
a small number of iterations, then a small i will be best.  For 
our domain, we ran a number of randomly generated 
problems with different values of i to find a value that 
would allow the planner to effectively add goals to the plan 
and make repairs within each optimization step.  

Evaluating ASPEN's Performance with 
Interdependent Goals  

Our main concern in evaluating our system was to see 
whether or not explicitly taking into account goal 
interdependencies during optimization would significantly 
improve the quality of the plan.  We expected to see some 
improvement over a system that did not use goal 
interdependencies in its objective function, but we were not 
sure if the improvement in quality would be worth a 
potential increase in time to produce the plans.  We were 
also curious to see how much of an improvement would be 
provided by the relatively simple objective function 
described in the previous section.    

Methodology  
To evaluate the impact of reasoning about interdependent 
goals, we compared our extended version of ASPEN, which 
we will refer to as ASPEN+IDGS (for ASPEN with 
InterDependent Goal Support) to two other versions of 
ASPEN: ASPEN+Random and ASPEN+SimpleReward.  All 
three versions used the randomized hill-climbing algorithm 
described in the previous section. The only difference is in 
how each of the three selects the next optional goal to add 
to the plan.  ASPEN+IDGS uses the objective function from 
Equation 1 to pick the next goal.  ASPEN+Random simply 
selects a goal at random without considering rewards.  
Finally, ASPEN+SimpleReward uses an objective function 
that looks at rewards for individual goals without 
considering goal interdependencies.  
 We ran each system on a set of randomly generated 
problems from a Mars exploration domain.  In this domain, a 
team of three rovers must collect different types of science 
data, including images and spectrometer reads, at various 
locations on the planet's surface.  The planner must decide 
which goals to assign to each rover, determine a sequence 
for each rover to use in visiting the different locations and 
plan for activities such as raising and lowering the rover 
masts and communicating with the ground to transmit data.  
Generated plans must also respect resource and temporal 
constraints, such as not exceeding onboard memory 
limitations when collecting data and performing activities 
during times when enough sunlight will be available.  
 The randomly generated problems varied in the number 
and location of the science goals.  The science targets in 
the problem are contained within a 30m by 30m region of 
the planet's surface divided into 36 areas of 5m by 5m each. 
For this experiment, each problem consisted of 6 randomly 
selected areas from this set. For each selected area we 
generated up to 4 rocks of interest with random positions 
within the area. Table 3 shows the types of goals that are 
given to the planner along with the possible values for each 
individual goal. Note that some goals have a range of 
values in which case a specific value is drawn randomly 
from a uniform from this range. The goal types can be 
described as follows. A mandatory panoramic image must 



be taken from the center of each selected area. For each 
rock of interest, the rovers must take an image at a distance 
of 1m from the rock, to place the rock in context with its 
surroundings, a close up image and a close up spectrometer 
reading. Thus, there will always be 6 mandatory panoramic 
images in each problem.  The number of optional goals will 
depend on the number of rocks that were generated. There 
will be three optional goals for each rock. With up to 4 
rocks per area, this results in problems that can range in 
size from 6 goals (when 0 rocks are picked per area) to 78 
goals (when 4 rocks are picked per area).  
 The rovers are given 1 Martian day to complete these 
goals. Depending on the relative locations of the targets, 
each rover can typically handle about 10 goals  in this time. 
With three rovers this means that most of the problems will 
be too large to complete and the planner will have to take 
into account the different goal values to determine which 
goals should be achieved.  
 Each problem description also included a randomly 
generated set of goal interdependencies. Although the 
interdependencies were randomly generated, they were 
based on preferences derived from our conversations with 
planetary geologists and represent the type of utility values 
considered by human experts. Table 4 shows the goal 
combinations used for the experiment and the associated 
values, which are based on the values of the individual 
goals making up the combination. To increase the variance 
among goal combinations, we used two different factors for 
computing the value of the goal pair B and D.  Most of the 
time the value of this combination is 2.25 times the sum of 
goals B and D's individual values. However, sometimes a 
much higher value (10 times the sum of their individual 
values) is given. Finally, for a given rock, each of the three 
goal combinations is removed with probability 0.5. 
 In selecting parameters for the randomized hill-climbing 
algorithm used in each planner, we decided to use 50 
iterations per optimization step as it seemed to provide the 
best balance between allowing the planner enough time to 
repair goals but not so long that it would waste a lot of time 
if it got stuck and needed to back up to a previous plan.  
For ε, we selected a small value of 0.02. 

