

DLR-F4 Geometry, Test Cases, and Grids

David Levy, Kelly Laflin, Shahyar Pirzadeh, and John Vassberg

9 June 2001

AIAA CFD Drag Prediction Workshop

Anaheim, CA 1

Overview

- Test geometry selection
- Geometry construction
- Experimental data
- Test case selection
- Multiblock structured grid
- Unstructured grids
- Overset grid

Goals for Test Geometry

- Not too complicated } Wing-body
- Available geometry
- Well defined
- Available experimental data

Available Geometry Candidates

- DLR-F4 Wing-Body
- Pathfinder Wing-Body and Wing-Body-Nacelle
- W4 Wing-Body

DLR-F4 Wing Body

Redeker, G., "DLR-F4 Wing-Body Configuration," A Selection of Experimental Test Cases for the Validation of CFD codes, AGARD Report AR-303, Aug. 1994.

Finished Geometry

AIAA CFD Drag Prediction Workshop

Anaheim, CA 6

Experimental Data

- Three sets of data at different wind tunnels
- All data at $R_{Nc}=3x10^6$; Fixed transition
- Alpha sweeps at M_{∞} = .60, .75, .80
- Wing Pressure Data:

• C_D only listed to 3 significant digits

Goals for Test Cases

- Controlled study desired
- Minimize variation (Grids, C_L)
- Perform statistical analysis
- Maximize participation
- Test practicality
- Determine best techniques

Required Test Cases

- <u>Case 1:</u> $M_{\infty} = .75$, $C_L = .500$ Standard grids Best for statistics
- <u>Case 2</u>: M_{∞} =.75, α =-3°, -2°, -1°, 0°, 1°, 2° Allow better grids Can do some statistics Closer to industry type data, but still simple

AIAA CFD Drag Prediction Workshop

Optional Test Cases

• <u>Cases 3 and 4:</u> M_{∞} sweep, C_L =.40, .50, .60

Increasingly more difficult Separation at higher Mach/ C_L combinations More like what industry needs and uses

9 June 2001

AIAA CFD Drag Prediction Workshop