Results  
We generated a set of 30 problems and because there is an 
element of randomness both to the ASPEN iterative repair 
algorithm and to our optimization approach, we ran the 
three versions of ASPEN on each problem 5 times. The 
systems were run on a Sun Blade 1000 with 1 Gigabyte of 
RAM.   

 At the end of each optimization step we recorded the 
current plan score based on the objective function from 
Equation 1, the current number of goals in the plan, and the 
number of seconds spent during that step. Note that even 
though the ASPEN+Random and ASPEN+SimpleReward 
versions of the planner did not make use of the objective 
function to select goals to add, we still used that objective 
function to score their plans for the purpose of the 
experiment.    
 Figures 4-6 present the results from these runs. Objective 
function scores are compared in Figure 4, while Figures 5 
and 6 compare the total number of goals achieved and the 
planning time used by each method. The data points in 
each graph are averaged over the 150 runs from each 
system. In each graph, the data point at optimization step 0 
represents the planner performing repair on a plan 
containing all mandatory goals. We performed two-tailed t 
tests between each pair of the three systems  with a 
Bonferroni correction. The only graph that showed 
significant differences among the systems was the graph of 
plan scores in Figure 4. ASPEN+IDGS was found to be 
significantly better than both ASPEN+Random and 
ASPEN+SimpleReward at the 0.01 confidence level.  
ASPEN+Random outperformed ASPEN+SimpleReward but 
only the data points between optimization steps 6 and 14 
showed significant difference at confidence level 0.01. 

Discussion 
Figure 4 shows that ASPEN+IDGS outscores both 
ASPEN+Random and ASPEN+SimpleReward.  In fact, 
ASPEN+IDGS showed a significant improvement over both 
versions at each data point.  The plot of the number of 
goals included in each plan (Figure 5) shows that all three 
systems were achieving about the same number of goals.  
This means that ASPEN+IDGS was selecting higher quality 
goals. This factor is particularly important because none of 
the planners were able to achieve all of the goals thus it is 
better to achieve the higher quality subset. 
 It is also important to note that ASPEN+IDGS's biggest 
improvements in performance occur in the early 
optimization steps.  Thus, even if the planner is capable of 
solving all the goals it is given but it is under tight time 
constraints, then using ASPEN+IDGS will allow the planner 
to find a much higher quality set of goals.  This feature is 
especially important in real-world problems where planning 
time can be tightly bound.  
 The shapes of the curves reveal some interesting 
characteristics about each algorithm.  The curve for 
ASPEN+IDGS rises sharply in the early optimization steps 

Goal  Combination Reward 
<Goal B, Goal C> (Value(B) + Value(C)) * 1.75 
<Goal B, Goal D> (Value(B) + Value(C)) * 2.25, 90% 

(Value(B) + Value(C)) * 10.0, 10% 
<Goal C, Goal D> (Value(C) + Value(D)) * 1.25 

 
Table 4:  Goal interdependencies and rewards 

Goal  Reward 
A: Panoramic Image of an Area (Mandatory) 20 
B: Long-Range Image of a Rock 12-25 
C: Close-Up Image of a Rock 7-20 
D: Close-Up Spectrometer Read of a Rock 2-15 

 
Table 3:  Individual goals  and rewards 



and then tapers off, while ASPEN+Random starts rising 
more slowly, increases in its rate of growth, and then 
begins to taper off at the end.  Given that both planners 
were adding about the same number of goals to the plan at 
each time step, the differences in the curve shapes is a 
result of the way each algorithm selected goals. The sharp 
rise in the ASPEN+IDGS curve can be explained by the fact 
that ASPEN+IDGS is explicitly looking to add goals that will 
improve the objective function.  However, as more goals are 
added to the plan, and therefore the rovers' resources are 
beginning to be stretched to their limit, making repairs to 
the plan becomes more difficult and the planner spends 
more iterations fixing problems with the plan and fewer 
iterations adding goals. As a result, the curve begins to 
level off. As can be seen in Figure 5, the number of goals 
added to the plan at each optimization step begins to 
decrease at about the same time that ASPEN+IDGS's score 
begins to taper off in Figure 4.  
 In contrast, the ASPEN+Random curve in Figure 4 
begins slowly because it is randomly adding goals to the 
plan and, early on, it is unlikely that the interdependent 
goal combinations will be satisfied in the plan. However, as 
more goals are added, the probability of satisfying goal 
combinations when a new goal is added increases, and the 
score begins to rise more rapidly.  But, just like 
ASPEN+IDGS, the planner begins to spend more time 
performing repairs and fewer goals are added to the plan 
causing the curve to taper off.  
 The fact that ASPEN+SimpleReward was the worst 
performer is particularly interesting. Recall that this version 
of the system is selecting new goals based on the each 
goals individual contribution to the plan.  In other words, it 
is using the rewards from Table 3.  Therefore, the planner 
will favor the addition of long-range images and avoid 
adding close-up spectrometer reads.  The problem with this 
approach is that the goal interdependencies do not 
necessarily preserve the relative reward values of the 
individual goals.  For example, although the close-up 
spectrometer read is the lowest rank score individually, 

when it is combined with a long-range image, it becomes 
much more valuable. However, since ASPEN+Simple-
Reward typically avoids adding this goal to the plan, it 
does not satisfy these high-quality goal combinations.  As 
a result, its score grows slowly and, like the other curve, 
tapers off in later optimization steps. 
 Figures 4 and 5 show that ASPEN+IDGS provides 
considerable benefit when the planner cannot achieve all 
the goals in a plan.  In this case, ASPEN+IDGS selects a 
higher quality subset of goals than either of the two 
competing systems in this study. This is already 
advantageous, but we were also interested in whether or 
not ASPEN+IDGS could increase plan quality without a 
significant increase in planning time.  The plot of each 
system's processing time per optimization step in Figure 6 
shows ASPEN+IDGS did not significantly increase 
planning time. 
  These results show that ASPEN+IDGS provides a 
significant improvement in plan score over versions of the 
planner that do not consider goal interdependencies 
without a significant increase in planning time.  This benefit 
is most important when a planner is given more goals than 
it can achieve as well as when the planner is under time 
constraints and may not have enough time to plan for all of 
its goals. 

Related Work 
The ASPEN methodology for optimizing over generic 
preferences (Rabideau, et al., 2000) was described in a 
previous section of this paper. The new optimization 
approach presented in this paper is an extension to this 
methodology that enables goal interdependencies and 
relevant utilities to be represented and utilized in a problem 
specification. The original ASPEN optimization approach 
does allow for more generic preferences than other methods 
that focus on specific preference types, such as trying to 
achieve goals early in time or conserving resources.  
However it still assumes that only static goal relationships 

        
 

Figure 4: Objective function score             Figure 5: Number of goals achieved 



can be defined (as part of a domain model) and these 
relationships are typically not tied to any utility measure. 
The standard ASPEN preference language does not allow 
for goal dependencies and related utilities to change 
between different problems.  Instead it concentrates on 
defining preferences over general classes of goals as 
opposed to individual goals or goal subsets.   
 Other work in planning optimization has used utility 
models to improve on particular types of quality measures.  
PYRRHUS (Williamson and Hanks, 1994) extends the 
UCPOP partial-order planner to handle metric time, 
resources, and a utility model.  However, PYRRHUS has 
typically been applied to domains where goals are related 
through simple, static model definitions (e.g., two transport 
goals are related since they both require fuel). Conversely, 
we are examining domains and problems where goal utility 
can be affected by achieving certain goal combinations and 
this utility is defined by the problem instance.  Furthermore 
this utility can change from problem to problem. 
 Over the last several years many planning researchers 
have explored the use of decision theory in planning. In 
particular, Markov Decision Processes (MDPs) provide a 
rich formalism for expressing many types of planning 
domains (Boutilier, et al, 1999). It should be possible to 
encode the types of goal interdependencies discussed in 
this paper in an MDP reward function. Standard techniques 
for solving MDPs such as Policy or Value Iteration could 
be used to find a plan that maximizes this reward.  However, 
MDPs have yet to be demonstrated on real problems of 
significant size in domains with time and resource 
constraints and it is likely that the large computational cost 
would be prohibitive. Instead, ASPEN uses a randomized 
iterative repair algorithm that does not guarantee optimality, 
but, as we have demonstrated in the paper, is capable of 
finding high quality plans. 
 Past work in planning systems has been directed at 
improving the overall quality of a plan by using machine-
learning techniques to acquire relevant search-control 
knowledge.  Plan quality in these systems is  defined as 
either plan execution cost (Perez and Carbonell, 1994) or 

some other specific cost measure applied to the final plan 
(Iwamoto, 1994).  However, such methods have only been 
applied in STRIPS-style planning domains that do not have 
the complex resource or temporal constraints common to 
real-world domains. Furthermore, goal interactions or 
dependencies all stem from the domain model and cannot 
be introduced as part of problem definitions. 
  Work in mixed-initiative planning has also looked at 
generating qualitatively different plans by developing 
biases that focus the planner towards solutions with certain 
characteristics (Myers and Lee, 1999).  Our work however, 
has been more focused on automated planning where the 
planner operates with little human involvement.  Using our 
methodology, however, a user could specify utility 
preferences in a problem specification by encouraging 
certain goal combinations.  

Future Work 
We have identified a number of areas for further 
investigation.  First, we would like to test our approach on 
different types of goal interdependencies.  Our experiments 
thus far have only considered pairs of related goals where 
each selected pair increases the overall utility of a plan.  As 
mentioned previously, goal interdependencies can be 
defined in different manners. For instance, certain goal 
combinations may actually decrease overall plan utility.  
We would also like to experiment with problem sets where 
only so many goals of a certain set are added before utility 
gains level off or actually start to decrease.   Furthermore, 
we would like to explore using this method in other domains 
where goal interdependencies can affect plan utility.   
 In addition, we plan to test whether our simple objective 
function and approach scales up to goal combinations 
using much larger sets of goals.  Currently we have only 
looked at goal pairs, but goal relations can obviously span 
much larger sets of goals.  In experiments discussed in this 
paper, problems could contain over 70 goals and there are 
many larger goal combinations that could be identified and 
used to further define problem utility.  To better address the 
scalability issue, we also plan to enhance our current 
optimization algorithm to better recognize potential high-
utility goal combinations.  Currently we use a simple hill-
climbing approach that only considers one goal at a time.  
Incorporating some degree of look-ahead may enable the 
algorithm to catch even more goal combinations that will 
further increase plan utility. 
 Finally, we intend to further test our approach using the 
entire MISUS system and evaluate its capability to collect 
and analyze valuable science data and to eventually 
determine the validity of different scientific hypotheses. 
Though currently this system is operated only in 
simulation, we intend to ultimately test its capabilities using 
real rovers examining actual terrain features. 

 
 

Figure 6: Plan generation time 



Conclusions 
In this paper we have presented a method for utilizing 
interdependent goal utilities, where goal relations can be 
dictated by current information and can vary from problem 
to problem.  In typical planning systems, only simple, static 
goal relations can be defined that remain relatively constant 
between problem instances.  However, in many application 
areas, goal dependencies and their related utility metrics 
can dramatically change based on current information or 
even user preferences.  To address this problem, we have 
implemented a new method for representing and reasoning 
about interdependent goals. We have also presented 
experimental results that show how this approach can 
significantly improve overall plan quality in a multi-rover 
application. 

Acknowledgments 
This work was performed at the Jet Propulsion Laboratory, 
California Institute of Technology, under contract with the 
National Aeronautics and Space Administration.  
 Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, 
or otherwise, does not constitute or imp ly its endorsement 
by the United States Government or the Jet Propulsion 
Laboratory, California Institute of Technology. 
 The authors acknowledge the contributions of Eric 
Mjolsness, Rebecca Castano, Ashley Davies, and Martha 
Gilmore for their help in defining relevant geology scenarios 
for this work.  We also thank Gregg Rabideau for providing 
the ASPEN optimization framework and for his help in 
implementing our approach. 

References 
Boutilier, C., Dean, T. and Hanks, S. 1999. Decision-
Theoretic Planning: Structural Assumptions and 
Computational Leverage. Journal of Artificial Intelligence 
Research, 11:1-94. 
 
Chien, S., Rabideau, G., Knight, R., Sherwood, R.,  
Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F., 
Barrett, T., Stebbins, G., and Tran, D. 2000. ASPEN - 
Automating Space Mission Operations using Automated 
Planning and Scheduling, In Proceedings of the SpaceOps 
2000 Conference, Toulouse, France. 
 
Estlin, T., Gray, A., Mann, T., Rabideau, G., Castano, R., 
Chien, S. and Mjolsness, E. 1999. An Integrated System for 
Multi-Rover Scientific Exploration. In Proceedings of the 
Sixteenth National Conference on Artificial Intelligence, 
613-620. Orlando, FL. 
 
Estlin, T., Rabideau, G., Mutz, D., and Chien, S. 2000. Using 
Continuous Planning Techniques to Coordinate Multiple 

Rovers. Electronic Transactions on Artificial Intelligence 
4:45-57. 
 
Iwamoto, M. 1994. A Planner with Quality Goal and Its 
Speed-up Learning for Optimization Problem. In 
Proceedings of the Second International Conference on 
Artificial Intelligence Planning Systems, Chicago, IL. 
 
Joslin, D., and Clements., D. 1999. “Squeaky Wheel” 
Optimization. Journal of Artificial Intelligence Research 
10:353-373. 
 
Minton, S., and Johnston, M. 1988. Minimizing Conflicts: A 
Heuristic Repair Method for Constraint Satisfaction and 
Scheduling Problems.” Artificial Intelligence, 58:161-205. 
 
Myers, K., and Lee, T. 1999. Generating Qualitatively 
Different Plans Through Metatheoretic Biases. In 
Proceedings of the Sixteenth National Conference on 
Artificial Intelligence, Orlando, FL. 
 
Perez, A., and Carbonell, J. 1994. Control Knowledge to 
Improve Plan Quality. In Proceedings of the Second 
International Conference on Artificial Intelligence 
Planning Systems, Chicago, IL. 
 
Rabideau, G., Engelhardt, B., and Chien, S. 2000. Using 
Generic Preferences to Incrementally Improve Plan Quality. 
In Proceedings of the Fifth International Conference on 
Artificial Intelligence Planning and Scheduling, 
Breckenridge, CO. 
 
Williamson, M., and Hanks, S. 1994.  Optimal Planning with 
a Goal-Directed Utility Model.  In Proceedings of the 
Second International Conference on Artificial Intelligence 
Planning Systems, Chicago, IL. 
 
Zweben, M., Daun, B., Davis, E., and Deale, M. 1994. 
Scheduling and Rescheduling with Iterative Repair, In 
Intelligent Scheduling, Morgan Kaufmann, San Francisco, 
CA. 241-256. 
 
 


